

Application Note

78K0/Kx1+ Self-Programming
Bootloader Example

Document No. U18054EU1V0AN00
©2006 April. NEC Electronics America, Inc.
All rights reserved.

78K0/Kx1+ Self-Programming: Bootloader Example

ii

The information in this document is current as of April 2006. The information is subject to change without notice. For
actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-
date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please
check with an NEC sales representative for availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of
NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.

NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other
liability arising from the use of such NEC Electronics products. No license, express, implied or otherwise, is granted
under any patents, copyrights or other intellectual property rights of NEC Electronics or others.

Descriptions of circuits, software and other related information in this document are provided for illustrative purposes
in semiconductor product operation and application examples. The incorporation of these circuits, software and
information in the design of customer's equipment shall be done under the full responsibility of customer. NEC
Electronics no responsibility for any losses incurred by customers or third parties arising from the use of these circuits,
software and information.

While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of
damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers
must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure
features.

NEC Electronics products are classified into the following three quality grades: “Standard”, “Special” and “Specific”.

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated
“quality assurance program” for a specific application. The recommended applications of NEC Electronics product
depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics
product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and
visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special": Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems,
anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support
systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is “Standard” unless otherwise expressly specified in NEC Electronics
data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC
Electronics, they must contact NEC Electronics sales representative in advance to determine NEC Electronics 's
willingness to support a given application.

Notes:

1. "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
 majority-owned subsidiaries.

2. "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics
 (as defined above).

M8E 02.10

78K0/Kx1+ Self-Programming: Bootloader Example

Revision History

Date Revision Section Description

04-2006 — — First release

iii

78K0/Kx1+ Self-Programming: Bootloader Example

iv

Contents

1. Introduction...1
1.1 Definition of “Bootloader” ...1
1.2 Advantages ..2
1.3 First-Time Programming ...2
1.4 Updates ..2
1.5 Cautions ...2
1.6 Main Elements...2
1.7 Start-up Signal ..3
1.8 Execution Signal..3
1.9 Transferring Code ..3
1.10 Flash Self-Programming ..3
1.11 Transferring Control to a Valid Application Program ...3

2. Flash Self-Programming ..4
2.1 Flash Blocks...4
2.2 Boot Clusters ...4
2.3 Flash Words...5
2.4 Operating Modes...5

2.4.1 Normal Operation ...5
2.4.2 A1 Mode...6

2.5 A2 Mode...7
2.6 Hardware Requirements ..8
2.7 FLMD0 Pin..8
2.8 FLMD1 Pin..8

3. Bootloader Configuration and Operation ..9
3.1 Bootloader Circuit ..9
3.2 Bootloader Communication ...9
3.3 Bootloader Operation ...10

3.3.1 Boot Prompt for Loading Application..10
3.3.2 Loading the Application ...10
3.3.3 Receiving the Data..12
3.3.4 Processing the Received Data...12
3.3.5 Blank checking and Erasing ...12
3.3.6 Programming ..13
3.3.7 Verifying...13
3.3.8 Storing a Valid Application Checksum ..13
3.3.9 Executing the Application ..14

3.4 Error Reporting ..14
3.4.1 FLMD1 Pin High..14
3.4.2 Flash Self-Programming Errors ..15
3.4.3 Missing First Colon ..15
3.4.4 Incorrect Line Checksum..15
3.4.5 Boot Area Overwrite ..15

78K0/Kx1+ Self-Programming: Bootloader Example

4. Bootswapping Feature..15

4.1 Bootswapping Procedure..16
4.1.1 Bootswapping Step 1 ..16
4.1.2 Bootswapping Step 2 ..16
4.1.3 Bootswapping Step 3 ..16
4.1.4 Bootswapping Step 4 ..17
4.1.5 Bootswapping Step 5 ..17
4.1.6 Bootswapping Step 6 ..17
4.1.7 Bootswapping Step 7 ..17
4.1.8 Bootswapping Step 8 ..18
4.1.9 Bootswapping Step 9 ..18

4.2 Interruption of the Bootswapping Process ...19

5. Developing Self-Programming Code Using NEC Electronics Tools ..20
5.1 Code Structure ..20
5.2 Development Flow...20
5.3 Tools Setup ..21

5.3.1 Procedure to Generate Boot Code ..22
5.3.2 Procedure to Generate Application (Flash) Code ...22

v

78K0/Kx1+ Self-Programming: Bootloader Example

1. Introduction

This application note describes how to implement a bootloader using the NEC Electronics µPD78F0148H
MCU (MCU). To request the sample code for implementing the self-programming function in other
78K0/Kx1+ MCUs, please contact your local NEC Electronics America representative.

1.1 Definition of “Bootloader”

The “boot” name derives from the lines of code that execute when the MCU starts up or “boots”.
“Loader” derives from the “loading” and writing of new application code into the MCU’s flash
memory. An MCU must be capable of flash self-programming to be able to implement a bootloader.

Based on an external signal, a bootloader will either load a new application or proceed to the existing
application (Figure 1).

Figure 1. Basic Bootloader

Power-up / Reset

Load new
application?

Erase old application

Get new application code

Self-flash program new application code

Execute application

Yes

No

Valid application
code?

Yes

No

Bootloader

 1

78K0/Kx1+ Self-Programming: Bootloader Example

1.2 Advantages

A bootloader gives you the ability to update or replace application code without the use of an
external programmer, and also makes it possible to update code remotely over a phone line or
Internet connection.

For example, if there were 5,000 MCU-based pay phones in California and the phones needed a
firmware update, the phone company’s service person could manually reprogram the telephones one
at a time using an external programmer, a time-consuming effort, or use a bootloader to reprogram
all 5,000 phones remotely from one central location.

1.3 First-Time Programming

Bootloader code generally does not come preprogrammed in the MCU. Code sometimes is provided
by an MCU supplier and, in other cases, it is written by the MCU user. The code then is programmed
into an MCU using an external programmer. Once programmed, the bootloader can by used to load a
user’s application program without the need for an external programmer. When the application
program needs updating, the bootloader can be instructed to load the updated program.

1.4 Updates

Many MCUs require the use of an external programmer when the bootloader itself must be updated,
because the bootloader cannot execute code and overwrite itself with new code at the same time.
NEC Electronics 78K0/Kx1+ MCUs, however, allow bootloader code to be updated by means of a
bootswapping feature.

1.5 Cautions

If there is an interruption or errors in the bootloading process, then there will only be a partial
application in memory. The bootloader must guard against trying to execute this invalid code.

1.6 Main Elements

A bootloader consists of five main elements:

 Signal to start the bootloading process
 Signal to execute the bootloader
 Transfer of new code into the MCU
 Flash self-programming of the new code
 Transfer of control to a valid application program

 2

78K0/Kx1+ Self-Programming: Bootloader Example

1.7 Start-up Signal

In a situation where hundreds of vending machines were all connected to the Internet and the owner
wanted to update their firmware, a signal would have to be generated to trigger the MCUs to start the
bootloading process. The signal could be an interrupt, a command byte sent over a serial channel, or
something else that would cause the program to reset and run the bootloader code.

1.8 Execution Signal

Upon startup, the MCU loads a new application program or executes an existing one depending the
external signal it receives. The signal could be programmed to come from a port pin upon power-up
and, depending on whether the signal is high or low, the MCU would load or execute accordingly.
The signal could also be based on a character received by the UART, or on the reading taken by the
analog-to-digital (A/D) converter. It is up to the user to decide the best method.

1.9 Transferring Code

The data can be transferred over an RS-232, I2C or serial port or via a parallel port over a number of
lines. The user can decide. Since the amount of data transferred typically exceeds the size of the
MCU’s RAM, there must be some provision to control the flow of the data. For an RS-232 serial
port, a slow the baud rate could be used to give the MCU time to process the data and self-program
itself without being overrun. Hardware handshaking using clear to send (CTS) and request to send
(RTS) lines to control the flow of data would be another option. Another would be to use software
handshaking using the XON/XOFF protocol.

New code can be in a format chosen by the user, but it will need to contain addressing information as
well as checksums for error processing, typically a standard such as Intel hexadecimal format.

1.10 Flash Self-Programming

Each time an MCU receives a new batch of data, the MCU must self-program itself in the correct
flash memory locations. If the locations are not already blank, they must be erased before
programming. Also, typically, they must be verified during or after programming.

1.11 Transferring Control to a Valid Application Program

Once the new code is received and programmed successfully, the bootloader writes a checksum or
other unique byte sequence to a fixed memory location. The bootloader then checks for this valid
application checksum or byte sequence and, if it is present, the bootloader transfers control to the
application.

 3

78K0/Kx1+ Self-Programming: Bootloader Example

2. Flash Self-Programming

To implement a bootloader, an MCU must be capable of flash self-programming. The architecture and
mechanisms of flash self-programming in the NEC Electronics 78K0/Kx1+ MCUs are described here.
The description will focus on the µPD78F0148H, the MCU used in the bootloader described here.

Figure 2. µPD78F0148H Flash Memory

7FFFH
8000H

0000H

EFFFH

Boot Cluster 0

Boot Cluster 1

Block 0

Block 1

Block 2

Block 3

Block 15

Block 29

Block 28

Block 27

Block 26

0FFFH
1000H

1FFFH

Addresses used for
Hidden Rom

A2 Mode Functions

A1 Mode
Self-flash Programming

Code
(0080H-7FFFH)

2.1 Flash Blocks

The flash memory is divided into blocks of two kilobytes (KB) as shown in Figure 2. This is the
smallest amount of memory that can be blank checked, erased, or verified. The available 60 KB of
flash memory, between addresses 0000H and EFFFH, are divided into thirty 2 KB blocks (block 0 to
block 29). See the appendix for a complete list of flash memory block addresses.

2.2 Boot Clusters

The first four blocks of flash memory are divided into two boot clusters of 4 KB, called boot cluster
0 and boot cluster 1. These are used together with the bootswapping feature to allow a bootloader to
download a new bootloader that overwrites the old one. For information about the bootswapping
procedure, refer to Section 4.

 4

78K0/Kx1+ Self-Programming: Bootloader Example

2.3 Flash Words

The smallest amount of flash memory that can be written is a word of four bytes. The data buffer
used for programming holds 1 to 64 words of data (4–256 bytes).

2.4 Operating Modes

The 78K0/Kx1+ MCUs are capable of flash self-programming and so can implement a bootloader
function. To control the flash self-programming process, there are three MCU operating modes:

 Normal operation

 A1 mode

 A2 mode

Figure 3. Operating Modes

Flash Memory Blocks
being

Erased/Programmed/Verified

Secure Entry Program
to A1 Mode

ResetSecure Exit Program
to Normal Mode

A2 Mode
Self-flash programming functions

in hidden ROM

Entry RAM (48 bytes)
Data Buffer (4 to 256 bytes)

Register Bank 3
and

Stack

A1 Mode
Main Control Program for Self-flash programming

using A2 Mode functions

Normal Mode
Usually in this mode when running user application

2.4.1 Normal Operation

Normal operation is, as the name suggests, just the normal operating mode of the MCU as it executes
a user program. The MCU cannot self-program its flash memory in this mode. It must first enter A1
mode.

 5

78K0/Kx1+ Self-Programming: Bootloader Example

Figure 4. Memory Map in Normal Operation

Hidden ROM

0000H

7FFFH

8000H

EFFFH

Flash Blocks
0-15

Flash Blocks
16-29

2.4.2 A1 Mode

The MCU can only enter A1 mode when bytes are written to the Flash Programming Mode
Control (FLPMC) and Flash Protect Command (FPCMD) control registers in a specific sequence.
This programming mechanism safeguards the MCU from entering A1 mode inadvertently. Note that
the only reason to enter A1 mode is to gain access to the hidden ROM functions for flash self-
programming. Once in A1 mode, with the FLMD0 pin set high, the hidden ROM functions for
erasing, writing, etc. can be called. Interrupts should be disabled in A1 mode.

These MCU resources are used:

 Timer 50

 Register bank 3

 Entry RAM (48 bytes)

 Data buffer (4–256 bytes)

 Stack (32 bytes)

 6

78K0/Kx1+ Self-Programming: Bootloader Example

All of the flash memory can be blank checked, erased, written, etc., but the executing code that calls
the hidden ROM functions must be located between addresses 0080H and 7FFFH, because the
hidden ROM functions use addresses starting with 8000H upward. This restriction also means that
code cannot be executed from flash blocks 16–29 in A1 mode, although the blocks may be erased,
programmed, verified, etc.

After using the hidden ROM functions, users should immediately return to normal operation where
there is no access to hidden ROM functions.

Figure 5. A1 Mode Memory Map

0000H

7FFFH

8000H

EFFFH

Flash Blocks
0-15

Flash Blocks
16-29A2 Mode Functions

A1 Mode
Self-flash Programming

Code

0080H

2.5 A2 Mode

In A2 mode, the MCU executes hidden ROM functions and then returns to the calling routine in A1
mode.

 7

78K0/Kx1+ Self-Programming: Bootloader Example

2.6 Hardware Requirements

The flash self-programming function uses a single-voltage process, so only the MCU’s VCC power is
required. Two pins, FLMD0 and FLMD1, must be managed as part of the flash self-programming
process.

Figure 6. Circuit for FLMD0 and FLMD1 Pins

Port Output

FLMD1

FLMD0

R1
10k

R2

1k

2.7 FLMD0 Pin

Pin FLMD0 normally is low but must be pulled high for flash self-programming. The recommended
configuration is shown in Figure 6, where FLMD0 is tied to a port pin configured as an output and
then to ground via a resistor. This way the FLMD0 pin can be set high or low by setting or clearing
the output port pin.

2.8 FLMD1 Pin

Pin FLMD1 should be kept low. If FLMD0, FLMD1 and RESET are all high, then the MCU enters a
test mode. Since FLMD0 is set high for flash self-programming, it is advisable to keep the FLMD1
pin low. Although FLMD1 can alternately function as a port pin, it is probably advisable to tie it to
ground via a resistor and leave the port configured to the input state.

 8

78K0/Kx1+ Self-Programming: Bootloader Example

3. Bootloader Configuration and Operation

This section describes the bootloader’s configuration and operation during the loading of new application
code.

3.1 Bootloader Circuit

The bootloader described in this document is configured as shown in Figure 7:

 µPD78F0148H MCU

− 16 MHz clock
− FLMD0 pin tied to ground via 10K resistor
− FLMD1 pin tied to ground via 1K resistor
− P3.0 port output used to control state of FLMD0 pin
− UART6 serial interface

Figure 7. Bootloader Circuit

3.2 Bootloader Communication

The UART6 used by the MCU for transmitting and receiving serial data is configured as follows:

 115200 baud
 8 data bits
 No parity
 One stop bit
 XON/XOFF flow control

 9

78K0/Kx1+ Self-Programming: Bootloader Example

3.3 Bootloader Operation

Figure 8 outlines the Erase, Program, and Verify commands of the application code using
XON/XOFF flow control to download the addresses and data.

3.3.1 Boot Prompt for Loading Application

When the MCU boots up, either on power-up or after a reset, it displays the following prompt:

NEC Electronics Inc. Bootloader Version X3
Load Y/N?

If you enter Y, then you will be prompted to download the new application file, which is expected to
be in standard Intel hexadecimal 16 code as detailed in Appendix C. Otherwise, if you enter N, or if
there is no entry for a number of seconds, the MCU proceeds to check for valid application code to
execute.

3.3.2 Loading the Application

When you enter Y, then the bootloader prompts you to send the file:

Send File

You then can use the Send or Transfer File command in your terminal program to send the file.

 10

78K0/Kx1+ Self-Programming: Bootloader Example

Figure 8. Bootloader Flow Using XON/XOFF Control

 11

78K0/Kx1+ Self-Programming: Bootloader Example

3.3.3 Receiving the Data

The bootloader loads the incoming data into a receive buffer. When the buffer is full, the bootloader
transmits the XOFF character to halt the flow of data and continues to process any remaining data
until no more characters are received. Then a timeout causes an exit from the receive loop and begins
processing of the data. Note that the same timeout mechanism comes into play if characters stop
being received before the receive buffer is full.

3.3.4 Processing the Received Data

The bootloader examines the data in the receive buffer and executes the following tasks:

 Checks that the line checksums are correct

 Checks for breaks in line addresses (non-contiguous addresses)

 Sets the programming address

 Extracts the data to be programmed into the data buffer

 Programs the data

 Shifts the unprocessed data to the start of the receive buffer

 Checks for end of file

 Transmits XON before returning to receive loop

The bootloader processes the receive buffer and stores a start address for programming. It then stores
data from contiguous addresses into the data buffer. When all the data from the receive buffer has
been processed, or if there is a break in the address sequence, then the bootloader programs the data
in the data buffer. Afterward, the bootloader shifts the data in the receive buffer, to move any
unprocessed data to the start of the buffer, and then transmits the XON character and returns to the
receive loop where it left off. The bootloader continues this XON/XOFF receive/programming
sequence until it detects the end of the file.

3.3.5 Blank checking and Erasing

After the bootloader has processed the first set of data from the incoming file, it executes a Blank
Check/Erase command before programming the application code into flash memory. Up to this
point, if an error in the process causes the bootloader to reset, the application flash will still be valid.
The bootloader blank checks the flash memory first and only erases those blocks that are not blank.
If block are erased, then the bootloader output the numbers of those blocks in hexadecimal format.

 12

78K0/Kx1+ Self-Programming: Bootloader Example

Erasing 02
Erasing 03
Erasing 1D

3.3.6 Programming

The bootloader programs the data in the data buffer by specifying the address and the number of
words to be programmed. Each time the bootloader programs data, it outputs the starting addresses
so that you can monitor the progress of bootloading, as follows.

Programming at ..
101C
102C
112C
122C
132C
Etc.

3.3.7 Verifying

When the bootloader has received and programmed the whole file without errors, then it verifies the
flash memory and outputs this message:

Verifying..

3.3.8 Storing a Valid Application Checksum

When application code is successfully verified, the bootloader stores a 4-byte checksum at the end of
flash memory. This checksum is summed over the entire flash application area, from the start of
FIRST_FLASH_BLOCK to the end of LAST_FLASH_BLOCK, excluding the four bytes used for
storage.

#define FIRST_FLASH_BLOCK 2 // first application block
#define LAST_FLASH_BLOCK 29 // last application block

The four bytes used for storage are the last four locations of the last flash block. If the size of flash
memory is greater than 32 KB, then the MCU must be in normal mode before the checksum can be
calculated. In A1 mode, the MCU uses addresses greater than 8000H for hidden ROM A2 mode
functions. After the checksum has been programmed in normal mode, the block is verified.

 13

78K0/Kx1+ Self-Programming: Bootloader Example

Checksum 00DC8195 at..
EFFC
Verifying..
Note: In this example, the checksum is calculated by summing the data bytes from 1000H to
EFFBH. The checksum is then stored as a 4-byte word in the last four locations of block 29 (EFFCH,
EFFDH, EFFEH, EFFFH).

3.3.9 Executing the Application

Immediately after successfully loading the new application code, the MCU proceeds to execute it.
Whether the code is written to run immediately after a bootload, or after power-up or a reset, the
bootloader always checks for a valid application checksum before executing the application code.
The bootloader calculates a checksum for the flash application memory, compares it against the
stored checksum, and then outputs the information in this form:

Stored checksum = 00DC8195
Calculated checksum = 00DC8195
If the values are equal, the MCU proceeds to execute the application code. Otherwise, the program
resets and prompts you to download a new application. This valid application check guards against
execution of invalid code, which could happen, for example, if an MCU is programmed with the
bootloader but has not yet received any application code. Invalid execution also could happen if
noise or power loss causes an MCU reset or if one of those conditions occurs in the middle of a
download.

3.4 Error Reporting

The following errors may be reported during a bootloading procedure.

3.4.1 FLMD1 Pin High

As shown in the bootloader circuit in Figure 7, the FLMD1 pin should be low. When the MCU
enters A1 mode, the FLMD0 pin must be set high. If the FLMD0, FLMD1 and RESET pins are all
high, then the MCU enters a factory-set test mode. To guard against this, the bootloader checks the
level of the FLMD1 pin before setting FLMDO high when entering A1 mode. If the bootloader finds
that the pin is high, then the bootloader outputs this message:

FLMD1 high!
The bootloader then enters an endless loop and allows the watchdog timeout to force a reset
condition.

 14

78K0/Kx1+ Self-Programming: Bootloader Example

3.4.2 Flash Self-Programming Errors

If the bootloader encounters any errors when entering A1 mode, or when using any of the flash self-
programming functions, the bootloader outputs this type of message:

SFP: Function = 04 Return = 05
The bootloader then enters an endless loop and allows the watchdog timeout to force a reset.

Note: Function numbers and return values are detailed in Appendix B.

3.4.3 Missing First Colon

To guard against missing the first characters of a file, the bootloader does not accept any file sent
without a colon as the first character. If the colon is missing, the bootloader outputs this message:

1st : missing!
The bootloader then enters an endless loop and allows the watchdog timeout to force a reset.

3.4.4 Incorrect Line Checksum

As the characters in the receive buffer are being processed, the bootloader examines each line for the
correct checksum and, if an incorrect one is found, the bootloader outputs this message:

Line checksum!
The bootloader then enters an endless loop and allows the watchdog timeout to force a reset.

3.4.5 Boot Area Overwrite

When bootloading a new application and before programming the received data, the bootloader
examines each address to make sure that it is outside the boot cluster 0 area of 0000H–0FFFH. If any
programming address falls inside this range, the bootloader does not program this address as it would
corrupt the bootloader code. Instead, the bootloader outputs this message:

Boot Area!
The bootloader then enters an endless loop and allows the watchdog timeout to force a reset.

4. Bootswapping Feature

For a blank MCU, the bootloader first must be programmed using an external programmer. Afterward the
external programmer can be set aside because the bootloader can load new application code by itself. In
many MCUs, you must use an external programmer to update the bootloader code, because the bootloader

 15

78K0/Kx1+ Self-Programming: Bootloader Example

code cannot execute and overwrite itself at the same time. The 78K0/Kx1+ MCUs, however, allow you to
update bootloader code safely by means of a bootswapping feature when all of the bootloader code is in
the 4 KB in Boot Cluster 0 (0000H–0FFFH0. The bootswapping feature makes use of the Boot Cluster 1
area, which is the 4 KB from 1000H–1FFFH. If there is application code in this area, it must be rewritten
after the bootswapping procedure is completed. The following description of the bootswapping procedure
assumes that there is application code in the Boot Cluster 1 area.

4.1 Bootswapping Procedure

Figure 8 details the bootswapping procedure.

4.1.1 Bootswapping Step 1

The MCU is reset and Bootloader A (Boot Cluster 0) starts executing. When the user is prompted to
download a new application, they select Bootloader B for download.

4.1.2 Bootswapping Step 2

Bootloader A determines that new bootloader code examines the first address of the file being sent.
If this address is the reset address of 0000H, the Bootloader A knows that the file being sent is new
boot code rather than an application. After determining that the file is new boot code, the bootloader
must erase boot cluster 1 (blocks 2 and 3).

Erasing
02
03

4.1.3 Bootswapping Step 3

Although Bootloader B has addressing in the 0000H–0FFFH range (Boot Cluster 0), Bootloader B
must be stored in the 1000H–1FFFH range (Boot Cluster 1), which is accomplished by adding an
offset of 1000H to all addresses before programming. The program starting address output looks like
the following:

 16

78K0/Kx1+ Self-Programming: Bootloader Example

Programming..
0000->1000
0100->1100
0200->1200
0240->1240
Etc.

Verifying..
If there are no errors in the process, Bootloader A prompts you to confirm:

Replace the boot code Y/N?

If you enter Y, then Bootloader A sets the bootswapping flag.

Whether the bootswapping flag is set or not, Bootloader A now allows a watchdog timeout to force a
reset.

4.1.4 Bootswapping Step 4

When reset, the MCU determines that the bootswapping flag is set and starts executing the code in
Boot Cluster 1 (Bootloader B).

4.1.5 Bootswapping Step 5

Bootloader B determines that the bootswapping flag is set and knows it must copy itself to Boot
Cluster 0 after first erasing Boot Cluster 0 (blocks 0 and 1)

BootSwapping..
Erasing 00
Erasing 01

4.1.6 Bootswapping Step 6

Bootloader B copies itself into Boot Cluster 0 (blocks 0 and 1), clears the bootswapping flag, and
allows the watchdog timeout to force a reset

4.1.7 Bootswapping Step 7

After a reset, the MCU determines that the bootswapping flag is clear and then starts executing the
code in Boot Cluster 0 (now Bootloader B).

 17

78K0/Kx1+ Self-Programming: Bootloader Example

4.1.8 Bootswapping Step 8

After prompting for new application code, Bootloader B now erases Boot Cluster 1 so it can load the
missing application code. If Bootloader B needs to load the whole application, it will erase blocks 2
to N (where N is the last block number needed by the application code).

4.1.9 Bootswapping Step 9

Bootloader B loads the partial application code that is missing (or else reloads the whole
application).

 18

78K0/Kx1+ Self-Programming: Bootloader Example

Figure 9. Bootswapping Procedure

Block 0

Block 1

Block 2

Block 3

Block N

Step 3

Block 0

Block 1

Block 3

Block N

Step 2

Block 0

Block 1

Block 2

Block 3

Block N

Partial
Application

Step 5

Block 0

Block 1

Block 2

Block 3

Block N

Block 0

Block 1

Block 2

Block 3

Block N

Set Boot Flag

Block 0

Block 1

Block 2

Block 3

Block N

Step 6

Bootloader B
Executing

Bootloader B
Executing

Bootloader A

Partial
Application

Bootloader A
Executing

Partial
Application

Erased

Bootloader A
Executing Bootloader A

Executing

Bootloader B

Partial
Application

Bootloader B
Executing

Partial
Application

Bootloader B

Block 0

Block 1

Block 2

Block 3

Block N

Partial
Application

Bootloader B
Executing

Clear Boot Flag

Bootloader B

Block 0

Block 1

Block 2

Block 3

Block N

Step 8

Block 0

Block 1

Block 2

Block 3

Block N

Step 9

Erased

Erased

Partial
Application

Application

Application

Bootloader B
Executing

Bootloader B
Executing

Block 2

Step 1Reset

Step 4Reset

Step 7Reset

4.2 Interruption of the Bootswapping Process

If noise or power loss causes the MCU to reset at any stage in this process, the MCU will still boot
up correctly because it retains a full copy of the bootloader code throughout the above process, and
the MCU can use the bootswapping flag to determine which boot cluster to execute boot code from.

 19

78K0/Kx1+ Self-Programming: Bootloader Example

5. Developing Self-Programming Code Using NEC Electronics Tools

5.1 Code Structure

To take full advantage of the self-programmability features of the 78K0/Kx1+ MCUs, it is
recommended to separate your code into two sections; the boot area and the application area. By
separating the code in such manner, you can update the application code without disrupting a
bootloader program. In addition, the bootloader itself can be updated by using the bootswapping
function available in the 78K0/Kx1+ MCU.

Figure 10. Self-Programming Code Structure

Boot Code
Self-programming functions

Downloading functions
Other routines…

Application Code +

Final Product Code

5.2 Development Flow

The typical development flow for generating code with self-programming capabilities using NEC
Electronics tools is shown below.

 20

78K0/Kx1+ Self-Programming: Bootloader Example

Figure 11. Code Development Flow

Write Boot Code

Set Compiler/Linker
Options for Boot Code

Build Code

Write Application Code

Set Compiler/Linker
Options for Flash Code

Build ALL Code
(Link boot code to
application code.)

Create Boot Project Create Application Project

Final Product Code

5.3 Tools Setup

NEC Electronics’ tool suites provide everything necessary to develop code with self-programming
functionality. Self-programming code generation can be achieved easily using the compiler, linker
and object converter options provided through NEC Electronics’ PM Plus Integrated Development
Environment (IDE) user’s interface. Below is a description of the minimum number of steps that
you can follow to generate boot and application code with NEC Electronics tools’ default options.
For details on this procedure, refer to the CC78K0 Language and Operation Manuals.

 21

78K0/Kx1+ Self-Programming: Bootloader Example

5.3.1 Procedure to Generate Boot Code

1. Main() function must be named boot_main()

2. Specify C Startup Routine for Boot in C compiler options.

3. Specify the starting address of application code (default value should be 2000H).

Notes:

 If application code starts at an address other then 2000H, you must rebuild the NEC Electronics
run-time libraries. Read the steps described in the CC78K0 Language User’s Manual for more
detail.

 The bootloader example developed by NEC Electronics uses 1000H.

5.3.2 Procedure to Generate Application (Flash) Code

1. Specify in code the starting address of the application code. At the very top of the C language
source file, write the following:

#pragma ext_table 0x2000 //using address 2000H as example

Note: This directive defines the first address of the application code, which is used by the C
startup routines and interrupt functions.

 22

78K0/Kx1+ Self-Programming: Bootloader Example

2. Specify to output object code for flash memory (application code). This setting automatically
selects the correct C startup routine for flash code.

3. In the Object Converter options, specify to generate two separate HEX files, one for boot code

and one for application (flash) code.

Notes:
The file extensions are as follows:

 *.HXB (hex file for boot code)

 *.HXF (hex file for flash/application code)

 File *.HXB should match file *.HEX generated from boot code build.

 23

78K0/Kx1+ Self-Programming: Bootloader Example

Appendix A. µPD78F0148H Flash Memory Block Addresses

E800H

Block 0

0000H

07FFH

1000H

17FFH

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Block 9

Block 10

Block 11

Block 12

Block 13

Block 14

Block 15

Block 16

Block 17

Block 18

Block 19

Block 20

Block 21

Block 22

Block 23

Block 24

Block 25

Block 26

Block 27

Block 28

Block 29

2000H

27FFH

3000H

37FFH

4000H

47FFH

5000H

57FFH

6000H

67FFH

7000H

77FFH

8000H

87FFH

9000H

97FFH

A000H

A7FFH

B000H

B7FFH

C000H

C7FFH

D000H

D7FFH

E000H

E7FFH

0800H

0FFFH

1800H

1FFFH

2800H

2FFFH

3800H

3FFFH

4800H

4FFFH

5800H

5FFFH

6800H

6FFFH

7800H

7FFFH

8800H

8FFFH

9800H

9FFFH

A800H

AFFFH

B800H

BFFFH

C800H

CFFFH

D800H

DFFFH

E800H

EFFFH

0K

2K

6K

4K

8K

10K

12K

14K

16K

18K

22K

20K

24K

26K

30K

28K

32K

34K

38K

36K

40K

42K

44K

46K

48K

50K

52K

54K

58K

56K

60K

 24

78K0/Kx1+ Self-Programming: Bootloader Example

Appendix B.
Flash Self-Programming Function Numbers and Return Values

Table 1. Flash Self-Programming A2 Mode Functions Used with Bootloader
Function Function Number Return Value
Initialization 00H 00H: Normal completion

05H: Parameter error
Block Erase 03H 00H: Normal completion

05H: Parameter error
1AH: Erasing error

Word Write 04H 00H: Normal completion
05H: Parameter error
18H: FLMD0 error
1CH: Write error

Block Verify 06H 00H: Normal completion
05H: Parameter error
1BH: Internal verification error

Block Blank Check 08H 00H: Normal completion
05H: Parameter error
1BH: Blank check error

Get Information 09H 00H: Normal completion
05H: Parameter error

Set Information 0AH 00H: Normal completion
05H: Parameter error
18H: FLMD0 error
1BH: Internal verification error
1CH: Write error

Mode Check 0EH 00H: Normal completion
01H: Error

Table 2. Other Flash self-programming Functions Used with Bootloader
Function Function Number Return Value
Enter A1 Mode A1H 00H: Normal completion

01H: Protection error
Return to Normal Mode 5FH 00H: Normal completion

01H: Protection crror

 25

78K0/Kx1+ Self-Programming: Bootloader Example

Appendix C. Intel Hexadecimal 16 Format

This is a text file containing the addresses and data of the code. Each line is one record and contains up to
16 bytes of data.

Table 3. Intel Hex 16 Code Format
Character Position No. of Characters Name Description
1 1 Record Marker Colon character ‘:’ (3A hex)
2–3 2 Record Count 2-character hex byte giving number of data bytes
4–7 4 Address 4 character hex address

8–9 2 Record Type
00 = Data
01 = End of file
02 = Extended address

10–? 2-32 Data Bytes 2-character hex data bytes (1 to 16)

Last 2 2 Checksum 2’s complement of sum of hex bytes in record
(excluding record marker and vhecksum itself)

Example of record with five data bytes at address 2400 hex:

:052400000102030405C8

 26

	Application Note
	78K0/Kx1+ Self-Programming

	Bootloader Example
	Revision History

	Contents
	Introduction
	Definition of “Bootloader”
	Advantages
	First-Time Programming
	Updates
	Cautions
	Main Elements
	Start-up Signal
	Execution Signal
	Transferring Code
	Flash Self-Programming
	Transferring Control to a Valid Application Program

	Flash Self-Programming
	Flash Blocks
	Boot Clusters
	Flash Words
	Operating Modes
	Normal Operation
	A1 Mode

	A2 Mode
	Hardware Requirements
	FLMD0 Pin
	FLMD1 Pin

	Bootloader Configuration and Operation
	Bootloader Circuit
	Bootloader Communication
	Bootloader Operation
	Boot Prompt for Loading Application
	Loading the Application
	Receiving the Data
	Processing the Received Data
	Blank checking and Erasing
	Programming
	Verifying
	Storing a Valid Application Checksum
	Executing the Application

	Error Reporting
	FLMD1 Pin High
	Flash Self-Programming Errors
	Missing First Colon
	Incorrect Line Checksum
	Boot Area Overwrite

	Bootswapping Feature
	Bootswapping Procedure
	Bootswapping Step 1
	Bootswapping Step 2
	Bootswapping Step 3
	Bootswapping Step 4
	Bootswapping Step 5
	Bootswapping Step 6
	Bootswapping Step 7
	Bootswapping Step 8
	Bootswapping Step 9

	Interruption of the Bootswapping Process

	Developing Self-Programming Code Using NEC Electronics Tools
	Code Structure
	Development Flow
	Tools Setup
	Procedure to Generate Boot Code
	Procedure to Generate Application (Flash) Code

