NEC

Application Note

/8K0/Kx1+ Self-Programming

Document No. U18053EU1VOANOO
©2006 April. NEC Electronics America, Inc.
All rights reserved.

78K0/Kx1+ Self-Programming NEC

The information in this document is current as of April 2006. The information is subject to change without notice. For
actual design-in, refer to the latest publications of NEC Electronics data sheets or data books, etc., for the most up-to-
date specifications of NEC Electronics products. Not all products and/or types are available in every country. Please
check with an NEC sales representative for availability and additional information.

No part of this document may be copied or reproduced in any form or by any means without prior written consent of
NEC Electronics. NEC Electronics assumes no responsibility for any errors that may appear in this document.

NEC Electronics does not assume any liability for infringement of patents, copyrights or other intellectual property
rights of third parties by or arising from the use of NEC Electronics products listed in this document or any other
liability arising from the use of such NEC Electronics products. No license, express, implied or otherwise, is granted
under any patents, copyrights or other intellectual property rights of NEC Electronics or others.

Descriptions of circuits, software and other related information in this document are provided for illustrative purposes
in semiconductor product operation and application examples. The incorporation of these circuits, software and
information in the design of customer's equipment shall be done under the full responsibility of customer. NEC
Electronics no responsibility for any losses incurred by customers or third parties arising from the use of these circuits,
software and information.

While NEC Electronics endeavors to enhance the quality, reliability and safety of NEC Electronics products, customers
agree and acknowledge that the possibility of defects thereof cannot be eliminated entirely. To minimize risks of
damage to property or injury (including death) to persons arising from defects in NEC Electronics products, customers
must incorporate sufficient safety measures in their design, such as redundancy, fire-containment and anti-failure
features.

NEC Electronics products are classified into the following three quality grades: “Standard”, “Special” and “Specific”.

The "Specific" quality grade applies only to NEC Electronics products developed based on a customer-designated
“quality assurance program” for a specific application. The recommended applications of NEC Electronics product
depend on its quality grade, as indicated below. Customers must check the quality grade of each NEC Electronics
product before using it in a particular application.

"Standard": Computers, office equipment, communications equipment, test and measurement equipment, audio and
visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots.

"Special”: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems,
anti-crime systems, safety equipment and medical equipment (not specifically designed for life support).

"Specific": Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support
systems and medical equipment for life support, etc.

The quality grade of NEC Electronics products is “Standard” unless otherwise expressly specified in NEC Electronics
data sheets or data books, etc. If customers wish to use NEC Electronics products in applications not intended by NEC
Electronics, they must contact NEC Electronics sales representative in advance to determine NEC Electronics 's
willingness to support a given application.

Notes:
1. "NEC Electronics" as used in this statement means NEC Electronics Corporation and also includes its
majority-owned subsidiaries.
2. "NEC Electronics products" means any product developed or manufactured by or for NEC Electronics
(as defined above).

MB8E 02.10

NEC

78K0/Kx1+ Self-Programming

Revision History

Date

Revision

Section

Description

04-2006

First release

78K0/Kx1+ Self-Programming NEC

Contents
1. T oo 18 o1 o] o TSRO P PP 1
2. (@0 =] g AT T TN AV, oo [T SR 1
2.1 NOIMAL OPEIALIONcciitiictiite ettt bbbtk b bbb ekt bbbt eb e e et e b e e et e abennebe s 1
F A N 1Y/ o To OO TTRTSSTSO 1
pC T W Y/ o To PSSO 2
3. Flash Microcontroller ArChitECIUIEooi i 3
3L FIASN BIOCKS......eii ittt bbbt b e b bbbt h et bbb bt et e e 3
4. Hardware REQUIFEMENTScoiie et e e st e st e st ae e e e te e beesreesneeanneeee e e 4
A1 FLIMDO PN oottt R e bR bt 4
4.2 FLIMDL PNttt bbb bRttt R bt 4
5. SOTEWAFE FUNCLIONS ...ttt bbb ettt b b et ne e 5
5.1 Mode CONtrol FUNCLIONS.coiiiiiiiie ettt ettt sttt sbe et 5
5.2 Entry RAM and Data Buffer AAdress FUNCLIONSccccvviviieieiise e 5
5.3 Flash Self-Programming FUNCLIONS...........ccccviiiiiiie ittt 6
5.3. 1 SFP FUNCHIONS. ... ottt ettt sb et sb et b et e ettt eabe st et e abe st etesbeneeneas 6
5.3.2 Additional SFP FUNCHIONS......cciiiiieieiie ettt sbe e sbe et 6
6. Flash Self-Programimingccccoiieiiiiiie e e e sre e s ae e e te e ste e saeesneeanneenee e e 7
6.1 Step 1. Verify That the FLIMDZL PiN iS LOWc.cccciiiiiiiie st sre s 10
6.2 Step 2. Set the Addresses for Entry RAM and the Data Bufferccccooeveviiiinciecncieen, 11
6.2.1 Setting the ENtry RAM AGAIESScuiiieiieieieeie ettt bbbt e 11
6.2.2 Setting the Data BUFfer AQArESS........coviveieiiiieie et 11
6.3 Step 3. DiSADIE INTEITUDES.....c.eiiiitiieieiteee ettt bbbt 11
6.4 StEP 4. ENTEr AL IMOUE... .ottt et bbbt bbbttt eb et 12
6.5 Step 5. Set the FLMDO Pin Highc.ooiiiiii e e 12
6.6 Step 6. Check the Mode Using the SFP_CheckMode() Flash Self-Programming Function 13
6.7 Step 7. Call the Flash Self-Programming Initialization FUNCLIONccccociiiiininiincce 13
6.8 Step 8. Check Which Memory Blocks Must Be BIankKcccooiiiiiininiineeneee e 13
6.9 Step 9. Verify That Selected Memory Block is BlanK............ccocooeviiiniininiinieeeeee 14
6.10 Step 10. Erase the Selected Memory BIOCK...........ccoiiiiiiniiiiic e 14
6.11 Step 11. Put the Data to be Written in the Data BUffer............cccocoeiiininiiniiieee 15
6.12 Step 12. Select Starting Address for Flash Write Operationcccccocvvivivieienennniesesieseeie e 16
6.13 Step 13. Write Data to FIash MEMOIY ..o e 16
6.14 Step 14: Verify @ memory DIOCKccoooiiiiiiii e 17
6.15 Step 15. Set the FLIMDO PiN LLOWccooiiiiiiiiiiieieiesieee sttt 17
6.16 Step 16. Return to NOrmal OPEratioN...........ccoiiiriiiiieieieiee et 17
7. ST L 0] 0] F=I O T ST 19

NEC 78K0/Kx1+ Self-Programming

1. Introduction

The 78K0/KX1+ microcontrollers (MCUs) have the ability to program their own flash memory. This
function, flash self-programming, is based a set of C language-based functions that hide a lot of detail in
the flash self-programming process. These C functions are described in this manual and used to illustrate
a typical flash self-programming procedure for the pPD78F0148H MCU.

This manual does not deal with obtaining the data or code to be flash self-programmed into the MCU.

For that information, see the 78K0/KX1+ Bootloader Application Note (document number U18054E). For
additional information about the flash self-programming process that underlies the provided C functions,
refer to the 78K0/Kx1+ Flash Memory Self-Programming User’s Manual (document number U16701E).

2. Operating Modes

The MCU has three operating modes: normal, Al, and A2.

2.1 Normal Operation

In normal operation, the MCU executes a user program and cannot self-program itself.

2.2 Al Mode

Al mode provides access to hidden ROM functions for flash self-programming. With the FLMDO pin set
high, you can call the hidden ROM functions for erasing, writing, and so forth using these MCU
resources:

¢ Timer 50

¢ Register bank 3

¢ Entry RAM (48 bytes)

¢ Data buffer (4-256 bytes)

¢ Stack (32 bytes)
All of the flash memory can be blank checked, erased, written to, and so forth, but the executing code that
calls the hidden ROM functions must be located between addresses 0080H and 7FFFH because the

hidden ROM functions use addresses starting with 8000H upward. Interrupts should be disabled in Al
mode.

When finished with the hidden ROM functions, immediately return to normal operation where the hidden
ROM functions are inaccessible.

78K0/Kx1+ Self-Programming NEC

2.3 A2 Mode

When the MCU is executing the hidden ROM functions, it is in A2 mode. When the MCU is finished
executing the A2 mode function, it returns to the A1 mode calling routine.

Figure 1. Self-Programming Modes

Usear program
(nomal modea)

v

Operation
Usar program settings RAM
(mode A1)
Entry HAM
* (48 bytes)
Data buffar
{4 to 256 bytes)
Timer Flash memory contral firmware Registar bark 3
(ThS0) Refarenca (mode A2) Operation
clock i
referanca —
@ (20 bytes)

Flash mamory

NEC 78K0/Kx1+ Self-Programming

3. Flash Microcontroller Architecture

3.1 Flash Blocks

The uPD78F0148H MCU’s flash memory is divided into blocks of two kilobytes (KB). as shown in
Figure 2. This is the smallest amount of memory that can be blank checked, erased, or verified. The

available 60 KB of flash memory between addresses 0000H and EFFFH are divided into thirty 2 KB
blocks (block 0 to block 29).

3.2 Boot Clusters

The first four blocks of flash memory are divided into two 4 KB boot clusters, called boot cluster 0
and boot cluster 1, that are used along with the bootswapping feature to allow a bootloader to
download a new bootloader that overwrites the old one. For more details on this, see the Bootloader
Application Note.

3.2 Flash Words

One four-byte word is the smallest amount of memory that can be written in the data buffer, which
holds a maximum of 64 words (256 bytes).

Figure 2. Flash Memory Structure of yPD78F0148H

FOOOH

E800H Black 20
E00OH Block 28

DB00H Block 27

DOOOH Block 26

CROOH Block 25

C000H Block 24

B800H Block 23

BOOOH Block 22

ABOOH Block 21

ADOOH Block 20

9800H Block 19

3000H Block 18

8800H Black 17

S000H Block 16

FEO00H Block 15

TOO00H Block 14

6200H Block 12

6000H Block 12

5800H Block 11

5000H Block 10

4800H Block @

4000H Block &

3800H Block 7

2000H Block & 2000H

2800H Block § 1FRFH

2000H Block 4 Boaot cluster 1
1800H Block 3 1000H

1000H Block 2 0OFFFH

0800H Block 1 Boot cluster 0
DO0O0H Block 0 0000H

78K0/Kx1+ Self-Programming NEC

4. Hardware Requirements

4.1

4.2

The flash self-programming function uses a single-voltage process, and only the MCU’s Vcc power
is required. The two FLMDO and FLMD1 pins must be managed as part of the flash self-
programming process.

FLMDO Pin

Pin FLMDO normally is low but must be pulled high for flash self-programming. The recommended
configuration is shown in Figure 3, where FLMDO is tied to a port pin configured as an output and
then to ground via a resistor. This way the FLMDO pin can be set high or low by setting or clearing
the output port pin.

FLMD1 Pin

Pin FLMD1 should be kept low. If FLMDO, FLMD1 and RESET are all high, the MCU enters a test
mode. As FLMDO is made high for flash self-programming, it is advisable to keep theFLMD1 pin
low. Although this pin can alternate as a port pin, it is probably advisable to tie it to ground via a
resistor and leave the port configured to the input state.

Figure 3. FLMDO and FLMD1 Connection

Port Output

FLMDO

R1
10k

FLMD1
1k

NEC 78K0/Kx1+ Self-Programming

5. Software Functions

A set of C functions has been developed to make it easier and more intuitive to perform flash self-
programming. To do so, add the sfp.c source file to your application and include the sfp.h header file in
your application source files.

Example:

#include "'sfp.h" // include self-flash programming routines

As the self-flash programming routines use in-line assembly language to interface to the hidden ROM
functions in A2 mode, you must specify a C compiler option for the sfp.c source file.

1. Right-click the file name in PM Plus and selecting Special Compiler Options to display the C
compiler options.

2. Select the Output tab and click the Create Assembler Source Module File option.

3. Click Apply and then OK.

4. If you have done this successfully, the icon for the sfp.c source files should now change to a
green color with “OPT” (for optimized) written across it. Note that when you build your
application, you will receive these two warnings:

sfp.c(441) : CC78K0O warning W0837: Output assembler source fTile,
not object file

sfp.c(440) : CC78K0O warning W0915: Asm statement found. skip to
Jump optimize this function “CallA2ModeFunction*

These are normal and need no correction.

5.1 Mode Control Functions

The following functions are used to control the operating modes:

¢ EnterAlMode() carries out the secure procedure for the MCU to enter A1 mode

¢ ReturnToNormalMode() returns the MCU from Al mode to normal operation

5.2 Entry RAM and Data Buffer Address Functions

These functions let the flash self-programming functions know the address of the arrays used for the
entry RAM and data buffer. This must be done only once before you enter A1 mode, unless you
want to change the array used for the entry RAM or data buffer.

78K0/Kx1+ Self-Programming NEC

¢ SetEntryRamAddress(myEntryRam) sets the address of the array you are using as your entry
RAM

¢ SetDataBufferAddress(myDataBuffer) sets the address of the array used for the data buffer

In addition, these additional functions are provided for completeness:

¢ GetEntryRamAddress();
¢ GetDataBufferAddress();

5.3 Flash Self-Programming Functions

When the MCU is in A1 mode, these functions can be used to call hidden ROM functions in A2
mode to perform flash self-programming operations:

5.3.1 SFP Functions

SFP_ModeCheck() checks that the MCU is in correct mode and FLMDO pin is high
o SFP_Initialise(MICRO_CLOCK_FRQ) initializes and sets the clock frequency

o SFP_BlockBlankCheck(blocknumber) checks specified block to see if it is blank
o SFP_BlockErase(blocknumber) erases a specified block

o SFP_WordWrite(start_address, number_of_words) writes a number of words from
the data buffer to flash memory

o SFP_BlockVerify(blocknumber) verifies a specified block

5.3.2 Additional SFP Functions

e SFP_GetInformation() gets information on write/erase enable/disable for external
programmer

e SFP_SetInformation() sets or clears bits for bootswapping operation

NEC 78K0/Kx1+ Self-Programming

6. Flash Self-Programming

The following description and flowcharts show a typical flash self-programming sequence.

Figure 4. Steps 1-7 of Self-flash Programming Sequence

Step i F LMD pin low?

Step 2 Specify Data Buffer, Specify Entry Rt
Step 3 | Dizable Intemupts |
Step 4 | Enter A1 hode |

Mo
Step 5 | Set FLMDD pin high |
Step | Check Wode |
Mo
hiode OKT g
Yes
Step 7 Initiglise for Self-flash Programming
Mo
Initialise OK? -

¥

Pracess
Emar

78K0/Kx1+ Self-Programming NEC

Figure 5. Steps 8-10 of Flash Self-Programming Sequence

Blank check /
Erase

Step 8 Determine Flash Block numbers that need to be blank

Step 9 Blank check next Flash block

Error in blank Yes
check?

No

No
Block Blank?

Erase Block

Step 10

Yes

Error in block
erase?

No All selected Flash Blocks
now Blank?
Yes
Continue Process
Error

NEC

78K0/Kx1+ Self-Programming

Step 11

Step 12

Step 13

Step 14

Steps 11-14 of Flash Self-Programming Sequence

Mirite data

| Fut 4byte data wards in data buffer |

| Select start address for flash write

Wirite words in data buffer ta flash starting at
selected address

Yes

Errar in Wirite™

Crata all written™

Yes

Werify (next) flash blodvritten ta

Errar in Werify™ s

Y

Block Werified Ok Mo -

All blodks written to
werified

Process
Errar

78K0/Kx1+ Self-Programming NEC

Figure 7. Steps 15-16 of Flash Self-Programming Sequence

Exit A1 Mode

Step 15

et FLMDO pin low

Step 16

Return to Mormal Mode

Error in Heturn? Tes

Continue
in Marrmal
Mode

Process
Error

6.1 Step 1. Verify That the FLMDL1 Pin is Low

This is important, as you must set the FLMDO pin high after the MCU enters A1 mode. If FLMDOQ,
FLMD1 and RESET are all high, the MCU enters a test mode. RESET is normally high and FLMDO
must be high for flash self-programming, so it is important to ensure that FLMD1 is low.

Example:

#define FLMD1_PIN P1.7 // define pin for FLMD1
if(FLMD1_PINI=0) ProcessError();

10

NEC

78K0/Kx1+ Self-Programming

6.2 Step 2. Set the Addresses for Entry RAM and the Data Buffer

6.2.1

6.2.2

6.3 Step 3.

Setting the Entry RAM Address

The entry RAM can be anywhere in high-speed RAM or extension RAM. The entry RAM
must be 48 bytes. The SetSfpEntryRamAdress() function lets the self-flash programming
functions know the address of your application’s entry RAM. Commonly this would only be
set once, upon entering A1 mode, as the entry RAM address is remembered. However, it
also can be set at any time to a different address before using any of the flash self-
programming functions.

Example:

#define ER_SIZE 48 // 48 bytes required for entry RAM
unsigned char myentryram[ER_SIZE]; // users Entry RAM
SetSfpEntryRamAddress(myentryram);

Setting the Data Buffer Address

The data buffer can be anywhere in high-speed RAM or extension RAM. Data buffer size is
from 4 bytes to 256 bytes. Data is written in four-byte words, so the data buffer contains 1 to
64 words. It is best to round up the data buffer size to the nearest number of whole words. In
general, making the data buffer three bytes larger than the maximum amount of bytes you
wish to write can ensure this.

The SetSfpDataBufferAdresss() function lets the self-flash programming functions know
the address of your application’s data buffer. Commonly this would only be set once on
entering A1 mode, as the data buffer address is remembered. However it can be also be set at
any time to a different address before using any of the flash self-programming functions.

Example:
#define DB_SIZE SAMPLE_SIZE+3 // data buffer size
unsigned char mydatabuffer[DB_SIZE]; // users Data Buffer

SetSftpDataBufferAddress(mydatabuffer);

Disable Interrupts

Interrupts should be disabled before entering A1 mode. The secure process to enter A1 mode
cannot be interrupted or it will fail. It is generally advisable to leave interrupts disabled in
Al mode, although they may be used with caution. The A2 mode flash self-programming
functions must never be interrupted.

11

78K0/Kx1+ Self-Programming NEC

Make sure you have the pragma directive at the start of your file:

Example:

#pragma DI
FuncQ {
DIO:

}

6.4 Step 4. Enter A1 Mode

The self-flash programming functions in the hidden ROM can only be accessed when the MCU is in
Al mode.

Example:

returnValue=EnterAlMode();
if(returnvalue!=0) ProcessError();

Check the returned value to see the result:

o 0:successful in entering A1 mode

e 1:errorin entering A1 mode — bit FPERR of the PFS register is set
Correct sequence was not followed or sequence was interrupted.

6.5 Step 5. Set the FLMDO Pin High

The FLMDO pin must be high for the flash self-programming function to work

1. Set the port pin controlling the FLMDO level to output high.

2. Refer to Figure 3 for the circuit configuration. For example, if Port 3.0 controls the level of the
FLMDO pin, then use these #define statements:

#define SET_FLMDO_CONTROL_TO_OUTPUT PM3.0=0 // define for FLMDO
control pin
#define SET_FLMDO_CONTROL_TO_INPUT PM3.0=1 // define for
FLMDO control pin
#define SET_FLMDO_CONTROL_HIGH P3.0=1

// set FLMDO control pin high

and then these statements:

SET_FLMDO_CONTROL_TO_OUTPUT;
SET_FLMDO_CONTROL_HIGH;

12

NEC 78K0/Kx1+ Self-Programming

6.6

6.7

6.8

Step 6. Check the Mode Using the SFP_CheckMode() Flash Self-Programming Function
Example:

returnValue=SFP_ModeCheck();
iT(returnvValue!=0) ProcessError();

Check the return value to see the result:

¢ 0: successful completion of function
¢ 1:error in mode — bit FWEPR of the FLPMC register is 0 (FLMDO pin is low)

Step 7. Call the Flash Self-Programming Initialization Function

This function sets the clock frequency for flash self-programming. Use a #define statement to specify
the value of the MCU’s clock frequency in hertz (Hz).

Example:

#define MICRO_CLOCK FRQ 8000000 // microcontroller crystal
frequency in Hz

Use a statement of the form:

returnValue=SFP_Initialise(MICRO_CLOCK FRQ);
if(returnvalue!=0) ProcessError();

Then check the return value to see the result;

ReturnValue:
OOH: successful completion of function
O5H: clock frequency is outside allowable range

Step 8. Check Which Memory Blocks Must Be Blank

This step entails determining which blocks you require to be blank. If you are using a bootloader to
download a new application program, you will probably require that all blocks outside the boot area
to be blank. Alternatively, you may check the addressing and just blank check the blocks that will be
written to. However, if you have written data to a block previously and now wish to continue, it is
not necessary to blank check the block. You just need to keep track of the blank area in the block.
This is a common requirement as the memory block is 2 KB, whereas the maximum amount of data
that can be written to a block at one time is 256 bytes (maximum data buffer size).

This information is needed for Steps 9 and 10, which blank check / erase the required blocks.

13

78K0/Kx1+ Self-Programming NEC

6.9 Step 9. Verify That Selected Memory Block is Blank

If you require a block to be blank, it is best to execute a Blank Check command before executing an
Erase command. The 78K0/KX1+ MCUs have a finite limit to the amount of the times they can be
erased/written, and taking this step cuts down on the needless erasing of already-blank blocks. Refer
to the MCU'’s specifications for more details.

To check a memory block is blank, use the type of statement shown below:

Example:

returnValue=SFP_BlockBlankCheck(blocknumber);
if(returnvalue!=0)

{
if(returnvalue!=0x1b)

ProcessError();

}

else

...// block i1s not blankgo on to erase block

}
}

else

{
... // block 1s blank
}

Where block_number is the number of one of the 2 KB memory blocks, numbered 0 to 29, between
address 0000H and FOOOH.

Then check the return value to see the result:

ReturnvValue:

OOH: successful completion of function (block is blank)
O5H: parameter error

1BH: blank check error (block is not blank)

6.10 Step 10. Erase the Selected Memory Block

This step can be skipped if you previously determined that the block is already blank or if you only
want to write to a known blank area of a partially written block.

14

NEC 78K0/Kx1+ Self-Programming

To erase a memory block, use this type of statement:

Example:

returnValue=SFP_BlockErase(blocknumber);
if(returnvalue!=0) ProcessError();

Where block_number refers to one of the 2 KB memory blocks, numbered 0 to 29, between
addresses 0000H and EFFFH. Then check the return value to see the result:

Returnvalue:

OOH: successful completion of function (block is erased)
O5H: parameter error

1AH: erasing error (block could not be erased)

6.11 Step 11. Put the Data to be Written in the Data Buffer

Figure 8. Bytes Written From the Data Buffer

Word Word
4 bytes of data 1 byte of data

0x01 0x02 0x03 0x04 0x05 OxXX O0xXX OxXX

[0] [1] [2] [3] [4] [5] [6] [7]

Data is always written in four-byte words. In Figure 5, five bytes of data are written so that the
remaining three bytes in the second word are written with whatever value (0xXX) happens to be in
the data buffer.

If you have a number of bytes to write that is not evenly divisible by four, you may wish to pad the
data with a known value to make a whole number of words. If you don’t wish to pad out your data,
then the write function uses whatever values happen to be in the data buffer.

You will also need to specify the number of words to be written. If you divide the number of bytes
by four, you will get the number of words that contain four bytes of data. If you find a remainder
when you divide by four, you must increase this number of words by one, to make sure the
remaining bytes are also written.

15

78K0/Kx1+ Self-Programming

NEC

Example:
#define SAMPLE _SIZE 5 // size of sample data
#define DB_SIZE SAMPLE_SIZE+3 // data buffer size
#define PAD_BYTE Ox00 // byte used to pad data

const unsigned char sampledata[SAMPLE SI1ZE]={1,2,3,4,5};
for(i=0;i<DB_SIZE;i++)

{
mydatabuffer[1]=PAD_BYTE; // fill buffer with pad
byte

for(i=0; i<SAMPLE_SIZE;i++) // put data in data buffer

{
mydatabuffer[i]=sampledata[i];

number_of _bytes=SAMPLE_SIZE; // get number of bytes to
be written

number_of words=number_of bytes/4; // calculate number of
words

if((number_of_bytes%4)!=0)number_of _words++;

6.12 Step 12. Select Starting Address for Flash Write Operation

This address is the address where writing will start using the byte at the first location in the data
buffer. The address may be specified by the user, or taken from a hexadecimal file that is being
downloaded to the MCU. A three-byte address is used although the 78K1+ has a 64 KB memory
space.

Example:

#define FIRST_BLOCK_ADDRESS 0x00002000; // define
address of 1st block

unsigned long write_start _address;
write_start_address=FIRST_BLOCK_ ADDRESS;

6.13 Step 13. Write Data to Flash Memory

16

To write to flash memory, use a statement of the form:

Example:

returnValue=SFP_WordWrite(write_start address, number_of words);
if(returnvalue!=0) ProcessError();

Where write_start_address is the address where the function starts writing and number_of words is

the number of four-byte words to be written from the data buffer. Then check the return value to see
the result:

ReturnValue:

NEC

78K0/Kx1+ Self-Programming

OOH: successftul completion of function (write of data successful)
O5H: parameter error

18H: FLMDO error
1CH: write error (location(s) could not be written to)

6.14 Step 14: Verify a memory block

This function internally verifies a memory block for proper operation. You may wish to verify a
memory block either before or after erasing or writing it. To verify a memory block, use a statement

of the form:
Example:

returnValue=SFP_BlockVerify(blocknumber);
iT(returnvValue!=0) ProcessError();

Where block_number is the number of one of the 2 KB memory blocks, numbered 0-29, between
address 0000H and FOOOH.

Then check the return value to see the result:

ReturnValue:

OOH: successful completion of function
O5H: parameter error
1BH: internal verify error

6.15 Step 15. Set the FLMDO Pin Low

When you are finished using the flash self-programming functions, you should set FLMDO pin low
before resetting the MCU or returning to normal operation.

Example:

#define SET_FLMDO_CONTROL_LOW P3.0=0 // set FLMDO control
pin low

Then use this statement: SET_FLMD0_CONTROL_LOW;

6.16 Step 16. Return to Normal Operation

When you are finished using the flash self-programming functions, you shouldreset the MCU or
return to normal operation.

To return to normal operation, use a statement of the form:

Example:

returnValue=ReturnToNormalMode();
if(returnvalue!=0) ProcessError();

17

78K0/Kx1+ Self-Programming NEC

Check the return value to see the result:

ReturnValue:

0: successful in returning to Normal Mode

1: error in returning to Normal Mode — bit FPERR of the PFS
register is set

Correct sequence was not Followed or sequence was interrupted.

18

NEC

78K0/Kx1+ Self-Programming

7. Sample Code

FILE : sfpsteps.c
DATE : October 20, 2004
DESCRIPTION : Program to illustrate steps in self-flash programming
CPU TYPE : NEC 78KO/KF1+ - 78F0148H

Notes:

This program is intended as an illustration of the typical
steps used in the self-flash programming procedure.

It writes SAMPLE_SIZE bytes of data to the

first locations of the flash blocks from FIRST_BLOCK

to LAST_BLOCK. This program does not get data into the
microcontoller. The data used is simply a constant array
in memory.

There is no error handling in this example. A dummy routine
Processkrror() is called if an error is detected.

ook b b b b b b b b b b b b b b b RN

/

#pragma sfr
#pragma NOP
#pragma DI

/*
; include files

*/

#include "sfp.h" // include self-flash programming routines

/*

; defines

; */

#define BLOCK_SIZE 0x00000800; // define 2K block size

#define FIRST_BLOCK_ADDRESS 0x00002000; // define address of 1st block

#define FIRST_BLOCK 4 // define 1st block

#define LAST_BLOCK 29 // define last block

#define FLMD1_PIN P1.7 // define pin for FLMD1

#define SET_FLMDO_CONTROL_TO_OUTPUT PM3.0=0 // define for FLMDO control pin

#define SET_FLMDO_CONTROL_TO_INPUT PM3.0=1 // define for FLMDO control pin

#define SET_FLMDO_CONTROL_HIGH P3.0=1 // set FLMDO control pin high

#define SET_FLMDO_CONTROL_LOW P3.0=0 // set FLMDO control pin low

#define MICRO_CLOCK_FRQ 8000000 // microcontroller clock frequency

#define SAMPLE_SIZE 5 // size of sample data

#define DB_SIZE SAMPLE_SIZE+3 // data buffer size

#define ER_SIZE 48 // 48 bytes required for entry
ram

#define PAD_BYTE 0x00

/*
; function prototypes
; */

void ProcessError(Void);

/*
; ROM constants
; */

// byte used to pad data

// dummy - no error processing

const unsigned char sampledata[SAMPLE_SI1ZE]={1,2,3,4,5};

/*

19

78K0/Kx1+ Self-Programming NEC

; variables

*/

unsigned char blocknumber;

unsigned char i,returnValue,number_of_bytes,number_of words;
unsigned char myentryram[ER_SIZE]; // users entry RAM
unsigned char mydatabuffer[DB_SI1ZE]; // users Data Buffer
unsigned long write_start_address;

/ /

void main (void){
IMS = OxOCF; // set internal memory size for 780148H (60KB)
1 XS=0x0A; // set expansion RAM size for 780148H (1KB)
while(OSTC I= 0x1f) ; // wait for oscillator to stabilize
MCMO = 1; // switch to oscillator
WDTM = Ox77; // no watchdog

//

// Step 1: Check that the FLMD1 pin is low

//
if(FLMD1_PIN!=0) ProcessError();

//

// Step 2: Set the entry RAM and Data Buffer addresses

//
SetSfpDataBufferAddress(mydatabuffer);
SetSfpEntryRamAddress(myentryram);

//

// Step 3: Disable interrupts

//
DIO;

//

// Step 4: Enter Al Mode

//
returnValue=EnterAlMode();
if(returnvalue!=0) ProcessError();

//

// Step 5: Set FLMDO pin high

//
SET_FLMDO_CONTROL_TO_OUTPUT;
SET_FLMDO_CONTROL_HIGH;

//

// Step 6: Check the Mode

//
returnValue=SFP_ModeCheck();
if(returnvalue!=0) ProcessError();

//

// Step 7: Initialize for self-flash programming

//

returnValue=SFP_Initialise(MICRO_CLOCK_FRQ);
if(returnvalue!=0) ProcessError();

20

NEC 78K0/Kx1+ Self-Programming

//

// Step 8: Determine blocks to be blank checked/erased
//

// block numbers given by defines
for(blocknumber=FIRST_BLOCK;blocknumber<LAST_BLOCK+1;blocknumber++)

{
//
// Step 9: Blank check a block
//

returnValue=SFP_BlockBlankCheck(blocknumber) ;
if(returnvalue!=0)

if(returnvalue!=0x1b)

{
ProcessError();
3
else
{
//
// Step 10: Erase a block
//
returnValue=SFP_BlockErase(blocknumber);
if(returnvalue!=0) ProcessError();
¥
3
b
//
// Step 11: Put data in Data Buffer
//
for(i=0;i<DB_SIZE;i++)
mydatabuffer[i]1=PAD_BYTE; // fill buffer with pad byte
by
for(i=0; iI<SAMPLE_SIZE;i++) // put data in Data Buffer
{
mydatabuffer[i]=sampledata[i];
3
number_of_bytes=SAMPLE_SIZE; // get number of bytes to be written
number_of_words=number_of_bytes/4; // calculate number of words
if((number_of_bytes%4) 1=0)number_of_words++;
//
// Step 12: Select start address for flash write
//
write_start_address=FIRST_BLOCK_ADDRESS;
//
// Step 13: Write data
//
for(blocknumber=FIRST_BLOCK;blocknumber<LAST_BLOCK+1;blocknumber++)
{
returnValue=SFP_WordWrite(write_start_address,number_of words);
if(returnvalue!=0) ProcessError();
//
// Step 14: Verify block written to
//
returnValue=SFP_BlockVerify(blocknumber);
if(returnvalue!=0) ProcessError();
write_start_address+=BLOCK_SIZE; // add block size
3

21

78K0/Kx1+ Self-Programming

NEC

//
// Step 15: Set FLMDO pin low
//

SET_FLMDO_CONTROL_LOW;
//

// Step 16: Return to Normal Mode

//

returnValue=ReturnToNormalMode();
if(returnvalue!=0) ProcessError();

//
// End of steps
//
NOPQ);
while(l); // endless loop
3
//

// Dummy routine for error processing

//
void ProcessError(void)

NOPQ);
while(1); // endless loop

22

NEC 78K0/Kx1+ Self-Programming

Appendix A

Flash Self-Programming Routines

/

*

* FILE : sfp.h

* DATE : December 13, 2004
* DESCRIPTION : Self-flash programming header file

* CPU TYPE : 78K0/KF1+ (uPD78F0148H)

*

* Notes:

#ifndef _SFP_H
#define _SFP_H

// defines for self flash programming function numbers for 78F0148H

#define INITIALIZATION 0x00
#define BLOCK_ERASE 0x03
#define WORD_WRITE 0x04
#define BLOCK_VERIFY 0x06
#define BLOCK_BLANK_CHECK 0x08
#define GET_INFORMATION 0x09
#define SET_INFORMATION 0x0a
#define MODE_CHECK 0x0e
#define EEPROM_WRITE 0x17

// defines for other functions

#define ENTER_A1l Oxal
#define RETURN_NORMAL Ox5F

// return value defines
#define NOT_BLANK 0Ox1b

// function prototypes

void SetSfpDataBufferAddress(unsigned char *data_buffer);
void SetSfpEntryRamAddress(unsigned char *entry_ram);
unsigned char EnterAlMode(void);

unsigned char ReturnToNormalMode(void);

// function prototypes for interfacing to

// A2 Mode self flash programming routines in hidden ROM

unsigned char SFP_Initialise(unsigned long clock_frq);

unsigned char SFP_BlockErase(unsigned char block_number);

unsigned char SFP_WordWrite(unsigned long block start_address, unsigned char num_of words);
unsigned char SFP_BlockVerify(unsigned char block_number);

unsigned char SFP_BlockBlankCheck(unsigned char block_number);

unsigned char SFP_GetInformation(unsigned char option_number, unsigned char block_number);
unsigned char SFP_SetInformation(unsigned char information_byte);

unsigned char SFP_ModeCheck(void);

void CallA2ModeFunction(unsigned char function_number);

#tendif /* SFP H */

/
*
* FILE : sfp.c
* DATE : December 13, 2004
* DESCRIPTION : Self flash programming file
* CPU TYPE : 78KO/KF1+ (uPD78F0148H)
*
* Notes:
*
/

23

78K0/Kx1+ Self-Programming NEC

#define SFP_C

#pragma sfr

#pragma NOP /* key word for NOP instruction */
#pragma asm

#include "sfp.h"

unsigned char *sfpDataBuffer;
unsigned char *sfpEntryRam;

/
*
* Function: SFP_Initialise
* Parameters: Clock Frequency
* Returns: Function return value
* Date: August 29, 2004
* Description: Sets clock frequency
*
* Notes: Function number: OOH
*
* Return value: OOH normal completion
* 0O5H parameter error
*
* This function is also used to set the
* Data Buffer Address in entry RAM locations 08 and 09
* This should not need to be done again for the other
* self-flash programming functions
*
/
unsigned char SFP_Initialise(unsigned long clock_frq)
unsigned int temp_int;
// put address of sfpDataBuffer in entryram
temp_int=Cunsigned int)sfpDataBuffer; // convert pointer to integer
sfpEntryRam[9]=(unsigned char) (temp_int>>8); // store ms byte of data buffer
address
sTtpEntryRam[8]=(unsigned char) (temp_int); // store Is byte of data buffer
address
// put micro clock frequency in sfpDataBuffer
sfpDataBuffer[3]=(unsigned char)(clock frg>>24);
sfpDataBuffer[2]=(unsigned char)(clock_frg>>16);
sfpDataBuffer[1]=(unsigned char)(clock_frg>>8);
sfpDataBuffer[0]=(unsigned char)(clock_frq);
CallA2ModeFunction(INITIALIZATION); // call A2 mode function
return(sfpEntryRam[0]); // return value in Ffirst location of
entry RAM
3
/
*
* Function: SFP_BlockErase
* Parameters: Block number
* Returns: Function return value
* Date: September 3, 2004
* Description: Erases specified block
*
* Notes: Function number: O3H
*
* Return value: OOH normal completion
* 0O5H parameter error
* 1AH erasing error
*

/

24

NEC 78K0/Kx1+ Self-Programming

unsigned char SFP_BlockErase(unsigned char block_number)

{
sTfpEntryRam[7]=block_number;
Cal1A2ModeFunction(BLOCK_ERASE); // call A2 mode function
return(sfpEntryRam[0]); // return value in first location of entry RAM
by
/
*
* Function: SFP_WordWrite
* Parameters: Flash start address, number of words
* Returns: Function return value
* Date: September 3, 2004
* Description: Writes word(s) starting at specified start address
*
* Notes: Function number: 04H
*
* Return value: OOH normal completion
* O5H parameter error
* 18H FLMDO error
* 1CH write error
*
/

unsigned char SFP_WordWrite(unsigned long write_start _address, unsigned char num_of_words)

{

unsigned iInt temp_int;

// put write start address in entryram
sTfpEntryRam[3]=(unsigned char)(write_start_address>>16);
sTtpEntryRam[2]=(unsigned char)(write_start_address>>8);
sfpEntryRam[1]=(unsigned char)(write_start_address);

// put number of words to be written in entryram
sfpEntryRam[7]=num_of_words;

Cal1A2ModeFunction(WORD_WRITE); // call A2 mode function
return(sfpEntryRam[0]); // return value in first location of
entry RAM
¥
/
*
* Function: SFP_BlockVerify
* Parameters: Block number
* Returns: Function return value
* Date: September 3, 2004
* Description: Internally verifies specified block
*
* Notes: Function number: 06H
*
* Return value: O0H normal completion
* 0O5H parameter error
* 1BH internal
verification error
*
/
unsigned char SFP_BlockVerify(unsigned char block_number)
sfpEntryRam[7]=block_number; // put block number in entry RAM
Cal1A2ModeFunction(BLOCK_VERIFY); // call A2 mode function
return(sfpEntryRam[0]); // return value in first location of
entry RAM

25

78K0/Kx1+ Self-Programming NEC

04H boot flag

*
* Function: SFP_BlockBlankCheck
* Parameters: Block number
* Returns: Function return value
* Date: September 3, 2004
* Description: Checks i1f specified block is blank
*
* Notes: Function number: 08H
*
* Return value: OOH normal completion
* O5H parameter error
* 1BH blank check error
*
/
unsigned char SFP_BlockBlankCheck(unsigned char block _number)
{
sTfpEntryRam[7]=block_number; // put block number in entry RAM
Cal 1A2ModeFunction(BLOCK_BLANK_CHECK) ; // call A2 mode function
return(sfpEntryRam[0]); // return value in first location of
entry RAM
3
/
*
* Function: SFP_GetInformation
* Parameters: Option number, block number
* Returns: Function return value
* Date: September 7, 2004
* Description: Gets information specified by option
*
* Notes: Function number: OEH
*
* Option value:
* O3H security flag
information (block number paramter ignored)
*

information (block number paramter ignored)

*

0O5H end address of
specified block

* Return value: O0H normal completion
* 0O5H paramter error
*

/

unsigned char SFP_GetInformation(unsigned char option_number, unsigned char block_number)

{

sTfpEntryRam[7]=option_number; // put option number in entry ram
sfpEntryRam[1]=block_number; // put block number in entry ram

CallA2ModeFunction(GET_INFORMATION); // call A2 mode function

return(sfpEntryRam[0]); // return value in Ffirst location of
entry RAM
/
*
* Function: SFP_SetInformation
* Parameters: Information byte to be set
* Returns: Function return value
* Date: September 7, 2004
* Description: Sets information byte
*
* Notes: Function number: OAH
*
* Return value: OOH normal completion
* 0O5H parameter error
* 18H FLMDO error
*

1CH write error

26

NEC 78K0/Kx1+ Self-Programming

* 1DH internal
verification error
* 1EH blank error
*
/
unsigned char SFP_SetInformation(unsigned char information_byte)
{
information_byte &= OxOf; // clear upper 4 bits of information byte
sfpDataBuffer[0]=information_byte; // store information byte in Data Buffer
CallA2ModeFunction(SET_INFORMATION); // call A2 mode function
return(sfpEntryRam[0]); // return value in first location of
entry RAM
ks
/
*
* Function: SFP_ModeCheck
* Parameters: none
* Returns: Function return value
* Date: September 7, 2004
* Description: Internally verifies specified block
*
* Notes: Function number: OEH
*
* Return value: OOH normal completion (FLMDO pin is
high)
* O1H error (FLMDO pin
is lTow)
*
/
unsigned char SFP_ModeCheck(void)
Cal1A2ModeFunction(MODE_CHECK) ; // call A2 mode function
return(sfpEntryRam[0]); // return value in first location of entry
RAM
b
/
*
* Function: SetSfpDataBufferAddress
* Parameters: pointer to data buffer
* Returns: nothing
* Date: September 7, 2004
* Description: Sets pointer to data buffer to be used in self flash programming
*
* Notes:
* Data buffer size: 4 to 256 bytes (or words??)
* Data buffer location: anywhere in high speed or extension
RAM
*
/
void SetSfpDataBufferAddress(unsigned char *data_buffer)
{
sfpDataBuffer=data_buffer;
ks
/
*
* Function: SetSfpEntryRamAddress
* Parameters: pointer to entry RAM
* Returns: nothing
* Date: September 7, 2004
* Description: Sets pointer to entry ram to be used in self flash programming
*
* Notes:
* Data buffer size: 48 bytes
* Data buffer location: anywhere in high speed or extension
RAM
*

/

27

78K0/Kx1+ Self-Programming NEC

void SetSfpEntryRamAddress(unsigned char *entry_ram)

{
sTfpEntryRam=entry_ram;
3
/
*
* Function: EnterAlMode
* Parameters: none
* Returns: flash status register PFS
* Date: August 27, 2004
* Description: Enters Al mode
*
* Notes:
* PFCMD Flash Protect Command Register
* FLPMC Flash Programming Mode Control Register
* PFS Flash Status Register
*
/
unsigned char EnterAlMode(void)
{
PFCMD=0xa5; // required write of OASH
FLPMC=0x05; // write value to enter Al mode
FLPMC=0xfa; // write inverse of value (oxfa is inverse of 0x05)
FLPMC=0x05; // write value to enter Al mode again
return PFS; // bit 0, FPERR, is set if there is an error in above
sequence
by
/
*
* Function: ReturnToNormalMode
* Parameters: none
* Returns: flash status register PFS
* Date: September 3, 2004
* Description: Returns to Normal mode (from Al mode)
*
* Notes:
* PFCMD Flash Protect Command Register
* FLPMC Flash Programming Mode Control Register
* PFS Flash Status Register
*
/
unsigned char ReturnToNormalMode(void)
{
PFCMD=0xa5; // required write of OASH
FLPMC=0x00; // write value to enter normal mode
FLPMC=0xfTf; // write inverse of value (oxff is inverse of 0x00)
FLPMC=0x00; // write value to enter normal mode again
return PFS; // bit 0, FPERR, is set if there is an error in above
sequence
3
/
*
* Function: CallA2ModeFunction
* Parameters: function number, entry RAM address
* Returns: Register B return value of hidden ROM function
* Date: September 10, 2004
* Description: Calls hidden ROM function in A2 Mode
*
*
* Notes:
* To interface to the hidden rom functions
* Function number must be in register c of bank 3
* entry RAM Address must be in register pair hl of bank 3
*

/

28

NEC 78K0/Kx1+ Self-Programmin

g

void CallA2ModeFunction(unsigned char function_number)

{

#asm
push ax ; save parameter passed In ax register
sel rb3 ; select register bank 3
pop ax ; restore saved paramter into ax register of bank 3
xch a,x ; move function_number from x to a
mov c,a ; move function_number from a to c
movw ax,! sfpEntryRam ; move address of entry RAM into ax
movw hl,ax ; move address of entry RAM into hl
call 108100H ; call A2 Mode hidden ROM function

#endasm

b

29

	Application Note
	78K0/Kx1+ Self-Programming
	Revision History

	Contents
	Introduction
	Operating Modes
	Normal Operation
	A1 Mode
	A2 Mode

	Flash Microcontroller Architecture
	Flash Blocks

	Hardware Requirements
	FLMD0 Pin
	FLMD1 Pin

	Software Functions
	Mode Control Functions
	Entry RAM and Data Buffer Address Functions
	Flash Self-Programming Functions
	SFP Functions
	Additional SFP Functions

	Flash Self-Programming
	Step 1. Verify That the FLMD1 Pin is Low
	Step 2. Set the Addresses for Entry RAM and the Data Buffer
	Setting the Entry RAM Address
	Setting the Data Buffer Address

	Step 3. Disable Interrupts
	Step 4. Enter A1 Mode
	Step 5. Set the FLMD0 Pin High
	Step 6. Check the Mode Using the SFP_CheckMode() Flash Self
	Step 7. Call the Flash Self-Programming Initialization Funct
	Step 8. Check Which Memory Blocks Must Be Blank
	Step 9. Verify That Selected Memory Block is Blank
	Step 10. Erase the Selected Memory Block
	Step 11. Put the Data to be Written in the Data Buffer
	Step 12. Select Starting Address for Flash Write Operation
	Step 13. Write Data to Flash Memory
	Step 14: Verify a memory block
	Step 15. Set the FLMD0 Pin Low
	Step 16. Return to Normal Operation

	Sample Code
	Appendix A
	Flash Self-Programming Routines

