To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)
Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

 “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.

 “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implants, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
1. Abstract

This document presents the method for using the timer of the 455A-group microcomputers and shows an application example.

2. Introduction

The application example explained in this document applies for use with the microcomputers and under the conditions described below.

• Microcomputer : 455A group
• Oscillation frequency : 4 MHz as f(XIN), however; 32.768 kHz as f(XCIN), however
• System clock : Used in through mode (not frequency divided)

In this application note, explanation is made of an example of timer setting method and an application example with respect to the following:

• CNTR output operation: Buzzer output
• CNTR input operation: Event count
• Timer operation: Timer start by external input
• Timer operation: Fixed-cycle counter
• Watchdog timer
3. Related Registers

3.1 Interrupt Control Register V1

Table 3.1 shows the bit configuration of Interrupt Control Register V1.

For write to the register V1, first set a value in the register A and then use the TV1A instruction.

Furthermore, the TAV1 instruction may be used to transfer the content of register V1 to the register A.

Table 3.1 Bit Configuration of Interrupt Control Register V1

<table>
<thead>
<tr>
<th>Interrupt Control Register V1</th>
<th>When reset: 0000</th>
<th>When powered down: 0000</th>
<th>R/W TAV1/TV1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>V13 Timer 2 interrupt enable bit</td>
<td>0</td>
<td>Disables interrupt generation (SNZT2 instruction effective)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Enables interrupt generation (SNZT2 instruction has no effect)</td>
<td></td>
</tr>
<tr>
<td>V12 Timer 1 interrupt enable bit</td>
<td>0</td>
<td>Disables interrupt generation (SNZT1 instruction effective)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Enables interrupt generation (SNZT1 instruction has no effect)</td>
<td></td>
</tr>
<tr>
<td>V11 Unused</td>
<td>0</td>
<td>This bit has no functions assigned, but can be read/written.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V10 External 0 interrupt enable bit</td>
<td>0</td>
<td>Disables interrupt generation (SNZ0 instruction effective)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Enables interrupt generation (SNZ0 instruction has no effect)</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The letter R denotes “readable,” and the letter W denotes “writable.”

Note 2: : Unused bits during timer setting.

3.2 Interrupt Control Register V2

Table 3.2 shows the bit configuration of Interrupt Control Register V2.

For write to the register V2, first set a value in the register A and then use the TV2A instruction.

Furthermore, the TAV2 instruction may be used to transfer the content of register V2 to the register A.

Table 3.2 Bit Configuration of Interrupt Control Register V2

<table>
<thead>
<tr>
<th>Interrupt Control Register V2</th>
<th>When reset: 0000</th>
<th>When powered down: 0000</th>
<th>R/W TAV2/TV2A</th>
</tr>
</thead>
<tbody>
<tr>
<td>V23 Unused</td>
<td>0</td>
<td>This bit has no functions assigned, but can be read/written.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V22 Unused</td>
<td>0</td>
<td>This bit has no functions assigned, but can be read/written.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V21 Unused</td>
<td>0</td>
<td>This bit has no functions assigned, but can be read/written.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V20 Timer 3 interrupt enable bit</td>
<td>0</td>
<td>Disables interrupt generation (SNZT3 instruction effective)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Enables interrupt generation (SNZT3 instruction has no effect)</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The letter R denotes “readable,” and the letter W denotes “writable.”

Note 2: : Unused bits during timer setting.
3.3 Interrupt Control Register I1

Table 3.3 shows the bit configuration of Interrupt Control Register I1.

For write to the register I1, first set a value in the register A and then use the TI1A instruction.

Furthermore, the TAI1 instruction may be used to transfer the content of register I1 to the register A.

Table 3.3 Bit Configuration of Interrupt Control Register I1

<table>
<thead>
<tr>
<th>Interrupt Control Register I1</th>
<th>When reset: 0000z</th>
<th>When powered down: State retained</th>
<th>R/W TAI1/TI1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>I13 INT pin input control bit</td>
<td>0 Disables input</td>
<td>1 Enables input</td>
<td></td>
</tr>
<tr>
<td>I12 INT pin interrupt active waveform/return level select bit</td>
<td>0 Falling waveform/low level (SNZI0 instruction recognizes low level)</td>
<td>1 Rising waveform/high level (SNZI0 instruction recognizes high level)</td>
<td></td>
</tr>
<tr>
<td>I11 INT pin edge detection circuit control bit</td>
<td>0 Detects one edge</td>
<td>1 Detects both edges</td>
<td></td>
</tr>
<tr>
<td>I10 INT pin timer 1 count start synchronizing circuit select bit</td>
<td>0 Deselects timer 1 count start synchronizing circuit</td>
<td>1 Selects timer 1 count start synchronizing circuit</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The letter R denotes “readable,” and the letter W denotes “writable.”
Note 2: When the contents of these bits (I12 or I13) are changed, the external interrupt request flag (EXF0) may be set.

3.4 Timer Control Register PA

Table 3.4 shows the bit configuration of Timer Control Register PA.

For write to the register PA, first set a value in the register A and then use the TPAA instruction.

Table 3.4 Bit Configuration of Timer Control Register PA

<table>
<thead>
<tr>
<th>Timer Control Register PA</th>
<th>When reset: 0z</th>
<th>When powered down: 0z</th>
<th>W TPAA</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA0 Prescaler control bit</td>
<td>0 Stop (state retained)</td>
<td>1 Start</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The letter W denotes “writable.”
3.5 Timer Control Register W1

Table 3.5 shows the bit configuration of Timer Control Register W1.

For write to the register W1, first set a value in the register A and then use the TW1A instruction.

Furthermore, the TAW1 instruction may be used to transfer the content of register W1 to the register A.

Table 3.5 Bit Configuration of Timer Control Register W1

<table>
<thead>
<tr>
<th>Timer Control Register W1</th>
<th>When reset: 0000</th>
<th>When powered down: State retained</th>
<th>R/W TAW1/TW1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>W13 Timer 1 count auto stop circuit select bit</td>
<td>0</td>
<td>Deselects timer 1 count auto stop circuit</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Selects timer 1 count auto stop circuit</td>
<td></td>
</tr>
<tr>
<td>W12 Timer 1 control bit</td>
<td>0</td>
<td>Stop (state returned)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Start</td>
<td></td>
</tr>
<tr>
<td>W11 Timer 1 count source select bit Note 2</td>
<td>W11 W10</td>
<td>Count source</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 0</td>
<td>PWM signal (PWMOUT)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1</td>
<td>Prescaler output (ORCLK)</td>
<td></td>
</tr>
<tr>
<td>W10</td>
<td>1 0</td>
<td>Timer 3 underflow signal (T3UDF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1</td>
<td>CNTR input</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The letter R denotes “readable,” and the letter W denotes “writable.”

Note 2: This function is usable only when timer 1 count start synchronizing circuit is selected (I10 = 1).

Note 3: If CNTR input is selected for the timer 1 count source, port C output is disabled.

3.6 Timer Control Register W2

Table 3.6 shows the bit configuration of Timer Control Register W2.

For write to the register W2, first set a value in the register A and then use the TW2A instruction.

Furthermore, the TAW2 instruction may be used to transfer the content of register W2 to the register A.

Table 3.6 Bit Configuration of Timer Control Register W2

<table>
<thead>
<tr>
<th>Timer Control Register W2</th>
<th>When reset: 0000</th>
<th>When powered down: 0000</th>
<th>R/W TAW2/TW2A</th>
</tr>
</thead>
<tbody>
<tr>
<td>W23 CNTR pin output control bit</td>
<td>0</td>
<td>Disables CNTR pin output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Enables CNTR pin output</td>
<td></td>
</tr>
<tr>
<td>W22 PWM signal high period extend function control bit</td>
<td>0</td>
<td>Disables PWM signal high period extend function</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Enables PWM signal high period extend function</td>
<td></td>
</tr>
<tr>
<td>W21 Timer 2 control bit</td>
<td>0</td>
<td>Stop (state retained)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Start</td>
<td></td>
</tr>
<tr>
<td>W20 Timer 2 count source select bit</td>
<td>0</td>
<td>X1 input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Prescaler output (ORCLK) divided by 2</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The letter R denotes “readable,” and the letter W denotes “writable.”
3.7 Timer Control Register W3

Table 3.7 shows the bit configuration of Timer Control Register W3.
For write to the register W3, first set a value in the register A and then use the TW3A instruction.
Furthermore, the TAW3 instruction may be used to transfer the content of register W3 to the register A.

Table 3.7 Bit Configuration of Timer Control Register W3

<table>
<thead>
<tr>
<th>Timer Control Register W3</th>
<th>When reset: 0000z</th>
<th>When powered down: State retained</th>
<th>R/W TAW3/TW3A</th>
</tr>
</thead>
<tbody>
<tr>
<td>W33 Timer 3 control bit</td>
<td>0 Stop (initial state)</td>
<td>1 Start</td>
<td></td>
</tr>
<tr>
<td>W32</td>
<td>W3z W3y W3o</td>
<td>Count value</td>
<td></td>
</tr>
<tr>
<td>0 0 0 Generates underflow every 512 counts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 1 0 Generates underflow every 2,048 counts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 0 Generates underflow every 8,192 counts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 0 1 Generates underflow every 16,384 counts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 0 Generates underflow every 32,768 counts</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 1 1 Generates underflow every 65,536 counts</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The letter R denotes “readable,” and the letter W denotes “writable.”

3.8 Timer Control Register W4

Table 3.8 shows the bit configuration of Timer Control Register W4.
For write to the register W4, first set a value in the register A and then use the TW4A instruction.
Furthermore, the TAW4 instruction may be used to transfer the content of register W4 to the register A.

Table 3.8 Bit Configuration of Timer Control Register W4

<table>
<thead>
<tr>
<th>Timer Control Register W4</th>
<th>When reset: 0000z</th>
<th>When powered down: State retained</th>
<th>R/W TAW4/TW4A</th>
</tr>
</thead>
<tbody>
<tr>
<td>W43 Timer LC control bit</td>
<td>0 Stop (state retained)</td>
<td>1 Start</td>
<td></td>
</tr>
<tr>
<td>W42 Timer LC count source select bit</td>
<td>0 Bit 4 of timer 3 (T34)</td>
<td>1 System clock (STCK)</td>
<td></td>
</tr>
<tr>
<td>W41 CNTR pin output auto control circuit select bit</td>
<td>0 Deselects CNTR pin output auto control circuit</td>
<td>1 Selects CNTR pin output auto control circuit</td>
<td></td>
</tr>
<tr>
<td>W40 CNTR pin input count edge select bit</td>
<td>0 Falling edge</td>
<td>1 Rising edge</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The letter R denotes “readable,” and the letter W denotes “writable.”
Note 2: Unused bits during timer setting.
3.9 Timer Control Register W5
Table 3.9 shows the bit configuration of Timer Control Register W5.
For write to the register W5, first set a value in the register A and then use the TW5A instruction.
Furthermore, the TAW5 instruction may be used to transfer the content of register W5 to the register A.

Table 3.9 Bit Configuration of Timer Control Register W5

<table>
<thead>
<tr>
<th>Timer Control Register W5</th>
<th>When reset: 0000</th>
<th>When powered down: State retained</th>
<th>R/W TAW5/TW5A</th>
</tr>
</thead>
<tbody>
<tr>
<td>W53 Unused</td>
<td>0</td>
<td>This bit has no functions, but can be accessed for read/write.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>This bit has no functions, but can be accessed for read/write.</td>
<td></td>
</tr>
<tr>
<td>W52 Unused</td>
<td>0</td>
<td>This bit has no functions, but can be accessed for read/write.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>This bit has no functions, but can be accessed for read/write.</td>
<td></td>
</tr>
<tr>
<td>W51 Timer 3 count source select bit</td>
<td>0 0</td>
<td>Xcin input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 1</td>
<td>ORCLK input</td>
<td></td>
</tr>
<tr>
<td>W50 Timer 3 count source select bit</td>
<td>1 0</td>
<td>Low-speed on-chip oscillator input (LSOCO)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1</td>
<td>High-speed on-chip oscillator input (HSOCO)</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The letter R denotes “readable,” and the letter W denotes “writable.”
Note 2: Unused bits during timer setting.

3.10 Port Output Mode Control Register FR2
Table 3.10 shows the bit configuration of Port Output Mode Control Register FR2.
For write to the register FR2, first set a value in the register A and then use the TFR2A instruction.

Table 3.10 Bit Configuration of Port Output Mode Control Register FR2

<table>
<thead>
<tr>
<th>Port Output Mode Control Register FR2</th>
<th>When reset: 0000</th>
<th>When powered down: State retained</th>
<th>W TFR2A</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR2i Port P3x and P3y output mode select bit</td>
<td>0</td>
<td>N-channel open-drain output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>CMOS output</td>
<td></td>
</tr>
<tr>
<td>FR2i Port P3x and P3y output mode select bit</td>
<td>0</td>
<td>N-channel open-drain output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>CMOS output</td>
<td></td>
</tr>
<tr>
<td>FR2i Port D5 output mode select bit</td>
<td>0</td>
<td>N-channel open-drain output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>CMOS output</td>
<td></td>
</tr>
<tr>
<td>FR2i Port D4 output mode select bit</td>
<td>0</td>
<td>N-channel open-drain output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>CMOS output</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: The letter W denotes “writable.”
Note 2: Unused bits during timer setting.
4. Timer Application Example

4.1 CNTR Output Operation: Buzzer Output

Point: The square wave output from timer 2 can be used for buzzer output as its application.

Specification: When system clock frequency = 4 MHz, a square wave in frequency of approximately 4 kHz is output from the CNTR pin. Also, a timer 2 interrupt is generated at the same time.

Figure 4.1 shows an example of a peripheral circuit. Figure 4.3 shows an example of how to set the registers for CNTR output.

Figure 4.1 Example of a Peripheral Circuit

4.2 CNTR Input Operation: Event Count

Point: A signal (rising waveform) input from the CNTR pin can be used as an event for count operation.

Specification: Low-frequency pulses are input as the count source for timer 1 from the outside to the CNTR pin, and a timer 1 interrupt is generated every 100 counts.

Figure 4.4 shows an example of how to set the registers for CNTR input.

4.3 Timer Operation: Timer Start by External Input

Point: A fixed length of time can be measured using external input.

Specification: Timer 1 is triggered to start counting by INT input and an interrupt is generated 1 ms later.

Figure 4.5 shows an example of how to set the registers for timer 1 to be started by external 0 input.

4.4 Timer Operation: Fixed-cycle Counter by Timer 3

Point: Exact time can be measured using a 32.768 kHz crystal resonator, making it possible to create a highly accurate time-of-day clock.

Specification: A timer 3 interrupt is generated every 250 ms synchronously with the timing signal derived by dividing the sub-clock frequency (f(XCIN) = 32.768 kHz) with timer 3.

Figure 4.6 shows an example of how to set the registers for a fixed-cycle counter by timer 3.
4.5 Watchdog Timer

The watchdog timer function offers a means for restoring the chip into a reset state when, for example, a program has gone wild and could not be executed normally.

When the watchdog timer function is enabled, always be sure that the WRST instruction is executed at intervals equal to or less than 65,534 counts of a 16-bit timer (i.e., at intervals equal to or less than 65,534 machine cycles).

Point: While operating normally, the WRST instruction is always executed within 65,534 counts of a 16-bit timer. If the program goes wild, the WRST instruction will no longer be executed, causing the chip to be reset.

Specification: Using a system clock frequency of 4.0 MHz, this function detects program runaway by executing the WRST instruction within 49 ms.

Figure 4.2 schematically shows the watchdog timer function. Figure 4.7 shows an example for using the watchdog timer.

![Figure 4.2 Watchdog Timer Function](image)

(1) After reset (after program start), the timer WDT starts counting down.
(2) When the timer WDT underflows upon reaching the minimum count, the flag WDF1 is set to 1.
(3) When the WRST instruction is executed, the flag WDF1 is cleared to 0 and the next instruction is skipped.
(4) If the timer WDT underflows while the flag WDF1 = 1, the flag WDF2 is set to 1 and a watchdog reset signal is output.
(5) The watchdog reset signal causes the output transistor of the RESET# pin to turn on, thereby generating a system reset.

Note: Since the count source for the timer WDT is the instruction clock, the number of counts is the same as the number of machine cycles.
Figure 4.3 Example of CNTR Output Setting

X: Don’t care

To output a square wave whose state is reversed every 126 µs, set the prescaler count value and timer 2 count value as shown below.

126 µs = \(\frac{4.0\text{MHz}}{1}\times\frac{3}{3+1}\times\frac{20}{20+1}\)

* Precautions to be taken when interrupt requests are cleared

If step (4) is executed, be sure to insert a NOP instruction after the SNZT2 instruction because the next instruction may be skipped depending on the state of the interrupt request flag T2F.

(1) Disabling interrupts
Temporarily disable timer 2 interrupt. Interrupt enable flag INTE = 0
Interrupt Control Register V1

(2) Stopping timer and prescaler operations
Temporarily stop timer 2 and prescaler.
Timer Control Register W2
Timer Control Register PA

(3) Setting timer values
Set the count time of timer 2 and prescaler. (Calculation formula is shown in *A below).
Prescaler Reload Register RPS = 0316
Timer 2 Reload Register R2L = 1416
Timer 2 Reload Register R2H = 1416

(4) Clearing interrupt request
Clear the timer 2 interrupt request flag.

Timer 2 interrupt request flag T2F = 0
Timer 2 interrupt request flag cleared (SNZT2 instruction)

(5) Starting timer and prescaler operations
Restart the temporarily stopped timer 2 and prescaler operations. Select the timer 2 count source.
Timer Control Register W2
Timer Control Register PA

(6) Enabling interrupt
Reenable the temporarily disabled timer 2 interrupt.
Interrupt Control Register V1
Interrupt enable flag INTE = 1

(7) Stopping CNTR output
Disable CNTR pin output to place it into the high-impedance state.
Timer Control Register W1
Timer Control Register W2
Figure 4.4 Example of CNTR Input Setting

1. Disabling interrupts
 Temporarily disable timer 1 interrupt.
 - Interrupt enable flag INTE = 0
 - All interrupts disabled (DI instruction)
 - Generation of timer 1 interrupt disabled (TV1A instruction)

2. Stopping timer operation
 Temporarily stop timer 1.
 - Timer 1 stopped (TW1A instruction)

3. Setting input count edge
 Select a rising transition for the count edge.
 - Rising transition selected for the count edge (TW4A instruction)
 - CNTR pin output auto control circuit deselected

4. Setting a timer value
 Set the number of counts for timer 1.
 - Timer 1 count value set to 100–1 (T1AB instruction)

5. Clearing interrupt request
 Clear the timer 1 interrupt request flag.
 - Timer 1 interrupt request flag cleared (SNZT1 instruction)
 - Precautions to be taken when interrupt requests are cleared
 If step (5) is executed, be sure to insert a NOP instruction after the SNZT1 instruction because the next instruction may be skipped depending on the state of the interrupt request flag T1F.

6. Starting timer operation
 Restart the temporarily stopped timer 1 operation.
 - Timer 1 operation started (TW1A instruction)
 - CNTR input selected for the timer 1 count source

7. Enabling interrupt
 Reenable the temporarily disabled timer 1 interrupt.
 - Generation of timer 1 interrupt enabled (TV1A instruction)
 - All interrupts enabled (EI instruction)

X: Don’t care
Figure 4.5 Example of Settings for Timer 1 Started by External 0 Input

(1) Disabling interrupts
Temporarily disable timer 1 and external 0 interrupts.

- Generation of timer 1 interrupt disabled (TV1A instruction)
- Generation of external 0 interrupt disabled

(2) Deselecting the timer 1 count start synchronizing circuit

(3) Stopping timer 1 and prescaler operations
Temporarily stop timer 1 and prescaler.

(4) Setting the port
Set the INT pin for input.

(5) Setting timer values
Set the count time of prescaler and timer 1. (Calculation formula is shown in *A below)

- Prescaler count value set to 15 (TPSAB instruction)
- Timer count value set to 82 (T1AB instruction)

(6) Clearing interrupt request
Clear the timer 1 interrupt request flag.

- Timer 1 interrupt request flag cleared (SNZT1 instruction)

(7) Setting the INT pin for input
Enable input to the INT pin.

- Timer 1 count start synchronizing circuit deselected (TI1A instruction)

(8) Starting timer and prescaler operations
Restart the temporarily stopped timer 1 and prescaler operations.

- Timer 1 operation started (TW1A instruction)

(10) Enabling interrupt
Reenable the temporarily disabled timer 1 interrupt.

- Generation of timer 1 interrupt enabled (TV1A instruction)

* Precautions to be taken when interrupt requests are cleared
If step (6) is executed, be sure to insert a NOP instruction after the SNZT1 instruction because the next instruction may be skipped depending on the state of the interrupt request flag T1F. (The same applies for the external 0 interrupt request flag in (7).)
Figure 4.6 Example of Settings for Fixed-cycle Counter by Timer 3

1. Disabling interrupts
 - Temporarily disable the timer 3 interrupt.
 - Interrupt enable flag INTE = 0
 - All interrupts disabled (DI instruction)

2. Stopping timer operation
 - Temporarily stop timer 3.
 - Timer 3 interrupt request flag T3F = 0
 - Timer 3 interrupt start condition cleared (SNZT3 instruction)

3. Setting count source and count value
 - Set the count source and count value of timer 3.
 - Timer 3 count value set to every 8,192 counts (TW3A instruction)

4. Clearing interrupt request
 - Clear the timer 3 interrupt start condition.
 - Timer 3 interrupt request flag T3F = 0
 - Timer 3 interrupt start condition cleared (SNZT3 instruction)

* Precautions to be taken when interrupt requests are cleared
 If step (4) is executed, be sure to insert a NOP instruction after the SNZT3 instruction because the next instruction may be skipped depending on the state of the interrupt request flag T3F.

5. Starting timer operation
 - Restart the temporarily stopped timer 3 operation.
 - Timer 3 count value set to every 8,192 counts (TW3A instruction)

6. Enabling interrupt
 - Reenable the temporarily disabled timer 3 interrupt.
 - Generation of timer 3 interrupt enabled (TV2A instruction)

Execution of fixed-cycle counter started
(1) Clearing the flag WDF1
Clear the watchdog timer flag WDF1 to 0. “0” Watchdog timer flag WDF1 cleared (WRST instruction)

* Precautions to be taken when the watchdog timer flag is cleared
If step (1) is executed, be sure to insert a NOP instruction after the WRST instruction because the next instruction may be skipped depending on the state of the interrupt request flag WDF1.

Execution of the main routine
Repeated

Do not clear the watchdog timer flag WDF1 in an interrupt handler. Even when the program has gone wild, interrupts may be at work.

When placed into power-down mode

\[
\begin{align*}
\text{WRST} & \quad ; \text{Clear the flag WDF} \\
\text{NOP} & \\
\text{DI} & \quad ; \text{Disable interrupt} \\
\text{EPOF} & \quad ; \text{Enable POF instruction} \\
\text{POF2} & \\
\text{\downarrow} & \quad \text{Oscillation stopped (power-down mode)}
\end{align*}
\]

In power-down mode, the flags WEF, WDF1 and WDF2 are initialized. However, if the flag WDF2 is set to 1 at the same time power-down mode is entered into, the microcomputer may be reset. If the watchdog timer and power-down mode are used, be sure to execute the WRST instruction to initialize the flag WDF1 immediately before entering power-down mode.

Figure 4.7 Example for Using the Watchdog Timer
5. Reference Documents

Data sheet
455A Group Data Sheet
(The latest version is available from the Renesas Technology Web site.)

Technical news / Technical Update
(The latest information is available from the Renesas Technology Web site.)
6. Sample Programs

Sample programs are available from the Renesas Technology Web site.
To download one, click the screen menu "Application Note" on the left side of 455A group Web site.
Renesas Web Site and Where to Contact

Renesas Technology Web site:
http://japan.renesas.com/

Where to contact:
http://japan.renesas.com/inquiry
csc@renesas.com

<table>
<thead>
<tr>
<th>Revision history</th>
<th>455A Group Timers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rev.</td>
<td>Date</td>
</tr>
<tr>
<td>1.00</td>
<td>2008.02.29</td>
</tr>
</tbody>
</table>

All trademarks and registered trademarks are the property of their respective owners.
1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information contained in this document nor grants any license to any intellectual property rights or any other rights of Renesas or any third party with respect to the information in this document.

2. Renesas shall have no liability for damages or infringement of any intellectual property or other rights arising out of the use of any information in this document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application circuit examples.

3. You should not use the products or the technology described in this document for the purpose of military applications such as the development of weapons of mass destruction or for the purpose of any other military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations.

4. All information included in this document such as product data, diagrams, charts, programs, algorithms, and application circuit examples, is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas products listed in this document, please confirm the latest product information with a Renesas sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas such as that disclosed through our website. (http://www.renesas.com)

5. Renesas has used reasonable care in compiling the information included in this document, but Renesas assumes no liability whatsoever for any damages incurred as a result of errors or omissions in the information included in this document.

6. When using or otherwise relying on the information in this document, you should evaluate the information in light of the total system before deciding about the applicability of such information to the intended application. Renesas makes no representations, warranties or guarantees regarding the suitability of its products for any particular application and specifically disclaims any liability arising out of the application and use of the information in this document or Renesas products.

7. With the exception of products specified by Renesas as suitable for automobile applications, Renesas products are not designed, manufactured or tested for applications or otherwise in systems the failure or malfunction of which may cause a direct threat to human life or create a risk of human injury or which require especially high quality and reliability such as safety systems, or equipment or systems for transportation and traffic, healthcare, combustion control, aerospace and aeronautics, nuclear power, or undersea communication transmission. If you are considering the use of our products for such purposes, please contact a Renesas sales office beforehand. Renesas shall have no liability for damages arising out of the uses set forth above.

8. Notwithstanding the preceding paragraph, you should not use Renesas products for the purposes listed below:
 (1) artificial life support devices or systems
 (2) surgical implantations
 (3) healthcare intervention (e.g., excision, administration of medication, etc.)
 (4) any other purposes that pose a direct threat to human life
Renesas shall have no liability for damages arising out of the uses set forth in the above and purchasers who elect to use Renesas products in any of the foregoing applications shall indemnify and hold harmless Renesas Technology Corp., its affiliated companies and their officers, directors, and employees against any and all damages arising out of such applications.

9. You should use the products described herein within the range specified by Renesas, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas shall have no liability for malfunctions or damages arising out of the use of Renesas products beyond such specified ranges.

10. Although Renesas endeavors to improve the quality and reliability of its products, IC products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other applicable measures. Among others, since the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. In case Renesas products listed in this document are detached from the products to which the Renesas products are attached or affixed, the risk of accident such as swallowing by infants and small children is very high. You should implement safety measures so that Renesas products may not be easily detached from your products. Renesas shall have no liability for damages arising out of such detachment.

12. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written approval from Renesas.

13. Please contact a Renesas sales office if you have any questions regarding the information contained in this document, Renesas semiconductor products, or if you have any other inquiries.

© 2008, Renesas Technology Corp., All rights reserved.