
©2000 Integrated Device Technology, Inc.

 6.01
3559/3

MARCH 2000
1

The IDT FourPort SRAM
Serving as both a complex four bus interconnect network and fast

“parallel” memory, the IDT FourPortTM SRAM can greatly facilitate the
creation of multiprocessor and multi-ALU systems to accelerate DSP,
graphics, control and other tasks that involve large vector processing
tasks.

Memory architectures based on single-port SRAM allow only one
device to access a memory array at one time. Hardware designed to
accelerate computing processes by utilizing parallelism, or pipelining with
single-port memory tend to require architectures that are either complex,
specialized, or both. The advent of a fast FourPortTM single chip SRAM
greatly simplifies the task of creating generalized small multiprocessor or
multi-ALU systems to accelerate a variety of vector algorithms.

Potential applications include dedicated real-time multiprocessor
systems for control, graphics, and DSP systems, as well as general
purpose vector co-processors to assist general purpose computers.
Vector processing means any computing operation with a large number

of operations that may be executed in parallel by multiple processors. In
these applications the FourPortTM SRAM serves both as a fast static RAM
and as the interconnect network between processors working on a
common data set.

Imagine a static RAM that allows four processors to randomly and
asynchronously read or write four locations at a time in the same SRAM
array. For processes that can be executed in parallel, four processors can
be programmed to operate simultaneously on different parts of a data set
stored in the FourPort SRAM. If data is being generated at different rates
than it is being used, software controlled buffers can be created at will,
temporarily storing data passing from one processor to the next. The
buffering minimizes the time lost in handshaking between processors.
Four-way fully random accessibility avoids hardware imposed algorithmic
constraints.

The IDT FourPortTM SRAM has precisely these characteristics. There
are only two constraints on the access patterns allowed in the FourPortTM.
Two devices cannot write to the same address location in the SRAM at the
same time, since simultaneous multiple writes to any one multiport memory
location may corrupt the data in that SRAM location. Also, a device cannot
read an address location that is being written, to avoid having the read
occur when the output data is changing. There are no other restrictions
on access patterns.

As it turns out, address collisions are usually prohibited by the logical
sequencing requirements of software, and the time lost in avoiding address
collisions is often minimal. Most of the time all processors have essentially
free read and write access to the memory.

FourPortTM SRAM-Based
Multiprocessor Arrays for
Vector Operations

The FourPortTM SRAM is both a storage and communications media.
As a communications media it has little, and in some cases, zero handshak-
ing or arbitration overhead. A processing device may be able to store
results in a multipart memory and spend little or no time signaling the next
device to receive the results. As a communications media it also has very
high bandwidth. These characteristics make the IDT7054 and the IDT7052

By Robert Stodieck

APPLICATION
NOTE
AN-43

THE IDT FourPort™ SRAM
FACILITATES MULTIPROCESSOR
DESIGNS

Figure 1. The IDT7052/4 FourPort RAM allows four simultaneous
memory accesses to independent addresses a 2K or 4K x 8-bit
memory array. It serves both as an interconnect network and

as a fast static RAM.

CPU #3

CPU #2

CPU #4

IDT7052
IDT7054

FourPortTM

SRAM

CPU #1

3559 drw 01

 6.01

Application Note AN-43The IDT FourPart™ RAM Facilitates Multiprocessor Designs

2

an ideal memory for connecting multi-element and multiprocessor com-
puter architectures (see Figure 2).

Since the hardware interface of the FourPortTM SRAM to the processors
is that of a simple static RAM, it can be connected transparently to almost
any existing system. Control signals as well as data can be handled via
the SRAM. Thus, microprocessor boards that were designed for entirely
different applications can be used in a multiprocessor array.

An Overview of the Operation of a
Multiport RAM Based MULTI-PRO-
CESSOR WITH A MULTIPORT RAM
BASED CONTROL SYSTEM

Processors sharing multiport memory must avoid writing into memory
locations that are simultaneously being read or written from another port.
This is usually accomplished by address range segregation. That is, at any
one moment processor “A” is prevented from writing to multiport memory
locations that processor “B” is accessing from another port. Hardware
interrupts, hardware semaphores and stalling processors with hardware

busy logic are hardware based methods of controlling the accesses of
processors to multiport SRAM. It is also possible to control the processors
in a multiprocessor array via the common SRAM interface. This results in
an essentially software-only control system. The control algorithms for a
multiport SRAM based multiprocessor array are different than those for a
multiprocessor array based on single port SRAM. This section describes
an example of a control protocol for a multiport SRAM based multiprocessor
array.

Access coordination in multiport SRAM based multiprocessors, over-
laps with the more familiar task of process coordination in a multiprocessor
and uses the same control schemes. In a single master system, the master
determines the address ranges being used by all processors. This avoids
the problems of arbitrating for resources. In small embedded systems,
running algorithms of limited complexity, the software can be tuned so that
software-only control approaches have little or no detrimental effect on
overall performance. Such systems are more easily debugged if a simple
single master control arrangement is used. In this section of this application
note we will discuss a single master example.

In a master/slave array, the master controls all the actions of the slaves.
The slaves must either have local program stored in SRAM or ROM or
be operating out of the FourPortTM SRAM. Each processor must have a
unique ID code to be able to identify the unique command location where
it is to receive its commands from the master. This can be achieved, for
example, by supplying a unique firmware ID code via individual PROMs,
PALs or readable DIP switches for each processor. A number of other
approaches are possible.

Each slave command has a corresponding op-code. The slaves poll
their command locations looking for new command opcodes. For example,
finding a “0” in a command location may imply no operation is requested
from the slave etc. The commands can be anything that the slave
processors have been programmed to do. Appropriate commands might
be, multiply data values at locations 000H to 7FFH with the corresponding
coefficients at locations 800H to FFFH, or multiply data values at locations
000H to 7FFH with the value at location 800H, etc. Thus, with a few memory
accesses, the master processor can trigger and control lengthy slave
processor operations.

Master/Slave Control Protocol
for a Multiport RAM Based
Processor Array

A command protocol is the set of rules for passing commands from the
master to the slaves. In a software-only control system, all processors must
be aware that writes to certain command locations are forbidden, or

Figure 2. FourPortTM SRAM interconnection advantages over
Dual-Port SRAM. The processors in both figures are interconnected

with a latency of one memory access. This efficiency requires 6
seperate Dual-Port SRAMs but only 1 FourPortTM SRAM.

CPU #1 CPU #2

CPU #3 CPU #4

2 PORT

2 PORT

2 PORT 2 PORT

2 PORT

2 PORT

CPU #3

CPU #2

CPU #4

CPU #1

4 PORT

3559 drw 02

5

3

Application Note AN-43The IDT FourPart™ RAM Facilitates Multiprocessor Designs

Figure 3. Write Access Allocations

MASTER AND
LOCAL SLAVE
CAN WRITE,
PERMISSION
REQUIRED

ONLY WRITTEN
BY LOCAL SLAVE

ACCESS
RIGHTS
ALLOCATED
BY MASTER

3559 drw 03

SLAVE COMMAND LOCATION #1

SLAVE COMMAND LOCATION #2

SLAVE COMMAND LOCATION #3

SLAVE#1 PARAMETER LOCATIONS

SLAVE#2 PARAMETER LOCATIONS

SLAVE#3 PARAMETER LOCATIONS

SLAVE#1 STATUS LOCATIONS

SLAVE#2 STATUS LOCATIONS

SLAVE#3 STATUS LOCATIONS

forbidden without “permission” from the current owner(see Figure 3). In
general, a process is given a variable address range to operate in. The
command protocol on the other hand, uses fixed address locations.

The master of an array of processors can tell slave processor #1 to
execute a command “n”, by writing the command opcode corresponding
to command “n” to the slave processor’s command location. Parameters
for the process, such as constants, or the assigned address range, are
placed in reserved locations prior to starting the process that will use them.

There are four problems that a multiport SRAM based command
protocol must solve:

1. Write-write conflicts must be avoided in the control locations.
2. Read-write synchronization problems must be avoided in the

control locations.
3. The master must not issue a new command out of sequence,

i.e. the slave has to acknowledge readiness to execute a
new command.

4. A slave must execute each command only one time.
Figure 4 shows flow charts for a protocol that allows a master to

control slaves and slaves to receive commands without risk of violating
these four rules.

All slaves have unique command locations in SRAM. If the reads and
writes to the command locations are asynchronous, command locations
must always be read at least twice. The two read results are then compared
and discarded if they do not match. In this way, command data that may
have been changing during the read operation, and therefore may have
been read incorrectly, is discarded.

Before issuing any command, the master first reads a slave’s “com-
mand” location. If the value read indicates that the slave is ready, the master
places the slave’s command op-code in that same command location. The
slave must signal readiness for new commands by placing a “no-op/
ready” value in the command location. The “no-op/ready” flag value is
interpreted as a “ready-for new-command” flag by the master, and a “no-
operation” command by the slave.

Having to wait for a “ready” signal from the slave prevents the master
from issuing new commands out of sequence. Conversely, by signaling
“ready” in this way, the slave is also clearing the old commands from the
command location. This prevents the slave from later accidentally re-
reading and re-executing an old command. The command locations are
written alternately by the master and the designated slave, but the protocol
prevents simultaneous writes that might destroy the data in the SRAM
location. By using the same location for both the master’s command and

 6.01

Application Note AN-43The IDT FourPart™ RAM Facilitates Multiprocessor Designs

4

the slave’s ready indication, synchronization problems caused by differ-
ences in the memory cycle rates of different processors can also be
avoided.

All slaves should also have unique slave status locations in SRAM
where the master looks for slave status information. The status locations
are writable by the slave only. Copious use of reserved slave status
locations is essential for the benefit of the programmer trying to debug
untested software.

The slave may also signal “done” by writing a “done” flag to a slave
status location. The meaning of “done” is that the results of the last operation
are ready for use. Keep in mind that “done” is a different signal than
“ready”. “Ready” implies that the master can post the next command and
return to executing other tasks. Depending on the overall algorithm the
master is controlling, the master may write a new command as soon as
“ready” is signaled, or it may need to wait until “done” is signaled also.
It cannot merely check for a “done” signal before issuing a new command.
To do so would make it possible to issue new commands out of sequence,
based on stale “done” signals.

Initialization
Since multiport SRAM is the control interface, the SRAM command

locations must be initialized prior to starting the execution of the slaves. One
way this can be handled is by delaying the reset pulses to the slaves while
the master initializes SRAM. Alternatively, after reset, the master can issue
a known sequence of commands that frees the slaves from a special start
up routine.

Outline a Digital Signal
Processing Example

Basic DSP algorithms such as the FFT can utilize high degrees of
parallelism and provide good examples of vector algorithms. The access
patterns of the processor doing such an algorithm are complex and the data
sets are usually small enough to fit comfortably in a multiport SRAM array.
Analyzing how the FFT will be processed provides a good example of the
advantages of a multiport SRAM based multiprocessing environment.

The objective of our example task is to translate a time series of data

Figure 4. Flow charts for a master-slave software-only command protocol for a multiport SRAM based
multiprocessor. In unsynchronized systems (see shaded boxes) all commands must be read at least twice with the

same result before the command keyword can be assumed to be valid.

MASTER

READ AND RE-READ
SLAVE COMMAND

LOCATION

NO-OP/READY
FLAG?

WRITE SLAVE
COMMAND LOCATION
WITH NEXT PROCESS

COMMAND

RETURN TO
PROCESSING OTHER

TASKS

NO

NO

YES

YES

COMPARE
READS

=?

SLAVE

READ AND RE-READ
COMMAND
LOCATION

NO-OP/READY
FLAG?

DECODE AND EXECUTE
INDICATED PROCESS

WRITE 'NO-OP/READY'
FLAG TO SLAVE

COMMAND LOCATION

NO

YES

YES

NO

COMPARE
READS

=?

3559 drw 04

5

Application Note AN-43The IDT FourPart™ RAM Facilitates Multiprocessor Designs

values into their frequency domain representation: i.e. execute a fast
Fourier transform, as quickly as possible. This is a common process stop
in a number of systems for interpreting data from things as diverse as military
radar to medical CAT scans. It is also a relatively well known algorithm
among many contemporary electrical engineers, and so makes a good
example for our system.

Our objective algorithm could be run on a single processor. The object
of the FourPortTM SRAM based multiprocessor arrangement is to multiply
the speed of our computational process without resorting to a specialized
and more expensive architecture.

The generality of this architecture implies that it can be applied to a variety
of computationally involved tasks. The generality of this architecture also
means that there are often a number of ways a programmer can attack a
specific problem. The intent of this example is merely to illustrate one
approach, not to fully optimize an algorithm.

Load Balancing
The FFT calculations can be flow graphed. The resulting set of four

equations is called a “butterfly” for the appearance of its flow graph (Figure
5). When the FFT calculations are flow graphed they appear as a repetitive
array of calculations (Figure 6) of a particular set of four equations.

A common bench mark of processor performance is a 1K FFT. A quick
glance at the equations to be calculated shows why multiple processors
are desirable for such a task. If we assume that 1024 real and 1024
imaginary data values have been loaded in the four port memory, there
are now 2048 multiplications to be done as a first step. All these
multiplications could be done simultaneously. Next there are 1024
additions followed by another 2048 additions to complete the first stage of
FFT butterflies. Again, all of operations at any one of these three steps could
be done simultaneously. For a 1K FFT there are 10 stages of butterflies.

Processing on one stage of the FFT must be completed before
processing on the next stage can begin. Each processor is given an
address range of FFT butterfly input data to process for each stage of FFT
butterflies. A sine table is required for calculation of the FFT “twiddle”
factors. This can be stored in the four port memory and, therefore, will
always be available to all processors. Calculation of the “twiddle” factors
is a matter of calculating the addresses used in the sine look-up table. (See
Figure 6 for the angle calculations).

For efficiency, the computational load between processors must be
balanced. Since there are hundreds or thousands of operations that may
be done in parallel at each stage of the FFT, task partitioning is a matter
of assigning each processor an appropriate number of “butterflies” to work
on to achieve an equity of loading.

Since the minimal FFT tasks are easily divided between the processors,
and the FourPortTM SRAM all but prevents inter-processor data transfer
conflicts, the four processors in this example can be kept busy most of time.

Since there are so many tasks that can be done in parallel, other types
of tasks can be included without seriously upsetting the balance. For
example, if one processor is being used to handle I/O and input
conditioning tasks, then it can be assigned to do fewer butterfly calculations
than the other processors. If the work load of all the processors can be
balanced, the net speed advantage of this four processor array, can then
in fact be close to 4 times that of a single processor.

Figure 5 Overview of the "Butterfly" calculations for an
8 Point FFT. To complete this 8 Point FFT requires 3 stages of

Butterflies (23 = 8). A 1K FFT has 10 stages or levels
(210 = 1K). The indexes of x(n), the input sequence, are

shown to be out of sequence for graphical clarity. Each
stage in this figure has 4 Butterflies.

Figure 6. Flow Diagram for Calculating One FFT Butterfly. Each "X"
pattern shown in Figure 5 represents one such "Butterfly". Each end

point in Figure 5 represents a complex pair of numbers input or output
to or from a "Butterfly". The sine and cosine factors are sometimes

called "Twiddle Factors". The angles used for calculating the Twiddle
Factors for each Butterfly are shown in Figure 5.

Real X(A) = Real x(a) + (Real x(b) • cosθθθθθ - Imag x(b) • sinθθθθθ)

Real X(B) = Real x(a) - (Real x(b) • cosθ θ θ θ θ - Imag x(b) • sinθ θ θ θ θ)
Imag X(A) = Imag x(a) - (Imag x(b) • cosθ θ θ θ θ - Real x(b) • sinθθθθθ)

Imag X(B) = Imag x(a) - (Imag x(b) • cosθθθθθ - Real x(b) • sinθθθθθ)

X0 (I) X1 (I) X2 (I) X3 (I)
x(0) X(0)

x(4) X(1)

x(2) X(2)

x(6) X(3)

x(1) X(4)

x(5) X(5)

x(3) X(6)

x(7) X(7)

Stage 1 Stage 2 Stage 3

θ2

θ0

θ0

θ0

θ0

θ0

θ0

θ0
θ0

θ1

θ2

θ3

θn = -2πn
N

N = number of points

3559 drw 05

X(0)

X(1)

X(2)

X(3)

X(4)

X(5)

X(6)

X(7)

Real
x(b)

Real
x(a)

sinθ

sinθ

cosθ

cosθ

Imag
x(a)

Imag
x(b)

+
+

++

+

+

++

+ -

- -

Real
X(A)

Real
X(B)

Imag
X(A)

Imag
X(B)

3559 drw 06

 6.01

Application Note AN-43The IDT FourPart™ RAM Facilitates Multiprocessor Designs

6

Figure 7. A 16-bit TMS320C2X to IDT7052 Interface Example

A0-A9

READY

TMS320C2X

STRB
DS

A15

A14

A13

A12

R/W

D0-D15

G2B
G2A
G1

A0

A1

A2

Y0
Y1
Y2
Y3

Y4

IDT74FCT138

A0-A9

PORT N
IDT7052

ONE
OF FOUR
PORTS

A0-A9

PORT N
IDT7052

ONE
OF FOUR
PORTS

CS

OE

R/W
D0-D7 PORT

CS

OE

R/W
D0-D7 PORT

D0-D7 D8-D15

3559 drw 07

A TMS320C2x Hardware Interface
Example

TI’s TMS320 single chip DSP processors are particularly well suited
for embedded numerical processing. An example interface is shown in
Figure 7. The internal SRAM and ROM of the TMS320 can be used for
temporary data storage and program memory, making the FourPortTM

SRAM the only external SRAM required in a processor array. The
FourPortTM SRAM also cascades in depth and width as easily as a
standard single port SRAM. The interface shown in Figure 7 would
typically require 30ns SRAMs for a 20MHz TMS320C2x type processor.

The TMS320C20 and TMS320C25 also include a “sync” pin that
facilitates synchronizing the internal clock phases of multiple processors at
reset. In synchronous TMS320C2x arrays, this guarantees that memory
accesses are in phase with each other and there are no partial clock phase
memory access collisions. This form of processor synchronization is
accommodated entirely in hardware.

Summary
The FourPortTM SRAM combines features of fast static memory and a

complex multiple bus interconnect network. The FourPortTM SRAM all but
eliminates stalls when transferring data between processors or to memory.
This prevents bus conflicts from being a bottleneck in multiprocessor
systems.

The flexibility of the FourPortTM SRAM allows multiprocessor designs
to remain generalized while achieving high speeds on critical vector
processes. The fact that the SRAM itself is also the interconnect network
between processors eliminates the complexity of a conventional multipro-
cessor bus system. The straightforward static RAM interface of the
FourPortTM SRAM, allows almost any processor to be used in an array
for embedded systems. These factors conspire to make practical a variety
of new vector processing architectures centered around the world’s first
“large” truly four ported single-chip SRAM.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

