RENESAS

HIGH-SPEED PACKET PROCESSING UTILIZING FLOW-CONTROL MANAGEMENT DEVICES

APPLICATION BRIEF AN-404

By Mark Hoke

INTRODUCTION

High-speed packet processing requires the movement of packets within a system product with minimal latency and overhead. The system product connects to the data communication network (i.e. Internet or corporate backbone) through a line interface module. The line interface module is comprised of the Physical (PHY), Serial De-serialize (SERDES) and MAC (Media Access Control) layers of the OSI model. Some high-speed product designs require a local processor on the interface module to reduce the burden of down stream processing modules. The data path between the PHY/MAC circuitry and the processor requires a bus and/or rate matching, packet-buffering device. To minimize latency and maximize performance the data path should contain a minimum number of devices. This application brief describes how the IDT multi-queue flow-control devices (IDT72T515XX) can be used in a high-speed packet processing architecture (Figure 1).

HIGH-SPEED PACKET PROCESSING OVERVIEW

High-speed packet processing systems can connect to line interfaces ranging from OC-12 up to OC-192 (10 Gbps) and have internal system clock frequencies operating at 200 Mhz and higher. In addition to high-speed input/output line rates and high frequency system clocks, system requirements include low system latency, streamline data paths and minimal system software overhead.

As the line rate and system clock frequencies increase, the data cells become smaller (the data cell is the inverse proportion of the clock frequency). Refer to Figure 2, *Data Cell*. Small data cells require high-speed components, such as the IDT flow-control products, to handle throughput demands.

UNIQUE MULTI-QUEUE FUNCTION

One area affecting performance of a system product or box in a network is the ability to provide system resources to the right data at the right time. As more and more traffic is time sensitive, such as voice and video, the timely delivery of this type of data is mandatory. Bottle necks in a system can hinder or stop the time sensitive data stream. There is also the need for different levels of service and policing in a system.

One way to handle these types of data is to provide a prioritization algorithm that enables the highest priority data access to network resources first. Other issues of starvation and fairness are also applied. This prioritization function can be implemented by either a large, shared memory or multiple smaller queues, one or more for each priority. Using an FPGA or ASIC for this function is complex and filled with performance issues. IDT has now taken that function from the custom world and provided it in an off-the-shelf device.

The IDT multi-queue flow-control devices, perform specialized functions in the data path. Such functions were previously only available in custom, "homegrown" solutions, but are now available off the shelf. These functions off-load the FPGA or ASIC by reducing gate count, I/Os and allowing for smaller, less expensive, custom devices. By bringing data-path functions off of a programmable device, performance is often increased as well.

The multi-queue function of the flow-control devices provide the ability to take a single bus, with multiple virtual channels and rearrange their order on the wire based on a system algorithm. We will now discuss the function of the multiqueue devices to show how the reordering of data is achieved, allowing first access to the highest priority data.

Figure 1. Block Diagram - Multi-queue Flow-control Device

IDT and the IDT logo are trademarks of Integrated Device Technology, Inc.

JANUARY 2004

IDT72T515XX MULTI-QUEUE PRODUCT INFORMATION

PRODUCT HIGHLIGHTS

- Configurable from 1 to 32 queues
- Independent read and write access per queue
- User selectable I/O: 2.5V LVTTL, 1.5V HSTL, 1.8V eHSTL
- Default multi-queue device configurations
 - IDT72T51546 : 1,024 x 36 x 320
 - IDT72T51556 : 2,048 x 36 x 32Q
- 100% bus utilization
- 200 MHz maximum clock frequency
- 3.6ns access time
- · Multiple bus matching options
 - x36in to x36out
 - x18in to x36out
 - x9in to x36out
 - x36in to x18out
 - x36in to x9out

OPERATIONAL OVERVIEW

The IDT72T515XX multi-queue flow-control devices are single ICs containing up to 32 discrete queues. To minimize printed circuit board trace routing, the multi-queue devices use common data buses to communicate to/from the queues. The data path is structured as a common Din (36:0) input bus, (write port) and a common Qout (36:0) output bus, (read port). Information grams (encapsulated voice, video or data) are written into queue via the write port and read from the read port. Queue writes and reads can be performed at frequencies up to 200 Mhz. Data write and read operations are totally independent of each other, any queue may be selected on the write port and any queue can be accessed on the read port. Queues support simultaneous write and read operations.

For packetized information the multi-queue flow-control devices can be configured for packet mode operation. Packet mode provides an efficient method to mark the start and end of packets stored in the queues.

The multi-queue ICs supports a variety of industry standard input/output specifications such as 2.5V LVTTL, 1.5V HSTL or 1.8V eHSTL. Refer to Figure 1, *Block Diagram - Multi-queue Flow-control Device* for additional product information.

Figure 2. Data Cell

TYPICAL IMPLEMENTATION

As illustrated in Figure 3, *Typical High-Speed Line Interface Module Block Diagram*, a typical high speed interface module implementation includes the use of a custom ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array) device in the data path for bus matching, rate matching and packet buffering between the input/output module and the processing interface.

Analysis of Figure 3 reveals several issues to be considered with an implementation that uses either a custom ASIC or the FPGA in the main data path. One of the issues is the circuit complexity required to be designed inside the ASIC/FPGA including the design and verification/test time is very costly, largely due to the vast space required (i.e., gate count) within the device. Another issue flexibility. When the packet buffer is designed as an integral element of an ASIC/FPGA, the buffer is a fixed size, therefore limiting flexibility

and not adaptable to various incoming line rates. If it is an inadequate size, latency and performance are not optimized. The flow-control devices allow flexibility in the system as well as system simplicity (low cost, fast time-to-market).

FLOW-CONTROL MANAGEMENT IMPLEMENTATION

As shown in Figure 4, *High-Speed Packet Processing Using IDT Multiqueue Flow-control Devices* the IDT flow-control devices can provide efficient rate matching between various line rates, comprehensive bus matching and flexible packet buffering. The flow-control products support operating frequencies up to 200 Mhz and transfer rates up to 16 Gb/s. Utilizing flow-control management devices for the packet buffer from a product architect standpoint adds flexibility and extensibility. The packet buffering queues can be configured to optimize overall system throughput.

Figure 3. Typical High-Speed Line Interface Module Block Diagram

Figure 4. High-Speed Packet Processing Using IDT Multi-queue Flow-control Devices

FUNCTIONALITY **FCM IMPLEMENTATION** TYPICAL IMPLEMENTATION Flexible, up to 32 queues per device can be defined to the Queues Rigid, uses an embedded monolithic memory array application Available **Device Cascading** Not Available **Buffer Architecture** Enables a consolidated buffering architecture to reduce system Multiple buffers & memory controllers fragmented across several devices, which increase system latency latency **Buffer Size** Adjustable buffer size to minimize processor/system overhead Small fix sized buffers, requiring more processor overhead/ system time to manage the data path System Design time Decreased design time by reducing complexity of data path, Increased design time due to multiple memory controllers, memory controllers and FPGA, hence shorter design time complex data path and FPGA control functions.

TABLE 1 — BENEFITS OF THE IDT72T515XX FLOW-CONTROL DEVICES

BENEFITS

The benefits of using IDT flow-control devices are numerous. Benefits include: (1) packet-buffering flexibility; the queues used to buffer packets can be adjusted in both depth and width to accommodate the incoming line rate and packet size (2) design flexibility, the number of packet buffering queues are user definable (3) using flow-control devices reduce the overall design risk and complexity of the custom ASIC or FPGA, thereby reducing time to market (4) a smaller ASIC or FPGA may be used, which translates into a direct material cost savings.

OPERATIONAL INFORMATION

WRITE QUEUE SELECTION & WRITE OPERATION

The IDT72T515XX multi-queue ICs can be configured with up to 32 queues that data can be written into via a common write port using the data inputs, Din, Write Clock (WCLK) and Write Enable (WEN). A queue is selected using the write address bus (WRADD), the rising edge of WCLK and Write Address Enable (WADEN). The queue selection occurs on a single WCLK cycle, the selected queue will remain selected until another queue is selected.

The write port is designed to achieve 100% bus utilization. This means that data can be written into the device on every WCLK rising edge including the cycle that a new queue is being addressed.

All subsequent writes will be written to that queue until a new queue is selected. A minimum of 3 WCLK cycles must occur between queue selections on the write port. On the next WCLK rising edge the write port discrete full flag will update to show the full status of the newly selected queue. On the second rising edge of WCLK, data present on the data input bus, Din can be written into the newly selected queue provided that WEN is LOW and the new queue is not full. The cycle of the queue selection and the next cycle will continue to write data present on the data input bus, Din into the previous queue provided that WEN is active LOW.

If the newly selected queue is full at the point of its selection, then writes to that queue will be prevented, a full queue cannot be written into. In the 32 queue multi-queue devices the WRADD address bus is 8 bits wide. The least significant 5 bits are used to address one of the 32 available queues within a single multiqueue device. The most significant 3 bits are used when a device is connected in expansion mode, up to 8 devices can be connected in expansion. Refer Figure 5, *Write Operations & First Word Fall Through.*

READ QUEUE SELECTION & READ OPERATION

The multi-queue flow-control devices can be configured with up to 32 queues. Each queue is read from via a common read port using the data outputs, Qout, read clock (RCLK) and read enable ($\overline{\text{REN}}$). In a shared bus architecture, an output enable ($\overline{\text{OE}}$) control pin is also provided to place the output drivers in an High-Impedance state.

A queue is selected using the read address bus (RDADD), the rising edge of RCLK and read address enable (RADEN). Selecting a queue for reading requires only one cycle. All subsequent reads will be read from the selected queue until a new queue is selected. A minimum of 3 RCLK cycles must occur between queue selections on the read port. On the same RCLK rising edge that the new queue is selected, data can still be read from the previously selected queue, provided that REN is LOW, active and the previous queue is not empty on the following rising edge of RCLK, a word will be read from the previously selected queue regardless of REN due to the fall through operation (provided the queue is not empty).

When a queue is selected on the read port, the next word available in that queue (provided that the queue is not empty) will fall through to the output register. In a 32 queue configuration the RDADD address bus is used to address the 32 available queues. The most significant 3 bits are used for addressing devices in expansion mode, up to 8 devices can be cascaded. Refer to Figure 6, *Read Queue Select, Read Operation and* \overline{OE} *Timing.*

CONCLUSION

Multi-queue flow-control devices provide the most flexibility and cost effectiveness. The multi-queue flow-control devices are an all-in-one solution providing rate matching, bus matching and a flexible buffering queue architecture. By using these devices, functions that were previously only available in "home-grown", custom designs such as FPGAs or ASICs, are now available off the shelf. They come with complete models, fully tested and verified so designers can simplify their designs, shorten design cycles, reduce design and system costs and get to market faster. All of this with full-line rate performance.

6368 drw05

Figure 5. Write Operations & First Word Fall Through

Figure 6. Read Queue Select, Read Operation and OE Timing

AC ELECTRICAL CHARACTERISTICS

(Commercial: Vcc = 2.5V ± 0.15V, TA = 0°C to +70°C; Industrial: Vcc = 2.5V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)

		Comr	Commercial		Com'l & Ind'l ⁽¹⁾	
		IDT72T	IDT72T51546L5 IDT72T51556L5		IDT72T51546L6 IDT72T51556L6	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
fs	Clock Cycle Frequency (WCLK & RCLK)	_	200	_	166	MHz
tA	Data Access Time	0.6	3.6	0.6	3.7	ns
tclk	Clock Cycle Time	5	_	6	_	ns
tCLKH	Clock High Time	2.3	_	2.7	—	ns
T CLKL	Clock Low Time	2.3	_	2.7	—	ns
tDS	Data Setup Time	1.5	_	2.0	_	ns
tDH	Data Hold Time	0.5	_	0.5	_	ns
tens	Enable Setup Time	1.5	_	2.0	_	ns
t ENH	Enable Hold Time	0.5	_	0.5	_	ns
tRS	Reset Pulse Width	30	_	30	_	ns
tRSS	Reset Setup Time	15	_	15	_	ns
tRSR	Reset Recovery Time	10	_	10	_	ns
tPRSS	Partial Reset Setup	1.5	_	2.0	_	ns
t PRSH	Partial Reset Hold	0.5	—	0.5	_	ns
tolz(OE-Qn) ⁽²⁾	Output Enable to Output in Low-Impedance	0.6	3.6	0.6	3.7	ns
tohz ⁽²⁾	Output Enable to Output in High-Impedance	0.6	3.6	0.6	3.7	ns
toe	Output Enable to Data Output Valid	0.6	3.6	0.6	3.7	ns
fC	Clock Cycle Frequency (SCLK)	-	10	—	10	MHz
tsclk	Serial Clock Cycle	100	—	100	—	ns
tscкн	Serial Clock High	45	-	45	—	ns
tsckl	Serial Clock Low	45	—	45	—	ns
tsds	Serial Data In Setup	20	-	20	—	ns
tsdh	Serial Data In Hold	1.2	—	1.2	—	ns
tsens	Serial Enable Setup	20	—	20	—	ns
tsenh	Serial Enable Hold	1.2	—	1.2	—	ns
tsdo	SCLK to Serial Data Out	—	20	—	20	ns
tseno	SCLK to Serial Enable Out	-	20	—	20	ns
tSDOP	Serial Data Out Propagation Delay	1.5	3.7	1.5	3.7	ns
tsenop	Serial Enable Propagation Delay	1.5	3.7	1.5	3.7	ns
tPCWQ	Programming Complete to Write Queue Selection	20	—	20	—	ns
tPCRQ	Programming Complete to Read Queue Selection	20	—	20		ns
tas	Address Setup	1.5	-	2.5	_	ns
tан	Address Hold	1.0	-	1.5	_	ns
twff	Write Clock to Full Flag		3.6	_	3.7	ns
trov	Read Clock to Output Valid	—	3.6	—	3.7	ns
ts⊤s	PAE/PAF Strobe Setup	1.5	—	2.0	—	ns
tsтн	PAE/PAF Strobe Hold	0.5	-	0.5	_	ns
tos	Queue Setup	1.5	_	2.0	_	ns
tOH	Queue Hold	1.0	-	0.5	_	ns
twaf	WCLK to PAF flag	0.6	3.6	0.6	3.7	ns
TRAE	RCLK to PAE flag	0.6	3.6	0.6	3.7	ns
tPAF	Write Clock to Synchronous Almost-Full Flag Bus	0.6	3.6	0.6	3.7	ns
t PAE	Read Clock to Synchronous Almost-Empty Flag Bus	0.6	3.6	0.6	3.7	ns

NOTES:

1. Industrial temperature range product for the 6ns is available as a standard device. All other speed grades available by special order.

2. Values guaranteed by design, not currently tested.

AC ELECTRICAL CHARACTERISTICS (CONTINUED)

(Commercial: Vcc = 2.5V ± 0.15V, TA = 0°C to +70°C;Industrial: Vcc = 2.5V ± 0.15V, TA = -40°C to +85°C; JEDEC JESD8-A compliant)

		Commercial IDT72T51546L5 IDT72T51556L5		Com'l & Ind'l ⁽¹⁾ IDT72T51546L6 IDT72T51556L6		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
terclk	RCLK to Echo RCLK Output	_	4.0	—	4.2	ns
t CLKEN	RCLK to Echo REN Output	—	3.6	—	3.7	ns
tPAELZ ⁽²⁾	RCLK to PAE Flag Bus to Low-Impedance	0.6	3.6	0.6	3.7	ns
tpaehz ⁽²⁾	RCLK to PAE Flag Bus to High-Impedance	0.6	3.6	0.6	3.7	ns
tPAFLZ ⁽²⁾	WCLK to PAF Flag Bus to Low-Impedance	0.6	3.6	0.6	3.7	ns
tpafhz ⁽²⁾	WCLK to PAF Flag Bus to High-Impedance	0.6	3.6	0.6	3.7	ns
tffhz ⁽²⁾	WCLK to Full Flag to High-Impedance	0.6	3.6	0.6	3.7	ns
tfflz ⁽²⁾	WCLK to Full Flag to Low-Impedance	0.6	3.6	0.6	3.7	ns
tovlz ⁽²⁾	RCLK to Output Valid Flag to Low-Impedance	0.6	3.6	0.6	3.7	ns
tovhz ⁽²⁾	RCLK to Output Valid Flag to High-Impedance	0.6	3.6	0.6	3.7	ns
t FSYNC	WCLK to PAF Bus Sync to Output	0.6	3.6	0.6	3.7	ns
tfxo	WCLK to PAF Bus Expansion to Output	0.6	3.6	0.6	3.7	ns
t ESYNC	RCLK to PAE Bus Sync to Output	0.6	3.6	0.6	3.7	ns
texo	RCLK to PAE Bus Expansion to Output	0.6	3.6	0.6	3.7	ns
t PR	RCLK to Packet Ready Flag	0.6	3.6	0.6	3.7	ns
tskew1	SKEW time between RCLK and WCLK for FF and OV	4	_	4.5	_	ns
tSKEW2	SKEW time between RCLK and WCLK for PAF and PAE	5	_	6	_	ns
tskew3	SKEW time between RCLK and WCLK for PAF[0:7] and PAE[0:7]	5	—	6	—	ns
tskew4	SKEW time between RCLK and WCLK for \overline{PR} and \overline{OV}	5	—	6	—	ns
tskew5	SKEW time between RCLK and WCLK for $\overline{\text{OV}}$ when in Packet Ready Mode	8	_	10	—	ns
txis	Expansion Input Setup	1.0	_	1.0	_	ns
txih	Expansion Input Hold	0.5	_	0.5	_	ns

NOTES:

Industrial temperature range product for the 6ns is available as a standard device. All other speed grades available by special order.
Values guaranteed by design, not currently tested.