
 2002 Integrated Device Technology, Inc.

Notes

Application Note AN-396Connecting the PCI Interface on
the RC3233x Series to a CardBus
Interface

By Fred Santilo
Revision History
November 18, 2002: Initial publication.

Background
The RC3233x series of integrated processors combine a 32-bit MIPS instruction set architecture (ISA)

CPU core with a number of on-chip peripherals to enable direct connection to boot memory, main memory,
I/O devices, and PCI devices. The RC3233x devices also include system logic for DMA, reset, interrupts,
timers, and UARTs. The integrated components reduce board real estate, design time, and system cost.

This application note describes how to connect and configure a CardBus Bus Master device and a stan-
dard PCI Bus Master device to the PCI interface of the RC3233x. Note that the CardBus device will not be
able to utilize its Hot Insertion/Removal or Clock Run capabilities, since they are not defined in the PCI 2.1
specification.

PCI Interface

RC3233x PCI Pin Description
The PCI (Peripheral Component Interconnect) interface provides a high performance peripheral bus

solution. The RC3233x PCI interface is PCI Revision 2.1 compliant and can operate at clock speeds up to
66MHz. Table 1 lists the PCI signals for the RC3233x. The designation RC3233x in the Device column
means the signal applies to all three devices: RC32332, RC32333, and RC32334. Recommended or
required external pull-up and pull-down resistors are 10 kΩ.

 For a detailed description of the RC3233x PCI signals and their functionality, refer to the
IDT79RC3233x User Reference Manual located on the company’s web site at www.idt.com.

Name Device Type
Reset
State
Status

Description

pci_ad[31:0] RC3233x I/O Z PCI Multiplexed Address/Data Bus
Address driven by Bus Master during initial frame_n
assertion, and then the Data is driven by the Bus Master
during writes; or the Data is driven by the Bus Slave dur-
ing reads.

pci_cbe_n[3:0] RC3233x I/O Z PCI Multiplexed Command/Byte Enable Bus
Command (not negated) Bus driven by the Bus Master
during the initial frame_n assertion. Byte Enable
Negated Bus driven by the Bus Master during the data
phase(s).

pci_par RC3233x I/O Z PCI Parity
Even parity of the pci_AD[31:0] bus. Driven by Bus Mas-
ter during Address and Write Data phases. Driven by the
Bus Slave during the Read Data phase.

Table 1 RC32334 PCI Pin Description (Page 1 of 3)
1 of 11 November 18, 2002
DSC 6208

http://www.idttools.com/pn_search/getDoc.taf?PartID=79RC32334&DocTypes=MA

Application Note AN-396

Notes
pci_frame_n RC3233x I/O Z PCI Frame Negated
Driven by the Bus Master. Assertion indicates the begin-
ning of a bus transaction. De-assertion indicates the last
datum.

pci_trdy_n RC3233x I/O Z PCI Target Ready Negated
Driven by the Bus Slave to indicate the current datum
can complete.

pci_irdy_n RC3233x I/O Z PCI Initiator Ready Negated
Driven by the Bus Master to indicate that the current
datum can complete.

pci_stop_n RC3233x I/O Z PCI Stop Negated
Driven by the Bus Slave to terminate the current bus
transaction.

pci_idsel RC3233x Input PCI Initialization Device Select
Uses pci_req_n[2] pin. See Chapter 12, PCI Interface
Controller, in the RC3233x User Reference Manual.

pci_perr_n RC3233x I/O Z PCI Parity Error Negated
Driven by the receiving Bus Agent 2 clocks after the data
is received, if a parity error occurs.

pci_serr_n RC3233x I/O
Open-

collector

Z System Error
External pull-up resistor is required.
Driven by any agent to indicate an address parity error,
data parity during a Special Cycle command, or any
other system error.

pci_clk RC3233x Input PCI Clock
Clock for PCI Bus transactions. Uses the rising edge for
all timing references.

pci_rst_n RC3233x Input L PCI Reset Negated
Host mode: Resets all PCI related logic.
Satellite mode: with boot from PCI mode: Resets all PCI
related logic and also warm resets the 3233x.

pci_devsel_n RC3233x I/O Z PCI Device Select Negated
Driven by the target to indicate that the target has
decoded the present address as a target address.

pci_req[2]# RC3233x Input Z PCI Bus Request #2 Negated
Requires external pull-up.
Host mode: pci_req_n[2] is an input indicating a request
from an external device.
Satellite mode: used as pci_idsel pin which selects this
device during a configuration read or write.
Alternate function: pci_idsel (satellite).

pci_req[1]# RC32333 and
RC32334

Input Z PCI Bus Request #1 Negated
Requires external pull-up.
Host mode: pci_req_n[1] is an input indicating a request
from an external device.
Alternate function: Unused (satellite).

Name Device Type
Reset
State
Status

Description

Table 1 RC32334 PCI Pin Description (Page 2 of 3)
2 of 11 November 18, 2002

Application Note AN-396

Notes
pci_req[0]# RC3233x I/O Z PCI Bus Request #0 Negated
Requires external pull-up for burst mode.
Host mode: pci_req_n[0] is an input indicating a request
from an external device.
Satellite mode: pci_req_n[0] is an output indicating a
request from this device.

pci_gnt_n[2] RC3233x Output Z1 PCI Bus Grant #2 Negated
Recommend external pull-up.
Host mode: pci_gnt_n[2] is an output indicating a grant
to an external device.
Satellite mode: pci_gnt_n[2] is used as the pci_inta_n
output pin.
Alternate function: pci_inta_n (satellite).

pci_gnt_n[1] /
pci_eeprom_cs

RC32333 and
RC32334

I/O X for 1 pci
clock then

H2

PCI Bus Grant #1 Negated
Recommend external pull-up.
Host mode: pci_gnt_n[2:1] are outputs indicating grants
to external devices.
Satellite mode: Used as pci_eeprom_cs output pin for
Serial Chip Select for loading PCI Configuration Regis-
ters in the RC32334 Reset Initialization Vector PCI boot
mode. Defaults to the output direction at reset time.
1st Alternate function: pci_eeprom_cs (satellite).
2nd Alternate function: PIO[11].

pci_gnt_n[1]
(can only be used as
alternate function
pci_eeprom_cs)

RC32332 I/O X for 1 pci
clock then

H3

PCI Bus Grant #1 Negated
Recommend external pull-up.
Host mode: not used as pci_gnt_n[1]. Must be used as
alternate function PIO[7].
Satellite mode: Not used as pci_gnt_n[1]. Used as
pci_eprom_cs output pin for Serial Chip Select for load-
ing PCI Configuration Registers in the RC32332 Reset
Initialization Vector PCI boot mode. Defaults to the out-
put direction at reset time.
1st Alternate function: pci_eeprom_cs (satellite).
2nd Alternate function: PIO[7].

pci_gn_nt[0] RC3233x I/O Z PCI Bus Grant #0 Negated
Host mode: pci_gnt_n[0] is an output indicating a grant
to an external device. Recommend external pull-up.
Satellite mode: pci_gnt_n[0] is an input indicating a grant
to this device. Require external pull-up.

pci_inta_n RC3233x Output
Open-

collector

Z PCI Interrupt #A Negated
Uses pci_gnt_n[2]. See Chapter 12, PCI Interface Con-
troller, in the RC3233x User Reference Manual.

pci_lock_n RC3233x Input PCI Lock Negated
Driven by the Bus Master to indicate that an exclusive
operation is occurring.

1. Z in host mode; L in satellite non-boot mode; Z in satellite boot mode.
2. H in host mode; L in satellite non-boot and boot modes. X = unknown.
3. H in host mode; L in satellite non-boot and boot modes. X = unknown.

Name Device Type
Reset
State
Status

Description

Table 1 RC32334 PCI Pin Description (Page 3 of 3)
3 of 11 November 18, 2002

Application Note AN-396

Notes
 RC3233x PCI Configuration Space Header Registers
The RC3233x utilizes the Type 00h Configuration Space Header that is defined in the PCI Revision 2.1

specification. The Configuration Space Header contains 256-bytes (16 32-bit words) which are divided into
two layout regions.

The first region contains 16-bytes and is mandatory. The 16-bytes are laid out in a predefined manner
for all Type 00h PCI devices.

The second region contains the remaining 240-bytes of the Configuration Space Header, with its layout
being dependent on the base function of the device. A PCI device must implement the appropriate registers
for the functions it supports in the defined location and with the defined functionality. Figure 1 shows the
format of a 256-byte PCI Type 00h PCI Configuration Space Header.

Figure 1 Type 00h PCI Configuration Space Header

PCI Configuration Cycle
A PCI device’s PCI Configuration Space Header is configured via Configuration Read and Write cycles,

which are software driven. Each device sitting on the PCI interface is connected to a unique Initialization
Device Select (idsel) signal that acts as a Chip Select signal. A PCI device is the Target of a read or write
command when its idsel is asserted and its Address Data [1:0] bus contains a 00b value during the address
phase of the transaction. The Target device then decodes ad[7:0] and Command/Byte Enable [3:0]
(cbe_n[3:0]) to determine which register within its Configuration Header Space is to be accessed. Configu-
ration cycles which do not receive a response from any device on the PCI interface are treated as Master
Aborts.

A simplified method of evaluating a PCI Configuration cycle is to split it into two parts, an address phase
and a data phase. The address phase is used to select a particular device and the data phase is used for
the actual transfer of data bytes between the Master and the Target.

31 16 15 0

Device ID Vendor ID 00h

Status Command 04h

Class Code Revision ID 08h

BIST Header Type Latency Timer Cache Line Size 0Ch

Base Address 0 10h

Base Address 1 14h

Base Address 2 18h

Base Address 3 1Ch

Base Address 4 20h

Base Address 5 24h

CardBus CIS Pointer 28h

Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM Base Address 30h

Reserved 34h

Reserved 38h

Max Latency Min Grant Interrupt Pin Interrupt Line 3Ch
4 of 11 November 18, 2002

Application Note AN-396

Notes
 The address phase consists of the Configuration Host asserting frame_n low, placing an address on the
ad[31:0] bus, asserting the appropriate idsel high, and either issuing a Configuration Read or Write
command on the cbe_n[3:0] bus. The Target device will detect its idsel, which is unique for each device on
the PCI interface, being asserted. The address phase of the transaction is now complete.

The data phase continues were the address phase ends. The Configuration Host will assert Initiator
Ready (irdy_n) low and assert the desired byte enables on the cbe_n[3:0] bus to indicate it is ready to start
the data transfer. The Target will assert Target Ready (trdy_n) low and assert its devsel_n signal low indi-
cating it is ready for the data transfer. The ad[31:0] is driven by the Target device during a Configuration
Read and is driven by the Master (Configuration Host) for a Configuration Write. All signals are de-asserted
to their non active state once the data transfer is complete.

Note that this is a simplified description and does not include information such as wait states and bus
turnaround cycles. Refer to the PCI Revision 2.1 specification for detailed information on PCI Configuration
Cycle timing diagrams and protocol.

Typical PCI Read or Write Transactions
Similar to a PCI Configuration cycle, a PCI Read or Write transaction is split into two parts, the address

phase and the data phase. The address phase is used to communicate which device is the Target for the
transaction, and the data phase takes place during the actual transfer of data bytes.

The address phase for a Read or Write command is exactly the same. A Master (Initiator) device starts
the address phase of the transaction by asserting its Request (req_n) signal to request ownership of the
PCI bus. Each PCI device residing on the PCI interface is connected to a unique req_n signal. The PCI
Arbiter will detect the assertion of the req_n signal and will assert the appropriate Grant (gnt_n) signal,
which is also unique for each device residing on the interface. The gnt_n signal is an acknowledgement to
the Master that it can safely take possession of the PCI bus. Once the Master takes ownership of the bus, it
will assert its frame_n signal along with the appropriate address on the ad[31:0] bus. The Master will also
place the desired Command Type on the cbe_n[3:0] bus at this time to indicate the type of command that
will be executed. Each Target device samples the ad[31:0] bus when frame_n is asserted to determine if it
is the Target the Master is trying to communicate with. The appropriate Target device will then assert the
Device Select (devsel_n) signal to acknowledge that it is the owner of the address. The address phase is
now complete.

The data phase continues where the address phase leaves off. The Master will assert the irdy_n signal
to indicate to the Target that it is ready to start the data transfer. The Target responds by asserting the
trdy_n signal indicating it is also ready to receive the data. Data is transferred when frame_n, irdy_n, trdy_n,
and devsel_n are all asserted at the same time. The difference between a Read or Write data phase is
whether the Master or Target drives the ad[31:0] bus during the data transfer. During a Read transaction,
the Target drives the ad[31:0] bus; during a Write transaction, the Master drives the ad[31:0] bus.

Once the data transfer is complete, the PCI bus is released to the arbiter or parked on a predefined PCI
Bus Master device.

Note that this is a simplified explanation of a PCI Read or Write transaction and does not included infor-
mation such as wait states and bus turnaround cycles. Refer to the PCI Revision 2.1 specification for more
detailed information on commands, protocol, and timing specifications.

CardBus Interface

CardBus Pin Description
CardBus integrates the high performance of a 32-bit PCI device in a low-power, small form factor with

hot insertion capabilities that is backward compatible with a PCMCIA 16-bit PC card. In a typical applica-
tion, the CardBus device has a point to point connection with the CardBus bridge it is attached to.

The CardBus interface shares the same bus commands and bus command protocols as a PCI Revision
2.1 device. However, it does differ in the way it connects to the system, how it is configured by the system
host, and in its interrupt generation. Signals associated with a CardBus device are listed in Table 2. Recom-
mended or required external pull-up and pull-down resistors are 10 kΩ.
5 of 11 November 18, 2002

Application Note AN-396

Notes
 This application note assumes the CardBus device will be used as a Master and a Target device, thus
the Pin Description includes the Bus Request and Bus Grant signals.

Name Type Description

CAD[31:0] I/O Multiplexed Address/Data Bus
Address driven by Bus Master during initial
CFRAME# assertion, and then the Data is driven
by the Bus Master during writes; or the Data is
driven by the Bus Slave during reads.

CC/BE[3:0]# I/O Multiplexed Command/Byte Enable Bus
Negated
Command (not negated) Bus driven by the Bus
Master during the initial FRAME# assertion. Byte
Enable Negated Bus driven by the Bus Master
during the data phase(s).

CPAR I/O Parity
Even parity of the CAD[31:0] bus. Driven by Bus
Master during Address and Write Data phases.
Driven by the Bus Slave during the Read Data
phase.

CFRAME# I/O Frame Negated
Driven by the Bus Master. Assertion indicates the
beginning of a bus transaction. De-assertion indi-
cates the last datum.

CTRDY# I/O Target Ready Negated
Driven by the Bus Slave to indicate the current
datum can complete.

CIRDY# I/O Initiator Ready Negated
Driven by the Bus Master to indicate that the cur-
rent datum can complete.

CSTOP# I/O Stop Negated
Driven by the Bus Slave to terminate the current
bus transaction.

CPERR# I/O Parity Error Negated
Driven by the receiving Bus Agent 2 clocks after
the data is received, if a parity error occurs.

CSERR# I/O System Error Negated
Driven by any agent to indicate an address parity
error, data parity during a Special Cycle com-
mand, or any other system error.

CCLK Input Clock
Clock for Bus transactions. Uses the rising edge
for all timing references.

CRST# Input Reset Negated
Resets all related logic.

CDEVSEL# I/O Device Select Negated
Driven by the target to indicate that the target has
decoded the present address as a target
address.

Table 2 CardBus Pin Description (Page 1 of 2)
6 of 11 November 18, 2002

Application Note AN-396

Notes
CardBus Card Configuration Header Registers
The CardBus Configuration Header Register space is similar to the Type 00H Configuration Space

Header defined in the PCI Revision 2.1 specification. To be compatible with the RC3233x device, the
CardBus device must have the CardBus Type 00H layout. The Type 00H CardBus Configuration Header
space contains 256-bytes (16 32-bit words), which are divided into two layout regions.

The first region contains 16-bytes and is mandatory. The 16-bytes are laid out in a predefined manner
similar to the Type 00H PCI devices. The difference between the two header spaces is that the Vendor
Identification and Class Code fields of the PCI header space are not required fields for the CardBus device;
they are defined as Allocated. Allocated registers maintain compatibility with environments other than
CardBus and may be implemented as readable fields.

The second region contains the remaining 240-bytes of the Type 00H CardBus Configuration Header
space. This region is device-specific and must always exist. It is similar to the PCI register space in that a
CardBus device must implement the appropriate registers for the functions it supports in the defined loca-
tion with the defined functionality. Unused registers must contain a zero value. Differences between the
second region of the PCI header space and the second region of the CardBus header space are that the
CardBus header space does not contain the Maximum Latency, Minimum Grant, and Interrupt Line fields of
the PCI header space located at offset 0x3C. Instead, these fields are defined as Allocated fields. Also, the
Capability Pointer field of the CardBus header space at offset 0x34 is a reserved field in the PCI layout.

Figure 2 shows the format of a 256-byte PCI Type 00h PCI Configuration Space Header.

CREQ# Output Bus Request Negated
An output indicating a request from this device.

CGNT# Input Bus Grant Negated
An input indicating a grant to this device.

CINT# Output Interrupt Negated
Interrupt request signal.

CBLOCK# Input Lock Negated
Driven by the Bus Master to indicate that an
exclusive operation is occurring.

CCD[2:1]# Output Card Detection Negated
Indicate insertion and removal of the CardBus
device. Require external pull-up resistor.

CVS[2:1] I/O Voltage Sense
Indicate VCC requirements.

CAUDIO# Output Card Audio Negated
Digital audio output.

CSTSCHG# Output Card Status Change Negated
Indicates system change or used as a wake up.

Name Type Description

Table 2 CardBus Pin Description (Page 2 of 2)
7 of 11 November 18, 2002

Application Note AN-396

Notes
Figure 2 CardBus Configuration Header Space

CardBus Configuration Cycle
CardBus Configuration Cycles are software driven and are very similar to the PCI configuration cycles

with the following exception: a CardBus device does not process an idsel signal since it is typically
connected to the PCI interface via a PCI to CardBus Bridge. Because it is a point to point connection to a
CardBus Bridge, a CardBus device responds to all configuration cycles passed by the bridge. Thus, the
CardBus Bridge is configured to filter and only pass configuration cycles intended for the CardBus device
that is connected to it.

The CardBus Configuration Header Space is configured via Configuration Read and Write cycles, which
mimic that of the PCI configuration cycles. During the address phase of the CardBus configuration cycle,
CAD[10:8] selects the device function while CAD[7:2] is used to specify the appropriate double word of the
256-byte region.

Refer to the PC Card Standard specification for detailed information pertaining to CardBus configuration
cycle commands, timing and protocol.

Typical CardBus Read or Write Transactions
CardBus devices support the same commands, timing, and protocols as defined in the PCI Revision 2.1

specification. Refer to the Typical PCI Read or Write Transactions section of this document or the PC Card
specification for more detailed information.

Connecting the PCI Interface of the RC3233x to a CardBus
Device

As mentioned previously, the significant differences between PCI and CardBus protocols are the
manner in which a device is detected during the configuration process, the number of interrupt lines, Hot
Insertion/Removal capabilities, and the Clock Run option.

31 16 15 0

Allocated Allocated 00h

Status Command 04h

Allocated Allocated 08h

BIST Header Type Latency Timer Cache Line Size 0Ch

Base Address 0 10h

Base Address 1 14h

Base Address 2 18h

Base Address 3 1Ch

Base Address 4 20h

Base Address 5 24h

CardBus CIS Pointer 28h

Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM Base Address 30h

Reserved 34h

Reserved 38h

Allocated Allocated Interrupt Pin Allocated 3Ch
8 of 11 November 18, 2002

Application Note AN-396

Notes
 In a PCI application, the device is recognized by its idsel signal, and in the CardBus application the
CardBus device sits behind a CardBus Bridge that filters its configuration cycles. External logic, in the form
of a buffer with an output enable, must be incorporated to control the Configuration Cycles seen by the
CardBus device in order to properly configure the CardBus device. The buffer can be in the form of a quick-
switch or a single gate buffer device that is enabled via one of the RC3233x GPIO pins, which acts as an
idsel and is used to control the assertion of frame_n to the CardBus device during the configuration and non
configuration cycles. This implies that the configuration software must know which of the PCI slots the
CardBus device resides in and which configuration cycles are to be passed to the CardBus device.

The assertion and de-assertion of the GPIO signal is as follows:
1. The GPIO signal is asserted low, to enable the buffer, for all configuration cycles meant for the

CardBus device.
2. The GPIO signal is asserted high, to disable the buffer, for all configuration cycles not meant for the

CardBus device.
3. The GPIO signal is asserted low, to enable the buffer, for all non configuration cycles.
CardBus facilitates a single interrupt line, CINT#, unlike PCI which incorporates four interrupt signals,

INT[D:A]#. Applications using more than one PCI interrupt signal must OR the PCI interrupt signals to the
CINT# signal.

The Hot Insertion/Removal capabilities of the CardBus device are not supported by the RC3233x.
Therefore, this function cannot be used and the configuration software must know the card type of the
CardBus device prior to configuring it. The CCD1#, CCD2#, CVS1, and CVS2 signals of the CardBus
device are left open, unconnected, since they are all output signals from the CardBus device.

The Clock Run option of the CardBus specification is not supported by the RC3233x. Therefore, the
CCLKRUN# signal is tied to ground to disable this option.

Figure 3 shows the RC32334 device connected to a PCI Bus Master device and a CardBus Bus Master
device. The CardBus device is shown as a Bus Master device since it is not likely that a CardBus device
would be a Target only device. However, a Target only CardBus device would be connected to the RC3233x
in the same manner, excluding the Bus Request and Bus Grant signals that the Target CardBus device
would not have.
9 of 11 November 18, 2002

Application Note AN-396

Notes
Figure 3 Connection Between the RC32334, a PCI Bus Master Device, and a CardBus Bus Master Device

RC32334

pci_clk
pci_rst_n

pci_ad[31:0]
pci_cbe_n[3:0]

pci_par
pci_frame_n

pci_trdy_n
pci_irdy_n

pci_stop_n
pci_lock_n

pci_devsel_n
pci_perr_n
pci_serr_n
pci_inta_n

pci_req_n[1]
pci_gnt_n[1]
pci_req_n[2]
pci_gnt_n[2]

CardBus Bus
Master Device

Buffer

CCLK
CRST#
CAD[31:0]
CCBE[3:0]#
CPAR

CFRAME#

CTRDY#
CIRDY#
CSTOP#
CBLOCK#
CDEVSEL#
CPERR#
CSERR#
CINT#
CREQ#
CGNT#

CSTSCHG
CAUDIO
CCD[2:1]#
CVS[2:1]
CCLKRUN#

PCI Bus

pci_clk
pci_rst_n
pci_ad[31:0]
pci_cbe_n[3:0]
pci_par
pci_frame_n
pci_trdy_n
pci_irdy_n
pci_stop_n
pci_lock_n
pci_devsel_n
pci_perr_n
pci_serr_n
pci_inta_n
pci_req_n[1]
pci_gnt_n[1]

Master Device

pci_idselpci_ad[12]

gpio

frame_n

gpio

CFRAME#
10 of 11 November 18, 2002

Application Note AN-396

Notes
 Conclusion
The PCI and CardBus protocols are very similar, but they do differ in the manner in which they are

detected and configured by the host device. Using a buffer with an output enable to filter the CardBus
configuration cycles allows a designer to connect a CardBus device to the RC3233x processors without
implementing a PCI to CardBus Bridge device in the system, thus reducing design time, board cost, and
board real estate.

References
IDT79RC3233x Integrated Communications Processor User Reference Manual.
PC Card Standard specification.
PCI Revision 2.1 specification.
11 of 11 November 18, 2002

http://www.idttools.com/pn_search/getDoc.taf?PartID=79RC32334&DocTypes=MA

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01 Jan 2024)

© 2024 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	Revision History
	Background
	PCI Interface
	RC3233x PCI Pin Description
	Table 1 RC32334 PCI Pin Description (Page 1 of 3)

	RC3233x PCI Configuration Space Header Registers
	Figure 1 Type 00h PCI Configuration Space Header

	PCI Configuration Cycle
	Typical PCI Read or Write Transactions

	CardBus Interface
	CardBus Pin Description
	Table 2 CardBus Pin Description (Page 1 of 2)

	CardBus Card Configuration Header Registers
	Figure 2 CardBus Configuration Header Space

	CardBus Configuration Cycle
	Typical CardBus Read or Write Transactions

	Connecting the PCI Interface of the RC3233x to a CardBus Device
	1. The GPIO signal is asserted low, to enable the buffer, for all configuration cycles meant for ...
	2. The GPIO signal is asserted high, to disable the buffer, for all configuration cycles not mean...
	3. The GPIO signal is asserted low, to enable the buffer, for all non configuration cycles.
	Figure 3 Connection Between the RC32334, a PCI Bus Master Device, and a CardBus Bus Master Device

	Conclusion
	References
	Application Note AN-396
	Connecting the PCI Interface on the RC3233x Series to a CardBus Interface
	By Fred Santilo

