
 2002 Integrated Device Technology, Inc.

Notes

Application Note AN-367PCI Performance on the
RC32334/RC32332

By Rakesh Bhatia and Pallathu Sadik
Revision History
April 19, 2002: Initial publication.
September 4, 2002: Updated for revision YC silicon.

Background
The RC32334/RC32332 devices are integrated processors that combine a 32-bit MIPS instruction set

architecture (ISA) CPU core with a number of on-chip peripherals to enable direct connection to boot
memory, main memory, IO, and PCI. The RC32334/RC32332 components also include system logic for
DMA, reset, interrupts, timers, and UARTs. The RC32334/RC32332 components integrate many of the
peripherals commonly associated with an embedded system to reduce board real estate, design time, and
system cost.

Optimal vs. Actual PCI System Throughput
The RC32334/RC32332 devices are based around a standard bus architecture called the IDT internal

peripheral bus architecture-generally referred to as the IP Bus. The SDRAM subsystem resides on this bus.
Hence, any transaction that is targeted towards or from the external SDRAM memory must be transacted
via this bus. Therefore, if both the PCI and the CPU core wish to access the SDRAM, they cannot simulta-
neously do so. These modules must take turns accessing the SDRAM. As a result, as the amount of CPU-
initiated activity to external memory increases (for example, number of misses to primary cache and/or the
need to manipulate data in memory), the PCI module is increasingly blocked from acquiring the IPBus and
the PCI throughput begins to drop.

Therefore, the real-world PCI throughput on a RC32334-based system is highly operating system
dependent. Resource intensive operating systems will significantly impact the PCI performance. Ideal test
cases reveal that the current RC32334/RC32332 YC revision device offers a much higher bandwidth
compared to the previous RC32334/RC32332 Z revision device. The nature of these tests is discussed
more thoroughly in the relevant sections below.

Satellite vs. Host Mode
The PCI controller in the RC32334/RC32332 can be operated in either host or satellite mode. The terms

satellite and host only refer to which device in the system is responsible for initially configuring the PCI
subsystem. It has no bearing on subsequent transactions. All devices are treated equally once configura-
tion is completed. Therefore, it makes no difference whether the RC32334/RC32332 are configured as host
or satellite, the performance will be the same.

Supported PCI Transaction Types
The RC32334/RC32332 PCI controller supports several PCI transactions which can be broadly classi-

fied as Master and Target PCI transactions. When the CPU core or its internal DMA engine initiates a PCI
read/write transaction to a PCI device on the bus, the transaction is called a “Master PCI transaction.” When
a PCI device on the bus initiates a read/write transaction to access the RC32334/RC32332 internal regis-
ters or local memory, the transaction is called a “Target PCI transaction.” The integrated PCI controller on
the RC32334/RC32332 is aided by a user transparent DMA engine to efficiently perform the Target PCI
transactions. This DMA engine can’t be configured by the user. However, a set of configuration registers
residing within the PCI controller can be programmed to select burst size and prefetching behavior during
1 of 15 September 4, 2002
DSC 6147

Application Note AN-367

Notes
 Target PCI transactions. Configuration of these PCI controller registers is discussed in detail in IDT Appli-
cation Note AN-366: Optimizing the PCI Interface on the RC32334/RC32332, which can be found on IDT’s
web site at (www.idt.com).

Master Read
In most PCI devices, the PCI master read transaction is the most inefficient. Because of this, nearly all

real-world systems are developed in such a way as to make very sparing use of this mode. As a result,
there is little incentive to highly optimize this interface. The RC32334/RC32332 is no exception. Once a
read is initiated, the DMA or CPU waits on the local bus until the read is completed and the data becomes
available. In the case of slow PCI devices, this can result in very long delays. Because the CPU core and
the PCI module share the IP Bus, this effectively locks the CPU core off the IP Bus, and it can drastically
impact overall system performance.

The master read interface will not queue transactions. Each transaction must complete prior to a new
one being issued. Since the master read holds the IPBus during the entire transaction, there is no possi-
bility of initiating another transaction before the first one completes. The master read logic is serviced by an
eight-deep, 32-bit wide FIFO. However, since master reads are limited to a maximum of four words, the
entire FIFO is never utilized.

Master Write
The master write transaction is limited to a maximum of four words. A four-word burst is accomplished

by configuring the DMA engine to use quad-word burst mode, and initiating a DMA from local memory to an
address which resides in PCI space. The RC32334/RC32332 PCI controller will sample the state of the PCI
output FIFO to ensure there is adequate space to absorb the next quad-word burst prior to granting the bus
to the DMA. This prevents the RC32334/RC32332 from waiting on the bus when DMA-ing data to slow PCI
devices. Master writes can be queued in the output FIFO. The output FIFO is eight words deep. Therefore,
at most, two quad-word bursts can be queued.

Target Read
The PCI target read logic has the most user-configurable settings. These must be configured properly

for optimum performance. The RC32334/RC32332 contains several registers to assist users in optimizing
target read transfers. The target read FIFO is 16 words in size. The maximum target read burst size is eight
words. Only one read request can be queued at a time. However, if eager prefetching is enabled, the next
eight words of data beyond the current eight words being fetched may be queued as well. Therefore, all 16
words of the FIFO are usable.

Target Write
The target write logic is very straightforward. There is only one configurable parameter which controls

whether the target write DMA moves data in a four word burst or in an eight word burst. The target write
FIFO is 16 words deep. Multiple transactions can be queued until the FIFO is full. The target address of the
transaction is stored in the FIFO along with the data. So, a four-word burst would occupy five FIFO loca-
tions: four for the data and one for the address.

Testing Conditions

Maximum Performance Testing
These tests are intended to characterize the absolute maximum throughput of the PCI hardware under

ideal conditions. Real-world performance will always be somewhat less.
The maximum PCI throughput measurement tests used blocks of contiguous data. The RC32334/

RC32332 CPU core was made to execute an indefinite small loop program completely residing within the
CPU cache. This ensured 100% availability of the internal IP Bus for performing the Target PCI transac-
tions. The CPU core was notified of completion of the PCI transfers via an interrupt. During these tests, data
was sent in one direction using only one type of PCI transaction throughout the specific test.
2 of 15 September 4, 2002

http://www.idttools.com/pn_search/getDoc.taf?PartID=79RC32334&DocTypes=AN
http://www.idttools.com/pn_search/getDoc.taf?PartID=79RC32334&DocTypes=AN

Application Note AN-367

Notes
 Test Set-up
Figure 1 below shows the lab test set-up. The PCI analyzer card HPE2928 was used along with its GUI

to control the types of transactions between the RC32334/RC32332 device and the HPE2928. IDT’s evalu-
ation board 79S334 contained the BGA packaged RC32334. Logic analyzer 16702B was used throughout
the test to measure timings of the transactions. IDT SIM software version 9.2 was used to boot the evalua-
tion board. The byte ordering configuration was Big-endian. The system clocks used in the tests were
50MHz, 66.5MHz, and 75MHz. Tests were done with both 33MHz and 66MHz PCI clocks for these system
clock frequencies.

Figure 1 Test Setup for PCI Performance Tests

Test Procedure
Using the HPE2928's GUI, target transactions can be ordered between the analyzer card and the

79S334 board. Since the HPE2928 card retains the settings, after each test / configuration, the system
need to be reset. Also, once the CPU is locked for the RC32334/RC32332 through the IDT SIM software,
no further commands can be given unless the 79S334 board is reset.

For master transactions, the IDT SIM software was used. The boot-up EPROM on the 79S334 provides
for this facility.

Test Results
Maximum Performance Master Transactions

These tests were conducted using the DMA to move data from the SDRAM to the PCI and from the PCI
to the SDRAM. Traffic was not mixed, meaning that each test consisted of moving data in only one direction
using only one type of master PCI transaction. The write test consisted of moving different size blocks of
data from the SDRAM of the RC32334/RC32332 to the memory of an Agilent HPE2928 PCI analyzer card.
The read test consisted of moving the same blocks of data from the Agilent PCI analyzer back to the
memory of the RC32334/RC32332.

Signal1

1. Mem_wr = memory write, Wr_inval = write invalidate, Mem_rd = memory read, Rd_multi = read multiple. Number in parenthe-
ses refers to number of words involved in the transfer.

50MHz Sys.
100MHz CPU
33MHz PCI

50MHz Sys.
100MHz CPU
66MHz PCI

66MHz Sys.
133MHz CPU
33MHz PCI

66MHz Sys.
133MHz CPU
66MHz PCI

75MHz Sys.
150MHz CPU
33MHz PCI

75MHz Sys.
150MHz CPU
66MHz PCI

SDRAM to PCI

Mem_wr (1) 8.3 MB/sec 8.31 MB/sec 11.05 MB/sec 11.04 MB/sec 12.49 MB/sec 12.5 MB/sec

Wr_inval (4) 26.6 MB/sec 26.68 MB/sec 35.18 MB/sec 35.26 MB/sec 39.92 MB/sec 39.93 MB/sec

PCI to SDRAM

Mem_rd (1) 5.66 MB/sec 7.08 MB/sec 6.55 MB/sec 8.58 MB/sec 7.19 MB/sec 9.3 MB/sec

Rd_multi (4) 18.21 MB/sec 22.5 MB/sec 20.96 MB/sec 27.6 MB/sec 22.56 MB/sec 30.37 MB/sec

Table 1 RC32334/RC32332 as Master

IDT79S334

Agilent 16702B
Logic Analyzer

HPE2928 PC
3 of 15 September 4, 2002

Application Note AN-367

Notes
 Maximum Performance Target Transactions
These tests were conducted by doing target reads and writes to the RC32334/RC32332 using an

Agilent HPE2928 PCI analyzer. For the target read case, various size blocks of contiguous data were read
from the SDRAM of theRC32334/RC32332 into the memory of the Agilent PCI analyzer card. For the write
case, the same blocks of data were written from the Agilent PCI analyzer card back to the SDRAM of the
RC32334/RC32332. Test results are shown in Table 2.

Optimizing the RC32334/RC32332 for Maximum PCI Bandwidth

RC32334/RC32332 as Master
In the master mode, the RC32334/RC32332 does not have too many parameters that can be modified

to improve performance. However, performance was seen to improve significantly when using transfer
sizes of 4 words (see Table 2 above). Transaction sizes of 1024 bytes and 4096 bytes were done between
the RC32334/RC32332 and a PCI analyzer card (HPE2925). The bandwidth did not change between
different transaction sizes.

RC32334/RC32332 as Target
When the RC32334/RC32332 devices are configured for target mode, various bits can be set to improve

performance. Some of the bits have an effect with certain types of PCI commands only. For example, the
Eager Prefetch bit in the Target control register would have no effect on a mem_read command. Therefore,
this bit was not considered as a parameter when doing target read transactions. To increase the PCI
throughput, the following bits were used most frequently in the tests referenced above:

Eager Prefetch bits [30:27]

Bits [30:27] allow for eager prefetching of data on certain types of commands, such as mem_read_line
and mem_read_multiple.

Memory Write / Memory Write Invalidate bit [26]

The MW / MWI bit [26] of the Target Control Register can be used to burst up to 8 words on the local
bus.

Threshold for Target Write FIFO bits [25:24]

The intention of Threshold bits [25:24] is to wait until at least a certain number of data words are free in
the FIFO before accepting any new write command.

Signal1

1. Mem_wr = memory write, Wr_inval = write invalidate, Mem_rd = memory read, Rd_line = read line, Rd_multi = read multiple.
Number in parentheses refers to number of words involved in the transfer.

50MHz Sys.
100MHz CPU
33MHz PCI

50MHz Sys.
100MHz CPU
66MHz PCI

66MHz Sys.
133MHz CPU
33MHz PCI

66MHz Sys.
133MHz CPU
66MHz PCI

75MHz Sys.
150MHz CPU
33MHz PCI

75MHz Sys.
150MHz CPU
66MHz PCI

PCI to SDRAM

Mem_wr (1) 15.24 MB/sec 15.4 MB/sec 20.44 MB/sec 20.38 MB/sec 21.91 MB/sec 22.96 MB/sec

Wr_inval (4) 49.77 MB/sec 50.53 MB/sec 57.83 MB/sec 65.86 MB/sec 58.16 MB/sec 74.42 MB/sec

Wr_inval (8) 48.98 MB/sec 70.47 MB/sec 79.19 MB/sec 72.68 MB/sec 79.42 MB/sec 72.18 MB/sec

SDRAM to PCI

Mem_rd (1) 5.33 MB/sec 7.15 MB/sec 6.24 MB/sec 7.33 MB/sec 6.57 MB/sec 7.32 MB/sec

Rd_line (4) 19.41 MB/sec 26.0 MB/sec 21.89 MB/sec 26.4 MB/sec 22.89 MB/sec 26.52 MB/sec

Rd_multi (8) 34.92 MB/sec 46.98 MB/sec 37.53 MB/sec 47.84 MB/sec 38.68 MB/sec 48.7 MB/sec

Table 2 RC32334/RC32332 as Target
4 of 15 September 4, 2002

Application Note AN-367

Notes
 MRML bits [23:20]

The MRML bits [23:20] are used to prefetch 8 words for memory_read and memory_read_line target
reads. These commands behave like the memory_read_multiple command.

Dtimer bits [15:8]

The Disconnect Timer bits [15:8] assist in delaying the issuance of a “disconnect” in a PCI transaction.
This can be useful if slower PCI devices are being used.

Rtimer bits [7:0]

The Retry Timer default value is 16, per PCI Specification 2.2. However, many devices respond in 20
PCI clock cycles. Instead of issuing a retry after 16 clock cycles, the limit can be increased to 20 clock
cycles which will reduce, in most cases, the number of times the retry command is issued.

A detailed explanation of each bit is provided in the RC32334/RC32332 User Reference Manual. Also
refer to Application Note AN-366, cited earlier, which provides detailed guidelines for increasing PCI
throughput on these devices. Both documents are located on IDT’s web site at www.IDT.com.

Table 3 below shows all the tests done for Target reads and Table 4 shows the test results for target
writes.

Note: These readings are ideal case readings in that the HPE2928 PCI card waits forever. In
addition, the RC32334/RC32332 CPU core was locked, meaning that no other transactions were
taking place. Real world test environments will vary from user-to-user, so the objective here is to
provide a baseline and show the impact of various settings used in the PCITC register. The
following section, RC32334/RC32332 Ethernet Bridge Throughput Analysis, describes a real-
world scenario in some detail using the Linux operating system. Although it is not intended to
imply any kind of recommendation, this section provides an explanation of the time used by
various sub-routines in the kernel and offers some suggestions.
5 of 15 September 4, 2002

http://www.idttools.com/pn_search/getDoc.taf?PartID=79RC32334&DocTypes=MA

Application Note AN-367

Notes
Table 3 PCI Target Read Transactions

PCITC

Throughput (MB/s)
with 50MHz system,
100MHz CPU,
33MHz PCI

Throughput (MB/s)
with 50MHz system,
100MHz CPU,
66MHz PCI

Throughput (MB/s)
with 66MHz system,
133MHz CPU,
33MHz PCI

Throughput (MB/s)
with 66MHz system,
133MHz CPU,
66MHz PCI

Throughput (MB/s)
with 75MHz system,
150MHz CPU,
33MHz PCI

Throughput (MB/s)
with 75MHz system,
150MHz CPU,
66MHz PCI

Mem_Rd
01080810 3.67 7.13 3.66 7.29 3.67 7.29
01080818 5.33 6.00 6.21 5.98 6.54 5.99
01180810 3.66 7.13 3.67 7.32 3.66 7.32
01180818 5.3 6.00 6.21 5.99 6.56 5.99
01081010 3.67 7.15 3.67 7.33 3.67 7.30
01081018 5.29 6.00 6.19 6.00 6.56 5.98
01181010 3.66 7.13 3.67 7.32 3.66 7.32
01181018 5.33 6.00 6.24 5.99 6.56 5.99
09080810 3.66 5.31 3.66 7.32 3.67 7.32
09081010 3.65 5.32 3.66 7.29 3.67 7.32
09180810 3.65 6.03 3.67 6.03 3.67 6.81
09181010 3.66 6.03 3.66 6.03 3.67 6.83
09080818 5.31 5.56 6.19 5.98 6.56 5.99
09081018 5.33 5.55 6.19 5.99 6.56 5.99
09180818 3.87 5.41 6.04 5.99 6.57 5.99
09181018 3.87 5.39 6.00 5.99 6.56 6.03
Rd_Line
01080810 13.13 25.75 13.21 26.40 13.21 26.28
01080818 19.34 21.95 21.88 21.95 22.76 21.95
09080810 13.22 22.32 13.21 26.26 13.22 26.26
09080818 19.25 22.14 21.46 21.96 22.23 21.95
01180810 13.12 25.75 13.20 26.26 13.19 26.39
01180818 19.09 21.95 21.89 22.14 22.89 21.95
09180818 18.22 18.22 21.80 21.96 22.89 22.14
01081010 13.18 25.75 13.20 26.40 13.19 26.39
01081018 19.39 21.95 21.89 22.14 22.89 21.95
09081010 13.12 22.51 13.20 26.26 13.21 26.26
09081018 19.41 21.95 21.54 21.96 22.24 21.95
01181010 13.22 26.00 13.20 26.26 13.19 26.52
01181018 19.38 21.95 21.82 21.96 22.89 21.95
09181018 18.22 18.34 21.82 21.93 22.89 22.00
09180810 13.26 18.22 13.20 24.13 13.19 26.26
09181010 13.26 18.34 13.18 24.13 13.16 26.26

RD_multiple
01080810 23.91 45.40 24.05 47.66 24.02 48.21
01080818 33.91 41.20 37.53 40.70 38.62 40.54
09080810 23.98 36.69 23.83 47.83 24.02 47.81
09080818 33.83 36.69 35.54 41.20 36.57 40.58
01180810 23.87 46.18 23.94 47.83 23.91 47.81
01180818 34.26 41.20 37.27 41.20 38.60 41.20
09180818 33.48 37.19 36.50 41.20 36.44 39.98
01081010 23.98 46.98 24.05 47.81 24.02 47.39
01081018 33.83 40.58 37.53 40.58 38.54 40.58
09081010 23.98 36.69 24.05 47.83 24.02 47.81
09081018 34.92 36.69 36.50 40.58 36.44 40.58
01181010 23.98 46.18 24.05 47.83 24.02 48.70
01181018 33.83 40.58 37.53 41.20 38.68 41.20
09181018 33.91 36.69 35.78 40.51 36.48 40.74
09180810 23.91 36.20 23.95 47.84 24.02 47.81
09181010 23.91 36.20 23.94 47.84 24.02 47.81
6 of 15 September 4, 2002

Application Note AN-367

Notes
Table 4 PCI Target Write Transactions

RC32334/RC32332 Ethernet Bridge Throughput
Analysis

The 79S334 evaluation board hosts the 79RC32334 integrated communications processor (ICP), which
incorporates a PCI module. An Ethernet bridge can be implemented on the evaluation board using two
widely available PCI-based Ethernet network interface cards (NIC) and bridging software. A test was
conducted to gain insight into the execution of this bridging software to better utilize the CPU core’s
resources.

Test set-up
The following hardware and test set-up was used to perform these tests.
Target Board IDT79S334
Processor: RC32334 YC @150MHz, 75 MHz memory bus, 33 MHz PCI clock.

PCITC

Throughput (MB/s)
with 50MHz system,
100MHz CPU,
33MHz PCI

Throughput (MB/s)
with 50MHz system,
100MHz CPU,
66MHz PCI

Throughput (MB/s)
with 66MHz system,
133MHz CPU,
33MHz PCI

Throughput (MB/s)
with 66MHz system,
133MHz CPU,
66MHz PCI

Throughput (MB/s)
with 75MHz system,
150MHz CPU,
33MHz PCI

Throughput (MB/s)
with 75MHz system,
150MHz CPU,
66MHz PCI

Mem_wr
01080810 15.22 15.40 20.44 20.37 21.91 22.86
01080818 15.22 15.31 20.43 20.28 21.91 22.86
01081010 15.22 15.31 20.44 20.36 21.90 22.86
01081018 15.24 15.40 20.43 20.10 21.90 22.96
02080810 15.24 15.21 20.20 20.34 21.91 22.96
02080818 15.24 15.21 20.20 20.30 21.85 22.96
02081010 15.24 15.21 20.20 20.37 21.90 22.96
02081018 15.20 15.40 20.20 20.30 21.87 22.94
05080810 15.20 15.21 20.44 20.37 21.87 22.94
05080818 15.24 15.31 20.41 20.38 21.89 22.94
05081010 15.24 15.31 20.38 20.37 21.89 22.94
05081018 15.24 15.21 20.36 20.35 21.89 23.05
06080810 15.24 15.31 20.37 20.36 21.89 22.94
06080818 15.24 15.21 20.35 20.36 21.87 22.84
06081010 15.24 15.21 20.37 20.38 21.89 22.84
06081018 15.20 15.21 20.37 20.36 21.89 22.94
Wr_inv (4)
01080810 48.43 49.60 57.79 65.73 57.73 73.41
01080818 48.95 49.60 57.79 65.71 57.91 74.42
01081010 48.87 49.60 57.79 65.71 57.91 73.41
01081018 48.98 50.53 57.79 66.11 57.91 74.42
02080810 42.39 49.60 57.79 64.69 58.04 74.42
02080818 42.56 49.60 57.79 65.56 57.81 72.79
02081010 42.39 49.60 57.79 64.96 57.88 72.61
02081018 42.39 49.60 57.79 64.28 57.77 72.79
05080810 49.77 49.60 57.83 65.45 57.85 73.16
05080818 49.77 50.53 57.83 65.86 57.85 73.16
05081010 48.98 49.60 57.79 65.70 58.16 73.16
05081018 48.54 50.53 57.79 65.31 57.89 73.16
06080810 42.73 50.53 57.79 65.17 57.71 72.18
06080818 42.39 48.70 57.75 64.47 57.90 71.23
06081010 42.06 49.60 57.83 65.56 57.72 72.18
06081018 42.39 49.60 57.75 64.81 57.85 72.18
Wr_inv (8)
01080810 43.33 31.88 61.45 42.77 71.11 52.02
01080818 47.26 31.88 61.45 42.61 71.11 51.46
01081010 47.32 32.27 61.41 42.61 69.84 53.04
01081018 47.26 33.48 61.45 43.98 69.84 51.52
02080810 36.35 49.60 50.00 66.30 58.05 72.00
02080818 36.35 49.60 50.00 66.30 56.46 72.00
02081010 36.35 49.60 50.00 65.63 58.12 72.00
02081018 36.35 49.60 50.00 65.63 58.12 72.00
05080810 48.90 33.07 79.12 52.09 79.24 59.38
05080818 48.98 33.07 79.19 53.65 79.24 65.16
05081010 41.74 33.91 79.19 53.55 79.42 59.38
05081018 43.07 33.07 79.12 53.29 79.42 60.04
06080810 36.59 70.47 36.72 72.42 36.86 72.18
06080818 36.59 70.47 36.72 72.42 36.80 72.18
06081010 36.59 70.47 36.72 72.68 36.77 72.18
06081018 36.59 70.47 36.73 72.68 36.79 72.18

7 of 15 September 4, 2002

Application Note AN-367

Notes
 Memory: 32 MB
NIC: Intel 82559 PCI cards inserted in the PCI slots of S334 board
The Target board was modified to bring out four GPIO pins and the INTA line on the PCI bus to the Logic

Analyzer.
Logic Analyzer
Model: Agilent 16702B
Linux Host
This machine was used for compiling the Linux 2.4.18 kernel. It also provided the console for the target.
Abatron Debugger
Ethernet based EJTAG probe from Abatron was used for downloading the kernel from the Linux Host to

the IDT79S334 target board. It could be used to debug the kernel if needed.
SmartBits Traffic Generator/analyzer
Model: SMB-2000
This unit had two Ethernet interface modules (7710) installed at Port 17 and Port 18.
A Windows2000 computer system was used to control the SmartBits traffic generator/analyzer. There

were two applications, SmartWindows and SmartApplications, installed on this machine. SmartWindows
provides an interface where one or more packets can be transmitted from one of the ethernet ports in
SmartBits and the arrival of these packets can be monitored at the other ethernet port in SmartBits. The
timing measurements explained in this application note were performed using SmartWindows. SmartAppli-
cation provided an interface that is similar to a real world scenario. This application can transmit a stream of
packets for a fixed duration of time and measure the throughput.

The test setup used for the exercise is shown in Figure 2 below.
8 of 15 September 4, 2002

Application Note AN-367

Notes
Figure 2 Performance Analysis Measurement Setup

Software Set-up
Operating System built to run on the target board: Linux 2.4.18.
Compiler tool chain used to build the above operating system: gcc-2.96 and binutils-2.12.

Kernel Configuration
The Linux kernel was configured to support Ethernet bridging. The utilities to setup the bridge were

compiled and included as part of the ramdisk image. The bridge functioned as follows: When a packet
arrived at one of the NICs, the bridge checked for the destination IP then forwarded the packet to the other
NIC, provided the destination IP was not that of the bridge itself.

Bridge Setup
After Linux booted on the target board, the Ethernet bridge was set up by issuing the following

commands at the target console:
 brctl addbr br0 # Creates a logical bridge instance with name 'br0'

 brctl addif br0 eth0 # Adds Ethernet interface 0 to the bridge

 brctl addif br0 eth1 # Adds Ethernet interface 1 to the bridge

 ifconfig eth0 0.0.0.0 promisc # Put Ethernet interface 0 to promiscuous mode

 ifconfig eth1 0.0.0.0 promisc # Put Ethernet interface 1 to promiscuous mode

 ifconfig br0 192.168.1.3 promisc up # Assign IP address 192.168.1.3 to bridge

 #and put the bridge in promiscous mode.

For more information on Ethernet Bridging, refer to Linux BRIDGE-STP-HOWTO at http://www.tldp.org.
9 of 15 September 4, 2002

http://www.tldp.org

Application Note AN-367

Notes
 Test Procedure
Using the SmartWindow application, the SmartBits Ethernet port at Slot 17 was configured to generate

an IP packet with source address 192.168.1.1 and destination address 192.168.1.2. The packet would
arrive at NIC-1 of the target and would be forwarded to NIC-2 by the linux-based bridge running on the
target board. Using a Logic Analyzer, the time taken for the packet to travel from NIC-1 to NIC-2 at various
levels of the protocol was measured. The measured time intervals are presented in Table 5. A brief descrip-
tion explaining the journey of a packet through the kernel is provided below to give a better understanding
of the timings.

Journey of a Packet
NIC to Memory
When the NIC card receives a packet, it requests for a PCI transaction from the RC32334/RC32332

which then grants the PCI bus to the NIC. Following the grant, the PCI Frame signal is pulled low and the
NIC, using DMA, transfers the packet from its FIFO to the SDRAM memory on the target board. At the end
of the DMA transfer, the NIC is programmed to generate a PCI Interrupt (INTA).

Interrupt handler
The kernel executing on the target board, upon receiving the interrupt, calls the Interrupt Service

Subroutine located in:
 ~linux/arch/mips/rc32300/common/int-handler.S.

Linux groups interrupts into two categories, timer interrupts and “other” interrupts. In the assembly code
mentioned above, the kernel checks the source of the interrupt. Once it determines that the interrupt is not
from the timer, it calls the interrupt handler that handles "other" interrupts:

(function: rc32300_irqdispatch; file linux/arch/mips/rc32300/79S334/irq.c).

In the RC32334/RC32332 under Linux, the major sources of interrupts are PCI and onboard devices,
such as the serial I/O port. In function rc32300_irqdispatch, the interrupt source information is further
decoded to distinguish between the above two. Once the kernel determines that the interrupt is not from an
onboard device, it calls ‘do_IRQ’ (~linux/arch/mips/kernel/irq.c).

During device initialization, each device registers its own interrupt handler with the kernel and they form
a linked list of interrupt handlers. The ‘do_IRQ’ function calls handle_IRQ_event (~linux/arch/mips/kernel/
irq.c). This function calls each of the interrupt handlers from the linked list. In the case of Intel NIC, the inter-
rupt handler function is ‘speedo_interrupt’(~linux/drivers/net/eepro100.c).

Memory to Memory
Once the interrupt handler for NIC determines that the interrupt was generated due to the arrival of a

packet, it calls the "receive handler" (speedo_rx). The ‘speedo_rx’ function creates 'skbuff' (a data structure
to hold the packet and header) and copies the packet to it.

Driver to Protocol Independent Device Support Routine
The "receive handler", after copying the packet to an skbuff, calls a function ‘netif_rx' (~linux/net/core/

dev.c) which queues the packet for further processing. This function first checks the queue. If it is full, the
packet is dropped. Otherwise, the packet is placed in the queue, raises a 'soft interrupt', and returns. The
‘speedo_rx’ then continues to perform some housekeeping tasks. The interrupts that were disabled up to
this point get enabled again, and the interrupt handler returns.

Soft Interrupts (softirq)
Soft interrupts (softirq) are similar to hardware interrupts, except that they can run with the interrupts

enabled. Like hardware interrupts, software interrupts also need to be registered with the kernel. The func-
tion net_dev_init (~linux/net/core/dev.c) registers two network soft interrupt handlers, net_rx_action and
net_tx_action, during kernel boot.
10 of 15 September 4, 2002

Application Note AN-367

Notes
 The soft interrupts are called one by one by the do_softirq (~linux/kernel/softirq.c) function. The function
do_softirq is called from various places in the kernel. One of them is do_IRQ (~linux/arch/mips/kernel/irq.c),
described above.

net_rx_action
The softirq ‘net_rx_action’ (~linux/net/core/dev.c) is responsible for handling the received packets. Here,

the packet is removed from the queue and appropriate packet handler is called. In the case of the current
exercise, the packet handler is ‘handle_bridge’ (~linux/net/core/dev.c) which in turn calls
‘br_handle_frame_hook’ (~linux/net/core/dev.c) for further packet processing.

br_handle_frame
This function is implemented in br_forward.c (~linux/net/bridge). Here, the 'skbuff' is attached to the

bridge with its destination and source addresses properly set. It then calls ‘br_handle_frame_finish’ where
the 'skbuff' is retrieved from the bridge and ‘br_flood’ gets called. ‘br_flood’ calls ‘__br_forward’, which in
turn calls __br_forward_finish. This function calls __dev_queue_push_xmit that calls dev_queue_xmit
(~net/core/dev.c).

dev_queue_xmit
Here, the 'skbuff' gets queued into the transmit queue associated with a network device. Then the

routine ‘qdisk_run’ is called. This routine picks up the packet from the queue and calls ‘hard_start_xmit’
associated with the device driver. In the case of Intel NIC, the function speedo_start_xmit (mapped to
‘hard_start_xmit’) gets called (linux/drivers/net/eepro100.c).

speedo_start_xmit
This function updates certain data structures and initiates a data transfer from memory to the NIC and

data is transferred to the output FIFO of the NIC through DMA. The SmartBits Ethernet module on Port 18
reports arrival of packet.

With this, the journey of the packet ends.

Timing Analysis
The time taken for the packet to arrive at a particular function is shown in the table below. The time

measurements are relative to the moment (time=0) when the interrupt is asserted by the NIC that receives
the Ethernet packet from the SmartBits traffic generator. This assertion indicates that the NIC finished
moving the packet across to the SDRAM on the 79S334 board. In the absence of a profiling tool for Linux
kernel, the measurement had to be done manually, using Logic Analyzer.

The measurement was performed as follows:
Four GPIO pins available on 79S334 were programmed to be output pins. At the beginning and
end of each function explained above, the state of the GPIO pin changed (high, low or toggle).
Using the logic analyzer various elapsed time measurements were made from the traces indi-
cating changes of states of the GPIO pins. Since only four GPIO pins were available, in most
cases only one function could be analyzed at a time. The kernel was re-compiled each time for
analyzing each function and loaded to the target using Abatron debugger.
As can be seen, the measured throughput for a single 64-byte packet is 2.51 Mbps and that for
a single 1500-byte packet is 25.6 Mbps. In real-life applications, the throughput will be higher
due to packet queuing. When the packets are sent continuously, they get queued and the
queue handler processes all available packets in one shot. Using SmartApplications, the
throughput for a real-life scenario was measured to be 3.12 Mbps for 64-byte packet and 40
Mbps for 1500-byte packet.
11 of 15 September 4, 2002

Application Note AN-367

Notes
Function File
Time from INTA (in µSec)

Packet size: 64 Packet size: 1500

PCI_FRM Assertion -3.8 -117.46

DMA begin -3.5 -117.17

INTA: Interrupt from NIC1
(Trigger for Analyzer)

0 0

rc32300_irqdispatch ~linux/arch/mips/rc32300/
79S334/irq.c

4.32 4.32

{
 do_IRQ
}

~linux/arch/mips/kernel/irq.c 5.96 5.95

do_IRQ ~linux/arch/mips/kernel/irq.c 5.96 5.95

{
 handle_IRQ_event
}

~linux/arch/mips/kernel/irq.c 11.36 10.65

handle_IRQ_event

{
 action->handler (=
speedo_interrupt)
}

~linux/arch/mips/kernel/irq.c 14.13 13.37

speedo_interrupt ~linux/drivers/net/eepro100.c 14.4 14.58

{
 speedo_rx
}

~linux/drivers/net/eepro100.c 19.72 19.27

speedo_rx

{
 eth_copy_and_csum
 netif_rx
}

~linux/drivers/net/eepro100.c
~linux/net/core/dev.c

48.4
58.27

55.35
118.3

netif_rx ~linux/net/core/dev.c 58.27 118.3

{
 dev_hold
 __skb_queue_tail
 cpu_raise_soft_irq
}

~linux/include/linux/netde-
vice.h
~linux/include/linux/skbuff.h
~linux/kernel/softirq.c

67.6
69.8
70.81

128.67
130.75
131.98

do_softirq ~linux/kernel/softirq.c 97.05 161.68

{
 h->action(h)
(=net_rx_action)
}

~linux/net/core/dev.c 102.15 162.42

net_rx_action ~linux/net/core/dev.c 102.15 162.42

{
 handle_bridge
}

~linux/net/core/dev.c 107.52 167.61

handle_bridge

Table 5 Measured Time Intervals for Sub-routines (Page 1 of 3)
12 of 15 September 4, 2002

Application Note AN-367

Notes
{
 br_handle_frame_hook
}

~linux/net/bridge/br_input.c 107.52 170.96

br_handle_frame_hook
(=br_handle_frame)

~linux/net/bridge/br_input.c 107.52 170.96

{
 br_fdb_insert
 br_handle_frame_finish
}

~linux/net/bridge/br_fdb.c
~linux/net/bridge/br_input.c

109.81
119.67

173.95
183.45

br_handle_frame_finish ~linux/net/bridge/br_input.c 119.67 183.45

{
 br_fdb_get
 br_flood_forward
}

~linux/net/bridge/br_fdb.c
~linux/net/bridge/br_forward.c

139.92
144.995

202.46
207.53

br_flood_forward

{
 br_flood
}

~linux/net/bridge/br_forward.c
144.995 207.53

br_flood ~linux/net/bridge/br_forward.c

{
 __packet_hook
(=__br_forward)
}

~linux/net/bridge/br_forward.c
145.12 207.89

__br_forward ~linux/net/bridge/br_forward.c 145.12 207.89

{
 br_forward_finish
}

~linux/net/bridge/br_forward.c
146.87 209.59

__br_forward_finish ~linux/net/bridge/br_forward.c 146.87 209.59

{
 __dev_queue_push_xmit
}

~linux/net/bridge/br_forward.c 148.02 210.73

__dev_queue_push_xmit ~linux/net/bridge/br_forward.c 148.02 210.73

{
 dev_queue_xmit
}

~linux/net/core/dev.c 148.1 209.96

dev_queue_xmit ~linux/net/core/dev.c 148.1 209.96

{
 q->enqeue
(=pfifo_fast_enqueue)
 {
 __skb_queue_tail
 }
 qdisc_run (=qdisc_restart)
}

~linux/net/sched/
sch_generic.c

~linux/include/linux/skbuff.h

~linux/net/sched/
sch_generic.c

150.88

155.38

212.68

218.32

Function File
Time from INTA (in µSec)

Packet size: 64 Packet size: 1500

Table 5 Measured Time Intervals for Sub-routines (Page 2 of 3)
13 of 15 September 4, 2002

Application Note AN-367

Notes
Suggestions to Optimize Software
1. Avoiding memcpy from DMA'ed memory to skbuff memory.
As can be seen from Table 5, the function eth_copy_and_csum takes 7 microseconds in the case of 64-

byte packet and 57.4 microseconds in the case of 1500 byte packet. This can be avoided. The driver does
provide a function that avoids memcpy. A variable rx_copybreak is declared towards the beginning of the
driver code that is set to 1518 by default. This number (variable) is defined as the threshold above which
the operating system will not perform memcpy. This value can be made extremely small, or even zero or 1.
The trade-off is memory wastage. To avoid memcpy, the system assumes that every arriving packet will be
the maximum size possible and allocates maximum number of buffers of the maximum packet size ahead
of time. Depending on the application, this threshold value may be reduced to a level that represents a
reasonable balance between memory wastage and higher performance. In a focused experiment, with this
value set to 200, the throughput when measured with SmartApplications jumped from 40 Mbps to 52 Mbps.

2. Improving the Interrupt Handler.
Once the CPU is interrupted, 14 microseconds elapse before the "driver's interrupt handler

(speedo_interrupt)" begins to execute. (Note: This is different from the conventional measure of interrupt
latency which in the case of Linux relates to "kernel's interrupt handler" and is found to be approximately 4
microseconds.) Since the interrupt lines of both the NIC cards are tied together in the 79S334 evaluation

qdisc_restart ~linux/net/sched/
sch_generic.c

155.38 218.32

{
 q->dequeue
(=pfifo_fast_dequeue)
 dev->hard_start_xmit
(=speedo_start_xmit)
}

~linux/net/sched/
sch_generic.c

~linux/drivers/net/eepro100.c

155.38

160.0

218.32

222.48

speedo_start_xmit

{
 wait_for_cmd_done
}

~linux/drivers/net/eepro100.c 171.85 242.11

DMA from memory to NIC2 178.26 248.61

Interrupt from NIC2 190.95 330.34

Throughput (64*8*106)/
(1024*1024*(191+3.8))

=2.51 Mbps

(1500*8*106)/
(1024*1024*(330+117))

=25.6 Mbps

Throughput from SmartApplications 3.12 Mbps 40 Mbps

Function File
Time from INTA (in µSec)

Packet size: 64 Packet size: 1500

Table 5 Measured Time Intervals for Sub-routines (Page 3 of 3)
14 of 15 September 4, 2002

Application Note AN-367

Notes
 board, the CPU sees them as one interrupt, and the interrupt handler in the driver has to poll for the source
of the interrupt. If they were provided in separate interrupt lines, the interrupt handler can directly call the
appropriate routine soon after an interrupt arrives. This will also save few clock cycles.

3. SMP (Symmetric Multi Processing).
Linux supports SMP (Symmetric Multi Processing), and in a single CPU system, like the 79S334, calls

that are related to SMP are not relevant. Removing them can save few CPU cycles. These calls are spread
all across the kernel so that removing them will require careful review of the kernel. It is recommended that
this step be performed only when the code base is deemed to be relatively stable. An update in the kernel
revision, for example, will not be easy once the SMP calls are removed from the existing revision.

4. CPU clock.
As shown in Table 5, the time CPU took to process the packet once it was made available to the upper

layer to the point where the packet is handed over to the device driver (from netif_rx to dev-
>hard_start_xmit) is (160 - 58 =) 102 microseconds. This time can be safely assumed to be a function of the
CPU clock, since no peripheral access is performed during this time. By increasing the CPU clock rate, this
time could be reduced.

Conclusion
From the above results, a valid co-relation between the lab tests and the design simulations was estab-

lished. The RC32334/RC32332 YC revision devices are seen to have improved performance over the
previous Z revision, especially for target write transactions. The results from the bridge experiment using
Linux are shown to provide a basic platform for any real world application. As seen from these results,
certain sub-routines require a fixed amount of time, while other sub-routines can be modified and optimized
to achieve the maximum possible throughput at a system level.

For a detailed software code that was used in the above software tests, please email rischelp@idt.com.
For hints on optimizing hardware, refer to IDT Application Note AN-366 which can be found on IDT’s

web site at www.idt.com.

Acknowledgements
The authors would like to thank the following contributors from IDT who provided relevant technical

information for this document: Upendra Kulkarni, Kasi Chopperla, Paul Snell, and Dan Steinberg.

References
1. IDT Application Note AN-350: RC32334/RC32332 Differences Between Z and Y Revisions.
1. IDT Application Note AN-366: Optimizing the PCI Interface on the RC32334/RC32332.
2. IDT79RC32334 and IDT79RC32332 Integrated Communications Processor User Reference

Manual.
3. PCI Local Bus Specification. Rev. 2.2 - PCI special interest group.
4. PCI System Architecture. 4th edition - Mindshare, Inc. Tom Shanley and Don Anderson.
5. http://www/tldp.org - The Linux Modular Bridge And STP - Uwe Böhme, 2000.
15 of 15 September 4, 2002

http://www.idttools.com/pn_search/getDoc.taf?PartID=79RC32334&DocTypes=AN
http://www.idttools.com/pn_search/getDoc.taf?PartID=79RC32334&DocTypes=AN
http://www.idttools.com/pn_search/getDoc.taf?PartID=79RC32334&DocTypes=MA
http://www.idttools.com/pn_search/getDoc.taf?PartID=79RC32334&DocTypes=MA
http://www.tldp.org

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

	Revision History
	Background
	Optimal vs. Actual PCI System Throughput
	Satellite vs. Host Mode
	Supported PCI Transaction Types
	Master Read
	Master Write
	Target Read
	Target Write

	Testing Conditions
	Maximum Performance Testing
	Test Set-up
	Figure 1 Test Setup for PCI Performance Tests

	Test Procedure

	Test Results
	Maximum Performance Master Transactions
	Table 1 RC32334/RC32332 as Master �

	Maximum Performance Target Transactions
	Table 2 RC32334/RC32332 as Target

	Optimizing the RC32334/RC32332 for Maximum PCI Bandwidth
	RC32334/RC32332 as Master
	RC32334/RC32332 as Target
	Table 3 PCI Target Read Transactions
	Table 4 PCI Target Write Transactions

	RC32334/RC32332 Ethernet Bridge Throughput Analysis
	Test set-up
	Figure 2 Performance Analysis Measurement Setup

	Software Set-up
	Kernel Configuration
	Bridge Setup

	Test Procedure
	Journey of a Packet
	Timing Analysis
	Table 5 Measured Time Intervals for Sub-routines (Page 1 of 3)

	Suggestions to Optimize Software
	1. Avoiding memcpy from DMA'ed memory to skbuff memory.
	2. Improving the Interrupt Handler.
	3. SMP (Symmetric Multi Processing).
	4. CPU clock.

	Conclusion
	Acknowledgements
	References
	1. IDT Application Note AN-350: RC32334/RC32332 Differences Between Z and Y Revisions.
	1. IDT Application Note AN-366: Optimizing the PCI Interface on the RC32334/RC32332.
	2. IDT79RC32334 and IDT79RC32332 Integrated Communications Processor User Reference Manual.
	3. PCI Local Bus Specification. Rev. 2.2 - PCI special interest group.
	4. PCI System Architecture. 4th edition - Mindshare, Inc. Tom Shanley and Don Anderson.
	5. http://www/tldp.org - The Linux Modular Bridge And STP - Uwe Böhme, 2000.

	Application Note AN-367
	PCI Performance on the RC32334/RC32332
	By Rakesh Bhatia and Pallathu Sadik

