
148

Integrated Device Technology, Inc.

APPLICATION
NOTE

AN-127

TIMERS USING SONIC AND
COUNT REGISTER IN ORION

INTRODUCTION
This is an Application Note on two timer modules, one

based on SONIC running at 20MHz and another based on
COUNT register present in R4600 running at 50MHz. The
timer-modules are broken up into two groups of functions. The
first group of functions is specific to a particular timer. These
functions are always written in assembly language and do low
level timer specific initialization for starting and stopping the
timer. The second set of functions have generic functionalities.
These functions are written in C and they are used to keep
track of the number of ticks in the timer in microseonds
between the period at which the timer is started and stopped,
to display time, and to set a constant value based on the
current speed at which the processor is set to run. First, we are
going to discuss how to measure time using SONIC. Sec-
ondly, we going to look at how to keep track of time using
R4600's count register. Finally, we will discuss how to use the
timers.

SONIC TIMER

SONIC is used to measure time in various boards, including
IDT's 79S460-board (an R4x00 evaluation board) and
79S381-board (a R30xx evaluation board). The SONIC has
a 32-bit downcounter that is controlled by SONIC's 16-bit
registers, watchdog register1 and watchdog register2. In the
SONIC running at 20MHz, each timer-tick represents 200-ns.
In general,

t = (1000/f)*4
where t is the time for each timer-cycle in ns and f is the

frequency of SONIC in MHz. Moreover, (1000/f) represents
time period per cycle. Sonic decrements the counter registers
once every four cycles. Mechanisms involved in starting the
timer, stopping the timer, and displaying time using SONIC
are discussed in the following sections. The following figure
describes the header file "sonic_globals.h" used by SONIC-
timer's high level functions.

/* sonic_globals.h */

/* speed based on user specified
frequency of SONIC */
unsigned int current_speed;
/* speed based on default frequency of
SONIC */
unsigned int def_speed;
/* counter keeps track of the time count
*/
unsigned int counter;

Figure 1
sonic_globals.h

Starting SONIC Timer
Starting the timer involves enabling the ST bit in SONIC's

control register, and initializing 16-bit watchdog registers 1
and 2 with all their bits set to 1 (0xffff). "TimerStart", a low level
function, does the initialization required for starting a timer.
"timer_start", a high level function, calls "TimerStart" and
keeps track of the number of timer ticks. Figures 2 and 3
describe "TimerStart" and "timer_start" routines for SONIC.

/*for 79s460-board */
#include <r4ksonic.h>
/*for 79s381-board
#include <r3ksonic.h>
But, don't include both headers */
LOW LEVEL FUNCTION TimerStart

.globl TimerStart

.ent TimerStart

.set noreorder
TimerStart:

li v0, SONIC_COMMAND_REG_ST_BIT
li t1, SONIC_COMMAND_REG
nop
nop
sw v0,0(t1)
nop
nop
li v0, oxffffffff
sw v0, SONIC_WATCHDOG1(t1)
nop
nop
sw v0, SONIC_WATCHDOG2(t1)
nop
nop
j ra
nop
nop

.end TimerStart

Figure 2
SONIC TimerStart routine

#include <sonic_globals.h>

/* HIGH LEVEL FUNCTION timer_start */
unsigned int timer_start()
{
if (cur_speed)

/* set cur_speed of the SONIC based on the user
specified frequency */

def_speed = cur_speed;

counter = TimerStart();

return counter;
}

Figure 3
SONIC timer_start routine

By Sugan Subramanian

1996 Integrated Device Technology 3131/- 2/96

149

TIMERS USING SONIC AND COUNT REGISTER IS ORION APPLICATION NOTE AN-127???

seconds in the time count; mS - represents the number of
milliseconds in the time count; and uS - represents the number
of microseconds in the time count. Only the non-zero units are
displayed. Figure 6 describes the fuction "disp_time" for
SONIC.

extern unsigned int counter, def_speed,
cur_speed;

void disp_time(unsigned int i)
{

unsigned int temp_counter=counter;

if (i)
temp_counter = i;

printf("elasped time = ");
if (temp_counter >

1000000)
{

printf("%dS ",
temp_counter
/1000000);
temp_counter %=1000000;

}

if (temp_counter > 1000)
{

printf("%dmS",
temp_counter
/(1000));
temp_counter %=1000;

}

if (temp_counter)
{

printf("%duS ",
temp_counter);

}

printf("\n");

}

Figure 6
SONIC disp_time routine

Setting Up SONIC timer speed
"set_timer_speed" takes an integer that represents the

clock frequency of SONIC in MHz as its parameter and sets a
constant that represents the speed of SONIC in ns for the
given frequency. This constant is used by the "disp_time" to
display the time correctly. The following figure has the C-
source for "set_timer_speed".

extern unsigned int cur_speed;
void set_timer_speed(int speed)
{

cur_speed = 1000/speed*2;
}

Figure 7
SONIC set_timer_speed routine

Stopping SONIC Timer
The SONIC-timer is stopped by enabling the STP bit in

SONIC's control register. By enabling STP bit, the SONIC
preserves the previous values of WATCHDOG registers 1 and
2. "TimerStop" returns a 32-bit value that is a concatenation of
16-bit count in watchdog registers 1 and 2. "timer_stop"
function calls the low level "TimerStop" to retrieve the current
timer value. "timer_stop" returns an unsigned integer value
representing the time period between the previous timer
initiation and the current instance of execution (in microsec-
onds). Figures 4 and 5 describe "TimerStop" and "timer_stop"
routines for SONIC.

/*for 79s460-board */
#include <r4ksonic.h>
/*for 79s381-board
#include <r3ksonic.h>
But, don't include both headers */

.globl TimerStop

.ent TimerStop

.set noreorder
TimerStop:

li v0, SONIC_COMMAND_REG_STP_BIT
li t1, SONIC_COMMAND_REG
nop
nop
sw v0,0(t1)
nop
nop
lw v1, SONIC_WATCHDOG1(t1)
nop
nop
lw v0, SONIC_WATCHDOG2(t1)
sll v1,16
addu v1,v1,v0
addu v0,v1,v1
j ra
nop

.end TimerStop

Figure 4
SONIC TimerStop routine

/* HIGH LEVEL FUNCTION timer_stop */
extern unsigned int counter;
unsigned int timer_stop()
{

counter -= TimerStop();
/*

when counter == i,
i*100 == time in nanosecs
(i/1000)*100 == time in microsecs

*/
return counter/10;

}

Figure 5
SONIC TimerStop routine

Displaying Time (SONIC)
"disp_time" function displays the time. It is always called

after a call to "timer_stop". It takes a parameter which is
usually zero, otherwise represents current time-count in mi-
croseconds. It displays the timer period in the following format:

" %dS %dmS %duS" where %d represents the number of

150

Difference between SONIC timer on 79s460-board and
79s381-board

It's recommended to include the header file, "timer_sonic.h"
before encorporating the timer routines in his/her code. Only
difference between the SONIC timer routine for IDT's 79s460-
board (R4xxx evaluation board) and 79s381-board (R30xx
evaluation board) is the SONIC chip's base address. The
header file "r4ksonic.h" has R4xxx board specific SONIC base
address and "r3ksonic.h" has R30xx board specific SONIC
base address. The following figures describe these header
files.

/* include file r4ksonic.h */

#define SONIC_BASE
0xbf600000

#define SONIC_COMMAND_REG
0xbf600000

#define SONIC_WATCHDOG1
0xa4

#define SONIC_WATCHDOG2
0xa8

#define SONIC_COMMAND_REG_ST_BIT
0x20

#define SONIC_COMMAND_REG_STP_BIT

0x10

Figure 8
r4ksonic.h

/* include file r3ksonic.h */

#define SONIC_BASE
0xbfb00000

#define SONIC_COMMAND_REG

0xbfb00000
#define SONIC_WATCHDOG1

0xa4
#define SONIC_WATCHDOG2

0xa8
#define SONIC_COMMAND_REG_ST_BIT

0x20
#define SONIC_COMMAND_REG_STP_BIT

0x10

Figure 9
r3ksonic.h

Constraints on SONIC timer
The SONIC timer module on a SONIC running at 20mHz is

capable of counting upto 7 minutes. If the SONIC is running at
a different frequency, function "set_timer_speed" should be
called before calling "timer_start".

R4600 TIMER
R4600 microprocessor has a COUNT register in

CoProcessor 0 (CP0). This COUNT register in CP0 incre-
ments its count by one on every timer tick of the R4600
processor. In the R4600 processor running at 50MHz, each
timer-tick represents 20-ns. In general,

t = (1000/f)
where t is the time for each timer-tick in nano-seconds, f is

the frequency of R4600 processor in MHz, and (1000/f)
represents the time per cycle. The following figure describes
the header file used by the high level functions of R4600 timer.

/* orion_globals.h */

/* speed based on user specified
frequency of R4600 processor */
unsigned int current_speed;

/* speed based on default frequency of
R4600 processor */
unsigned int def_speed;
/* counter keeps track of the time count
*/

unsigned int counter;

Figure 10
orion_globals.h

Starting R4600 Timer
Timer is started by resetting the value of the COUNT

register in R4600 microprocessor to zero. The following piece
of assembly code and c-code shows how to start the timer.

#include "r4kcp0.h"
Timer is started by assigning zero to
COUNT register located in CPO

.globl TimerStart

.ent TimerStart

.set noreorder
TimerStart:

and v0, $0
mtc0 v0, CP0_COUNT
nop
nop
j ra
nop
nop

.end TimerStart

Figure 10
R4600 TimerStart routine

/* r4kcp0.h */
#define CP0_CONTEXT $4
#define CP0_BVADDR $8
#define CP0_COUNT $9
#define CP0_COMPARE $11

/* r4kcp0.h ---contd. */
#define v0 $2
#define v1 $3
#define ra $31
Figure 11
R4600 header file r4kcp0.h

#include <orion_globals.h>

unsigned int timer_start()
{

if (cur_speed)
def_speed = cur_speed;

TIMERS USING SONIC AND COUNT REGISTER IS ORION APPLICATION NOTE AN-127

151

TIMERS USING SONIC AND COUNT REGISTER IS ORION APPLICATION NOTE AN-127

Constraints on R4600 timer
The timer module is capable of counting upto 85 seconds

assuming that the R4600 processor is set to run at 50MHz. If
the R4600 processor is set to run at a different frequency,
function "set_timer_speed" should be called before calling
"timer_start" so that "disp_time" displays the correct time. The
following piece of c-code describes the "set_timer_speed"
function.

extern unsigned int cur_speed;
void set_timer_speed(int speed)
{

cur_speed = 1000/speed;

}

Figure 15
R4600 set_timer_speed routine

TIMER MODULE USAGE
The procedures to use SONIC timer for 79s460-board,

SONIC timer for 79s381-board, and R4600-timer for 79s460-
board are the same. The following figure describes it. More-
over, IDT-C 5.0 is shipped with SONIC-timer/79s460-board
and R4600-timer/79s460-board. In IDT-C 5.0, source code for
SONIC-timer/79s460-board is located under "/IDTC/timers/
SONIC-timer"; and source code for R4600-timer/79s460-
board is located under "/IDTC/timers/ORION-timer". Figures
16 and 17 give the general procedure to use the timer routines.

#include <timer.h>
main()
{
timer_start();
.
/* main body */
.
timer_stop();
disp_time(0);

}

Figure 16
How the timer routine is to be used

/* timer.h */
unsigned int timer_start();
unsigned int timer_stop();

void disp_time(unsigned int);

 Figure 17
 timer.h

counter = TimerStart();
return counter;

}

Figure 12
R4600 timer_start routine

Stopping R4600 Timer
Stopping the timer involves simply getting the contents of

the COUNT register that represents the most recent timer tick
count and converting that timer tick count to microseconds.
The following piece of assembly code and c-code shows how
to stop the timer.

#include "r4kcp0.h"
.globl TimerStop
.ent TimerStop

TimerStop:
mfc0 v0, CP0_COUNT

The timer is stopped by getting
the most recent value of COUNT
register

nop
nop
j ra
nop
nop
.set reorder

.end TimerStop

Figure 13
R4600 TimerStop routine

extern unsigned int counter;

unsigned int timer_stop()
{

counter = TimerStop() - counter;
/*

when counter == i,
i*20 == time in nanosecs
(i/1000)*20 == time in microsecs

*/
return counter/50;

}

Figure 14
R4600 timer_stop routine

Displaying Time (R4600)
"disp_time" function is very similar to the one presented

previously for the SONIC timer module. Only difference in this
case is that the time displayed is based on the frequency of the
R4600 in the 79s460-board (50-MHz).

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

