

120 degrees conducting control by Sensor-less drive

RAJ306000 implementation guide

Summary

This application note explains a sample program to support the Sensor-less 120-degrees conducting control of 3-Phase brushless DC motor using RAJ306000, and the method using the library of development support tool "In Circuit Scope".

These sample programs are only to be used as reference and Renesas Electronics Corporation does not guarantee the operations. Please use them after carrying out a thorough evaluation in a suitable environment.

Operation checking device

Operations of the sample program are checked by using the following device.

• RAJ306000

Target of sample program

A sample program that this application note is intended shown below.

- RAJ306000_LESS_120_OPEN_CSP_CA_V103 (IDE: CS+ for CA, CX)
- RAJ306000_LESS_120_OPEN_CSP_CC_V103 (IDE: CS+ for CC)
- RAJ306000_LESS_120_OPEN_E2S_CC_V103 (IDE: e² studio)

120-degrees conducting control sample program with Sensor-less drive for RAJ306000 (Complementary PWM Mode)

Reference materials

- RL78/G1F User's Manual: Hardware (R01UH0516EJ0110)
- RAJ306000 Series User's Manual: Hardware (R18UZ0066EJ0100)
- In Circuit Scope Manual

Downloadable from: http://www.desktoplab.co.jp/download.html

Contents

1. Overview	3
1.1 Development environment	3
2. System overview	5
2.1 Hardware configuration	6
2.2 Hardware specifications	8
2.2.1 User interface	8
2.2.2 Peripheral functions	. 11
2.3 Software structure	. 15
2.3.1 Software file structure	. 15
2.3.2 Module structure	. 17
2.4 Software specifications	. 18
3. Descriptions of control program	.19
3.1 Contents of control	
3.1.1 Motor start / stop	. 19
3.1.2 Rotation direction command value, Rotation speed command value, VM voltage	. 19
3.1.3 Rotation speed calculation	. 20
3.1.4 Voltage control by PWM	. 21
3.1.5 Back EMF detection and Current detection	. 22
3.1.6 State transition	. 23
3.1.7 Start method of Motor by Sensor-less	. 24
3.1.8 System protection function	. 26
3.1.9 System protect function (PreDriver safety function)	. 27
3.2 Function specifications	. 28
3.3 Specification of variables	. 34
3.4 Specification of Macro definition	. 37
3.5 Flow chart	. 49
3.5.1 Main function	. 50
3.5.2 Initialization of PreDriver processing	. 51
3.5.3 Sensor-less processing: Inductive sense processing	. 52
3.5.4 Carrier frequency interruption processing	. 53
3.5.5 Underflow of Carrier frequency Interruption processing	. 56
3.5.6 500[us] interruption processing	. 57
3.5.7 ALARM interruption processing	. 58
3.5.8 ALARM recovery processing	. 59
4. Development support tool In Circuit Scope	60
4.1 Overview	. 60
4.2 How to use library	. 60
4.3 List of variables for ICS	. 61
Revision History	.63

1. Overview

This application note explains a sample program to support the Sensor-less 120-degrees conducting control of 3-Phase brushless DC motor using RAJ306000, and the method using the library of development support tool "In Circuit Scope". (Note 1).

Note:

 The development support tool In Circuit Scope (ICS) is a product of Desk Top Laboratories Inc. Desk Top Laboratories Inc. (<u>http://www.desktoplab.co.jp/</u>)

1.1 **Development environment**

Development environment of the sample programs are showed in Table 1-1 and Table 1-2.

Table 1-1 Software development environment

Integrated Development Environment	CS+ for CA, CX V3.02.00 [15 Mar 2016]	
Compiler	CA78K0R V1.72	

Integrated Development Environment	CS+ for CC V6.01.00 [01 Dec 2017]	
Compiler	CC-RL V1.06.00	

Integrated Development Environment	e ² studio Version: 5.4.0.015	
Compiler (Toolchain)	CC-RL V1.06.00	

On-chip Debugging Emulator	RENESAS E1 Emulator (R0E000010KCE00)	
Operation Checking Device	RAJ306000 (Note 2)	
RAJ306000 Series Evaluation Board	RTK0EML2A0D00010BJ	

Note:

2. The configuration of RAJ306000 which is a SIP product containing MCU (RL78/G1F) and PreDriver is shown in Figure 1-1.

Figure 1-1 RAJ306000

2. System overview

Overview of RAJ306000 system is shown in Figure 2-1.

Figure 2-1 System configuration

2.1 Hardware configuration

Hardware configurations are shown below:

Figure 2-2 Hardware connection of between RL78/G1F and PreDriver.

Note: These are the hardware blocks highlighted in RED in Figure 2-1.

Figure 2-3 Hardware connection of between RL78/G1F and Peripheral.

Note: These are the hardware blocks highlighted in YELLOW in Figure 2-1.

Figure 2-2 Hardware Configuration Diagram (RL78/G1F, PreDriver)

RAJ306000 Ev	aluation Board				
_RAJ3060	00	_			
LED	output				
P01]	LED output1		
POC]	LED output2		
P14	1		LED output3		
P14	0		LED output4		
P43			LED output5(option)		
P42			LED output6(option)		
P31					LED right output(option)
Toggle	SW input				
P12	²				CW/CCW switch
P63					Trigger SW input
Push S	/W input	1			(rotation ON/OFF in ICS mode)
P62]	Mode change input(option)	ר	
				-	
	g input				
	ANI6				Trigger level input/volume
P25	ANI5				Sensor board thermistor(option)
P23	ANI3		VM voltage monitor		
P21	/ANI1		Thermistor for MOS FET		
			(option)		
	ANIO		 Thermistor for RAJ306000GFT 		
UART	(for ICS)	1			
POS	3/RxD1	1			
	2/TxD1	1			ICS
SPIO		1			
	(for CS)	1			
	5/SCK01				
					SPI01 interface (option)
	s/S001				
IICA					
)/SCLAO				IICAO interface
P61	/SDAA0	┟─┼			- (option)

Figure 2-3 Hardware Configuration Diagram (RL78/G1F, Peripheral)

2.2 Hardware specifications

2.2.1 User interface

List of user interfaces of this system is shown in Table 2-1.

Item	Interface component	Function	
Rotation direction	Selector switch of CW/CCW (SW1) or ICS	Input of rotation direction (CW/CCW)	
Detetion anod	Input of trigger level/volume (V/D4)	Rotation speed command value input	
Rotation speed	Input of trigger level/volume (VR1)	(analog value)	
START/STOP	Input of trigger level/volume (VR1) or ICS	Motor rotation start/stop command	
	LED output1	At the time of normal operation: OFF	
		At the time of error detection: ON	
	LED output2	At the time of stop: OFF	
		At the time of Motor rotation: ON	
	LED output3	Rotation speed under 1500[rpm]: OFF	
RED LED		Rotation speed over 1500[rpm]: ON	
	LED output4	Rotation speed under 3000[rpm]: OFF	
		Rotation speed over 3000[rpm]: ON	
	LED output5	At the time of normal operation: OFF	
		At the time of error detection: ON	
		At the time of normal operation: OFF	
	LED output6	At the time of error detection: ON	
Over voltage and under	VM voltage detection	VM voltage measurement (input)	
voltage detection			

Table 2-1 User Interface

List of interfaces of RL78/G1F micro controller of this system is shown in Table 2-2.

Terminal name	Function	
P27/ANI7	PreDriver voltage measurement (input)	
P10/TRDIOD1	Port output or PWM output (W _n)	
P11/TRDIOC1	Port output or PWM output (Vn)	
P12/TRDIOB1	Port output or PWM output (W _p)	
P13/TRDIOA1	Port output or PWM output (V _p)	
P14/TRDIOD0	Port output or PWM output (Un)	
P15/TRDIOB0	Port output or PWM output (U _p)	
P55/INTP4	ALARM signal input	
P54	Select for measurement of W phase Back EMF (electromotive force)	
P53	Select for measurement of V phase Back EMF	
P52	Select for measurement of U phase Back EMF	
P51/SO00	SPI data output for PreDriver control	
P50/SI00	SPI data input for PreDriver control	
P30/SCK00	SPI clock output for PreDriver control	
P05 (CS)	SPI chip selection for PreDriver control	
P06/TRJIO0	System clock output for PreDriver	
VSS	Ground voltage	
VDD	Positive power supply	
P146, P16/TRDIOC0, P17/TRDIOA0	Unused terminal	
P01	LED output1 ON/OFF control	
P00	LED output2 ON/OFF control	
P141	LED output3 ON/OFF control	
P140	LED output4 ON/OFF control	
P43	LED output5 ON/OFF control	
P42	LED output6 ON/OFF control	
P122	For rotation direction command value input (CW/CCW)	
	For rotation speed command value input (Analog value)	
P26/ANI6	Motor rotation start/stop command	
P23/ANI3	VM voltage measurement (input)	
P03/RxD1	UART input for ICS	
P02/TxD1	UART output for ICS	
P31, P63, P62, P25/ANI5, P21/ANI1, P20/ANI0		
P76 (CS), P75/SCK01, P74/SI01, P73/SO01	Unused terminal	
P60/SCLA0, P61/SDLA0		

Table 2-2 Port Interfa	ce (RL78/G1F)
------------------------	---------------

List of interfaces of PreDriver of this system is shown in Table 2-3.

Terminal name	Function	
ISENADIN	PreDriver voltage output	
TOINF	Motor control signal input (W _n)	
TOINE	Motor control signal input (V _n)	
TOINC	Motor control signal input (W _p)	
TOINB	Motor control signal input (V _p)	
TOIND	Motor control signal input (U _n)	
TOINA	Motor control signal input (U _p)	
ALARM	ALARM signal output	
HIC_W	Select for measurement of W phase Back EMF	
HIC_V	Select for measurement of V phase Back EMF	
HIC_U	Select for measurement of U phase Back EMF	
SI	Data input for SPI control	
SO	Data output for SPI control	
SCLK	Clock input for SPI control	
CS	Chip select input for SPI control	
CLK	System clock input	
LD, TOINH, TOING	Unused terminal	
VM	Power Supply	
UHOUT	U phase High-Side Driver (Nch) driving output	
U	For U phase detection	
ULOUT	U phase Low-Side Driver (Nch) driving output	
VHOUT	V phase High-Side Driver (Nch) driving output	
V	For V phase detection	
VLOUT	V phase Low-Side Driver (Nch) driving output	
WHOUT	W phase High-Side Driver (Nch) driving output	
W	For W phase detection	
WLOUT	W phase Low-Side Driver (Nch) driving output	
ISENP	Shunt resistance Plus side connection	
ISENN	Shunt resistance Minus side connection	
	Shunt resistance Minus side connection GND for the output stage circuit of PreDriver	
ISENN		
ISENN DrvGND	GND for the output stage circuit of PreDriver	

Table 2-3	Port Interface	(PreDriver)

2.2.2 **Peripheral functions**

List of peripheral functions used in this system is shown in Table 2-4.

Peripheral function	Usage
	Rotation speed command value input (analog value)
	Voltage measurement (Back EMF measurement/VM voltage
A/D converter	measurement)
	Current measurement
	Option: temperature measurement
	For rotation direction command value input (CW/CCW)
	Select of phase for Measurement of Back EMF
General-purpose port	Motor control signal output: port output
	LED output ON/OFF control
	Option: LED right output, toggle switch input / push switch input
Timer Array Unit	500[us] interval timer
Timer Array Onit	Free run timer for rotation speed measurement
Timer RJ	System clock output for PreDriver
Timer RD	Motor control signal output: PWM output using complimentary PWM
	mode (six outputs)
External interruption	ALARM signal detection
	SPI00 (for PreDriver control)
Communication interface	UART1 (for ICS)
	option: SPI01, IICA0

Table 2-4 Peripheral Functions List

(1) A/D converter

The rotation speed command value input (Analog value) and voltage are measured by using 'A/D converter'.

A/D conversion is set channel selection mode to 'Select mode' and conversion operation mode to 'One shot conversion mode' (use software trigger).

Conversion speed of the A/D converter is 2.375[us] per channel and the smallest unit of conversion input value is shown in Table 2-5.

ltem	Control value for A/D converter 1 bit	Channel
Rotationspeedcommandinput(analog value)	5.56[rpm] step (rotation speed range is 1100[rpm] to 4290[rpm] for both CW/CCW)	ANI6
Voltago mogouromont	VM voltage measurement: 45.9[V] / 1024 = 0.045[V]	ANI3
Voltage measurement	Back EMF Note 3 measurement: 5[V] / 1024 = 0.0049[V]	ANI7
Current measurement	Current ^{Note 3} measurement: 200[A] / 1024 = 0.195[A]	ANI7

Table 2-5 A/D converter

Note:

3. The Back EMF and current can be measured by switching a signal to be converting A/D by setting of ADC Selector Register (ADC_SEL) of the pre-driver side. The Back EMF can measure by sets "1" (Enable the measure of Back EMF) in BEMF_MODE_SEL of Hall Signal Processing Setting Register (HALL_SIG), and be sets 0x03 (Detection of BEMF Amp level) in ADC_SEL. The electric current measurement can reflect the control value by sets 0x01 (Detection of the current (ISENSE)) in ADC_SEL.

Please refer to "RAJ306000 Series User's Manual: Hardware (R18UZ0066EJ0100)" about the details.

(2) General-purpose port

Possible to select of Phase for Measurement of Back EMF to detect a Back EMF in a general-purpose port. When Detect Back EMF was operated, A potential difference of the chosen phase for Measurement of Back EMF and the Imaginary center tap (Common of motor) voltage converts by ADC, and a pre-driver judges whether higher than Imaginary center tap. Data of Back EMF can acquire from an A/D conversion level of ANI7 by set a general-purpose port of Measurement phase of Back EMF for detecting Back EMF to High.

In addition, Select of Phase for Measurement of Back EMF becomes effective by "1" (Select of Sensorless) be set in a bit of HALL_MODE_SEL of Hall Signal Processing Setting Register (HALL_SIG) of the pre-driver.

Combination of Select of Phase for Measurement of Back EMF and general-purpose ports in this system is shown in Table 2-6.

Table 2-6 Select of Phase for Measurement of Back EMF and General-purpose port

Terminal name	Select of phase for Measurement of Back EMF
P52	U phase
P53	V phase
P54	W phase

Also, this system output a motor control signal along with the PWM output using the port output function. Combination of Motor control signal output and general-purpose ports are shown in Table 2-7.

Terminal name	Motor control signal
P10/TRDIOD1	W _n
P11/TRDIOC1	Vn
P12/TRDIOB1	W _p
P13/TRDIOA1	Vp
P14/TRDIOD0	Un
P15/TRDIOB0	Up

Table 2-7 General-purpose port and motor control signal output

Note:

Please refer to "RL78/G1F User's Manual: Hardware (R01UH0516EJ0110)" about the notes when switching a general-purpose port from input mode to output mode,

(3) Timer Array Unit

· 500[us] Interval timer

500[us] interval timer uses 'Interval timer function' of Timer Array Unit. In this system, channel 0 is used.

Free-run timer for rotation speed measurement

Free-run timer for rotation speed measurement uses 'Interval timer function' of Timer Array Unit. However, it does not use the interruption. In this system, channel 1 is used.

Also, in this system, channel 2 and channel 3 are not used.

(4) Timer RJ

Using the pulse output mode, it outputs a 4 MHz square wave and supplies it as System clock for PreDriver.

(5) Timer RD

Using the Complementary PWM mode, it output (6-wire) a three-phase PWM with a triangle wave modulation and a short circuit preventive time.

In this system, support the PWM output of High active. (PWM frequency is 100[us]) In case of detect the ALARM (At the time of Input of Low signal to INTP4 port), PreDriver output signal will be change to Hi-Z (Output terminal value for Motor control signal becomes set to Low)

The combination of timer output and motor control signal are shown in Table 2-8.

Table 2-8 timer output terminal and motor	control signal output
---	-----------------------

Terminal name	Motor control signal
P10/TRDIOD1	W _n
P11/TRDIOC1	V _n
P12/TRDIOB1	W _p
P13/TRDIOA1	V _p
P14/TRDIOD0	Un
P15/TRDIOB0	U _p

(6) Interruption

List of interruptions in this system is shown in Table 2-9.

Table 2-9 Interruption

Interruption name	Interruption source
P55/INTP4	ALARM signal detection
INTTM00	500[us] Interval timer
INTTRD0	Carrier frequency (PWM)
INTTRD1	Carrier frequency (Underflow)
INTCSI00	Complete of SPI00 communication for PreDriver control

2.3 Software structure

2.3.1 Software file structure

Folders and files structure of the sample program is shown in Table 2-10 and Table 2-11.

	RAJ306000_LESS_120_OPEN_CSP_CA_V103 RAJ306000 LESS 120 OPEN CSP CC V103		
RAJ306000_LESS_120_OPEN_E2S_CC_V103			
Inc	control_parameter.h	Header for control characteristic dependent processing part	
	motor_parameter.h	Header for motor characteristic dependent processing part	
	mtr_common.h	Header for Common definition	
	mtr_ctrl_rl78g1f.h	Header for RL78/G1F dependent processing part	
	mtr_ctrl_rl78g1f_t2001.h	Header for RL78/G1F & Board dependent processing part	
	mtr_ctrl_t2001.h	Header for Board dependent processing part	
	mtr_main.h	Main function, Header for user interface control	
	mtr_spm_less_120_cpm.h	Header of Sensor-less 120-degrees conducting control dependent part	
	r_dsp.h	Header for operation library	
	r_less_120_is.h	Header for inductive sense library	
	r_less_120_isw.h	Header for RL78/G1F dependent processing part	
	r_stdint.h	Header for operation library	
	version.h	Header of software revision	
ics	ICS2_CA_RL78G1F.lib	Library for ICS (for CA78K0R) (Note 4)	
	ICS2_CC_RL78G1F.lib	Library for ICS (for CC-RL) (Note 5)	
	ics2_RL78G1F.h	Header for ICS	
	RL78_vector.c	Interrupt handler for ICS	
	RL78_vector.h	Interrupt handler header for ICS	
lib	ICS2_CA_RL78G1F.lib	Library for ICS (for CA78K0R) (Note 4)	
	ICS2_CC_RL78G1F.lib	Library for ICS (for CC-RL) (Note 5)	
	r_less_120_is_ca.lib	Library for inductive sense (for CA78K0R) (Note 4)	
	r_less_120_is_cc.lib	Library for inductive sense (for CC-RL) (Note 5)	
src	mtr_ctrl_rl78g1f.c	RL78/G1F dependent processing part	
	mtr_ctrl_rl78g1f_t2001.c	RL78/G1F & Board dependent processing part	
	mtr_ctrl_t2001.c	Board dependent processing part	
	mtr_interrupt.c	Interrupt handler	
	mtr_main.c	Main function, user interface control	
	mtr_spm_less_120_cpm.c	120-degrees conducting control (using Sensor-less) dependent part	
	r_less_120_isw.c	RL78/G1F dependent processing part	

Table 2-10 Folder and Files Structure of Sample Program (1)

Note:

- 4. "For CA78K0R" is included only in RAJ306000_LESS_120_OPEN_CSP_CA_V103.
- 5. "For CC-RL" is included only in RAJ306000_LESS_120_OPEN_CSP_CC_V103 and RAJ306000_LESS_120_OPEN_E2S_CC_V103.

	RAJ306000_LESS_120_OPEN_CSP_CA_V103 RAJ306000 LESS 120 OPEN CSP CC V103		
	RAJ306000_LESS_120_OPEN_E2S_CC_V103		
cg_src	r_cg_adc.c	RL78/G1F ADC processing	
	r_cg_adc.h	RL78/G1F header of ADC processing	
	r_cg_adc_user.c	RL78/G1F ADC processing (for User)	
	r_cg_cgc.c	RL78/G1F clock output processing	
	r_cg_cgc.h	Header for RL78/G1F clock output processing	
	r_cg_cgc_user.c	RL78/G1F clock output processing (for User)	
	r_cg_intp.c	RL78/G1F interrupt function processing	
	r_cg_intp.h	Header for RL78/G1F interrupt function processing	
	r_cg_intp_user.c	RL78/G1F interrupt function processing (for User)	
	r_cg_macrodriver.h	Header for RL78/G1F Error definition	
	r_cg_main.c	RL78/G1F main processing	
	r_cg_main.h	Header for RL78/G1F main processing	
	r_cg_port.c	RL78/G1F port function processing	
	r_cg_port.h	Header for RL78/G1F port function processing	
	r_cg_port_user.c	RL78/G1F port function processing (for User)	
	r_cg_predrv.c	PreDriver processing	
	r_cg_predrv.h	Header for PreDriver processing	
	r_cg_predrv_prm.h	Header for PreDriver register parameter definition	
	r_cg_predrv_reg.h	Header for PreDriver register address definition	
	r_cg_predrv_user.c	PreDriver processing (for User)	
	r_cg_sau.c	RL78/G1F Serial array unit processing	
	r_cg_sau.h	Header for RL78/G1F Serial array unit processing	
	r_cg_sau_user.c	RL78/G1F serial array unit processing (for User)	
	r_cg_systeminit.c	RL78/G1F initial processing	
	r_cg_tau.c	RL78/G1F timer array unit processing	
	r_cg_tau.h	Header for RL78/G1F timer array unit processing	
	r_cg_tau_user.c	RL78/G1F timer array unit processing (for User)	
	r_cg_tmrd.c	RL78/G1F timer RD processing	
	r_cg_tmrd.h	Header for RL78/G1F timer RD processing	
	r_cg_tmrd_user.c	RL78/G1F timer RD processing (for User)	
	r_cg_tmrj.c	RL78/G1F timer RJ processing	
	r_cg_tmrj.h	Header for RL78/G1F timer RJ processing	
	r_cg_tmrj_user.c	RL78/G1F timer RJ processing (for User)	
	r_cg_userdefine.h	Header for RL78/G1F user definition	
	r_cg_wdt.c	RL78/G1F watch dog timer processing	
	r_cg_wdt.h	Header for RL78/G1F watch dog timer processing	
	r_cg_wdt_user.c	RL78/G1F watch dog timer processing (for User)	

Table 2-11 Folder and Files Structure of Sample Program (2)

2.3.2 Module structure

Module structure of the sample program is described on Figure 2-4.

The relationship between module and file are shown in Table 2-12.

Figure 2-4 Hierarchical Structure of Sample Program

Table 2-12 Hierarchical structure of Sample Program

Application layer	mtr_main.c	
Motor control layer	mtr_interrupt.c, mtr_spm_less_120_cpm.c, r_less_120_is_*.lib	
	mtr_ctrl_rl78g1f.c, mtr_ctrl_rl78g1f_t2001.c, mtr_ctrl_t2001.c, r_less_120_isw.c,	
	r_cg_adc.c, r_cg_adc_user.c, r_cg_cgc.c, r_cg_cgc_user.c,	
	r_cg_intp.c, r_cg_intp_user.c, r_cg_main.c,	
H/W control layer	r_cg_port.c, r_cg_port_user.c, r_cg_predrv.c, r_cg_predrv_user.c,	
	r_cg_sau.c, r_cg_sau_user.c, r_cg_systeminit.c,	
	r_cg_tau.c, r_cg_tau_user.c, r_cg_tmrd.c, r_cg_tmrd_user.c,	
	r_cg_tmrj.c, r_cg_tmrj_user.c, r_cg_wdt.c, r_cg_wdt_user.c	

2.4 Software specifications

Basic specifications of software of this system are shown in Table 2-13 and Figure 2-5.

Item	Content
Control method	120-degrees conducting method
Motor rotation start/stop	Motor start/stop control is determined depending on the level of VR1(AIN6 terminal).
	Input from ICS (Note 6)
Rotation direction control	Rotation direction command value (CW/CCW) control is determined depending on
	the level of SW1 (P122 terminal).
	Input from ICS (Note 6)
Rotation Speed control	Rotation speed command value is determined from input voltage of VR1 (ANI6
	terminal).
	Control the PWM duty proportional to the rotation speed command value with 0 to
	100[%]
Rotation speed control range	1100[rpm] to 4290[rpm] for both CW/CCW
Detecting of magnetic pole position of rotor of electric motor	Every electric angle position of 30 degrees from Zero Cross position of Back EMF.
'	(Every electric angle 60 degrees)
Carrier frequency (PWM)	10[KHz]
Control cycle/Rotation speed	Every electric angle position of 30 degrees from Zero Cross position of Back EMF.
operation	(Every electric angle 60 degrees)
	Determination of PWM duty setting and Conducting pattern
	$\boldsymbol{\cdot}$ Calculate rotation speed from the difference value with the counter level of before
	1 rotation (360 degrees)
Processing stop for protection	Output terminal of Motor control signal is set to Low state at the time of detect the
	below errors.
	ALARM error
	Over voltage error
	Rotation speed abnormal error
	Timeout error
	Current pattern error
	Error of detection for Back EMF
	Under voltage error

Table 2-13 Software Basic Specifications

Note:

6. Please refer to the "4 Development support tool In Circuit Scope" about details.

3. **Descriptions of control program**

The target sample programs of this application note are explained here.

3.1 **Contents of control**

3.1.1 Motor start / stop

Starting and stopping of the motor are controlled by input from VR1 and SW1. An analog input port (ANI6) is assigned to VR1. The input is A/D converted within the main loop to calculate Rotation speed command value. Program is judged that Motor was started at the time of the command value is more than 1200[rpm]. and Program is judged the motor was stopped at the time of the command value is less than 1100[rpm].

General-purpose port (P122 terminal) is assigned to SW1 and, in main loop, acquires a High/Low state of the P122 terminal and assumes it a rotation direction command value. The rotation direction is judged from a rotation direction command value.

3.1.2 Rotation direction command value, Rotation speed command value, VM voltage.

(1) Rotation direction command value

Rotation direction command value can be set by high/low state of SW1 or input information from ICS.

(2) Rotation speed command value

Rotation speed command value can be set by A/D conversion of the VR1 output value (Analog value). Set VR1 output value converted A/D to the rotation speed command value.

VR1 value that A/D converted is used to Rotation speed command value as shown below (Table 3-1).

Table 3-1 Conversion Ratio of the Rotation Speed Command Value

Item	Conversion ratio (Command value: A/D conversion value)	Channel
Rotation speed command value	1100[rpm] to 4290[rpm]: 03FFH to 0000H	ANI6

(3) VM voltage

It is used for detection of over voltage and under voltage. (When an abnormality is detected, PWM is stopped.) Conversion ratio of VM voltage value is shown in Table 3-2.

Table 3-2 Conversion Ratio of VM Voltage

Item	Conversion ratio (VM voltage: A/D conversion value)	Channel
VM voltage	0.0[V] to 45.9[V]: 0000H to 03FFH	ANI3

3.1.3 Rotation speed calculation

After having let channel 1 of the timer array unit make a free run, a counter level of the timer at the time of a position of 30 degrees electric angle from Zero Cross position of Back EMF is acquired, and calculate a rotation speed of motor from the difference share of the counter level before 1 rotation (360 degrees). Additional, Processing of LPF (low-pass filter) is carried out about this calculation result data. Calculation Method (Conceptual diagram) of rotation speed is shown in Figure 3-1.

Figure 3-1 Rotation Speed Calculation Method

3.1.4 Voltage control by PWM

PWM control is used for the output voltage control. The PWM control is a control method that continually adjusts the average voltage by varying the duty of pulse, and PWM control is controlled by value that PWM duty value is proportional to Rotation speed command value. Conception diagram of the PWM control is shown Figure 3-2.

Figure 3-2 PWM control

Chopping control is adopted at the first 60 degrees in this system and output voltage and speed are controlled. An example of motor control signal output waveforms at the time of complementary first 60 degrees chopping is shown in Figure 3-3.

Figure 3-3 Complimentary first 60 degrees chopping

3.1.5 Back EMF detection and Current detection

The Back EMF detection method supports following two ways. As for one, when PWM Duty level is less than 50[%], A/D conversion is executed the Back EMF detection (Regeneration period) in a time regeneration of Motor. Another, when PWM Duty level is more than 50[%], A/D conversion is executed the Back EMF detection (Current period) in a time drive of Motor. Back EMF detection timing is shown in Figure 3-4 and Figure 3-5.

Because the current detection is outputted data with a terminal same as Back EMF detection. It is necessary to switch a circuit function of the pre-driver in ADC_SEL (ADC Selector Register). After this, switch to Back EMF Detection in ADC_SEL and prepare for Back EMF detection. Since, switch ADC_SEL of Current detection and Back EMF detection and measure at the time of rotate the motor. This change has to carry out without depending on the level of PWM Duty. Current detection timing is shown in Figure 3-4 and Figure 3-5.

Figure 3-4 Back EMF detection (Regeneration period) and timing of Current detection (PWM Duty < 50[%])

Figure 3-5 Back EMF detection (Current period) and timing of Current detection (PWM Duty >= 50[%])

3.1.6 State transition

State transition diagrams of the sample programs are shown in Figure 3-6.

Figure 3-6 State Transition Diagram

3.1.7 Start method of Motor by Sensor-less

Sensor-less 120-degrees control is based on the estimation of the position of the magnetic pole at every 60 degrees using Back EMF by the change of the magnetic flux of the permanent magnet (rotor). However, the Back EMF is generated by rotation of the motor. Therefore, it is necessary to detect the position of the magnetic pole without using Back EMF during the motor startup.

Therefore, Inductive Sense sequence is used by which magnetic pole position detects by injecting an electricity pattern. Same concept is used during motor stops where the position of the permanent magnet is detected independent of Back EMF.

Once the Back EMF is induced, the control switches from inductive sense sequence to Back EMF based control, Back EMF of each phase is detected, and the phase of the Hi-Z state is judged. The detection control of the Hi-Z state is carried out, and an electricity pattern is decided. Back EMF detection (motor drive) is carried out by this electricity pattern information.

Zero cross position of Back EMF compares the center level of Back EMF with Back EMF, and it is determined. In a timing to change it to the electricity pattern of next a phase is decided by calculating the time of the electric angle 30 degrees position from the Zero cross position of the Back EMF. Because this sequence continuous operation after this time passed, the rotation control of the motor is carried out.

U phase is detected in the detection movement of the Hi-Z state by a sequence of Back EMF, and the example which a motor rotation is controlled is shown in Figure 3-7 start methods.

Figure 3-7 Example for Motor rotation control

3.1.8 System protection function

This system has below error condition. Emergency stop function is operate as each condition of the following. Each set value related to the system protection function is shown in Table 3-3.

ALARM error

Emergency stop is performed by setting the output of PreDriver to the high impedance state (Output terminal signal for motor control is Low state) by the emergency stop signal (ALARM detection) from PreDriver.

Over voltage error

When an over voltage is detected (when the voltage exceeds the limit value) in VM voltage on a cycle of over voltage detection, System is performed an emergency stop.

Rotation speed abnormality error

When the rotation speed exceeded the limit value on a cycle of the rotation speed detect operation, System is performed an emergency stop.

Timeout error

When an interval time by a switch of Motor control signal is not switch for over Timeout limit value at Time out error monitoring period, System is performed an emergency stop.

Current pattern error

When detecting an error pattern while monitoring the current pattern every time the motor control signal is switched, System is performed an emergency stop.

Back EMF detection error

Even if the processing time of Back EMF sequence exceeds time-out time in a monitoring period of Back EMF detection error, when sequence is not shifted, a system urgently stops.

Under voltage error

When an under voltage is detected (when the voltage less than the limit value) in VM voltage on a cycle of under voltage detection, System is performed an emergency stop.

Error Condition		Setting value
	Over voltage limit value	30[V]
Over voltage error	Monitoring interval	100[us]
	Rotation speed limit value	4290[rpm]
Rotation speed abnormality error	Monitoring interval	100[us]
Timeout error	Timeout setting	20[ms]
Deals EME data stice Error	Timeout setting	250[ms]
Back EMF detection Error	Monitoring interval	100[us]
	Under voltage limit value	6[V]
Under voltage error	Monitoring interval	50[us]

Table 3-3 Setting value for Protect function of each system

3.1.9 System protect function (PreDriver safety function)

The PreDriver safety function can be enabled / disabled with the ALARM operation setting register (ALMOPE).

Please refer to the data sheet about details.

3.2 Function specifications

Lists of control functions are shown in Table 3-4 and Table 3-5.

File name	Function overview	Processing overview
mtr_main.c	main()	Hardware initialization function call User interface initialization function call
	input: none	Main function use variable initialization
	output: none	function call
		Status transition and event execution
		function call
		 Main function Main processing execution function call
		- Execution of Sensor-less processing
		- Watchdog timer clear function call
	ctrl_ui()	Change Motor status
	input: none	 Determination of rotation speed command value and rotation direction command value
	output: none	
	ics_ui()	Change Motor status
	input: none	Determination of rotation speed command
	output: none	value and rotation direction command value
	ctrl_led()	Control the output pattern of ON/OFF for LED
	input: none	
	output: none	
	ics_predrv_reg_ctrl()	Control for PreDriver register read/write from
	input: none	ICS
	output: none	
	mcu_sw_init()	Initialization of F/W
	input: none	 initialization of inductive sense library
	output: none	 initialization of F/W variables
		 initialization of ICS
		 initialization of sequence processing
		execution of RESET event
	software_init()	Initialization of variables used in the main
	input: none	function
	output: none	
	ctrl_sensorless()	Sensor-less processing
	input: none	Main process of inductive sense
	output: none	Start-up of sequence for Back EMF
		Setting of Motor drive control
mtr_ctrl_rl78g1f.c	clear_wdt()	Clear Flag for the watchdog timer
0	input: none	с с
	output: none	
	mtr_clear_oc_flag()	Clear Flag for the pulse output forced shutdown
	input: none	
	output: none	
	mtr_clear_trd0_imfa()	Clear Flag for the TRD0 Compare match
	input: none	(IMFA)
	output: none	
	mtr_clear_trd1_udf()	Clear Flag for the TRD1 Underflow (UDF)
	input: none	
	output: none	

Table 3-4 List of Control Functions (1)

mtr_ctrl_rl78g1f_t2001.c	mtr_ctrl_start()	Motor startup processing
	input: none	
	output: none	
	mtr_ctrl_stop()	Motor stop processing
	input: none	
	output: none	
	mtr_change_pattern()	Change the motor control signal output
	input: Conduction pattern	Setting a conducting pattern
	output: none	 Setting select of phase for measurement of Back EMF
		Setting of the kind of the conducting pattern
		by PWM Duty
		 Changing the motor status when a conducting
		pattern error occurs
		Event processing selection function call
	mtr_get_adc()	Processing execution of the A/D convert
	input: A/D channel	
	output: A/D conversion result	
mtr_ctrl_t2001.c	get_vr1()	Obtain of the A/D conversion value of the trigger
	input: none	level
	output: A/D conversion result of	
	VR1	
	led_on()	Turning LED ON
	input: LED channel number	
	output: none	
	led_off()	Turning LED OFF
	input: LED channel number	
	output: none	
mtr_interrupt.c	mtr_alarm_interrupt()	ALARM interrupt processing
	input: none	Change motor status
	output: none	Function call for selection of an event
		processing
		Function call for clear of flag of a forced
		interception of the pulse output
	mtr_tau0_interrupt()	500[us] interrupt processing
	input: none	Judgement processing for switching Operation mode
	output: none	Operation mode. Interrupt processing by a carrier frequency
	mtr_carrier_interrupt()	A/D conversion of detection data for Back
	input: none	EMF value and Current value
	output: none	 SPI communication for switching of detection for Back EMF value and Current
		value
		Detection sequence for Back EMF
		Setting for the conducting pattern
		Waiting for motor rotation stop Function call for Error check
	mtr_carrier_udf_interrupt()	Underflow interrupt processing by a carrier
	input: none	frequency
		A/D conversion of detection data for Back
	output: none	EMF value and Current value SPI communication for switching of
		detection for Back EMF value and Current
		value

mtr_spm_less_120_cpm.c	R_MTR_InitSequence() input: none	Initialization of sequence processing
	output: none	
	R_MTR_ExecEvent()	Execute to change the status.
	input: occurred event	Call execution function of suitable
	output: none	processing for the event.
		Variable initialization function call upon
	mtr_act_run() input: motor status	motor
	output: motor status	startup
		Motor control startup function call
	mtr_act_stop()	Motor control stop function call
	input: motor status	
	output: motor status	
	mtr_act_none()	No processing is performed.
	input: motor status	
	output: motor status	Initialization of Olahal variable for return from
	mtr_act_reset() input: motor status	Initialization of Global variable for return from
	output: motor status	Error state.
		Motor control stop function call at the time of
	mtr_act_error() input: motor status	Motor control stop function call at the time of Error occur.
	output: motor status	
	mtr_pattern_set()	Setting for conducting pattern
	input: Current pattern	Rotation speed measurement function call
	output: none	Determine of Conducting pattern
		 Motor control signal output change function call
	mtr_convert_indsenpat_to_pwmpat()	Processing for switching of Current pattern
	input: Current pattern	5 5 I
	output: Current pattern (Conversion data)	
	mtr_get_bemf_threshold()	Processing for acquire a center value of Back
	input: none	EMF
	output: Center value of Back EMF	
	mtr_get_bemf_threshold_direct()	Processing for acquire a center value of Back
	input: Classification of Back EMF detection. Classification of Hi-Z	EMF
	output: Center value of Back EMF	
	mtr_get_bemf_dir()	Processing for acquire a direction data of
	input: none	Back EMF detection
	output: Direction of Back EMF detection	
	mtr_set_predrv_isense()	Processing for setting of current detection
	input: none	
	output: none	
	mtr_set_predrv_bemf()	Processing for setting of Back EMF detection
	input: none	
	output: none	
	mtr_speed_calc()	Processing of calculation for rotation speed
	input: none	measurement
	output: none	Installanting of the constable that we want to the
	mtr_start_init()	Initialization of the variable that required at the time of motor startup
	input: none	
	output: none	Set Input data at IOC to Desta d'any sedable
	mtr_set_variables()	Set Input data at ICS to Protecting variable.
	input: none output: none	
		Obtaining of data that inputted from the ICS
	R_MTR_IcsInput()	Obtaining of data that inputted from the ICS.
	input: structure of ICS variables	
	output: none	

	P MTP SetSpeed()	Potation around acting	
	R_MTR_SetSpeed() input: rotation speed command value	Rotation speed setting	
		Detetion discritica estimat	
	R_MTR_SetDir()	Rotation direction setting	
	input: rotation direction command value		
	output: none		
	R_MTR_GetSpeed()	Obtaining the rotation speed	
	input: none		
	output: rotation speed information		
	R_MTR_GetDir()	Obtaining the rotation direction.	
	input: none		
	output: rotation direction information		
	R_MTR_GetStatus()	Obtaining the motor status	
	input: none		
	output: motor status mtr_error_check()	Monitoring and Detection of Error	
	input: none	Monitoring and Detection of End	
	output: none		
r_less_120_isw.c	r_isw_set_port()	Set general purpose port (Up, Un, Vp, Vn, Wp,	
	input: general port setting	W _n)	
	output: processing result		
	r_isw_wait()	Wait for a specified time [us]	
	input: specified time		
	output: processing result		
	r_isw_clear_wdt()	Clear watchdog timer	
	input: none	-	
	output: processing result		
	r_isw_get_adc()	Get A/D conversion result (current)	
	input: none		
	output: processing result, A/D conversion		
	result		
r_less_120_is_*.lib	R_IS_Init()	Initialization of library	
	input: none		
	output: processing result		
	R_IS_GetRevision()	Get library revision	
	input: none		
	output: processing result, library revision		
	R_IS_Main()	Main process of inductive sense	
	input: initial values	Execute inductive sense to detect the stop	
	output: processing result, stop position	position	
	super proceeding result, stop position	1	

File name	Function overview	Processing overview	
r_cg_adc.c	R_ADC_Create()	Initialization of A/D converter	
	input: none		
	output: none		
r_cg_adc_user.c	r_adc_interrupt()	SPI communication ADC mode SPI start	
	input: none	judgement	
	output: none		
r_cg_cgc.c	R_CGC_Create()	Initialization of clock frequency (CGC)	
	input: none output: none		
r og inte o		Initialization of outernal interrupt (INTD)	
r_cg_intp.c	R_INTP_Create() input: none	Initialization of external interrupt (INTP)	
	output: none		
r_cg_main.c	R_MAIN_UserInit()	PreDriver startup processing	
	input: none	r rebriver startup processing	
	output: none		
r_cg_port.c	R_PORT_Create()	Initialization of I/O port setting	
_ 0_1	input: none	, ,	
	output: none		
r_cg_predrv.c	predriver_hw_init()	PreDriver initialization setting	
	input: none		
	output: none		
	R_PREDRV_TRIM_Create()	PreDriver trimming data setting	
	input: none		
	output: SPI status		
	R_PREDRV_InitSequence()	PreDriver initialization processing	
	input: none		
	output: none		
	R_PREDRV_	ALARM recovery processing	
	ErrorRecoverySequence()		
	input: ALARM status		
	output: none		
r_cg_predrv_user.c	R_PreDrvReg_Read()	Read processing to PreDriver register	
	input: read address		
	output: SPI status, read data		
	R_PreDrvReg_Write()	Write processing to PreDriver register	
	input: write address, write data		
	output: SPI status		
	R_PreDrvReg_Write_Intr_Mode()	Write processing to PreDriver register	
	input: write address, write data	INTR Mode	
	output: SPI status		
	R_PreDrv_Set_AdcSel()	Setting processing of ADC_SEL	
	Input: Indicate to select of		
	ADC_SEL		
	Output: none		
	R_PreDrv_Set_MotEn()	Setting processing of Motor drive control	
	Input: Indicate to Motor drive	3 3	
	control		
	Output: none		

Table 3-5 List of Control functions (2)

r_cg_sau.c	R_SAU0_Create()	Initialization of serial array unit (SAU)
	input: none	
	output: none	
	R_UART1_Create()	Initialization of UART1
	input: none	
	output: none	
	R_CSI00_Create()	Initialization of SPI communication (for
	input: none	PreDriver communication)
	output: none	,
	R_CSI00_Start()	Startup SPI communication (for PreDriver
	input: none	communication)
	output: none	
	R_CSI00_	SPI communication processing
	Send_Receive_SPI_mode()	
	input: tx buffer	
	buffer size	
	rx buffer	
	SPI mode	
	output: SPI status	
r_cg_sau_user.c	r_csi00_interrupt()	SPI interrupt processing (for PreDriver
_ 0	input: none	communication)
	output: none	, ,
r_cg_systeminit.c	hdwinit()	Initial setting of H/W
	input: none	
	output: none	
r_cg_tau.c	R_TAU0_Create()	Initialization of TAU
	input: none	
	output: none	
r_cg_tmrd.c	R_TMRD0_Create()	Initialization of Timer RD (TRD)
	input: none	
	output: none	
	R_TMRD0_Start()	PWM output start
	input: none	
	output: none	
r_cg_tmrj.c	R_TMRJ0_Create()	Initialization of Timer RJ (TRJ)
	input: none	
	output: none	
	R_TMRJ0_Start()	Start supply a clock for PreDriver
	input: none	
	output: none	
r_cg_wdt.c	R_WDT_Create()	Initialization of Watch dog timer
	input: none	
	output: none	

3.3 Specification of variables

Lists of variables for the sample program are shown in Table 3-6.

Variable name	Туре	Content	Remarks
g_s2_max_speed	int16_t	Rotation speed command maximum value	Mechanical angle [rpm]
g_s2_min_speed	int16_t	Rotation speed command minimum value	Mechanical angle [rpm]
g_s2_margin_min_speed	int16_t	Rotation speed command minimum value for motor stop	Mechanical angle [rpm]
g_s2_ref_speed	int16_t	Setting of rotation speed by user	Mechanical angle [rpm]
g_u2_speed_rpm	uint16_t	Rotation speed calculation value	Mechanical angle [rpm]
g_u1_rot_dir	uint8_t	Setting of rotation direction by user	0: CW 1: CCW
g_u1_motor_status	uint8_t	Management of motor status by user	0: Stop 1: Rotating 2: Error
g_u1_stop_req	uint8_t	Motor stop command flag	Stop is determined when the rotation speed command value is less than 1100[rpm]
g_u1_pdrv_status	uint8_t	Register Read/Write for PreDriver Error status	-
g_u1_err_recovery_req	uint8_t	ALARM recovery processing request flag	0: Disable 1: Enable
g_u1_get_alarm_sts1	uint8_t	PreDriver register ALMSTS1 acquired value	-
g_u1_store_alarm_sts1	uint8_t	PreDriver register ALMSTS1 stored value	-
g_u1_get_alarm_sts2	uint8_t	PreDriver register ALMSTS2 acquired value	-
g_u1_store_alarm_sts2	uint8_t	PreDriver register ALMSTS2 stored value	-
g_u2_fw_revision	uint16_t	F/W Revision information	F/W Version information (103)
g_u2_is_lib_revision	uint16_t	Revision information of Library for inductive sense	Version information of Library for inductive sense (104)
g_s2_sw_userif	int16_t	Flag for switch of Board UI	0: not use Board UI 1: use Board UI
g_s2_mode_system	int16_t	Flag for system mode	0: Stop 1: Motor startup 2: Error 3: Reset
g_s2_enable_write	int16_t	Flag for Write enable of ICS	Toggle operate
ics_input	MTR_ICS_INPUT	Structure for input of ICS	-
g_u2_cnt_boot_mode	uint16_t	Counter for time measurement of Boot mode	500[us] after motor startup is counted.
g_u2_cnt_wait_stop	uint16_t	Motor rotation stop waiting counter	10[ms] after motor stop processing is counted.
g_u1_flg_wait_stop	uint8_t	Flag for waiting time of Motor rotation stop	The flag is set upon receive the stop command of the motor. After the stop processing of motors, this flag is cleared at the time of non-change of the motor control signal between 10[ms].
g_u1_enable_write	uint8_t	Flag for Write enable of Structure for ICS input.	0: Disable 1: Enable
g_s2_vdc_ad	int16_t	A/D value of VM voltage	[V]
g_s2_vdc_dd	int16_t	Inverse of A/D value from VM voltage	-
g_s2_pdrv_ad	int16_t	A/D value of PreDriver voltage	[V]

Table 3-6 List of Variables

120 degrees conducting control by Sensor-less drive

RAJ306000 implementation guide

g_s2_pwm_duty	int16_t	Setting value of Timer RD compare register	PWM Duty setting value: 0 to 3198 PWM Duty [%]: 0 to 100
g_s2_ref_speed_rad	int16_t	Rotation speed command value	Electrical angle (Scale: Q2) [rad/s]
g_s2_speed_rad	int16_t	Rotation speed calculation value	Electrical angle (Scale: Q2) [rad/s]
g_s2_speed_lpf_k	int16_t	Rotation speed LPF parameter	-
g_u1_cnt_ics	uint8_t	Counter for interval of ICS function call	-
g_u2_run_mode	uint16_t	Operation mode management	0: Boot mode 3: Normal operation (LESS 120) mode
g_u1_error_status	uint8_t	Error status management	0x01: ALARM error 0x02: Over voltage error 0x04: Rotation speed abnormality error 0x08: Timeout error 0x10: Current pattern error 0x20: Back EMF detection error 0x40: Under voltage error (0x80: Undefined error)
g_u1_mode_system	uint8_t	Management of system mode	0: Stop, 1: Run, 2: Error
g_u1_v_pattern	uint8_t	Conducting pattern	-
g_u2_cnt_timeout	uint16_t	Stop determination time measurement counter	Cleared when the conducting pattern is switched.
g_u1_direction	uint8_t	Rotation direction management	0: CW
			1: CCW
g_u2_less_timer_cnt	uint16_t	Free run timer count value	TCR01
g_u2_pre_less_timer_cnt	uint16_t	Previous of free run timer count value	-
g_s2_timer_cnt_ave	int16_t	Rotation speed measurement timer count difference for 2 Pi	-
g_u2_timer_cnt_buf	uint16_t	Buffer of a timer count for measurement of Rotation speed	-
g_u2_timer_cnt_num	uint16_t	Buffer numbers of a timer count for measurement of Rotation speed	-
ics_input_buff	MTR_ICS_INPUT	ICS input variable structure	-
g_s2_ref_speed_rpm_vr1	int16_t	Rotation speed command value	Mechanical angle [rpm]
g_u1_alarm_sts1	uint8_t	PreDriver register ALMSTS1 stored value	For ICS display
g_u1_alarm_sts2	uint8_t	PreDriver register ALMSTS2 stored value	For ICS display
g_u1_PreDriver_error	uint8_t	PreDriver sequence error status	PreDriver initial sequence ALARM recovery sequence
g_spi00_comend_flag	uint8_t	SPI communication condition flag	TURE: communication end FALSE: connecting
g_spi00_adcend_flag	uint8_t	SPI communication ADC End flag	TURE: ADC end FALSE: ADC executing
g_spi00_commode	uint8_t	SPI communication mode	-
gp_csi00_rx_address	uint8_t	SPI communication receives data address	Obtain of PreDriver register value
g_csi00_rx_length	uint16 t	SPI communication receives data length	-
g_csi00_rx_count	uint16_t	SPI communication receives counter	-
gp_csi00_tx_address	uint70_t	SPI communication transmission data address	Designation of PreDriver register
g_csi00_send_length	uint16_t	SPI communication transmission data length	-
g_csi00_tx_count	uint16_t	SPI communication transmission counter	-
g_u1_sensorless_mode	 uint8_t	Management of Sensor-less mode	-
g_u1_bemf_mode	uint8_t	Management of Back EMF detection mode	-
<u> </u>	uint8_t	Management of sequence number for Back EMF	-
a u1 bemf sea	uino i		
g_u1_bemf_seq g_u1_indsen_signal	uint8_t	Position of Inductive sensing pattern	Current pattern

120 degrees conducting control by Sensor-less drive

RAJ306000 implementation guide

g_s2_bemf_ad_now	int16_t	A/D conversion value of Back EMF detection value on this time.	-
g_s2_bemf_time_cnt	int16_t	Count value of waiting for Back EMF detection.	-
g_s2_bemf_time_fg_calc_pre	int16_t	Count value for Electric angle 60 degrees of Back	-
0_* _** _**** <u>0_</u> ****	_	EMF detection on the last time.	
g_s2_bemf_time_fg_calc_now	int16_t	Count value for Electric angle 60 degrees of Back	-
		EMF detection on this time.	
g_s2_bemf_time_a_cnt	int16_t	Count value for "a" of Back EMF detection.	-
g_s2_bemf_time_a_cnt_pre	int16_t	Count value of "a" for Back EMF of before over a	-
		Center value of Back EMF detection.	
g_s2_bemf_time_b_cnt	int16_t	Count value for "b" of Back EMF detection.	-
g_s2_bemf_time_b_cnt_now	int16_t	Count value of "b" for Back EMF of after over a	-
		Center value of Back EMF detection.	
g_s2_bemf_time_fg_cnt	int16_t	Count value of waiting for Electric angle 30 degrees of Back EMF detection	Using for judgement of switch by Conducting pattern.
g_s2_bemf_fg_th_pre	int16_t	Threshold of count for waiting at Electric angle 30 degrees of Back EMF detection on the last time.	-
g_s2_bemf_fg_th_now g_s2_bemf_calc_pre	int16 t	Threshold of count for waiting at Electric angle 30	Using for judgement of switch by
	intro_t	degrees of Back EMF detection on this time.	Conducting pattern.
	int16_t	Calculation value of Back EMF detection on the	-
		last time	
g_s2_bemf_calc_now	int16_t	Calculation value of Back EMF detection on this	-
		time	
g_u1_bemf_pwm_phase	uint8_t	Classification of Conducting pattern	0: Regeneration for High side
			1: Regeneration for Low side
g_s2_bemf_timeout_cnt	int16_t	Count value for time out of Back EMF detection	-
g_s2_bemf_time_pwmchg_cnt	int16_t	Count value by acquire of A/D conversion value for	-
	_	Hi-Z status detection	
g_u1_bemf_chk_hiz	uint8_t	Classification of Hi-Z	0: U phase, 1: V phase, 2: W phase
g_u1_bemf_chk_hiz_status	uint8_t	Management of Hi-Z status detection	0: Hi-Z status is undetected
			1: Hi-Z status is detected
g_u1_bemf_req_moten_on	uint8_t	Request of ON for Motor drive control	0: Prohibit, 1: Approval
g_u1_bemf_req_moten_off	uint8_t	Request of OFF for Motor drive control	0: Prohibit, 1: Approval
g_u1_bemf_mode_cnt	uint8_t	Count value of Back EMF detection mode	
g_u1_bemf_th_type	uint8_t	Classification of Back EMF detection	0: Back EMF detection (Period of
			Regeneration for High side)
			1: Back EMF detection (Period of
			Current)
			2: Back EMF detection (Period of
			Regeneration for Low side)
g_u1_bemf_ad_type	uint8_t	Classification of selection for A/D conversion	0: Current detection
			1: Back EMF detection
g_s2_pdrv_ad_isense	int16_t	A/D conversion value of detected current	-
g_s2_bemf_fix_pwm_duty_cnt	int16_t	Count value of the period when PWM Duty is fixed	-
g_s2_bemf_timer_cnt_ave	int16_t	Electrical angle when Clamp operation started by PWM Duty	Electrical angle: Period of 360 degrees [us]
g_u1_bemf_limit_pwm_duty_flg	uint8_t	Clamp Flag by PWM Duty	0: There is no Clamp Flag
			1: There is Clamp Flag
g_u1_bemf_limit_vr_ad_flg	uint8_t	Level of the limit flag of the A/D value by the	0: There is no Clamp Flag
		trigger	1: There is Clamp Flag
g_u2_bemf_limit_vr_ad_cnt	uint16_t	Level of the limit counter of the A/D value by the	-
9		trigger	

3.4 Specification of Macro definition

Lists of macro definitions used in this sample program are shown in Table 3-7

File name	Macro name	Definition value	Remarks
control_parameter.h	CP_MAX_SPEED_RPM	3900	Rotation speed command maximum value
			(Mechanical angle) [rpm]
	CP_MIN_SPEED_RPM	1200	Rotation speed command minimum value
			(Mechanical angle) [rpm]
	CP_SPEED_LPF_K	0.35f	LPF parameter for Rotation speed.
mtr_main.h	ICS_UI	0	Set UI to ICS
	BOARD_UI	1	Set UI to Board
	M_CW	0	User setting rotation direction: CW
	M_CCW	1	User setting rotation direction: CCW
	MAX_SPEED	CP_MAX_SPEED_RPM	Rotation speed command maximum value
	MIN_SPEED	CP_MIN_SPEED_RPM	(mechanical angle) [rpm] Rotation speed command
			minimum value (mechanical angle) [rpm]
	MARGIN_SPEED	100	Rotation speed command minimum value creation constants for motor stop (mechanical angle) [rpm]
	MARGIN_MIN_SPEED	MIN_SPEED - MARGIN_SPEED	Rotation speed command minimum value for motor stop (mechanical angle) [rpm]
	SPEED_LPF_K	CP_SPEED_LPF_K * 16384	LPF parameter value for Rotation speed
	SW_ON	0	Active in case of Low
	SW_OFF	1	Active in case of High
	REQ_CLR	0	Clear Flag for stop command
	REQ_SET	1	Set Flag for stop command
	LED_ON_1ST_SPEED	1500	rotation speed LED3 ON
	LED_ON_2ND_SPEED	3000	rotation speed LED4 ON
	REQ_ROT_CCW	0	CCW: Acquisition value of Rotation direction port
	REQ_ROT_CW	1	CW: Acquisition value of Rotation direction port
motor_parameter.h	MP_POLE_PAIRS	2	Constant for correcting number of pole pairs
mtr_ctrl_rl78g1f_t2001.h	MTR_PWM_TIMER_FREQ	64.0f	PWM timer count frequency [MHz]
	MTR_CARRIER_FREQ	10.0f	Carrier frequency [KHz]
	MTR_DEADTIME	0	Dead Time [ns]
	MTR_DEADTIME_SET	MTR_DEADTIME * MTR_PWM_TIMER_FREQ / 1000	Dead Time setting value

Table 3-7 List of Macro Definitions

MTR_CARRIER_SET	(MTR_PWM_TIMER_FREQ * 1000 /	Carrier setting value
	MTR_CARRIER_FREQ / 2)	
	+ MTR_DEADTIME_SET - 2	
MTR_START_CARRIER_SET	MTR CARRIER SET * 30 /	Carrier setting value (initial value)
	100	
MTR_VR1_ADC_MAX	802	Trigger level A/D conversion
		maximum value
MTR PWM DUTY CALC COEF1	MTR_CARRIER_SET * 100	PWM Duty calculation coefficient
	/ MTR_VR1_ADC_MAX	1
MTR PWM DUTY CALC COEF2	100	PWM Duty calculation coefficien
		2
MTR_RPM_CALC_COEF1	556	Target rotation speed calculation
		coefficient 1
MTR_RPM_CALC_COEF2	16888	Target rotation speed calculatior
		coefficient 2
MTR RPM CALC COEF3	100	Target rotation speed calculation
		coefficient 3
MTR_PORT_BEMF_ U	P5.2	U phase port for select of phase
		for Measurement of Back EMF
MTR PORT BEMF V	P5.3	V phase port for select of phase
		for Measurement of Back EMF
MTR_PORT_BEMF_W	P5.4	W phase port for select of phase
		for Measurement of Back EMF
MTR_PORT_UP	P1.5	U phase (positive phase) output
		port
MTR_PORT_UN	P1.4	U phase (negative phase) output
		port
MTR_PORT_VP	P1.3	V phase (positive phase) outpu
		port
MTR_PORT_VN	P1.1	V phase (negative phase) output
		port
MTR_PORT_WP	P1.2	W phase (positive phase) output
		port
MTR_PORT_WN	P1.0	W phase (negative phase) output
		port
MTR_GET_ROT_DIR_REQ	P12.2	Rotation direction detection port
MTR_PORT_LED1	P0.1	LED1 output port
MTR_PORT_LED2	P0.0	LED2 output port
MTR_PORT_LED3	P14.1	LED3 output port
MTR_PORT_LED4	P14.0	LED4 output port
MTR PORT LED5	P4.3	LED5 output port
MTR_PORT_LED6	P4.2	LED6 output port
MTR_LED_ON	0	Active in case of Low
MTR_LED_OFF	1	
		Over voltage error determination
MTR_OVERVOLTAGE_LIMIT	30 * 128	threshold [V]
	6 * 128	Under voltage error determination
MTR_UNDERVOLTAGE_LIMIT	• • • • • • • • • • • • • • • • • • • •	
		threshold [V] VM voltage A/D conversion value
MTR_UNDERVOLTAGE_LIMIT MTR_VDC_SCALING	1471	
		VM voltage A/D conversion value resolution
MTR_VDC_SCALING	1471	VM voltage A/D conversion value

	MTR_ADCCH_RAJ306000_TEMP	0	A/D converter channel for RAJ306000 temperature
			measurement
	MTR_ADCCH_MOS_TEMP	1	A/D converter channel for MOS FET temperature measurement
	MTR_ADCCH_VM	3	A/D converter channel for VM
		5	voltage measurement A/D converter channel for sensor
	MTR_ADCCH_BOARD_TEMP	5	board temperature measurement
	MTR_ADCCH_VR1	6	A/D converter channel for Trigger level
	MTR_ADCCH_PDRV	7	A/D converter channel for PreDriver voltage measurement
mtr_ctrl_t2001.h	MTR_LED1	1	LED pattern
	MTR_LED2	2	
	MTR_LED3	3	
	MTR_LED4	4	
	MTR_LED5	5	
	MTR_LED6	6	
mtr_spm_less_120_cpm.h	MTR_TWOPI	2 * 3.14159265f	2 Pi
	MTR_POLE_PAIRS	MP_POLE_PAIRS	Constant for compensate number of pole pairs
	MTR_RPM_RAD	1716	Constant to change units from [rpm] to [rad/s]
	MTR_RAD_RPM	2445 / MTR_POLE_PAIRS	Constant to change units from [rad/s] to [rpm]
	MTR_SPEED_LIMIT_RPM	4290	Limit value of Rotation speed (Mechanical angle) [rpm]
	MTR_SPEED_LIMIT	MTR_SPEED_LIMIT_RPM/ 60 * MTR_POLE_PAIRS * MTR_TWOPI * 4	Limit value of Rotation speed (Electrical angle) [rad/s]
	MTR_SPEED_LPF_K	CP_SPEED_LPF_K * 16384	LPF parameter value for Rotation speed
	MTR_SPEED_CALC_BASE	383	Constant for rotation speed measurement
	MTR_TIMER_CNT_BUF_NUM	6	Buffer size for timer count of Rotation speed measurement
	MTR_TIMEOUT_CNT	200	Waiting time for judgement of motor stop (Count value x 100[us])
	MTR_START_CNT	2000	Boot mode period (Count value x 500[us]
	MTR_PATTERN_CW_V_U	5	CW signal pattern
	MTR_PATTERN_CW_W_U	4	
	MTR_PATTERN_CW_W_V	6	
	MTR_PATTERN_CW_U_V	2	
	MTR_PATTERN_CW_U_W	3	
	MTR_PATTERN_CW_V_W	1	
	MTR_PATTERN_CCW_V_U	2	CCW signal pattern
	MTR_PATTERN_CCW_V_W	6	
	MTR_PATTERN_CCW_U_W	4	1
		5	4
	MTR_PATTERN_CCW_U_V	5	
	MTR_PATTERN_CCW_W_V		
	MTR_PATTERN_CCW_W_U	3	

MTR_PATTERN_ERROR	0	Conducting pattern
MTR_UP_PWM_VN_ON	1	
MTR_UP_PWM_WN_ON	2	
MTR_VP_PWM_UN_ON	3	
MTR_VP_PWM_WN_ON	4	
MTR_WP_PWM_UN_ON	5	
 MTR_WP_PWM_VN_ON	6	
 MTR_UP_ON_VN_PWM	7	
MTR_UP_ON_WN_PWM	8	
MTR_VP_ON_UN_PWM	9	
MTR_VP_ON_WN_PWM	10	
MTR_WP_ON_UN_PWM	11	
MTR_WP_ON_VN_PWM	12	
	0	Rotation direction setting value:
MTR_CW	0	CW
MTR_CCW	1	Rotation direction setting value: CCW
MTR_FLG_CLR	0	Constant for flag clear
MTR_FLG_SET	1	Constant for flag setting
MTR_STOP_WAIT_CNT	100	Period to wait for motor stop
		(Count value x 100[us])
MTR_ICS_DECIMATION	2	Number of function call decimation times for ICS (Count value x 100[us])
MTR_SENLESS_INIT	0	Sensor-less mode
MTR_SENLESS_INDSEN	1	
MTR_SENLESS_BEMF	2	
MTR_BEMF_PRE	0	Back EMF detection mode
MTR_BEMF_1ST	1	
MTR_BEMF_2ND	2	
MTR_BEMF_3RD	3	
MTR_BEMF_UP	0	Back EMF detection direction
MTR_BEMF_DOWN	1	
		Oten times of Mater control signal
MTR_BEMF_WAIT_1ST_1	25	Stop time of Motor control signal
	40	(Count value x 100[us])
MTR_BEMF_WAIT_1ST_2	10	Mask time of Back EMF detection (Count value x 100[us])
		· · · · · · · · · · · · · · · · · · ·
MTR_BEMF_WAIT_1ST_3	0	Mask time of Back EMF detection (Period of Current)
		(Count value x 100[us])
MTR_BEMF_WAIT_2ND	5	Mask time of start for Hi-Z status
	5	detection
		(Count value x 100[us])
MTR_BEMF_WAIT_3RD	50	Mask time of end for Hi-Z status
		detection
		(Count value x 100[us])
MTR_BEMF_PWMCHG_WAIT	1	Count value for acquire of A/D
		value of Hi-Z status detection
		(Count value x 100[us])
MTR_BEMF_TIMEOUT	2500	Time out of Back EMF detection
		(Count value x 100[us])
MTR_BEMF_HIZ_KICK_NUM	1	Additional values for Current
		pattern of Hi-Z status detection
		(Count value x 100[us])

MTR_BEM	F_TH_LIMIT_MAX	1024	Maximum value of Back EMF detection value
			(Maximum value x 0.0049[V])
MTR_BEM	F_TH_LIMIT_MIN	0	Minimum value of Back EMF
			detection value (Minimum value x 0.0049[V])
MTR BEM	F_TH_MARGIN	300	Limit value of Back EMF
			detection value
			(Limit value x 0.0049[V])
	1_PHASE_P	0	Classification of Conducting pattern
	1_PHASE_N	1	•
MIR_BEM	F_MODE_CNT	2	Count value of Back EMF detection mode
MTR_BEM	F_TIMING_TH	50	PWM Duty of threshold for switch of a classification for Back EMF detection [%]
MTR BEM	F_FIX_PWMDUTY	35	Fixed value of PWM Duty [%]
	F_FIX_PWMDUTY_CNT_LIMIT	32	Period when PWM Duty is fixed
			(Count value x Electric angle 60
			degrees)
MTR_BEM	F_LIMIT_PWMDUTY	55	Clamp value of PWM Duty [%]
MTR_BEM	F_LIMIT_PWMDUTY_ELEROT_TIME	1875	Period of an electric angle of 360
			degrees for start a clamp of PWM Duty [us]
	F_LIMIT_VRAD_CNT_LIMIT	1000	Limit of the execution time of the
		1000	A/D value by the trigger
			(Count value x 500[us])
MTR BEM	F_LIMIT_VRAD_COEF1	8	Calculation coefficient 1 for Limit
		•	of the A/D value by the trigger
MTR_BEM	F_LIMIT_VRAD_COEF2	10	Calculation coefficient 2 for Limit
			of the A/D value by the trigger
MTR_WAIT	TTIME_100_US	100	100[us] wait
MTR_WAIT	TTIME_25_MS	25000	25[ms] wait
MTR_PAT	TERN_W_V	0	Current pattern
MTR_PAT	TERN_W_U	1	
MTR_PAT	TERN_V_U	2	
MTR_PAT	TERN_V_W	3	
MTR_PAT	TERN_U_W	4	
MTR_PAT	TERN_U_V	5	
MTR_PAT	TERN_MAX	6	
MTR_BEM	F_TH_HSIDE	0	Classification of Back EMF
 MTR_BEM		1	detection
MTR_BEM	F_TH_LSIDE	2	1
MTR_BEM	F_TH_MAX	3	1
MTR_BEM	F_HIZ_U	0	Classification of H-Z status
 MTR_BEM		1	
MTR_BEM	F_HIZ_W	2	1
MTR_BEM	F_HIZ_MAX	3	
	F_AD_ISENSE	0	Classification by select of A/D
	F_AD_BEMF	1	channel
	 F_AD_MAX	2	1
	F_SEQ_INIT	0	Sequence definition of Back EMF
	F_SEQ_WAIT	1	1

	MTR_BEMF_SEQ_SET_MOTEN_OFF	2	
	MTR_BEMF_SEQ_WAIT_2ND	3	
	MTR_BEMF_SEQ_CHK_HIZ	4	_
	MTR_BEMF_SEQ_SET_MOTEN_ON	5	
	MTR_BEMF_SEQ_WAIT_3RD	6	-
	MTR_BEMF_SEQ_CHK_TH_RANGE	7	
	MTR_BEMF_SEQ_DET_BEMF_LEVEL	8	
	MTR_BEMF_SEQ_SET_PWM	9	-
	MTR_BEMF_SEQ_OVF_COUNT	10	-
	MTR_BEMF_SEQ_NUM_MAX	11	-
	MTR_BOOT_MODE	0x00	Boot mode
		0x03	
	MTR_LESS_120_MODE	0x03	Normal operation (LESS 120) mode
	MTR_ALARM_ERROR	0x01	ALARM error
	MTR_OVER_VOLTAGE_ERROR	0x02	Over voltage error
	MTR_OVER_SPEED_ERROR	0x04	Rotation speed abnormality error
	MTR_TIMEOUT_ERROR	0x08	Time out error
	MTR_LESS_ERROR	0x10	Current pattern error
	MTR_BEMF_ERROR	0x20	Error of Back EMF detection
	MTR_UNDER_VOLTAGE_ERROR	0x40	Under voltage error
	MTR_UNKNOWN_ERROR	0x80	Undefined error
	MTR_MODE_STOP	0x00	Stop status
	MTR_MODE_RUN	0x01	Rotating status
	MTR_MODE_ERROR	0x02	Error status
		3	
	MTR_SIZE_STATE		Status count
	MTR_EVENT_STOP	0x00	Motor stop event
	MTR_EVENT_RUN	0x01	Motor startup event
	MTR_EVENT_ERROR	0x02	Motor error event
	MTR_EVENT_RESET	0x03	Motor reset event
	MTR_SIZE_EVENT	4	Events count
	MTR_INDSEN_SEQ_STATE_END	1	
r_less_120_is.h	IS_DIRECTION_CW	MTR_CW	Direction of rotation: CW
	IS_DIRECTION_CCW	MTR_CCW	Direction of rotation: CCW
	IS_SECTION_TIME_A	2	Time of "a" section
			(x time resolution [us])
	IS_SECTION_TIME_B	4	Time of "b" section
			(x time resolution [us])
	IS_SECTION_TIME_C	4	time of "c" section
			(x time resolution [us])
	IS_TIME_RESOLUTION	20	Time resolution [us]
	IS_PWM_OUT_TIME	125	Output time of motor control signal
			(x time resolution [us])
	IS_PWM_OFF_TIME	5	Stop time of motor control signal
			(x time resolution [us])
	IS_KICK_NUM	1	Addition value to stop position
	IS_TRIAL_NUM	4	Number of trials for inductive sense
	IS_STATE_INIT	0	Initial value
	IS_STATE_NORMAL	1	Normal
		2	
	IS_STATE_ERROR_PORT		Error when setting general port
	IS_STATE_ERROR_WAIT	3	Error when waiting for a specified time

	IS_STATE_ERROR_WDT	4	Error when clearing watchdog timer
	IS_STATE_ERROR_ADC	5	Error when getting A/D conversion result
	IS_STATE_MAX	6	Maximum value
	IS_PATTERN_1	0	Current pattern 1
	IS_PATTERN_2	1	Current pattern 2
	IS_PATTERN_3	2	Current pattern 3
	IS_PATTERN_4	3	Current pattern 4
	IS_PATTERN_5	4	Current pattern 5
	IS_PATTERN_6	5	Current pattern 6
	IS_PATTERN_MAX	6	Maximum value
r_less_120_isw.h	IS_PORT_OFF	0x00U	General port setting: all OFF
	IS_PORT_P_ON	0x2CU	General port setting: U_p , V_p , $W_p = ON$
	IS_PORT_N_ON	0x13U	General port setting: U _n , V _n , W _n = ON
	ISW_STATE_INIT	0	Initial value
	ISW_STATE_NORMAL	1	Normal
	ISW_STATE_ERROR	2	Error
	ISW_STATE_MAX	3	Maximum value
version.h	FW_REVISION	103	F/W Revision information

File Name	Macro Name	Content	Remark
r_cg_userdefine.h	SPI00_CS_H	P0 = P0 0x20	SPI communication Chip Select signal = H
	SPI00_CS_L	P0 = P0 & 0xDF	SPI communication Chip Select signal = L
	SPI_WAIT_MODE	0x01	SPI communication Wait mode
	SPI_INTR_MODE	0x02	SPI communication Interrupt mode
	SPI_ADC_MODE	0x03	SPI communication ADC mode

File Name	Macro Name	Content	Remarks
r_cg_predrv.h	REG_BUFF_SIZE	2	PreDriver register buffer size
	SPI_CHK_MAX	100	PreDriver SPI communication check count
	PREDRV_NORMAL	0	PreDriver sequence
	PREDRV_SPI_ERROR	1	PreDriver sequence SPI communication error
	PREDRV_ALARM_ERROR	2	PreDriver sequence ALARM error
	PREDRV_REGRW_ERROR	4	PreDriver sequence Register R/W error
	PREDRV_SPI_ACCESS_OK	0x6A	PreDriver SPI communication judgement
	PREDRV_ALMRAW1_OK	0xEF	PreDriver ALMRAW1 judgement
	HALL_SIG_MASK	0x7F	HALL_SIG mask
	ALMSTS1_TSD_N	0x01	ALARM Status1
	ALMSTS1_OCP_N	0x02	judgement
	ALMSTS1_VGB_UVP_N	0x04	
	ALMSTS1_VGB_OVP_N	0x08	
	ALMSTS1_VGT_UVP_N	0x10	
	ALMSTS1_VGT_OVP2_N	0x20	
	ALMSTS1_VGT_OVP1_N	0x40	
	ALMSTS1_VREG5_OVP_N	0x80	
	ALMSTS1_NO_ERROR	0xEF	
	ALMSTS1_VGT_UVP_MASK	0xEF	
	ALMSTS2_VM_UVP_N	0x01	ALARM Status2
	ALMSTS2_DI_SEL_W_CMP_N	0x20	judgement
	ALMSTS2_DI_SEL_V_CMP_N	0x40	
	ALMSTS2_DI_SEL_U_CMP_N	0x80	
	ALMSTS2_NO_ERROR	0xFF	
	WHO_AM_I_MASK	0xFE	WHO_AM_I mask
	INIT_PS_ALL	0x01	PS_ALL initial value
	INIT_PS_1ST	0x3E	PS initial value 1st
	INIT_PS_2ND	0x3F	PS initial value 2nd
	INIT_PS_3RD	0xBF	PS initial value 3rd
	INIT_SELSIG_U	0x03	SELSIG_U initial value
	INIT_SELSIG_V	0x14	SELSIG_V initial value
	INIT_SELSIG_W	0x25	SELSIG_W initial value
	INIT_HALL_SIG	0xA0	Initial value of HALL_SIG
	INIT_ALMOPE1	0x10	ALMOPE1 initial value
	INIT_ALMOUT1	0x10	ALMOUT1 initial value

INIT_CS_SET2	0x60	CS_SET2 initial va
INIT_ERROR_WAIT	0x00	ERROR_WAIT init
		value
INIT_CS_SET1	0x08	CS_SET1 initial va
INIT_HAIC_TH	0x00	HAIC_TH initial va
INIT_LD_WAIT	0x00	LD_WAIT initial va
INIT_DRIVE_SET	0x01	DRIVE_SET initial
		value
INIT_IDRCNT_H	0x00	IDRCNT_H initial
		value
INIT_IDRCNT_L	0x00	IDRCNT_L initial
		value
INIT_TRCNT_P	0x00	TRCNT_P initial v
INIT_CPSET1	0x01	CPSET1 initial val
INIT_CPSET2	0x02	CPSET2 initial val
INIT_CP_TRIM	0x00	CP_TRIM initial va
INIT_VREG5_TRIM	0x20	VREG5_TRIM initi
	0,20	value
INIT_CSAMP_TRIM	0x20	CSAMP_TRIM init
	0,20	value
INIT_TRIM_PT	0x00	TRIM_PT initial va
	0,00	protected
INIT_TRIM_PT_UP	0x95	TRIM_PT initial va
	0,95	unprotected
INIT_TRIM_EN	0x00	TRIM_EN initial va
	0x00	
INIT_TRIM_EN_EFWD	0,01	TRIM_EN initial va valid trimming data
INIT_BGR_TRIM	0x00	BGR_TRIM initial
	0,00	value
INIT_BFAMP_TRIM	0x00	BFAMP_TRIM init
	0,000	value
ERRRCV_PS_1ST	0x3C	PS ALARM recove
	0,30	value1st
ERRRCV_PS_2ND	0x3E	PS ALARM recove
	0X3L	value 2nd
ERRRCV_PS_3RD	0x3F	PS ALARM recove
	0,01	value 3rd
ERRRCV_PS_4TH	0xBF	PS ALARM recove
		value 4th
ERRRCV_MOT_EN_CLR	0x00	DRIVE_SET ALAF
	0,00	recovery value
		Prohibition of moto
		rotation
ERRRCV_MOT_EN_SET	0x01	DRIVE_SET ALAF
	0,01	recovery value
		Permission of mot
		rotation
ERRRCV_ALM_LATCH_CLR	0x40	DRIVE_SET ALAF
	0,40	recovery value
		Clear of ALARM la
WAITTIME 1 MS	0.4450	
WAITTIME_1_MS	0x11F8	1[ms] wait
WAITTIME_3_MS	0x35E8	3[ms] wait
REQ_MOT_EN_OFF	0x00	Motor drive contro

REQ_MOT_EN_ON	0x01	Motor drive control: ON
SET_MOT_EN_CLR	0x00	DRIVE_SET: Inhibit of Motor rotation
SET_MOT_EN_SET	0x01	DRIVE_SET:
		Permission of Motor rotation
REQ_ADC_SEL_ISEN	0x00	Indicate for the
		current setting
REQ_ADC_SEL_BEMF	0x01	Indicate for the Back EMF setting
SET_ADC_SEL_ISEN	0x01	Current setting of ADC_SEL
SET_ADC_SEL_BEMF	0x03	Back EMF of ADC_SEL
INIT_ICS_PS_ALL	INIT_PS_ALL	PS_ALL ICS
		variable initial value
INIT_ICS_PS	INIT_PS_3RD	PS ICS variable initial value
INIT_ICS_SW_RESET	0x00	SW_RESET ICS
		variable initial value
INIT_ICS_ADC_SEL	0x00	ADC_SEL ICS
		variable initial value
INIT_ICS_SELSIG_U	0x03	SELSIG_U ICS
		variable initial value
INIT_ICS_SELSIG_V	0x14	SELSIG_V ICS
		variable initial value
INIT_ICS_SELSIG_W	0x25	SELSIG_W ICS
	INIT HALL SIG	variable initial value
INIT_ICS_HALL_SIG	INIT_HALL_SIG	HALL_SIG ICS variable initial value
INIT ICS ALMSTS1	0xFF	ALMSTS1 ICS
		variable initial value
INIT_ICS_ALMOPE1	INIT_ALMOPE1	ALMOPE1 ICS
	_	variable initial value
INIT_ICS_ALMOUT1	INIT_ALMOUT1	ALMOUT1 ICS
		variable initial value
INIT_ICS_ALMSTS2	0xFF	ALMSTS2 ICS
		variable initial value
INIT_ICS_CS_SET2	INIT_CS_SET2	CS_SET2 ICS
		variable initial value
INIT_ICS_ALMOUT2	0x00	ALMOUT2 ICS
INIT ICS EPROP WAIT	0×00	variable initial value
INIT_ICS_ERROR_WAIT	0x00	ERROR_WAIT ICS variable initial value
INIT_ICS_CS_SET1	INIT_CS_SET1	CS_SET1 ICS
		variable initial value
INIT_ICS_HAIC_TH	0x00	HAIC_TH ICS
		variable initial value
INIT_ICS_PDDSTS	0xF0	PDDSTS ICS variable
		initial value
INIT_ICS_LD_WAIT	0x00	LD_WAIT ICS
		variable initial value

INIT_ICS_DRIVE_SET	INIT_DRIVE_SET	DRIVE_SET ICS variable initial value
INIT_ICS_DI_TIME	0x00	DI_TIME ICS variable
INIT_ICS_IDRCNT_H	0x00	initial value IDRCNT_H ICS
		variable initial value
INIT_ICS_IDRCNT_L	0x00	IDRCNT_L ICS variable initial value
INIT_ICS_TRCNT_P	0x00	TRCNT_P ICS
		variable initial value
INIT_ICS_CPSET1	0x01	CPSET1 ICS variable initial value
INIT_ICS_CPSET2	0x02	CPSET2 ICS variable
		initial value
INIT_ICS_CP_TRIM	INIT_CP_TRIM	CP_TRIM ICS variable initial value
INIT_ICS_VREG5_TRIM	INIT_VREG5_TRIM	VREG5_TRIM ICS
		variable initial value
INIT_ICS_CSAMP_TRIM	INIT_CSAMP_TRIM	CSAMP_TRIM ICS
		variable initial value
INIT_ICS_ALMRAW1	0xFF	ALMRAW1 ICS variable initial value
INIT_ICS_TOIN_MONI	0x00	TOIN_MONI ICS
		variable initial value
INIT_ICS_WHO_AM_I	0x6A	WHO_AM_I ICS
INIT_ICS_TRIM_PT	INIT_TRIM_PT	variable initial value TRIM_PT ICS
		variable initial value
INIT_ICS_TRIM_EN	INIT_TRIM_EN	TRIM_EN ICS
		variable initial value
INIT_ICS_BGR_TRIM	INIT_BGR_TRIM	BGR_TRIM ICS variable initial value
INIT_ICS_BFAMP_TRIM	INIT_BFAMP_TRIM	BFAMP_TRIM ICS
		variable initial value
SEQ_INIT	0	PreDriver initial
SEQ_CHK_SPI	1	sequence definition
SEQ_CHK_TSD_N	2	
SEQ_SET_HALL_SIG_PRM	3	
SEQ_SET_5VTRIM	4	
SEQ_SET_ALMOPE1_PRM	5	
SEQ_SET_ALMOUT1_PRM	6	
SEQ_SET_CS_SET2_PRM	7	
SEQ_SET_CS_SET1_PRM	8	
SEQ_SET_SEQINIT_PRM	9	
SEQ_SET_PS_ALL_PRM	10	
SEQ_SET_PS_1ST_PRM	11	
SEQ_SET_PS_2ND_PRM	12	
SEQ_CHK_ALMRAW1	13	
SEQ_SET_PS_3RD_PRM	14	
SEQ_CHK_ALMSTS	15	
SEQ_SET_MOT_EN	16	
SEQ_END	17	
SEQ_NUM_MAX	18	

ERR_RCV_SEQ_INIT	0	PreDriver ALARM
ERR_RCV_SEQ_CHK_STS	1	recovery sequence
ERR_RCV_SEQ_CLR_MOT_EN	2	definition
ERR_RCV_SEQ_SET_PS_1ST	3	
ERR_RCV_SEQ_CHK_ALMSTS_1ST	4	
ERR_RCV_SEQ_SET_ALM_LATCH_CLR	5	
ERR_RCV_SEQ_SET_PS_2ND	6	
ERR_RCV_SEQ_SET_PS_3RD	7	
ERR_RCV_SEQ_CHK_ALMRAW1	8	
ERR_RCV_SEQ_SET_PS_4TH	9	
ERR_RCV_SEQ_CHK_ALMSTS_2ND	10	
ERR_RCV_SEQ_SET_MOT_EN	11	
ERR_RCV_SEQ_END	12	
ERR_RCV_SEQ_NUM_MAX	13	

3.5 Flow chart

Figure 3-8 shows the whole flow chart and the flow chart of initialization function.

Also, flow chart of main processing in sample program are shown in Figure 3-8 to Figure 3-18.

Figure 3-8 Flow chart (Overall and Initialization function)

3.5.1 Main function

Figure 3-9 Flow chart (Main function)

3.5.2 Initialization of PreDriver processing

Figure 3-10 Flow chart (Initialization of PreDriver processing)

3.5.3 Sensor-less processing: Inductive sense processing

Figure 3-11 Flow chart (Sensor-less processing: Inductive sense processing)

3.5.4 Carrier frequency interruption processing

Figure 3-12 Flow chart (Carrier frequency interruption processing)

Figure 3-14 Flow chart (Carrier frequency interruption processing)

3.5.5 Underflow of Carrier frequency Interruption processing

Figure 3-15 Flow chart (Underflow of Carrier frequency Interruption processing)

3.5.6 **500[us] interruption processing**

Figure 3-16 Flow chart (500[us] interruption processing)

3.5.7 ALARM interruption processing

3.5.8 ALARM recovery processing

4. Development support tool In Circuit Scope

4.1 Overview

In the target sample programs described in this application note, user interfaces (rotating/stop command, rotation speed command, etc.) based on the development support tool 'In Circuit Scope' (ICS) can be used. ICS is a tool which displays on PC real-time waveforms of global variables of the program being executed on the target system. Refer to 'In Circuit Scope manual' for usage and more details.

Figure 4-1 In Circuit Scope - Appearance

4.2 How to use library

In order to use ICS, it is necessary to call functions related to ICS. The ICS-related functions have been set by conditional compilation (#ifdef--#endif). To use ICS, set as follows.

[File name] mtr_common.h

[Point to change] Add the following declaration. #define ICS_USE

4.3 List of variables for ICS

Table 4-1 and Table 4-2 are list of variables for ICS. Table 4-1 variable values are reflected to the protect variables when the same values as g_s2_enable_write are written to com_s2_enable_write. Table 4-2 variable values do not depend on com_s2_enable_write.

Variable bame	Туре	Content	Remarks ([]: protect variable name)
com_s2_direction	int16_t	Rotation direction 0: CW 1: CCW	[g_u1_direction]
com_s2_ref_speed_rpm	int16_t	Rotation speed command value (mechanical angle) [rpm] * Not Used	[g_s2_ref_speed]
com_s2_speed_lpf_k	int16_t	speed LPF parameter	[g_s2_speed_lpf_k]
com_s2_enable_write	int16_t	Enable to rewriting variables	-

Table 4-1 List of Variables for ICS

Table 4-2 List of Variables for ICS

Variable name	Туре	Content	Remarks
com_s2_sw_userif	int16_t	User interface switch	-
		0: ICS user interface use	
		1: Board user interface use	
com_s2_mode_system	int16_t	State management	-
		0: Stop mode	
		1: Run mode	
		3: Reset	
com_s2_pwm_duty	int16_t	Compare register setting value of Timer RD	PWM Duty setting value: 0 to 3198
			PWM Duty [%]: 0 to 100
com_u1_pdrvreg_ctrl	uint8_t	PreDriver register R/W control flag	0: R/W disable
			1: R/W enable
com_u1_pdrvreg_ps_all_pre	uint8_t	PreDriver register PS_ALL previous value	Read value
com_u1_pdrvreg_ps_all_now	uint8_t	PreDriver register PS_ALL current value	Write value
com_u1_pdrvreg_ps_pre	uint8_t	PreDriver register PS previous value	Read value
com_u1_pdrvreg_ps_now	uint8_t	PreDriver register PS current value	Write value
com_u1_pdrvreg_sw_reset_pre	uint8_t	PreDriver register SW_RESET previous value	Read value
com_u1_pdrvreg_sw_reset_now	uint8_t	PreDriver register SW_RESET current value	Write value
com_u1_pdrvreg_adc_sel_pre	uint8_t	PreDriver register ADC_SEL previous value	Read value
com_u1_pdrvreg_adc_sel_now	uint8_t	PreDriver register ADC_SEL current value	Write value
com_u1_pdrvreg_selsig_u_pre	uint8_t	PreDriver register SELSIG_U previous value	Read value
com_u1_pdrvreg_selsig_u_now	uint8_t	PreDriver register SELSIG_U current value	Write value
com_u1_pdrvreg_selsig_v_pre	uint8_t	PreDriver register SELSIG_V previous value	Read value
com_u1_pdrvreg_selsig_v_now	uint8_t	PreDriver register SELSIG_V current value	Write value
com_u1_pdrvreg_selsig_w_pre	uint8_t	PreDriver register SELSIG_W previous value	Read value
com_u1_pdrvreg_selsig_w_now	uint8_t	PreDriver register SELSIG_W current value	Write value
com_u1_pdrvreg_hall_sig_pre	uint8_t	PreDriver register HALL_SIG previous value	Read value
com_u1_pdrvreg_hall_sig_now	uint8_t	PreDriver register HALL_SIG current value	Write value
com_u1_pdrvreg_almsts1_pre	uint8_t	PreDriver register ALMSTS1 previous value	Read value (ALMSTS1 Read Only)
com_u1_pdrvreg_almope1_pre	uint8_t	PreDriver register ALMOPE1 previous value	Read value

com_u1_pdrvreg_almope1_now	uint8_t	PreDriver register ALMOPE1 current value	Write value
com_u1_pdrvreg_almout1_pre	uint8_t	PreDriver register ALMOUT1 previous value	Read value
com_u1_pdrvreg_almout1_now	uint8_t	PreDriver register ALMOUT1 current value	Write value
com_u1_pdrvreg_almsts2_pre	uint8_t	PreDriver register ALMSTS2 previous value	Read value (ALMSTS2 Read
		o 1	Only)
com_u1_pdrvreg_cs_set2_pre	uint8_t	PreDriver register CS_SET2 previous value	Read value
com_u1_pdrvreg_cs_set2_now	uint8_t	PreDriver register CS_SET2 current value	Write value
com_u1_pdrvreg_almout2_pre	uint8_t	PreDriver register ALMOUT2 previous value	Read value
com_u1_pdrvreg_almout2_now	uint8_t	PreDriver register ALMOUT2 current value	Write value
com_u1_pdrvreg_error_wait_pre	uint8_t	PreDriver register ERROR_WAIT previous value	Read value
com_u1_pdrvreg_error_wait_now	uint8_t	PreDriver register ERROR_WAIT current value	Write value
com_u1_pdrvreg_cs_set1_pre	 uint8_t	PreDriver register CS_SET1 previous value	Read value
com_u1_pdrvreg_cs_set1_now	uint8_t	PreDriver register CS_SET1 current value	Write value
com_u1_pdrvreg_haic_th_pre	uint8_t	PreDriver register HAIC_TH previous value	Read value
com_u1_pdrvreg_haic_th_now	uint8 t	PreDriver register HAIC_TH current value	Write value
com_u1_pdrvreg_pddsts_pre	uint8_t	PreDriver register PDDSTS previous value	Read value (PDDSTS Read Only)
com_u1_pdrvreg_ld_wait_pre	uint8_t	PreDriver register LD_WAIT previous value	Read value
com_u1_pdrvreg_ld_wait_now	uint8_t	PreDriver register LD_WAIT current value	Write value
com_u1_pdrvreg_drive_set_pre	uint8_t	PreDriver register DRIVE_SET previous value	Read value
com_u1_pdrvreg_drive_set_pre	uint8_t	PreDriver register DRIVE_SET current value	Write value
com_u1_pdrvreg_di_time_pre	uint8_t	PreDriver register DI_TIME previous value	Read value
		PreDriver register DI_TIME previous value	Write value
com_u1_pdrvreg_di_time_now	uint8_t	PreDriver register IDRCNT_H previous value	
com_u1_pdrvreg_idrcnt_h_pre	uint8_t		Read value
com_u1_pdrvreg_idrcnt_h_now	uint8_t	PreDriver register IDRCNT_H current value	Write value
com_u1_pdrvreg_idrcnt_l_pre	uint8_t	PreDriver register IDRCNT_L previous value	Read value
com_u1_pdrvreg_idrcnt_l_now	uint8_t	PreDriver register IDRCNT_L current value	Write value
com_u1_pdrvreg_trcnt_p_pre	uint8_t	PreDriver register TRCNT_P previous value	Read value
com_u1_pdrvreg_trcnt_p_now	uint8_t	PreDriver register TRCNT_P current value	Write value
com_u1_pdrvreg_cpset1_pre	uint8_t	PreDriver register CPSET1 previous value	Read value
com_u1_pdrvreg_cpset1_now	uint8_t	PreDriver register CPSET1 current value	Write value
com_u1_pdrvreg_cpset2_pre	uint8_t	PreDriver register CPSET2 previous value	Read value
com_u1_pdrvreg_cpset2_now	uint8_t	PreDriver register CPSET2 current value	Write value
com_u1_pdrvreg_cp_trim_pre	uint8_t		Read value
com_u1_pdrvreg_cp_trim_now	uint8_t	PreDriver register CP_TRIM current value	Write value
com_u1_pdrvreg_vreg5_trim_pre	uint8_t	PreDriver register VREG5_TRIM previous value	Read value
com_u1_pdrvreg_vreg5_trim_now	uint8_t	PreDriver register VREG5_TRIM current value	Write value
com_u1_pdrvreg_csamp_trim_pre	uint8_t	PreDriver register CSAMP_TRIM previous value	Read value
com_u1_pdrvreg_csamp_trim_now	uint8_t	PreDriver register CSAMP_TRIM current value	Write value
com_u1_pdrvreg_almraw1_pre	uint8_t	PreDriver register ALMRAW1 previous value	Read value (ALMRAW1 Read Only)
com_u1_pdrvreg_toin_moni_pre	uint8_t	PreDriver register TOIN_MONI previous value	Read value (TOIN_MONI Read Only)
com_u1_pdrvreg_who_am_i_pre	uint8_t	PreDriver register WHO_AM_I previous value	Read value (WHO_AM_I Read
com_u1_pdrvreg_trim_pt_pre	uint8_t	PreDriver register TRIM_PT previous value	Read value
com_u1_pdrvreg_trim_pt_now	uint8_t	PreDriver register TRIM_PT current value	Write value
com_u1_pdrvreg_trim_en_pre	uint8_t	PreDriver register TRIM_EN previous value	Read value
com_u1_pdrvreg_trim_en_now	 uint8_t	PreDriver register TRIM_EN current value	Write value
com_u1_pdrvreg_bgr_trim_pre	uint8_t	PreDriver register BGR_TRIM previous value	Read value
com_u1_pdrvreg_bgr_trim_now	uint8_t	PreDriver register BGR_TRIM current value	Write value
com_u1_pdrvreg_bfamp_trim_pre	uint8_t	PreDriver register BFAMP_TRIM previous value	Read value
com_u1_pdrvreg_bfamp_trim_now	uint8_t	PreDriver register BFAMP_TRIM current value	Write value
pa.nog_olamp_um_now			

Revision History

		Description		
Rev.	Date	Page	Summary	
1.00	Dec.22.17	-	First edition issued.	
1.01	Feb.28.19	-	RAJ306000_LESS_120_OPEN_V101	
			Corrected the timing of the interval timer from 5[us] to 20[us].	
			Change parameters for RSSK (TG-55L-KA).	
			Correction of errors.	
			Figure 2-5, 3-4, 5, 9, 12, 13, 14	
			Table 3-6: g_u2_fw_revision, g_u2_lib_revision	
			Table 3-7: SPI_INTR_MODE, POLE_PAIR, etc.	
1.02	Jun.05.19	-	RAJ306000_LESS_120_OPEN_*_*_V102	
			Support IDE: CS+ for CC, e ² studio	
			Table 1-1, 2-10, 11	
			Change library for ICS.	
			Table 2-10: ics	
			Update inductive sense library.	
			Figure 3-11, Table 2-10, 12, 3-4, 6,7	
			Remove 20[us] interruption processing.	
			Figure 3-11, Table 2-4, 9, 3-4	
			Correction of errors.	
			Figure 3-12, Table 3-6, etc.	
1.03	Apr.08.20	-	RAJ306000_LESS_120_OPEN_*_*_V103	
			Added macro definition (HALL_SIG_MASK, WHO_AM_I_MASK)	
			Figure 3-10, Table 3-7	
			Correction of errors.	
			Table 4-2: TRIM_PT, TRIM_EN, BGR_TRIM, BFAMP_TRIM, etc.	

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power is supplied until the power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.)

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a systemevaluation test for the given product.

Notice

- Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 "Standard": Computers: office equipment: computerations equipment: test and measurement equipment: audio and visual equipment: home

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
 Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
- Electronics products. (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: <u>www.renesas.com/contact/</u>.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.