
138

Integrated Device Technology, Inc.

APPLICATION
NOTE

AN-119

HARDWARE AND SOFTWARE
BOOT INITALIZATION OF THE
IDT79R4000

By Andrew Ng

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INTRODUCTION
This application note is aimed at engineers that are bringing

up or debugging an R4000 system prototype for the first time.
Various debug techniques, pitfalls, and diagnostics are dis-
cussed that are based on similar experiences of other engi-
neers here at IDT. The discussions will be a mixture of both
hardware and assembly code software, since both hardware
and software skills and techniques are required to initialize the
part. In places, the R4000 User’s Manual [2] will need to be
referred to for more detail. The topics will proceed in a
chronological order that begins with power on, continuing
through the Reset sequence and finishing with some simple
diagnostics — similar to the order that one might take when
actually debugging a prototype board.

The first section details the hardware Reset sequencing,
which includes managing the various Reset control lines and
loading the R4000s serial configuration register. After the
Reset sequence, the R4000 issues its initial instruction fetch.
Logic analyzer connections are discussed so that the instruc-
tion fetch and other System Interface reads and writes can be
verified. Then, the first few lines of boot assembly code, which
determine some of the software programmable configuration
options that the R4000 can do, are discussed. Some example
assembly code for the initial testing of uncached read and
write cycles to memory and I/O is given. Finally, in the last
section, initialization of the caches is discussed so that block
reads and writes can be executed and debugged. After
reaching this stage of the debug, the chances of an operating
system kernel booting up with a prompt are fairly good.

HARDWARE RESET SEQUENCE
In Figure 1, the R4000 Reset Interface requires the genera-

tion of several control signals, including VCCOk, ColdReset, and
Reset. Primarily, these signals distinguish between power-on
Resets, power-on-cold resets and power-on-warm resets,
and to allow sufficient time for the PLL (Phase Locked Loop)
circuitry to stabilize. Only the power-on reset is discussed in
detail, since the cold and warm resets controls are a subset of
the power-on case.

The first requirement is that VCCOk, which indicates that the
supply voltage has reached at least 4.75V for 100ms or more,
be de-asserted. The 100 ms de-assertion time is typically
accomplished by using a power management chip which
delays a power-up signal until a fixed time period or RC
(Resistor/Capacitor) constant has elapsed. The power-up
signal can be double-registered so that it is synchronized for
the assertion of VCCOk. ColdReset and Reset must be de-
asserted sometime before VCCOk is asserted. De-asserting
VCCOk holds both the ModeClock and the output clocks, such
as MasterOut, HIGH. (Although the ModeClock is guaranteed

to be HIGH, the value of MasterOut is not guaranteed,
technically, until after the PLL synchronizes). If MasterOut is
used to clock the reset circuitry state machine, ColdReset and
Reset must be de-asserted asynchronously from the output
clocks. Technically, ColdReset and Reset are sampled syn-
chronously when asserting and de-asserting. Therefore, while
using the input clock, MasterIn to clock the reset circuitry state
machine may make more sense than using MasterOut.

In Figure 2, 128 Master Clocks (either MasterIn or
MasterOut) after VCCOk is asserted, the ModeClock will
begin toggling by first going LOW and then 128 Master Clocks
after that going HIGH for the first time. Thus the ModeClock
period is 256 Master Clocks. On the first rising edge of the
ModeClock, the R4000 starts accepting serial data on the
ModeIn pin. Many systems use an Nx1 bit serial PROM for this
function. Because the setting of the mode bits can be somewhat
experimental when first bringing up a system, one might
choose a reprogrammable serial bit EEPROM, or, perhaps,
use a signal generator. Most serial bit PROMs have a built-in
address incrementor/counter which requires a Clock input pin
and a Reset input pin, in addition to the Data output pin. Thus,
the serial PROM has an internal counter to generate the
address for the mode bit data. When using a signal generator,
one should consider designing in an inverter to invert the
ModeClock, so the pattern generator can synchronize on the
first falling edge of ModeClock, and, thus drive valid data in
time for the first ModeClock rising edge. Using the inverted the
ModeClock also provides ample hold time.

Sometime after the mode bits have been read, the R4000
will begin driving the output clocks. From the point where
VCCOk is asserted, the R4000 needs to see a minimum of
64K Master Clocks (either MasterIn or MasterOut, which is
just enough to read all the mode bits). A time of at least 100ms
is more realistic before ColdReset can be de-asserted, so
internal syncing of the PLL can be completed and fully
stabilized throughout the system. Several ways exist to count
out this period (a 50MHz MasterIn clock is assumed). One is
to use a 24-bit counter based off the MasterIn clock. Another
is to use a RC circuit to generate a 100 ms delay from VCCOk
and then synchronize the resulting ColdReset signal by
double-registering it. Another is to use a 16-bit counter based
off the ModeClock, which, although not specified, continues to
toggle, even after the mode bits have been read in. A fourth
method can use some serial PROMs, which have a count/
done pin that asserts LOW after all the bits have been read.
If the number of bits is greater than 32K, then an adequate
delay can be generated.

After ColdReset is de-asserted, then Reset must be de-
asserted after a minimum of 64 Master Clocks have occurred.
This requires a 6-bit counter, since Reset must be de-asserted
synchronously.

1996 Integrated Device Technology 2955/- 2/96

139

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000 APPLICATION NOTE AN-119

The sequence for cold Resets is the same as power-up
Resets, except that VCCOk needs only to be de-asserted for
64 Master Clocks, instead of 100ms. The sequence for warm
Resets requires only that the Reset has asserted for 64 Master
Clocks.

After the reset sequence, the R4000 will assert ValidOut
along with an uncached read of the first instruction. The first
instruction fetch will be discussed in more detail after the
following section, which continues to specify the boot Reset
configuration serial bits.

Figure 1. R4000 Reset Timing

SERIAL BOOT MODE PROM — SPECIFIC
CASES

The R4000 requires that 256 bits be serially loaded into its
initialization logic on its ModeIn input pin for the first 256
ModeClocks. Of the 256 bits, only the first 64 are defined.
Although specific systems will have specific values, an ex-
ample of some “workable” values that can be used as a start
for debugging are listed in Table 1 in binary. The rest are
reserved to 0. Most of the bits are described by the R4000

VCC

MasterIn

VCCOk

ModeClock

MasterOut

TClock (div by 4)

RClock (div by 4)

ColdReset

Reset

4.75V

ModeClock period is 256 MasterClocks
ModeIn data is read in for the 1st 256 ModeClocks

≥ 100 ms

≥ 100msec

≥ 64 MasterClocks

MasterOut, TClock, and RClock are undefined
until after the Mode bits have been read

2913 drw 01

VCCOk, SerialPROMReset
ModeIn,
SerialPROMDataOut

ModeClock,
SerialPROMClock

MasterIn

Mode Bit 1

128 cycles

Mode Bit 0

128 cycles 128 cycles 128 cycles
SerialPROMDataOut
(if inverted ModeClock
used)

Mode Bit 1Mode Bit 0

ModeIn Sample Point ModeIn Sample Point
2913 drw 02

Figure 2. R4000 Serial Initialization Timing

Users Manual [2]. However, the values to choose for some bits
can be confusing during initial debug. An example is the
PLLOn configuration bit. This bit is intended only for chip
testing and should be left asserted. The symptom is that the
MasterOut and other clock outputs will not toggle. The impli-
cation is that the lowest MasterIn clock speed that can be used
is 25MHz (for a 50MHz part). However, the SClock divisor
configuration bits called SysCkRatio can be programmed to
divide by 2, 3, or 4 which can reduce the System Interface
frequency to 6.25MHz. One of the most common and perplex-

ing hindrances in finding problems, at 50MHz, is having a
noisy clock line to one of the state machines. This noise can
clock a signal twice, or perhaps not at all. Therefore, reducing
the System Interface frequency during the initial stages of
testing is highly recommended.

140

TABLE 1. EXAMPLE OF SERIAL BOOT PROM VALUES.
Mode Setting Value Comments

BlkOrder 1 1 for sub-block ordering if PC, 0 for sequential ordering if SC/MC

EIBParMode 0 ECC

EndBIt 0 Little Endian ordering

DShMdId 0 dirty shared mode enabled

NoSCMode 0 present (depends on package type)

SysPort 00 64 bits

SC64BitMd 0 128 bits

EISpltMd 0 Secondary cache unified

SCBlkSz 11 Secondary block size of 32 words (depends on system)

XmitDatPat 0000 Xmit Data Pattern DD (depends on system)

SysClkRatio 010 system interface bus divided by 4 (see text)

reserved 0

TimIntDis 0 timer interrupt connection enabled

PotUpdDis 0 potential updates disabled

TWrSUp 0011 (SC write de-assertion delay, depends on SC timing, minimum shown)

TWr2Dly 01 (SC write assertion delay 2, depends on SC timing, minimum shown)

TWr1Dly 01 (SC write assertion delay 1, depends on SC timing, minimum shown)

TWrRc 0 (SC write recovery time, depends on SC timing, minimum shown)

TDis 010 (SC disable time, depends on SC timing, minimum shown)

TRd2Cyc 0011 (SC read cycle time 2, depends on SC timing, minimum shown)

TRd1Cyc 0100 (SC read cycle time 1, depends on SC timing, minimum shown)

reserved 0000

Pkg179 0 Large Package (depends on package type)

CycDivisor 0011 power down clock divisor

Drv 100 1 clock Drive delay

InitP 0001 pull down di/dt (msb is opposite most fields)

InitN 1000 pull up di/dt

EnblDPLLR 0 disable di/dt mechanism during cold Reset

EnblDPLL 0 disable di/dt mechanism

DsblPLL 0 Enable PLLs (see text)

SRTristate 1 tri-state when Reset or ColdReset is asserted

Bits65:255 0 rest of the bits are reserved

2913 tbl 01

During debug, other serial boot configuration bits that may
be of use are the SCBlkSize, which configure the secondary
cache line size, if present, to 4, 8, 16, or 32 words. This will
control the maximum size of block reads and writes for
secondary cache systems. Also, the XmitDatPat bits config-
ure the system interface data rate with various patterns such
as D, DDx, DDxx, etc. Another design consideration is if the
secondary cache is not used, then sub-block ordering, as
programmed with the BlkOrder bit, is mandatory.

BASIC LOGIC ANALYZER CONNECTIONS
After the serial configuration register is read, the majority of

the debug effort centers around memory bus cycles on the
System Interface. For this reason it is recommended that
most of the System Interface be accessible from a Logic
Analyzer. This includes the information on the SysAD(63:0)
bus.

Two items should be considered when attaching the SysAD
bus to a logic analyzer. The first is the latching control circuitry
of the SysAD bus as shown in Figure 3. To demultiplex it into
separate MemAddr(35:0) and MemData(63:0) busses is usu-
ally straightforward, but the multi-level write buffering of SysAD
into the MemAddr and MemData is not. Thus, if there are
enough pod connections, one should hook up MemData,
MemAddr, and SysAD. However, the second consideration is
that there usually are not enough pods or probes to do this.
Therefore, in a compromise, attaching SysAD is probably
more useful than attaching MemAddr, since MemAddr is
usually a single level deep register, latch, or buffer. However,
it is essential to look at the least significant MemAddr lines to
verify that the address can be incremented within a block
correctly, especially if sub-block ordering is used. Also, using
MemAddr instead of SysAD only requires 36 probes, and
possibly less, if not all the physical address lines are used. A

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000 APPLICATION NOTE AN-119

141

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000 APPLICATION NOTE AN-119

R4000Secondary
Cache

SCAddr(17:0),
SCTag(24:0)

SCOE, SCWR,
SCDCS,SCTCS

Read/
Write
Buffer

SysAD(63:0),
SysCmd(8:0)

ValidOut, Release

ValidIn, RdRdy, WrRdy

TClock, RClock

MemAddr(35:0)

MemData(63:0)

MemOE, MemWr, MemCS

Main
Memory

SCData(127:0)

Secondary Cache Interface System Interface Memory Interface 2913 drw 03

make-shift solution is to hookup only 32 data lines at a time,
either MemData(63:32) or MemData(31:0). The upper/lower
halves can be swapped as needed, since, during the initial
debug, the function of the lines is more important than exam-
ining the sequential flow of instructions and data.

It is also essential to bring out the entire SysCmd(8:0) bus.
This bus acts as the control and status lines, and determines
whether the transaction is a read or write, etc. Along with
SysCmd bus, ValidOut, ValidIn, and Release are essential,
since they indicate when the SysAD and SysCmd busses are
valid, and when they can be driven by the memory system.
RdRdy and WrRdy and read/write buffer control lines such as
MemOE and MemWr are also sometimes needed.

If a state analyzer is being used, one should consider
attaching the RClock output, which leads the TClock, that is
usually used by 25% (of the TClock period), as the state clock
to trigger the logic analyzer, so sufficient hold time is provided
(at the expense of having less setup time). Otherwise one of
the other output clocks, either the TClock or the MasterOut,
should be attached.

Thus, the minimum number of logic analyzer probes needed
is 64+9+3+1=77. A typical number would be
64+32+9+3+1=109 and could be as many as
64+36+64+9+3+1=177. Additional pods will be needed to test
for specific cases, such as the control lines during Reset, the
ECC bits during fault checking, etc.

If the secondary cache is present, one should be prepared
to examine its interface. However, because of the enormous
number of lines (128 data, up to 36 address and tag, and 4
control lines) and the relative straightforwardness of the
functional design, the secondary cache will probably only
need to be on the logic analyzer temporarily. The secondary
cache lines may require oscilloscope probing to verify the
electrical signal transmission line design. To help follow the
processor flow, leaving the control lines SCOE and one of the
SCWr lines connected to the logic analyzer at all times can be
helpful.

MINIMAL SOFTWARE BOOT CODE
After Reset, the R4000 will be executing instructions out of

uncached memory kernel segment 1 space at virtual address
‘h bfc0 0000, which is hard mapped to physical address ‘h
01fc0 0000. ValidOut will assert LOW, and the SysCmd(8:0)
bus will indicate an uncached read of 1 word, ‘b 10011011,
and, on a little endian machine, will expect data on SysAD(31:0)
at the same time ValidIn is asserted. Big endian machines will
expect data on SysAD(63:32). During uncached reads of
addresses divisible by 8, (number of bytes per double word),
SysAD(63:32) will be ignored on little endian machines. Big
endian machines will ignore SysAD(31:0). The second in-
struction fetch will be similar, except it will be at physical
address ‘h 01fc0 0004, and a little endian machine will expect
the data to be put on SysAD(63:32), with ValidIn asserted, while
SysAD(31:0) is ignored. Likewise, big endian machines will
expect the data to be put on SysAD(31:0), while SysAD(63:32)
is ignored. The minimal boot code discussed here will get the
part initialized and allow various types of memory accesses to
take place. This includes initializing the caches so that block
reads and writes can be tested.

One common cause of no system commands being gener-
ated (ValidOut never asserts), is the GroupStall input pin (if
present for the particular R4000 version/type) has to be de-
asserted.

The next section will discuss the very first operation soft-
ware should do, namely, initializing the software configuration
registers. After initializing the registers, the software can
execute various kinds of reads and writes to uncached memory
space in order to test the ROM, I/O and RAM chip selects, byte
enables, and wait-state timing.

Configuration Registers $14 and $16
The first operation that the boot code software needs to

perform is to initialize the software configurable registers. This
includes the Status Register and Configuration Register. Most
of the registers do not have default values on Reset, and must
be programmed before being used. The Status Register,
Configuration Register, and the WatchLo Register have ef-
fects on loads, stores, and processor operations that must
immediately be programmed into a known state. An example
of programming Status Register $14 and Configuration Reg-
ister $16 settings is shown in Listing 1. The other general
purpose and coprocessor registers, including the Timer and
Compare registers must be initialized before they are used.

Figure 3. Typical R4000 System

142

set noreorder
li v0,0x30410000 # load constant with CP1, CP0 usable,

BEV, DE set, IE (interrupts) disabled
mtc0 v0,$14 # move it to the Status Reg
mtc0 zero,$18 # clear R and W trap enable masks in the WatchLo Reg
nop # an operation is needed between a mtc0 and mfc0 instruction
mfc0 v1,$16 # get Configuration Reg
nop # delay two operations before v1 can be used
li a0,0xa0000160 # load address constant
sw v1,0(a0) # dump Configuration Reg to external memory
li v0,0x00000033 # load constant with IB, DB set to 32 byte p-cache line widths

and Kseg0 to be non-coherent cachable
mtc0 v0,$16 # move it back to the Configuration Reg (only bits 5:0 writable)

Listing 1. Software for Reading and Writing the Configuration Registers

Figure 4 shows the register fields. Refer to the User’s Manual [2] for more detail.

Figure 4. Status Register $14

li a0,0xa0000000 # load address constant

mfc0 v1,$13 # get Cause Reg
nop # two non-v1 operations needed
nop #
sw v1,0x130(a0) # dump to memory

mfc0 v1,$14 # get EPC
nop # two non-v1 operations needed
nop #
sw v1,0x140(a0) # dump to memory

mfc0 v1,$27 # get CacheErr Reg
nop # two non-v1 operations needed
nop #
sw v1,0x270(a0) # dump to memory

mfc0 v1,$30 # get ErrorEPC Reg
nop # two non-v1 operations needed
nop #
sw v1,0x300(a0) # dump to memory

mfc0 v1,$12 # get Status Reg
nop # two non-v1 operations needed
nop #
sw v1,0x120(a0) # dump to memory

eret # return from exception

Listing 2. Software for the Exception Handler

Two suggestions on programming these fields during initial
debugging are to set the BEV bit and the DE bit. Setting BEV,
bit 22, the Diagnostic Status Field of the Status Register $14
will send any exceptions to the uncached kernel segment 1
bootstrap exception vector base virtual address ‘h bfc0 0200,
instead of to the cachable mapped user segment ‘h 8000
0000, which requires that the cache and TLB be initialized first.
An exception handler for initial diagnostics, such as the
(unoptimized) one in Listing 2, can put code at physical
address ‘h 01fc0 0200 and offsets ‘h 0000, ‘h 0080, ‘h 0080,
‘h 0100, and ‘h 0180, i.e., physical addresses, ‘h 01fc0 0200,
‘h 01fc0 0280, ‘h 01fc0 0300, ‘h 01fc0 0380. The exception
handler should at least dump out the cause register $13, the
exception vector, $14, and the cache error register $27, and
the error exception program counter, $30. If the registers can’t
be displayed with a UART, they should at least be written out
to uncached memory so they can be observed on a logic
analyzer. In contrast to the R3000 RFE instruction, the R4000
uses an ERET instruction to return back to the code.

CU RP FR RE IM KX SX UX KSU ERL EXL IE0 BEV TS SR 0 CH CE DE

31 28 27 26 25 24 23 22 21 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

2913 drw 04

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000 APPLICATION NOTE AN-119

143

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000 APPLICATION NOTE AN-119

The DE bit is bit 16 in the Diagnostic Status Field of the
Status Register $14, when set specifies that cache parity and
ECC errors don’t cause exceptions. This is somewhat neces-
sary when initializing the cache, otherwise a lot of unneces-
sarily confusing jumps to the exception handler will probably
occur as the cache locations are first initialized, since the tag
and data parity haven’t been initialized yet.

The WatchLo Register must have its trap on a read/load
mask (bit 1) and trap on a write/store mask (bit 0) disabled
before loads or stores are attempted, so an inadvertent trap
from an address match is not taken. Thus, similar to the
example in Listing 1, the WatchLo register can be cleared.

Reading the Configuration Register and dumping its con-
tents out to uncached space allows one to see if various bits

in the boot serial PROM were programmed correctly. Figure
4 shows the Configuration Register fields. For instance, the
System clock ratio and the transmit data pattern can be
checked. The only writable bits are the lower 6, which are also
uninitialized on Reset, and, therefore, should be written to by
software as soon as possible. Of the writable bits, IB and DB
are used to program the primary Instruction Cache line size
and the primary Data cache line size to either 4 words or 8
words. The primary cache line sizes must be smaller than or
equal to the secondary cache line size. Note that if there is no
secondary cache, it is possible to program the data and
instruction caches to different line sizes, which is the one case
where different block sizes will be presented to the system
interface.

CM EC EP SB IC DC IB DB CU K0SS SW EW SC SM BE EM EB

31 28 27 24 23 22 21 20 19 18 17 16 15 8 6 5 4 3 2 0911121330 14

0

2913 drw 05

Figure 4. Configuration Register $16

PRIMARY DATA CACHE INITIALIZATION
In general, it is much simpler to test the data cache than it

is the instruction cache. Several reasons exist for this. First, if
the data cache read fails, the program can still continue, where
as an instruction cache failure may or may not continue and
could cause the program to get lost. Second, it is simpler to
initialize the data cache since it can be written directly with
stores. Finally, forcing cache miss writebacks is more
straightforward, since it just requires writing to different ad-
dresses as opposed to jumping back and forth in code. As
shown in Listing 3, when initializing the caches, the Cache
opcode is used heavily. The algorithm in Listing 3 is not the
most efficient. However, from a debugging point of view, it

does not do any unnecessary System Interface block reads or
writes. The idea is to, first, invalidate the tags, and then fill the
data slots with any data so that ECC/parity can be set
correctly. The base virtual address, ‘h 8000 0000, is used
because it is in the unmapped cachable kernel segment 0,
which does not require the TLB. Note that if an R3000
compiler is being used, which can’t generate the R4000
Cache opcode, then a data statement using the “.word”
directive can be inserted into the program with the data for the
hand assembled hex machine instruction.

In a similar manner, by substituting the appropriate cache
instructions, and by adjusting for the cache line size, the
secondary data cache can be initialized.

144

set noreorder /* turn off assembly rescheduler (no reordering optimization) */
li a0,0x80000000 /* primary data cache start pointer */
li a1,0x80002000-0x20 /* 8K last location - 32 */
mtc0 zero,$28 /* set TagLo CP0 Reg to 0 */

#ifndef R3000asm
1: cache 2*4+1,0x00(a0) /* Index Store Tag, invalidate cache line (prevent writebacks) */

cache 3*4+1,0x00(a0) /* Create Dirty Exclusive (prevent block reads) */
#else
1: .word 0xbc890000 /* use if using R3000 assembler */

.word 0xbc8d0000
#endif

nop
nop
sw zero,0x00(a0) /* fill data slots with good ECC/parity (8 word cache lin e) */
sw zero,0x04(a0)
sw zero,0x08(a0)
sw zero,0x0c(a0)
sw zero,0x10(a0)
sw zero,0x14(a0)
sw zero,0x18(a0)
sw zero,0x1c(a0)
nop
nop

#ifndef R3000asm
cache 2*4+1,0x00(a0) /* Index Store Tag, invalidate cache line */

#else
.word 0xbc890000

#endif
blt a0,a1,1b /* if count is less than last */

/* then jump Back to last label called “1”. */
addu a0,0x20 /* branch delay slot, increment addr pointer */

Listing 3. Primary Data Cache Initialization Software

PRIMARY INSTRUCTION CACHE
INITIALIZATION

As shown in Listing 4, the instruction cache is initialized a
little differently than the data cache. First, their data slots need
to be filled from main memory, using the Fill Cache operation,
so the ECC/parity for the data can be set correctly. Then, their
tags are invalidated and tag ECC/parity set. As with the data
cache, the base virtual address ‘h 8000 0000 is used because
it automatically maps to a physical address without requiring
the use of the TLB.

The secondary instruction cache can be initialized in a
similar manner to the primary cache. The initialization can be
accomplished by using the cache fill instruction over the entire
secondary cache address space, adjusting for the cache line
size, and by substituting the appropriate cache instructions.
Note, that if the secondary cache has a unified instruction and
data memory, then the cache only needs to initialized once.

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000 APPLICATION NOTE AN-119

145

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000 APPLICATION NOTE AN-119

.set noreorder /* turn off assembly rescheduler */
/* (no reordering optimization) */

li a0,0x80000000 /* primary data cache start pointer */
li a1,0x80002000-0x20 /* 8K last location - 32 */
mtc0 zero,$28 /* set TagLo CP0 Reg to 0 */

1:
#ifndef block_reads_are_being_tested_later

cache 5*4+0,0x00(a0) /* fill i-word data slots (8 word cache line size) */
/* 0xbc940000 */
/* note that the fill operation requires that block */
/* reads are working. Thus during initial debug */

#endif /* one may want to delete the fill operation */

cache 2*4+0,0x00(a0) /* index store tag */ /* 0xbc880000 */
blt a0,a1,1b /* if count is less than last */

/* then jump Back to last label called “1”. */
addu a0,0x20 /* branch delay slot, increment addr pointer */

Listing 4. Primary Instruction Cache Initialization Software

MINIMAL TEST CODE (BLOCK READS AND
WRITES)

Cachable data loads will read from the internal primary
cache or the secondary cache, unless the cache line location
is invalid or has a non-matching tag. Such cache misses will
generate block reads to the external system interface.

The block reads are tested by doing a cached read, which
misses in the cache. It is easier to look at cache locations that
are initialized as invalid, so writebacks do not occur.

The data cache uses a writeback protocol. So, when
writing to a cached location, the data is stored only to the
cache, and a dirty bit is set. Main memory is updated later,
when the cache line, where the data was stored, is replaced
for a cache miss. Because the cache is direct mapped, a
cache miss can be created by writing or reading to locations
that are modulo cache block size apart, i.e., every 8K apart.

Code in Listing 5 shows a method that may be needed
early-on, which is to test writebacks without doing a block read
first.

After block reads and writes are tested individually, data
writes to cache block offsets of 8K, as in Listing 6, will force a
writeback. On the R4000PC without secondary cache, this
will be two separate System Interface transactions. However,
on R4000s with secondary cache, the write address and data
will be issued immediately following the read address, such
that the write address and data will come between the read
address and when data is returned by the system. In a typical
system, the write address and data is FIFO buffered such that
after the read is handled, the system issues the write to main
memory.

146

/* assume that cache has just been flushed (invalidated) */

li a0,0x80000000 /* start addr pointer */
cache 3*4+1, 0x00(a0) /* Create Dirty Exclusive, otherwise a block read

will occur on the first store so that the entire cache
line is filled */ /* 0xbc8d0000 */

nop
addiu a1,a0,0x00 /* store incrementing pattern, i.e., 0x0, 0x4, 0x8, 0xC */
sw a1,0x00(a0) /* into cache */
addiu a1,a0,0x04
sw a1,0x04(a0)
addiu a1,a0,0x04
sw a1,0x08(a0)
addiu a1,a0,0x04
sw a1,0x0c(a0)
addiu a1,a0,0x04
sw a1,0x10(a0)
addi a1,a0,0x04
sw a1,0x14(a0)
addiu a1,a0,0x04
sw a1,0x18(a0)
addiu a1,a0,0x04
sw a1,0x1c(a0)
nop /* 2 operations required between store and cache */
nop
cache 0*0+1,0x00(a0) /* index write back invalidate */ /* 0xbc810000 */

Listing 5. Block Write Code with No Block Read

li a0,0x80000000 /* load start addr pointer */
li a1, zero /* load data */
sw a1,0x0000(a0) /* read from 0000 and possible writeback to xxxx */
li a1,0x2000 /* load data */
sw a1,0x2000(a0) /* read from 2000 and definite writeback to 0000 */

Listing 6. Block Read with Writeback

TESTING ALL THE PHYSICAL ADDRESS
LINES

The R4000 has 36 of the physical address lines imple-
mented. Although unspecified, one can customarily expect
SysAD(63:36) to be 0 during any address phase. Only the
bottom 30 out of 36 physical address bits can be tested within
the unmapped fixed kernel space provided with 32-bit virtual
addressing. One way to test address bits 35:32 is to go into
64-bit virtual addressing by setting the KX (bit 7) in the Status
Register $14 and then using the 64-bit kernel space called
xkphys. Virtual addresses ‘h 9000 0000 0000 0000 to ‘h 97ff
ffff ffff ffff are uncached and automatically mapped such that
physical address bits 35:0 are the same as virtual address bits
35:0.

A second, but more tedious way to test address bits 35:30,
is to use the mapped space via the Translation Lookaside
Buffer (TLB) which converts the software program’s virtual

address into the hardware’s physical address. Although
initialization of the TLB is beyond the scope of this application
note, one tip includes initializing all 48 entries, not just the ones
going to be used. This is because the unused entries may
happen to power up with a matching virtual address. Should
two or more TLB entries match, a TLB shutdown may occur
and the CPU does not know which one to choose. In addition,
initialize the TLB virtual pages to an unmappable unmapped
virtual address space such as ‘h 0x8000 0000 as well as
setting the entry’s Valid bit to invalid. This is because the TLB
shutdown logic, when two or more entries match, does not
take into account the valid bit. Since ‘h 8000 0000 is automati-
cally mapped to a physical address space, and does not go
through the TLB, those entries cannot accidently cause a
shutdown.

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000 APPLICATION NOTE AN-119

147

HARDWARE AND SOFTWARE BOOT INITIALIZATION OF THE IDT79R4000 APPLICATION NOTE AN-119

SUMMARY
 Bringing up the hardware requires a mixture of hardware

and software. The part must be Reset, serial configuration
registers loaded and software configuration registers written.
A mixture of single doubleword reads, writes, block reads, and
block writes can be checked. Reaching this stage is usually
sufficient to continue with more intensive diagnostics and
operating systems. Continued diagnostics may include inter-
rupt line checks, memory checks, and I/O initialization.

FOR FURTHER INFORMATION
[1] MIPS R4000 Microprocessor Introduction, Integrated

Device Technology, Inc., MAN-RISC-10091, Santa Clara,
CA, 1991. — Gives a brief general overview of the architec-
ture and features.

[2] MIPS R4000 User’s Manual, Integrated Device Tech-
nology, Inc., MAN-RISC-00091, Santa Clara, CA, 1991. —
Describes the H/W features and functionality of the device as
well the bus interface. Also describes the R4000 instruction
set architecture from a systems and assembly level program-
ming perspective.

[3] IDT79R4000 Family Data Sheet, Integrated Device
Technology, Inc., Oct. 1991. — Contains the Data Sheet with
packaging, pinout, AC/DC electrical specifications and ther-
mal parameters.

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most
up-to-date version of a document, or your nearest sales
office, please visit www.renesas.com/contact-us/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD-PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers who are designing with Renesas products. You are solely responsible for (1)
selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only to develop an
application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is
granted to any other Renesas intellectual property or to any third-party intellectual property. Renesas disclaims
responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses,
or liabilities arising from your use of these resources. Renesas' products are provided only subject to Renesas' Terms and
Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise
alters any applicable warranties or warranty disclaimers for these products.

(Disclaimer Rev.1.01)

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/contact-us
https://www.renesas.com

