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Figure 1. Block Diagram of the R4000

THE R4000 MICROPROCESSOR
The IDT79R4000 MIPS CPU brings high performance 64/

32-bit computing to a single chip microprocessor and thus
extends the family of R3000  compatible parts from the lower
cost 32-bit R3051  CPU and R3081  CPU/FPA. Bench-
marks for R4000 systems show their performance to be from
35-54VUPS (VAX Units of Performance) and from 44-72
SPECmarks. Initial R4000 parts are being produced to run
with an external 50MHz clock frequency and future parts with
the same external bus interface are planned with larger
primary caches and for frequencies over 75MHz. As shown in
the block diagram in Figure 1, the R4000 has high perfor-
mance in large part because of its superpipelined architecture
which allows a 100MHz internal clock speed which is double
the external clock speed. The R4000 also has an on-chip
floating-point accelerator, on-chip write-back primary instruc-
tion and data caches, an optional writeback secondary cache
interface, and on-chip memory management. The Reduced

This article describes the basic concepts behind designing
with the IDT79R4000 System Interface. The System Interface
connects the R4000 CPU to external memory and peripher-
als. Topics include: (1) what the basic read and write memory
transactions look like, (2) the basic architecture for designing
buffers and transceivers into the address and data bus paths,
and (3) explains the convention of using single level read
buffers and multi-level write buffers. The read and write
buffers can obviously be implemented with custom FPGAs or
ASICs. However, read and write buffers can also be easily
implemented using off-the-shelf discrete logic FIFOs and
pipelined registers. Thus to more clearly illustrate a read and
write buffer implementation, brief discrete logic examples are
given using the 18-bit IDT Double-Density FCT16823T regis-
ter with clock enable, the 16-bit IDT 73200 multi-level pipeline
register, and the 8-bit IDT73210 2-level/1-level pipelined
registered transceiver.
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Instruction Set Architecture (RISC) and its development envi-
ronment of optimized operating systems, compilers, and
rescheduling assemblers place their emphasis on high perfor-
mance and speed. The R4000 has 3 variants: (1) the 179-pin
R4000PC which comes without a secondary cache interface,
(2) the 447-pin R4000SC which comes with a secondary
cache interface, and (3) the 447-pin R4000MC which comes
with a secondary cache interface and also supports multi-
processing coherency.

R4000 Clock Interface
One outstanding characteristic of the R4000 bus, in con-

trast to most microprocessors, is that it uses fully synchronous
timing.  Thus, every output is generated relative to a clock
edge, and has the same propagation delay relative to the
clock.  Also, every input has the same setup and hold time
relative to the clock.

This allows the simplification of worst case timing analysis,
so that hardware designers can concentrate on functional
issues.  In conjunction with the fully synchronous timing, the
R4000 has a PLL, which allows it to match the input clock,
MasterIn to the master (MasterOut), processor (PClock),
system(SClock), and transmit clock (TClock). MasterOut is an
output clock which the PLL matches up to MasterIn. PClock is
an internal clock which runs at twice the frequency of the
MasterIn clock. SClock is also an internal clock which is
essentially equivalent to TClock and runs at the same fre-
quency as the MasterIn clock. The PLL also allows the
alteration of the slew rate of the outputs relative to the clock
and provides an extra receive clock that leads the system
clock by 25%, called RClock as can be seen in Figure 2. The
SyncIn and SyncOut pins shown in the Clock/Control Inter-
face of Figure 3 automatically compensate the clocks for
external buffer delays. Finally, options exist which allow the
system, transmit, and receive clocks to be slowed down
relative to the processor clock, such that the bus interface can
run at 1/2, 1/3, or 1/4 of the normal speed. These options
provide flexibility in producing setup, hold, and access times
appropriate for various interfaces.

Figure 2. R4000 Clock Interface Timing (PClock to SClock divisor of 2)

R4000 SYSTEM INTERFACE
As shown in Figure 3, the R4000 System Interface consists

of the signals that connect the CPU to the outside world of
peripherals and memory. The System Interface has three
major elements:
1. The 64-bit SysAD bus which carries the address and data.
2. The 9-bit SysCmd bus which encodes the type of memory

cycle.
3. The control lines to condition the SysCmd bus and control

the issue rates of the commands.
This article will discuss each of the System Interface

elements in detail.

R4000 SysAD Bus
The SysAD(63:0) Bus is 64-bits wide and has 8 additional

optional ECC/parity bits called SysADC(7:0). The multiplexed
SysAD bus is shared between address and data phases. The
addresses will be present during the clock cycles where a valid
interface command is present on the SysCmd bus. Data will
be present for the clock cycles where a valid data identifier is
present on the SysCmd bus. During the address phase, only
the least significant 36-bits, SysAD(35:0) are used for a 64 GB
physical address space. By convention, the upper 28 physical
address bits, SysAD(63:36) are driven to 0 with appropriate
ECC/parity by the CPU.

R4000 SysCmd Bus
The SysCmd(8:0) bus is 9-bits wide and has 1 additional

optional even parity bit called SysCmdP. The command bus
encodes the type of transaction that is present on the system
interface. For instance, block reads, block writes, single word
reads, single byte writes, etc. are identified by the SysCmd
encoding. The MSB (Most Significant Bit), SysCmd(8), indi-
cates whether the cycle is a system interface command or
data identifier. Thus SysCmd(8) breaks the encodings into
two main cases, as listed in Tables 1, 2, and 3. Only the more
common encodings are listed here, although a complete list is
available in the User’s Manual. Finally, some examples of the
more typical 9-bit commands and data identifiers are given in
Table 4.

MasterIn,
MasterOut

PClock (internal)

SClock (internal),
TClock

RClock

output lines

TDO drw 02
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system is returning a data identifier on the SysCmd bus and
read data on the SysAD bus, it will assert ValidIn. Two input
signals, RdRdy and WrRdy, are used by the memory system
to communicate whether or not it is ready to handle the next
read and write. The output signal Release is used by the CPU
or bus master to indicate to the memory system that the
master is tri-stating the bus on the next clock. After Release
asserts, the memory system can drive the SysAD read data
and SysCmd data identifier back to the CPU. The input signal
ExtRqst is used by a DMA controller or interrupt controller to

Figure 3. The R4000 Interfaces

R4000 System Interface Control Signals
The System Interface Control Signals communicate when

the System Interface busses are valid, and if the external
agent, (i.e., the memory), is ready to accept the command.
Their descriptions are given in Table 5. Two signals, the output
ValidOut and the input ValidIn are used by the CPU and the
memory to indicate when they are driving valid signals onto
the SysCmd and SysAD busses. For example, when the CPU
is driving a valid command/address or write data on the
SysCmd bus, it will assert ValidOut, and when the memory
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gain control of the bus from the CPU. Finally, the inputs InvAck
and InvErr are used only on the R4000MC version to help
manage cache coherency.

To illustrate the use of the System Interface, the following
sections will give an example for a read memory cycle and a
write memory cycle. The sections follow the custom used in

R3000/R4000 terminology, to use the term “buffer” in the
software sense, meaning, a register location to store data
rather than the hardware interpretation of amplifying or isolat-
ing a signal without storing it. In the following sections,
hardware buffers such as the 8-bit IDT74FCT244T will always
be referred to as a "hardware buffer".

Table 1. SysCmd Encoding for SysCmd(8)

Table 2. SysCmd Encodings for System Commands

Table 3. SysCmd Encodings for Data Identifiers

Encoding of SysCmd(8) Command or Data Identifier
0 System Interface Command
1 System Interface Data

Encoding of SysCmd(7:5) Command
0 Read Request
1 Read Request, Write Request Forthcoming (on the MC/SC only)
2 Write Request

Encoding of SysCmd(4:3) for Read and Write Requests attributes
2 Noncoherent block read or write.
3 Double word, single word, or partial word read or write.

Encoding of SysCmd(1:0) for Noncoherent Block Read Requests
or for Block Write Requests Block size
0 Four words.
1 Eight words.
2 Sixteen words.
3 Thirty-two words.

Encoding of SysCmd(2:0) for Double Word, Word, or Partial Word
Read Requests or Write Requests data size
0 One byte valid (Byte).
1 Two bytes valid (Halfword).
2 Three bytes valid (Tri-byte).
3 Four bytes valid (Word).
4 Five bytes valid (Quinti-byte).
5 Six bytes valid (Sexti-byte).
6 Seven bytes valid (Septi-byte).
7 Eight bytes valid (Double Word).

SysCmd(7) Last data element indication
0 Last data element
1 Not the last data element.
SysCmd(6) Response Data indication
0 Data is response data, e.g., read data
1 Data is not response data, e.g., write data
SysCmd(5) Good data indication
0 Data is error free.
1 Data is erroneous, e.g., a bus error
SysCmd(4) Data checking enable (on external agent data only)
0 Check the data and check bits.
1 Don’t check the data and check bits.
SysCmd(3) Reserved
SysCmd(2:0) Cache state (on R4000MC only).
0 Invalid
4 Clean Exclusive.
5 Dirty Exclusive.
6 Shared.
7 Dirty Shared.
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SysCmd(8:0) Description of Command
876543210

000010001 Read request, Noncoherent block, eight words
000011011 Read request, Double word or smaller, four bytes valid
001010001 Write request, Block, eight words
001011011 Write request, Double word or smaller, four bytes valid

110000100 Read response data not end of block
100000100 Read response last data
100100100 Read response last data ignore ECC/parity
111000101 Write data not end of block
101000101 Write data, last data

Table 4. Examples of Typical SysCmd Commands and Data Identifiers

Pin Name Type Description
ValidOut Output Valid Output

Signals that the processor is now driving a valid address or data on the SysAD bus and
a valid command or data identifier on the SysCmd bus.

ValidIn Input Valid Input
Signals that an external agent is now driving a valid address or data on the SysAD bus
and a valid command or data identifier on the SysCmd bus.

RdRdy Input Read Ready
Signals that an external agent can now accept a processor read, invalidate, or update
request in both non-overlap (non-secondary cache) and overlap (secondary cache)
mode or can accept a read followed by a potential invalidate or update request in MC
secondary cache overlap mode.

WrRdy Input Write Ready
Signals that an external agent can now accept a processor write request in both non-
overlap (non-secondary cache) and secondary cache overlap mode.

Release Output Release interface
Signals that the processor is releasing the system interface to slave state.

ExtRqst Input External Request
Signals that the system interface needs to submit an external request.

IvdAck,
IvdErr

Inputs Invalidate Acknowledge and Invalidate Error
Signals on the R4000MC which indicate successful or unsuccessful completion of a
processor invalidate or update request for cache coherency.  Must be pulled high on
other packages (SC).

Figure 5. R4000 System Interface Control Lines

cycles later as shown in the example in Figure 4. The CPU
asserts Release to indicate that the CPU is ready to tri-state
the SysAD and SysCmd bus on the next clock cycle. The
R4000 protocol allows Release to be either a variable number
of clocks after ValidOut or possibly concurrent with ValidOut.
Thus, the memory system must dedicate an extra state to
allow for variable timed Releases. Along with Release, the
memory system must also wait for any writes that are in
progress to finish, since writes in R4000 systems are FIFOed
(use First-In-First-Out buffering). After sampling Release and
checking for on-going writes, the memory system can drive
the bus and return data.  In addition to the data, the memory
system must drive a data identifier on the SysCmd bus and
drive ValidIn to tell the CPU what it is returning. The memory
system has direct control over the data return rate when it
issues data identifiers. Some of the memory system return
commands include data, end-of-data, and bus error (from
Table 3, binary 110000100, 100000100, and 100100100,
respectively).

READ INTERFACE TRANSACTIONS
In Figure 3, the read interface state machine looks for

ValidOut to assert along with one of the read commands as
encoded by SysCmd(8:5). The SysCmd bus in the example is
binary 000010001, which is an eight-word block read.  Trans-
actions involving a single double-word read are similar. By
convention, the block size will either be the primary instruction
cache or the primary data cache line size, or if present, the
secondary cache line size. The SysAD bus contains the
address for the transaction on the same clock as the read
request command. The state machine should latch or register
the address since the SysAD bus is multiplexed. Thus, each
read transaction will only issue one start address even if it is
a block read. If the state machine is not ready to handle the
command, it should keep RdRdy de-asserted. RdRdy will delay
the beginning of the read transaction by keeping the address
on the bus. A caveat on RdRdy is that because it is synchro-
nized to a clock edge, the CPU will not respond to it until 2 clock
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Figure 4. R4000 Block Read Cycle

On a block read, the state machine must increment the
double word (8 bytes) LSB (Least Significant Bit) address bits
of the block and keep returning more double words until the
block is finished. These double-word LSB address bits are
changed either in a sub-block order [hex (00,08,10,18,...),
(08,00,18,10,...), (10,18,00,10,...), or (18,08,10,00,...)] or in a
sequential wrap-around order [ hex  (00,08,10,18,...), (08, 10,
18, 00), (10, 18, 00, 08), or (18, 00, 08, 18)] depending on the
package type and boot-strap configuration. Sub-block order-
ing requires the original double-word start address to be XOR-
ed with the block counter. Sub-block ordering is used to
simplify the internal controls, since the word that is needed
within a block, (e.g., the instruction), can always be returned
in the same place. Sub-block ordering is required on the
R4000PC and is optional on the R4000SC/MC.

Note that bus errors on block reads still require the memory
system to return an end-of-data command to signal the end of
the block, thus allowing the memory system to finish the rest
of the block if it desires. Also, uncached memory, and espe-
cially  I/O interfaces, can ignore ECC/parity generation/check-
ing by using SysCmd(4) to indicate to the CPU that it doesn’t
want ECC/parity checked.

The Sieve Search Algorithm
Because the address is generated on the same clock as the

command and the ValidOut signal, the address register state
machine usually has to implement a “door-to-door search
algorithm”.  In the sieve algorithm, the address registers are
enabled and constantly register new addresses on each
clock. This means the registers are normally clocking in invalid
addresses until the right one comes along. When ValidOut is
detected, the address register should stop clocking and will
hold the address until the end of the read or write. Thus, the
address register is constantly searching for a valid address
and incidentally latching in many of incorrect addresses until
the correct one comes along.

R4000 Read Buffer Size
To implement the read buffer, enough buffer locations must

be present to store the incoming memory. For the R4000PC,
which puts incoming main memory data directly into the
primary cache, the maximum incoming memory read rate of 2
words per clock is matched by the CPU's capability to put
these words into the primary cache.  If a secondary cache is

Secondary Cache Write Time Memory Speed Max. Buffer Levels Needed

1–2 SCycles,1–4 PCycles D 1

3 SCycles, 5–6 PCycles DDx 1

4 SCycles, 7–8 PCycles DDxx 1

Table 6. Examples of the Maximum Processor Read Data Rates for the MC/SC
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present, then enough time is needed to put the data/instruc-
tion into the secondary cache. For the R4000MC/SC, the
secondary cache write rates may bandlimit the main memory
read buffer if they are slower than main memory.  However,
this often is not a realistic case, since one of the purposes of
the secondary cache is to provide a faster access time than
main memory, in addition to isolating microprocessing sys-
tems from one another. In Table 6, the number of SCycles
(assuming a PClock divide by 2 divisor for SClock) is shown
along with the equivalent number of processor PCycles, since
the on-chip secondary cache interface uses PCycles to time
the secondary cache. The memory speed of the external
system is indicated with a D, which means one double word
per clock, and possibly followed by one or more x’s, which
indicate idle clocks. Thus a DDxx pattern indicates 2 double
words can be returned every four clocks. A case in which more
than one level of read buffering may be desired is shown in the
next section.

Secondary Cache Overlap Mode
Some complexity is added to the state machine and the

interface. The R4000MC/SC (but not the PC) uses a second-
ary cache overlap mode along with regular reads and writes
that can issue a read command, which, in turn, issues a write
command between itself and the expected data. For example,
when the read command is issued, the write address and the
write data are issued, which must be handled or buffered by
the memory system. Only then can the memory system return
the data for the read. The purpose of the secondary cache
overlap mode is to allow the memory interface to better utilize

the read access time, if it chooses to do so. Therefore, a
DRAM memory system could begin a RAS precharge for the
read while buffering the write data, as an example.

Figure 5 displays an example of a secondary cache over-
lapped read and write. This example uses a 4-word block size.
For the secondary cache overlap mode, the state machine
should latch/register the read address and then buffer the
write. It must also use a signal to indicate that the write has to
be delayed until the memory system is done with the read. In
these cases, the read buffer needs a set of address registers
separate from the write address registers. Note that since
secondary cache overlapped writes are caused by writeback
misses, the MSBs corresponding to the Secondary Cache
address (minus the block size LSB bits) will be the same for a
secondary cache overlapped read and write. Even though
most address bits must have separate read and write regis-
ters, the Secondary Cache block address bits only need one
set of registers.

Additional complexity exists for the multiprocessing
R4000MC version, such that a potential invalidate or update
might come between the read and write portions of the cluster.
Therefore, R4000MC interfaces may require an additional
address latch/register for the LSB portion of the potential
invalidate/update double word  address.

In addition, since the Release is definitely delayed by the
secondary cache overlapped write data, it is possible for very
fast memory systems to want to begin to return data before the
CPU can possibly accept it. In these cases, a cost/perfor-
mance trade-off having more than 1 level of read buffering can
be made.

Figure 5. Secondary Cache Overlap Timing
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Figure 6. R4000 Single Level Read Buffer

Since the memory system access time is usually equal or
greater than the secondary cache access time for the MC/SC
systems and the PC systems can handle data as fast as the
main memory system can return it, a simple hardware buffer
is all that is needed for the data path, such as the 16-bit IDT
FCT16244T or 8-bit FCT244T as shown in Figures 6 and 7.
Alternatively, a pipeline register with clock enable, such as the
18-bit FCT16823T, could be used for the data path.

In systems with interrupt or external invalidate controllers,
if the controller is isolated from the SysAD bus and on the
memory side of the system interface, then the address regis-
ters may need to be bi-directional. An example of bi-direc-
tional registered transceivers with data clock enables is the
16-bit FCT16952T and the 8-bit 74FCT52T.

R4000 WRITE INTERFACE TRANSACTIONS
A typical write sequence is shown in Figure 8. The write

interface state machine looks for ValidOut to assert along with
one of the write commands, as encoded by SysCmd(8:5) in
Tables 1-3. The SysCmd bus in the example is binary
001010001, which is an eight-word block write. Single double-
word transactions are similar. If the state machine is not ready
to handle the command, it should keep WrRdy de-asserted.
The caveat on using WrRdy is that because it is synchronized
to a clock edge, the CPU will not respond to it until 2 clock
cycles later. Thus, when WrRdy asserts, the address and
ValidOut will remain on the bus for 2 more clocks. The SysAD
bus contains the base address for that transaction on the
same clock as the write request command. Block writes
always increment the address sequentially, i.e., hex
(00,08,10,18,...). The state machine should latch or register
the address, since the SysAD bus is multiplexed. Each write
transaction will only issue one start address, whether it is a
single write or a block write, thus, external logic is needed to
increment the base address for the memory system.

After the address is generated, ValidOut will be asserted
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EXAMPLE OF AN R4000 READ BUFFER
The address latch/register for an R4000 memory interface

can be built from parts such as the 18-bit FCT16823T register
with clock enable. The critical parameter in the latch/register
portion of the read interface is the latch's data hold time for the
R4000 SysAD bus as shown in Figure 2. This can be solved
two ways.

In the first method, the worst case hold time for a typical
latch/register such as 16-bit FCT-T logic is 1.5ns which is
added to the worst case clock skew from the R4000 is 0.5ns.
The 2.0ns total of worst case factors is just met by the 3.5ns
minimum data propagation delay (TDO) of the R4000. If
additional margin is needed — for instance if external clock
buffering has additional clock skew — then the following can
be done: The characteristic hold time for high-speed CE-
MOS  16-bit FCT-T logic is typically 0ns or less, especially
at low temperature. Also, the 3.5ns minimum data propaga-
tion timing of the high-speed CEMOS R4000 outputs, which
only occurs at low temperature, can be guaranteed to be
indirectly delayed upto an additional 2.5ns by changing the
slew rate of the outputs. The rise and fall slew rates can be
adjusted by programming the serial boot initialization register
interface at reset time. By using slower slew rates, which
change the rise and fall times and, therefore slightly delay the
outputs of the R4000, enough data hold time can be provided
to memory interface latches/registers, even when consider-
able clock skew is taken into consideration.

A second method for providing additional hold time, espe-
cially for interfaces made from ASICs and FPGAs, is to use the
RClock, as previously shown in Figure 2. The RClock leads
the TClock by 25% of the TClock and therefore, at 50MHz
provides 5ns of additional hold time. The disadvantage of
using the RClock is either the latches/registers must be
immediately staged with a set of TClock latches/registers and/
or very fast control logic for the clock enable (which typically
is TClock based) must be used.
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along with the first data of the write immediately, or a variable
number of clocks later. The state machine must add a condi-
tion for the variable number of clocks between the address
and the first data. If the data is a block write, the remaining data
will be generated in a pattern selected by the initialization boot
prom as shown in Table 7. In Table 7, Dxx means that a Data
clock is followed by two idle clocks between each of the data
items. However, no idle cycles are guaranteed after the last
Data clock.  Because the data rate pattern on writes is

preselected at reset time using the serial boot initialization the
register interface, the memory system cannot dynamically
slow down any further and still control the data rate. Unless
data can be written to memory at this preselected rate, the
data must be buffered until the memory system can handle it.

Thus, data is written at a rate that further requires external
buffering via a FIFO. The major reason for this arrangement
is to allow memory writes from the buffer/FIFO to occur at the
same time as cached reads. This allows the CPU to execute

Figure 7. R4000 Read Interface State Machine

assert ValidIn,
drive SysCmd with end of 

data identifier,
enable data buffer

Idle,
Disable RAM/ROM,

Start Latching Addr Register

ValidOut and 
(SysCmd==Read)

 and Release 

ValidOut and (SysCmd==Read) and !Release

Stop Latching Addr Register

Stop Latching Addr Register,
Enable RAM/ROM,

Count DW (in Block),
Count Out Wait States

Release

Assert ValidIn,
Drive SysCmd with Data 

Identifier,
Enable Data Buffer

!Done With W.S. Count

Done With W.S. Count
 and !Last DW (in Block)

Wait for Write Buffer to Empty

RdRdy

Last DW (in Block)

Increment Subblock 
Address,

Count DW in Block,
Count Out Wait States

!Done With W.S. Count

!Last DW (in Block)

Assert ValidIn,
Drive SysCmd with End of 

Data Identifier,
Enable Data Buffer

Done with W.S. 
Count and !Last 
DW (in Block)

Done With W.S. Count 
and Last DW (in Block)

Done With W.S. Count andLast 
DW (in Block)

!RdRdy (Write in Progress)

!Release

drw 07



DESIGNING READ AND WRITE BUFFERS FOR
THE R4000 SYSTEM INTERFACE APPLICATION NOTE AN-114

132

cached instructions in parallel with the retiring of write data. In
addition, the data caches use a writeback protocol, where
data stores are always written to cache, but main memory is
only updated when necessary (i.e., when another cache
access needs to replace the cache location that is holding the
freshly written data). Thus cached load and store fetches can
also occur in parallel with the retiring of external system
interface writes.

In contrast to reads, writes must indicate bus errors through
an interrupt or some other external hardware mechanism. The
CPU has an internal write buffer and also expects the memory
system to have an additional external write buffer. Therefore,
the CPU cannot match a bus error indication to a precise
address and data pair, because it is decoupled from when the
memory system actually tries the write. The system can
choose to save address and data information with external
hardware if it needs to match the error to the precise address
and data within the write buffer. Uncached writes which are
less than a double word wide, (e.g., 1byte), still produce data
on the other bytes and the appropriate ECC/parity. However,
the data for the unused bytes is pseudo-random, in that the
CPU drives out what was last contained in an internal data
buffer.

R4000 Write Buffer Depth
In general, to implement the write buffer, enough buffer

locations are needed to store all of the double words in the
block write. However, as write data is being written into the
buffer at the preselected data pattern rate, it is possible that
the first few double words in the block write have been retired
to main memory, much like a FIFO. Thus, theoretically, those
buffer locations could be reused for the last few double words
of the block write, as long as the buffer does not overflow. For

memory which has predictable and consistent access time for
each word (Static RAM) see Table 8. Not all data rate patterns
and buffer sizes are shown, but the other cases can be derived
using queuing theory producer/consumer model. Similar to
block reads, the maximum block size is the largest primary or
secondary cache-line size. For most systems, the control
portion of the write buffer is simplified if the number of buffers
matches the maximum block size.

DRAM systems complicate the optimal cases due to the
first word possibly taking longer than the others because of
RAS precharge, RAS address hold time, or because of the
delay from a CAS-before-RAS Refresh.  In such cases, de-
asserting WrRdy until the precharge or refresh is done and
then choosing a slow enough data pattern rate to handle burst
DRAM column page accesses prevents having to select a
very deep buffer.

Byte Enables
On the memory system logic, the 8-byte enables must be

generated from the SysCmd and address for writes that are
less than a double-word wide (from 1 to 7 bytes wide). Note
that in contrast to most microprocessors, the R4000 will never
generate an unaligned write. Thus, the 1 to 8 bytes written will
always be contained within a double-word boundary. In addi-
tion, if only 1 to 4 bytes are written, they will always be
contained within a word boundary. In other words, whenever
5 to 8 bytes are read or written little endian/ big endian, either
the LSB/MSB must be at address offset 0 or the MSB/LSB
must be at address offset 7, and whenever 1 to 4 bytes are
read or written little endian/big endian, either the LSB/MSB
must be at address offset 0 or the MSB/LSB must be at
address offset 3.

Figure 8. R4000 Write Block Cycle
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Cache Line CPU Rate Memory Speed Max. Buffer
Size Levels

4 DD 1 clock 1

≥ 2 2

DxD ≤ 2 clocks 1

≥ 3 2

DxxD ≤ 3 1

≥ 4 2

DxxxD ≤ 4 1

≥ 5 2

8 DDDD 1 clock 1

≥ 3 4

DxDxDxD ≤ 2 clocks 1

2 3

≥ 3 4

DxxDxxDxxD ≤ 3 1

4–5 2

6–11 3

≥ 12 4

DxxxDxxxDxxxD ≤ 4 1

5–7 2

8–15 3

≥ 16 4

16 DDDDDDDD Max. Case 8

32 DDD...DDD Max. Case 16

Table 8. Maximum Write Buffer Depth Needed
For Various Cache Sizes

EXAMPLE OF AN R4000 WRITE BUFFER
The address buffer for writes is similar to the address buffer

for reads and can use the 18-bit FCT16823T. On the R4000PC
which does not have secondary cache overlapped com-
mands, the read address buffer can also be used for the write
address buffer. The caveat is that RdRdy needs to be asserted
during the write so that any potential reads will wait until the
write is done with the address buffer before continuing. On the
R4000MC/SC, separate registers are needed, as previously
discussed, for the read address and the write address so that
read, followed by write secondary cache overlap clusters, can
be handled. The write address buffer needs to use the same
door-to-door search algorithm to hold the address as the read
address buffer. The primary difference between the two is that
after latching/registering the address, the write buffer needs to
increment the addresses for block writes sequentially instead
of sub-block ordering. Similar to read, a write address register
looks for a write SysCmd along with ValidOut before disabling
the clock enable.

The write data buffer could consist of an ASIC or FPGA,
however, the write buffer can also be easily implemented
using discrete logic FIFOs or pipeline registers. An example is
the IDT73200 pipeline register, 16-bits wide and 8 levels
deep. It can either load a specific register slot through its
instruction pins or automatically ripple data through, similar to
a FIFO. Either method is acceptable with the R4000, because
the block size is known at the beginning of the transaction. The
block size will either be the primary cache line size or, if
present, the secondary cache line size. If 16 or 32 locations
are needed, then the IDT73200 can be expanded by using two
or four in series in the ripple-through mode. Two separate
state machines are needed, one for controlling the CPU-to-
buffer interface and the other to control the buffer-to-memory
interface. On the CPU side-state machine, block writes require
the IDT73200 to start latching/registering in new data by
incrementing the write pointer so a new register is selected to
be written. On the last double-word of a block, the IDT73200
needs to be told when to stop latching new data, since re-
pointing to the first location could possibly destroy that data
too early. This can either be controlled with a special hold
command on its instruction pins, I[3:0] = hex F, or by de-
asserting the ClkEn pin after latching the last double word.
The memory side needs to implement a state machine which
checks to see if a read is in progress from a secondary cache
overlapped read. Once ready, the state machine can initiate
the write to the memory and select the register to output via the
select pins. The logic to select the output register can also be
used to generate the sequentially ordered least-significant
double-word address bits. WrRdy can be de-asserted during
a write to indicate that the buffer is full and to keep any
subsequent writes from occurring until the IDT73200 (or a
FIFO) can accept more data. A key control issue is to de-
assert RdRdy  while data is being written to memory, so that
subsequent reads will wait for the memory bus to become free.
Because RdRdy takes two clocks to react, the de-assertion
must take place during the write command.

For example, for a little endian system, a five-byte write or
read, with bytes 0 through 4 enabled, could happen, but a five-
byte write or read, with bytes 1 through 5 enabled, could never
happen. A non-reduced PLA equation for one of the eight byte
enables is shown in Table 8. The other seven byte enables are
similar, and the equation can be simplified if the endianess is
predetermined, or if it is known that the 64-bit mode won’t be
used.  The re-alignment load/store–left/write instructions lwl,
lwr, ldl, ldr, swl, swr, sdr, and sdw are used to develop the byte
enable equations.

Serial Init Bits 14:11 Data Rate Pattern

0 D

1 DDx

2 DDxx

3 DxDx

4 DDxxx

5 DDxxxx

6 DxxDxx

7 DDxxxxxx

8 DxxxDxxx

9–15 Reserved

Table 7. Possible Data Rate Patterns for Block Write
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Other options include using a 4-deep pipelined register
such as the 74FCT520, or a 2-deep pipelined register such as
the IDT73210.  An example using the IDT73210 will be given
in the next section.

EXAMPLE OF AN R4000 INTEGRATED READ
AND WRITE BUFFER

Some systems, as shown in Table 7, can retire their writes
at a fast enough rate to only require a 2-deep write buffer.
These cases are especially prevalent when the cache line size
is 4 words.  In these cases, the IDT73210 can be used. The
part was originally designed for embedded R3000 read and
write buffering, and also works well for integrated R4000 read
and write buffering. It is an 8-bit transceiver with an extra data
input which can generate parity. In one direction it is registered

once, while in the other direction, it is registered twice. Thus,
by setting it up so that the write buffer uses the 2-deep path,
and the read buffer uses the 1-deep path, the part can be used
in R4000 systems. The BEN and SEL pins can be used to
control register ripple-through. The most straightforward way
to use the controls requires Y-register loading by the first
double-word, followed by  ripple-through enabling, so the first
double word is put into register Z as the second double word
is loaded into register Y. Thus, the second double word must
come on the clock cycle immediately following the first double
word. This data rate pattern can be achieved by selecting a D
or DDx pattern from Table 7 with the serial boot interface reset
initialization. Other methods which use features of the IDT73210
not detailed here can be implemented to handle other kinds of
data patterns. However, the controls will be more complicated
than the above case.

Table 9. Byte Enable PLA Equation

!BE_B/ {BYTE ENABLE FOR THE LANE FOR DATABITS 55:48}
 := ((RESET/ AND !VALIDOUT/ AND SYSCMD[8:5]==b’1X1X) AND

!BIGEND AND (MEMADDR[2:0]==b’110) AND (SYSCMD[2:0]==b’000) OR {LIT BYTE  }
!BIGEND AND (MEMADDR[2:0]==b’110) AND (SYSCMD[2:0]==b’001) OR {LIT 1/2 WD}
!BIGEND AND (MEMADDR[2:0]==b’100) AND (SYSCMD[2:0]==b’010) OR {LIT 3BYTE }
!BIGEND AND (MEMADDR[2:0]==b’101) AND (SYSCMD[2:0]==b’010) OR {LIT 3BYTE }
!BIGEND AND (MEMADDR[2:0]==b’100) AND (SYSCMD[2:0]==b’011) OR {LIT WORD  }
!BIGEND AND (MEMADDR[2:0]==b’011) AND (SYSCMD[2:0]==b’100) OR {LIT 5BYTE }
!BIGEND AND (MEMADDR[2:0]==b’010) AND (SYSCMD[2:0]==b’101) OR {LIT 6BYTE }
!BIGEND AND (MEMADDR[2:0]==b’000) AND (SYSCMD[2:0]==b’110) OR {LIT 7BYTE }
!BIGEND AND (MEMADDR[2:0]==b’001) AND (SYSCMD[2:0]==b’110) OR {LIT 7BYTE }

 BIGEND AND (MEMADDR[2:0]==b’001) AND (SYSCMD[2:0]==b’000) OR {BIG BYTE  }
 BIGEND AND (MEMADDR[2:0]==b’000) AND (SYSCMD[2:0]==b’001) OR {BIG 1/2 WD}
 BIGEND AND (MEMADDR[2:0]==b’000) AND (SYSCMD[2:0]==b’010) OR {BIG 3BYTE }
 BIGEND AND (MEMADDR[2:0]==b’001) AND (SYSCMD[2:0]==b’010) OR {BIG 3BYTE }
 BIGEND AND (MEMADDR[2:0]==b’000) AND (SYSCMD[2:0]==b’011) OR {BIG WORD  }
 BIGEND AND (MEMADDR[2:0]==b’000) AND (SYSCMD[2:0]==b’100) OR {BIG 5BYTE }
 BIGEND AND (MEMADDR[2:0]==b’000) AND (SYSCMD[2:0]==b’101) OR {BIG 6BYTE }
 BIGEND AND (MEMADDR[2:0]==b’000) AND (SYSCMD[2:0]==b’110) OR {BIG 7BYTE }
 BIGEND AND (MEMADDR[2:0]==b’001) AND (SYSCMD[2:0]==b’110) OR {BIG 7BYTE }

    (MEMADDR[2:0]==b’000) AND (SYSCMD[2:0]==b’111) OR {DOUBLE WD }
      (SYSCMD[4:3]==b’1X)  OR {BLOCK     }

(!BE_B/ AND !MEM_ACKNOWLEDGE/)
);
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Figure 9. R4000 8-Level, 64-bit Wide Write Buffer
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Figure 10. R4000 Write Buffer State Machine
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SUMMARY
The R4000 uses three groups of signals for its System

Interface between the CPU and main memory, consisting of
the SysAD bus, the SysCmd bus, and a small group of control
signals. Even though the R4000 uses a high-speed 50MHz
bus, worst case timing issues with the R4000 System Inter-
face are greatly simplified because of the completely synchro-
nized bus and control signals. The read and write system
interface on the R4000 uses a concept of multi-level buffering/

Figure 11. R4000 Integrated Read and Write Buffer
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