Introduction

Sometimes it may be necessary to display some digits on a 7-segment display indicator. This can be easily accomplished with a Silego SLG46531V CMIC thanks to 8-states Asynchronous State Machine (ASM) with configurable outputs for every state.

![ASM counter appearance](image1.png)

ASM Counter Circuit Design

If we use a 7-segment indicator, we need only 7 logic signals to output any digit by switching on the necessary segments. To do this we may configure 7 of 8 ASM outputs (High or Low) for each state (0..7) in such a way to display some numbers (see Figure 2, Figure 1).

To output number “1” we need to switch on segments B and C, “2” – A, B, G, E, D and so on.

Let’s connect indicators’ anodes (3 and 8 on the Figure 2) to the Vdd and control the indicator applying Low level to segments’ cathodes to switch them on and High level to switch them off.

![7-segments Indicator](image2.png)

ASM outputs configuration and outputs: segments connection scheme is shown in Figure 4.

![ASM outputs configuration](image4.png)

Such a system is able to display 8 digits: 0, 1, 2, 3, 4, 5, 6 and 7.

PIN#3 is used to switch system On/Off.

To switch ASM on we need to apply High level signal on its nReset input. After ASM reset it starts operating from the initial state (state 0 in our case).
ASM state diagram is displayed in Figure 3. From each state we can move to the next or previous state depending on PIN#4 (Up/Down) level, so it is possible to count up or down.

ASM state transition happens on a High level input signal. If we use one button for transitions and connect it directly, we may jump over some states even if we use an edge detector.
That’s why it is necessary to use a circuit which consists of the DFF and LUTs and makes transitions only on the rising edge of the Button (PIN#2) pressing. Each time the Button is pressed, DFF’s output will change from High (for even states) to Low (for odd states) and vice versa. 2-L1 and 2-L2 LUTs are used to monitor DFF3 output and Up/Down – PIN#4 input. They initiate transitions from even states: 2-L1 – from lower to higher, 2-L2 – from higher to lower. 3-bit LUTs (3-L2 and 3-L3) have similar function, but in addition, they check 2-bit LUTs (mentioned above) outputs and initiate transitions from odd states: 3-L2 – from lower to higher, 3-L3 – from higher to lower.

To indicate overload, we may use a 5th input (DP) of the 7-segment display, and ASM Out 7, which isn’t used for digits’ indication. Let’s configure this output to be High in the last state (see Figure 4) and configure 3-L4 to latch High, when ASM is in the last state and DFF3 output is High, which means we tried to move into the next after the last state. This LUT will be unlatched on the Low level from the ASM Out 7 (any state except for the last one). Filter 0 is used as an inverter, because active level for this indicator is Low.

Figure 4. ASM RAM Configuration

Figure 5. Different digits displayed
Conclusion

This article demonstrates one more example of Asynchronous State Machine application and how easy we can build a simple up/down counter with indication on a 7-segment display.

Figure 5. ASM Counter circuit design
About the Author

Name: Yurii Shchebel

Background: Yurii Shchebel graduated from Ivan Franko Lviv National University in 2015, studying at the Department Electronics. Presently he is working with Configurable Mixed Signal ICs (CMICs), creating handmade audio amplifiers, based on ICs, transistors and vacuum tubes.

Contact: appnotes@silego.com
Document History

Document Title: ASM Counter with display
Document Number: AN-1110

<table>
<thead>
<tr>
<th>Revision</th>
<th>Orig. of Change</th>
<th>Submission Date</th>
<th>Description of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Yurii Shchebel</td>
<td>06/06/2016</td>
<td>New application note</td>
</tr>
</tbody>
</table>

Worldwide Sales and Design Support

Silego Technology maintains a worldwide network of offices, solution centers, manufacturer’s representatives, and distributors. To find the sales person closest to you, visit us at Sales Representatives and Distributors.

About Silego Technology

Silego Technology, Inc. is a fabless semiconductor company headquartered in Santa Clara, California, with operations in Taiwan, and additional design/technology centers in China, Korea and Ukraine.
IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

© 2021 Renesas Electronics Corporation. All rights reserved.