Introduction

Digital Edge Detectors are the devices which with the appearance of the defined edge on the input produce a short pulse on their output. This simple unit consists of one input, and output, main part of which is a LUT (Look-up table) cell with some passing unit on its input that defines the width of output pulse see Figure 1.

Digital Edge Detector Circuit Design

As you can see on Figure 6, Digital Edge Detector can be implemented using 2-bit LUT4 with connected to its input Edge Detector_IN (PIN3), programmable delay and Edge Detector.OUT (PIN19) connected to its output. This output PIN has an Output Enable node connected to VDD as it is configured as Push-Pull.

Digital Edge Detector Circuit Analysis

When input signal that comes to an Edge Detector_IN (PIN3) it produces a HIGH state on 2-bit LUT4 output until HIGH level comes on IN0 from 2-bit LUT5 cell output. In such way we get a pulse width of several nanoseconds, depending on VDD level and passing unit type.

Please note, that except of Look-up table, such cells as FILTER, PDLY, LATCH can also be used as a passing units for Edge Detector circuit.

Now, if Edge Detector_IN (PIN3) switches LOW the HIGH pulse on Edge Detector_OUT (PIN19) will appear again until LOW level on IN0 will appear, because 2-bit LUT5 itself delays both edges of input signal (see Figure 2).

Please use Look-up table configured as AND gate for Rising Edge Detector configuration and as OR gate for Falling Edge Detector configuration, for bigger pulse duration on Edge Detector output (see Figure 3). Different propagation times of these Look-up tables cells depending on configurations can be seen on Figure 4.

Functionality waveform of real Digital Edge Detector circuit created in GreenPAK3 Designer is shown on Figure 5, where Channel1 (yellow/top line) ─ PIN3 (Edge Detector_IN), Channel2 (light blue/bottom line) ─ PIN19 (Edge Detector_OUT). As can be seen from Figure 4 the real waveforms coincide with the theoretical shown on Figure 1.
Conclusions

Digital Edge Detector is a simple but useful circuit that can be used to produce trigger signals for other blocks and systems.

Note: for proper operation of circuit don’t forget to configure input and output pins correctly. In case of schematic you see on Figure 6 input is configured as Digital Input with Schmitt trigger, and output as Push-Pull.

Related Files

Programming code for GreenPAK Designer.
Figure 6. Digital Edge Detector Circuit in GreenPAK3 Designer
IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas’ products are provided only subject to Renesas’ Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2021 Renesas Electronics Corporation. All rights reserved.