Introduction

GreenPAK2 chip has internal components that make creating different systems and circuits with configurable generators included possible. These circuits can be used for triggering other circuits or creating LED periodical blinking.

Generator Circuit Design

The simplest square waveforms generator consists of the inverter with a feedback from its output to input. The output signal will have a period equal to double of inverter’s propagation time. If the propagation time can be controlled by the output signal period then the frequency can be controlled as well. Fortunately GreenPAK2 chips have configurable delay cells. The delay time of each cell depends on the Counter Data setting and the clocking frequency.

If the generated signal is a square waveform with 50% duty cycle but the generator itself has another duty cycle one can use a frequency divider by 2, constructed using a DFF with a feedback from its inverting output to data input, clocked from the generator. DFFs are available inside GreenPAK2 chip as well.

The design shown below is created in GreenPAK2 Designer software. Its task is to generate 500ms period 50% duty cycle square waveforms when ENABLE input is set HIGH. The timing diagram shown on Figure 1 explains the device operation.

The inverter can be created using a LUT. In this design a 3-bit LUT0 is used for this purpose because it combines POR initialization and button enable inverter logic. The 3-bit input LUT truth table is shown on Figure 2.

DLY0, configured as rising edge delay for 250ms, is used as a configurable element that sets the output period. The delay time is defined by the equation:

$$T_{DLV} = \frac{Counter\ Data + 1}{F_{CLK}}$$

As a clocking source the RC OSC is chosen by default. Also there are options of the RC OSC divided by 4, 8, 12, from another CNT/DLY block or from matrix (please refer to the datasheet for more information). In its turn RC OSC has a configurable frequency that can be chosen from the set of 16 frequency options in the range from 29.11kHz to 8428.44kHz.

The 3-bit LUT has IN2 connected to POR output, IN1 connected to ENABLE (PIN2), IN0 is connected to DLY0 output which has an input connected to 3-bit LUT0 output.

Such a circuit will produce short pulses (equal to propagation time through LUT and DLY cell without delay) every 250ms. To make this signal a 50% duty cycle square waveform the DFF0 with a feedback from its nQ output to D input is used. The DFF clocked by the signal from the DLY0 output will start the output generation with 250ms LOW signal (see Figure 1. Generator Timing Diagrams).
Figure 1). The DFF0 is configured to have an active LOW nRESET input, which allows resetting the DFF0 output when ENABLE signal is LOW. For this purpose as well as for POR initialization a 2-bit LUT1 is used. This LUT is configured as AND gate.

So, considering all said above, the output signal will be a 50% duty cycle square waveform with the frequency defined by the next equation:

\[ T_{OUT} = \frac{2(\text{Counter Data} + 1)}{F_{CLK}} \]

The input of this design is configured as digital input without Schmitt trigger, out – push pull.

A functionality waveform of circuit created in GreenPAK2 Designer is shown on Figure 3 where Channel1 (yellow/top line) – PIN3 (ENABLE), Channel2 (light blue/bottom line) – PIN12 (GEN_OUT), Channel3 (magenta/3\textsuperscript{rd} line) – PIN11 (DLY_OUT), Channel4 (blue/bottom line) – PIN10 (LUT_OUT) As can be seen from Figure 3 the real waveform coincides with the theoretical one shown on Figure 1.

**Conclusion**

Using the GreenPAK2 chips to create generators is very simple. The design itself is straightforward and flexible, that allows creating generators with user specific frequencies, enabled by the LOW or HIGH signals and outputs set LOW or HIGH when inactive. Also the output initial state after being enabled can be defined.

*Note: For proper output PINs operation, if they are configured as push pull, their OE node should be connected to HIGH signal source, for example to VDD.*

**Related Files**

Programming code for GreenPAK Designer.
Figure 4. Configurable Generator Circuit in GreenPAK2 Designer
IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES ("RENESAS") PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.