Introduction

The GreenPAK2 chip has an internal RC Oscillator (RC OSC), with a set of configurable frequencies in the range of 29.11 kHz – 8.43 MHz. But in very special cases the user might have a need for the clocking source that has a different frequency from those available on the RC OSC. For this purpose, the user can create an RC based oscillator using external resistance and capacitance together with GreenPAK internal circuits.

Oscillator Circuit Design

The main idea of such oscillator is to charge capacitance to some voltage level through the resistance and then instantly discharging of the capacitance to 0V level, thus setting the oscillation period. Of course, there are many other ways to create the RC oscillator, but this case is the most predictable and flexible.

The well-known equation

\[V_C(t) = V \left(1 - e^{-\frac{t}{RC}}\right) \]

taking that \(V_C \) is a voltage on the capacitor that should not exceed some reference voltage \(V_{REF} \), \(V \) is a voltage of the source that charges the capacitor, \(t \) is time, \(R \) is a resistor value and \(C \) is capacitor value, can be transformed to the following

\[t(V) = R C \ln \left(1 + \frac{V_{REF}}{V}\right) \]

or \(f(V) = \frac{1}{R C \ln(1 + \frac{V_{REF}}{V})} \)

where \(f(V) \) is a function of output frequency depending on the voltage of the source that charges the capacitor. Thus, the process should be like it is shown in Figure 1.

So, if the charging source voltage, reference voltage, \(R \) and \(C \) values are fixed the output frequency is fixed too. But the last formula shows that the output frequency can depend on the charging voltage source. Such devices that have a variable output frequency depending on input voltage are called Voltage Controlled Oscillators (VCO).

Designing such device using GreenPAK2 chip will require the use of ACMP, because this is a block that has different sets of reference voltages that can be easily changed if needed. The ACMP will monitor the voltage on capacitor and set the command to discharge it. Fortunately the same PIN that is used for sensing can be used for discharging. This PIN should be configured as “Analog Input and Open Drain Output”. So if IN of such PIN is HIGH it operates as analog input, if IN is LOW the PIN turns into open drain output with 0V level on it that can be used to discharge the capacitor. In this design the discharge should happen when the voltage on capacitor reaches the ACMP reference value (ACMP output is HIGH). So the Inverter should be placed between ACMP output and PIN’s IN. Inverter unit can be realized using 2-bit LUT with a proper truth table configured.

Figure 1. Oscillator Timing Diagrams
As the open drain output still has some resistance it will take some time to discharge the capacitor to 0V level. To make sure that the discharge process is completed the falling edge delay cell should be placed between the ACMP output and inverter.

The time needed for GreenPAK2 chip to turn on should be considered as well. For correct initialization POR output can be used to source second input of 2-bit LUT that is used as inverter.

For example, the ACMP0 configured to have 400mV reference is used. DLY0 is configured to be a falling edge delay for approximately 0.13μs time. As inverter the 2-bit LUT1 is used. Its truth table is shown in Figure 2.

The output can be sourced from ACMP0 and configured as push pull.

General application schematic is shown in Figure 3.
Functionality waveform of real VCO circuit created in GreenPAK2 Designer with external R=1035kOhm and C=29.7nF is shown in Figure 4 where Channel1 (yellow/top line) — V (charging source voltage), Channel2 (light blue/bottom line) — PIN3 (SENSE&DISCHARGE), Channel3 (magenta/bottom line) — PIN3 (SENSE&DISCHARGE). As can be seen from Figure 4 the real waveform coincides with the theoretical shown in Figure 1.

Conclusion

Using the GreenPAK2 chips to create a RC based generator or voltage controlled oscillator is very simple. The design itself is straightforward and flexible, that allows creating oscillators with user specific values of output frequency.

Note: for proper output PIN operation its OE node should be connected to HIGH signal source, for example to VDD, if it is configured as push pull.

Related Files

Programming code for GreenPAK Designer.

![Figure 5. Voltage Controlled Oscillator Circuit in GreenPAK2 Designer.](image-url)
IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. Renesas grants you permission to use these resources only for development of an application that uses Renesas products. Other reproduction or use of these resources is strictly prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property. Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims, damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject to Renesas’ Terms and Conditions of Sale or other applicable terms agreed to in writing. No use of any Renesas resources expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Contact Information
For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

© 2021 Renesas Electronics Corporation. All rights reserved.