
©1998 Integrated Device Technology, Inc.

 6.011
3557/4

MARCH 1999

APPLICATION
NOTE
AN-09

DUAL-PORT SRAMs
YIELD BIT-SLICE DESIGNS
WITHOUT MICROCODE

Abstract
High-performance controller designs use bit-slice components for

their speed and design flexibility. Speeds of 10-20 million instructions per
second (MIPS) are common and the designer can use bit-slice design
flexibility to perform speed-critical operations in one instruction. Bit-slice
designs have the drawback, however, of requiring microcode design for
their implementation, often with a long development cycle. The problem
is that the microcode resides in a separate, stand-alone control memory
which prevents use of the kind of interactive prototyping and debugging
tools associated with conventional microprocessors. The problem can be
eliminated by using a dual-port SRAM for the control memory, making it
part of the data memory address space, and converting the controller to
a CPU by borrowing some techniques from Reduced Instruction Set
Computer (RISC) designs. The result is a RISC controller where the
microinstructions of the bit-slice approach become the instructions of a
computer. The design approach provides all the speed and architectural
flexibility of microcoded bit-slice designs, while allowing the use of
interactive debugging methods associated with microprocessors.

Bit-Slice Versus RISC Architectrues
An example of a typical bit-slice controller design is shown in Figure

1. It consists of a control flow section and a data flow section. The control
flow section has a microinstruction counter and the control memory. The
data flow section has a register and ALU element—the bit-slice—plus a
data memory and I/O registers on a data bus. Note that the control and data
memories are separate. The use of separate data and instruction
memories is called the Harvard architecture. The separate control memory
provides some of the speed associated with bit-slice designs because it
operates in parallel with the data memory. This allows the next microin-
struction to be fetched from the control memory while data for the current
instruction may be read from the data memory. This contrasts with
conventional microprocessors which alternately get instructions and data
from the same memory. This use of a single memory for instructions and
data is called the Von Neumann architecture.

There is a remarkable similarity between the bit-slice controller block
diagram and a block diagram of a typical RISC CPU, comparing Figures
1 and 2. The difference is that the control memory and the data memory

By David C. Wyland

Figure 1. Bit-Slice Controller Block Diagram

CONDITION
TESTING

CONTROL FLOW SECTION

MICROINSTRUCTION
COUNTER

CONTROL
MEMORY

MICROINSTRUCTION
REGISTER

DATA BUS

I/O
REGISTERS

I/O
REGISTERS

STATUS
REGISTER

DATA FLOW SECTION

REGISTERS
AND ALU

DATA MEMORY

MEMORY ADDRESS
REGISTER

3557 drw 01

 6.01

Application Note AN-09Dual-Port SRAMs Yield Bit-Slice Designs Without Microcode

2

Figure 3. Bit-Slice Controller With Dual-Port Control Store

STATUS
REGISTER

CONDITION
TESTING

CONTROL FLOW SECTION

PROGRAM COUNTER

MICROINSTRUCTION
REGISTER

DATA BUS

I/O
REGISTERS

I/O
REGISTERS

DATA FLOW SECTION

REGISTERS
AND ALU

MEMORY ADDRESS
REGISTER

DUAL-PORT MEMORY

CONTROL MEMORY
PORT

DATA MEMORY
PORT

3557 drw 03

of the controller have been replaced by an instruction cache memory
and a data cache memory in the RISC CPU. The instruction and data
cache memories work the same as their microcode counterparts except
that they both contain copies of data in the common main memory. The
programmer sees a single memory—the main memory—while the
hardware works as if it has two independent memories. In this
manner, the RISC computer has the speed advantage of the
Harvard architecture and the single memory for programs and data
of the Von Neumann architecture.

The instruction and data caches of the RISC architecture are
equivalent to having two ports on one memory. We can apply this concept
to bit-slice controllers by using a high-speed dual-port memory in place
of the cache memories, as shown in Figure 3. The dual-port SRAM allows
the instruction and data ports to be active simultaneously and indepen-
dently, while providing both sides access to a common set of SRAM cells.
Since both ports are working from the same memory, the data flow section
can load and move both data and instructions in the same manner as a
conventional microprocessor. As a result, this design functions as a
conventional CPU with a long instruction word. This allows conventional
interactive software tools, such as interpreters and monitors, to be used
in system development and debugging

Figure 2. RISC CPU Block Diagram

CONDITION
TESTING

CONTROL FLOW SECTION

PROGRAM COUNTER

INSTRUCTION
CACHE

MEMORY

INSTRUCTION
REGISTER

STATUS
REGISTER

DATA BUS

I/O
REGISTERS

I/O
REGISTERS

DATA FLOW SECTION

REGISTERS
AND ALU

DATA
CACHE

MEMORY

MEMORY ADDRESS
REGISTER

MAIN MEMORY

3557 drw 02

 6.01

Application Note AN-09Dual-Port SRAMs Yield Bit-Slice Designs Without Microcode

3

Design of a RISC Controller
The design of a RISC controller using a dual-port control memory is

similar to a conventional bit-slice design except for inclusion of a minimum
set of operations for a CPU. This allows use as a conventional computer
for software coding and debugging. In ordinary bit-slice controller designs,
the minimal CPU operation set already exists as a subset of the data flow
and control operations already present.

A minimal set of CPU operations, suitable for bit-slice designs, can be

Figure 4. Dual-Port Bit-Slice RISC Controller Design Block Diagram

INITIAL LOAD
EPROM

16-BIT DATA BUS

PC
IDT74FCT161

DUAL-PORT RAM 8K X 7132

INSTR. PORT
2K X 64

PC SAVE

INSTR. REG
IDT74FCT273

SHIFT GATE
LOCK

16-BIT
RALU

IDT49C402ACOND MUX
IDT74FCT151

STATUS
LOGIC

EXTERNAL I/O

MAR
IDT74FCT161

DATA PORT
8K X 16

244

374

374

244I FIELD

3557 drw 04

Table 1. Minimal CPU Instruction Set

1. Load register from memory at immediate address
(address in instruction).

2. Load register from memory at address in A register.
3. Store register to memory at immediate address (address

in instruction).
4. Store register to memory at address in a register.

5-11. Move/combine registers: move, negate, invert, add,
subtract, AND, OR.

12-13. Shift: rotate left through sign, rotate right through sign.
14. Read status register.
15. Write status register.
16. Jump absolute: load program counter with immediate

address.
17. Jump register: load program counter with

register contents.
18-20. Jump absolute conditional: if zero result, if sign, if carry.

21. Jump and save return (Program Counter) in a register.

to complete the set is the ability to transfer registers to and from memory,
to save and restore the status register and to save the Program Counter
in a register in Jump and Save Return instructions.

Figure 4 shows a block diagram of a general purpose bit-slice
controller design, based on the RISC controller architecture in Figure 3,
and capable of implementing the minimal instruction set. This is a 16-bit
controller design using an IDT49C402 16-bit RALU and a 64-bit instruction
word. The control flow section is fully pipelined for maximum speed and
uses a simple counter as the Program Counter (PC). As a result, branch
execution is delayed by one instruction: the instruction following the branch
is executed before the branch takes effect. This method allows maximum
speed in the control flow section and is commonly used in RISC designs.
A path is provided from the PC to the data inputs of the IDT49C402 for
saving the PC in a register during Jump and Save Return operations. Also
shown in the block diagram is an initial-load EPROM. This EPROM holds
the non-volatile copy of the program to be loaded at power up. A power
up flip-flop and some sequencing logic cause the contents of this EPROM
to be loaded into the SRAM at power up.

In the design in Figure 4, the instructions and data share the same

derived from the instruction set of a RISC-like computer such as the Data
General Nova minicomputer. It is a useful example because it is a 16-bit
general register design having approximately 20 instructions and three
addressing modes, yet is fully functional as a computer. From its instruction
set, the list of 21 operations shown in Table 1 can be derived as a
representative minimum working set. If the design includes these opera-
tions, it will function as a CPU.

This instruction set assumes a set of general purpose registers
(typically 16 or more in bit-slice designs), a memory which contains both
instructions and data and a status register which records the result of
register-to-register operations. I/O registers are assumed to be mapped
into the memory space so that separate instructions for them are not
required.

Some of the above operations are automatically included in bit-slice
controllers as a result of straightforward design. The register combination
operations are provided by the bit-slice RALUs and the jump operations
are commonly required as part of the control flow design. All that is required

 6.01

Application Note AN-09Dual-Port SRAMs Yield Bit-Slice Designs Without Microcode

4

0000 1A

0001 1B

0002 1C

0003 1D

0004 2A

0005 2B

0006 2C

0007 2D

0008 3A

0009 3B

000A 3C

000B 3D

DATA PORT
8K X 16

ADDRESS
(FROM MAR)

1A 1B 1C 1D

2A 2B 2C 2D

3A 3B 3C 3D

ADDRESS
(FROM PC)

0000
0004
0008

INSTRUCTION PORT: 2K X 64

3557 drw 05

Figure 6. Dual-Port Controller Instruction Format

Figure 5. Dual-Port Controller Memory Map

6 BITS 6 BITS 12 BITS 10 BITS 14 BITS 16 BITS

A B
I0-9, CN

STAT EN BUS GATES MISC
CONTROL

IMM.
DATA

DIN BUS
R/W

MW,
MAR

JUMP SHIFT

2 BITS 2 BITS 2 BITS 2 BITS 2 BITS
3557 drw 06

FIELD FUNCTION

A 402 reg address, bus read select, or jump condition
select

B 402 reg address or bus write select

I0-9 49C402 instructions + carry-in

Stat EN Enable Status reg load

DIN 402 D Bus: Memory, PC. Bus, 1 field

Bus R/W Gate Bus read @ A, write @ B

MW, MAR Memory write enable, Id MAR enable

Jump Enable PC load, enable condition test

Shift 402 shift/rotate gating

Imm Data Immediate Data - address, etc.

Misc Control Misc bits for controller functions

3557 tbl 01

memory. The mapping for instructions and the mapping for data are
different, however, as is shown in Figure 5. The eight dual-port RAMs are
mapped as 2K words of 64 bits/word on the instruction port and as 8K words
of 16 bits/word on the data port. Each 64-bit instruction word corresponds
to four sequential 16-bit data words. The instruction at address 0000 on
the instruction port corresponds to locations 0000, 0001, 0002 and 0003
on the data port. On the instruction port, all eight chips are enabled, resulting
in 64 bits of instruction output. Only the upper 14 bits of the PC are used
to address the RAM so that the address in the PC is consistent with the
addressing on the data side. On the data port, the least significant two bits
of the address in MAR select the appropriate 16-bit word by selecting the
chip enable for the appropriate one of four pairs of dual-port SRAMs.

RISC Controller Instruction Format
The 64-bit instruction word is shown in Figure 6. Fifty of the 64 bits

are used to control the basic data and control flow of the controller and 14
bits are available as additional control bits for the specific controller
application. Each 64-bit instruction word from the control port of the RAM
is mapped as four 16-bit words on the data memory port. A larger instruction
word can be used in the same manner as in microcoded designs. It is
convenient if the word width is a power of two, such as 64 or 128 bits, so
that there are no gaps in the memory space as seen from the data flow side.

The IDT49C402 is controlled by the A and B fields, I0-9, CN, Stat
Enable field and the Shift Gating field. The A and B fields provide the 6-

 6.01

Application Note AN-09Dual-Port SRAMs Yield Bit-Slice Designs Without Microcode

5

CLOCK

PC VALID

INSTR. RAM ACCESS

INSTRUCTION REG

SET-UP

MAR SETTLE

DATA RAM ACCESS

402 D TO B SET-UP

A, B SETTLE

A, B TO Y OR F=0

WRITE DATA VALID

402 A TO Y PATH

CJUMP SET-UP TIME

2 x 74151 + F161

0 10 20 30 40 50 55/0

35ns tAA

35ns tAA

20ns

28ns

3557 drw 07

bit addresses for the A and B register inputs on the IDT49C402. The I0-

9, CN and Stat EN field provide the 10 control bits to the IDT49C402, the
carry-in bit and a status register load enable, respectively, and the Shift
Gating field controls the shift-in/shift-out gating for shift operations. The data
source for the DIN pins of the IDT49C402 is selected by the DIN field. This
field can choose the data bus, the immediate data field or the PC as the data
source.

The data bus is controlled by the A and B fields as well, which provide
6-bit select codes for bus read and write operations, respectively, and by
the bus read/write, memory write and load MAR bits. The default operation
is to gate the data from the IDT49C402 onto the data bus. The load MAR
and memory write bits allow writing this data into the memory and/or MAR
from the bus. The bus read bit disables the IDT49C402 outputs and gates
an I/O register onto the bus as determined by the 6-bit A field. The bus write
bit causes bus data to be written into an I/O register selected by the B field.

Branch operations are controlled by the Jump and A fields. The Jump
field enables loading of the PC from the bus, which is the branch operation.

Figure 7. RISC Controller Timing Diagram

TTTTTaaaaabbbbble 2.le 2.le 2.le 2.le 2. Critical P Critical P Critical P Critical P Critical Paaaaath th th th th TimingTimingTimingTimingTiming
CONTROL PATH DATA PATH

PC Settle: FCT161A 6.5ns MAR Settle: FCT161A 6.5ns

SRAM Access 35.0ns SRAM Access 35.0ns

I reg set-up: FCT374A 2.5ns IDT49C402A, Din Set-up 10.0ns

Total 44.0ns 51.5ns

The A field provides the 6-bit condition select code for conditional branch
operations.

The Misc Control field provides 14 bits for direct control of additional
devices. This field would typically be used for gates and strobes to
additional devices such as parallel multipliers, FIFOs, disk controller chips
and other devices which communicate with, and are controlled by, the
RISC controller.

Implementing Minimal
Instruction Set

The RISC controller design must now be checked to ensure that it
implements each instruction in the minimal instruction set.

Load and Store
Load and Store register operations are done in two instructions: load

MAR and load or store register. The load MAR instruction places register

 6.01

Application Note AN-09Dual-Port SRAMs Yield Bit-Slice Designs Without Microcode

6

data from the IDT49C402 or data from the immediate data field on the bus
and enables MAR load. The load register instruction gates memory data
into the data inputs of the IDT49C402. The store register instruction gates
register data onto the bus and writes it into memory.

Move, Combine and Shift Register
Register-to-register and shift operations are performed directly by

the IDT49C402 bit-slice.

Status Register Read/Write
Read and Write Status register operations select the Status Register

and bus read and write, respectively.

Jump and Conditional Jump
Jump operations are done by enabling the PC to be loaded from the

bus using either immediate or register data for the jump address.
Conditional Jump is done by enabling a conditions select multiplexer to
conditionally enable the PC load.

Jump and Save Return
The Jump and Save Return operation is performed by using the

immediate data field to provide the jump address and simultaneously
storing the PC in a register selected by the B field. The immediate datafield
is gated to the bus, the PC is gated to the IDT49C402 data inputs and the
IDT49C402 is instructed to perform a D-input-to-register-load operation.

RISC Controller Timing
The design in Figure 4 is capable of a 55ns cycle time. A timing

diagram for a 55ns cycle time, assuming the 35ns dual-port SRAMs, is
shown in Figure 7. The critical timing path, in this case, is the data path from
the Memory Address Register (MAR) through the data port of the memory
into the IDT49C402. If the dual-port SRAMs are slower than 35ns, the

cycle is extended proportionately.

RISC Controller Application
The utility of the RISC controller design approach is that it allows

interactive system development, debugging and diagnostic testing. It also
provides the potential for high-level language support of the bit-slice
design. Powerful interactive access to the RISC controller can be provided
by an RS-232 interface and a FORTH language interpreter program. This
allows interactive coding and testing of the system, speeding up the test-
and-analyze debug cycles. This RS-232 interface can exist on a separate
board external to the RISC controller, connected to the bus by a connector
on the controller board. No additional hardware is required for access by
the designer to the system and this access can allow direct activation and
sensing of controller hardware, setting up timing loops for oscilloscope
checks and on-line development of routines. If a floppy disk controller is
included in the external I/O board, the RISC controller can function as a
stand-alone development system in the same fashion as other stand-alone
FORTH systems.

The RISC controller’s ability to load programs also means that
diagnostics can be loaded from the initial load EPROM . The initial load
EPROM can hold both the normal control program and various test
programs. The controller can load diagnostic programs from the EPROM
for board and system test without requiring permanent space for them in
the control memory. This allows self-diagnostics at the hardware level with
minimum cost impact on the hardware.

Summary
The RISC controller uses high-speed dual-port SRAMs to blend the

features of a bit-slice controller with the capabilities of a RISC computer,
allowing the microinstructions of the bit-slice approach to become the
instructions of a computer. This design approach provides all the speed
and architectural flexibility of microcoded bit-slice designs, while allowing
the use of interactive debugging methods associated with microprocessors
to shorten development time.

© 202 Renesas Electronics Corporation. All rights reserved.

IMPORTANT NOTICE AND DISCLAIMER

RENESAS ELECTRONICS CORPORATION AND ITS SUBSIDIARIES (“RENESAS”) PROVIDES TECHNICAL
SPECIFICATIONS AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING
REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND
OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for developers skilled in the art designing with Renesas products. You are solely responsible
for (1) selecting the appropriate products for your application, (2) designing, validating, and testing your application, and (3)
ensuring your application meets applicable standards, and any other safety, security, or other requirements. These
resources are subject to change without notice. Renesas grants you permission to use these resources only for
development of an application that uses Renesas products. Other reproduction or use of these resources is strictly
prohibited. No license is granted to any other Renesas intellectual property or to any third party intellectual property.
Renesas disclaims responsibility for, and you will fully indemnify Renesas and its representatives against, any claims,
damages, costs, losses, or liabilities arising out of your use of these resources. Renesas' products are provided only subject
to Renesas' Terms and Conditions of Sale or other applicable terms agreed to in writing. No use o any Renesas resources
expands or otherwise alters any applicable warranties or warranty disclaimers for these products.

(Rev.1.0 Mar 2020)

Corporate Headquarters Contact Information
TOYOSU FORESIA, 3-2-24 Toyosu, For further information on a product, technology, the most
Koto-ku, Tokyo 135-0061, Japan up-to-date version of a document, or your nearest sales
www.renesas.com office, please visit:

www.renesas.com/contact/

Trademarks
Renesas and the Renesas logo are trademarks of Renesas
Electronics Corporation. All trademarks and registered
trademarks are the property of their respective owners.

