BCR16PM-12LG
Triac
Medium Power Use

Features
- $I_{T(RMS)}$: 16 A
- V_{DRM}: 600 V
- I_{RGT}, I_{RGT}, I_{RGT} III: 30 mA
- V_{ISO}: 2000 V
- The Product guaranteed maximum junction temperature 150°C
- Insulated Type
- Planar Type
- UL Recognized : Yellow Card No. E223904

Outline

Applications
AC no junction Switching, light dimmer, electronic blanket, Control of household electrical appliance such as electric fans, solenoid driver, small motor control, and other general purpose control applications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Voltage class</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak off-state voltage Note1</td>
<td>V_{DRM}</td>
<td>600</td>
<td>V</td>
</tr>
<tr>
<td>Non-repetitive peak off-state voltage Note1</td>
<td>V_{DSM}</td>
<td>720</td>
<td>V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS on-state current</td>
<td>$I_{T(RMS)}$</td>
<td>16</td>
<td>A</td>
<td>Commercial frequency, sine full wave 360°conduction, $T_c = 87°C$</td>
</tr>
<tr>
<td>Surge on-state current</td>
<td>I_{TSM}</td>
<td>160</td>
<td>A</td>
<td>60Hz sinewave 1 full cycle, peak value, non-repetitive</td>
</tr>
<tr>
<td>I^t for fusion</td>
<td>I^t</td>
<td>106.5</td>
<td>A's</td>
<td>Value corresponding to 1 cycle of half wave 60Hz, surge on-state current</td>
</tr>
<tr>
<td>Peak gate power dissipation</td>
<td>P_{GM}</td>
<td>5</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Average gate power dissipation</td>
<td>$P_{G(AV)}$</td>
<td>0.5</td>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Peak gate voltage</td>
<td>V_{GM}</td>
<td>10</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Peak gate current</td>
<td>I_{GM}</td>
<td>2</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Junction Temperature</td>
<td>T_J</td>
<td>–40 to +150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{STG}</td>
<td>–40 to +150</td>
<td>°C</td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>—</td>
<td>2.0</td>
<td>g</td>
<td>Typical value</td>
</tr>
<tr>
<td>Isolation voltage</td>
<td>V_{ISO}</td>
<td>2000</td>
<td>V</td>
<td>$T_a = 25°C$, AC 1 minute, $T_1 \cdot T_2 \cdot G$ terminal to case</td>
</tr>
</tbody>
</table>

Notes: 1. Gate open.
Electrical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Unit</th>
<th>Test conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Repetitive peak off-state current</td>
<td>I_{DRM}</td>
<td>—</td>
<td>—</td>
<td>2.0</td>
<td>mA</td>
<td>Tj = 150°C, V_{DRM} applied</td>
</tr>
<tr>
<td>On-state voltage</td>
<td>V_{TM}</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>V</td>
<td>Tc = 25°C, I_{TM} = 25 A, instantaneous measurement</td>
</tr>
<tr>
<td>Gate trigger voltage(^{\text{Note2}})</td>
<td>V_{FGT1}</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>V</td>
<td>Tj = 25°C, V_{D} = 6 V, R_{L} = 6 Ω,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R_{G} = 330 Ω</td>
</tr>
<tr>
<td></td>
<td>V_{RG1}</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_{RG11}</td>
<td>—</td>
<td>—</td>
<td>1.5</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Gate trigger current(^{\text{Note2}})</td>
<td>I_{FGT1}</td>
<td>—</td>
<td>—</td>
<td>30</td>
<td>mA</td>
<td>Tj = 25°C, V_{D} = 6 V, R_{L} = 6 Ω,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R_{G} = 330 Ω</td>
</tr>
<tr>
<td></td>
<td>I_{RG1}</td>
<td>—</td>
<td>—</td>
<td>30</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_{RG11}</td>
<td>—</td>
<td>—</td>
<td>30</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>Gate non-trigger voltage</td>
<td>V_{GD}</td>
<td>0.2/0.1</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>Tj = 125°C/150°C, V_{D} = 1/2 V_{DRM}</td>
</tr>
<tr>
<td>Thermal resistance</td>
<td>R_{th(j-c)}</td>
<td>—</td>
<td>—</td>
<td>3.5</td>
<td>°C/W</td>
<td>Junction to case(^{\text{Note3}})</td>
</tr>
<tr>
<td>Critical-rate of rise of off-state</td>
<td>(dv/dt)c</td>
<td>10/1</td>
<td>—</td>
<td>—</td>
<td>V/μs</td>
<td>Tj = 125°C/150°C</td>
</tr>
<tr>
<td>commutation voltage(^{\text{Note3}})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Measurement using the gate trigger characteristics measurement circuit.
2. The contact thermal resistance R_{th(c-f)} in case of greasing is 0.5°C/W.
3. Test conditions of the critical-rate of rise of off-state commutation voltage is shown in the table below.

<table>
<thead>
<tr>
<th>Test conditions</th>
<th>Commutating voltage and current waveforms (inductive load)</th>
</tr>
</thead>
</table>
| 1. Junction temperature
 Tj = 125°C/150°C | ![Supply Voltage](image) |
| 2. Rate of decay of on-state commutating current
 (di/dt)c = –8.0 A/ms | ![Main Current](image) |
| 3. Peak off-state voltage
 V_{D} = 400 V | ![Main Voltage](image) | ![Critical-rate of rise of off-state commutation voltage](image) |
Performance Curves

Maximum On-State Characteristics

On-State Voltage (V) vs. On-State Current (A)

Rated Surge On-State Current

Conduction Time (Cycles at 60Hz) vs. Surge On-State Current (A)

Gate Characteristics (I, II and III)

Gate Voltage (V) vs. Gate Current (mA)

Gate Trigger Current vs. Junction Temperature

Junction Temperature (°C) vs. Gate Trigger Current (Tj = t°C) x 100 (%)

Gate Trigger Voltage vs. Junction Temperature

Gate Trigger Voltage (Tj = t°C) x 100 (%) vs. Junction Temperature (°C)

Maximum Transient Thermal Impedance Characteristics (Junction to case)

Transient Thermal Impedance (°C/W) vs. Conduction Time (Cycles at 60Hz)

- Tj = 150°C
- Tj = 25°C

Typical Example

- IFGT I, IRGT I, IRGT III
- PG(AV) = 0.5W
- PG = 5W
- GM = 2A
- VGD = 0.1V
- VGM = 10V
- VGT = 1.5V
- GM = 2A
- VGD = 0.1V
- VGM = 10V
- VGT = 1.5V

- IFGT I, IRGT I
- IRGT III
- IRGT II
- IRGT III

Typical Example
Maximum Transient Thermal Impedance Characteristics (Junction to ambient)

Conduction Time (Cycles at 60Hz)

Maximum On-State Power Dissipation

RMS On-State Current (A)

Allowable Case Temperature vs. RMS On-State Current

360° Conduction
Resistive, inductive loads

Curves apply regardless of conduction angle

RMS On-State Current (A)

Allowable Ambient Temperature vs. RMS On-State Current

All fins are black painted aluminum and greased

Curves apply regardless of conduction angle
Resistive, inductive loads
Natural convection

RMS On-State Current (A)

Allowable Ambient Temperature vs. RMS On-State Current

Natural convection
No Fins
Curves apply regardless of conduction angle
Resistive, inductive loads

RMS On-State Current (A)

Repetitive Peak Off-State Current vs. Junction Temperature

Typical Example

Repetitive Peak Off-State Current (Tj = 25°C) × 100 (%)

Junction Temperature (°C)

RMP On-State Current (A)
Rate of Rise of Off-State Voltage (V/μs)

Breakover Voltage vs. Junction Temperature (Tj=125°C)

Breakover Voltage vs. Rate of Rise of Off-State Voltage (Tj=150°C)

Commutation Characteristics (Tj=125°C)

Holding Current vs. Junction Temperature

Latching Current vs. Junction Temperature
Gate Trigger Characteristics Test Circuits

Recommended Circuit Values Around The Triac

R1 = 47 to 100Ω
C0 = 0.1μF
C1 = 0.1 to 0.47μF
R0 = 100Ω
Package Dimensions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TO-220F</td>
<td>5C 8F</td>
<td>PR330003AR-A</td>
<td>—</td>
<td>2.5g</td>
</tr>
</tbody>
</table>

Unit: mm

Order Code

<table>
<thead>
<tr>
<th>Lead form</th>
<th>Standard packing</th>
<th>Quantity</th>
<th>Standard order code</th>
<th>Standard order code example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Straight type</td>
<td>Vinyl sack</td>
<td>100</td>
<td>Type name</td>
<td>BCR16PM-12LG</td>
</tr>
<tr>
<td>Lead form</td>
<td>Plastic Magazine (Tube)</td>
<td>50</td>
<td>Type name – Lead forming code</td>
<td>BCR16PM-12LG-A8</td>
</tr>
</tbody>
</table>

Note: Please confirm the specification about the shipping in detail.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application example. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.

6. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

7. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

8. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, the control and malfunction prevention, appropriate treatment for aging-degradation or any other appropriate measures. Because of the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.