RJK0452DPB

40V, 45A, 3.5mΩ max.
Silicon N Channel Power MOS FET
Power Switching

Features
- High speed switching
- Capable of 4.5 V gate drive
- Low drive current
- High density mounting
- Low on-resistance $R_{D\!S\!(on)} = 2.8 \text{ mΩ typ. (at } V_{GS} = 10 \text{ V)}$
- Pb-free
- Halogen-free

Outline
RENESAS Package code: PTZZ0005DA-A
(Package name: LFPAK)

Application
- Switching Mode Power Supply

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Ratings</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to source voltage</td>
<td>V_{DSS}</td>
<td>40</td>
<td>V</td>
</tr>
<tr>
<td>Gate to source voltage</td>
<td>V_{GS}</td>
<td>±20</td>
<td>V</td>
</tr>
<tr>
<td>Drain current</td>
<td>I_D</td>
<td>45</td>
<td>A</td>
</tr>
<tr>
<td>Drain peak current</td>
<td>$I_D(pulse)$</td>
<td>180</td>
<td>A</td>
</tr>
<tr>
<td>Body-drain diode reverse drain current</td>
<td>I_{BR}</td>
<td>45</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche current</td>
<td>I_{AP}</td>
<td>22.5</td>
<td>A</td>
</tr>
<tr>
<td>Avalanche energy</td>
<td>E_{AS}</td>
<td>40.5</td>
<td>mJ</td>
</tr>
<tr>
<td>Channel dissipation</td>
<td>P_{ch}</td>
<td>55</td>
<td>W</td>
</tr>
<tr>
<td>Channel to Case Thermal Resistance</td>
<td>θ_{ch-C}</td>
<td>2.27</td>
<td>°C/W</td>
</tr>
<tr>
<td>Channel temperature</td>
<td>T_{ch}</td>
<td>150</td>
<td>°C</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>T_{stg}</td>
<td>−55 to +150</td>
<td>°C</td>
</tr>
</tbody>
</table>

Notes:
1. PW ≤ 10 ms, duty cycle ≤ 1%
2. Value at $T_{ch} = 25^\circ \text{C}$, $R_g ≥ 50 \Omega$
3. $T_c = 25^\circ \text{C}$

This product is for the low voltage drive (≤ 10V).
If the driving voltage is over 10 V under normal conditions, please use the product for high gate to source cutoff voltage ($V_{GS\!(off)}$) which characteristics has been improved.
Electrical Characteristics

\((T_a = 25^\circ\text{C}) \)

<table>
<thead>
<tr>
<th>Item</th>
<th>Symbol</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
<th>Test Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drain to source breakdown voltage</td>
<td>(V_{\text{BR(DSS)}})</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>(I_D = 10 \text{ mA}, V_{GS} = 0 \text{ V})</td>
</tr>
<tr>
<td>Gate to source leak current</td>
<td>(I_{\text{GS}})</td>
<td>—</td>
<td>—</td>
<td>(\pm 0.1)</td>
<td>(\mu \text{A})</td>
<td>(V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V})</td>
</tr>
<tr>
<td>Zero gate voltage drain current</td>
<td>(I_{\text{DSS}})</td>
<td>—</td>
<td>—</td>
<td>1</td>
<td>(\mu \text{A})</td>
<td>(V_{DS} = 40 \text{ V}, V_{GS} = 0 \text{ V})</td>
</tr>
<tr>
<td>Gate to source cutoff voltage</td>
<td>(V_{\text{GS(off)}})</td>
<td>1.2</td>
<td>—</td>
<td>2.5</td>
<td>V</td>
<td>(V_{DS} = 10 \text{ V}, I_D = 1 \text{ mA})</td>
</tr>
<tr>
<td>Static drain to source on state resistance</td>
<td>(R_{\text{DS(on)}})</td>
<td>—</td>
<td>2.8</td>
<td>3.5</td>
<td>m(\Omega)</td>
<td>(I_D = 22.5 \text{ A}, V_{GS} = 10 \text{ V}) (^{\text{Note4}})</td>
</tr>
<tr>
<td>Forward transfer admittance</td>
<td>(</td>
<td>y_{FS}</td>
<td>)</td>
<td>—</td>
<td>108</td>
<td>—</td>
</tr>
<tr>
<td>Input capacitance</td>
<td>(C_{\text{iss}})</td>
<td>—</td>
<td>4030</td>
<td>—</td>
<td>pF</td>
<td>(V_{DS} = 10 \text{ V}, V_{GS} = 0 \text{ V},) (f = 1 \text{ MHz})</td>
</tr>
<tr>
<td>Output capacitance</td>
<td>(C_{\text{oss}})</td>
<td>—</td>
<td>650</td>
<td>—</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Reverse transfer capacitance</td>
<td>(C_{\text{rss}})</td>
<td>—</td>
<td>270</td>
<td>—</td>
<td>pF</td>
<td></td>
</tr>
<tr>
<td>Total gate charge</td>
<td>(Q_g)</td>
<td>—</td>
<td>26</td>
<td>—</td>
<td>nC</td>
<td>(V_{DD} = 10 \text{ V}, V_{GS} = 4.5 \text{ V}, I_D = 45 \text{ A})</td>
</tr>
<tr>
<td>Gate to source charge</td>
<td>(Q_{gs})</td>
<td>—</td>
<td>12</td>
<td>—</td>
<td>nC</td>
<td></td>
</tr>
<tr>
<td>Gate to drain charge</td>
<td>(Q_{gd})</td>
<td>—</td>
<td>6.6</td>
<td>—</td>
<td>nC</td>
<td></td>
</tr>
<tr>
<td>Turn-on delay time</td>
<td>(t_{\text{on}})</td>
<td>—</td>
<td>18</td>
<td>—</td>
<td>ns</td>
<td>(V_{GS} = 10 \text{ V}, I_D = 22.5 \text{ A},) (V_{DD} \approx 10 \text{ V}, R_L = 0.44 \text{ (\Omega)}, R_g = 4.7 \text{ (\Omega)})</td>
</tr>
<tr>
<td>Rise time</td>
<td>(t_r)</td>
<td>—</td>
<td>6.0</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Turn-off delay time</td>
<td>(t_{\text{off}})</td>
<td>—</td>
<td>65</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Fall time</td>
<td>(t_f)</td>
<td>—</td>
<td>8.5</td>
<td>—</td>
<td>ns</td>
<td></td>
</tr>
<tr>
<td>Body–drain diode forward voltage</td>
<td>(V_{DF})</td>
<td>—</td>
<td>0.83</td>
<td>1.1</td>
<td>V</td>
<td>(I_F = 45 \text{ A}, V_{GS} = 0 \text{ V}) (^{\text{Note4}})</td>
</tr>
<tr>
<td>Body–drain diode reverse recovery time</td>
<td>(t_{\text{rr}})</td>
<td>—</td>
<td>35</td>
<td>—</td>
<td>ns</td>
<td>(I_F = 45 \text{ A}, V_{GS} = 0 \text{ V}) (di_i/dt = 100 \text{ A/(\mu \text{s})})</td>
</tr>
</tbody>
</table>

Notes: 4. Pulse test
Main Characteristics

![Power vs. Temperature Derating](image1)

- Channel Dissipation vs. Case Temperature
- Power vs. Temperature Derating

![Maximum Safe Operation Area](image2)

- Maximum Safe Operation Area
- Operation in this area is limited by $R_{DS(on)}$

![Typical Output Characteristics](image3)

- Typical Output Characteristics
- $V_{DS} = 10\, V$

![Typical Transfer Characteristics](image4)

- Typical Transfer Characteristics
- $V_{GS} = 4.5\, V$

![Drain to Source Saturation Voltage vs. Gate to Source Voltage](image5)

- Drain to Source Saturation Voltage vs. Gate to Source Voltage
- $V_{DS} = 10\, V$

![Static Drain to Source on State Resistance vs. Drain Current](image6)

- Static Drain to Source on State Resistance vs. Drain Current
- Operation in this area is limited by $R_{DS(on)}$

![Channel Dissipation vs. Case Temperature](image7)

- Channel Dissipation vs. Case Temperature
- $Tc = 25\, ^\circ C$

![Operation in this area is limited by $R_{DS(on)}$](image8)

- Operation in this area is limited by $R_{DS(on)}$
- $1\, \mu s$

![Input Characteristics](image9)

- Input Characteristics
- $PW = 10\, ms$

![DC Operation](image10)

- DC Operation
- $1\, ms$
Normalized Transient Thermal Impedance vs. Pulse Width

Avalanche Test Circuit

Avalanche Waveform

E_{AS} = \frac{1}{2} L \cdot I_{AP}^2 \cdot \frac{V_{DSS}}{V_{DSS} - V_{DD}}

Switching Time Test Circuit

Switching Time Waveform

Vin Monitor

Vout Monitor

D.U.T.

V_{DS} Monitor

R_g

L

V_{DSS}

Vin 15 V

60 \Omega

V_{DD}

D.U.T.

R_g

Vin 10 V

D.U.T.

R_L

V_{DS}

V_{DSS} - 10 V

Vin 10 V

10% 90%

V_{out}

10% 90%

V_{in}

10% 90%

t_{d(on)}

t_r

t_{d(off)}
Package Dimensions

<table>
<thead>
<tr>
<th>Package Name</th>
<th>JETTA Package Code</th>
<th>RENESAS Code</th>
<th>Previous Code</th>
<th>Mass [Typ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LPPAK</td>
<td>SC-100</td>
<td>P122003C0-A</td>
<td>LPPARV</td>
<td>0.080g</td>
</tr>
</tbody>
</table>

Unit: mm

![Package Diagram]

(Ni/Pd/Au plating)

Ordering Information

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Quantity</th>
<th>Shipping Container</th>
</tr>
</thead>
<tbody>
<tr>
<td>RJK0452DPB-00-J5</td>
<td>2500 pcs</td>
<td>Taping</td>
</tr>
</tbody>
</table>
Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in this design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No licenses, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobile, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunction under certain-use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard against the possibility of physical injury, and injury or damage caused by fire or the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of micomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems where manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the possible physical injury, and injury or damage caused by fire or the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of micomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

11. Renesas Electronics does not assume any responsibility for any losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.