To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.
Notice

1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and “Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

- “Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
- “High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically designed for life support.
- “Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g., artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
V25/35 and V30 are trademarks of NEC Corporation.
INTELLEC is a trademark of Intel Corporation.
MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States and/or other countries.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

The information in this document is subject to change without notice.
No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or of others.
Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288

NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 03 02
Fax: 0211-65 03 490

NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290

NEC Electronics Italiana s.r.l.
Milano, Italy
Tel: 02-66 75 41
Fax: 02-66 75 42 99

NEC Electronics (France) S.A.
Veltzy-Villacoublay, France
Tel: 01-30-67 58 99
Fax: 01-30-67 58 99

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583

NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5651

NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-899-1680
Fax: 011-669-1689
Major Revisions in This Version

<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Throughout</td>
<td>Target PROM devices for programming are added (75XL Series, 16- and/or 32-bit single chip microcontrollers, V851™, and V852™).</td>
</tr>
<tr>
<td>p.4</td>
<td>Part I, Description is added to the note of Section 1.3 Operating Mode.</td>
</tr>
<tr>
<td>p.7</td>
<td>Part I, Devices are added and changed in Table 1-1 List of PROM Adapters.</td>
</tr>
<tr>
<td>p.18</td>
<td>Part I, Devices are added to Table 2-1 Adapter Board Selection. (V851, V852, and 75XL Series)</td>
</tr>
<tr>
<td>p.25</td>
<td>Part II, Figure 2-1 Instruction System is changed.</td>
</tr>
<tr>
<td>p.28</td>
<td>Part II, Description on Section 2.4 ROM control (DEVICE Mode) is changed.</td>
</tr>
<tr>
<td>p.37</td>
<td>Part II, Devices (V851, V852, and 75XL Series) are added to Table 2-4 Device Selecting Silicon Signature Compatibility.</td>
</tr>
<tr>
<td>p.37</td>
<td>Part II, Devices are deleted or added in Table 2-5 78K Series Silicon Signature Compatible Products.</td>
</tr>
<tr>
<td>p.36</td>
<td>Part II, Description on Section 2.4.2 Device selection (SELECT) (2) Use of different selection methods is changed.</td>
</tr>
<tr>
<td>p.61</td>
<td>Part II, Description on Section 2.5 Memory Edit (EDIT MODE) is changed.</td>
</tr>
<tr>
<td>p.73</td>
<td>Part II, Description on Section 2.6 Interface Setting (FUNCTION MODE) is changed.</td>
</tr>
<tr>
<td>p.85</td>
<td>Part II, Description and Command list of Section 3.1 Outline of Operation are changed.</td>
</tr>
<tr>
<td>p.88</td>
<td>Part II, «Execution example> of Section 3.4.1 RS (ROM select) command is changed.</td>
</tr>
<tr>
<td>p.92</td>
<td>Part II, «Execution example> in Section 3.4.2 RZ (ROM zero check) command is changed.</td>
</tr>
<tr>
<td>p.95</td>
<td>Part II, Input format is added to Section 3.4.3 RR/RW/RV command input format.</td>
</tr>
<tr>
<td>p.97</td>
<td>Part II, «Execution example> in Section 3.4.4 RR (ROM read) command is changed.</td>
</tr>
<tr>
<td>p.103</td>
<td>Part II, «Execution example> and «Error control> in Section 3.4.5 RW (ROM write) command is changed.</td>
</tr>
<tr>
<td>p.109</td>
<td>Part II, «Execution example> in Section 3.4.6 RV (ROM verify) command is changed.</td>
</tr>
<tr>
<td>p.125</td>
<td>Part II, Description in Section 3.4.13 LI (Load Intel) command is changed.</td>
</tr>
<tr>
<td>p.126</td>
<td>Part II, Description and caution in Section 3.4.14 LM (Load Motorola) command are added.</td>
</tr>
<tr>
<td>p.127</td>
<td>Part II, Description and caution in Section 3.4.15 LI (Load TEK) command are added.</td>
</tr>
<tr>
<td>p.128</td>
<td>Part II, Description is added and «Execution example> is changed in Section 3.4.16 SI (Serial Intel).</td>
</tr>
<tr>
<td>p.130</td>
<td>Part II, Description and caution in Section 3.4.17 SM (Serial Motorola) are added.</td>
</tr>
<tr>
<td>p.132</td>
<td>Part II, Description and caution in Section 3.4.18 ST (Serial TEK) are added.</td>
</tr>
<tr>
<td>p.157</td>
<td>Part II, Transfer procedure is added to Section 4.1.7 Data transfer from PG-1500 to external machine.</td>
</tr>
<tr>
<td>p.177</td>
<td>APPENDIX A, Description on Error Message List is changed.</td>
</tr>
</tbody>
</table>

The mark ★ shows major revised points.
INTRODUCTION

The PROM programmer PG-1500 has the following features:

(1) Typical PROMs having a capacity of 256 Kbits to 4 Mbits can be programmed.
(2) Programming such as a single-chip microcontroller can be used as a separately available PROM programmer adapter.
(3) ROM-type automatic identification and setting can be carried out using the silicon signature read function.
(4) Memory edit such as data update and check can be carried out.
(5) The device is protected by the device reverse load and incorrect insert check functions.
(6) The internal power supply and internal memory are checked by the self-diagnostic function upon power-on.
(7) All keyboard operations can be remote controlled via an RS-232-C interface.
(8) Since this programmer is equipped with a typical data format according to standard specifications, it can be easily connected to a personal computer and development support tools.
(9) The power supply is an AC wide-range type of 90 V to 250 V for use throughout the world.

Read this manual carefully before operation and follow its contents to ensure maximum performance.
TABLE OF CONTENTS

PART I. INTRODUCTION...1

CHAPTER 1 PRODUCT OVERVIEW ..3
 1.1 PG-1500 Hardware Specifications ...3
 1.2 Operating Environment ..3
 1.3 Operating Modes ..4
 1.4 Cautions ...4
 1.5 Block Diagram ...6
 1.6 Product Configuration ..8

CHAPTER 2. DESCRIPTION OF APPEARANCE ...9
 2.1 Front Panel ..10
 2.1.1 Adapter board connection unit ...10
 2.1.2 LCU Display unit ..10
 2.1.3 Key switch unit ...11
 2.2 Rear Panel ..15
 2.3 Sides ...16
 2.3.1 Right side ...16
 2.3.2 Left side ..16
 2.4 Adapter Board ...17
 2.4.1 General-purpose PROM socket board (27A board) ...17
 2.4.2 4-bit single-chip microcomputer interface board (04A board) ..17
 2.5 Adapter Board Connection ..18
 2.6 Device Insertion ...20
 2.6.1 When writing to a general-purpose PROM ...20
 2.6.2 When writing to a 78K Series device, DSP, etc. ..20
 2.6.3 When writing to a 75K Series device (except the μPD75P402) or a μPD7500 Series device ...20

PART II. OPERATION ..21

CHAPTER 1. OUTLINE OF OPERATION ...23
 1.1 Description of Terms ..23

CHAPTER 2. STANDALONE MODE ...25
 2.1 Operation Overview ..25
 2.2 Setting ...26
 2.3 Start and Initial Test ...26
 2.4 ROM Control (DEVICE mode) ..28
 2.4.1 Parameter setting ..29
2.4.2 Device selection (SELECT) .. 36
2.4.3 Blank check (BLANK) ... 53
2.4.4 Read (COPY) .. 55
2.4.5 Write (PROG) ... 56
2.4.6 Verify check (VERIFY) .. 58
2.4.7 Continuous operation (CONT) .. 60

2.5 Memory Edit (EDIT MODE) .. 61
 2.5.1 Data change (CHANGE) ... 62
 2.5.2 Initialize (INIT) ... 65
 2.5.3 Block transfer (MOVE) ... 67
 2.5.4 Data search (SEARCH) ... 69
 2.5.5 Check sum (C-SUM) .. 72

2.6 Interface Setting (FUNCTION MODE) 73
 2.6.1 Parallel input (P-IN) .. 74
 2.6.2 Serial input (S-IN) .. 76
 2.6.3 Serial output (S-OUT) .. 79
 2.6.4 Serial interface setting (MODE) 81
 2.6.5 Remote control mode setting (REMOTE) 84

CHAPTER 3. REMOTE CONTROL MODE 85

3.1 Outline of Operation ... 85
3.2 Setting ... 86
3.3 START, INITIAL TEST AND MODE SETTING 86

3.4 COMMANDS ... 87
 3.4.1 RS (ROM Select) command ... 88
 3.4.2 RZ (ROM Zero check) command 92
 3.4.3 RR/RW/RV Command input format 95
 3.4.4 RR (ROM Read) command .. 97
 3.4.5 RW (ROM Write) command .. 103
 3.4.6 RV (ROM Verify) command .. 109
 3.4.7 MC (Memory change) command 115
 3.4.8 MD (Memory dump) command 117
 3.4.9 MF (Memory fill) command ... 120
 3.4.10 PI (Parallel Intel) command 122
 3.4.11 PM (Parallel Motorola) command 123
 3.4.12 PT (Parallel TEK) command 124
 3.4.13 LI (Load Intel) command .. 125
 3.4.14 LM (Load Motorola) command 126
 3.4.15 LT (Load TEK) command .. 127
 3.4.16 SI (Serial Intel) command ... 128
 3.4.17 SM (Serial Motorola) command 130
 3.4.18 ST (Serial TEK) command ... 132
 3.4.19 ?? (Help) command .. 134
CHAPTER 4. SIMPLE OPERATION EXAMPLES .. 135

4.1 Standalone Mode .. 136
 4.1.1 Data read from master ROM to PG-1500 internal memory 136
 4.1.2 Data write from PG-1500 internal memory to blank ROM 142
 4.1.3 Changing PG-1500 internal memory data ... 149
 4.1.4 Verify check .. 151
 4.1.5 Split write to two PROMs of PG-1500 internal memory data 152
 4.1.6 Data transfer from external machine to PG-1500 155
 4.1.7 Data transfer from PG-1500 to external machine 157

4.2 Remote Control Mode ... 159
 4.2.1 Outline of operations using NEC in-circuit emulator 159
 4.2.2 Data write from in-circuit emulator to blank PROM 168
 4.2.3 Data read from master ROM to in-circuit emulator 170
 4.2.4 Data transfer from external machine to PG-1500 via parallel interface .. 172

APPENDIX A. ERROR MESSAGE LIST ... 177

A.1 Standalone Mode Error List ... 177
A.2 Remote Control Mode Error List .. 185

APPENDIX B. OBJECT FORMATS ... 189

B.1 INTELLEC HEX ... 189
B.2 MOTOROLA EXORCISER .. 191
B.3 EXTENDED TEKHEX .. 194

APPENDIX C. EXTERNAL INTERFACE ... 197

C.1 Serial Interface ... 197
 C.1.1 Pin configuration ... 197
 C.1.2 Interface circuit ... 199
 C.1.3 Resetting .. 200
 C.1.4 Handshake method .. 201
 C.1.5 Connection example .. 206
C.2 Parallel Interface .. 207
 C.2.1 Pin configuration ... 207
 C.2.2 Interface circuit ... 209
 C.2.3 Handshake method .. 210
 C.2.4 Connection example .. 211
[MEMO]
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PART I. INTRODUCTION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-1</td>
<td>Block Diagram</td>
<td>6</td>
</tr>
<tr>
<td>2-1</td>
<td>External View</td>
<td>9</td>
</tr>
<tr>
<td>2-2</td>
<td>Front Panel</td>
<td>10</td>
</tr>
<tr>
<td>2-3</td>
<td>Key Switch Unit</td>
<td>11</td>
</tr>
<tr>
<td>2-4</td>
<td>Rear Panel</td>
<td>15</td>
</tr>
<tr>
<td>2-5</td>
<td>Right Side</td>
<td>16</td>
</tr>
<tr>
<td>2-6</td>
<td>Left Side</td>
<td>16</td>
</tr>
<tr>
<td>2-7</td>
<td>27A Board</td>
<td>17</td>
</tr>
<tr>
<td>2-8</td>
<td>04A Board</td>
<td>17</td>
</tr>
<tr>
<td>2-9</td>
<td>Connection of Main Unit and Adapter Board</td>
<td>19</td>
</tr>
<tr>
<td>PART II. OPERATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1</td>
<td>Instruction System</td>
<td>25</td>
</tr>
<tr>
<td>2-2</td>
<td>Normal Program Mode Flowchart</td>
<td>50</td>
</tr>
<tr>
<td>2-3</td>
<td>Fast Program Mode Flowchart</td>
<td>51</td>
</tr>
<tr>
<td>2-4</td>
<td>Page Program Mode Flowchart</td>
<td>52</td>
</tr>
<tr>
<td>4-1</td>
<td>IE-75000-R Channel 2 Setting</td>
<td>160</td>
</tr>
<tr>
<td>APPENDIX C. EXTERNAL INTERFACE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-1</td>
<td>Serial Interface Connector</td>
<td>197</td>
</tr>
<tr>
<td>C-2</td>
<td>Serial Interface Pin Configuration</td>
<td>197</td>
</tr>
<tr>
<td>C-3</td>
<td>RS-232-C Interface Circuit</td>
<td>199</td>
</tr>
<tr>
<td>C-4</td>
<td>Hardware Handshake</td>
<td>201</td>
</tr>
<tr>
<td>C-5</td>
<td>Software Handshake</td>
<td>202</td>
</tr>
<tr>
<td>C-6</td>
<td>Hardware Handshake</td>
<td>203</td>
</tr>
<tr>
<td>C-7</td>
<td>Schematic Circuit Diagram of Serial Input Unit</td>
<td>204</td>
</tr>
<tr>
<td>C-8</td>
<td>Software Handshake</td>
<td>205</td>
</tr>
<tr>
<td>C-9</td>
<td>Parallel Interface Connector</td>
<td>207</td>
</tr>
<tr>
<td>C-10</td>
<td>Parallel Interface Pin Configuration</td>
<td>207</td>
</tr>
<tr>
<td>C-11</td>
<td>Parallel Interface Circuit</td>
<td>209</td>
</tr>
<tr>
<td>C-12</td>
<td>Parallel Interface Timings</td>
<td>210</td>
</tr>
<tr>
<td>Table No.</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td>PART I. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>1-1</td>
<td>List of PROM Programmer Adapters</td>
<td>7</td>
</tr>
<tr>
<td>2-1</td>
<td>Adapter Board Selection</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>PART II. OPERATION</td>
<td></td>
</tr>
<tr>
<td>2-1</td>
<td>Initial Values</td>
<td>27</td>
</tr>
<tr>
<td>2-2</td>
<td>Numeric Keys Specified in Address Divide Mode</td>
<td>30</td>
</tr>
<tr>
<td>2-3</td>
<td>Specifiable Address Divide Modes</td>
<td>31</td>
</tr>
<tr>
<td>2-4</td>
<td>Device Selection by Silicon Signature Compatibility</td>
<td>37</td>
</tr>
<tr>
<td>2-5</td>
<td>78K Series Silicon Signature Compatible Products</td>
<td>37</td>
</tr>
<tr>
<td>2-6</td>
<td>List of Code Numbers</td>
<td>44</td>
</tr>
<tr>
<td>2-7</td>
<td>Items to be Set by MODE Command</td>
<td>81</td>
</tr>
<tr>
<td>4-1</td>
<td>IE-75000-R Channel 2 Setting</td>
<td>160</td>
</tr>
<tr>
<td>4-2</td>
<td>Channel 2 Settings By MOD Command</td>
<td>161</td>
</tr>
<tr>
<td>4-3</td>
<td>Sample of PG-1500 Serial Interface Settings</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>APPENDIX C. EXTERNAL INTERFACE</td>
<td></td>
</tr>
<tr>
<td>C-1</td>
<td>Serial Interface Connector Signal Table</td>
<td>198</td>
</tr>
<tr>
<td>C-2</td>
<td>Connection Cable and Signal Relations</td>
<td>206</td>
</tr>
<tr>
<td>C-3</td>
<td>Parallel Interface Connector Signal Table</td>
<td>208</td>
</tr>
<tr>
<td>C-4</td>
<td>Connection Cable and Signal Relations</td>
<td>211</td>
</tr>
</tbody>
</table>
PART I. INTRODUCTION
CHAPTER 1 PRODUCT OVERVIEW

The PG-1500 is a PROM programmer which performs PROM writing as a standalone unit or connected to a host machine.

The PG-1500 can write to the following devices.

- General-purpose NEC PROMs (256 K to 4 Mbits)
- The following devices with on-chip PROM\(^{1}\)
 - NEC 4-bit single-chip microcontrollers
 - 75X Series, 75XL Series, \(\mu\)PD7500 Series
 *
 - NEC 8, 16 and 16/32-bit single-chip microcontrollers
 - 78K Series, 87AD Series, V25/35\(\text{TM}^{\text{TM}},\) V851, V852
 *
 - NEC Turbo Access Manager
 - NEC DSP (digital signal processor)\(^{2}\)
 - NEC speech synthesis LSI

Notes
1. PROM programmer adapter is required (sold separately).
2. Except \(\mu\)PD77P20

1.1 PG-1500 Hardware Specifications

The PG-1500 hardware consists of the following:

<table>
<thead>
<tr>
<th>CPU</th>
<th>(\mu)PD70208 (8 MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data RAM</td>
<td>512 Kbytes</td>
</tr>
<tr>
<td>Monitor ROM</td>
<td>128 Kbytes</td>
</tr>
<tr>
<td>Work RAM</td>
<td>32 Kbytes</td>
</tr>
<tr>
<td>Serial interface</td>
<td>RS-232-C</td>
</tr>
<tr>
<td>Parallel interface</td>
<td>Conforming to Centronics</td>
</tr>
</tbody>
</table>

1.2 Operating Environment

<table>
<thead>
<tr>
<th>Power voltage</th>
<th>90 VAC to 250 VAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power frequency</td>
<td>50 to 60 Hz</td>
</tr>
<tr>
<td>Temperature range</td>
<td>10 to 35°C</td>
</tr>
<tr>
<td>Humidity range</td>
<td>20 to 80%RH</td>
</tr>
</tbody>
</table>
1.3 Operating Modes

The following operating modes are available for the PG-1500.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Standalone mode</td>
<td>PG-1500 is used independently.</td>
</tr>
<tr>
<td>Remote control mode</td>
<td>PG-1500 is connected to and controlled by a host machinenote.</td>
</tr>
</tbody>
</table>

\textbf{Note} When directly connected to the host machine, use the PG-1500 controller (separately available).

Connection to an NEC in-circuit emulator is possible. For details, refer to Part II. Section 4.2 Remote Control Mode.

1.4 Cautions

\textbf{(1) Power supply}

<table>
<thead>
<tr>
<th>Power voltage</th>
<th>90 VAC to 250 VAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power frequency</td>
<td>50 to 60 Hz</td>
</tr>
</tbody>
</table>

- Strictly follow the above power specifications.
- Before connecting the power cable, check that the power switch on the side panel is set to OFF.

\textbf{(2) Power cable}

- The maximum input voltage of the standard accessory power cable is 125 V.
- The power cable is a 3-pin flag type and a round pin in the center serves as a ground. Thus, use the power supply with a 3-pin socket having a ground.
- If the power supply is used with a 2 pin socket, use an accessory power adapter. In this case, be sure to connect the grounding terminal of the adapter to an external ground.

\textbf{(3) Operating environment}

<table>
<thead>
<tr>
<th>Temperature range</th>
<th>10 to 35°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity range</td>
<td>20 to 80%RH</td>
</tr>
</tbody>
</table>

- Strictly follow the above ambient conditions.
- Do not use the PG-1500 where it might be exposed to a lot of dirt or dust, corrosive gases and direct sunlight.
- Avoid condensation.

\textbf{(4) Cooling and ventilation}

- Cooling and ventilation of this unit is carried out by means of natural convection through a vent hole made in the upper panel. Thus, do not place anything on the upper panel of this unit.

\textbf{(5) Vibrations}

- An LCD is used for the display unit. Thus, do not use the unit where it might be exposed to mechanical shocks or vibrations.
(6) Noise
 - Avoid device programming near noise sources.
 - Do not connect noise producing equipment on the same AC line as with this unit.

 Example: PROM eraser, fluorescent lamp, motor-driven equipment, equipment with high current switching functions, etc.

(7) Others
 - Do not turn on/off the power supply if a device is mounted on a socket.
 - Do not turn the calibration volumes.
1.5 Block Diagram

The PG-1500 block diagram is shown below.

Figure 1-1 Block Diagram

- 8-/16-bit Single-Chip Microcontroller
- 32-bit RISC Microcontroller
- Turbo Access Manager
- DSP
- 4-bit Single-Chip Microcontroller
- Speech Synthesis LSI

Note PROM programmer Socket adapters
Table 1-1. List of PROM Programmer Adapters

<table>
<thead>
<tr>
<th>Adapters connected</th>
<th>PROM Programmer Adapter</th>
<th>Adapters connected</th>
<th>PROM Programmer Adapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>to 27A board</td>
<td>PA-70P322I</td>
<td>PA-70P322I</td>
<td>PA-78P328GF</td>
</tr>
<tr>
<td></td>
<td>PA-71P301GF</td>
<td>PA-78P018KK-S</td>
<td>PA-78P214GJ</td>
</tr>
<tr>
<td></td>
<td>PA-71P301GQ</td>
<td>PA-78P024GW</td>
<td>PA-78P334GJ</td>
</tr>
<tr>
<td></td>
<td>PA-71P301KA</td>
<td>PA-78P048GF</td>
<td>PA-78P214L</td>
</tr>
<tr>
<td></td>
<td>PA-71P301KB</td>
<td>PA-78P048KL-S</td>
<td>PA-78P224GJ</td>
</tr>
<tr>
<td></td>
<td>PA-71P301L</td>
<td>PA-78P054GC</td>
<td>PA-78P224L</td>
</tr>
<tr>
<td></td>
<td>PA-75P402CT</td>
<td>PA-78P054GC</td>
<td>PA-78P334KL</td>
</tr>
<tr>
<td></td>
<td>PA-75P402GB</td>
<td>PA-78P054KK-T</td>
<td>PA-78P224GJ</td>
</tr>
<tr>
<td></td>
<td>PA-77P230R</td>
<td>PA-78P054GC</td>
<td>PA-78P236LQ</td>
</tr>
<tr>
<td></td>
<td>PA-77P25C</td>
<td>PA-78P054GC</td>
<td>PA-78P352G</td>
</tr>
<tr>
<td></td>
<td>PA-77P25GW</td>
<td>PA-78P054KL-T</td>
<td>PA-78P352G</td>
</tr>
<tr>
<td></td>
<td>PA-77P25L</td>
<td>PA-78P078GC</td>
<td>PA-78P352G</td>
</tr>
<tr>
<td></td>
<td>PA-78CP14CW</td>
<td>PA-78P078GC</td>
<td>PA-78P352G</td>
</tr>
<tr>
<td></td>
<td>PA-78CP14GF</td>
<td>PA-78P078KL-T</td>
<td>PA-78P3898G</td>
</tr>
<tr>
<td></td>
<td>PA-78CP14GQ</td>
<td>PA-78P083CU</td>
<td>PA-78P3898G</td>
</tr>
<tr>
<td></td>
<td>PA-78CP14KB</td>
<td>PA-78P083GB</td>
<td>PA-78P3898G</td>
</tr>
<tr>
<td></td>
<td>PA-78CP14L</td>
<td>PA-78P0208GF</td>
<td>PA-78P3898G</td>
</tr>
<tr>
<td></td>
<td>PA-78P014CW</td>
<td>PA-78P0208KL-T</td>
<td>PA-78P3898G</td>
</tr>
<tr>
<td></td>
<td>PA-78P014GC</td>
<td>PA-78P138GF</td>
<td>PA-78P3898G</td>
</tr>
<tr>
<td></td>
<td>PA-78P044GF</td>
<td>PA-78P138K</td>
<td>PA-78P3898G</td>
</tr>
<tr>
<td></td>
<td>PA-78P044KL-S</td>
<td>PA-78P148GF</td>
<td>PA-78P3898G</td>
</tr>
<tr>
<td></td>
<td>PA-78P018CW</td>
<td>PA-78P148K</td>
<td>PA-78P3898G</td>
</tr>
<tr>
<td></td>
<td>PA-78P018GC</td>
<td>PA-78P214CW</td>
<td>PA-78P3898G</td>
</tr>
<tr>
<td></td>
<td>PA-78P018GK</td>
<td>PA-78P214GC</td>
<td>PA-78P3898G</td>
</tr>
<tr>
<td></td>
<td>PA-75P54CS</td>
<td>PA-75P117GK</td>
<td>PA-75P516K</td>
</tr>
<tr>
<td></td>
<td>PA-75P56CS</td>
<td>PA-75P117GK</td>
<td>PA-75P516K</td>
</tr>
<tr>
<td></td>
<td>PA-75P008CU</td>
<td>PA-75P117GK</td>
<td>PA-75P516K</td>
</tr>
<tr>
<td></td>
<td>PA-75P036CW</td>
<td>PA-75P216ACW</td>
<td>PA-75P516K</td>
</tr>
<tr>
<td></td>
<td>PA-75P036GC</td>
<td>PA-75P216BGC</td>
<td>PA-75P516K</td>
</tr>
<tr>
<td></td>
<td>PA-75P036GC</td>
<td>PA-75P216BGC</td>
<td>PA-75P516K</td>
</tr>
<tr>
<td></td>
<td>PA-75P108CW</td>
<td>PA-75P238GJ</td>
<td>PA-75P516K</td>
</tr>
<tr>
<td></td>
<td>PA-75P116GF</td>
<td>PA-75P238GJ</td>
<td>PA-75P516K</td>
</tr>
</tbody>
</table>

Note: Under development

(As of July '96)
1.6 Product Configuration

The PG-1500 consists of the following items. Items (2) through (8) are accessories and related documents.

(1) **PG-1500**

Main unit. Used connected to accessory adapter board.

(2) **Adapter boards (2 types)**

 a. **General-purpose PROM socket board (27A board)**

 The PG-1500 operates as a PROM programmer for general-purpose PROM by connecting it to the 27A board. It is also used for the 78K Sorico, DS96, etc. When a device other than a general-purpose PROM is used, the PROM programmer adapter (separately available) for that device is required.

 b. **4-bit single-chip microcontroller interface board (04A board)**

 The PG-1500 operates as a PROM programmer for the 75X Series and μPD7500 Series by connecting it to the 04 board. The program adapter (separately available) corresponding to the device used is required.

(3) **Warranty**

 This document specifies a warranty for the PG-1500.

(4) **PG-1500 User's manual**

 Read this manual to protect the unit from damage due to misoperation.

(5) **Power cable**

 Power cable for the PG-1500. Strictly follow the operating voltage specifications marked on the rear panel.

(6) **Power adapter**

 Adapter for the power cable for use with 2-pin socket.

(7) **Spare fuse**

 Spare fuse for the PG-1500. The specification is 800 mA. Do not use any fuses other than 800-mA fuse.

(8) **Attached documents**

 These are documents that list PG-1500 accessories and general-purpose PROMs for which the PG-1500 can be used.

Remark RS-232-C serial interface cable is not provided.
CHAPTER 2. DESCRIPTION OF APPEARANCE

This chapter describes the appearance of PG-1500 components and outlines PG-1500 functions.
Figure 2-1 shows an external view of the main unit and the adapter board.

Figure 2-1. External View

Left Side
Front Panel
Right Side

Rear Panel

27A Board
O4A Board
2.1 Front Panel

Figure 2-2 shows the front panel.

![Front Panel Diagram]

2.1.1 Adapter board connection unit

An adapter board of the PG-1500 accessories is connected to the adapter board connection unit. The following two types of adapter boards are used:

- 27A board
- 04A board

For details of the adapter board, refer to 2.4 Adapter Boards in Part I.

2.1.2 LCD Display unit

Data which is input and set using command and numeric keys are displayed on the LCD display unit. For details of display in each mode, refer to Part II. Operation.
2.1.3 Key switch unit

Figure 2-3 shows the key switch unit.

Figure 2-3. Key Switch Unit

- **DEVICE** mode: Performs device access.
- **EDIT** mode: Performs PG-1500 internal memory editing.
- **FUNCTION** mode: Performs option function settings.

The key switch functions are as follows:

1. **SET/START** key
 - Switch to start each command or set data. Used to execute or re-execute each command.

2. **△** key
 - Used to move the cursor to the right, and to change data.

3. **▽** key
 - Used to move the cursor to the left, and to change data. Also used as a cancel key after numeric value input.
4. **RESET** key
 Switch to reset in the idle state.
 Used to suspend each instruction or release in the event of an error.

5. **DEVIC** key
 ROM control (DEVICE mode) select switch.

6. **EDIT** key
 Memory edit (EDIT mode) select switch.

7. **FUNCTION** key
 Interface set (FUNCTION mode) select switch.

8. **CHANGE**
 EDIT mode DATA CHANGE command select switch.
 Used to change data in the PG-1500 internal memory.
 Also used as a numeric value [0] input switch.

9. **INIT**
 EDIT mode INITIALIZE command select switch.
 Used to initialize the contents of the PG-1500 internal memory. Also used as a numeric value [1] input switch.

10. **MOVE**
 EDIT mode BLOCK TRANSFER command select switch.
 Used to move data in the specified range to different addresses in the PG-1500 internal memory.
 Also used as a numeric value [2] input switch.

11. **SEARCH**
 EDIT mode DATA SEARCH command select switch.
 Used to retrieve the specified data from the data in the PG-1500 internal memory.
 Also used as a numeric value [3] input switch.
12. C-SUM

4 key

EDIT mode CHECK SUM command select switch.
Used to calculate the checksum.
Also used as a numeric value [4] input switch.

13. S-IN

5 key

FUNCTION mode SERIAL INPUT command select switch.
Used to input data from the serial interface.
Also used as a numeric value [5] input switch.

14. S-OUT

6 key

FUNCTION mode SERIAL OUTPUT command select switch.
Used to output data from the serial interface.
Also used as a numeric value [6] input switch.

15. REMOTE

7 key

FUNCTION mode REMOTE CONTROL command select switch.
Used to set the remote control mode.
Also used as a numeric value [7] input switch.

16. P-IN

8 key

FUNCTION mode PARALLEL INPUT command select switch.
Used to input data from the parallel interface.
Also used as a numeric value [8] input switch.

17. MODE

9 key

FUNCTION mode SERIAL INTERFACE SET command select switch.
Used to set the serial interface parameter.
Also used as a numeric value [9] input switch.
CONT

18. A key

DEVICE mode CONTINUOUS OPERATION command select switch.
Used to perform device blank check, write, and verify operations automatically.
Also used as a numeric value [A] input switch.

SELECT

19. B key

DEVICE mode DEVICE SELECT command select switch.
Used to set the device write conditions.
Also used as a numeric value [B] input switch.

COPY

20. C key

DEVICE and READ command select switch.
Used to copy data in the device to the PG-1500 internal memory.
Also used as a numeric value [C] input switch.

BLANK

21. D key

DEVICE mode BLANK CHECK command select switch.
Used to check whether the device is blank.
Also used as a numeric value [D] input switch.

PROG

22. E key

DEVICE mode WRITE command select switch.
Used to write data in the PG-1500 internal memory to the device.
Also used as a numeric value [E] input switch.

VERIFY

23. F key

DEVICE mode VERIFY CHECK command select switch.
Used to check whether the data written to the device matches the contents of the PG-1500 internal memory.
Also used as a numeric value [F] input switch.
2.2 Rear Panel

Figure 2-4 shows the rear panel.

Figure 2-4. Rear Panel

<1> AC input connector
 Input voltage range from 90 to 250 V (50 to 60 Hz).
<2> Fuse holder
 800-mA power line fuse holder
<3> Parallel interface connector
 Connector for parallel interfaces. Conforming to Centronics.
<4> Serial interface connector
 Connector for serial interface (RS-232-C).
2.3 Sides

2.3.1 Right side
Figure 2-5 shows the right side viewed from the front.

![Figure 2-5. Right Side](image)

<1> Power switch
Seesaw switch. Setting this switch to the left position (toward the front side of the main unit) turns on the power supply. Setting this switch to the right position (toward the opposite side of the main unit) turns off the power supply.

2.3.2 Left side
Figure 2-6 shows the left side viewed from the front.

![Figure 2-6. Left Side](image)

<1> Calibration volume cover
Cover for the internal calibration volume for use by NEC.

Do not turn the internal calibration volume.
2.4 Adapter Board

Two adapter boards are provided with the PG-1500, as described below.

2.4.1 General-purpose PROM socket board (27A board)

The general-purpose socket board (27A board) is the adapter board for general-purpose PROM. It is also used for the 78K Series, DSPs, etc. When a device other than a general-purpose PROM is used, the PROM programmer adapter (sold separately) for that device is required.

Figure 2-7 shows the 27A board.

Figure 2-7. 27A Board

![27A Board Diagram]

- <1> 28-pin PROM socket
- <2> 32-pin PROM socket
- <3> 40-pin PROM socket

These sockets are equipped with an LED which lights up during use.

2.4.2 4-bit single-chip microcomputer interface board (04A board)

The 4-bit single-chip microcomputer interface board (04A board) is the adapter board for the μPD7500 Series. The PROM programmer adapter (sold separately) for the device used is required.

Figure 2-8 shows the 04A board.

Figure 2-8. 04A Board

![04A Board Diagram]
2.5 Adapter Board Connection

When using the PG-1500, the adapter board for the device to be used is first mounted on the adapter board connection area. Select the adapter board in accordance with Table 2-1.

Table 2-1. Adapter Board Selection

<table>
<thead>
<tr>
<th>Device Used</th>
<th>Adapter Board</th>
</tr>
</thead>
<tbody>
<tr>
<td>General-purpose PROM</td>
<td>27A board</td>
</tr>
<tr>
<td>78K Series</td>
<td></td>
</tr>
<tr>
<td>87AD Series</td>
<td></td>
</tr>
<tr>
<td>V25/35 (μP71P322)</td>
<td></td>
</tr>
<tr>
<td>V851 (μP71P3000)</td>
<td></td>
</tr>
<tr>
<td>V852 (μP71P3002)</td>
<td></td>
</tr>
<tr>
<td>Turbo Access Manager (μP71P301)</td>
<td></td>
</tr>
<tr>
<td>DSP</td>
<td></td>
</tr>
<tr>
<td>μP75P419</td>
<td>04A board</td>
</tr>
<tr>
<td>75X Series (except μP75P402)</td>
<td></td>
</tr>
<tr>
<td>75XL Series</td>
<td></td>
</tr>
<tr>
<td>μP7500 Series</td>
<td></td>
</tr>
<tr>
<td>Speech Processing Device (μP77P58)</td>
<td></td>
</tr>
</tbody>
</table>
The procedure of connecting the adapter board is described below.

<Connecting Procedure>
1. Insert the two guide pins of the adapter board into the guide pin holes of the main unit.
2. Push the adapter board so that the two connectors are securely connected in parallel to the obliquely mounted main unit.
3. Connection of the adapter board is completed after checking that there is no gap between the adapter board and the main unit.
4. After the 04A board has been connected, connect a PROM programmer adapter (sold separately) onto the 04A board.

When the 27A board is used, a PROM programmer adapter (sold separately) should also be connected when using a device other than a general-purpose PROM

Figure 2-9 shows an adapter board connection example.

Figure 2-9. Connection of Main Unit and Adapter Board
2.6 Device Insertion

2.6.1 When writing to a general-purpose PROM
Insert the device directly into the 27A board. The procedure is shown below.

(1) From the three sockets on the 27A board, select the one with the same number of pins as the device used, and raise the lever vertically.
(2) Insert the device into the socket, with pin 1 at the top left.
(3) Lower the lever.

Caution Do not turn the power on/off with the device inserted in the socket, as this may damage it.

2.6.2 When writing to a 78K Series device, DSP, etc.
Connect the PROM programmer adapter to the 27A board, and insert the device into the PROM programmer adapter. The procedure is shown below.

(1) From the three sockets on the 27A board, select the one with the same number of pins as the number of connection pins on the PROM programmer adapter used, and raise the lever vertically.
(2) Turn the PROM programmer adapter so that the words "NEC MADE IN JAPAN" on its base (the part to which the socket is not attached) can be seen, and insert it into the socket.
(3) Lower the lever.
(4) Insert the device into the PROM programmer adapter as shown in the relevant instruction manual.

The shape of the PROM programmer adapter varies according to the shape of the device package. If the PROM programmer adapter has a pin 1 indication, insert the device in accordance with that indication. If there is no indication, follow the directions given in the relevant instruction manual. Lower the lever if one is provided, and if there is a closing cover, check that this is locked securely. This completes device insertion.

Note Do not turn the power on/off with the device inserted in the socket, as this may damage it.

2.6.3 When writing to a 75K Series device (except the μPD75P402) or a μPD7500 Series device
Connect the PROM programmer adapter to the 04A board, and insert the device into the PROM programmer adapter. The procedure is shown below.

(1) Connect the connectors of the PROM programmer adapter used to the five sockets on the 04A board so that it is correctly aligned.
(2) Insert the device into the PROM programmer adapter as shown in the relevant instruction manual.

The shape of the PROM programmer adapter varies according to the shape of the device package. If the PROM programmer adapter has a pin 1 indication, insert the device in accordance with that indication. If there is no indication, follow the directions given in the relevant instruction manual. Lower the lever if one is provided, and if there is a closing cover, check that it is locked securely. This completes device insertion.

Caution Do not turn the power on/off with the device inserted in the socket, as this may damage it.
PART II. OPERATION
[MEMO]

Phase-out/Discontinued
CHAPTER 1. OUTLINE OF OPERATION

As described in Part I, the following operating modes are available for the PG-1500:

- Standalone mode
- Remote control mode

(1) **Standalone mode**

This mode is a PG-1500 single unit which is used for device copy and program patch operations. Since the serial and parallel interfaces are supported, input/output to/from an external device is possible (input only via the parallel interface).

(2) **Remote control mode**

This mode is the PG-1500 which can be controlled from a host machine (PC-9800 series, etc.) connected to the PG-1500.

1.1 **Description of Terms**

The terms used in this user's manual are outlined below.

(1) **PROM start address**

Start address to determine the address range of a device inserted into the socket.

(2) **PROM end address**

End address to determine the address range of a device inserted into the socket.

(3) **PG-1500 internal memory**

Memory in the PG-1500. This is for storage of data which is read from a device.

(4) **Address divide**

Only even or odd addresses of the PG-1500 internal memory are used.

(5) **Initial test**

PG-1500 internal circuit check operation to be automatically carried out upon power-ON.

(6) **Silicon signature data**

Product code which each device internally possesses.

This shows the device write conditions.

(7) **Idle state**

Mode set state to be generated upon power-ON or when the RESET key is pressed.
(8) Check sum width
 This is the total resulting from data addition used to check whether the data is correct.

(9) Precheck
 Function for checking incorrect device insertion or inverted device insertion. This function can only be used with an NEC general-purpose PROM.
2.1 Operation Overview

The standalone mode is the state in which the PG-1500 is used as a single unit and is not connected to other devices.

Figure 2-1 shows a STANDALONE mode instruction system.

Figure 2-1. Instruction System

```
  SELECT
  BLANK
  COPY
  PROG
  VERIFY
  CONT
  READ
  AUTO
  CODE

  DEVICE Mode
  ... accesses device

  CHANGE
  INIT
  MOVE
  SEARCH
  C-SUM
  EDIT Mode
  ... edits on-chip memory of PG-1500

  P-IN
  S-IN
  S-OUT
  FUNCTION Mode
  ... sets optional functions
  MODE
  REMOTE → Shifts to Remote Control

Turning on the PG-1500 power supply automatically sets the mode to the STANDALONE mode.
2.2 Setting

An adapter board corresponding to the device used for the PG-1500 is connected. When using a device other than a general-purpose PROM, a PROM programmer adapter is connected to the adapter board. Turn the power on, then insert the device in the socket.
See Part I. 2.5 Adapter Board Connection and Part I. 2.6 Device Insertion for details.

Caution  Do not turn on/off the power supply with the device inserted into the socket. The device may be damaged.

2.3 Startup and Initial Test

When the PG-1500 is powered on, the following message is displayed, indicating that a test (initial test) is performed to check if the PG-1500 functions operate normally.

```
PG-1500
*Initial Test Busy
↑
```

Blinks during initial test execution.

When the initial test terminates normally, the following message is displayed and the system waits for key input.

```
DEVICE EDIT FUNCTION
IDLE ✦✦✦
```

Idle status
PG-1500 Monitor ROM Version is displayed.

This status is called "idle status" in this manual.
If an error occurs during initial test, the following message is displayed on the LCD.

```
PG-1500
ERRXX
```

XX: Error number

Remark  For details of error numbers, refer to Appendix A. Error Message List.

In this case, turn on the power supply again a few seconds after turning it off.
If the error is generated again the PG-1500 may be damaged, and you should therefore contact NEC or an authorized NEC dealer.
Table 2-1 lists the initial parameter values in each mode upon power-ON.

<table>
<thead>
<tr>
<th>Mode Parameter</th>
<th>Initial Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROM product name code</td>
<td>μPD27256</td>
</tr>
<tr>
<td>Code Number</td>
<td>1004</td>
</tr>
<tr>
<td>Device selection method</td>
<td>READ</td>
</tr>
<tr>
<td>PROM start address</td>
<td>00000H</td>
</tr>
<tr>
<td>PROM end address</td>
<td>07FFFH</td>
</tr>
<tr>
<td>Internal memory start address</td>
<td>00000H</td>
</tr>
<tr>
<td>Address divide mode</td>
<td>NORMAL</td>
</tr>
<tr>
<td>Internal memory data</td>
<td>FFH</td>
</tr>
<tr>
<td>Precheck</td>
<td>OFF</td>
</tr>
<tr>
<td>Data format</td>
<td>INTELLECT™</td>
</tr>
</tbody>
</table>

**Note** [7FFF] is displayed.
2.4 ROM Control (DEVICE mode)

The DEVICE mode is a mode in which a device is directly controlled.

- **SELECT**<sup>Note</sup>: Device selection and a device write condition setting.
  - **READ**
  - **AUTO**
  - **CODE**
  - **BLANK**: Check to see whether device is blank.

- **COPY**: Data read from device.

- **PROG (PROGRAM)**: Data write to device.

- **VERIFY**: Data comparison between device and PG-1500 internal memory.

- **CONT (CONTINUOUS)**: Continuous operations of BLANK, PROG, and VERIFY.

**Note**: The SELECT command specifies write conditions specific to the device, and must be executed before executing a DEVICE mode command other than SELECT.

Before operation, the following parameters should be set for these commands:

1. PROM start address
2. PROM end address
3. PG-1500 internal memory start address
4. Address divide mode
2.4.1 Parameter setting

The following parameters can be set for the execution of the COPY, PROG, VERIFY and CONT commands in the DEVICE mode.

- PROM start address
- PROM end address
- PG-1500 internal memory start address
- Address divide mode

These parameters are displayed as follows:

```
<table>
<thead>
<tr>
<th>PROM Start Address</th>
<th>PROM End Address</th>
<th>Internal Memory Start Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>XXXXX</td>
<td>YYYY</td>
<td>ZZZZZ</td>
</tr>
<tr>
<td>* * * *</td>
<td>* * * *</td>
<td>NORMAL</td>
</tr>
</tbody>
</table>
```

Address Divide Mode

The parameters are described below.

1. PROM start address
2. PROM end address
3. PG-1500 internal memory start address

As shown in the figure above, the range in which device writing, reading, etc., is to be performed is set with the PROM start address and PROM end address. Also, the address in the internal memory from which the memory is to be used is set with the PG-1500 internal memory start address.

**Caution** An error will be caused by any of the following settings.

1. PROM start address > PROM end address
2. PROM size < PROM start address
3. PG-1500 internal memory start address > 7FFFH

If an error occurs, see Appendix A.1 "List of Standalone Mode Errors".
(2) What is the address divide mode?
Address divide is used to divide data into a ROM for a 16-bit or 32-bit CPU. Address divide mode specification is performed by means of the specified numeric keys shown in Table 2-2 when the parameters are set.

Table 2-2. Numeric Keys Specified in Address Divide Mode

<table>
<thead>
<tr>
<th>Numeric Key</th>
<th>Description</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal (without address divide)</td>
<td>NORMAL</td>
</tr>
<tr>
<td>4</td>
<td>16-bit data divided into 2, applicable to even addresses</td>
<td>16EVEN</td>
</tr>
<tr>
<td>7</td>
<td>16-bit data divided into 2, applicable to odd addresses</td>
<td>16ODD</td>
</tr>
<tr>
<td>C</td>
<td>32-bit data divided into 2, applicable to even addresses</td>
<td>32/2E</td>
</tr>
<tr>
<td>F</td>
<td>32-bit data divided into 2, applicable to odd addresses</td>
<td>32/2O</td>
</tr>
<tr>
<td>8</td>
<td>32-bit data divided into 4, applicable to the 1st even address</td>
<td>32/4E1</td>
</tr>
<tr>
<td>9</td>
<td>32-bit data divided into 4, applicable to the 1st odd address</td>
<td>32/4O1</td>
</tr>
<tr>
<td>A</td>
<td>32-bit data divided into 4, applicable to the 2nd even address</td>
<td>32/4E2</td>
</tr>
<tr>
<td>B</td>
<td>32-bit data divided into 4, applicable to the 2nd odd address</td>
<td>32/4O2</td>
</tr>
</tbody>
</table>

The address divide modes that can be specified depend on the device. The address divide modes that can be specified for each device are shown in Table 2-3.
### Table 2-3. Specifiable Address Divide Modes

<table>
<thead>
<tr>
<th>Product Name</th>
<th>Normal (No Division)</th>
<th>16 Bits, 2 Divisions</th>
<th>32 Bits, 4 Divisions</th>
<th>32 Bits, 2 Divisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>μPD27256</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>μPD27256A</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>μPD27C256</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>μPD27C256A</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>μPD27C512</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>μPD27C1000</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>μPD27C1000A</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>μPD27C1001</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>μPD27C1001A</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>×</td>
</tr>
<tr>
<td>μPD27C1024</td>
<td>○</td>
<td>×</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>μPD27C1024A</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>μPD27C2001</td>
<td>○</td>
<td>○</td>
<td>×</td>
<td>○</td>
</tr>
<tr>
<td>μPD27C4001</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>μPD27C4096</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Devices other than general-purpose PROMs</td>
<td>○</td>
<td>×</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

**Remark**  ○: Specifiable, ×: Not specifiable

**Caution** Do not specify a non-specifiable address division mode. If a device other than a general-purpose PROM is used, be sure to specify normal mode (no address division).

If a non-specifiable address division mode is specified, an error will result. See Appendix A.1 List of Standalone Mode Errors.

If an address division mode is not used, the correspondence between the device ROM and PG-1500 internal memory data is as follows (normal mode (no address division) is omitted).
The parameter setting methods are described from the next page.
<Operating procedure>

Key Operation	Display	Description
DEVICE | COPY VERI PROG CONT DEVICE SELE BLNK | The DEVICE mode is set.
COPY VERI PROG CONT | PROM Start Address PROM End Address Internal Memory Start Address | <p>The command to be executed is selected.</p>(Setting Example)<p>PROG Command (PROG Key)</p>
0 to F (Numeric Key) | 01111:7FFF 00000 PROG READ NORMAL | PROM start address is set using numeric keys.<br>The input numeric value is canceled using the key.
△ | 01111:7FFF 00000 PROG READ NORMAL | The cursor is moved.
0 to F (Numeric Key) | 01111:02222 00000 PROG READ NORMAL | PROM end address is set using numeric keys.<br>The input numeric value is canceled using the key.
△ | 01111:02222 00000 PROG READ NORMAL | The cursor is moved.
0 to F (Numeric Key) | 01111:02222 03333 PROG READ NORMAL | Internal memory start address is set using numeric keys.<br>The input numeric value is canceled using the key.
01111:02222 03333
PROG READ NORMAL

The cursor is moved.

01111:02222 03333
PROG READ 16EVN

The address divide mode is specified using the specified numeric keys.

(Setting Example) 4 (16EVN)

Each address mode setting has been completed.

For resetting, carry out similar operations after moving the cursor using the ▲ or ▼ key.

01111:02222 03333
*PROG READ 16EVN

PROM write operation is started.

† Flashes while ROM is being accessed.

01111:02222 03333
PROG OK ■■■■ 16EVN

Upon normal termination, [OK] and the check sum value are displayed.

Note Refer to Table 2-2 for the specified numeric keys.
2.4.2 Device selection (SELECT)

The SELECT command is intended to select the device to be used and set the device write conditions (including the write voltage). This command should be carried out at the start of the DEVICE mode.

There are three modes for device selection: READ mode, AUTO mode, and CODE mode. There may be restrictions on the methods that can be used depending on the device; therefore, one method should be selected in accordance with the following description.

```
SELECT - READ : Silicon Signature Data Manual Read
 - AUTO : Silicon Signature Data Auto Read
 - CODE : Manual Code Number Input
```

The mode set by the SELECT command is displayed while a DEVICE mode command (BLANK, COPY, PROG, VERIFY and CONT) is executed.

Example  Display for PROG command execution

```
00000 : 7FFFF 00000
PROG READ NORMAL
```

Displayed here

(1) Silicon signature compatible and non-compatible products

Each device has its own specific write conditions.

The write conditions are recorded in the device as a silicon signature. With the PG-1500, the write conditions for a particular device are set by reading the silicon signature data from the device or inputting a code number corresponding to the write conditions to the PG-1500.

Depending on the device, the silicon signature may or may not be compatible with the PG-1500.

Device selection by silicon signature compatibility is detailed in Tables 2-4 and 2-5.
### Table 2-4. Device Selection by Silicon Signature Compatibility

<table>
<thead>
<tr>
<th>Silicon signature compatible products</th>
<th>READ Mode</th>
<th>AUTO Mode</th>
<th>CODE Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>General-purpose PROM</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>μPD75P402</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>78K Series products shown in Table 2-5</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>V851/V852</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>87AD series</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>Turbo Access Manager</td>
<td>o</td>
<td>o</td>
<td>o</td>
</tr>
<tr>
<td>75X Series (except μPD75P402)</td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td>75XL Series</td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td>μPD7500 Series</td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
<tr>
<td>Speech Synthesis LSI</td>
<td>o</td>
<td>o</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Silicon nature non-compatible products</th>
<th>READ Mode</th>
<th>AUTO Mode</th>
<th>CODE Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>78K Series products not shown in Table 2-6</td>
<td>x</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>V25/V35</td>
<td>x</td>
<td>x</td>
<td>o</td>
</tr>
<tr>
<td>DSP</td>
<td>x</td>
<td>x</td>
<td>o</td>
</tr>
</tbody>
</table>

**Remark** O: Usable, x: Not usable (As of July '96)

### Table 2-5. 78K Series Silicon Signature Compatible Products

<table>
<thead>
<tr>
<th>Silicon signature compatible products</th>
<th>8-Bit Single-Chip Microcontrollers</th>
<th>16-Bit Single-Chip Microcontrollers</th>
</tr>
</thead>
<tbody>
<tr>
<td>μPD78P014</td>
<td>μPD78P078</td>
<td>μPD78P322</td>
</tr>
<tr>
<td>μPD78P044</td>
<td>μPD78P083</td>
<td>μPD78P324</td>
</tr>
<tr>
<td>μPD78P018(^\text{Note})</td>
<td>μPD78P020B</td>
<td>μPD78P032B</td>
</tr>
<tr>
<td>μPD78P024(^\text{Note})</td>
<td>μPD78P138</td>
<td>μPD78P334</td>
</tr>
<tr>
<td>μPD78P048A(^\text{Note})</td>
<td>μPD78P148</td>
<td>μPD78P352</td>
</tr>
<tr>
<td>μPD78P054</td>
<td>μPD78P216A</td>
<td>μPD78P366</td>
</tr>
<tr>
<td>μPD78P058</td>
<td>μPD78P224</td>
<td>μPD78P364</td>
</tr>
<tr>
<td>μPD78P054(^\text{Note})</td>
<td></td>
<td>μPD78P368A</td>
</tr>
</tbody>
</table>

**Note** Under development (As of July '96)
(2) Use of different selection methods

The appropriate selection method — READ mode, AUTO mode, or CODE mode — for the device used should be selected in accordance with the description given below.

Caution On no account set a mode which cannot be used, as this may damage the device.

(a) READ mode: manual reading of silicon signature data

This method sets the device-specific write conditions by reading silicon signature data from the device inserted into the socket when SELECT command is executed.

After setting, the read silicon signature data is compared with previously set silicon signature data at the execution of BLACK, COPY, PROG, VERIFY, and CONT in the ROM control instruction.

This is useful when a number of devices of the same type are used one after another.

When the device type is changed, select the device type by executing another SELECT command.

Caution READ mode can only be used to set the write conditions for silicon signature compatible products.

Refer to Table 2-4 in 2.4.2 Device Selection (SELECT).
Note  See the operating method on the next page.

Cautions  1. If READ mode is used with a device without silicon signature compatibility, the device may be damaged.
   In this case, CODE mode should be used.

   2. When setting the µPD75P402, set the ROM end address to 77FH while executing COPY, PROG, VERIFY, and CONT.
<Operating procedure>

Key Operation	Display	Description
DEVICE	COPY VER	DEVICE mode is set.
PROG	CONT	
DEVICE	SELECT	
READ		
AUTO	CODE	
SELECT		

SELECT command is selected.

Cursor is moved to READ.

Check!
Make sure that the device is inserted into the socket.

SET/START | READ | Device silicon signature is read and write condition is set.
 | μPD27256A | Name of device inserted into socket is displayed (for about 1 sec.)
 | (Setting Example) μPD27256A |

End

DEVICE | EDIT | FUNCTN
 | IDLE | •••
If Write condition setting is completed normally, idle status is displayed.
(b) AUTO mode: automatic reading of silicon signature data

With this method, the silicon signature data which indicates the device-specific write conditions is automatically read from the device each time a DEVICE mode command, BLANK, COPY, PROG, VERIFY, or CONT is executed, and the write conditions are then set. The write address range should be set to the entire address range of the device. This is useful when a number of devices of different types are used one after another.

Caution AUTO mode can only be used to set the write conditions for silicon signature compatible products.

Refer to Table 2-4 in 2.4.2 Device Selection (SELECT)
**DEVICE**

**SELECT**

- Power ON
  - AUTO mode setting
    - AUTO mode setting completion
    - Device insertion
    - DEVICE mode command
      - Adapter ID read
        - Abnormal → ERR39
        - Set OK
      - Precheck (when ON only)
        - Abnormal → ERR38
        - OK
        - Silicon signature read
          1. Parity check
          2. Code number check
             (only general-purpose PROM)
            - Abnormal → ERR30 ERR32
            - Set OK
      - DEVICE mode command execution

*Note*  See the operating method on the next page.

*Caution*  If AUTO mode is used with a device without silicon signature compatibility, the device may be damaged. In this case, CODE mode should be used.
<Operating procedure>

Key Operation	Display	Description
DEVICE        | COPY VERI PROG CONT
              | DEVICE  SELE BLNK

SELECT        | READ AUTO CODE
              | SELECT

Cursor is moved to AUTO.

△ ▼            | READ AUTO CODE
              | SELECT

PRESSING THIS KEY SETS THE AUTO MODE.

SET/START      | DEVICE EDIT FUNCTN
              | IDLE           

When write condition setting is normally completed,
idle status is displayed.
(c) **CODE mode:** manual input of code number

With this method, a code number which indicates the device-specific write conditions is input at the SELECT command execution, and the write conditions are then set. When using a device other than general-purpose PROM (including silicon signature noncompatibles), the end address of the general-purpose PROM corresponding to the device may differ. The write address range should be set at the time of ROM control instruction (DEVICE) input such as COPY, PROG, VERIFY, or CONT.

**Cautions**
1. When the μPD75P402 is used, the write conditions are set by inputting the code number for the μPD27C256A (1064) and changing the ROM end address to 77FH when executing each command.
2. CODE mode cannot be used to set the write conditions for 75X Series devices (except the μPD75P402), μPD7500 Series devices, or speech synthesis LSIs.

### Table 2-6. List of Code Numbers

<table>
<thead>
<tr>
<th>General-Purpose PROM</th>
<th>Code Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>μPD27256</td>
<td>1004</td>
</tr>
<tr>
<td>μPD27256A</td>
<td>10C4</td>
</tr>
<tr>
<td>μPD27C256</td>
<td>10A4</td>
</tr>
<tr>
<td>μPD27C256A</td>
<td>1064</td>
</tr>
<tr>
<td>μPD27C512</td>
<td>1025</td>
</tr>
<tr>
<td>μPD27C1000</td>
<td>1086</td>
</tr>
<tr>
<td>μPD27C1000A</td>
<td>1016</td>
</tr>
<tr>
<td>μPD27C1001</td>
<td>1046</td>
</tr>
<tr>
<td>μPD27C1001A</td>
<td>10D6</td>
</tr>
<tr>
<td>μPD27C1024</td>
<td>1026</td>
</tr>
<tr>
<td>μPD27C1024A</td>
<td>10B6</td>
</tr>
<tr>
<td>μPD27C2001</td>
<td>10C7</td>
</tr>
<tr>
<td>μPD27C4001</td>
<td>10C8</td>
</tr>
<tr>
<td>μPD27C4096</td>
<td>10A8</td>
</tr>
</tbody>
</table>
Note  See operating procedure on the next page.

Caution  If a different code number device is used after CODE mode setting, no errors result.
<Operating procedure>

**Key Operation**

- **DEVICE**
  - Display: COPY VERT PROG CONT
  - Description: DEVICE mode is set.

- **SELECT**
  - Display: READ AUTO CODE
  - Description: SELECT command is selected.

- **△ ▼**
  - Display: READ AUTO CODE
  - Description: Cursor is moved to CODE.

- **SET/START**
  - Display: CODE
    - Product Name Code
    - Description: Code select is set and code input status is generated.

- **0 to F** (Numeric Key)
  - Display: CODE μPD27256A
  - (Setting Example) 10C4: μPD27256A
  - Description: Input the code number for the device to be used, using the numeric keys. The code number registered in the PG-1500 can be called by means of the △ or ▼ key.
Set to the \( \mu \)PD27256A and placed in the mode select state. However, when only one device is placed in the program mode, an idle state is soon displayed.

Select the program mode with an \( \Delta \) or \( \nabla \) key.

If write condition setting is completed normally, idle status is displayed.
(3) Program mode
The program mode designates the write method according to differences in the length of the program pulses, the number of bytes written at one time, etc.
If READ mode or AUTO mode is used as the device selection method, the program mode is changed automatically according to the device being written to, so that the fastest write method is selected.
If CODE mode is used as the device selection method, the program mode should be selected after the code number is input. Any of three program modes can be selected: NORMAL, FAST and PAGE.

(a) Normal program mode (NORMAL)
Target devices: All devices

The program can be performed by applying a 1-ms initial program pulse (active low) to the CE pin for the initial address, then executing the program verify with OE set to 0. If the program cannot be performed only by the first initial program pulse, programs and program verifies are repeated X times (X ≤ 25) to verify a 1-byte program, then an additional program pulse (3X ms) is added to complete the 1-byte program. After completing the 1-byte program, the address is incremented by one. The same sequence as above is repeated up to the last address.
After completing whole byte programs, the whole byte verify is carried out.
Figure 2-2 shows the program mode flowchart.

Note The normal program mode for the μPD27C1000A, μPD27C1001A and μPD27C1024A, 27C2001, 27C4001, 27C4096 is the same as the fast program mode.

(b) Fast program mode (FAST)
Target devices: μPD27256A, μPD27C256A and μPD27C512

The program can be performed by applying a 0.1-ms initial program pulse (active low) to the CE (PGM) pin for the initial address, then executing the program verify with OE set to 0. If the program cannot be performed only by the first initial program pulse, programs and program verifies are repeated X times (X ≤ 10) to verify the 1-byte program. This completes the 1-byte program. After completing the 1-byte program, the address is incremented by one. The same sequence as above is repeated up to the last address. After completing whole byte programs, the whole program verify is carried out.
Figure 2-3 shows the program mode flowchart.
(c) Page program mode (PAGE)

Target devices: \( \mu \text{PD27C1000A, } \mu \text{PD27C1001A and } \mu \text{PD27C1024A, 27C2001} \)

The program can be performed by latching the initial 4-byte, 1-page address and data in the page data latch mode, and by applying 0.1-ms program pulse (active low) to the PGM pin with CE and OE set to 1, then immediately changing CE and OE to 0. This completes the program verify. If the program cannot be performed only by the first program pulse, programs and program verifies are repeated \( X \) times \( (X \leq 10) \). After confirming the 1-page program, the address is incremented by one. The same sequence as above is repeated up to the last address.

After completing whole byte programs, the whole byte verify is carried out.

Figure 2-4 shows the program mode flowchart.

The program mode cannot be selected for a device for which CODE mode cannot be used (76X Series, \( \mu \text{PD7500 Series, or speech synthesis LSI} \)). When READ mode or AUTO mode is used, the program mode is set automatically. With a general-purpose PROM, the program modes that can be selected vary from device to device. If there is more than one selectable program mode, one of these should be selected.

With other devices, as a general rule the NORMAL program mode should be selected. Please refer to the data sheet for the device concerned for details of program modes.
Figure 2-2. Normal Program Mode Flowchart

Start

Address = G

Vcc = 6 V
Vpp = 12.5 V

X = 0

1-ms initial program pulse

X = X + 1

X = 25 ?

NO

FAIL

Verify

PASS

Application of 3X-ms program pulse

Address = Address + 1

Address = N ?

YES

Vcc = 5 V
Vpp = 5 V

FAIL

FAIL

Defective product

PASS

Writing end

G = Start Address
N = Program End Address
Figure 2-3. Fast Program Mode Flowchart

Start

Address = G

$V_{cc} = 6.5 \text{ V}$
$V_{PP} = 12.5 \text{ V}$

$X = 0$

$X = X + 1$

0.1-ms initial program pulse

Verify

FAIL

PASS

Address = Address + 1

Address = N? 

NO

YES

$V_{cc} = 4.5 \text{ V to 5.5 V}$
$V_{PP} = V_{cc}$

All latches verified?

PASS

FAIL

ALL PASS

Writing end

Defective product

G = Start Address
N = Program End Address
Figure 2-4. Page Program Mode Flowchart

Start

Address = G

Vcc = 6.5 V
Vpp = 12.5 V

X = 0

Latch

Addresscc = Address = + 1

Latch

Address = Address = + 1

Latch

Address = Address = + 1

Latch

X = X + 1

0.1-ms initial program pulse

4 bytes verified?

PASS

FAIL

X = 10 ?

NO

Address = Address = + 1

Address = N?

YES

Vcc = 4.5 V to 5.5 V
Vpp = Vcc

FAIL

PASS

All bytes verified?

FAIL

ALL PASS

Writing end

Defective product
2.4.3 Blank check (BLANK)

The BLANK command performs a check to determine whether the device inserted in the socket is blank (blank check).

The entire address range is checked regardless of the operation address range set by other commands.

<Operating procedure>

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE</td>
<td>COPY VERI PROG CONT DEVICE SELE BLNK</td>
<td>DEVICE mode is set.</td>
</tr>
<tr>
<td></td>
<td>BLNK AUTO</td>
<td>BLANK command is selected.</td>
</tr>
<tr>
<td></td>
<td>↑</td>
<td>DEVICE mode is set</td>
</tr>
<tr>
<td>SET/START</td>
<td>AUTO</td>
<td>The display on the left appears only when the device selection is AUTO mode.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Name of device inserted into socket is displayed for 1 sec.</td>
</tr>
<tr>
<td></td>
<td>*BLNK AUTO</td>
<td>Blank check is started.</td>
</tr>
<tr>
<td></td>
<td>↑</td>
<td>Blinks while ROM is being accessed.</td>
</tr>
<tr>
<td></td>
<td>BLNK OK</td>
<td>If unwritten, [OK] is displayed.</td>
</tr>
</tbody>
</table>

Note: There is no code display when the device selection mode is READ mode or CODE mode.
In the event of an error, take the following countermeasure.

If [ERR28] is displayed

```
22
BLNK ERR28 11111
```

A blank error has occurred.
This error occurs if the device inserted into the socket is not unwritten.

Countermeasure 1
To stop command execution, press the [RESET] key.
This generates the idle status.

Countermeasure 2
To execute a blank check, press the [SET/START] key.
Blank check starts at an address following the error address.

Caution  When operation becomes normal at the address following the error address by taking countermeasure 2, [OK] is displayed.

If any other error occurs, take the necessary measure in accordance with Appendix A.1 Standalone Mode Error List.
2.4.4 Read (COPY)

The COPY command is intended to copy the data written into the ROM to the PG-1500 internal memory. After all the addresses have been read, verification is performed on all the addresses automatically.

<Operating procedure>

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE</td>
<td>COPY VERI PROG CONT&lt;br&gt;DEVICE SELE BINK</td>
<td>DEVICE mode is set.</td>
</tr>
<tr>
<td>COPY</td>
<td>00000:7FFFF 00000&lt;br&gt;COPY READ NORMAL</td>
<td>COPY command is selected.</td>
</tr>
<tr>
<td>SET/START</td>
<td>01111:02222 03333&lt;br&gt;*COPY READ 16EVM</td>
<td>ROM content is copied to PG-1500 internal memory.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blinks while ROM is being accessed.</td>
</tr>
<tr>
<td></td>
<td>01111:02222 03333&lt;br&gt;COPY OK 16EVM</td>
<td>Upon normal termination, [OK] and check sum value are displayed.</td>
</tr>
</tbody>
</table>

(Setting Example) PROM Start Address: 01111H<br>PROM End Address: 02222H<br>Internal Memory Start Address: 03333H<br>Address Divide Mode: 16EVM
2.4.5 Write (PROG)

The PROG (PROGRAM) command is intended to write PG-1500 internal memory data into the unwritten device inserted into the socket.

Writing (including verification) is performed in accordance with the program mode specified when the SELECT command is executed.

<Operating procedure>

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE</td>
<td>COPY VERI PROG CONT</td>
<td>DEVICE mode is set.</td>
</tr>
<tr>
<td></td>
<td>DEVICE SELE BLNK</td>
<td></td>
</tr>
<tr>
<td>PROG</td>
<td>000000:7FFFFF 000000</td>
<td>PROG command is selected.</td>
</tr>
<tr>
<td></td>
<td>PROG READ NORMAL</td>
<td></td>
</tr>
</tbody>
</table>

Set the PROM start address, PROM end address, PG-1500 internal memory start address and address divide mode. For details of the setting procedure, refer to Part II 2.4.1 "Parameter Setting".

(Setting Example) PROM Start Address : 01111H
PROM End Address : 02222H
Internal Memory Start Address : 03333H
Address Divide Mode : 16EVN

SET/START	01111:02222 03333	Write to PROM is started.
---------------	------------------------------	
	*PROG READ 16EVN	

* Blinks while ROM is being accessed.

End

| 01111:02222 03333 | Upon normal termination, [OK] and check sum value are displayed. |
| PROG OK  16EVN    | Check Sum Value                                                    |
In the event of an error, take the following countermeasure.

If [ERR2C] is displayed

<table>
<thead>
<tr>
<th>Internal Memory Data</th>
<th>Error Address Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>33:</td>
<td>22</td>
</tr>
<tr>
<td>PROG</td>
<td>ERR2C</td>
</tr>
<tr>
<td></td>
<td>1111</td>
</tr>
</tbody>
</table>

A write error has occurred.
This error occurs if data cannot be written to the device.

Countermeasure 1
To stop command execution, press the **RESET** key.
This generates the Idle status.

Countermeasure 2
To continue write operation, press the **SET/START** key.
Write to ROM starts at an address following the error address.

Caution Even if operation becomes normal at the address following the error address by taking countermeasure 2, a verify error (ERR20) still occurs in a verify check to be executed after termination of write operation.

If any other error occurs, take the necessary measure in accordance with Appendix A.1 Standalone Mode Error List.
2.4.6 Verify check (VERIFY)

The VERIFY command is intended to check if the data which is written into the device matches the PG-1500 internal memory content.

When data has been written to the device, or when data has been read from the device, a verify check should be performed directly afterward. If power is cut or the device is replaced before a verify check is performed, the data write must be repeated from the start, followed immediately by a verify check.

<Operating procedure>

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE</td>
<td>COPY VERI PROG CONT DEVICE SELE BLNX</td>
<td>DEVICE mode is set.</td>
</tr>
<tr>
<td></td>
<td>00000:7FFFF 00000 VERI READ NORMAL</td>
<td>VERIFY command is selected.</td>
</tr>
</tbody>
</table>

Set the PROM start address, PROM end address, PG-1500 internal memory start address and address divide mode. For details of the setting procedure, refer to Part II 2.4.1 “Parameter Setting”.

<table>
<thead>
<tr>
<th>(Setting Example)</th>
<th>PROM Start Address</th>
<th>: 01111H</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROM End Address</td>
<td>: 02222H</td>
<td></td>
</tr>
<tr>
<td>Internal Memory Start Address</td>
<td>: 03333H</td>
<td></td>
</tr>
<tr>
<td>Address Divide Mode</td>
<td>: 16EVN</td>
<td></td>
</tr>
</tbody>
</table>

Data check is started.

| SET/START | 01111:02222 03333 +VERI READ 16EVN | |
| End | | Blinks while ROM is being accessed. |

Upon normal termination, [OK] and check sum value are displayed.

01111:02222 03333 VERI OK #### 16EVN

Check Sum Value
In the event of an error, take the following countermeasure.

* If [ERR21, 22] is displayed

```
<table>
<thead>
<tr>
<th>Internal Memory Data</th>
<th>Error Address Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>33: 22</td>
<td>VERI ERR21 11111</td>
</tr>
</tbody>
</table>
```

A verify error has occurred.
This error occurs if device data does not match the PG-1500 internal memory data content.

Countermeasure 1
To stop command execution, press the **RESET** key.
This generates the idle status.

Countermeasure 2
To execute a verify check, press the **SET/START** key.
Compare starts at an address following the error address.

**Caution** When operation becomes normal at the address following the error address by taking countermeasure 2, [OK] is displayed.

If any other error occurs, take the necessary measure in accordance with Appendix A.1 Standalone Mode Error List.
2.4.7 Continuous operation (CONT)

The CONT (CONTINUOUS) command is intended to carry out a continuous operation concerning a program which executes blank check, ROM write, and verify check in order.

<Operating procedure>

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEVICE</td>
<td>COPY VERI PROG CONT</td>
</tr>
<tr>
<td></td>
<td>DEVICE SELE BLNK</td>
</tr>
<tr>
<td>CONT</td>
<td>00000:7FFF 00000</td>
</tr>
<tr>
<td></td>
<td>CONT READ NORMAL</td>
</tr>
</tbody>
</table>

Set the PROM start address, PROM end address, PG-1500 internal memory start address and address divide mode. For details of the setting procedure, refer to 2.4.1 Parameter Setting in Part II.

(Setting Example)
- PROM Start Address: 01111H
- PROM End Address: 02222H
- Internal Memory Start Address: 03333H
- Address Divide Mode: 16EVM

Blank check is started. After that, ROM write and verify check are carried out.

Upon normal termination, [OK] and check sum value are displayed.
2.5 Memory Edit (EDIT MODE)

The EDIT mode is intended to edit or change data in the PG-1500 internal memory.

- **CHANGE**: Internal memory data check and change
- **INT**: Internal memory initialize
- **MOVE**: Internal memory block transfer
- **SEARCH**: Internal memory data search
- **C-SUM (CHECKSUM)**: Internal memory checksum
2.5.1 Data change (CHANGE)

The CHANGE command is intended to check or change PG-1500 internal memory data.

Because this command enables any address in the PG-1500 internal memory to be set, data at any address can be readily checked or changed.
<Operating procedure>

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDIT</td>
<td>CHA INI MOV SEA SUM EDIT</td>
<td>EDIT mode is set.</td>
</tr>
<tr>
<td>CHANGE</td>
<td>Address 00000</td>
<td>CHANGE command is selected.</td>
</tr>
<tr>
<td></td>
<td>Cursor Blinking</td>
<td></td>
</tr>
<tr>
<td>0- F</td>
<td>Input 12345 (Numeric Key)</td>
<td>Input an address to be checked or changed using numeric keys.</td>
</tr>
<tr>
<td></td>
<td>(Setting Example) Address: 12345H The input address can be canceled using the ▼ key.</td>
<td></td>
</tr>
<tr>
<td>SET/START</td>
<td>12340:CC DD EE FF 00 12345:11 22 33 44 55</td>
<td>Data for the input address is displayed, when it is entered.</td>
</tr>
<tr>
<td></td>
<td>Cursor Blinking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Remark: Data for the specified address is displayed where the cursor is blinking. (Example) 12345 address: 11H Data of the specified address plus 4 addresses, and that of the specified address minus 5 address are also displayed.</td>
<td></td>
</tr>
</tbody>
</table>

- **For data check**
  - (1) Check
- **For data change**
  - (2) Change
(1) Check

To check data, change the address value using the △ or ▽ key.

△: Address value increases.
▽: Address value decreases.

Address value increases and data shifts.

12341:DD EE FF 00 11
12346:22 33 44 55 66

Address value decreases and data shifts.

1233F:BB CC DD EE FF
12344:00 11 22 33 44

Upon termination of check operation, exit from this mode using the [DEVICE], [EDIT], [FUNCTION] or [RESET] key.

(2) Change

To change the data for the specified address, press the 0 to F numeric keys. The displayed data (at locations where the cursor is blinking) is erased and the input numeric value is displayed from the right.

Input data.

0 to F
(Numeric Key)

12340:CC DD EE FF 00
12345:7B 22 33 44 55

Use the ▽ key to cancel the input numeric value.

(Setting Example)

Changing [12345] address data to [7B]

Data is changed and the address proceeds to the next value

12341:DD EE FF 00 7B
12346:22 33 44 55 66

Upon termination of change operation, exit from this mode using the [DEVICE], [EDIT], [FUNCTION] or [RESET] key.

Caution: If a numeric value is input, the preset data cannot be changed unless the [SET/START] key is pressed.
2.5.2 Initialize (INIT)

The INIT (INITIAL) command is intended to initialize the data in the range specified by the PG-1500 internal memory using the specified data.

![Diagram showing the initialization process]

**Remark** It takes about 1 second to initialize 512K bytes (all data of the PG-1500 internal memory).

**<Operating procedure>**

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDIT</td>
<td>C UA INI MOV SEA SUM EDIT</td>
<td>EDIT mode is set.</td>
</tr>
<tr>
<td></td>
<td>Internal Memory Start Address</td>
<td>EDIT</td>
</tr>
<tr>
<td>INIT</td>
<td>00000:7FFFF 00 INIT</td>
<td>INIT command is selected.</td>
</tr>
<tr>
<td>0 to F (Numeric Key)</td>
<td>11111:7FFFF 00 INIT</td>
<td>Input the internal memory start address using numeric keys. Use the $\checkmark$ key to cancel the input numeric value.</td>
</tr>
</tbody>
</table>

*(Setting Example)*

Internal Memory Start Address: 11111H
EDIT

INIT

<1>

△

11111:7FFFF 00
INIT

The cursor is moved.

0 to F
(Numeric Key)

11111:22222 00
INIT

The internal memory end address is input using numeric keys.

(Setting Example)
Internal Memory End Address: 22222H

△

11111:22222 00
INIT

The cursor is moved.

0 to F
(Numeric Key)

11111:22222 AA
INIT

Initial data is input using numeric keys.

(Setting Example)
Initial data AA is set

SET/START

11111:22222 AA
*INIT

↑
Blinks while internal memory is being accessed.

Upon normal termination, [OK] is displayed.

End

11111:22222 AA
INIT OK

Upon termination of initialize, exit from this mode using the [DEVICE], [EDIT], [FUNCTION] or [RESET] key.
2.5.3 Block transfer (MOVE)

The MOVE command is intended for block transfer of data between any start address of the PG-1500 internal memory and the end address to any different address.

<Operating procedure>

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDIT</td>
<td>CHA INIT MOV SEA SUM</td>
<td>EDIT mode is set.</td>
</tr>
<tr>
<td></td>
<td>EDIT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal Memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Start Address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal Memory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>End Address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transfer Source Address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Destination Start Address</td>
<td></td>
</tr>
<tr>
<td>MOVE</td>
<td>000000:FFFFFF 000000</td>
<td>MOVE command is selected.</td>
</tr>
<tr>
<td>0 to F</td>
<td>11111:FFFFFF 000000</td>
<td>Input the specified internal memory start address using numeric keys.</td>
</tr>
<tr>
<td>(Numeric Key)</td>
<td></td>
<td>(Setting Example)</td>
</tr>
<tr>
<td></td>
<td>Internal Memory Start Address: 11111H</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The cursor is moved.</td>
</tr>
</tbody>
</table>

<1>
EDIT

MOVE

<1>

0 to F
(Numeric Key)

11111:22222 00000
MOVE

The specified internal memory end address is input using numeric keys.

(Setting Example)
Internal Memory End Address: 2222H

△

11111:22222 00000
MOVE

The cursor is moved.

0 to F
(Numeric Key)

11111:22222 33333
MOVE

The transfer destination start address is input using numeric keys.

(Setting Example)
Transfer Destination Start Address: 3333H

SET/START

11111:22222 33333
*MOVE

↑
Blinks while internal memory is being accessed.

End

11111:22222 33333
MOVE OK

Upon normal termination, [OK] is displayed.

Caution If the transfer address range overflow the destination address range, [ERR12] occurs.
(Example)

In this case, change the transfer destination start address or decrease the transfer address range.

68
2.5.4 Data search (SEARCH)

The SEARCH command is intended to search for the PG-1500 internal memory address at which the key input data string is located.

A data string with a maximum of 4 bytes can be searched for and the search range can also be specified.

Caution 1-, 2- or 4-byte data string can be searched. 3-byte data string cannot be searched.

Remark It takes a maximum of about 20 seconds to search for a data string.

Example Search data string: 000000FF
Search range : 00000H to 7FFFFH

<table>
<thead>
<tr>
<th>7FFFFH</th>
<th>FF</th>
</tr>
</thead>
<tbody>
<tr>
<td>7FFFEH</td>
<td>00</td>
</tr>
<tr>
<td>7FFFDH</td>
<td>00</td>
</tr>
<tr>
<td>7FFFCF</td>
<td>00</td>
</tr>
<tr>
<td>7FFFFH</td>
<td>00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>00001H</th>
<th>00</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000H</td>
<td>00</td>
</tr>
</tbody>
</table>

PG-1500 Internal Memory
<Operating procedure>

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDIT</td>
<td>CHA INI MOV SEA SUM EDIT</td>
<td>EDIT mode is set.</td>
</tr>
<tr>
<td></td>
<td>Search</td>
<td>Search</td>
</tr>
<tr>
<td></td>
<td>Range</td>
<td>Range</td>
</tr>
<tr>
<td></td>
<td>Start</td>
<td>End</td>
</tr>
<tr>
<td></td>
<td>Address</td>
<td>Address</td>
</tr>
<tr>
<td>SEARCH</td>
<td>00000:7FFFF</td>
<td>SEARCH command is selected.</td>
</tr>
<tr>
<td></td>
<td>SRCH</td>
<td>00</td>
</tr>
</tbody>
</table>

0 to F (Numeric Key)

Search range start address is input using numeric keys.

(Setting Example)
Search Range Start Address: 11111H

△

11111:7FFFF
SRCH 00

The cursor is moved.

0 to F (Numeric Key)

Search range end address is input using numeric keys.

(Setting Example)
Search Range End Address: 22222H

△

11111:22222
SRCH 00

The cursor is moved.

Cursor Blinking
Search data string is input using numeric keys.

Setting Example
Search Data String: 1122344

Search is executed in the specified address range.

Search Data Start Address

When data is located, the search data string start address is displayed.

Remark When the [SET/START] key is pressed at this point.
1. If there is a data string at another address, the address is displayed.
2. If there is no data string at another address, [END] is displayed and search operation is terminated.

If there is no search data, [END] is displayed.
2.5.5 Checksum (C-SUM)

The C-SUM (CHECKSUM) command is intended to display the PG-1500 internal memory data sum value. The checksum value is also displayed upon termination of each DEVICE mode command (COPY, PROG, VERIFY and CONT).

<Operating procedure>

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EDIT</td>
<td>CHA INIT MOV SEA SUM</td>
<td>EDIT mode is set.</td>
</tr>
<tr>
<td></td>
<td>EDIT</td>
<td></td>
</tr>
<tr>
<td>C-SUM</td>
<td>00000:7FFFFF CSUM</td>
<td>C-SUM command is selected.</td>
</tr>
<tr>
<td>SET/START</td>
<td>00000:7FFFFF *CSUM</td>
<td>Checksum is calculated.</td>
</tr>
<tr>
<td></td>
<td>↑</td>
<td>Blinks while internal memory is being accessed.</td>
</tr>
<tr>
<td></td>
<td>Checksum Value</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00000:7FFFFF 0000 CSUM</td>
<td>Upon normal termination, the checksum value is displayed.</td>
</tr>
</tbody>
</table>

Caution  The address range cannot be specified by this command.
2.6 Interface Setting (FUNCTION MODE)

The FUNCTION mode is intended to input/output data to/from the external device or to set the interface.

- **P-IN (PARALLEL INPUT):** Parallel interface input
- **S-IN (SERIAL INPUT):** Serial interface input
- **S-OUT (SERIAL OUTPUT):** Serial interface output

* When transferring data, set the following transfer data format:
  1. INTELLECM (INTELLEC HEX)
  2. MOTOROLA (MOTOROLA EXORCISER)
  3. EX-TEX (EXTENDED TEKHEX)

**MODE:** Baud rate and character format set → Precheck function Note: ON/OFF set enable

**REMOTE:** Remote control mode set

**Cautions**
1. For details of these transfer formats, refer to Appendix B Object Formats.
2. In baud rate and character format setting, ON/OFF can be set for the precheck function to check whether the device is inserted correctly only for general-purpose PROMs.
2.6.1 Parallel input (P-IN)

The P-IN (PARALLEL INPUT) command is intended to input data from an external device connected to the PG-1500 parallel interface.

When executing the P-IN command, the PG-1500 should be connected to the external machine by a serial interface cable.

The P-IN command enables the following transfer data formats to be set.
- INTELLEC HEX (INTELLEC)
- MOTOROLA EXORCISER (MOTOROLA)
- EXTENDED TEKHEX (EX-TEK)

<Transfer method>
(1) Transferred data is masked in a 512K-byte unit.
   (Transfer example)
   (a) When data transferred from an external device is 00000H to 0FFFFFFH

```
0FFFFFFH
80000H
7FFFFFFH
00000H

External Data

1st Transfer

PG-1500 Internal Memory

2nd Transfer

7FFFFFFH
00000H

External Data

PG-1500 Internal Memory
```

Unless data is transferred in two transfers, only [80000H to 0FFFFFFH] data is transferred to the PG-1500 internal memory.

(b) When external transfer data is 0E0000H to 0F0000H in INTELLEC format

```
0F0000H
0E0000H

External Data

PG-1500 Internal Memory
```

As shown above, data is transferred to the 60000H to 7FFFFFFH range.
(2) The end of data input is an end record in each transfer format (INTELLEC, MOTOROLA and EX-TEX).

Caution When using this mode, be sure to start external device data output after setting the PG-1500 to the RECEIVE mode. If the procedure is carried out in reverse order, the first data is not loaded correctly.

<Operating procedure>

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION</td>
<td>SIN PIN SOUT MOD REM FUNCTION</td>
<td>FUNCTION mode is set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-IN</td>
<td>P-IN FMT: INTELLEC</td>
<td>P-IN command is selected.</td>
</tr>
<tr>
<td></td>
<td>↑ Cursor Blinking</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-IN FMT: EX-TEK</td>
<td>The transfer format is set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Setting Example) EX-TEK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The format changes as follows with the △ or ○ key.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>[INTELLEC] ↔ [EX-TEK] ↔ [MOTOROLA] ↔</td>
</tr>
<tr>
<td>SET/START</td>
<td>*P-IN FMT: EX-TEK</td>
<td>Data transfer is executed in the selected format.</td>
</tr>
<tr>
<td></td>
<td>↑ Blink while internal memory is being accessed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At this point a command to transfer data from an external device is executed.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>End</td>
<td>Upon normal termination, [OK] is displayed.</td>
</tr>
<tr>
<td></td>
<td>P-IN OK EXIT</td>
<td></td>
</tr>
</tbody>
</table>

Remark When the PC-9801 VX (V30: 10 MHz) MS-DOS V3.1 is connected, it takes approx. 2 minutes to transfer (receive) 512K bits.
FUNCTION

S-IN

2.6.2 Serial input (S-IN)

The S-IN (SERIAL INPUT) command is intended to input data from an external device connected to the PG-1500 serial interface.

When executing the S-IN command, the PG-1500 should be connected to the external machine by a serial interface cable.

The following data formats can be set by the S-IN command.
- INTELLEC HEX (INTELLEC)
- MOTOROLA EXORCISER (MUTOHOLA)
- EXTENDED TEKHEX (EX-TEK)

<Transfer method>

(1) The location of the transferred data is masked in a 512K-byte unit.

(Transfer example)

(a) When data transferred from an external device is 00000H to 0FFFFFFH.

Unless data is transferred in two transfers, only [80000H to 0FFFFFFH] data is transferred to the PG-1500 internal memory.
(c) When external transfer data is 0E0000H to 0F0000H in INTELLEC format.

As shown above, data is transferred to the 60000H to 7FFFFH range.

(2) Data input terminates with an end record in each transfer format (INTELLEC, MOTOROLA and EX-TEX).

**Caution** When using this mode, be sure to start external device data output after setting the PG-1500 to the RECEIVE mode. If the procedure is carried out in reverse order, the first data is not loaded correctly.
FUNCTION

S-IN

<Operating procedure>

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION</td>
<td>SIN PIN SOUT MOD REM FUNCTION</td>
<td>FUNCTION mode is set.</td>
</tr>
<tr>
<td>S-IN</td>
<td>S-IN FMT: INTELLEC</td>
<td>S-IN command is selected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S-IN FMT: EX-TEK</td>
<td>The transfer format is set.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Setting Example) EX-1×K</td>
</tr>
<tr>
<td></td>
<td>The format changes as follows with the ▲ or ▼ key.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[INTELLEC]→[EX-TEK] ←→ [MOTOROLA]</td>
<td></td>
</tr>
<tr>
<td>SET/START</td>
<td>S-IN FMT: EX-TEK</td>
<td>Data transfer is executed in the selected format.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blinks while internal memory is being accessed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>At this point a command to transfer data from an external device is executed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S-IN OK EX-TEK</td>
<td>Upon normal termination, [OK] is displayed.</td>
</tr>
</tbody>
</table>

Caution If no external devices are connected, pressing the SET/START key causes [ERR40] as follows.

| ERR40         | Not ready                        |

Remark When the PC-9801VX (V30™: 10 MHz) MS-DOS™ V3.1 is connected, it takes approx. 3 minutes to transfer (receive) 512K bits at the baud rate of 9600 bps.
2.6.3 Serial output (S-OUT)

The S-OUT (SERIAL OUTPUT) command is intended to output data from the PG-1500 with an external device connected to the PG-1500 serial interface.

When executing the S-OUT command, the PG-1500 should be connected to the external machine by a serial interface cable.

The S-OUT command enables the following transfer data formats to be set.
- INTELLEC HEX (INTELLEC)
- MOTOROLA EXORCISER (MOTOROLA)
- EXTENDED TEKHEX (EX-TEK)

It also enables the PG-1500 internal memory start address, end address and EOF code specifying the transfer range to be set.

--- EOF code ---

The EOF code is used for an external device connected to the PG-1500 to close a file.

Data output terminates with each format end record and the EOF code following the record.

(EOF code example) When OS is MS-DOS

\[ \uparrow \mathrm{Z} \text{ (control Z)} \rightarrow 1\text{AH} \]

--- Operating procedure ---

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION</td>
<td>SIN PIN SOUT MOD REM FUNCTION</td>
<td>FUNCTION mode is set.</td>
</tr>
<tr>
<td></td>
<td>Internal Memory Start Address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Internal Memory End Address</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EOF Code</td>
<td></td>
</tr>
<tr>
<td>S-OUT</td>
<td>00000:7FFFF 1A SOUT FMT: INTELLEC</td>
<td>S-OUT command is selected.</td>
</tr>
<tr>
<td></td>
<td>Cursor Blinking</td>
<td></td>
</tr>
<tr>
<td>0 to F (Numeric Keys)</td>
<td>11111:7FFFF 1A SOUT FMT: INTELLEC</td>
<td>Internal memory start address is set using numeric keys.</td>
</tr>
<tr>
<td></td>
<td>(Setting Example) Internal Memory Start Address: 11111H</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11111:7FFFF 1A SOUT FMT: INTELLEC</td>
<td>The cursor is moved.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use the ( \uparrow ) key to move the cursor in reverse direction.</td>
</tr>
</tbody>
</table>
**FUNCTION**

**S-OUT**

11111:22222 1A
SOUT FMT: INTELLEC

Internal memory end address is set using numeric keys.

(Setting Example)
Internal Memory End Address: 22222H

11111:22222 1A
SOUT FMT: INTELLEC

The cursor is moved.
Use the \( \checkmark \) key to move the cursor in reverse direction.

EOF code is set using numeric keys.

(Setting Example) EOF Code: 1A

11111:22222 1A
SOUT FMT: INTELLEC

The cursor is moved.
Use the \( \checkmark \) key to move the cursor in reverse direction.

The transfer format to be used is set.
(Setting Example) EX-TEK

The \( \triangle \) key is used to move the cursor.

The format changes as follows with the \( \checkmark \) key.

[INTELLEC] \( \rightarrow \) [EX-TEK] \( \rightarrow \) [MOTOROLA]

At this point the external device is set to the data wait status.

**SET/START**

11111:22222 1A
* SOUT FMT: EX-TEK

Data in the specified address range is transferred to the external device in the selected format.

\( \uparrow \)
Blinks while internal memory is being accessed.

11111:22222 1A
SOUT OK EX-TEK

Upon normal termination, [OK] is displayed.

**Remark** When the PC-9801VX (V30: 10 MHz) MS-DOS V3.1 is connected, it takes approx. 3 minutes to transfer 512K bits at the baud rate of 9600 bps.
2.6.4 Serial interface setting (MODE)

The MODE command is intended to execute serial interface setting and set the precheck function. This setting is saved in the NV-RAM (nonvolatile RAM) of the PG-1500 and remains unchanged after power-OFF. The following items are set. Change by setting in accordance with the external machine to be connected.

Table 2-7. Items to be Set by MODE Command

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
<th>Display Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud rate</td>
<td>1200, 2400, 4800, 9600, 18200 [bps]</td>
<td>BR</td>
</tr>
<tr>
<td>Parity</td>
<td>NON (none), EVN (even number), ODD (odd number)</td>
<td>P</td>
</tr>
<tr>
<td>XON/OFF control(^{Note 1})</td>
<td>ON (yes), OFF (none)</td>
<td>XN</td>
</tr>
<tr>
<td>Character length</td>
<td>7, 8</td>
<td>B</td>
</tr>
<tr>
<td>Stop bit</td>
<td>1, 2</td>
<td>SB</td>
</tr>
<tr>
<td>Precheck(^{Note 2})</td>
<td>ON (yes), OX (none)</td>
<td>PC</td>
</tr>
</tbody>
</table>

Notes
1. When connecting the unit to an in-circuit emulator, XON/ XOFF control should be set to "none" (LCD display: OF).
2. This function checks whether the device has been inserted correctly. It can only be used with an NEC general-purpose PROM.

Remark  The default settings at shipment are underlined in the Setting column.
FUNCTION MODE

<Operating procedure>

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION</td>
<td>SIN PIN SOUT MOD REM FUNCTION</td>
<td>FUNCTION mode is set.</td>
</tr>
<tr>
<td></td>
<td>BR: 9600 P:NON XN:OF MODE B:8 SB:2 PC:OF</td>
<td>Various setting modes are selected.</td>
</tr>
</tbody>
</table>

Caution: The parameter cannot be changed using numeric keys.

△: Parameter Select

▼: Parameter Setting Change

BR: 1200 P:NON XN:OF MODE B:8 SB:2 PC:OF

The parameter is changed to a desired value. (Setting Example) 1200 bps
The parameter changes as follows with the ▼ key.
[19200] → [1200] → [2400] → [8400] → [9600]

△

BR: 1200 P:NON XN:OF MODE B:8 SB:2 PC:OF

The cursor is moved.

△

BR: 1200 P:EVEN XN:OF MODE B:8 SB:2 PC:OF

The parameter is changed to a desired value. (Setting Example) EVEN [Even Parity]
The parameter changes as follows with the ▼ key.
[NON] → [EVEN] → [ODD]

△

BR: 1200 P:EVEN XN:OF MODE B:8 SB:2 PC:OF

The cursor is moved.

△

BR: 1200 P:EVEN XN:ON MODE B:8 SB:2 PC:OF

The parameter is changed to a desired value (Set to external equipment to be connected). (Setting Example) ON
The parameter changes as follows with the ▼ key.
[OFF] → [ON]
<t>

△

BR: 1200 P:EVN XN:ON
MODE B:8 SB:2 PC:OF
The cursor is moved.

△

BR: 1200 P:EVN XN:ON
MODE B:2 SB:2 PC:OF
The parameter is changed to a desired value.
(Setting Example) 7

▽

The parameter changes as follows with the ▽ key.
[8] ←→ [7]

△

BR: 1200 P:EVN XN:ON
MODE B:7 SB:2 PC:OF
The cursor is moved.

△

BR: 1200 P:EVN XN:ON
MODE B:7 SB:1 PC:OF
The parameter is changed to a desired value.
(Setting Example) 1

▽

The parameter changes as follows with the ▽ key.
[2] ←→ [1]

△

BR: 1200 P:EVN XN:ON
MODE B:7 SB:1 PC:OF
The cursor is moved.

△

BR: 1200 P:EVN XN:ON
MODE B:7 SB:1 PC:OF

▽

The parameter is changed to a desired value.
(Setting Example) ON

The parameter changes as follows with the ▽ key.
[OFF] ←→ [ON]

SET/START
DEVICE_EDIT FUNCTN
IDLE

All items are set and the idle status is generated.

Cautions
1. This setting is not changed unless the SET/START key is pressed.
2. Pressing the SET/START key executes data write to the NV-RAM in the PG-1500.
FUNCTION
REMOTE

2.6.5 Remote control mode setting (REMOTE)

The REMOTE command is intended for control the PG-1500 with an external device. When executing the REMOTE command, connect the PG-1500 to the external device with a serial interface cable.

<Operating procedure>

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION</td>
<td>SIN PIN SOUT MOD REM</td>
<td>FUNCTION mode is set.</td>
</tr>
<tr>
<td></td>
<td>FUNCTION</td>
<td></td>
</tr>
<tr>
<td>REMOTE</td>
<td>REMOTE MODE</td>
<td>REMOTE command is selected.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SET/START</td>
<td>REMOTE MODE OK</td>
<td>If the PG-1500 is connected to the external device normally, [OK] is displayed.</td>
</tr>
</tbody>
</table>

To terminate control by the external machine, press the [RESET] key.
For details of the REMOTE command, refer to Chapter 3 Remote Control Mode in Part II.
CHAPTER 3. REMOTE CONTROL MODE

3.1 Outline of Operation

When the PG-1500 is connected to a host machine (PC-9800 series, etc.), the remote control mode is used to control the PG-1500 from the host machine.

When the remote control mode is used, the PG-1500 controller (control software, separately available), or an in-circuit emulator (IE-75001-R, etc.) is required.

To connect the PG-1500 to an external machine, the serial interface alone, or the serial interface and the parallel interface, are used. Please refer to the relevant User's Manual for the connection and start-up procedure. An example of connection to an in-circuit emulator is given in 4.2.1 Outline of Operations Using NEC In-Circuit Emulator.

For the operation method for the PG-1500 controller, refer to the PG-1500 Controller User's Manual (EEU-1291C MS-DOS based, U10540EJ PC DOS based).

Remote control mode commands are shown below.

```
R: READ
A: AUTO
C: CODE

R (ROM)
| RS (Select) |
| RZ (Zero Chock) |
| RR (Read) |
| RW (Write) |
| RV (Verify) |

Note: Access to device

M (Memory)
| MC (Change) |
| MD (Dump) |
| MF (Fill) |

Note: PG-1500 internal Memory Edit

P (Parallel Input)
| PI (Intel) |
| FM (Motorola) |
| PT (TEK) |

L (Load)
| LI (Intel) |
| LM (Motorola) |
| LT (TEK) |

Note: Serial data input

G (Serial Output)
| SI (Intel) |
| GM (Motorola) |
| ST (TEK) |

Help ??

Note: Displays input format of all commands
```

Note These command set the below parameters at execution.

<1> PROM start address
<2> PROM end address
<3> PG-1500 internal memory start address
<4> Address division mode

85
3.2 Setting

An adapter board for the device used is connected to the PG-1500. When a device other than a general-purpose PROM is used, a PROM programmer adapter is connected to the adapter board.

Check the interface of the external machine used before connecting. To connect the PG-1500 to an external machine, the serial interface alone, or the serial interface and the parallel interface, are used.

After the external machine and the PG-1500 have been powered on and the initial test has been performed, perform the PG-1500 and external machine settings and start the control software, etc., then insert the device into the socket.

See the sections of 2.5 Adapter Board Connection and 2.5 Device Insertion in Part I and Appendix C External Interfaces in Appendix, and the User's Manual for the external machine, etc., for details.

3.3 START, INITIAL TEST AND MODE SETTING

When connection of the PG-1500 to the host machine is completed, power on the host machine.

When the PG-1500 power supply is turned on, the following message is displayed on the LCD and an initial test is performed (as in the standalone mode).

```
PG-1500
*Initial Test Busy

↑
Blinking During Initial Test Execution

DEVICE EDIT FUNCTN
IDLE V. .
```

PG-1500 Monitor ROM Version is displayed.

Caution  Do not turn the power on/off with the device inserted in the socket, as this may damage it.

Use the PG-1500 keys to set to the remote control mode.
<Operating procedure>

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION</td>
<td>SIN PIN SOUT MOD REM FUNCTION</td>
<td>FUNCTION mode is set.</td>
</tr>
<tr>
<td>REMOTE</td>
<td>REMOTE MODE</td>
<td>REMOTE command is selected.</td>
</tr>
<tr>
<td>SET/START</td>
<td>REMOTE MODE OK</td>
<td>If the PG-1500 is connected to the external device correctly, [OK] is displayed.</td>
</tr>
</tbody>
</table>

Caution  If no external devices are connected, an error results.
         If the DSR and DTR external devices are set to [OFF], an error results.

To release the remote control mode, press the [RESET] key on the PG-1500.

3.4 COMMANDS

The commands for the remote control mode are described below.
3.4.1 RS (ROM Select) command

The RS command is used to select the device.

- The device selection method is set by the subcommands C, R, and A.
- There are three device selection methods: CODE mode (subcommand: C), READ mode (subcommand: R), and AUTO mode (subcommand: A).
- In CODE mode, the code number and program mode are input when the RS command is executed, and the device write conditions are set accordingly.
- In READ mode, the silicon signature data is read from the device inserted in the socket when the RS command is executed, and the device write conditions are set in accordance with this data.
- In AUTO mode, the silicon signature data is read automatically each time RR, RW, RV or RZ is executed, and the device write conditions are set in accordance with this data.

See Section 2.4.2 Device Selection (SELECT) in Part II for details of the device selection methods.

<Input format>

```
PG > RS C
PG > RS R
PG > RS A
```

↑

Subcommand

<table>
<thead>
<tr>
<th>Subcommand</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Manual input of code number (CODE mode)</td>
</tr>
<tr>
<td>R</td>
<td>Manual read of silicon signature data (READ mode)</td>
</tr>
<tr>
<td>A</td>
<td>Automatic read of silicon signature data (AUTO mode)</td>
</tr>
</tbody>
</table>

An error message will be displayed if a character other than C, R, or A is input, or if subcommand input is omitted.
<Execution example>
(1) Code Mode
  When 27A board is used
  (a) Normal execution

```plaintext
PG>RS C

ROM SELECT
1004 = μPD27256 (VPP = 21V) (N) 10A4 = μPD27C256 (VPP = 21V) (N)
10C4 = μPD27256A (VPP = 12.5V) (F/N) 1064 = μPD27C256A (VPP = 12.5V) (F/N)
1025 = μPD27C512 (VPP = 12.5V) (F/N) 1086 = μPD27C1000 (VPP = 12.5V) (N)
1016 = μPD27C1000A (VPP = 12.5V) (F/N) 1046 = μPD27C1001 (VPP = 12.5V) (N)
10D6 = μPD27C1001A (VPP = 12.5V) (F/N) 1026 = μPD27C1024 (VPP = 12.5V) (N)
10B6 = μPD27C1024A (VPP = 12.5V) (F/N) 10C7 = μPD27C2001 (VPP = 12.5V) (F/N)
10C8 = μPD27C4001 (VPP = 12.5V) (N) 10A8 = μPD27C4096 (VPP = 12.5V) (N)

Please input code No. = 10C4
Please input program mode (Page/Fast/Normal) = F

PG>
```
(b) Error (when an item other than code numbers is input)

PG>RS C

ROM SELECT

1004 = μPD27256  (VPP = 21V) (N)  10A4 = μPD27C256  (VPP = 21V) (N)
10C4 = μPD27256A  (VPP = 12.5V) (F/N)  1064 = μPD27C256A  (VPP = 12.5V) (F/N)
1025 = μPD27C512  (VPP = 12.5V) (F/N)  1086 = μDP27C1000  (VPP = 12.5V) (N)
1016 = μPD27C1000A  (VPP = 12.5V) (P/N)  1046 = μPD27C1001  (VPP = 12.5V) (N)
10D6 = μPD27C1001A  (VPP = 12.5V) (P/N)  1026 = μPD27C1024  (VPP = 12.5V) (N)
10B6 = μPD27C1024A  (VPP = 12.5V) (P/N)  10C7 = μPD27C2001  (VPP = 12.5V) (P/N)
10C8 = μPD27C4001  (VPP = 12.5V) (N)  10A8 = μPD27C4096  (VPP = 12.5V) (N)

Please input code No. = 5555

*

ROM SELECT

1004 = μPD27256  (VPP = 21V) (N)  10A4 = μPD27C256  (VPP = 21V) (N)
10C4 = μPD27256A  (VPP = 12.5V) (F/N)  1064 = μPD27C256A  (VPP = 12.5V) (F/N)
1025 = μPD27C512  (VPP = 12.5V) (F/N)  1086 = μPD27C1000  (VPP = 12.5V) (N)
1016 = μPD27C1000A  (VPP = 12.5V) (P/N)  1046 = μPD27C1001  (VPP = 12.5V) (N)
10D6 = μPD27C1001A  (VPP = 12.5V) (P/N)  1026 = μPD27C1024  (VPP = 12.5V) (N)
10B6 = μPD27C1024A  (VPP = 12.5V) (P/N)  10C7 = μPD27C2001  (VPP = 12.5V) (P/N)
10C8 = μPD27C4001  (VPP = 12.5V) (N)  10A8 = μPD27C4096  (VPP = 12.5V) (N)

Please input code No. = 5

PG>

If a number not displayed is input, the message is displayed again.
Press the RETURN key to exit from the CODE mode.

When 04A board is used
CODE mode cannot be used. The following error message is displayed.

PG>RS C

ERR39(Board not connected)

PG>
(2) READ mode

(a) Normal execution ($\mu$PD75P108)

```
PGRS R
Your setting ROM is μPD75P108
PG>
```

(b) Error

```
PGRS R

ERR30 (Signature read error)
PG>
```

(3) AUTO mode (only for SELECT mode setting)

```
PGRSA
PG>
```

<Error control>

<1> When a command other than the specified subcommand is input

```
PGRSF

ERR16 (Command syntax error)
PG>
```

<2> When the preset device silicon signature data cannot be read.

```
PGRS R

ERR30 (Signature read error)
PG>
```
3.4.2 RZ (ROM Zero check) command

The RZ command is intended to check if the device inserted into the socket is unwritten.

<Input format>

```
PG > RZ
```

<Execution example>

1) Upon normal termination

```
PG> RZ

*

ROM erase OK!

PG>
```

2) When device has not been written

```
PG> RZ

ERR28 ROM not erased !!

Adr ROM data
00000 FE

Continue(Y:Yes/N:No)?
```

↑

"Continue (Y:Yes/N:No)?" message is displayed.

If "Continue (Y:Yes/N:No)?" message is displayed during execution, input Y or N.
If Y is input, blank check is done again at the address following the displayed address.
If N is input, blank check is stopped.
If a character other than Y or N is input, message is displayed again.
<1> Y input
   (a) When device is unwritten in check after re-execution

   Continue(Y:Yes/N:No)?Y
   ROM erase OK!
   PG> ■

   Caution "OK" is displayed, but this is not a normal termination.

   (b) When device is not unwritten in erase status check after re-execution

   Continue(Y:Yes/N:No)?Y
   ERR28 ROM not erased !!
   Adr   ROM data
   00001  FD
   Continue(Y:Yes/N:No)?

   The message is displayed again.

<<> N Input

   Continue(Y:Yes/N:No)?N
   PG> ■

   The instruction is stopped.

<< Input other than Y and N

   Continue(Y:Yes/N:No)?G
   Continue(Y:Yes/N:No)?

   The message is displayed again.
<Error control>

<1> When symbol is input after RZ

```
PG>RZ 0,1FFP

ERR16(Command syntax error)
```

<2> When silicon signature data cannot be read

```
PG>RZ

ERR30(Signature read error)
```

<3> When the read silicon signature data differs from the preset data

```
PG>RZ

ERR31(Unexpected Signature)
```

<4> When undefined data is read in silicon signature data read

```
PG>RZ

ERR32(Undefined Signature)
```

<5> When the device insert direction is inverted (this occurs only when general-purpose PROM precheck is ON)

```
PG>RZ

ERR38(Device insert error)
```
3.4.3 RR/RW/RV Command Input Format

The symbols used for command description have the following meanings.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM_S_ADR</td>
<td>PROM start address</td>
<td>Input 5-digit hexadecimal number. If 4 digits or less are input, 0 is set to the highest digit. If 6 digits or more, an error results.</td>
</tr>
<tr>
<td>ROM_E_ADR</td>
<td>PROM end address</td>
<td></td>
</tr>
<tr>
<td>PG_S_ADR</td>
<td>PG-1500 internal start address</td>
<td></td>
</tr>
<tr>
<td>PG_E_ADR</td>
<td>PG-1500 internal end address</td>
<td></td>
</tr>
<tr>
<td>CONV</td>
<td>Address division modeNote: The following modes are available: N Normal (No address divide) BE 16-bit data 2-divide even address specification BO 16-bit data 2-divide odd address specification WE 32-bit data 2-divide even address specification WO 32-bit data 2-divide odd address specification 0 32-bit data 4-divide 0-block specification 1 32-bit data 4-divide 1-block specification 2 32-bit data 4-divide 2-block specification 3 32-bit data 4-divide 3-block specification</td>
<td>Inputs other than those listed on the left result in an error.</td>
</tr>
<tr>
<td></td>
<td>RETURN Key input</td>
<td></td>
</tr>
<tr>
<td>(Underlined portion)</td>
<td>Indicates input from keyboard</td>
<td></td>
</tr>
</tbody>
</table>

Note: For device types and specifiable address division modes, see Table 2-3 Specifiable Address Divide Mode in Part II.
### Abbreviation format
After inputting commands, the format can be abbreviated for the following parameter conditions. The abbreviated format is described below.

<table>
<thead>
<tr>
<th>Abbreviated format</th>
<th>Setting condition</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PROM start address</td>
<td>PROM end address</td>
</tr>
<tr>
<td>Rx ROM_S_ADR, ROM_E_ADR, PG_S_ADR, CONV</td>
<td>Address input</td>
<td>Address input</td>
</tr>
<tr>
<td>Rx ROM_S_ADR, ROM_E_ADR, PG_S_ADR</td>
<td>Address input</td>
<td>Address input</td>
</tr>
<tr>
<td>Rx ROM_S_ADR, ROM_E_ADR, PG_S_ADR</td>
<td>Address input</td>
<td>Address input</td>
</tr>
<tr>
<td>Rx ROM_S_ADR, ROM_E_ADR, CONV</td>
<td>Address input</td>
<td>Address input</td>
</tr>
<tr>
<td>Rx ROM_S_ADR, ROM_E_ADR</td>
<td>Address input</td>
<td>Address input</td>
</tr>
<tr>
<td>Rx ROM_S_ADR, ROM_E_ADR</td>
<td>Address input</td>
<td>Address input</td>
</tr>
<tr>
<td>Rx ROM_S_ADR, PG_S_ADR, CONV</td>
<td>Address input</td>
<td>Address input</td>
</tr>
<tr>
<td>Rx ROM_S_ADR, PG_S_ADR</td>
<td>Address input</td>
<td>0</td>
</tr>
<tr>
<td>Rx ROM_S_ADR, PG_S_ADR</td>
<td>Address input</td>
<td>0</td>
</tr>
<tr>
<td>Rx ROM_S_ADR, CONV</td>
<td>Address input</td>
<td>0</td>
</tr>
<tr>
<td>Rx ROM_S_ADR,</td>
<td>Address input</td>
<td>0</td>
</tr>
<tr>
<td>Rx ROM_S_ADR,</td>
<td>Address input</td>
<td>0</td>
</tr>
<tr>
<td>Rx ROM-S_ADR,</td>
<td>Address input</td>
<td>0</td>
</tr>
<tr>
<td>Rx ROM-S_ADR</td>
<td>Address input</td>
<td>0</td>
</tr>
<tr>
<td>Rx ROM-E_ADR, PG_S_ADR, CONV</td>
<td>0</td>
<td>Address input</td>
</tr>
<tr>
<td>Rx ROM-E_ADR, PG_S_ADR</td>
<td>0</td>
<td>Address input</td>
</tr>
<tr>
<td>Rx ROM-E_ADR, PG_S_ADR</td>
<td>0</td>
<td>Address input</td>
</tr>
<tr>
<td>Rx ROM-E_ADR, CONV</td>
<td>0</td>
<td>Address input</td>
</tr>
<tr>
<td>Rx ROM-E_ADR,</td>
<td>0</td>
<td>Address input</td>
</tr>
<tr>
<td>Rx ROM-E_ADR,</td>
<td>0</td>
<td>Address input</td>
</tr>
<tr>
<td>Rx PG_S_ADR, CONV</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rx PG_S_ADR,</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rx PG_S_ADR</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rx CONV</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rx</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

**Notes:**
1. Because of ROM_S_ADR > ROM_E_ADR, error results.
2. Presellected ROM end address in the CODE mode.
3. ROM end address set by the silicon signature data that was read previously in the READ mode.
4. ROM end address set by the silicon signature data that is read in the AUTO mode.

**Remark:** x: R/W/V
3.4.4 RR (ROM Read) command

The RR command is used to read the specified range of data from the device inserted in the socket into PG-1500 internal memory, allocating the data at the specified start address. After the addresses have been read, verification is performed on all the addresses automatically.

<Execution example>

When

\[
\begin{align*}
\text{ROM} \_ \text{S} \_ \text{ADR} & = 00H \\
\text{ROM} \_ \text{E} \_ \text{ADR} & = FFFFH \\
\text{PG} \_ \text{S} \_ \text{ADR} & = 00H \\
\end{align*}
\]

(1) Upon normal termination (CONV: BE)

\[
\begin{align*}
\text{PG}> \text{RR} & \ 0, FFFF, 0, \text{BE}\_0 \\
\text{Now , data reading!} \\
\text{Data complete} \\
\text{Check sum : 2BC8} \\
\text{PG}> \text{command} \\
\end{align*}
\]
(2) If an error occurs in verify operation, the display is made as follows.

(a) When using 8-bits data length ROM

```
PG>RR 0,FFFF,0,w0

Now, data reading!
ERR20 Data not completed!!

<table>
<thead>
<tr>
<th>Addr</th>
<th>ROM data</th>
<th>RAM data</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>FFFF</td>
<td>FF00</td>
</tr>
</tbody>
</table>

Continue(Y:Yes/N:No)?
```

(b) When using 16-bits data length ROM

```
PG>RR 0,FFFF,0,n

Now, data reading!
ERR20 Data not completed!!

<table>
<thead>
<tr>
<th>Addr</th>
<th>ROM data</th>
<th>RAM data</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>FF</td>
<td>00</td>
</tr>
</tbody>
</table>

Continue(Y:Yes/N:No)?
```

↑

"Continue(Y:Yes/N:No)?" message is displayed.

(3) If [Continue (Y:Yes/N:No)]? message is displayed during execution, input Y or N. If Y is input, verify is done again at the address following the displayed address. If N is input, verify is stopped. If a character other than Y or N is input, message is displayed again.
<1> Y input
   (a) When compare data is the same after re-execution

   Continue(Y:Yes/N:No)? Y
   Data complete
   Check sum : 7D6F
   PG> 

   (b) When compare data differs after re-execution

   Continue(Y:Yes/N:No)? Y
   ERR20 Data not completed !!
   \* 
   Adr  ROM data  RAM data
   00010  FF  00
   Continue(Y:Yes/N:No)?

   The message is displayed again.

<2> N input

   Continue(Y:Yes/N:No)? N
   PG> 

   The instruction is stopped.

<3> Input other than Y and N

   Continue(Y:Yes/N:No)? Q
   Continue(Y:Yes/N:No)?

   The message is displayed again.
<Error control>

1. When PROM start address is larger than PROM end address
   \( (\text{ROM\_S\_ADR} > \text{ROM\_E\_ADR}) \)

   \[
   \text{PG}\text{–RR 100,00,0,BE} \rightarrow
   \text{ERR10(START\_ADR} > \text{END\_ADR})
   \]

<> When PROM end address is larger than PROM size
   \( (\text{ROM\_E\_ADR} > \text{ROM\_SIZE}) \)

   Example: When 75P108 is used (ROM end address = 1FFFH)

   \[
   \text{PG}\text{–RR 2000,3FFF,0,N} \rightarrow
   \text{Now, data reading!}
   \]

   \[
   \text{ERR11(ROM\_S\_ADR OR ROM\_E\_ADR} > \text{ROM\_SIZE})
   \]

<> When the device inserted into the socket cannot be operated by the selected address divide mode

   Example: When 8-bit specification is made with a data length 16-bits PROM selected

   \[
   \text{PG}\text{–RR 0,1FFF,0,BE} \rightarrow
   \text{Now, data reading!}
   \]

   \[
   \text{ERR13(Conversion error)}
   \]

   \[
   \text{PG} \rightarrow
   \]
<4> When a symbol not in hexadecimal notation is used

\[ \text{PG}\overline{RR} 0,G,0,WE \]

ERR14(Illegal character)

PG>

<5> When an inappropriate symbol is used for address divide mode specification

\[ \text{PG}\overline{RR} 0,1FF,0,R \]

ERR15(Illegal conversion)

PG>

<6> When silicon signature data cannot be read

\[ \text{PG}\overline{RR} 0,\text{FF},0,\text{RE} \]

ERR30(Signature read error)

PG>

<7> When the read silicon signature differs from the preset data

\[ \text{PG}\overline{RR} 0,\text{FF},0,N \]

Now, data reading!

ERR31(Unexpected Signature)

PG>
RR
(ROM Read)

<8> When undefined data is read in silicon signature data read

\[
\text{PG}> \text{RR 0, FF, 0, WE 2}.
\]

Now, data reading!

ERR32(Undefined Signature)

PG>

<9> When the device insert direction is inverted (this occurs only when general-purpose \text{\textmu}P27xxx system precheck is ON)

\[
\text{PG}> \text{RR 0, 3FF, 0, N 2}.
\]

Now, data reading!

ERR38(Device insert error)

PG>
3.4.5 RW (ROM Write) command

The RW command is intended to write the PG-1500 internal memory data allocated at the specified start address to the unwritten device inserted in the socket, allocating the data to the specified range. Writing (including verification) is performed in accordance with the program mode specified when the RS command is executed.

<Execution example>

When

\[
\begin{align*}
\text{ROM}_S\_\text{ADDR} &= 00H \\
\text{ROM}_E\_\text{ADDR} &= 0FFFFH \\
\text{PG}_S\_\text{ADR} &= 00H
\end{align*}
\]

(1) Upon normal termination

```
PG> RW 0, FFFF, 0, BE

Now, data writing!
Data complete
Check sum : 2BC8
```

(2) If an error occurs in write operation

```
PG> RW 0, FFFF, 0, W0

Now, data writing!
ERR2C Write error!!

\[
\begin{align*}
\text{Addr} & \quad \text{ROM data} \\
00010 & \quad \text{FE}
\end{align*}
\]

Continue(Y:Yes/N:No)?
```
(3) If an error occurs in verify operation

(a) When using data length 8-bits ROM

```
PG>RW 0,FFFE,0,N

Now, data writing!
ERR22 Data not completed!!
```

<table>
<thead>
<tr>
<th>Addr</th>
<th>ROM data</th>
<th>RAM data</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>FF</td>
<td>00</td>
</tr>
</tbody>
</table>

Continue(Y:Yes/N:No)?

(b) When using data length 16-bits ROM

```
PG>RW 0,FFFE,0,WE

Now, data writing!
ERR22 Data not completed!!
```

<table>
<thead>
<tr>
<th>Addr</th>
<th>ROM data</th>
<th>RAM data</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>FFFF</td>
<td>FF00</td>
</tr>
</tbody>
</table>

Continue(Y:Yes/N:No)?

↑

"Continue(Y:Yes/N:No)" message is displayed.
If [Continue (Y:Yes/N:No)?] message is displayed during execution, input Y or N.
If Y is input, write is done again at the address following the displayed address.
If N is input, write is stopped.
If a character other than Y or N is input, message is displayed again.

<1> Y input
(a) When compare data is the same after re-execution

Continue(Y:Yes/N:No)? Y
Data complete
Check sum : FFFF

(b) When compare data differs after re-execution
When using data length 8-bits ROM

Continue(Y:Yes/N:No)? Y
ERR20 Data not completed !!

<table>
<thead>
<tr>
<th>Addr</th>
<th>ROM data</th>
<th>RAM data</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010</td>
<td>FF</td>
<td>00</td>
</tr>
</tbody>
</table>

Continue(Y:Yes/N:No)?

When using data length 16-bits ROM

Continue(Y:Yes/N:No)? Y
ERR20 Data not completed !!

<table>
<thead>
<tr>
<th>Addr</th>
<th>ROM data</th>
<th>RAM data</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010</td>
<td>FFFF</td>
<td>FF00</td>
</tr>
</tbody>
</table>

Continue(Y:Yes/N:No)?

The message is displayed again.
<2> N input

Continue(Y:Yes/N:No)? N

PG> ■

The instruction is stopped.

<3> Input other than Y and N

Continue(Y:Yes/N:No)? G
Continue(Y:Yes/N:No)?

The message is displayed again.
<Error control>

<1> When PROM start address is larger than PROM end address
(ROM_S_ADR>ROM_E_ADR)

PG> RW 100, 0, 0, BE

ERR10(START_ADR>END_ADR)

PG= 

<2> When a symbol not in hexadecimal notation is used

PG> RW 0, G, 0, WE

ERR14(Illegal character)

PG= 

<3> When PROM end address is larger than PROM size
(ROM_E_ADR>ROM SIZE)

Example: When µPD75P108 is used (ROM end address = 1FFFH)

PG> RW 0, 2000, 0, N

Now, data writing!

ERR11(ROM_S_ADR OR ROM_E_ADR > ROM SIZE)

PG= 

<4> When an inappropriate symbol is used for address divide mode specification

PG> RW 0, 1FF, 0, R

ERR15(Illegal conversion)

PG= 

107
<5> When silicon signature data cannot be read

```
PG> RW 0, FF, 0, BE

ERR30 (Signature read error)
```

* 

<6> When the read silicon signature data differs from the preset data

```
PG> RW 0, FF, 0, N

Now, data writing!

ERR31 (Unexpected Signature)
```

<7> When undefined data is read in silicon signature data read

```
PG> RW 0, FF, 0, WE

Now, data writing!

ERR32 (Undefined Signature)
```

<8> When the device insert direction is inverted (this occurs only when general-purpose PROM precheck is ON)

```
PG> RW 0, 3FF, 0, N

Now, data writing!

ERR33 (Device insert error)
```

108
3.4.6 RV (ROM Verify) command

The RV command compares the data in the device inserted in the socket with the PG-1500 internal memory data. It should be executed after execution of the RR or RW command.

<Execution example>

When

<table>
<thead>
<tr>
<th>ROM_S_ADR=00H</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM_E_ADR=1FFH</td>
</tr>
<tr>
<td>PC_S_ADR=00H</td>
</tr>
</tbody>
</table>

(1) Upon normal termination

```
PG> RV 0,1FF,0,N

Now, data reading!
Data complete
Check sum : 2BC8

PG>
```
(2) If an error occurs in verify operation
   (a) When using data length 8-bits ROM

   ![PG+RV 0, FFFF, 0, N][1]

   Now, data reading!
   ERR22 Data not completed!!

<table>
<thead>
<tr>
<th>Addr</th>
<th>ROM data</th>
<th>RAM data</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>FF</td>
<td>00</td>
</tr>
</tbody>
</table>

   Continue(Y:Yes/N:No)?

   ![PG+RV 0, FFFF, 0, N][2]

   Now, data reading!
   ERR22 Data not completed!!

<table>
<thead>
<tr>
<th>Addr</th>
<th>ROM data</th>
<th>RAM data</th>
</tr>
</thead>
<tbody>
<tr>
<td>00000</td>
<td>FFFF</td>
<td>FF00</td>
</tr>
</tbody>
</table>

   Continue(Y:Yes/N:No)?

   ↑

   “Continue(Y:Yes/N:No)?” message is displayed.

If [Continue (Y:Yes/N:No)?] message is displayed during execution, input Y or N.
If Y is input, verify is done again at the address following the displayed address.
If Y is input, verify is stopped.
If a character other than Y or N is input, message is displayed again.
<1> Y input
(a) When compare data is the same after re-execution

```
Continue(Y:Yes/N:No)? Y
Data complete
Check sum : FFFF

PC> ■
```

(b) When compare data differs after re-execution
When using data length 8-bits ROM

```
Continue(Y:Yes/N:No)? Y
ERR22 Data not completed !!

<table>
<thead>
<tr>
<th>Addr</th>
<th>ROM data</th>
<th>RAM data</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010</td>
<td>FF</td>
<td>00</td>
</tr>
</tbody>
</table>

Continue(Y:Yes/N:No)?
```

When using data length 8-bits ROM

```
Continue(Y:Yes/N:No)? Y
ERR22 Data not completed !!

<table>
<thead>
<tr>
<th>Addr</th>
<th>ROM data</th>
<th>RAM data</th>
</tr>
</thead>
<tbody>
<tr>
<td>00010</td>
<td>FFFF</td>
<td>FF00</td>
</tr>
</tbody>
</table>

Continue(Y:Yes/N:No)?
```

The message is displayed again.
RV
(ROM Verify)

<2> N input

Continue(Y:Yes/N:No)?N
PG>

The instruction is stopped.

<3> Input other than Y and N

Continue(Y:Yes/N:No)?
Continue(Y:Yes/N:No)?

The message is displayed again.
<Error control>

<1> When PROM start address is larger than PROM end address
   (ROM_S_ADR>ROM_E_ADR)

   PG>RV 100,0,0,BE

   ERR10(START_ADR>END_ADR)

   PG>

<2> When a symbol not in hexadecimal notation is used

   PG>RV 0,G,0,WE

   ERR14(Illegal character)

   PG>

<3> When PROM end address is larger than PROM size
   (ROM_E_ADR>ROM SIZE)

   Example When 75P108 is used (ROM end address = 1FFFH)

   PG>RV 0,2000,0,N

   Now, data reading!

   ERR11(ROM_S_ADR OR ROM_E_ADR > ROM SIZE)

   PG>

<4> When an inappropriate symbol is used for address divide mode specification

   PG>RV 0,1FFF,0,R

   ERR15(Illegal conversion)

   PG>
RV
(ROM Verify)

<5> When silicon signature data cannot be read

```
PG>RV 0,FF,0,BE

ERR30(Signature read error)
```

<6> When the read silicon signature data differs from the preset data

```
PG>RV 0,FF,0,N

Now, data reading!

ERR31(Unexpected Signature)
```

<7> When undefined data is read in silicon signature data read

```
PG>RV 0,FF,0,WE

Now, data reading!

ERR32(Undefined Signature)
```

<8> When the device insert direction is inverted (this occurs only when general-purpose PROM precheck is ON)

```
PG>RV 0,3FF,0,N

Now, data reading!

ERR38(Device insert error)
```
3.4.7 MC (Memory change) command

The MC command is used to change the PG-1500 internal memory data.

<Input format>

```
PG>MC PG_SADR
```

PA_SADR: PG-1500 internal memory start address

<Execution example>

[PG_SADR=100H]

```
PG>MC 100

00100 FF-
```

The following can be input in this status.

<table>
<thead>
<tr>
<th>Input</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexadecimal 2-digit data</td>
<td>Data change</td>
</tr>
<tr>
<td>Space key</td>
<td>Display shifts to the next address data without data change</td>
</tr>
<tr>
<td>RETURN key</td>
<td>End of data change</td>
</tr>
</tbody>
</table>

<1> When data is changed
(Data at address 100H is changed to 00 and data at address 101H is changed to 01)

```
PG>MC 100

00100 FF-00 FF-01

PG>
```

<2> When data is not changed

```
PG>MC 100

00100 FF-FF FF-FF FF-

PG>
```
MC
(Memory Change)

<Abbreviated format>
When a command is used, an abbreviated input format can be used for the following setting.

<table>
<thead>
<tr>
<th>Input</th>
<th>PG_S_ADR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MC PG_S_ADR</td>
<td>Address input</td>
</tr>
<tr>
<td>MC</td>
<td>0</td>
</tr>
</tbody>
</table>

<Error control>

1> When a symbol not in hexadecimal notation is input

PG>MC 000H

ERR14(Illegal character)

PG> [ ]

2> When the PG-1500 internal memory start address is larger than the PG-1500 internal memory size (PG_S_ADR>PG_BUFF_SIZE)

PG>MC FFFFF

ERR12(PG_BUFF_SIZE over)

PG> [ ]
3.4.8 MD (Memory dump) command

The MD command is used to display data in the range specified within the PG-1500 internal memory.

<Input format>

```
PG>MD PG_SADR, PG_EADR
```

- **PG_SADR**: PG-1500 internal memory start address
- **PG_EADR**: PG-1500 internal memory end address

The following key inputs are valid during data display after instruction execution.

<table>
<thead>
<tr>
<th>Input key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL-S</td>
<td>Display suspend</td>
</tr>
<tr>
<td>CTRL-Q</td>
<td>Display resume</td>
</tr>
<tr>
<td>Space key</td>
<td>Display stop</td>
</tr>
<tr>
<td>CTRL-C</td>
<td>Display stop</td>
</tr>
</tbody>
</table>
<Execution example>

When
\[
\begin{align*}
\text{PG\_S\_ADR} &= \text{00H} \\
\text{PG\_E\_ADR} &= \text{FFH}
\end{align*}
\]

PC>MD 00,FF

PG A +0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
00000 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00010 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00030 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000B0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000E0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000F0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

<Abbreviated format>

When a command is input, an abbreviated input format can be used for the following setting.

<table>
<thead>
<tr>
<th>Input Format</th>
<th>PG_S_ADR</th>
<th>PG_E_ADR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD PG_S_ADR, PG_E_ADR</td>
<td>Address input</td>
<td>Address input</td>
</tr>
<tr>
<td>MD, PG_E_ADR</td>
<td>0</td>
<td>Address input</td>
</tr>
<tr>
<td>MD PG_S_ADR</td>
<td>Address input</td>
<td>0</td>
</tr>
<tr>
<td>MD PG_S_ADR</td>
<td>Address input</td>
<td>Address input + 0FFH</td>
</tr>
<tr>
<td>MD</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MD</td>
<td>0</td>
<td>0FFH</td>
</tr>
</tbody>
</table>

Note: Because PG\_S\_ADR > PG\_E\_ADR, an error results.
(Error control)

<1> When the PG-1500 internal memory start address is larger than the end address (PG_SADR > PG_EADR)

```
PG> MD 100.0

ERR10(START_ADR>END_ADR)
```

<2> When the PG-1500 internal memory end address is larger than the PG-1500 internal memory size (PG_EADR > PG_BUFF_SIZE)

```
PG> MD 0xFFFF

ERR12(PG_BUFF_SIZE over)
```

<3> When a symbol not in hexadecimal notation is input

```
PG> MD 0.G

ERR14(Illegal character)
```
### 3.4.9 MF (Memory fill) command

The MF command is used to initialize the PG-1500 internal memory contents with the specified data. The specified range can be initialized.

**<Input format>**

```
PG>MF PG_S_ADR, PG_E_ADR, INT_DATA
```

- **PG_S_ADR**: PG-1500 internal memory start address
- **PG_E_ADR**: PG-1500 internal memory end address
- **INT_DATA**: Initialize data

**<Execution example>**

When

- **PG_S_ADR=00H**
- **PG_E_ADR=FFFFH**
- **INT_DATA=FFH**

```
PG>MF 0,FFFF,FF
```

**<Abbreviated format>**

When a command is input, an abbreviated input format can be used for the following setting.

<table>
<thead>
<tr>
<th>Input</th>
<th>PG_S_ADR</th>
<th>PG_E_ADR</th>
<th>INT_DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>MF</td>
<td>Address input</td>
<td>Address input</td>
<td>Data input</td>
</tr>
<tr>
<td>MF</td>
<td>Address input</td>
<td>Address input</td>
<td>Data input</td>
</tr>
<tr>
<td>MF</td>
<td>Address input</td>
<td>Address input</td>
<td>Data input</td>
</tr>
<tr>
<td>MF</td>
<td>Address input</td>
<td>Address input</td>
<td>Data input</td>
</tr>
<tr>
<td>MF</td>
<td>Address input</td>
<td>Address input</td>
<td>Data input</td>
</tr>
<tr>
<td>MF</td>
<td>Address input</td>
<td>Address input</td>
<td>Data input</td>
</tr>
<tr>
<td>MF</td>
<td>Address input</td>
<td>Address input</td>
<td>Data input</td>
</tr>
<tr>
<td>MF</td>
<td>Address input</td>
<td>Address input</td>
<td>Data input</td>
</tr>
<tr>
<td>MF</td>
<td>Address input</td>
<td>Address input</td>
<td>Data input</td>
</tr>
<tr>
<td>MF</td>
<td>Address input</td>
<td>Address input</td>
<td>Data input</td>
</tr>
<tr>
<td>MF</td>
<td>Address input</td>
<td>Address input</td>
<td>Data input</td>
</tr>
<tr>
<td>MF</td>
<td>Address input</td>
<td>Address input</td>
<td>Data input</td>
</tr>
<tr>
<td>MF</td>
<td>Address input</td>
<td>Address input</td>
<td>Data input</td>
</tr>
</tbody>
</table>

**Note**

Because **PG_S_ADR>PG_E_ADR**, an error results.
<Error control>

1> When the PG-1500 internal memory start address is larger than the end address
(PG_SADR > PG_EADR)

```plaintext
PG> MF 1FFP, 1FFE, 0

ERR10 (START ADR > END ADR)

PG>
```

2> When the PG-1500 internal memory end address is larger than the PG-1500 internal memory size
(PG_EADR > PG_BUFF_SIZE)

```plaintext
PG> MF 0, FFFF, FF

ERR12 (PG BUFF SIZE over)

PG>
```

3> When a symbol not in hexadecimal notation is input

```plaintext
PG> MF 0, GG, RR

ERR14 (Illegal character)

PG>
```
3.4.10 PI (Parallel Intel) command

The PI command is used to input parallel data in the INTELLEC HEX format.

When executing the PI command, the PG-1500 should be connected to the external machine by a parallel interface cable.

<Input format>

PG>PI

<Execution example>

Data file name: TEST.HEX

PG>PI

A>COPY TEST.HEX prn
    one file was copied.

PG>PI is displayed and the PG-1500 is set to the parallel input status.
Exit from the terminal mode is marked by the dotted frame.
The procedure to exit from the terminal mode differs depending on the type of external device.
3.4.11 PM (Parallel Motorola) command

The PM command is used to input parallel data in the MOTOROLA EXORCISER format.
When executing the PM command, the PG-1500 should be connected to the external machine by a parallel interface cable.

<Input format>

PG>PM

<Execution example>

Data file name: TEST.HEX

PG>PM

A>COPY TEST.HEX prn
one file was copied.

A>

PG>PM is displayed and the PG-1500 is set to the parallel input status.
Exit from the terminal mode is marked by the dotted frame.
The procedure to exit from the terminal mode differs depending on the type of external device.
3.4.12 PT (Parallel TEK) command

The PT command is used to input parallel data in the EXTENDED TEKHEX format.

When executing the PT command, the PG-1500 should be connected to the external machine by a parallel interface cable.

<Input format>

```
PG> PT
```

<Execution example>

Data file name: TEST.HEX

```
A> COPY TEST.HEX prn
 one file was copied.
```

PG>PT is displayed and the PG-1500 is set to the parallel input status.
Exit from the terminal mode is marked by the dotted frame.
The procedure to exit from the terminal mode differs depending on the type of external device.
3.4.13 LI (Load Intel) command

The LI command is used to input serial data in the INTELLEC HEX format.

This command transfers to the PG-1500 internal memory the data inside the memory of the NEC in-circuit emulator.

<Input format>

```
PG>LI
```

<Execution example>

When transferring the IE-75000-R contents at addresses 00H to FFH to the PG-1500

```
brk:0>PGM

PG>LI

partition=0,FF

PG>
```

<Error control>

<1> When a parameter is attached after LI

```
PG>LI 0,1FF

ERR16(Command syntax error)

PG>
```

<2> When serial is disconnected

```
PG>LI

ERR40(Serial not ready)

PG>
```

Caution  The LI command uses a simplified protocol as the communication procedure. Thus, communication with a personal computer cannot be carried out using the LI command.
3.4.14 LM (Load Motorola) command

The LM command is used to input serial data in the MOTOROLA EXORCISER format.

This command transfers to the PG-1500 internal memory the data inside the memory of the NEC in-circuit emulator.

<Input format>

```
PG>LM
```

>Error control>

<1> When a parameter is attached after LM

```
PG>LM 0.1FFF
```

ERR16(Command syntax error)

```
PG>
```

<2> When serial is disconnected

```
PG>LM
```

ERR40(Serial not ready)

```
PG>
```

Cautions

1. The LM command uses a simplified protocol as the communication procedure. Thus, communication with a personal computer cannot be carried out using the LM command.

2. The MOTOROLA EXORCISER format is not supported in some in-circuit emulators.
3.4.15 LT (Load TEK) command

The LT command is used to input serial data in EXTENDED TEKHEX format.

This command transfers to the PG-1500 internal memory the data inside the memory of the NEC in-circuit emulator.

<Input format>

\[
\text{PG}\text{>LT}\]

<Error control>

<1> When a parameter is attached after LT

\[
\text{PG}\text{>LT 0,1FFF}}
\]

ERR16(Command syntax error)

\[
\text{PG}\text{>}
\]

<2> When serial is disconnected

\[
\text{PG}\text{>LT}
\]

ERR40(Serial not ready)

\[
\text{PG}\text{>}
\]

Cautions

1. The LT command uses a simplified protocol as the communication procedure. Thus, communication with a personal computer cannot be carried out using the LT command.

2. The EXTENDED TEKHEX format is not supported in some in-circuit emulators.
3.4.16 SI (Serial Intel) command

The SI command is used to serially transfer the data within the specified range of the PG-1500 internal memory to the memory of the NEC in-circuit emulator in the INTELLEc HEX format.

**Input format**

```
PG>SI PG_SADR, PG_EADR
```

**PG_SADR**: PG-1500 internal memory start address
**PG_EADR**: PG-1500 internal memory end address

**Execution example**

When

```
PG_SADR=00H
PG_EADR=FFH
```

```
PG>SI 0,FF
```

**Abbreviated format**

When a command is used, an abbreviated input format can be used for the following setting.

<table>
<thead>
<tr>
<th>Input Format</th>
<th>PG_SADR</th>
<th>PG_EADR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SI PG_SADR, PG_EADR</td>
<td>Address</td>
<td>Address</td>
</tr>
<tr>
<td>SI, PG_EADR</td>
<td>0</td>
<td>Address</td>
</tr>
<tr>
<td>SI PG_SADR</td>
<td>Address</td>
<td>0</td>
</tr>
<tr>
<td>SI PG_SADR</td>
<td>Address</td>
<td>Address + 0FFH</td>
</tr>
<tr>
<td>SI</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SI</td>
<td>0</td>
<td>FFH</td>
</tr>
</tbody>
</table>

**Note**: Because PG_SADR > PG_EADR, an error results.
<Error control>

<1> When the PG-1500 internal memory start address is larger than the end address (PG_SADR>PG_EADR)

\[ \text{PG}\rightarrow\text{SI} 100.0 \]

ERR10 (START_ADR>END_ADR)

PG>

<2> When the PG-1500 internal memory end address is larger than the PG-1500 internal memory size (PG_EADR>PG_BUFF_SIZE)

\[ \text{PG}\rightarrow\text{SI} 0.0000 \]

ERR12 (PG_BUFF_SIZE over)

PG>

<3> When a symbol not in hexadecimal notation is input

\[ \text{PG}\rightarrow\text{SI} 0.G \]

ERR14 (Illegal character)

PG>

Caution: The SI command uses a simplified protocol as the communication procedure. Thus, communication with a personal computer cannot be carried out using the SI command.
SM
(Serial Motorola)

3.4.17 SM (Serial Motorola) command

The SM command is intended to serially transfer the data within the specified range of the PG-1500 internal memory to the memory of the NEC in-circuit emulator in the MOTOROLA EXORCISER format.

<Input format>

```
PG>SM PG_S_ADR, PG_E_ADR
```

**PG_S_ADR**: PG-1500 internal memory start address
**PG_E_ADR**: PG-1500 internal memory end address

<Execution example>

When

```
PG_S_ADR=00H
PG_E_ADR=FFH
```

```
PG>SM 0,FF
```

<Error control>

<1> When the PG-1500 internal memory start address is larger than the end address

**(PG_S_ADR) > (PG_E_ADR)**

```
PG>SM 100,0
```

**ERR10**(START_ADR > END_ADR)

```
PG>
```

<2> When the PG-1500 internal memory end address is larger than the PG-1500 internal memory size

**(PG_E_ADR) > (PG_BUFF_SIZE)**

```
PG>SM 0,FFFF
```

**ERR12**(PG_BUFF_SIZE over)

```
PG>
```
<3> When a symbol not in hexadecimal notation is input

```
PG>SM 0.G
ERR14(Illegal character)
```

Cautions

1. The SM command uses a simplified protocol as the communication procedure.
   Thus, communication with a personal computer cannot be carried out using the SM command.

2. The MOTOROLA EXORCISER format is not supported in some in-circuit emulators.

<Abbreviated format>

When a command is used, an abbreviated input format can be used for the following setting.

<table>
<thead>
<tr>
<th>Input Format</th>
<th>PG_S_ADR</th>
<th>PG_E_ADR</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM PG_S_ADR, PG_E_ADR</td>
<td>Data input</td>
<td>Data input</td>
</tr>
<tr>
<td>SM, PG_E_ADR</td>
<td>0</td>
<td>Data input</td>
</tr>
<tr>
<td>SM PG_S_ADR</td>
<td>Data input</td>
<td>0</td>
</tr>
<tr>
<td>SM PG_S_ADR</td>
<td>Data input</td>
<td>Data input + 0FFH</td>
</tr>
<tr>
<td>SM, PG_E_ADR</td>
<td>Data input</td>
<td>Data input + 0FFH</td>
</tr>
<tr>
<td>SM</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SM</td>
<td>0</td>
<td>FFH</td>
</tr>
</tbody>
</table>

Note: Because PG_S_ADR>PG_E_ADR, an error results.
3.4.18 ST (Serial TEK) command

- The ST command is used to serially transfer the data within the specified range of the PG-1500 internal memory to the memory of the NEC in-circuit emulator in the EXTENDED TEKHEX format.

**Input format**

```
PG>ST PG_S_ADR, PG_E_ADR
```

- **PG_S_ADR**: PG-1500 internal memory start address
- **PG_E_ADR**: PG-1500 internal memory end address

**Execution example**

When

```
PG_S_ADR=00H
PG_E_ADR=FFH
```

```
PG>ST 0,FF
```

**Abbreviated format**

When a command is used, an abbreviated input format can be used for the following setting.

<table>
<thead>
<tr>
<th>Input Format</th>
<th>PG_S_ADR</th>
<th>PG_E_ADR</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST PG_S_ADR, PG_E_ADR</td>
<td>Address</td>
<td>Address</td>
</tr>
<tr>
<td>ST, PG_E_ADR</td>
<td>0</td>
<td>Address</td>
</tr>
<tr>
<td>ST PG_S_ADR,</td>
<td>Address</td>
<td>Address</td>
</tr>
<tr>
<td>ST PG_S_ADR</td>
<td>Address</td>
<td>0</td>
</tr>
<tr>
<td>ST PG_S_ADR</td>
<td>Address</td>
<td>Address+0FFH</td>
</tr>
<tr>
<td>ST,</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ST</td>
<td>0</td>
<td>FFH</td>
</tr>
</tbody>
</table>

**Note** Because PG_S_ADR>PG_E_ADR, an error results.

**Error control**

1. When the PG-1500 internal memory start address is larger than the end address (PG_S_ADR>PG_E_ADR)

```
PG>ST 100,0
```

```
ERR10 (START_ADR>END_ADR)
```

```
PG>[
```
When the PG-1500 internal memory end address is larger than the PG-1500 internal memory size (PG_E_ADR > PG_BUFF_SIZE)

PG> ST 0, FFFFF

ERR12 (PG_BUFF_SIZE over)

PG>

When a symbol not in hexadecimal notation is input

PG> ST 0, G

ERR14 (Illegal character)

PG>

Cautions

1. The ST command uses a simplified protocol as the communication procedure. Thus, communication with a personal computer cannot be carried out using the ST command.

2. The EXTENDED TEKHEX format is not supported in some in-circuit emulators.
3.4.19 ?? (Help) command

The ?? command is intended to display the types of instructions and their input methods in the remote control mode.

<Input format>

```
PG>?? [Help]
```

<Execution example>

```
PG>?? [Help]

1. RR rom_st,rom_end,pg_st,conv
2. RS[C R A]
3. RV rom_st, rom_end, pg_st, conv
4. RW rom_st, rom_end, pg_st, conv
5. RS
6. MC pg_st
7. MD pg_st, pg_end
8. MF pg_st, pg_end, init_data
9. PI [PM,PT]
10. LI [LM,LT]
11. SI pg_st, pg_end [SM,ST]

conv :N,BE,B0,WE,W0,0,1,2,3
rom_st :0-7FFFF
rom_end :0-7FFFF
pg_st :0-7FFFF
init_data: 0-FF
```
CHAPTER 4. SIMPLE OPERATION EXAMPLES

The following operation procedures in standalone mode and remote control mode are shown in this chapter.

4.1 Standalone Mode

4.1.1 Data Read from Master ROM to PG-1500 Internal Memory
   (1) Procedure for data read from general-purpose PROM to PG-1500 internal memory
   (2) Procedure for data read from 75X series on-chip PROM product to PG-1500 internal memory
   (3) Procedure for data read from 78K/II series on-chip PROM product to PG-1500 internal memory

4.1.2 Data Write from PG-1500 Internal Memory to Blank ROM
   (1) Procedure for data write from PG-1500 internal memory to general-purpose PROM
   (2) Procedure for data write from PG-1500 internal memory to 75X series on-chip PROM product
   (3) Procedure for data write from PG-1500 internal memory to 78K/II series on-chip PROM product

4.1.3 Changing PG-1500 Internal Memory Data

4.1.4 Verify Check

4.1.5 Split Write to Two PROMs of PG-1500 Internal Memory Data

4.1.6 Data Transfer from External Machine to PG-1500

4.1.7 Data Transfer from PG-1500 to External Machine

4.2 Remote Control Mode

4.2.1 Outline of Operations Using NEC In-Circuit Emulator

4.2.2 Data Write from In-Circuit Emulator to Blank ROM

4.2.3 Data Read from Master ROM to In-Circuit Emulator

4.2.4 Data Transfer from External Machine to PG-1500 via Parallel Interface
4.1 Standalone Mode

4.1.1 Data read from master ROM to PG-1500 internal memory

(1) Procedure for data read from general-purpose PROM to PG-1500 internal memory

<table>
<thead>
<tr>
<th>Example</th>
<th>Master ROM</th>
<th>µPD27C1001A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device selection method</td>
<td>READ mode</td>
<td>µPD27C1001A</td>
</tr>
<tr>
<td>PROM start address</td>
<td>00000H</td>
<td>µPD27C1001A</td>
</tr>
<tr>
<td>PROM end address</td>
<td>1FFFFFFH</td>
<td>µPD27C1001A</td>
</tr>
<tr>
<td>Internal memory start address</td>
<td>00000H</td>
<td>µPD27C1001A</td>
</tr>
<tr>
<td>Address division mode</td>
<td>NORMAL</td>
<td>µPD27C1001A</td>
</tr>
</tbody>
</table>

<1> Select the device.  
Connect the 27A board to the PG-1500. After power has been turned on and the initial test has been performed, insert the µPD27C1001A in the 32-pin PROM socket.

- **DEVICE**  
  Set DEVICE mode.

- **SELECT**  
  Select the SELECT command.

- **△ ▼**  
  Move the cursor to [READ].

- **SET/START**  
  The silicon signature data is read from the device, and the write conditions are set in accordance with this data.

When the above read and settings terminate normally, the following is displayed for 1 second:

```
READ µPD27C1001A
```

**Remark** If AUTO mode or CODE mode is used as the device selection method, see Section 2.4.2 Device Selection (SELECT).
Read the master ROM data into the PG-1500 internal memory.

Set DEVICE mode.

Select the COPY command.

Check the following is displayed on the LCD:

```
00000:1FFFF 00000
COPY READ NORMAL
```

Read the ROM contents.

When the COPY command terminates normally, the following is displayed:

```
00000:1FFFF 00000
COPY OK #### NORMAL
```

Checksum Value

The general-purpose PROM data has been read into the PG-1500 internal memory.
(2) Procedure for data read from 75X Series on-chip PROM product to PG-1500 internal memory

Example
- Master ROM: \( \mu \)PD27P308GF
- Device selection method: READ mode
- PROM start address: 00000H
- PROM end address: 01F7FH
- Internal memory start address: 00000H
- Address division mode: NORMAL

Note: When a device other than a general-purpose PROM is used, NORMAL (no address division) must be specified.

<1> Select the device.
Connect the 04A board to the PG-1500, and connect the PROM programmer adapter (PA-75P308GF) to this board.
After power has been turned on and the initial test has been performed, insert the \( \mu \)PD75P308GF in the PROM programmer adapter socket.

Set DEVICE mode.
Select the SELECT command.
Move the cursor to [READ].
The silicon signature data is read from the device, and the write conditions are set in accordance with this data.

When the above read and settings terminate normally, the following is displayed for 1 second:

```
READ D7SP308
```

Remark: If AUTO mode is used as the device selection method, see Section 2.4.2 Device Selection (SELECT).
Read the master ROM data into the PG-1500 internal memory.

1. **DEVICE**
   - Set **DEVICE** mode.

2. **COPY**
   - Select the **COPY** command.
   
   Check the following is displayed on the LCD:
   
   | 00000:01F7F | 00000 |
   | COPY READ   | NORMAL |

3. **SET/START**
   - Read the HUM contents.

When the **COPY** command terminates normally, the following is displayed:

| 00000:01F7F | 00000 |
| COPY OR     | NORMAL |
| Checksum Value |

The 75X Series on-chip PROM version data has been read into the PG-1500 internal memory.
(3) Procedure for data read from 78K/I Series on-chip PROM product to PG-1500 internal memory

<table>
<thead>
<tr>
<th>Example</th>
<th>Master ROM</th>
<th>µPD78P214CW</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Device selection</td>
<td>READ mode</td>
</tr>
<tr>
<td></td>
<td>method</td>
<td></td>
</tr>
<tr>
<td>PROM</td>
<td>PROM start address</td>
<td>00000H</td>
</tr>
<tr>
<td>address</td>
<td>PROM end address</td>
<td>03FFFH</td>
</tr>
<tr>
<td></td>
<td>Internal memory</td>
<td>00000H</td>
</tr>
<tr>
<td>start</td>
<td>Address division</td>
<td>NORMAL*</td>
</tr>
<tr>
<td>address</td>
<td>mode</td>
<td></td>
</tr>
</tbody>
</table>

**Note**  When a device other than a general-purpose PROM is used, NORMAL (no address division) must be specified.

<1> Select the device

Connect the 27A board to the PG-1500, and connect the PROM programmer adapter (PA-78P214CW) to this board.

After power has been turned on and the initial test has been performed, insert the µPD78P214CW in the PROM programmer adapter socket.

```
DEVICE
 ↓
SELECT
 ↓
△ ▽
 ↓
SET/START
```

- Set DEVICE mode.
- Select the SELECT command.
- Move the cursor to [READ].
- The signature data is read from the device, and the write conditions are set in accordance with this data.

When the above read and settings terminate normally, the following is displayed for 1 second:

```
READ D78P214
```

**Remark** If AUTO mode or CODE mode is used as the device selection method, see Section 2.4.2 Device Selection (SELECT).
Read the master ROM data into the PG-1500 internal memory.

Set DEVICE mode.

Select the COPY command.

Check the following is displayed on the LCD:

```
00000:03FFF 00000
COPY READ NORMAL
```

Read the ROM contents.

When the COPY command terminates normally, the following is displayed:

```
00000:03FFF 00000
COPY OK RuntimeError
```

Checksum Value

The 78K/II Series on-chip PROM version data has been read into the PG-1500 internal memory.
4.1.2 Data write from PG-1500 internal memory to blank ROM

(1) Procedure for data write from PG-1500 internal memory to general-purpose PROM

<table>
<thead>
<tr>
<th>Example</th>
<th>Blank ROM</th>
<th>μPD27C1001A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device selection method</td>
<td>READ mode</td>
<td></td>
</tr>
<tr>
<td>PROM start address</td>
<td>00000H</td>
<td></td>
</tr>
<tr>
<td>PROM end address</td>
<td>1FFFFFH</td>
<td></td>
</tr>
<tr>
<td>Internal memory start address</td>
<td>00000H</td>
<td></td>
</tr>
<tr>
<td>Address division mode</td>
<td>NORMAL</td>
<td></td>
</tr>
</tbody>
</table>

It is assumed that data has already been read into the PG-1500 internal memory (see Section 4.1.1 Data Read from Master ROM to PG-1500 Internal Memory).

<1> Select the device.
Connect the 27A board to the PG-1500.
Insert the μPD27C1001A in the 32-pin PROM socket.

```
DEVICE

SELECT

▲ ▼

SET/START
```

Set DEVICE mode.
Select the SELECT command.
Move the cursor to [READ].
The silicon signature data is read from the device, and the write conditions are set in accordance with this data.

When the above read and settings terminate normally, the following is displayed for 1 second:

```
READ μPD27C1001A
```

Remark If AUTO mode or CODE mode is used as the device selection method, see Section 2.4.2 Device Selection (SELECT).
Write the PG-1500 internal memory data to the blank ROM.
The CONT command is used here to perform the following series of operations: blank check → ROM write → verify check.

- **DEVICE**
  - Set DEVICE mode.

- **CONT**
  - Select the CONT command.
  - Check that the following is displayed on the LCD:
    
    | 0000Q:0FFFT | 00000 |
    | CONT READ   | NORMAL |

- **SET/START**
  - Start the blank check.
  - The ROM write and verify check are then executed.

When this series of operations terminates normally, the following is displayed:

| 0000Q:0FFFT | 00000 |
| CONT OK     | NORMAL |

Checksum Value

The PG-1500 internal memory data has been written to the general-purpose PROM.
(2) Procedure for data write from PG-1500 internal memory to 75X Series on-chip PROM product

Example  | Blank ROM  | μPD75P308GF
Device selection method | READ mode |
PROM start address | 00000H |
PROM end address | 01F7FH |
Internal memory start address | 00000H |
Address division mode | NORMAL\(^{\text{Note}}\) |

Note When a device other than a general-purpose PROM is used, NORMAL (no address division) must be specified.

It is assumed that data has already been read into the PG-1500 internal memory (see Section 4.1.1 Data Read from Master ROM to PG-1500 Internal Memory).

\(<1>\) Select the device.
Connect the 04A board to the PG-1500, and connect the PROM programmer adapter (PA-75P308GF) to this board. Insert the μPD75P308GF in the PROM programmer adapter socket.

```
DEVICE
\downarrow
SELECT
\downarrow
△ ▽
\downarrow
SET/START
```

Set DEVICE mode.
Select the SELECT command.
Move the cursor to [READ].
The silicon signature data is read from the device, and the write conditions are set in accordance with this data.

When the above read and settings terminate normally, the following is displayed for 1 second:

```
READ D75P308
```

Remark If AUTO mode is used as the device selection method, see Section 2.4.2 Device Selection (SELECT).
Check whether the device is blank.

- **DEVICE**
  - Set DEVICE mode.
- **BLANK**
  - Select the BLANK command.
- **SET/START**
  - Start the blank check.

When the blank check terminates normally, the following is displayed:

```
BLNK OK
```

If the result is not OK, replace the device with another one, and repeat the blank check.

Write the PG-1500 internal memory data to the blank PROM.

- **DEVICE**
  - Set DEVICE mode.
- **PROG**
  - Select the PROG command.

Check that the following is displayed on the LCD:

```
0000:01F7F 00000
PROG READ NORMAL
```

- **SET/START**
  - Write the data to the ROM.

When the write terminates normally, the following is displayed:

```
0000:01F7F 00000
PROG OK XXXXXX NORMAL
Checksum Value
```
<4> Compare the written ROM contents with the contents of the PG-1500 internal memory.

- **DEVICE**
  - Set DEVICE mode.

- **VERIFY**
  - Select the VERIFY command.

- **SET/START**
  - Start the verify check.

When the verify check terminates normally, the following is displayed:

```
0000Q:01F7F 00000
VERI OK NORMAL
```

Checksum Value

The PG-1500 internal memory data has been written to the 75X Series on-chip PROM version.

**Remark**  The CONT command can also be used, which performs the following series of operations:
- blank check, ROM write, verify check.
(3) Procedure for data write from PG-1500 internal memory to 78K/Ii Series on-chip PROM product

<table>
<thead>
<tr>
<th>Example</th>
<th>Blank ROM</th>
<th>( \mu \text{PD78P214CW} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device selection method</td>
<td>RFAD mode</td>
<td></td>
</tr>
<tr>
<td>PROM start address</td>
<td>00000H</td>
<td></td>
</tr>
<tr>
<td>PROM end address</td>
<td>03FFFH</td>
<td></td>
</tr>
<tr>
<td>Internal memory start address</td>
<td>00000H</td>
<td></td>
</tr>
<tr>
<td>Address division mode</td>
<td>NORMAL(^{\text{Note}})</td>
<td></td>
</tr>
</tbody>
</table>

**Note** When a device other than a general-purpose PROM is used, NORMAL (no address division) must be specified.

It is assumed that data has already been read into the PG-1500 internal memory (see 4.1.1 Data Read from Master ROM to PG-1500 Internal Memory).

<1> Select the device.

Connect the 27A board to the PG-1500, and connect the PROM programmer adapter (PA-78P214CW) to this board. Insert the \( \mu \text{PD78P214CW} \) in the PROM programmer adapter socket.

![Diagram](DEVICE SELECT \( \Delta \) \( \nabla \) SET/START)

- Set DEVICE mode.
- Select the SELECT command.
- Move the cursor to [READ].
- The silicon signature data is read from the device, and the write conditions are set in accordance with this data.

When the above read and settings terminate normally, the following is displayed for 1 second:

```
READ D70F214
```

**Remark** If AUTO mode or CODE mode is used as the device selection method, see Section 2.4.2 Device Selection (SELECT).
<2> Write the PG-1500 internal memory data to the blank ROM.

The CONT command is used here to perform the following series of operations: blank check → ROM write → verify check.

1. **DEVICE**
   - Set DEVICE mode.

2. **CONT**
   - Select the CONT command.
   - Check that the following is displayed on the LCD:
     
     | 0000Q:03FF | 00000 |
     | CONT      | READ  |
     |    NORMAL |        |

3. **SET/START**
   - Start the blank check.
   - The ROM write and verify check are then executed.

When this series of operations terminates normally, the following is displayed:

0000Q:03FF	00000
CONT CK	****
	NORMAL
	Checksum Value

The PG-1500 internal memory data has been written to the 78K/I Series on-chip PROM version.
### 4.1.3 Changing PG-1500 internal memory data

It is assumed that data has already been read into the PG-1500 internal memory (see 4.1.1 Data Read from Master ROM to PG-1500 Internal Memory).

<table>
<thead>
<tr>
<th>Address</th>
<th>Data before Change</th>
<th>Data after Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>02345</td>
<td>C7 → 56</td>
<td></td>
</tr>
<tr>
<td>02347</td>
<td>66 → 57</td>
<td></td>
</tr>
</tbody>
</table>

1. **EDIT**
   - Set EDIT mode.

2. **CHANGE**
   - Select the CHANGE command.

3. **SET/START**
   - Input the address of the location to be changed using the numeric keys.
   - (Example 1: 2345)

4. **SET/START**
   - The data corresponding to the input address value is displayed above the cursor.
   - The display is as follows:
     
     ![Data in Address 2345]

5. **SET/START**
   - Input the data to be changed to, using the numeric keys.
   - (Example 1: 56)

6. **SET/START**
   - The data is changed, and the following is displayed:

   ![Data in Address 2345]

7. **△**
   - Move the cursor to the address of the data to be changed.
   - (Example 2: 2347)

8. **<1>**

   ![Data in Address 2347]
Input the data to be changed to, using the numeric keys.
(Example 1: 57)

The data is changed, and the following is displayed:

```
<table>
<thead>
<tr>
<th>Address</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>02343:AA</td>
<td>13 56 84 57</td>
</tr>
<tr>
<td>02348:D2</td>
<td>FA 9C BB DD</td>
</tr>
</tbody>
</table>
```

Data in Address 2347
Data in Address 2348

When the change is completed, exit the CHANGE command using the DEVICE, EDIT, FUNCTION, or RESET key. The PG-1500 internal memory data has been changed.
4.1.4 Verify check

The procedure for checking whether the data written in the device matches the contents of the PG-1500 internal memory is shown below.

Example

<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmed ROM</td>
<td>μPD27C1001A</td>
</tr>
<tr>
<td>ROM code</td>
<td>10D6</td>
</tr>
<tr>
<td>Device selection method</td>
<td>READ mode</td>
</tr>
<tr>
<td>PROM start address</td>
<td>000000H</td>
</tr>
<tr>
<td>PROM end address</td>
<td>1FFFFFH</td>
</tr>
<tr>
<td>Internal memory start address</td>
<td>000000H</td>
</tr>
<tr>
<td>Address division mode</td>
<td>NORMAL</td>
</tr>
</tbody>
</table>

Set DEVICE mode.

Select the VERIFY command.

Check that the following is displayed on the LCD:

```
00000:1FFFF 00000
VERI READ NORMAL
```

Start the verify check.

When the verify check terminates normally, the following is displayed:

```
00000:1FFFF 00000
VERI OK ■■■■ NORMAL
```

Checksum Value

The verify check is now terminated.
4.1.5 Split write to two PROMs of PG-1500 internal memory data

The procedure for writing data read into the PG-1500 internal memory to two PROMs, divided between odd addresses and even addresses, is described below.

An example of a split write of 16-bit data is shown below.

<table>
<thead>
<tr>
<th>Example</th>
<th>Blank ROM</th>
<th>μPD27C1001A × 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Device selection method</td>
<td>READ mode</td>
</tr>
<tr>
<td></td>
<td>PROM start address</td>
<td>00000H</td>
</tr>
<tr>
<td></td>
<td>PROM end address</td>
<td>1FFFFH</td>
</tr>
<tr>
<td></td>
<td>Internal memory start address</td>
<td>00000H</td>
</tr>
<tr>
<td></td>
<td>Address division mode</td>
<td>16EVEN, 16ODD</td>
</tr>
</tbody>
</table>

It is assumed that data has already been read into the PG-1500 internal memory (see Section 4.1.1 Data Read from Master ROM to PG-1500 Internal Memory).

<1> Select the device.
Connect the 27A board to the PG-1500.
Insert a μPD27C1001A in the 32-pin PROM socket.

```
DEVICE
 ▲
SELECT
 ▼
△
SET/START
```

Set DEVICE mode.
Select the SELECT command.
Move the cursor to [READ].
The silicon signature data is read from the device, and the write conditions are set in accordance with this data.

When the above read and settings terminate normally, the following is displayed for 1 second:

```
READ μPD27C1001A
```

Remark If AUTO mode or CODE mode is used as the device selection method, see Section 2.4.2 Device Selection (SELECT).
Write only the data corresponding to the even addresses of the PG-1500 internal memory to the blank ROM. The CONT command is used here to perform the following series of operations: blank check → ROM write → verify check.

1. Set DEVICE mode.
2. Select the CONT command.
3. Move the cursor to the address division mode.
4. Set the address division mode to [16EVN].
5. Check that the following is displayed on the LCD:

```
00000:1FFFF 00000
CONT READ 16EVN
```

6. Start the blank check.
The ROM write and verify check are then executed.

When this series of operations terminates normally, the following is displayed:

```
00000:1FFFF 00000
CONT OK ****** 16EVN
```

Checksum Value

<3> Remove the written ROM, and insert the blank ROM in the 32-pin PROM socket.
Write only the data corresponding to the odd addresses of the PG-1500 internal memory to the blank ROM.

The CONT command is used here to perform the following series of operations: blank check → ROM write → verify check.

- **DEVICE**
  - Set DEVICE mode.

- **CONT**
  - Select the CONT command.

- **»**
  - Move the cursor to the address division mode.

- **7**
  - Set the address division mode to [16ODD].

Check that the following is displayed on the LCD:

```
00000:FFFF 00000
CONT READ 16ODD
```

- **SET/START**
  - Start the blank check.
  - The ROM write and verify check are then executed.

When this series of operations terminates normally, the following is displayed:

```
00000:FFFF 00000
CONT OK □□□□ 16ODD
```

Checksum Value

The split-write of the PG-1500 internal memory data to the two PROMs is completed.
4.1.6 Data transfer from external machine to PG-1500

The procedure for transferring a data file on an external machine to the PG-1500 internal memory using an RS-232-C cable is shown below.

<table>
<thead>
<tr>
<th>Example</th>
<th>External Machine</th>
<th>PC-9800 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td></td>
<td>MS-DOS</td>
</tr>
<tr>
<td>Transfer file name</td>
<td></td>
<td>TEST.HEX</td>
</tr>
<tr>
<td>Transfer data format</td>
<td></td>
<td>INTELLEC</td>
</tr>
<tr>
<td>Baud rate</td>
<td></td>
<td>9600</td>
</tr>
<tr>
<td>Parity</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>XON/XOFF</td>
<td></td>
<td>ON</td>
</tr>
<tr>
<td>Character length</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Stop bits</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<1> Connect the PC-9800 to the PG-1500 using an RS-232-C cable.

<2> Perform PC-9800 internal settings.

```
PC-9800 Display
A>SPEED RO 9600 B8 PN S2 XON
A>
```

<3> Perform PG-1500 internal settings.

```
Set FUNCTION mode. Select the MODE command.
Change the baud rate, parity, XON/XOFF, character length, and stop bit settings as shown in the following display.

```
BR: 9600 P:CON XN:ON
MODE B:8 SB:2 PC:OF
```

Use ▲ to move the cursor, and ▼ to change the setting.

Set when the display is as shown above.
<4> Set the PG-1500 to the data input wait state.

FUNCTION

Set FUNCTION mode.

S-IN

Select the S-IN command.

Check that the following is displayed on the LCD:

S-IN FMT: INTELLEC

If the data format to be used is not INTELLEC, use the ▲ or ▼ key to change the setting.

SET/START

The PG-1500 enters the data input wait state and [*] flashes.

<5> Send the data file from the PC-9800.

PC-9800 Display

A> COPY TEST.HEX AUX ▲
 1 file has been copied.

A> ■

<6> When the transfer ends, the PG-1500 displays the following:

S-IN OK INTELLEC

The external machine data has been transferred to the PG-1500.
4.1.7 Data transfer from PG-1500 to external machine

The procedure for transferring PG-1500 internal memory data to an external machine using an RS-232-C cable is shown below.

<table>
<thead>
<tr>
<th>Example</th>
<th>External Machine</th>
<th>PC-9800 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>OS</td>
<td></td>
<td>MS-DOS</td>
</tr>
<tr>
<td>Transfer file name</td>
<td></td>
<td>TEST.HEX</td>
</tr>
<tr>
<td>Transfer range</td>
<td></td>
<td>3000H to 4FFFH</td>
</tr>
<tr>
<td>Transfer data format</td>
<td></td>
<td>INTELLEC</td>
</tr>
<tr>
<td>Baud rate</td>
<td></td>
<td>9600</td>
</tr>
<tr>
<td>Parity</td>
<td></td>
<td>None</td>
</tr>
<tr>
<td>XON/XOFF</td>
<td></td>
<td>ON</td>
</tr>
<tr>
<td>Character length</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Stop bits</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

<1> Connect the PC-9800 to the PG-1500 using an RS-232-C cable.

<2> Perform PC-9800 internal settings, then set the input wait state.

PC-9800 Display

A>SPEED R0 9600 B8 PN S2 XON

<3> Perform PG-1500 internal settings.

- **FUNCTION**
 - Set FUNCTION mode.

- **MODE**
 - Select the MODE command.

 Change the baud rate, parity, XON/XOFF, character length, and stop bit settings as shown in the following display.

 BR: 9600 P:NON XN:ON
 MOVE B:8 SB:2 PC:OF

 Use ▼ to move the cursor, and ◄ to change the setting.

- **SET/START**
 - Set when the display is as shown above.
* <4> Set data transfer conditions from PG-1500.

```
FUNCTION
    Set FUNCTION mode.
S-OUT
    Select the S-OUT command.
3 0 0 0
    Set the internal memory start address to 3000H.
△
    Move the cursor.
4 F F F
    Set the internal memory end address to 4FFFH.
1 A
    Set the EOF code.
△
    Set the transfer data format to <INTELLEC>.
```

* <5> Set the PC-9800 to input wait.

```
PC-9800 Display
A> COPY AUX TEST.HEX
```

* <6> Data transfer start from the PG-1500.

```
SET/START
    Data transfer is started, and [*] flashes.
03000:04FFF 1A
    *SOUT FMT: INTELLEC

When the transfer ends, the PG-1500 displays the following:

```
03000:04FFF 1A
SOUT OK INTELLEC
```

The PC-9800 displays the following:

```
PC-9800 Display
1 file has been copied.
A>
```

The PG-1500 data has been transferred to the external machine.
4.2 Remote Control Mode

4.2.1 Outline of operations using NEC in-circuit emulator

This section outlines operations when a PC-9800 series model is used as the host machine, and an NEC IE-75000-R in-circuit emulator is connected. The description given here assumes that the IE-75000-R and PC-9800 are already connected. Please refer to the in-circuit emulator User's Manual for how to connect the host machine and in-circuit emulator.

![Diagram of PROM Programmer, Connection Cable, In-Circuit Emulator, Connection Cable, and Host Machine]

The procedure for performing operations using the IE-75000-R is as follows:

1. Power off each unit.
2. Connect the PG-1500 to the IE-75000-R with a cable.
3. Set the IE-75000-R's interface with the PG-1500 (channel 2).
4. Power on each unit.
5. Set the PG-1500's interface with the IE-75000-R.
6. Start the IE-75000-R control program.
7. Set the PG-1500 to remote control mode.
8. Start PG-1500 remote operation (PGM mode).
9. Execute a PG-1500 command.
10. Terminate PG-1500 remote operation (PGM mode).
11. Terminate PG-1500 remote control mode.
12. Terminate the IE-75000-R control program.
13. Power off each unit.
(1) **Power off each unit**

The power of each unit should be off before starting the connection procedure. If the PG-1500, IE-75000-R and PC-9800 are powered on, first power them off.

(2) **Connect the PG-1500 to the IE-75000-R with a cable**

Connect the serial interface connector of the PG-1500 (on the right of the rear panel) to the CH2 serial interface port of the IE-75000-R, using a commercially available RS-232-C interface cable (straight cable).

![Connection Diagram](image)

(3) **Set the IE-75000-R's interface with the PG-1500 (channel 2)**

Channel 2 of the IE-75000-R can be set by setting switches on the main unit with the power off, or by starting the main unit and executing the MOD command. Setting using the switches on the main unit is shown here.

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode switchover</td>
<td>Terminal mode</td>
</tr>
<tr>
<td>Frame ground</td>
<td>No. 4: OFF</td>
</tr>
<tr>
<td>RTS selection</td>
<td>No. 1: ON, Nos. 2 &amp; 3: OFF</td>
</tr>
</tbody>
</table>

**Table 4-1. IE-75000-R Channel 2 Setting**

![Table Diagram](image)

**Figure 4-1. IE-75000-R Channel 2 Setting**
<1> Open the RS-232-C setting section cover on the side of the IE-75000-R.
<2> Slide the CH2 modem/terminal mode selection switch to the right, setting terminal mode.
<3> Turn switch 4 of the CH2 RTS/FG selection switch off (down position), setting FG and SG to the open state.
<4> Set switches 1 to 3 of the CH2 RTS/FG selection switch as shown below, selecting the RTS setting.

No. 1: ON (UP)
No. 2: OFF (DOWN)
No. 3: OFF (DOWN)

Remark  Channel 2 setting using MOD command
Settings for the channel 2 handshaking method, baud rate, and character length are made by means of the MOD command. See the "IE-75000-R User's Manual" for details.

Table 4-2. Channel 2 Settings By MOD Command

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
<th>Set By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handshaking method</td>
<td>1 character</td>
<td>MOD command</td>
</tr>
<tr>
<td>Baud rate</td>
<td>9600 bps</td>
<td></td>
</tr>
<tr>
<td>Character specification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Character length</td>
<td>8 bits</td>
<td></td>
</tr>
<tr>
<td>Parity bits</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Stop bit length</td>
<td>2 bits</td>
<td></td>
</tr>
</tbody>
</table>

(4) Power on each unit
Follow the procedure below when powering on the equipment.
<1> Power on the PC-9800.
<2> Power on the IE-75000-R.
<3> Power on the PG-1500.

(5) Set the PG-1500's interface with the IE-75000-R
Set the serial interface of the PG-1500. Execute the FUNCTION mode MODE command. The settings are shown below.
Table 4-3. Sample of PG-1500 Serial Interface Settings

<table>
<thead>
<tr>
<th>Item</th>
<th>Setting</th>
<th>LCD Display</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud rate</td>
<td>9600 bps</td>
<td>RR: 9600</td>
</tr>
<tr>
<td>Parity bit</td>
<td>None</td>
<td>P: NON</td>
</tr>
<tr>
<td>XON/XOFF control¹</td>
<td>None</td>
<td>XN: OF</td>
</tr>
<tr>
<td>Character length</td>
<td>8 bits</td>
<td>B: 8</td>
</tr>
<tr>
<td>Stop bits</td>
<td>2 bits</td>
<td>SB: 2</td>
</tr>
<tr>
<td>Precheck²</td>
<td>None</td>
<td>PC: OF</td>
</tr>
</tbody>
</table>

Notes 1. When connecting the unit to the in-circuit emulator, XON/XOFF control should be set to "none" (LCD display: OF).
2. This function checks whether the device has been inserted correctly. It can only be used with an NEC general-purpose PROM.
<Operation Method>

**Key Operation**

**FUNCTION**

<table>
<thead>
<tr>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIN PIN SOUT MODE REM</td>
<td>Set FUNCTION mode.</td>
</tr>
<tr>
<td>FUNCTION</td>
<td></td>
</tr>
</tbody>
</table>

**MODE**

<table>
<thead>
<tr>
<th>Rate</th>
<th>Parity</th>
<th>XON/XOFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR: 9600</td>
<td>P:NON</td>
<td>X:ON</td>
</tr>
<tr>
<td>MODE B:8</td>
<td>SB:2</td>
<td>PC:OF</td>
</tr>
</tbody>
</table>

Various setting modes.

**Caution** Parameter changes cannot be input with numeric keys.

- △: Parameter selection
- □: Change of parameter setting

**BR: 9600 P:NON X:ON**

<table>
<thead>
<tr>
<th>MODE B:8</th>
<th>SB:2</th>
<th>PC:OF</th>
</tr>
</thead>
</table>

Change to the parameter to be set.
Setting example: 9600 bps

Changes as follows, using the □ key.

\[19200\] → \[1200\] → \[2400\] → \[4800\] → \[9600\] →

**BR: 9600 P:NON X:ON**

<table>
<thead>
<tr>
<th>MODE B:8</th>
<th>SB:2</th>
<th>PC:OF</th>
</tr>
</thead>
</table>

Move the cursor.

**BR: 9600 P:NON X:ON**

<table>
<thead>
<tr>
<th>MODE B:8</th>
<th>SB:2</th>
<th>PC:OF</th>
</tr>
</thead>
</table>

Change to the parameter to be set.
Setting example: NON

[No parity]

Changes as follows, using the □ key.

\[NON\] → \[EVEN\] → \[ODD\]

**BR: 9600 P:NON X:ON**

<table>
<thead>
<tr>
<th>MODE B:8</th>
<th>SB:2</th>
<th>PC:OF</th>
</tr>
</thead>
</table>

Move the cursor.

**BR: 9600 P:NON X:ON**

<table>
<thead>
<tr>
<th>MODE B:8</th>
<th>SB:2</th>
<th>PC:OF</th>
</tr>
</thead>
</table>

Change to the parameter to be set.
Setting example: OF

Changes as follows, using the □ key.

\[OFF\] → \[ON\]
Phase-out/Discontinued

BR: 9600 P:NON XN:OF
Mode B:8 SB:2 PC:OF

Move the cursor.

Change to the parameter to be set.
Setting example: 8

Changes as follows, using the ✓ key.
[6] → [7]

BR: 9600 P:NON XN:OF
Mode B:8 SB:2 PC:OF

Move the cursor.

Change to the parameter to be set.
Setting example: 2

Changes as follows, using the ✓ key.
[2] ↔ [1]

BR: 9600 P:NON XN:OF
Mode B:8 SB:2 PC:OE

Move the cursor.

Change to the parameter to be set.
Setting example: OF

Changes as follows, using the ✓ key.
[OF] ↔ [ON]

All parameters have been set, and the idle state is entered.

Cautions
1. If the SET/START key is not pressed, the settings are not changed.
2. When the SET/START key is pressed, a write is performed to the NV-RAM in the PG-1500.
(6) Start the IE-75000-R control program
Start the IE-75000-R control program.

```
A>IE75000

IE-75000 CONTROLLER (PC-9801 SERIES) V2.16 [18 Nov93]
Copyright (C) 1989,1993 by NEC Corporation

IE-75000/1-R Monitor V1.5 [1 May 93]
Copyright (C) 1989,1993 by NEC Corporation

Self check ok

Target CPU μPD75106/108A/108F/P108/P108B/112/112F/116/116F/P116
Program Memory 0-FFFFFF
Data Memory 00H-1FFH,F80-FFFF
Memory Bank 0-1,15
Register Bank 0-3
Power on target system (Y/N) Y
Do you use high speed down load mode? (Y/N) = N

brk:0>
```

"brk:0>" is displayed as a prompt, and the break mode is set.

(7) Set the PG-1500 to remote control mode
Set the PG-1500 remote control mode, using the following procedure.

<Operation Method>

<table>
<thead>
<tr>
<th>Key Operation</th>
<th>Display</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>FUNCTION</td>
<td>SIN PIN SOUT MOD REM FUNCTION</td>
<td>Set FUNCTION mode.</td>
</tr>
<tr>
<td>REMOTE</td>
<td>REMOTE MODE</td>
<td>Select the REMOTE command.</td>
</tr>
<tr>
<td>SET/START</td>
<td>REMOTE MODE OK</td>
<td>If correctly connected with the external machine, [OK] is displayed.</td>
</tr>
</tbody>
</table>
(8) **Start PG-1500 remote operation (PGM mode)**

Input the IE-75000-R PROM programmer control command (PGM command). PG-1500 remote operation (PGM mode) is then started.

```
brk:0>PGM
 Beginning of PGM mode

PG>
```

(9) **Execute a PG-1500 command**

PG-1500 commands that can be used in remote operation (PGM mode) by the IE-75000-R are shown below.

<table>
<thead>
<tr>
<th>Command</th>
<th>Input Format</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>RR</td>
<td>PG&gt;RR ROM_S_ADR, ROM_E_ADR, PG_S_ADR, CONV</td>
<td>Data read from device.</td>
</tr>
<tr>
<td>RS</td>
<td>PG&gt;RS sub</td>
<td>sub = C/R/A</td>
</tr>
<tr>
<td>RV</td>
<td>PG&gt;RV ROM_S_ADR, ROM_E_ADR, PG_S_ADR, CONV</td>
<td>Comparison of device data with PG-1500 internal memory data</td>
</tr>
<tr>
<td>RW</td>
<td>PG&gt;RW ROM_S_ADR, ROM_E_ADR, PG_S_ADR, CONV</td>
<td>Write to device</td>
</tr>
<tr>
<td>RZ</td>
<td>PG&gt;RZ</td>
<td></td>
</tr>
<tr>
<td>MC</td>
<td>PG&gt;MC PG_S_ADR</td>
<td></td>
</tr>
<tr>
<td>MD</td>
<td>PG&gt;MD PG_S_ADR, PG_E_ADR</td>
<td></td>
</tr>
<tr>
<td>MF</td>
<td>PG&gt;MF PG_S_ADR, PG_E_ADR, INT_DATA</td>
<td></td>
</tr>
<tr>
<td>LI</td>
<td>PG&gt;LI</td>
<td></td>
</tr>
<tr>
<td>SI</td>
<td>PG&gt;SI PG_S_ADR, PG_E_ADR</td>
<td></td>
</tr>
<tr>
<td>??</td>
<td>PG&gt;??</td>
<td></td>
</tr>
</tbody>
</table>

**Remark**

ROM_S_ADR : PROM start address
ROM_E_ADR : PROM end address
PG_S_ADR : PG-1500 internal memory start address
PG_E_ADR : PG-1500 internal memory end address
CONV : Address division mode
INT_DATA : Initialization data

See Section 3.4 Commands in Part II for details of the commands.

(10) **Terminate PG-1500 remote operation (PGM mode)**

Input [CTRL] + [Z] to the PC-9800. PG-1500 remote operation will terminate.

```
PG>^Z
 Exit PGM mode(Y/N)Y
 Termination of PGM mode
brk:0>
```

"brk:0>" is displayed as a prompt, and the break mode is set.
(11) Terminate PG-1500 remote control mode
Press the [RESET] key on the PG-1500 to release the remote control mode.

(12) Terminate the IE-75000-R control program
Input the IE-75000-R control program termination command (EXT). Control is returned to the OS, and the prompt is displayed.

```
b:k:0>EXT[q
A>
```

(13) Power off each unit
Follow the procedure below when powering off the equipment.
<1> Power off the PG-1500.
<2> Power off the IE-75000-R.
<3> Power off the PC-9800.
4.2.2 Data write from in-circuit emulator to blank PROM

This description assumes that the PG-1500 is already connected to the in-circuit emulator and host machine, and is ready for remote operation (in PGM mode) (see Section 4.2.1 Outline of operations using NEC in-circuit emulator).

<table>
<thead>
<tr>
<th>Example</th>
<th>Host machine</th>
<th>PC-9800 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-circuit emulator</td>
<td>IE-75001-R</td>
<td></td>
</tr>
<tr>
<td>Blank ROM</td>
<td>μPD75P308GF</td>
<td></td>
</tr>
<tr>
<td>PROM start address</td>
<td>00000H</td>
<td></td>
</tr>
<tr>
<td>PROM end address</td>
<td>01F7FH</td>
<td></td>
</tr>
<tr>
<td>IE-75000-R memory transfer start address</td>
<td>0000H</td>
<td></td>
</tr>
<tr>
<td>IE-75000-R memory transfer end address</td>
<td>0FFFH</td>
<td></td>
</tr>
</tbody>
</table>

The following procedure is used to write data from the in-circuit emulator to the blank ROM.

1. Transfer the data from the in-circuit emulator to the PG-1500 using the LI command.
2. Set the blank ROM in the PG-1500.
3. Perform device selection using the RS command.
4. Perform a write using the RW command.
5. Perform verification using the RV command.

(1) Transfer the data from the in-circuit emulator to the PG-1500 using the LI command

Uses the LI command to transfer the data in the memory space mapped in the IE-75001-R to the PG-1500 internal memory.

Input the transfer start address (0) and transfer end address (0FFF) of the IE-75000-R memory.

If the transfer range specification is omitted, the entire mapped memory space is transferred.

To suspend the transfer, input [ESC].

```
PG> LI
partition=0_0FFF
PG>
```

(2) Set the blank ROM in the PG-1500

Connect the 04A board to the PG-1500, and connect the PROM programmer adapter (PA-75P308GF) to this board.

Insert the blank ROM (μPD75P308GF) in the socket on the PROM programmer adapter.

(3) Perform device selection using the RS command

An example in which the READ mode is used is shown here.

```
PG> RS R
Your setting ROM is μPD75P308
PG>
```
(4) **Perform a write using the RW command**

Input the PROM start address (0), PROM end address (1F7F), PG-1500 internal memory start address (0), and address division mode (N).

If a device other than a general-purpose PROM is used, NORMAL (no address division) must be specified as the address division mode.

```
PG> RW 0,1F7F,0,N [J]
```

Now, data writing!
Data complete
Check sum : 2BC8

PG>

(5) **Perform verification using the RV command**

The device on which writing is finished is compared with the PG-1500 internal memory data. Perform this directly after executing the RW command.

```
PG> RV 0,1F7F,0,N [J]
```

Now, data reading!
Data complete
Check sum : 2BC8

PG>

This completes the data write from the in-circuit emulator to the blank ROM.
4.2.3 Data read from master ROM to in-circuit emulator

This description assumes that the PG-1500 is already connected to the in-circuit emulator and host machine, and is ready for remote operation (in PGM mode) (see Section 4.2.1 Outline of operations using NEC in-circuit emulator).

Example	
-------------	
Host machine	PC-9800 Series
In-circuit emulator	IE-75001-R
Master ROM	μPD75P308GF
PROM start address	000000H
PROM end address	01F7FH
PG-1500 internal memory start address	00000H
PG-1500 internal memory end address	01F7FH
Address division specification	N
IE-75000-R- load bias Note	0

Caution The value obtained by adding the IE-75000-R load bias to the PG-1500 internal memory start address is the IE-75000-R transfer start address.

The following procedure is used to read data from the master ROM to the in-circuit emulator.

1. Set the master ROM in the PG-1500.
2. Perform device selection using the RS command.
3. Perform a read using the RR command.
4. Perform verification using the RV command.
5. Transfer the data from the PG-1500 to the in-circuit emulator using the SI command.

1) Set the master ROM in the PG-1500

Connect the 04A board to the PG-1500, and connect the PROM programmer adapter (RA-75P308GF) to this board.

Insert the master ROM (μPD75P308GF) in the socket on the PROM programmer adapter.

2) Perform device selection using the RS command

An example in which the READ mode is used is shown here.

```
PG> RS R

Your setting ROM is μPD75P308

PG>
```
(3) Perform a read using the RR command

Input the PROM start address (0), PROM end address (1F7F), PG-1500 internal memory start address (0), and address division mode (N).

If a device other than a general-purpose PROM is used, NORMAL (no address division) must be specified as the address division mode.

```
PG>RR 0,1F7F,0,N
```

Now, data reading!
Data complete
Check sum : 2BC8

PG>

(4) Perform verification using the RV command

The device on which reading is finished is compared with the PG-1500 internal memory data.

Perform this directly after executing the RR command.

```
PG>RV 0,1F7F,0,N
```

Now, data reading!
Data complete
Check sum : 2BC8

PG>

(5) Transfer the data from the PG-1500 to the in-circuit emulator using the SI command

Use the SI command to transfer the contents of the PG-1500 internal memory to the memory space mapped in the IE-75001-R.

Input the PG-1500 internal memory start address (0), PG-1500 internal memory end address (1F7F), and IE-75001-R load bias (0).

The IE-75001-R load bias cannot be omitted.

To suspend the transfer, input ESC.

```
PG>SI 0,1F7F
```

Bias=0
complete

PG>

This completes the data read from the master ROM to the in-circuit emulator.
4.2.4 Data transfer from external machine to PG-1500 via parallel interface

Connect the PG-1500 to the in-circuit emulator and host machine via the serial interface and parallel interface. See 4.2.1 Outline of Operations Using NEC In-Circuit Emulator for the serial interface connection. The parallel interface connection is described below.

Connect the parallel interface connector on the PG-1500 to the printer output connector on the host machine, using a parallel interface cable (printer cable). Power off both units before making the connection.

Data in the in-circuit emulator cannot be transferred directly to the PG-1500. The data to be transferred must first be saved to a floppy disk, etc.

The PG-1500 is assumed to be ready for remote operation (in PGM mode).

<table>
<thead>
<tr>
<th>Example</th>
<th>Host machine</th>
<th>PC-9800 Series</th>
</tr>
</thead>
<tbody>
<tr>
<td>In-Circuit emulator</td>
<td>IE-75001-R</td>
<td></td>
</tr>
<tr>
<td>Transfer file name</td>
<td>TEST.HEX</td>
<td></td>
</tr>
</tbody>
</table>

The following procedure is used to transfer data from the external machine to the PG-1500 via the parallel interface.

1. Set the PG-1500 to the parallel input state with the PI command.
2. Terminate PG-1500 remote operation (PGM mode).
3. Transfer control to the OS (DOS).
4. Perform the data transfer with an OS command.
5. Return control to the IE-75001-R control program.
6. State PG-1500 remote operation (PGM mode).

(1) Set the PG-1500 to the parallel input state with the PI command

Execute the PI command. The PG-1500 is set to the parallel input state.

```
PG>PI
```

(2) Terminate PG-1500 remote operation (PGM mode)

Input `CTRL + Z`. PG-1500 remote operation (PGM mode) terminates and the break mode is set.

```
^Z
Exit PGM mode (Y/N) Y
Termination of PGM mode
brk:0>
```

(3) Transfer control to the OS (DOS)

Execute the in-device emulator DOS command. Control is transferred from the in-device emulator control program to the OS (DOS).

```
brk:0>DOS
```

```
Command version *.*.*
A>
```
(4) **Perform the data transfer with an OS command**
Execute the OS COPY command. Data is output from the parallel interface of the host machine.

```
A> COPY TEST HEX DWN
1 file has been copied.
A>
```

(5) **Return control to the IE-75001-R control program**
On completion of the data transfer, execute the OS EXIT command to return control to the in-circuit emulator control program.

```
A> EXIT
Return from Child!
brk:0>
```

(6) **Start PG-1500 remote operation (PGM mode)**
When the PGM command is executed in break mode, PG-1500 remote operation (PGM mode) is started.

```
brk:0> PGM
Beginning of PGM mode
PG>
```

This concludes the data transfer from the external machine to the PG-1500 via the parallel interface.
# APPENDIX A. ERROR MESSAGE LIST

## A.1 Standalone Mode Error List

<table>
<thead>
<tr>
<th>Error No.</th>
<th>Description</th>
<th>Occurrence</th>
<th>Display</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Internal circuit power supply +5.00 VDC check error</td>
<td>During initial test</td>
<td>PG-1500 ERR00</td>
<td>Turn off the power supply and turn it on again. If an error still occurs, the PG-1500 may be defective. In such case, consult with an NEC or authorized NEC dealer sales representative.</td>
</tr>
<tr>
<td>01</td>
<td>Internal circuit GND check error</td>
<td>During initial test</td>
<td>PG-1500 ERR01</td>
<td>Turn off the power supply and turn it on again. If an error still occurs, the PG-1500 may be defective. In such case, consult with an NEC or authorized NEC dealer sales representative.</td>
</tr>
<tr>
<td>02</td>
<td>PG-1500 internal memory check error</td>
<td>During initial test</td>
<td>PG-1500 ERR02</td>
<td>Turn off the power supply and turn it on again. If an error still occurs, the PG-1500 may be defective. In such case, consult with an NEC or authorized NEC dealer sales representative.</td>
</tr>
<tr>
<td>Error No.</td>
<td>03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Internal compare voltage +2.5 V check error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occurrence</td>
<td>During initial test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Display</td>
<td>PG-1500</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ERR03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Countermeasure</td>
<td>Turn off the power supply and turn it on again. If an error still occurs, the PG-1500 may be defective. In such case, consult with an NEC or authorized NEC dealer sales representative.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error No.</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Internal compare voltage +2.35 V check error</td>
</tr>
<tr>
<td>Occurrence</td>
<td>During initial test</td>
</tr>
<tr>
<td>Display</td>
<td>PG-1500</td>
</tr>
<tr>
<td></td>
<td>ERR04</td>
</tr>
<tr>
<td>Countermeasure</td>
<td>Turn off the power supply and turn it on again. If an error still occurs, the PG-1500 may be defective. In such case, consult with an NEC or authorized NEC dealer sales representative.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error No.</th>
<th>05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Internal compare voltage +1.5 V check error</td>
</tr>
<tr>
<td>Occurrence</td>
<td>During initial test</td>
</tr>
<tr>
<td>Display</td>
<td>PG-1500</td>
</tr>
<tr>
<td></td>
<td>ERR05</td>
</tr>
<tr>
<td>Countermeasure</td>
<td>Turn off the power supply and turn it on again. If an error still occurs, the PG-1500 may be defective. In such case, consult with an NEC or authorized NEC dealer sales representative.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error No.</th>
<th>06</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Internal compare voltage +0.5 V check error</td>
</tr>
<tr>
<td>Occurrence</td>
<td>During initial test</td>
</tr>
<tr>
<td>Display</td>
<td>PG-1500</td>
</tr>
<tr>
<td></td>
<td>ERR06</td>
</tr>
<tr>
<td>Countermeasure</td>
<td>Turn off the power supply and turn it on again. If an error still occurs, the PG-1500 may be defective. In such case, consult with an NEC or authorized NEC dealer sales representative.</td>
</tr>
<tr>
<td>Error No.</td>
<td>Description</td>
</tr>
<tr>
<td>----------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>07</td>
<td>VCC (variable) voltage check error</td>
</tr>
<tr>
<td>08</td>
<td>VPP (variable) voltage check error</td>
</tr>
<tr>
<td>09</td>
<td>Data bus check error</td>
</tr>
<tr>
<td>10</td>
<td>Start address &gt; end address</td>
</tr>
</tbody>
</table>

Display:

```
A: PROM/internal memory start address
B: PROM/internal memory end address
C: Internal memory start address/data
D: Execute command
F: Address divide mode
(when DEVICE mode command is used)
```
### APPENDIX A. ERROR MESSAGE LIST

#### Error No. 11
**Description**
PROM start address > ROM size

**Occurrence**
During address check in each command execution

**Display**
```
AAAAA:BBBBB CCCCC
DDDD ERR11 FFFFFF
```

- **A**: PROM/internal memory start address
- **B**: PROM/internal memory end address
- **C**: Internal memory start address/data
- **D**: Execute command
- **F**: Address divide mode
  (when DEVICE mode command is used)

**Countermeasure**
Check the input addresses and reinput the addresses.

#### Error No. 12
**Description**
Internal memory start address > internal memory size

**Occurrence**
During address check in each command execution

**Display**
```
AAAAA:BBBBB CCCCC
DDDD ERR12 FFFFFF
```

- **A**: PROM/internal memory start address
- **B**: PROM/internal memory end address
- **C**: Internal memory start address/data
- **D**: Execute command
- **F**: Address divide mode
  (when DEVICE mode command is used)

**Countermeasure**
Check the input addresses and reinput the addresses.

#### Error No. 13
**Description**
Conversion error

**Occurrence**
During address check in each command execution

**Display**
```
AAAAA:BBBBB CCCCC
DDDD ERR13 FFFFFF
```

- **A**: PROM/internal memory start address
- **B**: PROM/internal memory end address
- **C**: Internal memory start address/data
- **D**: Execute command
- **F**: Address divide mode
  (when DEVICE mode command is used)

**Countermeasure**
The currently selected device does not operate in the specified divide mode. Check the selected device and divide mode and determine the divide mode again.
### APPENDIX A. ERROR MESSAGE LIST

#### Phase-out/Discontinued

<table>
<thead>
<tr>
<th>Error No.</th>
<th>Description</th>
<th>Occurrence</th>
<th>Display</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Verify error (when ( V_{oc} = 5 ) V)</td>
<td>During data compare in commands performing a verify operation (COPY, PROGRAM)</td>
<td><img src="image" alt="Display BB: CC DDDD ERR20 AAAAA" /></td>
<td>The read device data and the internal memory data contents do not match. If this occurs during write, the write operation has not been carried out normally. In such cases, write once again.</td>
</tr>
<tr>
<td>21</td>
<td>Verify error (when ( V_{oc} = 5 + \alpha )) (The value of ( \alpha ) depends on the device)</td>
<td>During data compare in commands performing a verify operation (VERIFY, COPY, PROGRAM, CONT)</td>
<td><img src="image" alt="Display BB: CC DDDD ERR21 AAAAA" /></td>
<td>The read device data and the internal memory data content do not match. If this occurs during write, the write operation has not been carried out normally. In such cases, write once again.</td>
</tr>
<tr>
<td>22</td>
<td>Verify error (when ( V_{oc} = 5 - \alpha )) (The value of ( \alpha ) depends on the device)</td>
<td>During data compare in commands performing a verify operation (VERIFY, COPY, PROGRAM, CONT)</td>
<td><img src="image" alt="Display BB: CC DDDD ERR22 AAAAA" /></td>
<td>The read device data and the internal memory data content do not match. If this occurs during write, the write operation has not been carried out normally. In such cases, write once again.</td>
</tr>
<tr>
<td>Error No.</td>
<td>28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Blank check error</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Occurrence</td>
<td>In data compare during blank check command execution</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Display | \[
| BB |
|  |
| BLANK ERR28 AAAAA |
|  |
| A : Address not erased |
| B : Device data |
| Countermeasure | Data read from the device does not match data which is not written to the device. When writing, use another device. |

<table>
<thead>
<tr>
<th>Error No.</th>
<th>2C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Write error</td>
</tr>
<tr>
<td>Occurrence</td>
<td>During data write in write commands (PROG, CONT)</td>
</tr>
</tbody>
</table>
| Display | \[
| CC: BB |
| DDDD ERR2C AAAAA |
|  |
| A : Address at which error occurred |
| B : Device data |
| C : Internal memory data |
| D : Execute command |
| Countermeasure | If data cannot be written normally in the device write flow, this error occurs. In such case, check if the used device matches the selected device. If they match, the device may be defective. |

<table>
<thead>
<tr>
<th>Error No.</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Silicon signature data read error</td>
</tr>
<tr>
<td>Occurrence</td>
<td>This error occurs if a read data parity calculation executed in silicon signature data read shows that the read data is not correct</td>
</tr>
</tbody>
</table>
| Display | \[
<p>| AAAA ERR30 |
|  |
| A : Execute command |
| Countermeasure | There may be no silicon signature data in the selected device. |</p>
<table>
<thead>
<tr>
<th>Error No.</th>
<th>31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Silicon signature data read error</td>
</tr>
<tr>
<td>Occurrence</td>
<td>When READ mode is used for the device selection method, the target device at ROM control instruction execution differs from the set device.</td>
</tr>
<tr>
<td>Display</td>
<td>AAAA ERR31&lt;br&gt;A: Execute command</td>
</tr>
<tr>
<td>Countermeasure</td>
<td>When READ mode is used as the device selection method, the read silicon signature data differs from the preset silicon signature data. Check the device inserted in the socket. When carrying operation for the inserted device, start it by reading the silicon signature again.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error No.</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Silicon signature undefined error</td>
</tr>
<tr>
<td>Occurrence</td>
<td>This error occurs when the device write condition is set using the data read in silicon signature data read.</td>
</tr>
<tr>
<td>Display</td>
<td>AAAA ERR32&lt;br&gt;A: Execute command</td>
</tr>
<tr>
<td>Countermeasure</td>
<td>Since the data read in system silicon signature data read is not supported by the PG-1500, replace the device with one that supports the data.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error No.</th>
<th>38</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Device incorrect insert error</td>
</tr>
<tr>
<td>Occurrence</td>
<td>During NEC general-purpose PROM precheck</td>
</tr>
<tr>
<td>Display</td>
<td>AAAA ERR38&lt;br&gt;A: Execute command</td>
</tr>
<tr>
<td>Countermeasure</td>
<td>The device is wrongly inserted. Re-insert in the correct direction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error No.</th>
<th>39</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Adapter board and PROM programmer adapter disconnect error</td>
</tr>
<tr>
<td>Occurrence</td>
<td>During DEVICE instruction execution</td>
</tr>
<tr>
<td>Display</td>
<td>AAAA ERR39&lt;br&gt;A: Execute command</td>
</tr>
<tr>
<td>Countermeasure</td>
<td>The adapter board or PROM programmer adapter is not connected. Check adapter board/PROM programmer adapter connection.</td>
</tr>
</tbody>
</table>
### Error No. 40

**Description**: Serial disconnect error

**Occurrence**: During communication destination check in serial input/output instruction execution

**Display**

```
REMOTE MODE
ERR40 not ready
```

**Countermeasure**: The RS-232-C cable is not connected correctly. Check the cable, the currently set baud rate and character length.

### Error No. 41

**Description**: File transfer error

**Occurrence**: During serial/parallel transfer

**Display**

```
AAAA ERR41 BBBBBBB
```

A : Execute command
B : Data format

**Countermeasure**: Check the device connection and HEX fail format and carry out transfer again.
# A.2 Remote Control Mode Error List

<table>
<thead>
<tr>
<th>Error No.</th>
<th>Description</th>
<th>Occurrence</th>
<th>Display</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Start address &gt; end address</td>
<td>During address check in command execution</td>
<td>ERR10 (START_ADR &gt; END_ADR)</td>
<td>Input the correct addresses.</td>
</tr>
<tr>
<td>11</td>
<td>PROM start address &gt; ROM size</td>
<td>During address check in each command execution</td>
<td>ERR11 (ROM_SADR or ROM_EADR &gt; ROM_SIZE)</td>
<td>Input the correct addresses.</td>
</tr>
<tr>
<td>12</td>
<td>Internal memory start address &gt; PG-1500 internal memory size</td>
<td>During address check in each command execution</td>
<td>ERR12 (PG_BUFF_SIZE over)</td>
<td>Input the correct addresses.</td>
</tr>
<tr>
<td>13</td>
<td>Conversion error</td>
<td>During input parameter check in RR, RV and RW command execution</td>
<td>ERR13 (Conversion error)</td>
<td>The currently selected device does not operate in the specified divide mode. Check the selected device and divide mode.</td>
</tr>
<tr>
<td>14</td>
<td>Input symbol error</td>
<td>During address check in each command execution</td>
<td>ERR14 (Illegal character)</td>
<td>A symbol not in hexadecimal notation was used for address input. Check the input characters and reinput the addresses.</td>
</tr>
<tr>
<td>15</td>
<td>Address divide specify error</td>
<td>During input parameter check in RR, RV and RW command execution</td>
<td>ERR16 (Illegal character)</td>
<td>An unspecified symbol was input for address divide specification. Reinput using the specified symbol.</td>
</tr>
</tbody>
</table>
### Error Message List

<table>
<thead>
<tr>
<th>Error No.</th>
<th>Description</th>
<th>Occurrence</th>
<th>Display</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Command syntax error</td>
<td>During input parameter check in each command execution.</td>
<td>ERR10 (Command syntax error)</td>
<td>The command input format is wrong. Reinput after checking a correct input format.</td>
</tr>
<tr>
<td>17</td>
<td>Illegal command</td>
<td>During input parameter check in each command execution.</td>
<td>ERR17 (Illegal command)</td>
<td>An unspecified command has been input. Reinput using the specified command.</td>
</tr>
</tbody>
</table>
| 20       | Verify error (generated when Vcc = 5 V) | Generated when a data comparison is made in a command (HH, HV, or HW) which performs verification. | ERR20 Data not complete!!  

<table>
<thead>
<tr>
<th>Addr</th>
<th>ROM data</th>
<th>RAM data</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxx</td>
</tr>
</tbody>
</table>

Continue (Y:Yes/N:No)?  
The read device data does not match the internal memory data.  
If generated in a write, the write has not been performed normally. Perform the write again. |
| 21       | Verify error (generated when Vcc = 5 + α) (The value of α depends on the device) | Generated when a data comparison is made in a command (RR, RV, or RW) which performs verification. | ERR21 Data not complete!!  

<table>
<thead>
<tr>
<th>Addr</th>
<th>ROM Data</th>
<th>RAM Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>xxxx</td>
<td>xxxx</td>
<td>xxxx</td>
</tr>
</tbody>
</table>

Continue (Y:Yes/N:No)?  
The read device data does not match the internal memory data.  
If generated in a write, the write has not been performed normally. Perform the write again.
<table>
<thead>
<tr>
<th>Error No.</th>
<th>Description</th>
<th>Occurrence</th>
<th>Display</th>
<th>Countermeasure</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Verify error (generated when $V_{CC} = 5 - \alpha$) (The value of $\alpha$ depends on the device)</td>
<td>Generated when a data comparison is made in a command (RR, RV, or RW) which performs verification.</td>
<td>ERR22 Data not complete!!&lt;br&gt; Adr</td>
<td>ROM data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The read device data does not match the internal memory data.&lt;br&gt; If generated in a write, the write has not been performed normally. Perform the write again.</td>
</tr>
<tr>
<td>28</td>
<td>Blank check error</td>
<td>During blank check command execution</td>
<td>ERR28 ROM not erased!!&lt;br&gt; Adr</td>
<td>ROM data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>The data read from device does not match the data which is not written to device.&lt;br&gt; When writing, use another device.</td>
</tr>
<tr>
<td>2C</td>
<td>Write error</td>
<td>During data write in device write commands (PROG, CONT)</td>
<td>ERR2C Write error!&lt;br&gt; Adr</td>
<td>ROM data</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Data is not written normally, perform rewriting. If the error occurs again, check if the used device matches the selected device. If they match, the data is already written or the device may be defective.</td>
</tr>
<tr>
<td>30</td>
<td>Silicon signature data read error</td>
<td>This error occurs if read data parity calculation executed in silicon signature data read shows that the read data is not correct.</td>
<td>ERR30 (Signature read error)</td>
<td>No silicon signature operation can be performed for the selected device.</td>
</tr>
<tr>
<td>Error No.</td>
<td>Description</td>
<td>Occurrence</td>
<td>Display</td>
<td>Countermeasure</td>
</tr>
<tr>
<td>----------</td>
<td>--------------------------------------------------</td>
<td>----------------------------------------------------------------------------</td>
<td>------------------------------</td>
<td>--------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>31</td>
<td>Silicon signature data compare error</td>
<td>This error occurs when the R subcommand of the RS command is specified or the target device differs from the set device during FN, RV, RW and RZ command silicon signature data compare.</td>
<td>ERR31 (Unexpected Signature)</td>
<td>When READ mode is used as the device selection method, the read silicon signature data differs from the preset silicon signature data. Check the device inserted in the socket. When carrying operation for the inserted device, start it by reading the silicon signature data again.</td>
</tr>
<tr>
<td>32</td>
<td>Silicon signature data undefined error</td>
<td>This error occurs when device write condition is set using the data read in silicon signature data read.</td>
<td>ERR32 (Undefined Signature)</td>
<td>Since the data read in silicon signature read is not supported by the PG-1500, replace the device with one that supports the data.</td>
</tr>
<tr>
<td>38</td>
<td>Device incorrect insert error</td>
<td>During NEC general-purpose PROM precheck.</td>
<td>ERR38 (Device insert error)</td>
<td>A device is not inserted in the socket, or the device is wrongly inserted. Re-insert in the correct direction.</td>
</tr>
<tr>
<td>39</td>
<td>Adapter board and PROM programmer adapter disconnect error</td>
<td>During DEVICE instruction execution</td>
<td>ERR39 (Board not connected)</td>
<td>The adapter board or PROM programmer adapter is not connected. Check the adapter board/PROM programmer adapter connection.</td>
</tr>
<tr>
<td>40</td>
<td>Serial disconnect error</td>
<td>During communication destination check</td>
<td>ERR40 (Serial not ready)</td>
<td>The RS-232-C cable is not connected correctly. Check the cable, the currently set baud rate and character length.</td>
</tr>
<tr>
<td>41</td>
<td>File transfer error</td>
<td>During serial/parallel transfer</td>
<td>ERR41 (Illegal format data error)</td>
<td>Check the device connection and HEX format and carry out transfer again.</td>
</tr>
</tbody>
</table>
APPENDIX B. OBJECT FORMATS

B.1 INTELLEC HEX

INTELLEC HEX formats are described in (1) and (2) below. Descriptions <1> to <7> in (1) and (2) are made below.

<1> Start mark
    Format recognition is made by start mark [:].

<2> No. of byte counts
    a. Extended address record:
       No. of bytes of the high segment base address <7>
    b. Data record : No. of bytes of data <5>
    c. End record : [00]

<3> Address value
    a. Extended address record: [0000]
    b. Data record : Start address to be input
    c. End record : [0000]

<4> Record type
    a. Extended address record: [02]
    b. Data record : [00]
    c. End record : [01]
    d. Start address record : [03]

<5> PG-1500 internal memory input or output data (data record only)
    The start data address is the value indicated in <3>.

<6> Check sum
    The least significant 8-bit data of two's complement obtained by adding data from byte count data to data in the frame just before the check sum.

<7> High-end segment base address (extended address record only)
    When the record type [02] is recognized during input/output in extended address record, data is identified as one from bits 4 to 19 at the segment base address. The start data storage address for the subsequent data records is determined by start address and segment base address operations.
(1) Serial input and parallel input PG-1500 ← external device

(a) Extended address record

<table>
<thead>
<tr>
<th>: 0 2 0 0 0 0 0 2</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1&gt;  &lt;2&gt;  &lt;3&gt;  &lt;4&gt;  &lt;7&gt;  &lt;6&gt;</td>
<td></td>
</tr>
</tbody>
</table>

(b) Data record

<table>
<thead>
<tr>
<th>: 1 0 Start Address 0 0 Data Data</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1&gt;  &lt;2&gt;  &lt;3&gt;  &lt;4&gt;  &lt;5&gt;  &lt;6&gt;</td>
<td></td>
</tr>
</tbody>
</table>

(c) End record

<table>
<thead>
<tr>
<th>: 0 0 Address 0 1</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1&gt;  &lt;2&gt;  &lt;3&gt;  &lt;4&gt;  &lt;6&gt;</td>
<td></td>
</tr>
</tbody>
</table>

(2) Serial output PG-1500 → external device

(a) Extended address record

| : 0 2 0 0 0 0 0 2 Checksum CR LF |
|-------------------|---------|
| <1>  <2>  <3>  <4>  <7>  <6> |

(b) Data record

| : 1 0 Start Address 0 0 Data Data Checksum CR LF |
|-------------------|---------|
| <1>  <2>  <3>  <4>  <5>  <6> |

(c) End record

<table>
<thead>
<tr>
<th>: 0 0 0 0 0 0 0 1 F F</th>
<th>CR LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1&gt;  &lt;2&gt;  &lt;3&gt;  &lt;4&gt;  &lt;6&gt;</td>
<td></td>
</tr>
</tbody>
</table>
B.2 MOTOROLA EXORCISER

The MOTOROLA EXORCISER formats are described in (1) and (2) below. Items <1> to <6> in (1) and (2) are explained below.

<1> Start mark
Format recognition is made by start mark [S].

<2> Record types
a. Header record (optional) : [0]
b. S1 data record : [1]
c. S2 data record : [2]
d. S3 data record : [3]
e. End record (short address) : [9]
f. End record (standard address) : [8]
g. End record (long address) : [7]

<3> No. of byte counts
a. Data record:
   No. of bytes from the start address to the checksum value
b. End record:
   No. of bytes of the address value and the checksum value

<4> Address value
a. Data record : Start address to be input
b. End record : [0000]

<5> PG-1500 internal memory input or output data (data record only)
The start data address is the value indicated in <4>.

<6> Check sum
The least significant 8-bit data of one’s complement obtained by adding data from byte count data to data in the frame just before the checksum.

(1) Serial input and parallel input PG-1500 ← external device
(a) Header record

```
<table>
<thead>
<tr>
<th>S</th>
<th>0</th>
<th>File Name</th>
<th>File Name</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

(b) S1 data record

```
<table>
<thead>
<tr>
<th>S</th>
<th>1</th>
<th>Start Address</th>
<th>Data</th>
<th>Data</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
(c) S2 data record

```
<table>
<thead>
<tr>
<th>S</th>
<th>2</th>
<th>Start Address</th>
<th>Data</th>
<th>Data</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td><1></td>
<td><2></td>
<td><3></td>
<td><4></td>
<td><5></td>
<td><6></td>
</tr>
</tbody>
</table>
```

(d) S3 data record

```
<table>
<thead>
<tr>
<th>S</th>
<th>3</th>
<th>Start Address</th>
<th>Data</th>
<th>Data</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td><1></td>
<td><2></td>
<td><3></td>
<td><4></td>
<td><5></td>
<td><6></td>
</tr>
</tbody>
</table>
```

(e) End record (short address)

```
<table>
<thead>
<tr>
<th>S</th>
<th>9</th>
<th>Address</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td><1></td>
<td><2></td>
<td><3></td>
<td><4></td>
</tr>
</tbody>
</table>
```

(f) End record (standard address)

```
<table>
<thead>
<tr>
<th>S</th>
<th>8</th>
<th>Address</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td><1></td>
<td><2></td>
<td><3></td>
<td><4></td>
</tr>
</tbody>
</table>
```

(g) End record (long address)

```
<table>
<thead>
<tr>
<th>S</th>
<th>7</th>
<th>Address</th>
<th>Checksum</th>
</tr>
</thead>
<tbody>
<tr>
<td><1></td>
<td><2></td>
<td><3></td>
<td><4></td>
</tr>
</tbody>
</table>
```

(2) Serial output PG-1500 → external device

(a) S1 data record

```
<table>
<thead>
<tr>
<th>S</th>
<th>1</th>
<th>Start Address</th>
<th>Data</th>
<th>Data</th>
<th>Checksum</th>
<th>CR</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td><1></td>
<td><2></td>
<td><3></td>
<td><4></td>
<td><5></td>
<td><6></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

(b) S2 data record

```
<table>
<thead>
<tr>
<th>S</th>
<th>2</th>
<th>Start Address</th>
<th>Data</th>
<th>Data</th>
<th>Checksum</th>
<th>CR</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td><1></td>
<td><2></td>
<td><3></td>
<td><4></td>
<td><5></td>
<td><6></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```
(c) End record (short address)

<table>
<thead>
<tr>
<th>S</th>
<th>9</th>
<th>Address</th>
<th>Checksum</th>
<th>CR</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1&gt;</td>
<td>&lt;2&gt;</td>
<td>&lt;3&gt;</td>
<td>&lt;4&gt;</td>
<td>&lt;5&gt;</td>
<td></td>
</tr>
</tbody>
</table>

(d) End record (standard address)

<table>
<thead>
<tr>
<th>S</th>
<th>8</th>
<th>Address</th>
<th>Checksum</th>
<th>CR</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1&gt;</td>
<td>&lt;2&gt;</td>
<td>&lt;3&gt;</td>
<td>&lt;4&gt;</td>
<td>&lt;5&gt;</td>
<td></td>
</tr>
</tbody>
</table>

**Remark** In the case of output, the start address has less than 6 bytes. Thus, the [S3 data record] and [end record] following it do not exist.
B.3 EXTENDED TEKHEX

The EXTENDED TEKHEX formats are described in (1) and (2) below.
Items <1> to <7> in (1) and (2) are explained below.

<1> Start mark
Format recognition is made by start mark [%].

<2> Block length
Total of blocks excluding the start mark (including the block length)

<3> Block types
   a. Data block : [6]
   b. Terminate block: [8]
   c. Symbol block : [3]
      All other numeric values result in an error.
      When terminate block [8] is recognized, data load is stopped.

<4> Check sum
Sum of hexadecimal numbers excluding the start mark and checksum value.

<5> No. of address digits
No. of digits of the start data storage address following from the next block.

<6> Address value
Address with the number of digits set in <5>.
Indicates the data address.

<7> PG-1500 internal memory input or output data (data block only)
The start data address is the value indicated in <6>.

(1) Serial input and parallel input PG-1500 ← external device
(a) Data block

<table>
<thead>
<tr>
<th>%</th>
<th>Block Length</th>
<th>6</th>
<th>Checksum</th>
<th>3</th>
<th>Address</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1&gt;</td>
<td>&lt;2&gt;</td>
<td>&lt;3&gt;</td>
<td>&lt;4&gt;</td>
<td>&lt;5&gt;</td>
<td>&lt;6&gt;</td>
<td>&lt;7&gt;</td>
</tr>
</tbody>
</table>

(b) Terminate block

<table>
<thead>
<tr>
<th>%</th>
<th>Block Length</th>
<th>8</th>
<th>Checksum</th>
<th>2</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1&gt;</td>
<td>&lt;2&gt;</td>
<td>&lt;3&gt;</td>
<td>&lt;4&gt;</td>
<td>&lt;5&gt;</td>
<td>&lt;6&gt;</td>
</tr>
</tbody>
</table>
(2) Serial output PG-1500 → external device

(a) Data block

<table>
<thead>
<tr>
<th>%</th>
<th>Block Length</th>
<th>6</th>
<th>Checksum</th>
<th>6</th>
<th>Address</th>
<th>Data</th>
<th>Data</th>
<th>CR</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1&gt;</td>
<td>&lt;2&gt;</td>
<td>&lt;3&gt;</td>
<td>&lt;4&gt;</td>
<td>&lt;5&gt;</td>
<td>&lt;6&gt;</td>
<td>&lt;7&gt;</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(b) Terminate block

<table>
<thead>
<tr>
<th>%</th>
<th>Block Length</th>
<th>6</th>
<th>Checksum</th>
<th>4</th>
<th>Address</th>
<th>CR</th>
<th>LF</th>
</tr>
</thead>
<tbody>
<tr>
<td>&lt;1&gt;</td>
<td>&lt;2&gt;</td>
<td>&lt;3&gt;</td>
<td>&lt;4&gt;</td>
<td>&lt;5&gt;</td>
<td>&lt;6&gt;</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remark  For output, the address display unit of the data block becomes 3 bytes (6 digits).
APPENDIX C. EXTERNAL INTERFACE

This chapter describes the interface on the rear panel.

C.1 Serial Interface

The PG-1500 has an asynchronous serial interface and can be connected to a PC-9800 Series personal computer. The RS-232-C is used as an interface circuit.

Figure C-1. Serial Interface Connector

C.1.1 Pin configuration

The serial interface connector pins are positioned as follows.

Figure C-2. Serial Interface Pin Configuration
Table C-1. Serial Interface Connector Signal Table

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal Name</th>
<th>Direction (PG-1500) → (External Device)</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>FG</td>
<td>—</td>
<td>Frame ground</td>
</tr>
<tr>
<td>2</td>
<td>TXD</td>
<td>←</td>
<td>Data receive</td>
</tr>
<tr>
<td>3</td>
<td>RXD</td>
<td>→</td>
<td>Data transmit</td>
</tr>
<tr>
<td>4</td>
<td>RTS</td>
<td>←</td>
<td>Transmit enable at high level</td>
</tr>
<tr>
<td>5</td>
<td>CTS</td>
<td>→</td>
<td>Receive enable at high level</td>
</tr>
<tr>
<td>6</td>
<td>DSR</td>
<td>→</td>
<td>Receive enable at high level</td>
</tr>
<tr>
<td>7</td>
<td>SG</td>
<td>—</td>
<td>Signal ground</td>
</tr>
<tr>
<td>20</td>
<td>DTR</td>
<td>←</td>
<td>Transmit enable at high level</td>
</tr>
</tbody>
</table>

Caution  Be sure to ground the power cable and FG pin of the PG-1500 and external devices. If an external device with FG and SG short-circuited is to be used, remove the FG interface cable.
C.1.2 Interface circuit

Figure C-3 shows the PG-1500 serial interface circuit (RS-232-C).

**Figure C-3. RS-232-C Interface Circuit**
C.1.3 Resetting

When a serial interface is used, set the following:
- Baud rate
- Parity bit
- XON/XOFF control
- Character length
- Stop bit

Execute resetting by key input.

For details of resetting, refer to Section 2.6.4 Serial Interface Setting (MODE) in Part II.
C.1.4 Handshake method
This section describes the handshake method in the serial interface.

(1) PG-1500 data output

(a) Hardware handshake
In PG-1500 data transmission, hardware operations are only carried out when XON/XOFF control is set to OFF.

Figure C-4. Hardware Handshake

---

1> DSR ON in serial mode
2> DTR check
3> Data set
4> Wait for RTS ON
5> Data transfer start
6> DTR ON upon power-ON
7> DSR check
8> RTS ON
9> Wait for data receive completion
10> Data fetch

---

Handshake Line
Data Flow
(b) Software handshake

In PG-1500 data transmission, software processing is carried out whether XON/XOFF control is ON or OFF.

Figure C-5. Software Handshake

1. PG-1500 transmits data.
2. External device receives data.
3. When the receive buffer becomes full, the external device generates ^S(X-OFF) transmit stop character.
4. Upon receipt of the transmit stop character, the PG-1500 stops data transmission.
5. When the receive buffer becomes empty, the PG-1500 generates ^Q(X-ON) transmit restart character.
6. Upon receipt of the transmit restart character, the PG-1500 restarts data transmission.
(2) PG-1500 data input

(a) Hardware handshake

In PG-1500 data reception, hardware processing is only carried out when XON/XOFF control is set to OFF.

Figure C-6. Hardware Handshake

---

<1> DSR ON in serial mode
<2> DTR check
<3> CTS ON
<4> Wait for data receive completion
<5> Data fetch
<1> DTR ON upon power-ON
<2> DSR check
<3> Data set
<4> Wait for CTS ON
<5> Data transfer start upon CTS ON
PG-1500 internal control method in hardware handshake is described below.

**Figure C-7. Schematic Circuit Diagram of Serial Input Unit**

<1> PG-1500 has a 256-byte receive buffer in the work RAM.

<2> Data from an external device is converted into parallel data in the SCU and sent to the receive buffer.

<3> If the receive buffer receives 100 bytes or more data, MRDY signal in the V40 (CPU) turns OFF and the external device is notified of data receive disable.

<4> When the receive buffer becomes 10 bytes or less, MRDY signal turns ON and the RBRDY signal of the SCU is connected to the external device, and thus, normal data reception is restarted.
(b) Software handshake
In PG-1500 data transmission, software processing is only carried out when XON/XOFF control is set to ON.

Figure C-8. Software Handshake

1. The external device transmits data.
2. PG-1500 receives data.
3. PG-1500 has a 256-byte receive buffer. If the receive buffer becomes 100 bytes or more, the PG-1500 generates ^S(X-OFF) transmit stop character.
4. Upon receipt of the transmit stop character, the external device stops data transmission.
5. When the receive buffer becomes 10 bytes or less, the PG-1500 generates ^Q(X-ON) transmit restart character.
6. Upon receipt of the transmit restart character, the external device restarts data transmission.
C.1.5 Connection example

This section describes the procedure of connecting a serial interface using NEC personal computer PC-9800 Series as an example.

Use an RS-232-C cable (straight type) for the connection with PC-9800.
The correspondence between the connecting cable signals and pins is shown in Table C-2.

<table>
<thead>
<tr>
<th>Symbol Name</th>
<th>Pin No.</th>
<th>Pin No.</th>
<th>Symbol Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG</td>
<td>1</td>
<td>1</td>
<td>SG</td>
</tr>
<tr>
<td>TXD</td>
<td>2</td>
<td>2</td>
<td>TXD</td>
</tr>
<tr>
<td>RXD</td>
<td>3</td>
<td>3</td>
<td>RXD</td>
</tr>
<tr>
<td>RTS</td>
<td>4</td>
<td>4</td>
<td>RTS</td>
</tr>
<tr>
<td>CTS</td>
<td>5</td>
<td>5</td>
<td>CTS</td>
</tr>
<tr>
<td>DSR</td>
<td>6</td>
<td>6</td>
<td>DSR</td>
</tr>
<tr>
<td>SG</td>
<td>7</td>
<td>7</td>
<td>SG</td>
</tr>
<tr>
<td>DTR</td>
<td>20</td>
<td>20</td>
<td>DTR</td>
</tr>
</tbody>
</table>

**Note**  Connect pin No. 1 of PG-1500 to that of PC-9800 series only when the PG-1500 and external device (PC-9800 Series) FG are grounded.
C.2 Parallel Interface
The PG-1500 is equipped with an 8-bit parallel input interface.
The input data and interface control signals are all set to the TTL level.
The interface circuit is compliant with the Centronics.

Figure C-9. Parallel Interface Connector

C.2.1 Pin configuration
The parallel interface connector pins are positioned as follows.

Figure C-10. Parallel Interface Pin Configuration
### Table C-3. Parallel Interface Connector Signal Table

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>Signal Name</th>
<th>Direction (PG-1500) → (External Device)</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PSTB</td>
<td>←</td>
<td>Data read timing signal</td>
</tr>
<tr>
<td>2</td>
<td>PDB0</td>
<td>←</td>
<td>Parallel data 0</td>
</tr>
<tr>
<td>3</td>
<td>PDB1</td>
<td>←</td>
<td>Parallel data 1</td>
</tr>
<tr>
<td>4</td>
<td>PDB2</td>
<td>←</td>
<td>Parallel data 2</td>
</tr>
<tr>
<td>5</td>
<td>PDB3</td>
<td>←</td>
<td>Parallel data 3</td>
</tr>
<tr>
<td>6</td>
<td>PDB4</td>
<td>←</td>
<td>Parallel data 4</td>
</tr>
<tr>
<td>7</td>
<td>PDB5</td>
<td>←</td>
<td>Parallel data 5</td>
</tr>
<tr>
<td>8</td>
<td>PDB6</td>
<td>←</td>
<td>Parallel data 6</td>
</tr>
<tr>
<td>9</td>
<td>PDB7</td>
<td>←</td>
<td>Parallel data 7</td>
</tr>
<tr>
<td>10</td>
<td>ACK</td>
<td>→</td>
<td>Signal to be output after data read</td>
</tr>
<tr>
<td>11</td>
<td>BUSY</td>
<td>→</td>
<td>Status signal indicating whether PG-1500 can acknowledge data or not</td>
</tr>
<tr>
<td>19 to 30, 33</td>
<td>GND</td>
<td>—</td>
<td>Signal ground</td>
</tr>
</tbody>
</table>
C.2.2 Interface circuit

Figure C-11 shows the PG-1500 parallel interface circuit.
C.2.3 Handshake method

This section describes the handshake method in the parallel interface.

Figure C-12. Parallel Interface Timings

1. **PSTB** signal transmitted from the external device becomes active (low level).
2. **BUSY** signal is activated (high level) by the PSTB signal. Until the BUSY signal is canceled, the PG-1500 does not acknowledge the PSTB signal.
3. PG-1500 transmits the ACK signal by data read.
4. Next, the PG-1500 cancels the BUSY signal at the rising edge of the ACK signal and waits for the next data.
C.2.4 Connection example

This section describes the procedure of connecting a parallel interface using an NEC personal computer of the PC-9800 Series as an example.

Use a parallel interface cable (printer cable) for the connection with the PC-9800 Series personal computer. The correspondence between the connecting cable signals and pins is shown in Table C-4.

<table>
<thead>
<tr>
<th></th>
<th>PG-1500</th>
<th></th>
<th>PC-9600 Series</th>
<th>Symbol Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbol Name</td>
<td>Pin No.</td>
<td>Pin No.</td>
<td></td>
<td>Symbol Name</td>
</tr>
<tr>
<td>PSTB</td>
<td>1</td>
<td>1</td>
<td></td>
<td>PSTB</td>
</tr>
<tr>
<td>PD80</td>
<td>2</td>
<td>2</td>
<td></td>
<td>PD80</td>
</tr>
<tr>
<td>PD81</td>
<td>3</td>
<td>3</td>
<td></td>
<td>PD81</td>
</tr>
<tr>
<td>PD82</td>
<td>4</td>
<td>4</td>
<td></td>
<td>PD82</td>
</tr>
<tr>
<td>PD83</td>
<td>5</td>
<td>5</td>
<td></td>
<td>PD83</td>
</tr>
<tr>
<td>PD84</td>
<td>6</td>
<td>6</td>
<td></td>
<td>PD84</td>
</tr>
<tr>
<td>PD85</td>
<td>7</td>
<td>7</td>
<td></td>
<td>PD85</td>
</tr>
<tr>
<td>PD86</td>
<td>8</td>
<td>8</td>
<td></td>
<td>PD86</td>
</tr>
<tr>
<td>PD87</td>
<td>9</td>
<td>9</td>
<td></td>
<td>PD87</td>
</tr>
<tr>
<td>ACK</td>
<td>10</td>
<td>10</td>
<td></td>
<td>NC</td>
</tr>
<tr>
<td>BUSY</td>
<td>11</td>
<td>11</td>
<td></td>
<td>BUSY</td>
</tr>
<tr>
<td>GND</td>
<td>19</td>
<td>14</td>
<td></td>
<td>GND</td>
</tr>
</tbody>
</table>

Caution  Be sure to ground the power cable and FG pin of the PG-1500 and external devices. If an external device with FG and SG short-circuited is to be used, remove the FG Interface cable.
Facsimile Message

From:

Name

Company

Tel.

FAX

Address

Thank you for your kind support.

North America
NEC Electronics Inc.
Corporate Communications Dept.
Fax: 1-800-729-9288
1-408-589-6130

Europe
NEC Electronics (Europe) GmbH
Technical Documentation Dept.
Fax: +49-211-6503-274

South America
NEC do Brasil S.A.
Fax: +55-11-889-1689

Hong Kong, Philippines, Oceania
NEC Electronics Hong Kong Ltd.
Fax: +852-2886-9022/9044

Korea
NEC Electronics Hong Kong Ltd.
Seoul Branch
Fax: 02-528-4411

Taiwan
NEC Electronics Taiwan Ltd.
Fax: 02-719-5951

Asian Nations except Philippines
NEC Electronics Singapore Pte. Ltd.
Fax: +65-250-3583

Japan
NEC Corporation
Semiconductor Solution Engineering Division
Technical Information Support Dept.
Fax: 044-548-7900

I would like to report the following error/make the following suggestion:

Document title: __________________________

Document number: __________________________ Page number: ____________

If possible, please fax the referenced page or drawing.

<table>
<thead>
<tr>
<th>Document Rating</th>
<th>Excellent</th>
<th>Good</th>
<th>Acceptable</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clarity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technical Accuracy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CS 96.8