
 APPLICATION NOTE

R01AN2169EJ0120 Rev.1.20 Page 1 of 20
Jun 1, 2020

RX Family
USB Host Mass Storage Class Driver for USB Mini Firmware
Using Firmware Integration Technology

Introduction
This application note describes USB Host Mass Storage Class Driver(HMSC), which utilizes Firmware Integration
Technology (FIT). This module operates in combination with the USB Basic Mini Host and Peripheral Driver. It is
referred to below as the USB HMSC FIT module.

Target Device
RX111 Group
RX113 Group
RX231 Group
RX23W Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate

Related Documents

1. Universal Serial Bus Revision 2.0 specification
2. USB Mass Storage Class Specification Overview Revision 1.1
3. USB Mass Storage Class Bulk-Only Transport Revision 1.0
 http://www.usb.org/developers/docs/
4. RX111 Group User’s Manual: Hardware (Document number .R01UH0365)
5. RX113 Group User’s Manual: Hardware (Document number.R01UH0448)
6. RX231 Group User’s Manual: Hardware (Document number .R01UH0496)
7. RX23W Group User’s Manual: Hardware (Document number .R01UH0823)
8. RX Family M3S-TFAT-Tiny: FAT file system software (Document number: R20AN0038EJ)
9. RX Family M3S-TFAT-Tiny: Memory Driver Interface Module (Document number: R20AN0335EJ)
10. USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) using Firmware Integration Technology

Application Note (Document number.R01AN2166)

Renesas Electronics Website
http://www.renesas.com/

USB Device Page

http://www.renesas.com/prod/usb/

R01AN2169EJ0120
Rev.1.20

Jun 1, 2020

http://www.usb.org/developers/docs/
http://www.renesas.com/
http://www.renesas.com/prod/usb/

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 2 of 20
Jun 1, 2020

Contents

1. Overview .. 3

2. Software Configuration... 4

3. API Information .. 5

4. Target Peripheral List（TPL） ... 8

5. Class Driver ... 9

6. API Functions .. 10

7. Return Value (USB_STS_MSC_CMD_COMPLETED) of R_USB_GetEvent Function 16

8. Configuration (r_usb_hmsc_mini_config.h) .. 17

9. Configuration File (When using RI600V4)... 18

10. Creating an Application .. 19

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 3 of 20
Jun 1, 2020

1. Overview
The USB HMSC FIT module, when used in combination with the USB-BASIC-F/W FIT module, operates as a USB
host mass storage class driver (HMSC).
The HMSC comprises a USB mass storage class bulk-only transport (BOT) protocol. When combined with a file
system and storage device driver, it enables communication with a BOT-compatible USB storage device.
Note that please use the M3S-TFAT-Tiny (Document number: R20AN0038) and Memory driver interface module
(Document numver: R20AN0335) in combination when using this driver.

This module supports the following functions.

1. Checking of connected USB storage devices (to determine whether or not operation is supported).

2. Storage command communication using the BOT protocol.

3. Support for SFF-8070i (ATAPI) USB mass storage subclass.

1.1 Please be sure to read

Please refer to the document (Document number: R01AN2166) for USB Basic Mini Host and Peripheral Driver (USB
Mini Firmware) using Firmware Integration Technology Application Note when creating an application program
using this driver.
This document is located in the "reference_documents" folder within this package.

1.2 Note
This driver is not guaranteed to provide USB communication operation. The customer should verify operation when
utilizing it in a system and confirm the ability to connect to a variety of different types of devices.

1.3 Limitation

1. Some MSC devices may be unable to be connected (because they are not recognized as storage devices).

2. MSC devices that return values of 1 or higher in response to the GetMaxLun command (mass storage class
command) are not supported.

3. USB storage devices with a sector size of 512 bytes can be connected.

4. A device that does not respond to the READ_CAPACITY command operates as a device with a sector size of
512 bytes.

1.4 Terms and Abbreviations

APL : Application program
BOT : Mass storage class Bulk Only Transport
FSL : FAT File System Library
HCD : Host Control Driver of
HDCD : Host Device Class Driver (device driver and USB class driver)
MGR : Peripheral device state manager of HCD
MSC : Mass Storage Class
RSK : Renesas Starter Kits
RTOS : USB Driver for the real-time OS
TFAT : Tiny FAT file system software for microcontrollers (M3S-TFAT-Tiny-RX)
USB-BASIC-FW : USB Basic Mini Host and Peripheral Driver
USB : Universal Serial Bus

1.5 USB HMSC FIT Module
User needs to integrate this module to the project using r_usb_basic_mini. User can control USB H/W by using this
module API after integrating to the project.

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 4 of 20
Jun 1, 2020

2. Software Configuration
HDCD (Host Device Class Driver) is the all-inclusive term for HMSDD (Host Mass Storage Device Driver) and
HMSCD (USB Host Mass Storage Class Driver).

Figure 2-1 shows the HMSC software block diagram, with HDCD as the centerpiece. Table 2-1 describes each
module.

User Application (APL)

File System Library (FSL)

File System Interface (FSI)

Mass Storage Device driver (HMSDD)

Device Driver Interface (DDI)

Host Mass Storage Class Driver

HCD Interface (HCI)

Media Driver USB Host Control Driver (HCD/MGR)

Media USB Host Controller (H/W)

M
ass Storage

Class Driver
(HM

SCD)

Device Class
Driver (HDCD)

USB Basic FIT Module(r_usb_basic_mini)

HMSC FIT Module(r_usb_hmsc_mini)

Figure 2-1 Software Module Structure

Table 2-1 Module

Module Description
FSI FSL-HMSDD interface functions.

They should be modified to match FSL.
HMSDD To be created (modified) by the customer to match the storage media.
DDI HMSDD-HMSCD interface functions.

They should be modified to match the storage media interface of HMSDD.
HMSCD The USB host mass storage class driver. It appends BOT protocol information to storage

commands and sends requests to HCD. It also manages the BOT sequence.
The storage commands should be added (modified) by the customer to match the system
specifications. SFF-8070i (ATAPI) is supported in the example code.

HCI HMSCD-HCD interface functions.
MGR Enumerates the connected devices and starts HMSCD. Also performs device state

management.
HCD USB host hardware control driver.

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 5 of 20
Jun 1, 2020

3. API Information
This Driver API follows the Renesas API naming standards.

3.1 Hardware Requirements
This driver requires your MCU support the following features:

 USB

3.2 Software Requirements
This driver is dependent upon the following packages:

 r_bsp

 r_usb_basic_mini

3.3 Operating Confirmation Environment

Table 3-1 shows the operating confirmation environment of this driver.

Table 3-1 Operation Confirmation Environment

Item Contents
C compiler Renesas Electronics C/C++ compiler for RX Family V.3.02.00

(The option "-lang=C99" is added to the default setting of IDE)
GCC for Renesas RX 8.3.0.201904
(The option "-std=gnu99" is added to the default setting of IDE)
IAR C/C++ Compiler for Renesas RX version 4.14.1

Real-Time OS FreeRTOS V.10.0.0
RI600V4 V.1.06

Endian Little Endian, Big Endian
USB Driver Revision Number Rev.1.20
Using Board Renesas Starter Kit for RX111

Renesas Starter Kit for RX113
Renesas Starter Kit for RX231
Renesas Solution Starter Kit for RX23W

3.4 Usage of Interrupt Vector

Table 3-2 shows the interrupt vector which this driver uses.

Table 3-2 List of Usage Interrupt Vectors

Device Contents
RX111
RX113
RX231
RX23W

USBI0 Interrupt (Vector number: 36) / USBR0 Interrupt (Vector number: 90)
USB D0FIFO0 Interrupt (Vector number: 36) / USB D1FIFO0 Interrupt (Vector number: 37)

3.5 Header Files

All API calls and their supporting interface definitions are located in r_usb_basic_mini_if.h and
r_usb_hmsc_mini_if.h.

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 6 of 20
Jun 1, 2020

3.6 Integer Types

This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These
types are defined in stdint.h.

3.7 Compile Setting
For compile settings, refer to chapter 8, Configuration (r_usb_hmsc_mini_config.h) in this document and chapter
"Configuration" in the document (Document number: R01AN2166) for USB Basic Mini Host and Peripheral Driver
(USB Mini Firmware) using Firmware Integration Technology Application Note.

3.8 ROM / RAM Size

The follows show ROM/RAM size of this driver.

1. CC-RX (Optimization Level: Default)

(1). Non-OS

 Checks arguments Does not check arguments
ROM size 21.5K bytes (Note 4) 21.2K bytes (Note 5)
RAM size 5.0K bytes 5.0K bytes

(2). RI600V4

 Checks arguments Does not check arguments
ROM size 38.2K bytes (Note 4) 37.9K bytes (Note 5)
RAM size 5.4K bytes 5.4K bytes

(3). FreeRTOS

 Checks arguments Does not check arguments
ROM size 34.2K bytes (Note 4) 33.9K bytes (Note 5)
RAM size 17.2K bytes 17.2K bytes

2. GCC (Optimization Level: -O2)

 Checks arguments Does not check arguments
ROM size 25.5K bytes (Note 4) 25.2K bytes (Note 5)
RAM size 4.2K bytes 4.2K bytes

3. IAR (Optimization Level: Medium)

 Checks arguments Does not check arguments
ROM size 17.7K bytes (Note 4) 17.5K bytes (Note 5)
RAM size 3.3K bytes 3.3K bytes

[Note]

1. ROM/RAM size for BSP and USB Basic Driver is included in the above size.

2. ROM/RAM size for FAT is not included in the above size.

3. The above is the size when specifying RX V2 core option.

4. The ROM size of “Checks arguments” is the value when USB_CFG_ENABLE is specified to
USB_CFG_PARAM_CHECKING definition in r_usb_basic_mini_config.h file.

5. The ROM size of “Does not check arguments” is the value when USB_CFG_DISABLE is specified to
USB_CFG_PARAM_CHECKING definition in r_usb_basic_mini_config.h file.

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 7 of 20
Jun 1, 2020

3.9 Argument
For the structure used in the argument of API function, refer to chapter "Structures" in the document (Document
number: R01AN2166) for USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) using Firmware
Integration Technology Application Note.

3.10 Adding the FIT Module to Your Project

This module must be added to each project in which it is used. Renesas recommends the method using the Smart
Configurator described in (1) or (3) below. However, the Smart Configurator only supports some RX devices. Please
use the methods of (2) or (4) for RX devices that are not supported by the Smart Configurator.

(1) Adding the FIT module to your project using “Smart Configurator” on e2 studio

By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project. Refer to
“Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e2 studio

By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project. Refer to
“Adding Firmware Integration Technology Modules to Projects (R01AN1723)” for details.

(3) Adding the FIT module to your project using the Smart Configurator in CS+

By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added to your
project. Refer to “Renesas e2 studio Smart Configurator User Guide (R20AN0451)” for details.

(4) Adding the FIT module to your project on CS+

In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)” for details.

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 8 of 20
Jun 1, 2020

4. Target Peripheral List（TPL）
For the structure used in the argument of API function, refer to chapter " How to Set the Target Peripheral List
(TPL)" in the document (Document number: R01AN2166) for USB Basic Mini Host and Peripheral Driver (USB
Mini Firmware) using Firmware Integration Technology Application Note.

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 9 of 20
Jun 1, 2020

5. Class Driver

5.1 Class Requet
This driver supports the following class request.

Table 5-1 Class Request

Request Description
GetMaxLun Gets the maximum number of units that are supported.
MassStrageReset Cancels a protocol error.

5.2 Storage Command
This driver supports the following storage command.

1. TEST_UNIT_READY

2. REQUEST_SENSE

3. MODE_SELECT10

4. MODE_SENSE10

5. PREVENT_ALLOW

6. READ_FORMAT_CAPACITY

7. READ10

8. WRITE10

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 10 of 20
Jun 1, 2020

6. API Functions
The following are Host Mass Storage Class specific API functions

API Desription

R_USB_HmscStrgCmd() Issues a Mass Storage command.
R_USB_HmscGetSem() Gets a semaphore (Only RTOS)
R_USB_HmscRelSem() Releases a semaphore (Only RTOS)

Note:

1. Uses the FAT (File Allocation Table) API to access storage media.

2. Refer to chapter "API" in the document(Document number: R01AN2166) for USB Basic Mini Host and
Peripheral Driver (USB Mini Firmware) using Firmware Integration Technology Application Note when using
other API.

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 11 of 20
Jun 1, 2020

6.1 R_USB_HmscStrgCmd

Issues a Mass Storage command

Format
usb_err_t R_USB_HmscStrgCmd(uint8_t *p_buf, uint16_t command)

Arguments
p_buf Pointer to data area
command Mass storage command

Return Value
USB_SUCCESS Successfully completed
USB_ERR_PARA Parameter error
USB_ERR_NG Other error

Description
The Mass Storage command assigned to the argument (command) is issued to the MSC device. An application
program can check the completion of the Mass Storage command with the USB_STS_MSC_CMD_COMPLETE
return value of the R_USB_GetEvent function.

If a Mass Storage command with response data is issued, after checking USB_STS_MSC_CMD_COMPLETE
return value of the R_USB_GetEvent function, an application program can obtain the response data from the area
indicated by the second argument (p_buf). Check the member (size) of the usb_crtl_t structure to get the size of the
response data that was received.

Assign the following to the argument (command).

Table 6-1 Mass Storage Command

MassStorage Command
USB_ATAPI_TEST_UNIT_READY
USB_ATAPI_REQUEST_SENSE
USB_ATAPI_INQUIRY
USB_ATAPI_MODE_SELECT10
USB_ATAPI_PREVENT_ALLOW
USB_ATAPI_READ_FORMAT_CAPACITY
USB_ATAPI_READ_CAPACITY
USB_ATAPI_MODE_SENSE10

Note

1. Do not assign a pointer to the auto variable (stack) area to the arguments (p_buf).

2. Assign USB_NULL to the argument (p_buf) when issuing the mass storage command without the response data.

3. If a command other than the Mass Storage commands listed in Table 6-1 is assigned to the argument (command),
then USB_ERR_PARA will be the return value.

4. When calling FAT API and this API after issuing the Mass storage command by this API, be sure to call these
APIs after checking the return value (USB_STS_CMD_COMPLETE) of R_USB_GetEvent function.

5. Refer to chapter "7. Return Value (USB_STS_MSC_CMD_COMPLETED) of R_USB_GetEvent
Function" about CSW.

6. The CSW information is set to the member (status) of the usb_ctrl_t structure. If the value of the member
(status) is USB_CSW_FAIL, issue the "Requeset Sense" command to the MSC device using this API.

7. Set the page code (1 Byte) of the "Mode Sense10" command in the start address to the area indicated by the 2nd
argument (p_buf).

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 12 of 20
Jun 1, 2020

8. Set the parameter data for the "Mode Select10" command to the area indicated by the 2nd argument (p_buf)
based on the specification for USB Mass Storage Subclass (SFF-8070i etc).

9. This function can be called when the USB device is in the configured state. When the API is called in any other
state, USB_ERR_NG is returned.

Example
1. Non-OS

void usb_application(void)
{
 usb_ctrl_t ctrl;
 usb_err_t err;
 :
 while (1)
 {
 switch (R_USB_GetEvent(&ctrl))
 {
 :
 case USB_STS_CONFIGURED:
 :
 g_buf[0] = 0x3F; /* Page Code */
 R_USB_HmscStrgCmd(&g_buf, USB_ATAPI_MODE_SENSE10);
 :
 break;
 case USB_STS_MSC_CMD_COMPLETE:
 if(ctrl.status == USB_CSW_FAIL)
 {
 R_USB_HmscStrgCmd(&ctrl, &g_buf, USB_ATAPI_REQUEST_SENSE);
 }
 :

 break;
 :
 }
 }
}

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 13 of 20
Jun 1, 2020

2. RTOS
/* Callback function */
void usb_apl_callback (usb_ctrl_t *p_ctr, rtos_task_id_t task_id, uint8_t is_request)
{
 USB_APL_SND_MSG(USB_APL_MBX, (usb_msg_t *)p_ctrl);
}

void usb_application_task(void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :

 case USB_STS_CONFIGURED:
 :
 g_buf[0] = 0x3F /* Page Code */
 R_USB_HmscStrgCmd(&g_buf, USB_ATAPI_MODE_SENSE10);
 :
 break;
 case USB_STS_MSC_CMD_COMPLETE:
 if (ctrl.status == USB_CSW_FAIL)
 {
 R_USB_HmscStrgCmd(&g_buf, USB_ATAPI_REQUEST_SENSE);
 }
 :
 break;

 }
 }
}

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 14 of 20
Jun 1, 2020

6.2 R_USB_HmscGetSem

Gets a semaphore (Only RTOS)

Format
void R_USB_HmscGetSem(void)

Arguments
none

Return Value
none

Description
Gets a specific semaphore which is used in HMSC driver.

Note

1. Be sure to call this API before calling the FAT file open function (e.g R_tfat_f_open).

2. If this API is called when a semapohre counter value is zero, the user task which calls this API shift to a
semaphore waiting status.

3. The creation processing of a semaphore which this API uses is performed in USB driver.

Example

/* Callback function */
void usb_apl_callback (usb_ctrl_t *p_ctr, rtos_task_id_t task_id, uint8_t is_request)
{
 USB_APL_SND_MSG(USB_APL_MBX, (usb_msg_t *)p_ctrl);
}
void usb_application_task(void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :
 case USB_STS_CONFIGURED:
 :
 R_USB_HmscGetSem();
 R_tfat_f_open(&file, (const char *) &g_msc_file[drvno][0],
 (TFAT_FA_CREATE_ALWAYS | TFAT_FA_WRITE));
 R_tfat_f_write(&file, g_file_data, sizeof(g_file_data), &file_size);
 R_tfat_f_close(&file);
 R_USB_HmscRelSem();
 :
 break;
 :
 }
 }
}

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 15 of 20
Jun 1, 2020

6.3 R_USB_HmscRelSem

Releases a semaphore (Only RTOS)

Format
void R_USB_HmscRelSem(void)

Arguments
none

Return Value
none

Description
Releases a specific semaphore which is used in HMSC driver.

Note

1. Be sure to call this API after calling the FAT file close function (e.g R_tfat_f_close).

2. An application task during a semaphore waiting status by R_USB_HmscGetSem function is released the
semaphore waiting status by this API.

3. The creation processing of a semaphore which this API uses is performed in USB driver.

Example
/* Callback function */
void usb_apl_callback (usb_ctrl_t *p_ctr, rtos_task_id_t task_id, uint8_t is_request)
{
 USB_APL_SND_MSG(USB_APL_MBX, (usb_msg_t *)p_ctrl);
}
void usb_application_task(void)
{
 usb_ctrl_t ctrl;
 usb_ctrl_t *p_mess;
 :
 while(1)
 {
 USB_APL_RCV_MSG(USB_APL_MBX, (usb_msg_t **)&p_mess);
 ctrl = *p_mess;
 switch (ctrl.event)
 {
 :
 case USB_STS_CONFIGURED:
 :
 R_USB_HmscGetSem();
 R_tfat_f_open(&file, (const char *) &g_msc_file[drvno][0],
 (TFAT_FA_CREATE_ALWAYS | TFAT_FA_WRITE));
 R_tfat_f_write(&file, g_file_data, sizeof(g_file_data), &file_size);
 R_tfat_f_close(&file);
 R_USB_HmscRelSem();
 :
 break;
 :
 }
 }
}

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 16 of 20
Jun 1, 2020

7. Return Value (USB_STS_MSC_CMD_COMPLETED) of R_USB_GetEvent
Function

(1). Non-OS

After the completion of a Mass Storage command is checked with the R_USB_HmscStrgCmd function, if the
R_USB_GetEvent function is called, then USB_STS_MSC_CMD_COMPLETE will be the return value.

(2). RTOS

When a Mass Storage command completes, the callback function that has been registered using the
R_USB_Callback function will be called by the USB driver. At this time, USB_STS_MSC_CMD_COMPLETE will
be set to the member (event) in the argument (the pointer to the usb_ctrl_t structure) of this callback function.

The following shows the information which is set to the member in the usb_ctrl_t structure when completing Mass
Storage command.

size : Size of response data
status : CSW information

Note:

1. The member (size) has the size of the response data sent from MSC device.

2. The member (status) has bCSWStatus of the CSW (Command Status Wrapper):

USB_CSW_SUCCESS (Value: 00H) : Successful
USB_CSW_FAIL (Value: 01H) : Failed
USB_CSW_PHASE (Value: 02H) : Phase error

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 17 of 20
Jun 1, 2020

8. Configuration (r_usb_hmsc_mini_config.h)
Please set the following according to your system.

Note:

Be sure to set r_usb_basic_mini_config.h file as well. For r_usb_basic_mini_config.h file, refer to chapter
"Configuration" in the document (Document number: R01AN2166) for USB Basic Mini Host and Peripheral
Driver (USB Mini Firmware) using Firmware Integration Technology Application Note.

1. Setting pipe to be used

Set the pipe number (PIPE1 to PIPE5) to use for Bulk IN/OUT transfer. Do not set the same pipe number for the
definitions of USB_CFG_HMSC_BULK_IN and USB_CFG_HMSC_BULK_OUT.

#define USB_CFG_HMSC_BULK_IN Pipe number (USB_PIPE1 to USB_PIPE5)
#define USB_CFG_HMSC_BULK_OUT Pipe number (USB_PIPE1 to USB_PIPE5)

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 18 of 20
Jun 1, 2020

9. Configuration File (When using RI600V4)
It is necessary to register the OS resource used by HMSC USB driver to RI600V4 when using RI600V4. Please add
the following definition in the configuration file. For how to create the configuration file, refer to the chapter,
"RI600V4(Configuration File Creation)" in the document (Document number: R01AN2166) for USB Basic Mini
Host and Peripheral Driver (USB Mini Firmware) using Firmware Integration Technology Application Note.

9.1 Mailbox Definition
1. Mailbox 1

name : ID_USB_RTOS_HMSC_MBX
wait_queue : TA_FIFO
message_queue : TA_MFIFO

2. Mailbox 2

name : ID_USB_RTOS_HMSC_REQ_MBX
wait_queue : TA_FIFO
message_queue : TA_MFIFO

9.2 Semaphore Definition
name : ID_USB_RTOS_HMSC_SEM
max_count : 1
initial_count : 1
wait_queue : TA_FIFO

9.3 Mutex Definition
name : ID_USB_RTOS_TFAT_MTX
ceilpri : 1

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 19 of 20
Jun 1, 2020

10. Creating an Application
Refer to the chapter “Creating an Application Program” in the document (Document number: R01AN2166) for
USB Basic Mini Host and Peripheral Driver (USB Mini Firmware) using Firmware Integration Technology
Application Note.

RX Family USB Host Mass Storage Class Driver for USB Mini Firmware using Firmware Integration Technology

R01AN2169EJ0120 Rev.1.20 Page 20 of 20
Jun 1, 2020

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

A-1

Revision Record

Rev. Date
Description

Page Summery
1.00 Dec 1, 2014 — First eddition issued.
1.01 Jun 1, 2015 — RX231 is added in the target device.
1.02 Dec 28, 2015 — Upgrading of this USB driver by upgrading of "USB Basic Mini Firmware

(R01AN2166)".
1.10 Nov 30,2018 — 1. Supporting Smart Configurator.

2. The following chapter is added.
(1). 5. Class Driver
(2). 6. API Functions
(3). 7. Return Value (USB_STS_MSC_CMD_COMPLETED of

R_USB_GetEvent Function
(4). 8. Configuration (r_usb_hmsc_mini_config.h)
3. The following chapters are changed.
(1). 3. API Information
(2). 9. Creating an Application
4. The following chapters are deleted.
"How to Register Class Driver", "System Resources", "Task ID and Priority
Setting","File System Interface", "Host Mass Storage Device Driver", "USB
Mass Stoage Class Driver"

1.11 May 31, 2019 — Support GCC compiler and IAR compiler.
1.12 Jun 30, 2019 — RX23W is added in the target device.
1.20 Jun 1, 2020 — Support the real time OS.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas.
For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as
well as any technical updates that have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.

 The input pins of CMOS products are generally in the high-impedance state. In operation
with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the
vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur
due to the false recognition of the pin state as an input signal become possible. Unused pins
should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings
and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of
pins are not guaranteed from the moment when power is supplied until the reset process is
completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power
reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.

 The reserved addresses are provided for the possible future expansion of functions. Do not
access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals
After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator)
during a reset, ensure that the reset line is only released after full stabilization of the clock
signal. Moreover, when switching to a clock signal produced with an external resonator (or
by an external oscillator) while program execution is in progress, wait until the target clock
signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.

 The characteristics of Microprocessing unit or Microcontroller unit products in the same
group but having a different part number may differ in terms of the internal memory capacity,
layout pattern, and other factors, which can affect the ranges of electrical characteristics,
such as characteristic values, operating margins, immunity to noise, and amount of radiated
noise. When changing to a product with a different part number, implement a
system-evaluation test for the given product.

http://www.renesas.comSALES OFFICES

(Rev.4.0-1 November 2017)

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by

you or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or

arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application

examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by

you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the

product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

 Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are

not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause

serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all

liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or

other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the

reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation

characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified

ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a

certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury

or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult

and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and

sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics

products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable

laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws

or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or

transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third

party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

© 2020 Renesas Electronics Corporation. All rights reserved.
Colophon 9.0

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics Corporation
TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics America Inc. Milpitas Campus
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics America Inc. San Jose Campus
6024 Silver Creek Valley Road, San Jose, CA 95138, USA
Tel: +1-408-284-8200, Fax: +1-408-284-2775
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 101-T01, Floor 1, Building 7, Yard No. 7, 8th Street, Shangdi, Haidian District, Beijing 100085, China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai 200333, China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, #06-02 Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit No 3A-1 Level 3A Tower 8 UOA Business Park, No 1 Jalan Pengaturcara U1/51A, Seksyen U1, 40150 Shah Alam, Selangor, Malaysia
Tel: +60-3-5022-1288, Fax: +60-3-5022-1290
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338

http://www.renesas.com
http://www.renesas.com/

	1. Overview
	1.1 Please be sure to read
	1.2 Note
	1.3 Limitation
	1.4 Terms and Abbreviations
	1.5 USB HMSC FIT Module

	2. Software Configuration
	3. API Information
	3.1 Hardware Requirements
	3.2 Software Requirements
	3.3 Operating Confirmation Environment
	3.4 Usage of Interrupt Vector
	3.5 Header Files
	3.6 Integer Types
	3.7 Compile Setting
	3.8 ROM / RAM Size
	3.9 Argument
	3.10 Adding the FIT Module to Your Project

	4. Target Peripheral List（TPL）
	5. Class Driver
	5.1 Class Requet
	5.2 Storage Command

	6. API Functions
	6.1 R_USB_HmscStrgCmd
	6.2 R_USB_HmscGetSem
	6.3 R_USB_HmscRelSem

	7. Return Value (USB_STS_MSC_CMD_COMPLETED) of R_USB_GetEvent Function
	8. Configuration (r_usb_hmsc_mini_config.h)
	9. Configuration File (When using RI600V4)
	9.1 Mailbox Definition
	9.2 Semaphore Definition
	9.3 Mutex Definition

	10. Creating an Application

