LENESAS Application Note
RX Family

SDSI Module Using Firmware Integration Technology

Introduction

This application note describes RX Family SD Slave Interface (SDSI) control module and explains its use.
The module is a SD slave control module using Firmware Integration Technology (FIT). It is referred to below
as the SDSI FIT module. Other similar function control modules using FIT are referred to as FIT modules or
as “function name” FIT modules.

Target devices
Microcontrollers used for operation check:
RX65N Group, RX651 Group

When applying the information in this application note to a microcontroller other than the above,
modifications should be made as appropriate to match the specification of the microcontroller and careful
evaluation performed.

Target Compilers

¢ Renesas Electronics C/C++ Compiler Package for RX Family
e GCC for Renesas RX
e |AR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “6.1 Operating Environment".

Related Documents

e Firmware Integration Technology User's Manual (RO1AN1833)

e Board Support Package Module Firmware Integration Technology (RO1AN1685)
o RX Family LONGQ Module Firmware Integration Technology (RO1AN1889)

RO1AN3238EJ0204 Rev.2.04 Page 1 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

Contents

(I O 1YY 4V 11 4
S R 1 1] 8 I 1Y o T [O SPURPTPRR 4
1.2 Overview Of SDSI FIT MOAUIEoiiiiiiie ettt e et e e e st e e e snteee e s snteeeesanreeeaeans 4
1.3 OVEIVIEW OF APIS ...ttt ettt e e ettt e e e sa bt e e e e sate e e e s anteeeeeanbeeeesanteeeesanteeeenans 5
1.4 ProCessing EXAMPIE...... ..ottt e et e e s e e e e aareeeean 6
g O o F= 140 11 T PR 6
S T 11,77 1 PR 7
1.5 State Transition Diagrami..........ooi it e ettt e e e sttt e e e ante e e e e anbeeeesanbeeeesanteeaeaan 9
2. AP N OIMAtION ... 10
D T o =1 (o AV 2= T =T o LU (=T 0 1= o 10
2.2 SOftware REQUIMEMENTScoo ittt e e e e e e ettt ee e e e e e e e neeeeeeea e e e e e nneeeeeeaaeeaaannnnnneeaeeean 10
DZ2RC TS TU] o] o Ty {Yo IR oo] o] s F= T/ o T SRR 10
2.4 USING INTEITUPT VECIOT ...ttt e ettt e e et e e e s aabe e e e s anbeeeeean 10
D T (= T=To [T [PO PP PUPP PP PP 10
D22 T 101 (=T = I o = 10
D A 0701041 o 11 TSI 1= 111 oo [PSR SS PP 11
D2 T 0o o [T 4 SRR 14
D Y (o U] 4= 0 PSP PUPPPPPPRRN 15
D2 L o= (0T T 2= 11 SRR 15
b2t T T 071 o= o3 QU1 e 1o o ISP 16
D228 22 X (o [10 Vo Bl I I\ (o Yo 11 L=T T (o TN o] =Y o1 £ 16
213 “for”, “while” and “do while” StatemMENtSooiiiiiii i 17
B T LY o I ¥ | o 1o 3R 18
ST 1] @ T =Y o RS SURRT 18
ST 1] 1 o1 =Y SRR 20
RS T] I a1 CF= [(SRS 21
ST] =g T [SRR 23
S B I @3 =Yoo 1119V T OO PRSPPI 24
ST IS BT 1 YO 1] =Y o SRR 25
R _SDSI_REAUCISREG() .eeeeuvveieiitiiie ittt e eettte e e ettt e s ettt e e s et te e e s staeeesassaeeesassseeeaansseeeaansseeeaansseeesansseeesansseeesansees 26
R_SDSI_WHFEFUNCREG() .-t eeteeitteee ettt ettt s bt e st e s aabb e e e e aabb e e e e annes 27
S B I R Y= To | U g Tl =Y [SO PPPPPRN 29
R_SDSI_ WriteINtVECIOTREG() ... e it e ettt e e e e e et e e e e e e e st e aeeeaeeeeesnsteeeeaaaeeaaannns 31
S B I R Y=o [T 1AV 4=Ter (o] =Y [TSSO PPPPPRN 32
R_SDSI_ReadINtCIEarREG() ... i veeeeiitiiie ittt st e e e e e b e e aanes 33
R_SDSI_ENADIEDINECITIANS() «uvteeeeitiiee ettt ettt ettt e sttt e e aab bt e e s aab e e e s aabb e e e s anbbe e e e annes 34
R_SDSI_DiSableDir@CtTIANS() eeeeeiueieeeiiiiiee ettt ettt s aab e e s aab e e e s aabb e e e aanbe e e e aanes 36
R _SDSI SetDir€CITraNSAGI() .. cci i ceerieiiee e e e eeeet ettt e e e et e e e e e e e et e et e e e e s seabsteeeeaaesesanrsseeeaeessasnnsrsseeeeeeesansnes 37
RO1AN3238EJ0204 Rev.2.04 Page 2 of 65

Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

R_SDSI_ GetDir€CITIANSAUI() ..ociieeeriiieeee e e eeectte et e e e e e et e e e e e e e et e e e e e e e e seab s baeeeaaeessaantsseeeaeeeaaannsrsseeeaeeesaannes 38
R_SDSI_ReGISHNICAIDACK() ..e.eueteeeeiteeie ettt ettt ab et s et e e s enbbe e e e eanes 39
R_SDSI_RegiStCAINTCAIIDACK(). .-+ e uveeeeereauieeeatieeeieeatee st e et ee et e e sttt e et e e seteeeeeeesteeesmeeeesseeeameeeamneeeanseeaneeennes 41
R_SDSI_ReQiStDINtCAIIDACK(). e ueeiueeieeeeie et eree ettt e st e st este e et e e e e eeeste e saeesaeeemeeameeaneeaneeeaneeseeens 43
S B I € 1= AV A=T 51 o) [SO PPPPRN 45
R_SDSI_ SetLOGHAIAGAIESS() ..ociieuerieiiieee e ettt e et e e e e e e e e e e e e e e se b s beeeeaeeessantsaeeeaeeeeesnnsrsseeeaaesaaannes 46
LS 125 I e o RS PRPRR 47
4. PN SEtING .o e e e e e e e e e e e e e as 48
4.1 Drive Capacity CONIIOloouiiiiiiii ettt e e e st e e nnee s 48
5. DEIMO PrOGIraM ...ttt s 49
5.1 Overview Of DEMO PrOGIamciiii oottt e e e e et e e e e e e e st e e e e e e e s s stabeeeeaaeessantsreeeeaeeaaannes 49
5.2 OVEIVIEW OF APILS ..ottt et e e e ettt e e e ea et e e e e a bt e e e e eabe e e e e sbe e e e e nbeeeeaneeeeeannreeeeannees 49
TR T O o T=T 1 1 o] o T OO PPPRRN 49
TR I o =T o 1 = USRS 49
TR S T 1 111 = USSR 50
5.4 Procedure from Adding FIT Modules to BUildingccooiiiiiiiiiiii e 55
LTS T TV o (o =T T To I £ V= TN 1011 1 o T L PPNt 55
G I N o I 0] o Tex (oo - T PP UOTPPPPPPPRN 56
5.6.1 R_SDSI_PXPD_OPEN() c:ttteiuteeiitiiaaieeesieeestetesieeateeasseeesteessseeassaeessesassseessseesnseeessseessseesasesesssessnsesenses 56
5.6.2 R_SDSI_PXPD_REAACMA() .. i teteiuireiuiieaatiieaieeateeeateeeateeesteeesueeeateeesseeesmeeesnseeesnseeaseeaaseeeanseeanseeanses 57
5.6.3 R_SDSI_PXPD_WIHERESP() +ereuveeeaueeeiureeaaueteaieeaaieaaateeeaateaasueeaaueeeaaseeeasseeanseesaseeesnseeanseeaaseeesnsesanseeanses 58
5.6.4 R_SDSI_PXPD_SEtSDIOINT() .. ueteiueeeiiieeatiteaeeaieeeaieeesteeesteeeseeeeateeeseeeesmeeesseeeesnseeaneeaseeeanseeanseeannes 59
5.6.5 R_SDSI_PXPD_GEtSDIOINT().eiveeeieieiiiriaiieesieeeiieesieesteeesteeesteeesteeessseessseesseeessseesseesnseeesnsessnsesenses 60
T Y o] o =T aTo [PP 61
6.1 Operating ENVIFONMENT ...t e e e e e e e e st e e e e e e s et ateeeeeaeeesanstsreeeaaeeaaannes 61
L N o]0 o] 1=T1 g TeTo £ o o [USRS 63
7. ReferenCe DOCUMENTSuuiiiiiiiiiiiiiiiiiiiiiii s 64
JLIC=Ted] o= I U oo F= (=3 64
REVISION HISTOIY ...t e e e e e e et e e e e e e e e e s e eaaeas 65
RO1AN3238EJ0204 Rev.2.04 Page 3 of 65

Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

1. Overview

1.1 SDSI FIT Module

This module is incorporated into projects in the form of API functions. For instructions on adding this module
to your project, see “2.12, Adding FIT Modules to Projects”.

1.2 Overview of SDSI FIT Module
SDSI built-in RX Family microcontroller is used to implement SD slave control.

Table 1.1 lists the peripheral devices used and their applications, and Figure 1-1 shows the usage example.

The following shows the Functions overview.
e SD slave control device driver using the SDSI, with the RX Family microcontroller as the master device

e Supports high-speed mode and default speed mode

e Supports block transfer mode and byte transfer mode

e Selectable from wide bus mode (4-bit) or default bus mode (1-bit)

e Supports SD mode. SPI mode is not supported.

e Supports CCCR (Card Common Control Register)-based operation

e Supports FBR (Function Basic Register)-based operation

e Supports access to CIS (Card Information Structure) 108 bytes

e Supports access to Function1 area (Function Unique register space)

e Supports direct transfer to MCU’s On-chip RAM using the DMA bus.

e Can call callback function when detecting SDSI interrupt

e Can control a single channel or multiple channels specified by the user
e Reentrancy from a different channel is possible.

e Operation with both big-endian and little-endian data order is supported.

Table 1.1 Peripheral Devices Used and the Usage

Peripheral Device Usage
SDSI Single or multiple channels (required)
RX
SDSI SD Bus SD Host
device
Figure 1-1 Usage Example
RO1AN3238EJ0204 Rev.2.04 Page 4 of 65

Dec.13.23

RX Family

SDSI Module Using Firmware Integration Technology

1.3 Overview of APIs

Table 1.2 lists the API functions of SDSI FIT module.

Table 1.2 API Functions

Function Name

Description

R_SDSI_Open()

Driver Open processing

R_SDSI_Close()

Driver Close processing

R_SDSI_Initialize()

Initialization processing

R_SDSI_End()

End processing

R_SDSI_CflagPolling()

C flag polling processing

R_SDSI_WriteCisReg()

CIS Data Register write processing

R_SDSI_ReadCisReg()

CIS Data Register read processing

R_SDSI_WriteFuncReg()

FN1 Data Register n write processing (n=1,2,5)

R_SDSI_ReadFuncReg()

FN1 Data Register m read processing (m=1,3,5)

R_SDSI_WritelntVectorReg()

FN1 Interrupt Vector Register write processing

R_SDSI_ReadIntVectorReg()

FN1 Interrupt Vector Register read processing

R_SDSI_ReadIntVectorClearReg()

FN1 Interrupt Clear Register read processing

R_SDSI_EnableDirectTrans()

DMA transfer enable processing

R_SDSI_DisableDirectTrans()

DMA transfer disable processing

R_SDSI_SetDirectTransAdr()

DMA transfer start address setting processing

R_SDSI_GetDirectTransAdr()

DMA transfer start address acquisition processing

R_SDSI_RegistIntCallback()

SDSI command interrupt callback function register processing

R_SDSI_RegistCdIntCallback()

SDSI card detection disable (Rise/Fall) interrupt callback
function register processing

R_SDSI_RegistDtIntCallback()

SDSI DMA transfer end interrupt callback function register
processing

R_SDSI_GetVersion()

Driver version information acquisition processing

R_SDSI_IntHandler0()

Interrupt handler

R_SDSI_SetlLogHdIAddress()

LONGQ module handler address setting process

R_SDSI_Log()

Error log acquisition processing

RO1AN3238EJ0204 Rev.2.04
Dec.13.23

Page 5 of 65

RX Family SDSI Module Using Firmware Integration Technology

1.4 Processing Example

1.4.1 Hardware

Figure 1-2 is a connection diagram. Using SDSI built-in microcontroller, SD mode of 1-bit/4-bit bus is
controlled. One SD host per channel is connectable.

Refer to SDIO module specification to consider the circuit to match the system.

Pull-up resistance should be determined in reference to SD Specifications Part 1 Physical Layer
Specification. To achieve high-speed operation, consider adding damping resistors or capacitors to improve
the circuit matching of the various signal lines. But pull-up processing is not described here, as there is no
rule for SD Specifications Part 1 Physical Layer Specification.

MCU SDIO
SDS| Pulled up with external resisters on Host
SDIO module power supply
N
il L2727
SDSI_CLK % CLK
SDSI_CMD ‘ CMD
SDSI_D0 o DATO
SDSI_D1 o DAT1
SDSI_D2 o DAT2
SDSI_D3 @ DAT3

Figure 1-2 Sample Wiring Diagram for a RX Family MCU and SDIO module

(1) List of Pins

Table 1.3 lists the pins used and the functions.

Table 1.3 List of Pins Used and Functions

Pin Name 110 Description

SDSI_CLK Input SDSI Clock

SDSI_CMD Input/Output Command input, response output
SDSI_D3 to SDSI_DO0 Input/Output SDSI Data

RO1AN3238EJ0204 Rev.2.04
Dec.13.23

Page 6 of 65

RX Family SDSI Module Using Firmware Integration Technology

1.4.2 Software
(1) Software Structure

Figure 1-3 shows the software structure.

SD Slave Application

Pin control User API layer
module SDSI FIT module
Target microcontroller setting layer Driver layer
Port control (Target microcontroller interface function) (MCU-dependent)
Hardware
Sbslip (MCU-dependent)
SD Host controller Hardware

Figure 1-3 Software Structure

(a) User API layer (r_sdsi_rx.c)

This is SDSI FIT module user API, which is not dependent on the specifications of the microcontroller
or the SDSI.

(b) Target microcontroller setting layer (r_sdsi_dev.c)

This performs read/write to SDSI register, which is dependent on the specifications of the
microcontroller or the SDSI. The processing should be reviewed for each microcontroller.

(c) SD Slave application (r_sdsi_pxpd_rx.c)
SDSI FIT module control sample is included for reference.

RO1AN3238EJ0204 Rev.2.04 Page 7 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

(2) 4-Byte Access to CIS Data Registers (CISDATAR), and Data Arrangement

Based on the SDSI IP specification, the SDSI FIT module accesses the CIS data registers (CISDATAR) in 4-
byte units. In such cases, data is written to or read from the start address of the CIS data register
(CISDATAR) in order, starting from the start address in RAM. Therefore, the arrangement of 4-byte data will

differ depending on the endian setting.

typedef union

{
uint32 t 1;
uint8 t c[4];
} sdsi union t;

sdsi reg t sdsi reg;

sdsi union t io buff = { 0 };

io buff.c[0] = 0x01; /* RAM address 0 (start) */
io buff.c[1l] = 0x02; /* RAM address 1 */

io buff.c[2] = 0x03; /* RAM address 2 */

io buff.c[3] = 0x04; /* RAM address 3 */

/*

Value of iobuff.l differs depending on endian setting.

Little-endian: io buff.l = 0x04030201
Big-endian: io_buff.1l = 0x01020304
*/
sdsi reg.offset = 0x0;
sdsi reg.p buff = &io buff.l;
if (R _SDSI WriteCisReg(SDSI CHO, &sdsi reg) != SDSI SUCCESS)

{

/* Error */

}

RO1AN3238EJ0204 Rev.2.04
Dec.13.23

Page 8 of 65

RX Family

SDSI Module Using Firmware Integration Technology

1.5 State Transition Diagram
Figure 1-4 shows the state transition diagram

Driver not initialized yet

R_SDSI_Open()

R_SDSI_Close()

Driver initialized
[SD Slave communication

R_SDSI_WriteCisReg()
R_SDSI_ReadCisReg()
Note 1

R_SDSI_Initialize()

R_SDSI_End()

C flag polling R_SDSI_End()

! SD Host
i command accept

Note 1 :
Note 2 :
Note 3 :

(C flag set wait)

R_SDSI_CflagPolling()
(Busy)

R_SDSI_CflagPolling()
(Ready)

R_SDSI_DisableDirectTrans()

s
N

R_SDSI_EnableDirectTrans()

Driver idling
[DMA transfer enabled]

Driver idling
[Function1 area transfer enabled]

R_SDSI_IntHandler0()
Note 4

SD Host
command accept

R_SDSI_IntHandler0()
Note 3

Note 2, note 5

Transferring
[DMA transfer]

Transferring
[Function1 area transfer]

Note 2

R_SDSI_WriteCisReg() can be called only when driver is initialized.
R_SDSI_xxxxReg() other than R_SDSI_WriteCisReg() can be called.
When either interrupt CMD52_W or CMD53_W or CMD53_R in Function1,
or card detection disabled (Rise/Fall) is detected.

Note 4: When DMA transfer end interrupt is detected.
Note 5: For FN1 Data Register 5, simultaneous access from both SD Host/CPU are disabled.

Figure 1-4 State Transition Diagram

RO1AN3238EJ0204 Rev.2.04

Dec.13.23

Page 9 of 65

RX Family SDSI Module Using Firmware Integration Technology

2. API Information

The names of the APlIs of the control software follow the Renesas API| naming standard.

2.1 Hardware Requirements

The microcontroller used must support the following functionality.
e SDSI

2.2 Software Requirements

This driver is dependent on the following packages.

r_bsp Rev.5.00 or higher

2.3 Supported Toolchain

The operation of the control software has been confirmed with the toolchain listed in 6.1.

2.4 Using Interrupt Vector

Executing the R_SDSI_Initialize() function enables the SDSI interrupt’ corresponding to the channel.

Table 2.1 lists interrupt vector used by SDSI FIT module.

Table 2.1 Using Interrupt Vector

Device Interrupt Vector

RX65N GROUPBL2 Interrupt (Vector number: 107)
e SDSI Interrupt [channel 0] (Group interrupt source number: 0)

2.5 Header Files

All the API calls and interface definitions used are listed in r_sdsi_rx_if.h.
Configuration options for individual builds are selected in r_sdsi_rx_config.h.

#include "r sdsi rx if.h"

2.6 Integer Types

This project uses ANSI C99. These types are defined in stdint.h

1"CMD53 read command interrupt", "CMD53 write command interrupt"”, "CMD52 write command
interrupt”, “DMA transfer end interrupt” and “card detection disable (rise/fall) interrupt”

RO1AN3238EJ0204 Rev.2.04 Page 10 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

2.7 Compile Settings

The configuration option settings for the control software are specified in r_sdsi_rx_config.h.

The option names and setting values are described below.

RO1AN3238EJ0204 Rev.2.04 Page 11 of 65
Dec.13.23

RX Family

SDSI Module Using Firmware Integration Technology

Configuration options in r_sdsi_rx_config.h

#define SDSI_CFG_USE_FIT
Note: The default value is “enabled”.

Selects whether or not the SDSI FIT module is used in a
BSP environment.

When this option is set to “disabled”, control of FIT
modules such as r_bsp is disabled. Also, the equivalent
processing must be incorporated separately.

When this option is set to “enabled”, control of FIT
modules such as r_bsp is enabled.

#define
SDSI_CFG_PARAM_CHECKING_ENABLE
Note: The default value is

“BSP_CFG_PARAM_CHECKING_ENABLE

Selects whether or not parameter checking takes place.

(0): Checking disabled, (1): Checking enabled

The default value is
“BSP_CFG_PARAM_CHECKING_ENABLE”.

To enable the checking function for the SDSI FIT module only,
set this definition to 1. To disable checking, set this definition
to 0.

#define SDSI_CFG_CHx_INCLUDED

Note: The default value of channel 0 is
“enabled”.

The channel number is represented by “X”.

Selects whether or not the specified channel is used.
When this option is set to “disabled”, code for
processing the specified channel is omitted.

When this option is set to “enabled”, code for processing
the specified channel is included.

#define SDSI_CFG_LONGQ_ENABLE
Note: The default value is “disabled”.

Selects whether or not debug error log acquisition
processing is used.

When this option is set to “disabled”, code for the
relevant processing is omitted.

When this option is set to “enabled”, code for the
relevant processing is included.

To use this functionality, the LONGQ FIT module is also
required.

#define SDSI_CFG_CHx_INT_LEVEL
Note: The default value for channel 0 is “5”

“y”

The channel number is represented by “x”.

Set SDSI interrupt priority level.

SDSI interrupt may be assigned to the group interrupt
depending on the MCUs. If such is the case, define the group
interrupt priority

level.

#define
SDS|_CFG_DISABLE_SYSTEM_INTERRUPT
Note: The default value is “disabled”.

Selects whether or not to disable all processors interrupt
during R_SDSI_Open() processing. If enabled, it detects SDIO
command issued in uninitialized state of the driver
(communication disabled) and decreases the possibility of
returning the response.

Disabled : does not disable all processors interrupt
Enabled : Disables all processors interrupt

When interrupts are disabled, the | flag in the processor
stratus word (PSW) register of the CPU is cleared. Therefore,
when enabling this definition, set CPU to supervisor mode. In
user

mode, privileged instruction exception is generated by
interrupt

disable processing.

#define SDSI_CFG_FBR_ADR_100H
Note: The default value is “0x00”.

Set FBR 0x100 Function1 Standard SDIO Function interface
code. The value set to b7-b4 is ignored.

#define SDS|_CFG_FBR_ADR_101H
Note: The default value is “0x01”.

Set FBR 0x101 Function1 Extended standard SDIO Function
interface code.

RO1AN3238EJ0204 Rev.2.04
Dec.13.23

Page 12 of 65

RX Family

SDSI Module Using Firmware Integration Technology

Configuration options in r_sdsi_rx_config.h

#define SDSI_CFG_FBR_ADR_102H

Setting FBR 0x102 is prohibited. If a setting is made, it is
ignored.

Set the SPS bit in FBR 0x102 by means of the macro
definition SDSI_CFG_FBR_SPS_BIT.

#define SDSI_CFG_FBR_ADR_103H
Note: The default value is “0x00”.

Set FBR 0x103 Function1 Standard iSDIO Function Interface
Code.

#define SDS|_CFG_FBR_ADR_104H
Note: The default value is “0x00”.

Set FBR 0x104 Function1 MID_MANF SDIO Card
Manufacturer Code.

#define SDS|_CFG_FBR_ADR_105H
Note: The default value is "0x00".

Set FBR 0x105 Function1 MID_MANF SDIO Card
Manufacturer Code.

#define SDSI_CFG_FBR_ADR_106H

Set FBR 0x106 Function1 MID_CARD Manufacturer

Note: The default value is “0x00”. Information.
#define SDSI_CFG_FBR_ADR_107H Set FBR 0x107 Function1 MID_CARD Manufacturer
Note: The default value is “0x00”. Information.

#define SDSI_CFG_FBR_ADR_108H
Note: The default value is “0x00".

Set FBR 0x108 1/O block size for Function1.

#define SDSI_CFG_FBR_SPS_BIT
Note: The default value is “0”.

Set FBR 0x102 SPS bit value (0 or 1).

#define SDSI_CFG_CCCR_SMPC_BIT
Note: The default value is “0”.

Set CCCR 0x012 SMPC bit value (0 or 1).

RO1AN3238EJ0204 Rev.2.04
Dec.13.23

Page 13 of 65

RX Family SDSI Module Using Firmware Integration Technology

2.8 Code Sizes

Table 2.2 shows the code size when the latest version of the module is used.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.7, Compile Settings.

The values in the table below are confirmed under the following conditions.
Module Revision: r_sdsi_rx rev2.02
Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00

(The option of “-lang = c99” is added to the default settings of the integrated
development environment.)

GCC for Renesas RX 4.8.4.201803

(The option of “-std=gnu99” is added to the default settings of the integrated
development environment.)

IAR C/C++ Compiler for Renesas RX version 4.10.1
(The default settings of the integrated development environment.)

Configuration Options: Default settings

Table 2.2 Code Sizes

ROM, RAM and Stack Code Sizes (Note1, 2, 3)

Category | Memory Used

Renesas Compiler _ IAR Compiler

. Without With Without With Without
With Parameter
Checkin Parameter Parameter Parameter Parameter Parameter
9 Checking Checking Checking Checking Checking
RX65N ROM 2349 bytes 1830 bytes 4692 bytes 3796 bytes 3864 bytes 3095 bytes
RAM 8 bytes 4 bytes 12 bytes
Max. user
56 bytes - 108 bytes
stack 4 y
Max.
interrupt 0 bytes - 68 bytes
stack

Note 1 Under confirmation conditions listed the following
e r_sdsi_rx.c
e r_sdsi_dev.c
e r_sdsi_register.c
Note 2 The required memory sizes differ according to the C compiler version and the compile conditions.
Note 3 The memory sizes listed apply when the little endian. The above memory sizes also differ according
to endian mode.

RO1AN3238EJ0204 Rev.2.04 Page 14 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

2.9 Arguments

The structure for the arguments of the API functions is shown below. This structure is listed in r_sdsi_rx_if.h,
along with the prototype declarations of the API functions.

typedef struct
{

uint32 t reg no;
uint32 t offset;
uint32 t * p buff;

} sdsi reg t;

typedef struct
{
uint32 t adr;
uint32 t mode;
} sdsi direct trans t;

typedef struct
{

uint32 t adr;
uintlé t blkent;
uintlé t bytcnt;
uint8 t sdcmdcr;
uint8 t cmd;
uint8 t rsv(2];

} sdsi cmd t;

2.10 Return Values

The API function return values are shown below. This enumerated type is listed in r_sdsi_rx_if.h, along with
the prototype declarations of the API functions.

typedef enum e sdsi status

{

SDSI_SUCCESS = 0,
SDSI_ERR = -1,
SDSI_ERR_BUSY = -2,
SDSI_ERR_ADDRESS BOUNDARY = -3

} sdsi_status_t;

RO1AN3238EJ0204 Rev.2.04 Page 15 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

2.11 Callback Function
lists the callback function of the SDSI FIT module.

Table 2.3 Callback Function

Function to register the callback function Timing to call the callback function

R_SDSI_RegistIntCallback() Detected SDSI command interrupt?
R_SDSI_RegistCdCallback() Detected card detection disable (rise/fall) interrupt
R_SDSI_RegistDtCallback() Detected DMA transfer end interrupt

2.12 Adding FIT Modules to Projects

This module must be added to each project in which it is used. Renesas recommends using “Smart
Configurator” described in (1) or (2). However, “Smart Configurator” only supports some RX devices. Please
use the methods of (3) for unsupported RX devices.

(1) Adding the FIT module to your project using “Smart Configurator” in e2 studio
By using the “Smart Configurator” in e? studio, the FIT module is automatically added to your
project. Refer to “Renesas e? studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using “Smart Configurator’ on CS+
By using the “Smart Configurator Standalone version” in CS+, the FIT module is automatically
added to your project. Refer to “Renesas e? studio Smart Configurator User Guide (R20AN0451)"
for details.

(3) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (RO1AN1826)” for details.

2 8DSI command interrupt are "CMD53 read command interrupt", "CMD53 write command interrupt" and
"CMD52 write command interrupt".

RO1AN3238EJ0204 Rev.2.04 Page 16 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

2.13 “for”, “while” and “do while” statements

TS

In this module, “for”, “while” and “do while” statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with “WAIT_LOOP” as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with “WAIT_LOOP”.

The following shows example of description.

while statement example :

/* WAIT_LOOP */

while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{

/* The delay period needed is to make sure that the PLL has stabilized. */

}

for statement example :
/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
g_protect_counters[i] = 0;

}

do while statement example :
/* Reset completion waiting */
do
{
reg = phy_read(ether_channel, PHY_REG_CONTROL);
count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET)); /* WAIT_LOOP */

RO1AN3238EJ0204 Rev.2.04 Page 17 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology
3. API Functions

LSDSI=Open()

This function initializes the SDSI FIT module. This function should be run first before using other API
functions.

Format
sdsi status t R _SDSI Open (
uint32 t channel,
void * p sdsi workarea

)

Parameters
channel

SDSI channel number
* p_sdsi_workarea
Working area pointer for 4-byte boundaries (working area size 28 bytes should be secured)
Return Values
SDSI|_SUCCESS Successful operation
SDSI_ERR Common error
SDSI_ ERR_ADDRESS BOUNDARY 4-byte boundaries address error in *p_sdsi_workarea

Properties
Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Gets SDSI channel resource specified by the argument channel, and initializes SDSI driver and SDSI
channels. Also, this function monopolizes the SDSI channel resource.

Hold the working area specified by *p_sdsi_workarea and do not change the contents until SDSI driver’s
R_SDSI_Close() is called.

Reentrant
Reentrancy from a different channel is possible.

Example
uint32 t g _sdsi work([28/sizeof (uint32 t)];
if (R _SDSI Open(SDSI CHO, &g sdsi work[0]) != SDSI SUCCESS)

{
/* Error */

}

RO1AN3238EJ0204 Rev.2.04 Page 18 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

Special Notes

To end the function processing before SDIO command is issued from SD host, run this function immediately
after the system power-up.

It is recommended to enable #define SDSI_CFG_DISABLE_SYSTEM_INTERRUPT. When running this
function, the state becomes IOR0=1 (Function0 Enabled/ Ready state) during the period from cancelation of
SDSI module stop state to SDSI software reset (SDSICR3.SRST). During this period, SD slave detects SDIO
command and returns the response. If #define SDSI_CFG_DISABLE_SYSTEM_INTERRUPT is enabled, all
processors interrupt requests are disabled during the period from module stop state to software reset,
therefore, ready state period can be minimized.

The pin state does not change before/after running this function.

APIs other than R_SDSI_GetVersion() function, R_SDSI_Log() function, and R_SDSI_Set_LogHdIAddress()
function cannot be used unless the function is successfully completed.

RO1AN3238EJ0204 Rev.2.04 Page 19 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

LSDSI=CIose()

This function is used to release the resources of the SDSI FIT module currently in use.

Format
sdsi status_t R _SDSI Close(
uint32_ t channel

)

Parameters
channel

SDSI channel number

Return Values

SDS|_SUCCESS Successful operation
SDSI_ ERR Common error
Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Ends all SDSI FIT module processing and releases SDSI channel resource specified by the argument
channel. Sets the SDSI channel to the module stop state.

Releases the working area specified by R_SDSI_Open() function.

Reentrant
Reentrancy from a different channel is possible.

Example
if (R_SDSI_Close(SDSI_CHO) I = SDSI SUCCESS)
{

/* Error */

}

Special Notes
Open processing by R_SDSI_Open() function is also required before running the function. The pin state
does not change before/after running this function.

RO1AN3238EJ0204 Rev.2.04 Page 20 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

R_SDS|_lInitialize()

This function performs SDSI IP initial setting. After successful operation, the state changes to C flag polling
state.

Format
sdsi status_t R _SDSI Initialize(
uint32_ t channel

)

Parameters
channel

SDSI channel number

Return Values

SDS|_SUCCESS Successful operation
SDSI_ERR Common error
Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Performs SDSI IP initial setting. After successful operation, the state changes to C flag polling state.

Reentrant
Reentrancy from a different channel is possible.

Example
sdsi status t ret = SDSI SUCCESS;

* ==== Please add the processing to set the pins. ==== */
if (R SDSI Initialize (SDSI CHO) != SDSI SUCCESS)

{
/* Error */

}

/* ==== C flag polling ==== */
do
{
ret = R SDSI CflagPolling (SDSI_CHO) ;
if (SDSI ERR == ret)
{
/* Error */
}
}
while (SDSI_ERR BUSY == ret);

RO1AN3238EJ0204 Rev.2.04 Page 21 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

Special Notes

Before running this function, pin setting is required. Refer to “4 Pin Setting”. Open processing by
R_SDSI_Open() function is also required before running the function.

The following settings should be made :

Enable CPU access to Function1 Register1-4.
Enable SD host access on Function1 Register5.
Set FBR, FBR.SPS, and CCCR.SMPC

Enable SDSI interrupt.

Set CCCR.IOR1 to “1 (Ready)".

Set I/0 Function ready 0 bit (SDSICR3.I0R0) to “1”. When the bit is “1” and CMD5 from the SD host is
accepted, "1” is set to C flag on R4 response. C flag status can be confirmed with R_SDSI_CflagPolling()
return value. Call R_SDSI_CflagPolling() until CMD5 is issued from SD host.

RO1AN3238EJ0204 Rev.2.04 Page 22 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

R_SDSI_End()

This function changes the SDSI FIT module from idle state to initialization state.

Format
sdsi status_t R _SDSI End(
uint32_ t channel

)

Parameters
channel

SDSI channel number

Return Values

SDS|_SUCCESS Successful operation
SDSI_ ERR Common error
Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Performs SDSI end processing.

Reentrant
Reentrancy from a different channel is possible.

Example
if (R _SDSI_End(SDSI_CHO) != SDSI_SUCCESS)
{

/* Error */

}

Special Notes
Before running this function, open processing by R_SDSI_Open() function is required. The pin state does not
change before/after running this function.

RO1AN3238EJ0204 Rev.2.04 Page 23 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

LSDSI=CfIagPoIIing()

This function gets C flag status of R4 response.
After initialization processing by the R_SDSI_Initialize() function, call this function and check that
SDSI_SUCCESS (C flag is "1 (ready)") as return value.

Format
sdsi status_t R _SDSI CflagPolling(
uint32_ t channel

)

Parameters
channel

SDSI channel number

Return Values

SDSI_SUCCESS C Flag is “1(Ready)”
SDSI_ERR_BUSY C Flag is “O(Busy)”
SDSI_ERR Common error
Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Gets C flag status of R4 response.

Reentrant
Reentrancy from a different channel is possible.

Example

sdsi status t ret = SDSI SUCCESS;

/* ==== Please add the processing to set the pins. ==== *
if (R SDSI Initialize (SDSI CHO) != SDSI SUCCESS)

{
/* Error */

}

/* ==== C flag polling ==== */
do
{
ret = R SDSI CflagPolling (SDSI_CHO) ;
if (SDSI_ERR == ret)
{
/* Error */
}

}
while (SDSI_ERR BUSY == ret);

Special Notes
Before running this function, open processing by R_SDSI_Initialize() is required.

When IORO0 is 1 and CMD5 from the SD host is accepted, ”1” is set to C flag on R4 response.

RO1AN3238EJ0204 Rev.2.04 Page 24 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

LSDSI=WriteCisReg()

This function writes the value to CIS Data Register.

Format
sdsi status_t R _SDSI WriteCisReg(
uint32 t channel,
sdsi reg t * p sdsi reg

)

Parameters
channel

SDSI channel number

*p_sdsi_reg
reg_no Register No. (Setting is not required)
offset CIS Data Register offset (multiples of 4:0,4,8,12...100,104)
* p_buff Write buffer pointer (4 bytes)

Return Values

SDSI_SUCCESS Successful operation

SDSI_ERR Common error

Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Writes the value to CIS Data Register, and accesses to CIS Data Register at 4 bytes. Can call only when the
driver is in the initialization state.

Reentrant
Reentrancy from a different channel is possible.

Example
typedef union
{
uint32 t 1;
uint8 t c[4];
} sdsi union t;

sdsi reg t sdsi reg;

sdsi union t io buff = { 0 };
io buff.c[0] = 0x20;
io buff.c[1l] = 0x04;
io buff.c[2] = 0x00;
io buff.c[3] = 0x20;

sdsi reg.offset 0;
sdsi reg.p buff = &io buff.l;
if (R SDSI WriteCisReg(SDSI CHO, &sdsi reg) != SDSI SUCCESS)
{
/* Error */

}

Special Notes
Before running this function, open processing by R_SDSI_Open() is required.

RO1AN3238EJ0204 Rev.2.04 Page 25 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

LSDSI=ReadCisReg()

This function reads the value from CIS Data Register.

Format
sdsi status_t R _SDSI ReadCisReg(
uint32 t channel,
sdsi reg t * p sdsi reg

)

Parameters
channel

SDSI channel number

*p_sdsi_reg
reg_no Register No. (Setting is not required)
offset CIS Data Register Offset (multiples of 4:0,4,8,12...100,104)
* p_buff Read buffer pointer (4 bytes)

Return Values

SDSI_SUCCESS Successful operation

SDSI_ERR Common error

Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Reads the value from CIS Data Register, and accesses CIS Data Register at 4 bytes.

Reentrant
Reentrancy from a different channel is possible.

Example
typedef union
{
uint32 t 1;
uint8 t c[4];
} sdsi union t;

sdsi reg t sdsi reg;
sdsi union t io buff = { 0 };

io buff.l = 0;

sdsi reg.offset = 0;
sdsi reg.p buff = &io buff.l;
if (R _SDSI ReadCisReg(SDSI CHO, &sdsi reg) != SDSI SUCCESS)
{
/* Error */

}

Special Notes
Before running this function, open processing by R_SDSI_Open() is required.

RO1AN3238EJ0204 Rev.2.04 Page 26 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

LSDSI=WriteFuncReg()

This function writes the value to FN1 Data Register n (n=1,2,5). It performs processing to write data to the
Function1 area.

Format
sdsi status_t R _SDSI WriteFuncReg(
uint32 t channel,
sdsi reg t * p sdsi reg

)

Parameters
channel

SDSI channel number

*p_sdsi_reg
reg_no Register No. (1 or 2 or 5)
offset FN1 Data Register n (n=1 or 2 or 5) Offset
<Allowable setting value>
FN1 Data Register 1 (Function1 Register1) : 0,1,2,3...255
FN1 Data Register 2 (Function1 Register2) : 0,1,2,3...255
FN1 Data Register 5 (Function1 Register5) : 0,1,2,3...1023
* p_buff Write buffer pointer (1 bytes)
Return Values
SDS|_SUCCESS Successful operation
SDSI_ ERR Common error
Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Writes the value to FN1 Data Register n, and accesses FN1 Data Register n at 4 bytes.

Reentrant
Reentrancy from a different channel is possible.

Example
sdsi reg t sdsi_ reg;
uint8 t io buff = 0;

sdsi reg.reg no = SDSI FUNCl REGI;
sdsi reg.offset = 0x0;
sdsi reg.p buff = &io buff;
if (R _SDSI WriteFuncReg(SDSI CHO, &sdsi reg) != SDSI SUCCESS)
{
/* Error */

}

RO1AN3238EJ0204 Rev.2.04 Page 27 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

Special Notes
Before running this function, open processing by R_SDSI_Open() is required.

FN1 Data Register 5 cannot be accessed simultaneously by the SD host and the CPU. Therefore, follow the
steps below:

1. Enable FN1 Data Register 5 to access from CPU (SDSICR2.REG5EN = 1)
Access by SD host controller disabled.
Access FN1 Data Register 5

3. Enable FN1 Data Register 5 to access from SD host controller (SDSICR2.REG5EN = 0)
Access by SD host controller enabled.

During the period of 2 mentioned above, when accessing from SD host controller to FN1 Data Register 5, the
value wrote is ignored, and the read value is undefined. If writing or reading from both CPU and SD host
controller to FN1 Data Register 5 occurs, exclusive access control in FN1 Data Register 5 is required.

RO1AN3238EJ0204 Rev.2.04 Page 28 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

iSDSI=ReadFuncReg()

This function reads the value from FN1 Data Register m (m=1,3,5). It performs processing to read data from
the Function1 area.

Format
sdsi status_t R _SDSI ReadFuncReg(
uint32 t channel,
sdsi reg t * p sdsi reg

)

Parameters
channel

SDSI channel number

*p_sdsi_reg
reg_no Register No. (1 or 3 or 5)
offset FN1 Data Register m (m=1 or 2 or 5) Offset
<Allowable setting value>
FN1 Data Register 1 (Function1 Register1) : 0,1,2,3...255
FN1 Data Register 3 (Function1 Register3) : 0,1,2,3...255
FN1 Data Register 5 (Function1 Register5) : 0, 1,2,3...1023
* p_buff Read buffer pointer (1 bytes)
Return Values
SDS|_SUCCESS Successful operation
SDSI_ ERR Common error
Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Reads the value from FN1 Data Register m, and accesses FN1 Data Register m at 4 bytes.

Reentrant
Reentrancy from a different channel is possible.

Example
sdsi reg t sdsi_ reg;
uint8 t io buff = 0

sdsi reg.reg no = SDSI FUNCl REGI;
sdsi reg.offset = 0x0;
sdsi reg.p buff = &io buff;
if (R _SDSI ReadFuncReg (SDSI CHO, &sdsi reg) != SDSI SUCCESS)
{
/* Error */

}

RO1AN3238EJ0204 Rev.2.04 Page 29 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

Special Notes
Before running this function, open processing by R_SDSI_Open() is required.

FN1 Data Register 5 cannot be accessed simultaneously by the SD host and the CPU. Therefore, follow the
steps below:

1. Enable FN1 Data Register 5 to access from CPU (SDSICR2.REG5EN = 1)
Access by SD host controller disabled.
Access FN1 Data Register 5

3. Enable FN1 Data Register 5 to access from SD host controller (SDSICR2.REG5EN = 0)
Access by SD host controller enabled.

During the period of 2 mentioned above, when accessing from SD host controller to FN1 Data Register 5, the
value wrote is ignored, and the read value is undefined. If writing or reading from both CPU and SD host
controller to FN1 Data Register 5 occurs, exclusive access control in FN1 Data Register 5 is required.

RO1AN3238EJ0204 Rev.2.04 Page 30 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

R_SDSI_WritelntVectorReg()
This function writes the value to FN1 interrupt vector register (FN1INTVECR).

Format
sdsi status_t R _SDSI WriteIntVectorReg (
uint32 t channel,
uint8 t * vector

)

Parameters
channel

SDSI channel number
vector

Value of FN1 Interrupt Vector Register (1 byte)

Return Values

SDSI_SUCCESS Successful operation
SDSI ERR Common error
Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
writes the value to FN1 interrupt vector register. If CCCR IEN1 is set to ”1”, SDIO interrupt using SDSI_D1
occurs.

Reentrant
Reentrancy from a different channel is possible.

Example
if (R SDSI WriteIntVectorReg(SDSI CHO, Oxff) != SDSI SUCCESS)

{
/* Error */

}

Special Notes
Before running this function, open processing by R_SDSI_Open() is required. If SDIO interrupt occurs,
SDSI_D1 changes from H to L.

The timing of issuance of SDIO interrupts differs depending on whether the SD bus width is 1-bit or 4-bit.
¢ 1-bit bus (CCCR 0x07 bus width = 00b)
SDIO interrupts are generated with asynchronous timing; they are not synchronized with the SD clock.
e 4-bit bus (CCCR 0x07 bus width = 10b)

SDIO interrupts are generated in synchronization with the SD clock. If this API function is called when
the SD clock is halted, no SDIO interrupt is generated. SDIO interrupts are generated when the SD
clock is being supplied.

To generate SDIO interrupts with asynchronous timing, first set the bus width to 1-bit, then call this API
function.

RO1AN3238EJ0204 Rev.2.04 Page 31 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

iSDSI=ReadIntVectorReg()

This function reads the value from FN1 interrupt vector register (FN1INTVECR).

Format
sdsi status_t R _SDSI ReadIntVectorReg(
uint32 t channel,
uint8 t * p vector

)

Parameters
channel

SDSI channel number
* p_vector
Read buffer pointer (1 byte)

Return Values

SDSI_SUCCESS Successful operation
SDSI ERR Common error
Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Reads the value from FN1 interrupt vector register.

Reentrant
Reentrancy from a different channel is possible.

Example
uint8 t vector = 0;

if (R _SDSI ReadIntVectorReg (SDSI CHO, &vector)
{
/* Error */

}
Special Notes

!= SDSI_ SUCCESS)

Before running this function, open processing by R_SDSI_Open() is required.

RO1AN3238EJ0204 Rev.2.04
Dec.13.23

Page 32 of 65

RX Family SDSI Module Using Firmware Integration Technology

LSDSI=ReadIntCIearReg()

This function reads the value from FN1 interrupt clear register.

Format
sdsi status_t R _SDSI ReadIntClearReg(
uint32 t channel,
uint8 t * p vector

)

Parameters
channel

SDSI channel number
* p_vector
Read buffer pointer (1 byte)

Return Values

SDSI_SUCCESS Successful operation
SDSI ERR Common error
Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Reads the value from FN1 interrupt clear register.

Reentrant
Reentrancy from a different channel is possible.

Example
uint8 t vector = 0;

if (R _SDSI ReadIntClearReg(SDSI CHO, &vector)
{
/* Error */

}
Special Notes

!= SDSI_ SUCCESS)

Before running this function, open processing by R_SDSI_Open() is required.

RO1AN3238EJ0204 Rev.2.04
Dec.13.23

Page 33 of 65

RX Family SDSI Module Using Firmware Integration Technology

LSDSI=EnabIeDirectTrans()

This function makes DMA transfer enable setting.

Format
sdsi status_t R _SDSI EnableDirectTrans (
uint32 t channel,
sdsi direct trans t * p sdsi direct trans

)

Parameters
channel

SDSI channel number
* p_sdsi_direct _trans
adr DMA transfer start address (allowable setting range:On-chip RAM address)
Use an address aligned with a 4-byte boundary.
mode DMA transfer mode
<Address setting:Specify one from the followings>
SDSI_MODE_DIRECT_ADDR_FIXED : Fix the DMA transfer address
SDSI_MODE_DIRECT_ADDR_INC : Increment the DMA transfer address
Specifies the next DMA transfer address when detecting DMA transfer end interrupt.
<Bus setting : Select one from the followings>
SDSI_MODE_DIRECT_BUS LOCK : Lock the bus used in the DMA transfer
SDSI_MODE_DIRECT_BUS UNLOCK : Does not lock the bus used in the DMA transfer
Return Values
SDS|_SUCCESS Successful operation
SDSI_ ERR Common error
SDSI_ ERR_ADDRESS BOUNDARY adr 4-byte boundary address error

Properties
Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Makes DMA transfer enable setting. After successful operation, when CMD53 (specified Function1) is issued
from SD host controller, SDSI IP performs data transfer for On-chip RAM.

Reentrant
Reentrancy from a different channel is possible.

Example

uint32 t g io buff[512/sizeof (uint32 t)];

sdsi direct trans t sdsi _direct trans;

sdsi direct trans.adr = &g io buff[0];

sdsi direct trans.mode = (SDSI MODE DIRECT ADDR INC |

SDSI_MODE DIRECT BUS UNLOCK) ;

if (R _SDSI EnableDirectTrans (SDSI_CHO, &sdsi direct trans) != SDSI SUCCESS)

{
/* Error */

}

RO1AN3238EJ0204 Rev.2.04 Page 34 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

Special Notes
Before running this function, open processing by R_SDSI_Open() is required.

Do not call this function again if this function was operated successfully. If called, error is returned. To run
this function again, run DMA transfer disable processing R_SDSI_DisableDirectTrans() in advance.

SDSI performs DMA transfer using DMA bus. For RX65N/RX651 sharing the DMA bus used in SDSI and
Ethernet controller (ETHERC), exclusive access control is required. The preconditions necessary for this
function to operate properly are listed below. If these preconditions are not satisfied, the value SDS/ _ERR is
returned.

1. The ETHER and EDMAC is in the module stop state.

2. Initial settings have not been applied to the Ethernet FIT module.
(The ETHERC and EDMAC hardware resource is free.)

And ETHERC cannot release DMA bus dynamically due to its communication method. Therefore, if
combining use of SDSI and ETHERC in the user system, do not perform SDSI DMA transfer. For the setting,
follow the procedures below (assuming the use of Ethernet FIT module to control ETHERC)

1. Make initialization setting for Ethernet FIT module

(ETHERC/EDMAC hardware resource lock and module stop cancellation)
2. Make initialization setting for SDSI FIT module
3. Disable R_SDSI_EnableDirectTrans() call after the above procedures

When this function is called in the state mentioned in 3 above, SDS/ _ERR is returned.

RO1AN3238EJ0204 Rev.2.04 Page 35 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

LSDSI=DisabIeDirectTrans()

This function makes DMA transfer disable setting.

Format
sdsi status_t R _SDSI DisableDirectTrans (
uint32_ t channel

)

Parameters
channel

SDSI channel number

Return Values

SDS|_SUCCESS Successful operation
SDSI_ ERR Common error
Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Makes DMA transfer disable setting. After successful operation, when CMD53 (specified Function1) is issued
from SD host controller, SDSI IP performs data transfer for Function1 area.

Reentrant
Reentrancy from a different channel is possible.

Example
if (R_SDSI_DisableDirectTrans(SDSI_CHO) = SDSI SUCCESS)
{

/* Error */

}

Special Notes
Before running this function, open processing by R_SDSI_Open() is required.

RO1AN3238EJ0204 Rev.2.04 Page 36 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

LSDSI=SetDirectTransAdr()

This function specifies the DMA transfer address.

Format
sdsi status_t R _SDSI SetDirectTransAdr (
uint32 t channel,
uint32 t adr
)

Parameters
channel

SDSI channel number
adr

DMA transfer start address (allowable setting range : On-chip RAM address)

Return Values

SDSI_SUCCESS Successful operation
SDSI ERR Common error
Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Specifies the DMA transfer address.

Reentrant
Reentrancy from a different channel is possible.

Example
uint8 t g _io buff[512];
if (R _SDSI SetDirectTransAdr (SDSI _CHO, &g io buff[0]) != SDSI SUCCESS)

{
/* Error */

}

Special Notes
Before running this function, open processing by R_SDSI_Open() is required. Call this function before the
DMA transfer starts.

RO1AN3238EJ0204 Rev.2.04 Page 37 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

LSDSI=GetDirectTransAdr()

This function gets DMA transfer address.

Format
sdsi status_t R _SDSI GetDirectTransAdr (
uint32 t channel,
uint32 t * p adr
)

Parameters
channel

SDSI channel number
*p_adr
DMA transfer start address buffer (4 bytes)

Return Values

SDSI_SUCCESS Successful operation
SDSI ERR Common error
Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Gets DMA transfer address.

Reentrant
Reentrancy from a different channel is possible.

Example
uint32 t adr = 0;

if (R _SDSI GetDirectTransAdr (SDSI_CHO, &adr))
{
/* Error */

}
Special Notes

Before running this function, open processing by R_SDSI_Open() is required. Call this function before the

DMA transfer starts.

RO1AN3238EJ0204 Rev.2.04
Dec.13.23

Page 38 of 65

RX Family SDSI Module Using Firmware Integration Technology

&SDSI=RegistIntCaIIback()

This function registers SDSI command interrupt® callback function.

Format
sdsi status_t R _SDSI RegistIntCallback(
uint32 t channel,
sdsi status_t (* callback) (sdsi_cmd t *)
)

Parameters
channel

SDSI channel number
(* callback)(sdsi_cmd_t *)
Callback function to be registered

Callback function is not registered when null pointer is set.

Return Values

SDSI_SUCCESS Successful operation
SDSI ERR Common error
Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Registers SDSI command interrupt callback function. Call this function before running R_SDSI_Initialize().

Reentrant
Reentrancy from a different channel is possible.

Example
sdsi cmd t g sdsi cmd;
sdsi status t r sdsi callback(sdsi cmd t * p cmd);

if (R _SDSI RegistIntCallback(SDSI CHO, r sdsi callback) != SDSI SUCCESS)
{
/* Error */

}

static sdsi status t r sdsi callback(sdsi cmd t * p cmd)
{
g _sdsi cmd.adr = p_cmd->adr;
g _sdsi cmd.blkcnt p_cmd->blkcnt;
g _sdsi _cmd.bytcnt = p cmd->bytcnt;
g_sdsi_cmd.sdcmdcr = p_cmd->sdcmdcr;
g _sdsi cmd.cmd p_cmd->cmd;

return SDSI SUCCESS;

3 SDSI command interrupt means “CMD53 read command interrupt”, “CMD53 write command interrupt”,
and “CMD52 write command interrupt”.

RO1AN3238EJ0204 Rev.2.04 Page 39 of 65
Dec.13.23

RX Family

SDSI Module Using Firmware Integration Technology

Special Notes

Before running this function, open processing by R_SDSI_Open() is required.

The information stored in the callback function argument (sdsi_cmd_t *) is shown in Table 3.1 This information
is overwritten by the command issued from SD host controller.

Read this information before SD host issues the next command.

Table 3.1 SDSI Command Interrupt Callback Function Augment Information

Type Member Name Description
CMD52 Write CMD53 Write CMD53 Read
uint32_t adr SD command access 1/O register read/write start address
address [Valid data: Lower 17 bits b16-b0]

uint16_t blkent Block counter Fixed at 0 0: Infinite

1: 1 block

to

511: 511 blocks

[Valid data: Lower 9 bits b8-b0]
uint16_t bytent Byte counter Fixed at 0 0: 0 bytes

1: 1 byte

to

2048: 2048 bytes
[Valid data: Lower 12 bits b11-b0]

“Byte mode”

Stores the byte count included in the arguments of
CMD53. If the byte count is 0, a value of 512 is stored.
“Block mode”

Stores the block size corresponding to the function
number included in the arguments of CMD53.

uint8_t sdcmdcr

SD command control
information

Stores the value of the SD command control register (SDCMDCR).

Bit Bit Name Function
b0 SD command index 0: No command issued, or CMD52 write
command issued.
1: CMD53 command issued.
b1 Transfer direction 0: Read from this module by SD host
controller
1: Write to this module by SD host
controller
b2 Read after SD command 0: Read data is same as write data*'
write 1: Read data was read after write.
b3 SD command byte/block 0: Byte mode*?
mode 1: Block mode
b4 SD command CMD53 0: Fixed transfer address
address mode 1: Incremental transfer address*?
b7-b5 Reserved bits The value of these bits is 0.

Note 1. Undefined for CMD53.
Note 2. Undefined for CMD52.

uint8_t cmd

Command information

SDSI_CMD52_W(0x01)

SDSI_CMD53_W(0x02) SDSI_CMD53_R(0x04)

RO1AN3238EJ0204 Rev.2.04

Dec.13.23

Page 40 of 65

RX Family SDSI Module Using Firmware Integration Technology

LSDSI=RegisthlntCalIback()

This function registers SDSI card detection disable (Rise/Fall) interrupt callback function.

Format
sdsi status_t R _SDSI RegistCdIntCallback(
uint32 t channel,
sdsi status_t (* callback) (uint32_ t)
)

Parameters
channel

SDSI channel number
(* callback)(uint32_t)
Callback function to be registered

Callback function is not registered when null pointer is set.

Return Values

SDSI_SUCCESS Successful operation
SDSI ERR Common error
Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Registers SDSI card detection disable (Rise/Fall) interrupt callback function. Call this function before running
R_SDSI_Initialize().

Reentrant
Reentrancy from a different channel is possible.

Example
sdsi status t r sdsi cd callback(uint32 t cd);

if (R _SDSI RegistCdIntCallback(SDSI CHO, r sdsi cd callback) != SDSI SUCCESS)
{
/* Error */

}

static sdsi status t r sdsi cd callback(uint32 t cd)
{
if (SDSI CD RISE == cd)
{
/* Card detection disable (rise) interrupt. */
R_BSP_NOP () ;

/* Card detection disable (fall) interrupt. */
R_BSP_NOP () ;

}

return SDSI SUCCESS;

RO1AN3238EJ0204 Rev.2.04 Page 41 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

Special Notes
Before running this function, open processing by R_SDSI_Open() is required.

The information stored in the callback function argument (uint32_t) is as follows :
SDSI_CD_RISE : when Card detection disable (Rise) interrupt is detected
SDSI_CD_FALL: when Card detection disable (Fall) interrupt is detected

RO1AN3238EJ0204 Rev.2.04 Page 42 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

LSDSI=RegistDtlntCalIback()

This function registers SDSI DMA transfer end interrupt callback function.

Format
sdsi status_t R _SDSI RegistDtIntCallback(
uint32 t channel,
sdsi status_t (* callback) (sdsi_cmd t *)
)

Parameters
channel

SDSI channel
(* callback)(sdsi_cmd_t *)
Callback function to be registered

Callback function is not registered when null pointer is set.

Return Values

SDSI_SUCCESS Successful operation
SDSI ERR Common error
Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Registers SDSI DMA transfer end interrupt callback function. Call this function before running
R_SDSI_Initialize().

Reentrant
Reentrancy from a different channel is possible.

Example
sdsi cmd t g sdsi cmd;
sdsi status t r sdsi dt callback(sdsi cmd t * p cmd);

if (R _SDSI RegistDtIntCallback(SDSI CHO, r sdsi dt callback) != SDSI SUCCESS)
{
/* Error */

}

static sdsi status t r sdsi dt callback(sdsi cmd t * p cmd)
{
g _sdsi cmd.adr = p_cmd->adr;
g _sdsi cmd.blkcnt p_cmd->blkcnt;
g _sdsi _cmd.bytcnt = p cmd->bytcnt;
g_sdsi_cmd.sdcmdcr = p_cmd->sdcmdcr;
g _sdsi cmd.cmd p_cmd->cmd;

return SDSI SUCCESS;

RO1AN3238EJ0204 Rev.2.04 Page 43 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

Special Notes
Before running this function, open processing by R_SDSI_Open() is required.

The information stored in the callback function argument (sdsi_cmd_t *) is the same as SDSI command
interrupt. Refer to Table 3.1 for the detail. This information is overwritten by the command issued from SD
host controller. Read this information before SD host issues the next command.

RO1AN3238EJ0204 Rev.2.04 Page 44 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

LSDSI=GetVersion()

This function is used to get the SDSI FIT module version information.

Format
uint32 t R _SDSI GetVersion(
void

)

Parameters
None

Return Values

Upper 2 bytes Major version (in decimal)
Lower 2 bytes Minor version (in decimal)
Properties

Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Returns the driver’s version information.

Reentrant
Reentrancy from a different channel is possible.

Example
uint32 t version = 0;

version = R SDSI GetVersion();

Special Notes
None

RO1AN3238EJ0204 Rev.2.04
Dec.13.23

Page 45 of 65

RX Family SDSI Module Using Firmware Integration Technology

LSDSI=SetLongIAddress()

This function specifies the handler address for the LONGQ FIT module.

Format
sdsi status_t R _SDSI SetLogHdlAddress (
uint32 t user long que

)

Parameters
user_long_que

LONGQ FIT module handler address

Return Values
SDS|_SUCCESS Successful operation

Properties
Prototype declarations are contained in r_sdsi_rx_if.h.

Description
Specifies the handler address of the LONGQ FIT module.

Reentrant
Reentrancy from a different channel is possible.

Example

#define ERR _LOG SIZE (16)

#define RSPI_USER LONGQ IGN OVERFLOW (1)
sdsi status t ret = SDSI SUCCESS;

uint32 t Mt1LogTbl [ERR _LOG_SIZE];
longg err t err;

longg hdl t p_sdsi user long que;
uint32 t long que hndl address;

/* Open LONGQ module. */

err = R LONGQ Open (&MtlLogTb1[0],
ERR LOG_SIZE,
RSPI USER LONGQ IGN OVERFLOW,
&p_sdsi user long gue

) ;

long que hndl address = (uint32 t)p sdsi user long que;
ret = R SDSI SetLogHdlAddress (long que hndl address);

Special Notes
Uses the LONGQ FIT module and performs preparatory processing to get the error log. Run this processing
before calling R_SDSI_Open().

Incorporate the LONGQ FIT module separately.

RO1AN3238EJ0204 Rev.2.04 Page 46 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

R_SDSI_Log()

This function gets the error log.

Format
uint32 t R _SDSI Log (
uint32 t flg,
uint32 t fid,
uint32 t line
)

Parameters
flg

0x00000001 (fixed value)
fid

0x0000003f (fixed value)
line

0x00001fff (fixed value)

Return Values
0 Successful operation

Properties
Prototype declarations are contained in r_sdsi_rx_if.h.

Description
This function gets the error log.
To end the error log acquisition, call this function.

Reentrant
Reentrancy from a different channel is possible.

Example

#define USER_DRIVER ID (0x00000001)
#define USER_LOG_MAX (0x0000003£)
#define USER LOG ADR MAX (0x00001fff)
uint8_t io buff([4] = {0, 0, 0, 0};

sdsi reg t sdsi reg;

sdsi reg.reg no = SDSI FUNCl REG2;

sdsi reg.offset 0x0;

sdsi reg.p buff = (uint32 t *)&io buff[0];

if (R_SDSI_WriteFuncReg (SDSI CHO, &sdsi_reg) != SDSI_SUCCESS)
{

/* Set last error log to buffer. */
R _SDST Log(
USER DRIVER ID,
USER_LOG_MAX,
USER_LOG_ADR MAX
) i
}

Special Notes
Incorporate the LONGQ FIT module separately.

RO1AN3238EJ0204 Rev.2.04 Page 47 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

4. Pin Setting

To use the SDSI FIT module, input/output signals of the peripheral function have to be allocated to pins with
the multi-function pin controller (MPC). This pin allocation is referred to as “pin setting” in this document.
Please perform the pin setting before calling the R_SDSI_Open function.

When performing the pin setting in the e2 studio, the pin setting feature of the Smart configurator can be
used. When using the pin setting feature, a source file is output according to the option selected in the Pin
Setting window in the Smart configurator. Pins are configured by calling the function defined in the source
file. Refer to Table 4.1 for details.

Table 4.1 Function Output by the Smart Configurator

Option Selected Function to be Output Remarks
Channel 0 R_SDSI_PinSet()

4.1 Drive Capacity Control
SDSI_CMD and SDSI_D0-SDSI_D3 are input pins and perform response and data output.

Please reconsider the settings according to the circuit mounting the MCU.

The 1/O port setting can be changed using the Drive Capacity Control Register (DSCR) or Drive Capacity
Control Register 2 (DSCR2).

When using the pin setting function of "Smart Configurator”, set the SDSI_CMD pin and the SDSI_DO-
SDSI_D3 pin to DSCR = 1 (high drive output).

Refer to Table 4.2 and check the settings as necessary.

Table 4.2 Drive Capacity Control

DSCR2 DSCR Drive Capacity MCU default setting
0 0 Normal drive -

0 1 High-drive output RX65N

1 Don'’t care high-speed interface -

high-drive output

RO1AN3238EJ0204 Rev.2.04 Page 48 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

5. Demo Program

5.1 Overview of Demo Program

The demo program receives SD commands issued by the SD host and implements control of peripheral
functions in response. This enables the SD host to treat the peripheral functions of the SD slave as if they
were its own peripheral functions. Note that the sample program provides an example of code for SD slave
processing, and that separate code for SD host processing is also necessary.

The demo program implements the following:

e Controls the GPIO FIT module and illuminates LEDs on the RSK board when designated SD commands
are received.

5.2 Overview of APIs
Table 5.1 lists the API functions included in the demo program.

Table 5.1 API Functions of Demo Program

Function Name Description

R_SDSI_PXPD_Open() SDSI FIT module initialization processing
R_SDSI_PXPD_ReadCmd() SD command read processing
R_SDSI_PXPD_WriteResp() SD response write processing
R_SDSI_PXPD_SetSDIOInt() SDIO interrupt issuance processing
R_SDSI_PXPD_GetSDIOInt() SDIO interrupt vector read processing

5.3 Operation

5.3.1 Hardware
Figure 5-1 is a block diagram of the hardware.

SD host SD slave

SDSI
Function area

SDHI

GPIO

Figure 5-1 Block Diagram

RO1AN3238EJ0204 Rev.2.04 Page 49 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

5.3.2 Software
(1) State Transition Diagram

Figure 5-2 is a diagram of state transitions.

When a designated SD command is received following initialization, the software controls the GPIO FIT
module and illuminates LEDs on the RSK board. When the processing to illuminate the LEDs completes, an
SDIO interrupt is issued to notify the SD host that processing is finished. Upon receiving the notification, the
SD host releases the SDIO interrupt of the SD slave. This causes the SD slave to transition from the SDIO
interrupt cancellation wait state to the idle state.

Uninitialized state

R_SDSI_PXPD_Open()

Idle state

SDhost ' SDhost ! R_SDSI_PXPD_ReadCmd()
| Cancel SDIO | | Receive SD j R_SDSI_PXPD_WriteResp()
Peripheral control state

R_SDSI_PXPD_SetSDIOInt()

R_SDSI_PXPD_GetSDIOInt()
v
SDIO interrupt cancellation wait
state
Figure 5-2 State Transition Diagram
RO1AN3238EJ0204 Rev.2.04 Page 50 of 65

Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

(2) Sequence Diagram

Figure 5-3 is a sequence diagram. The SD host accesses the SD slave, which controls the GPIO and
illuminates the LEDs. The details are as follows:

(1) The SD host takes information on the GPIO FIT module, which is controlled by the SD slave,
arranges it into a packet, and transmits it to the SD slave.

The SD slave extracts the information from the packet received from the SD host and runs the
appropriate GPIO FIT module API function.

@
(3) The SD slave issues an SDIO interrupt to notify the SD host of the API function execution
result.

®

When the SD host detects the SDIO interrupt, it checks the API function execution result and
cancels the SDIO interrupt.

SD7RA K SDRL—7 LED
R_SDHI_PXPD_Open() R_SDSI PXPD_Open()
R_SDHI_PXPD_WriteCmd() @IcMD53.W] R
R_SDHI_PXPD_Start() [cMD52 W]

o CCTGPIO FITEY2—IL
u sDSIEIYRS [] | pameaias

a—)L\y A%

R SDSI PXPD ReadCmd() |
Q=T HnEE)

R_SDSI_PXPD_WriteResp()

R_SDSI_.PXPD_SetSDIOInt()

®I[SDIOE|YAH (D1:1L)]

SDIOEIYA#H LTSN T
WS EEE

R_SDSI PXPD_GetSDIOInt() /

SDIO7 7R E|Y A #
a—JL/\y IR

A
|
1

R_SDHI_PXPD_ReadResp() [

> LA EERE
R_SDSI_PXPD_GetSDIOInt() D/

Figure 5-3 Sequence Diagram of LED lllumination under GPIO Control

R_SDHI_PXPD_End() |:—| @[SDIOEIYiA# ') 7 (D1:Hi~2Z)] SDIoIR# ZU TN T

RO1AN3238EJ0204 Rev.2.04 Page 51 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

(3) Discription of r_sdsi_pxpd_rx.c

Table 5.2 shows the allocation of data in the Function1 Register1 (Func1 Reg1) area. The code in
r_sdsi_pxpd_rx.c references the data in Func1 Reg1, which is accessed by the SD host, and illuminates the
LEDs of the SD slave. The details are described below.

® Runs R_SDSI_PXPD_Open() and waits until the value of Func1 Reg1 offset address “00h
(status)” changes to “0xDO0”.

® When “0xD0” is detected, calls R_SDSI_PXPD_ReadCmd() to read the information listed in
Table 5.2. The sample program reads from “Ox0C (function number)” to “0x03”, then runs the
GPIO FIT module’s R_GPIO_PinWrite() function. This causes the LEDs on the RSK board to
illuminate.

Calls R_SDSI_PXPD_WriteResp() to update offset address “0x18 (FIT module return value)”.

To notify the SD host when processing completes, calls R_SDSI_PXPD_SetSDIOInt() to issue
an SDIO interrupt.

® The SD host cancels the SDIO interrupt, and processing ends.

RO1AN3238EJ0204 Rev.2.04 Page 52 of 65
Dec.13.23

RX Family

SDSI Module Using Firmware Integration Technology

Table 5.2 Register1 Allocations

Offset
Address

Description

Setting Value

0x00 Status

0x00: Idle
0x01: Transfer information
Written by host to Register1.
0x02: Set transfer result
Written by slave to Register1.
0xD0O: Execute
Runs FIT module.

0x04 Function argument information

valid data size (multiple of 4)

0x00: Initial value
0x04-0xEQ: Settable (multiples of 4 only)
Other than above: Setting prohibited

0x08 FIT module number

0x00: Not used
0x01: GPIO
0x02-0xFF: Setting invalid (for extension)

0x0C Function number

FIT module number: 0x00 (GPIO)
0x00: R_GPIO_PortWrite()
0x01: R_GPIO_PortRead()
0x02: R_GPIO_PortDirectionSet()
0x03: R_GPIO_PinWrite()
0x04: R_GPIO_PinRead()
0x05: R_GPIO_PinDirectionSet()
0x06: R_GPIO_PinControl()
0x07: R_GPIO_GetVersion()
0x08-0xFFFFFFFF: Setting invalid

0x10 Control (SDIO interrupt request bit

when processing finished)

0x00: Issue SDIO interrupt request and do not write
response format at completion.

0x01: Issue SDIO interrupt request and write
response format at completion.

0x02-0xFF: Setting invalid (for extension)

0x14 SDIO interrupt vector number

0x00: Initial value
0x01-0xFF: Settable

0x18-0x1B | FIT module return value

FIT module number: 0x00000001 (GPIO)
0x01000000: SDSI_PXPD_FIT_GPIO_VOID
0x01000001: SDSI_PXPD_FIT_GPIO_SUCCESS

0x01000002:
SDSI_PXPD_FIT_GPIO_ERR_INVALID_MODE

0x01000003:
SDSI_PXPD_FIT_GPIO_ERR_INVALID_CMD

Other
0x00000000: SDSI_PXPD_VOID
0x00000001: SDSI_PXPD_SUCCESS
OxFFFFFFFF: SDSI_PXPD_ERR_FUNCTION

0x1C-0x1F | Reserved area

0x00000000-0xFFFFFFFF: Setting invalid

0x20-0xFF | Function argument information

(max.: 224 bytes)

0x00000000-0xFFFFFFFF: Settable

Setting values extending beyond the valid data end
offset address are ignored.

RO1AN3238EJ0204 Rev.2.04
Dec.13.23

Page 53 of 65

RX Family SDSI Module Using Firmware Integration Technology

(4) Discription of r_sdsi_pxpd_rx_config.h
It is a demonstration program that lights the LED.

GPIO_PORT_7_PIN_3 of RSKRX65N-2MB is the default setting. Please customize
r_sdsi_pxpd_rx_config.h.

When connecting your MCU and LED, the demonstration program will operate.

1. Prepare the hardware manual of the MCU you are using.

2. Make sure the LED (lit) and the MCU port are connected.

3. Set the port output data register (PODR) of the MCU port to LEDO_PODR of the header file.
4. Set the port direction register (PDR) of the MCU port to LEDO_PDR of the header file.

RO1AN3238EJ0204 Rev.2.04 Page 54 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

5.4 Procedure from Adding FIT Modules to Building

The procedure for adding FIT modules to your project and building it is described below. Note that the
procedure below applies to the SD slave, and that a separate environment must be created for the SD host.

® Connect the pins of the SD host and SD slave as indicated below:
-SDHI_CLK<==>SDSI_CLK
-SDHI_CMD<==>SDSI_CMD
-SDHI_D0<==>SDSI_DO0
-SDHI_D1<==>SDSI_D1
-SDHI_D2<==>SDSI_D2
-SDHI_D3<==>SDSI_D3

® Create a new project in e? studio.
® Refer to 2.12, Adding FIT Modules to Projects, and add the following FIT modules to your
project:
-r_bsp
-r_gpio_rx
-r_sdsi_rx
® Refer to 5.5, Downloading the Demo, and obtain the product package.
® Add the following demo program files, contained in the FITDemos folder of the product
package, to your project:
-r_sdsi_pxpd_rx.c
-r_sdsi_pxpd_rx.h

® When settings are complete, perform the following step to build the project:
Menu [Project] > [Build Project]

® If the build does not complete successfully, refer to “6.2, Troubleshooting”, or “7, Reference
Documents”.

5.5 Downloading the Demo

The demo project is not included in the RX driver package. In order to use the demo project, it is necessary
to download each of the FIT modules individually. In the Application Note tab of the Smart Browser, right-
click this application note and select Sample Code (Download) to download the demo project.

RO1AN3238EJ0204 Rev.2.04 Page 55 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

5.6 API Functions

5.6.1 R_SDSI_PXPD_Open()
This function initializes the SDSI FIT module. Run it before using the other API functions.

Format
sdsi pxpd status t R _SDSI PXPD Open (
sdsi pxpd int callback info t * p int callback info
)

Parameters
* p_int_callback_info

Pointer to structure for callback functions
(* callback)(sdsi_cmd_t *)
R_SDSI_RegistintCallback () callback function
(* callback_dt)(sdsi_cmd_t *)
R_SDSI_RegistDtIntCallback() callback function

Return Values

SDSI_PXPD_SUCCESS Successful operation
SDSI_PXPD_ERR Common error
Properties

Prototype declarations are contained in r_sdsi_pxpd_rx.h.

Description
The sample program follows the steps below to call the function and initialize the SDSI FIT module.

1. Calls R_SDSI_Open() to initialize the SDSI FIT module.
2. Calls R_SDSI_RegistintCallback() to register the SDSI command interrupt callback function.

3. Calls R_SDSI_RegistDtIntCallback() to register the SDSI DMA transfer end interrupt callback
function.

4. Calls R_SDSI_WriteCisReg() and R_SDSI_ReadCisReg(), in that order, to access the CIS
registers.

Calls R_SDSI_PinSet() to assign ports to pins.

Calls R_SDSI_Initialize() to make initial settings to the SDSI IP module. After a Successful
operation, transitions to the C flag polling state.

7. Calls R_SDSI_CflagPolling() to get the R4 response C flag state. After initialization processing
by R_SDSI_lInitialize(), calls this function and confirms that the return value is SDSI_SUCCESS
(C flag (ready)).

Reentrant
Reentrancy from a different channel is possible.

Example
ret = R SDSI PXPD Open (&call);
if (SDSI_PXPD SUCCESS != ret)
{

trap () ;

}

Special Notes
For details of each function, refer to “3, API Functions”.

RO1AN3238EJ0204 Rev.2.04 Page 56 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

5.6.2 R_SDSI_PXPD_ReadCmd()
Performs SD command read processing.

Format
sdsi pxpd status t R _SDSI PXPD ReadCmd (
uint32 t * p result,
uint8 t * p arg data
)

Parameters
* p_result

FIT GPIO return value
*p_arg _data
Read buffer pointer (1 byte)

Return Values

SDSI_SUCCESS Successful operation
SDSI ERR Common error
Properties

Prototype declarations are contained in r_sdsi_pxpd_rx.h.

Description
The sample program follows the steps below to call the function and perform SD command read processing.

1. Calls R_SDSI_ReadFuncReg() to read the value of FN1 Data Register m (m =1, 3, or 5).
2. Operation branches based on the offset 0x00 value.

-When offset 0x00 value is SDSI_PXPD_FIT_GPIO and offset 0x08 value is SDSI_PXPD_FIT_GPIO,
R_SDSI_PXPD_ReadCmd() calls r_sdsi_pxpd_fit_gpio().

-When offset 0x00 value is SDSI_PXPD_STATUS DO _ENABLE_DIRECT, r_sdsi_pxpd_direct() is
called with SDSI direct transfer ON.

-When offset 0x00 value is SDSI_PXPD_STATUS DO _DISABLE_DIRECT, r_sdsi_pxpd_direct() is
called with SDSI direct transfer OFF.

Reentrant
Reentrancy from a different channel is possible.

Example

ret = R SDSI PXPD ReadCmd(&io buff.l, &g sdsi pxpd buff[0]);
if (SDSI_PXPD SUCCESS != ret)

{

trap();

}

Special Notes
None

RO1AN3238EJ0204 Rev.2.04 Page 57 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

5.6.3 R_SDSI_PXPD_WriteResp()
Performs SD response write processing.

Format
sdsi pxpd status t R SDSI PXPD WriteResp (
uint32 t result
)

Parameters
result

Write buffer

Return Values

SDSI_SUCCESS Successful operation.
SDSI ERR Common error
Properties

Prototype declarations are contained in r_sdsi_pxpd_rx.h.

Description
The sample program follows the steps below to call the function and perform SD response write processing.

1 Calls R_SDSI_ReadFuncReg() to read the value at offset 0x10 of FN1 Data Register 1 and
confirm the command to be run.

2 If the command read is SDSI_PXPD_CTRL_SDIO_INT_WRITE, calls
R_SDSI_WriteFuncReg() to set the result at offset 0x18 of FN1 Data Register 1.

Reentrant
Reentrancy from a different channel is possible.

Example
ret = R _SDSI PXPD WriteResp(io buff.l);
if (SDSI_PXPD SUCCESS != ret)
{
trap();

}

Special Notes
None

RO1AN3238EJ0204 Rev.2.04 Page 58 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

5.6.4 R_SDSI_PXPD_SetSDIOInt()
Performs SDIO interrupt issuance processing.

Format

sdsi pxpd status t R SDSI PXPD SetSDIOInt (
void

)

Parameters

void

Return Values

SDSI_SUCCESS Successful operation
SDSI ERR Common error
Properties

Prototype declarations are contained in r_sdsi_pxpd_rx.h.

Description

The sample program follows the steps below to call the function and perform SD command read processing.
1. Calls R_SDSI_WriteFuncReg() to initialize offset 0x00 of FN1 data register to “0”.

2. Calls R_SDSI_ReadFuncReg() to read offset 0x14 of FN1 data register 1 in order to get the
SDIO interrupt vector number.

3. Calls R_SDSI_WriteIntVectorReg() to issue an SDIO interrupt.

Reentrant
Reentrancy from a different channel is possible.

Example
ret = R SDSI PXPD SetSDIOInt();
if (SDSI_PXPD SUCCESS != ret)
{
trap () ;

}

Special Notes
None

RO1AN3238EJ0204 Rev.2.04 Page 59 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

5.6.5 R_SDSI_PXPD_GetSDIOInt()
Performs SDIO interrupt vector read processing.

Format

sdsi pxpd status t R SDSI PXPD GetSDIOInt (
uint8 t * p vector

)

Parameters
* p_vector

SDIO interrupt vector buffer(1 byte)

Return Values

SDSI_SUCCESS Successful operation
SDSI_ ERR Common error
Properties

Prototype declarations are contained in r_sdsi_pxpd_rx.h.

Description
The sample program follows the steps below to call the function and perform SDIO interrupt vector read
processing.

1. R_SDSI_ReadIntVectorReg()

Reentrant
Reentrancy from a different channel is possible.

Example
ret = R _SDSI PXPD GetSDIOInt (&io buff.c[0]);
if (SDSI_PXPD SUCCESS != ret)
{
trap();

}

Special Notes
None

RO1AN3238EJ0204 Rev.2.04 Page 60 of 65
Dec.13.23

RX Family

SDSI Module Using Firmware Integration Technology

6. Appendix

6.1 Operating Environment
This section describes confirmed operation environment for the SDSI FIT module.

Table 6.1 Operation Confirmation Environment (Rev.2.00)

Item

Contents

Integrated development
environment

Renesas Electronics
e? studio V6.0.0

C compiler

Renesas Electronics
C/C++ compiler for RX Family V.2.07.00

Compiler options: The integrated development environment default settings
are used, with the following option added.

-lang = c99
Endian order Big-endian/Little-endian
Revision of the module Rev.2.00

Board used

Renesas Starter Kit for RX65N (product No.: RTK500565NSxxxxxxx)
Renesas Starter Kit for RX65N-2MB (product No.: RTK50565N2SxxxxxxXx)

Table 6.2 Operation Confirmation Environment (Rev.2.02)

Item

Contents

Integrated development
environment

Renesas Electronics e? studio V7.3.0
IAR Embedded Workbench for Renesas RX 4.10.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V.3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 4.08.04.201803

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.10.01
Compiler option: The default settings of the integrated development
environment.

Endian order

Big-endian/Little-endian

Version of the module

Ver.2.02

Board used

Renesas Starter Kit+ for RX65N (product No.: RTK500565NxxxxxxxXx)

RO1AN3238EJ0204 Rev.2.04

Dec.13.23

Page 61 of 65

RX Family

SDSI Module Using Firmware Integration Technology

Table 6.3 Operation Confirmation Environment (Rev.2.03)

Item

Contents

Integrated development
environment

Renesas Electronics e2 studio Version 2022-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202202

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:

-WI,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.2.03

Table 6.4 Operation Confirmation Environment (Rev.2.04)

Item

Contents

Integrated development
environment

Renesas Electronics e2 studio Version 2023-10
IAR Embedded Workbench for Renesas RX 4.20.3

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.05.00
Compiler option: The following option is added to the default settings of the
integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202305

Compiler option: The following option is added to the default settings of the
integrated development environment.

-std=gnu99

Linker option: The following user defined option should be added to the default
settings of the integrated development environment, if “Optimize size (-Os)” is
used:

-WI,--no-gc-sections

This is to work around a GCC linker issue whereby the linker erroneously
discard interrupt functions declared in FIT peripheral module

IAR C/C++ Compiler for Renesas RX version 4.20.3

Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian

Revision of the module

Rev.2.04

RO1AN3238EJ0204 Rev.2.04
Dec.13.23

Page 62 of 65

RX Family SDSI Module Using Firmware Integration Technology

6.2 Troubleshooting

(1) Q: I have added the FIT module to the project and built it. Then | got the error: Could not open source file
“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

o When using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(RO1AN1826)"

° When using e? studio:
Application note “Adding Firmware Integration Technology Modules to Projects (RO1AN1723)”

When using a FIT module, the board support package FIT module (BSP module) must also be added to
the project. For this, refer to the application note “Board Support Package Module Using Firmware
Integration Technology (RO1AN1685)".

(2) Q: I have added the FIT module to the project and built it. Then | got the error: This MCU is not supported
by the current r_sdsi_rx module.

A: The FIT module you added may not support the target device chosen in the user project. Check if the
FIT module supports the target device for the project used.

RO1AN3238EJ0204 Rev.2.04 Page 63 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology

7. Reference Documents

User’'s Manual: Hardware
Technical Update/Technical News
User's Manual: Development Tools
RX Family CC-RX Compiler User's Manual (R20UT3248)
The latest version can be downloaded from the Renesas Electronics website.

Technical Updates
This module reflects the contents of the following technical updates:

TN-RX*-A176A/E

RO1AN3238EJ0204 Rev.2.04 Page 64 of 65
Dec.13.23

RX Family SDSI Module Using Firmware Integration Technology
Revision History
Description
Rev. Date Page Summary
2.00 Jul 31, 2017 - First edition issued.
2.02 May 20, 2019 - Update the following compilers
GCC for Renesas RX
IAR C/C++ Compiler for Renesas RX
1 Deleted RO1AN1723 and RO1AN1826 from Related
Documents.
1 Added Target Compilers.
10 Added revision of dependent r_bsp module in 2.2 Software
Requirements.
13 2.8 Code Size, amended.
39 Changed nop to BSP’s built in function in Example in function
3.18 R_SDSI_RegistCdIntCallback.
58 Added Table 6.2 Operation Confirmation Environment
(Rev.2.02).
2.03 Dec 27, 2022 61 Added Table 6.3 Operation Confirmation Environment
(Rev.2.03).
Program Updated slash format of included header file paths for Linux
compatibility.
2.04 Dec 13, 2023 16, 48 Deleted the description of FIT configurator from "2.12 Adding
the FIT Module to Your Project", "4. Pin Settings".
17 Added 2.13 “for”, “while” and “do while” statements.
62 Added Table 6.4 Operation Confirmation Environment
(Rev.2.04).
Program Added WAIT_LOOP comments.

RO1AN3238EJ0204 Rev.2.04
Dec.13.23

Page 65 of 65

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor
devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the
level at which resetting is specified.

3. Input of signal during power-off state
Do not input signals or an I/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal
elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal
become possible.

5. Clock signals
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal
produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V.
(Max.) and Vi1 (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the
input level is fixed, and also in the transition period when the input level passes through the area between Vi (Max.) and Vix (Min.).

7. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these
addresses as the correct operation of the LSl is not guaranteed.

8. Differences between products
Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Note1)

(Note2)

Corporate Headquarters

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of
your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the
use of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas
Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas
Electronics product that is inconsistent with any Renesas Electronics data sheet, user’'s manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc.
Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products
outside of such specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you
are responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.
“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2023 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 SDSI FIT Module
	1.2 Overview of SDSI FIT Module
	1.3 Overview of APIs
	1.4 Processing Example
	1.4.1 Hardware
	1.4.2 Software

	1.5 State Transition Diagram

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchain
	2.4 Using Interrupt Vector
	2.5 Header Files
	2.6 Integer Types
	2.7 Compile Settings
	2.8 Code Sizes
	2.9 Arguments
	2.10 Return Values
	2.11 Callback Function
	2.12 Adding FIT Modules to Projects
	2.13 “for”, “while” and “do while” statements

	3. API Functions
	R_SDSI_Open()
	R_SDSI_Close()
	R_SDSI_Initialize()
	R_SDSI_End()
	R_SDSI_CflagPolling()
	R_SDSI_WriteCisReg()
	R_SDSI_ReadCisReg()
	R_SDSI_WriteFuncReg()
	R_SDSI_ReadFuncReg()
	R_SDSI_WriteIntVectorReg()
	R_SDSI_ReadIntVectorReg()
	R_SDSI_ReadIntClearReg()
	R_SDSI_EnableDirectTrans()
	R_SDSI_DisableDirectTrans()
	R_SDSI_SetDirectTransAdr()
	R_SDSI_GetDirectTransAdr()
	R_SDSI_RegistIntCallback()
	R_SDSI_RegistCdIntCallback()
	R_SDSI_RegistDtIntCallback()
	R_SDSI_GetVersion()
	R_SDSI_SetLogHdlAddress()
	R_SDSI_Log()

	4. Pin Setting
	4.1 Drive Capacity Control

	5. Demo Program
	5.1 Overview of Demo Program
	5.2 Overview of APIs
	5.3 Operation
	5.3.1 Hardware
	5.3.2 Software

	5.4 Procedure from Adding FIT Modules to Building
	5.5 Downloading the Demo
	5.6 API Functions
	5.6.1 R_SDSI_PXPD_Open()
	5.6.2 R_SDSI_PXPD_ReadCmd()
	5.6.3 R_SDSI_PXPD_WriteResp()
	5.6.4 R_SDSI_PXPD_SetSDIOInt()
	5.6.5 R_SDSI_PXPD_GetSDIOInt()

	6. Appendix
	6.1 Operating Environment
	6.2 Troubleshooting

	7. Reference Documents
	Technical Updates
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

