ルネサスは、航空宇宙アプリケーションや他の放射線環境向けに、高信頼性、高効率、および高精度の、耐放射線強化(rad hard)製品の幅広いポートフォリオを提供しています。

年4回発行のRAD HARDニュースレターにご登録いただくと、ルネサスの最新の耐放射線特性製品情報やリソース情報をお届けします。

製造と試験に関する情報

Renesasは、高信頼性、高効率、および高精度の耐放射線強化パワー製品の提供において高い実績を挙げています。これらの製品は、過酷な環境に必要となる厳密な電圧精度を実現します。

低線量率イオン化照射が半導体に与える影響は、宇宙アプリケーションにとって重要な課題となっています。 ルネサスは、現在の高線量率耐性試験に対する補完としてウエハごとの低線量率耐性試験を行なうことにより、この市場に対応しています。

ルネサスは、数社しかないRHA国防補給庁(陸および海) QMLサプライヤの1社です。 ルネサスの耐放射線強化SMD製品はすべてMIL-PRF-38535/QMLに準拠し、バーンイン試験に100%合格しています。

カテゴリ

耐放射線強化ANDゲート

耐放射線ANDゲートにより、AND関数を直接実装可能

耐放射線強化NORゲート

耐放射線NORゲートにより、NOR関数を直接実装

耐放射線強化ORゲート

耐放射線ORゲートにより、OR関数を直接実装

耐放射線強化インバータ

宇宙規格「QML Class V」に準拠のELDRSフリーCMOS六角インバータ

耐放射線強化カウンタ

宇宙用CMOS同期カウンタおよびリップルキャリーバイナリカウンタ

耐放射線強化シフトレジスタ

航空宇宙規格「QML Class V」に準拠の耐放射線CMOSシフトレジスタ

耐放射線強化デコーダ/DEMUX

宇宙用CMOSデコーダ/デマルチプレクサ組合せ論理回路

耐放射線強化バッファ/ラインドライバ

宇宙規格「QML Class V」に準拠した耐放射線バッファ/ラインドライバ

耐放射線強化パワー製品

耐放射線CMOSプログラマブルインターバルタイマおよびCMOSデュアルモノステーブルマルチバイブレータ

耐放射線強化メモリ

耐放射線CMOS PROMにより高速性能と超低電力損失を実現

耐放射線強化ラッチ

宇宙規格「QML Class V」準拠の耐放射線強化CMOSラッチ

耐放射線強化信号マルチプレクサ

先進のCMOS/SOS技術を採用した耐放射線8入力マルチプレクサ(MUX)

耐放射線特性NANDゲート

耐放射線NANDゲートにより、NAND関数を直接実装

耐放射線特性OR/NORゲート

OR/NORゲートにより、排他的論理和(Exclusive OR)および排他的論理和(Exclusive NOR)関数を直接実装

耐放射線特性フリップフロップ

QMLクラスV航空宇宙仕様に適合したELDRSフリーCMOSフリップフロップ回路

ドキュメント

分類 タイトル 日付
カタログ PDF 4.85 MB
ホワイトペーパー PDF 533 KB
2 items
Are Your ICs Ready for the Real Space Environment?

Over the past 19 years, the space industry has placed a higher value on understanding the effects that long-term, low dose radiation can have on ICs. Intersil's radiation testing specialist Nick van Vonno discusses why this shift has occurred and what we are doing to address this change.

Transcript

There are many different types of radiation, and indeed Intersil addresses two of these. Intersil addresses total dose testing which is basically gamma rays. Okay, and at both high and low dose rate, as we'll get into later. Intersil also addresses single event effects of a fairly broad range, and those are typically addressed by heavy ion testing.

Low dose rate testing, you have to contrast this really in order to understand this. You have to look historically at how total dose testing which is done with gamma rays, how that's been performed. Historically this has been performed at what we call high dose rate, and typically to put this in some numbers, that would run somewhere in the range of 50rad to 300rad/s.

Low dose rate, on the other hand, is a much, much slower dose rate. The generally accepted number, and the one we perform our work in, is 0.01rad/s. You see how far that's away from 300rad a second. And that can also be expressed as 10mrad/s if you'd like.

Now why are we goofing with that? And the answer is that the low dose rate is what happens in space. Dose rates in space are almost uniformly low to the order of 10mrad/s. Low dose rate radiation testing has been a, let's call it a hot topic in silicon advanced research since about 1992, okay? In 1992, some researchers out at Mich research came up with a very unusual finding which showed that certain parts that looked very good at high dose rate degrade with amazing rapidity, orders and orders of magnitude, worse at low dose rate. And so, that was not a fully intuitive result, and indeed it had to be repeated, and in the intervening 19 years there is a very large amount of work that's been done on low dose rate effects. And, as we've learned about how different parts react in low dose rate, we've, as an industry, we've swung over more towards a low dose rate testing emphasis rather than a high dose rate testing emphasis.