

RL78/G13

DALI-2 Communication driver

R01AN4653EJ0101 Rev.1.01 26th Sep., 2019

APPLICATION NOTE

Introduction

This application note describes a sample program that performs DALI (Digital Addressable Lighting Interface) communication using the RL78/G13 microcontroller.

The sample program operates as a slave (Control Gear). Processes the waveform of Manchester encoded DALI signal using peripheral functions (timer function) mounted on RL78/G13. For command analysis and command execution, use the DALI library for RL78. Low level signal processing is realized by software so that DALI communication can be performed even with a microcontroller that does not have dedicated hardware for DALI communication. When higher performance is required, we recommend a product (RL78/I1A) with dedicated hardware.

This application note assumes that you already have knowledge about DALI. For details about the DALI standard, please refer to the IEC 62386-101 and IEC 62386-102, Edition 2.0 standards and the "Lighting Communications Using RL78/I1A (Reception)" application note (R01AN1115EJ0300).

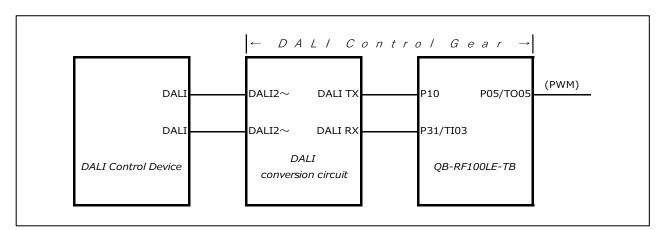
Target Device

RL78/G13 (R5F100LE)

When applying the sample program covered in this application note to another RL78 microcontroller, conduct an extensive evaluation Before use.

Contents

1. Spec	cifications4
1.1 Fo	older structure
1.2 Fil	le structure6
1.3 DA	ALI Communication driver7
1.3.1	Receive driver7
1.3.2	Transmit driver7
1.4 Di	mming driver7
2. Deve	elopment Environment8
Z. Deve	
3. Harc	dware Description9
3.1 Mi	crocontroller Resources10
3.1.1	List of pins10
3.1.2	List of timers10
4. Soft	ware Description11
	peration Outline
•	etting the function to be used12
4.2.1	Setting of pins to be used
4.2.2	Setting of timers to be used
4.2.3	List of Option Byte settings12
4.2.4	C language standard (C99)
4.2.5	Section setting
	Edit hwdinit() function
4.2.6	13
4.3 Re	eceive driver14
4.3.1	Receive driver outline14
4.3.2	Function list
4.3.3	Function specification
4.3.4	Receiver timing definition
4.3.5	Receiver bit timing judgement
4.3.6	Forward Frame decoding method
4.4 Tr	ansmit driver
4.4.1	Transmit driver outline
4.4.2	Function list
4.4.3	Function specification
4.4.4	Backward Frame encoding method
4.4.5	Transmitter bit timing definition
4.4.6	Transmitter bit timing generation
4.4.7	Corrupted Backward Frame generation
4.5 Di	mming driver


	4.5.1	Function list	38
	4.5.2	Function specification	38
	4.5.3	Dimming signal driver	39
	4.5.4	Duty value calculation method	39
5.	Refe	erences	41

1. Specifications

Using the RL78/G13 Target Board (QB-R5F100LE-TB) with a sample program and a DALI conversion circuit a DALI Control Gear function can be realised.

Figure 1-1 shows the DALI system configuration, and Figure 1-2 shows the software configuration of the sample program.

Figure 1-1 System Configuration

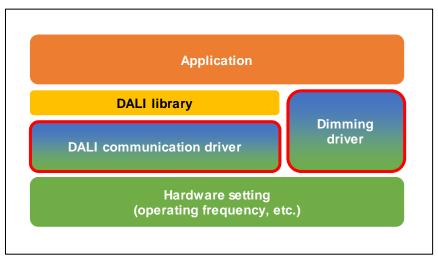


Figure 1-2 Software configuration of sample program

The specifications of the software configuration of the sample program are shown below.

- Application : Calls the DALI Communication driver, DALI Library and the Dimming driver.
- DALI Library : Analyses and implements DALI commands and timing management. For details, please refer to "RL78/I1A Family User's Manual DALI Library (IEC62386-102ed2.0)".
- DALI Communication driver (Receive driver and Transmit driver) : Receives and transmits the DALI Command.
- Dimming driver : Outputs the pulse width modulated dimming (PWM) signal to achieve the required dimming level..
- Hardware initialization processing : Initialization of peripheral functions and pins used in RL78/G13 using code generation.

This application note describes "DALI communication driver" and "Dimming driver" shown in Figure 1-2.

For DALI library, please refer to "RL78/I1A Family User's Manual DALI Library (IEC62386-102ed2.0)".

1.1 Folder structure

Folder structure of the sample program is shown below.

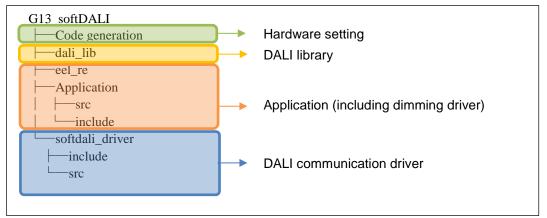


Figure 1-3 Folder structure of sample program

1.2 File structure

The file list of "DALI communication driver" and "Dimmer driver" described in this application note is shown.

Driver name	File name	Function name
DALI communication driver	r_softdali_rx_api.c	R_SD_RX_ApiInit
(Receive)		R_SD_RX_ApiGetCommand
	r_softdali_rx.c	r_sd_rx_dali_get_command
		r_sd_rx_stop_condition_complete
		r_sd_rx_check_recv_frame_bit
		r_sd_rx_forward_bit_set
		r_sd_rx_receive_status_reset
	r_softdali_rx_hw.c	r_sd_rx_hw_timer_init
		r_sd_rx_hw_port_init
		stop_condition_timer_interrupt
		pulse_width_check_timer_interrupt
DALI communication driver	r_softdali_tx_api.c	R_SD_TX_ApiInit
(Transmit)		R_SD_TX_ApiSendAnswer
	r_softdali_tx.c	r_sd_tx_set_output_data
		r_sd_tx_put_halfbit_data
	r_softdali_tx_hw.c	r_sd_tx_hw_timer_init
		r_sd_tx_hw_port_init
		r_sd_tx_width_timer_start
		r_sd_tx_width_timer_stop
		r_sd_tx_put_port
		tx_width_timer_interrupt
Dimming driver	r_lamp.c	Lamp_SetLevel
		Lamp_lsOn

Table 1-1 File list

1.3 **DALI Communication driver**

This driver consists of receive driver and transmit driver.

The Receive Driver receives and processes the DALI Forward Frame signal waveform required by the Control Gear. The Transmit Driver transmits the Backward Frame. Both the Forward and Backward frames are processed using software and the timers of the RL78/G13.

The specifications of each driver are shown below.

1.3.1 Receive driver

The Forward Frame received by DALI Control Gear consists of Start bit, 16 bits data and Stop condition, and each bit is Manchester encoded.

The specifications of the driver that receives Forward Frame are shown below.

- 1. Start bit and 16 bits data are received using input pulse interval measurement of the timer function, and judge Half bit, Double Half bit, or timing violation.
- 2. Decode the received Manchester encoded data as logical bits every 2 Half bits.
- 3. To detect the Stop condition, use an interval timer of the timer function, and reception is completed with after confirming the lapse of 1900µs from the last rising edge.

1.3.2 Transmit driver

The Backward Frame transmitted by DALI Control Gear consists of Start bit, 8 bits data and Stop condition, and each bit is Manchester encoded.

The specifications of the driver that transmits the Backward Frame are shown below.

- 1. Encode Start bit and 8 bits data to Manchester encode data.
- 2. According to the Manchester encoded data, change the output terminal setting at each Halfbit timing of DALI.
- 3. The Half bit timing is measured using the timer function interval timer.
- 4. Set the output terminal to high level at the timing of the stop condition.

1.4 Dimming driver

The specifications of the driver that outputs the dimming signal are shown below.

Depending on the Actual Level obtained from the DALI library, the PWM is output as a dimming signal using the timer function of RL78/G13.

2. **Development Environment**

The DALI Control Gear software solution is confirmed to operate in the following environment.

Item	Detail	
DALI Control Device	Renesas Electronics Corporation	
	DALI Master Controller GUI	
	Tessera Technology Inc.	
	TCM-RL78I1A	
DALI Control Gear	Renesas Electronics Corporation	
	RL78/G13 Target Board (QB-R5F100LE-TB)	
	DALI conversion circuit	
IDE	Renesas Electronics Corporation	
	CS+ for CC V7.00.00	
Compiler	Renesas Electronics Corporation	
	CC-RL V1.70.00	
Library	Renesas Electronics Corporation	
	RL78 DALI Library V2.00 Note1	
	EEPROM Emulation Library Pack02 V2.00 Note2	

Table 2-1 Development Environment

Note1 : About RL78 DALI library

This version is a sample.

Note2 : About the data flash library

Sample program is attached to this application note.

In order to operate the sample program, download the EEPROM Emulation Library Pack02 Package Ver.2.00(for CA78K0R/CC-RL Compiler) for RL78 Family separately and copy the library files to the following folder below "Workspace".

Workspace\eel_re\include : eel.h, eel_types.h, fdl.h, fdl_types.h Workspace\eel_re\lib : eel.lib, fdl.lib

For the method of registering / linking to the project, refer to "Chapter 8 Sample Program" of R20UT2645.

The flash memory self-programming library is available on the Renesas Electronics Website. Please contact your local Renesas Electronics sales office or distributor for more information.

3. Hardware Description

Describes the hardware of DALI Control Gear.

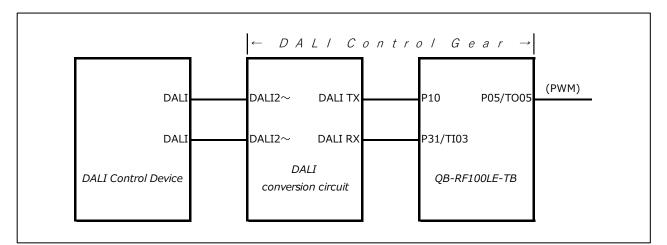


Figure 3-1 How to connect DALI Control Device and DALI Control Gear

Note

This circuit image is simplified to show the outline of the connection.

The connection between the DALI bus and the RL78 microcontroller is as follows.

- DALI transmission line (TX) is connected to output pin P10.
- DALI reception line (RX) is connected to timer input pin P31 / TI03.
- The dimming signal output is set to the timer output pin P05 / TO05.

The DALI conversion circuit diagram is shown below.

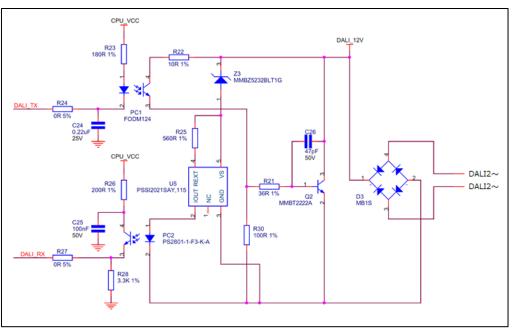


Figure 3-2 DALI conversion circuit

3.1 Microcontroller Resources

The DALI control gear software solution uses the following resources.

3.1.1 List of pins

Table 3-1 shows the pins used and their functions.

Pin Name	I/O	Description
P31 / TI03	Input	Capture of reception waveform
P10	Output	Output of transmission waveform
P05 / TO05	Output	PWM output of the duty value corresponding to the
		dimming level

Table 3-1 Pins and functions used

3.1.2 List of timers

Table 3-2 shows the timers used and their functions.

Timer Name	Mode	Description	
TAU0 channel0	Interval timer	Monitor Half bit output time of transmitted waveform	
TAU0 channel1	Interval timer	1ms cycle management for DALI library	
TAU0 channel 2	Interval timer	Monitor transmission start wait time	
TAU0 channel 3	Input pulse interval measurement	Pulse width measurement of received waveform	
TAU0 channel 4	PWM	PWM output (master) with 1KHz cycle	
TAU0 channel 5	PWM	PWM output (slave) with 1KHz cycle	
TAU0 channel7	Interval timer	Stop condition detection of received waveform	

Table 3-2 Timers and functions used

4. Software Description

4.1 **Operation Outline**

Processing of the sample program is shown below.

- 1. Initialize the functions to be used, the DALI library, and each driver. Note: Initialization of peripheral functions (hdwinit function) is called before the main function.
- 2. The whole cycle management is performed with 1ms of the interval timer.
- 3. When a Forward Frame is received. it is decoded by the Receive driver and passed to the DALI library.
- 4. The DALI library analyzes the received data and makes a command decision.
- 5. If there is a need to respond with a command, wait for the transmission start wait time, then encode the response data with the transmission driver and transmit the Backward Frame.
- 6. Output the dimming signal (PWM) according to the Actual Level set by the DALI library.

The above contents are shown in the flowchart.

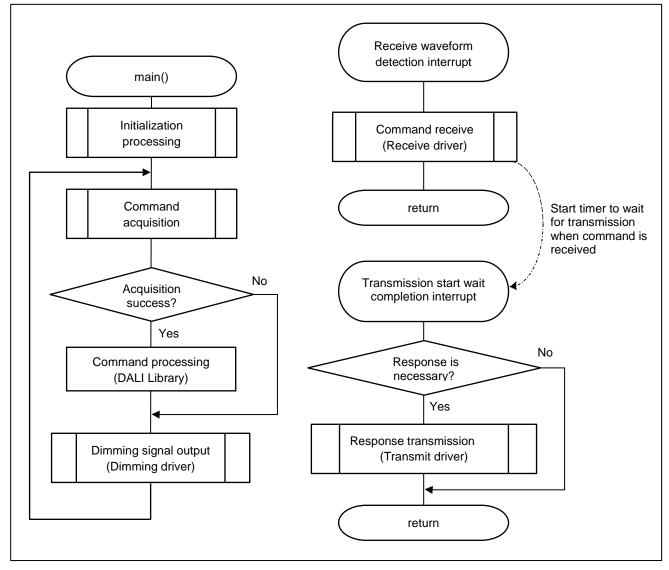


Figure 4-1 Software operation flowchart

4.2 Setting the function to be used

The setting of the microcomputer function is done using CS + code generation function. The setting is shown below. The setting made by code generation is executed by the startup routine (hdwinit function).

4.2.1 Setting of pins to be used

Table 4-1 shows the pin settings.

Table 4-1	List of	used p	in settings
		ubcu p	in sevenings

Pin Name	Description	I/O
P05 / TO05	Timer output of TAU 0	Output

4.2.2 Setting of timers to be used

Table 4-2 shows the setting of each channel of Timer Array Unit 0.

Timer Name	Mode	Setting time / Cycle	Interrupt
TAU0 channel0	Unused	-	-
TAU0 channel1	Interval timer	1ms	Not use
TAU0 channel2	Interval timer	5ms	End of count
TAU0 channel3	Unused	-	-
TAU0 channel4	PWM	1ms	Not use
TAU0 channel5	PWM	0%	Not use
TAU0 channel6	Unused	-	-
TAU0 channel7	Unused	-	-

Table 4-2 List of used TAU0 channels settings

Note: TAU0 channel 0 is used as the transmit driver and TAU 0 channels 3 and 7 are used as the receive driver. Since the timer used in the transmit / receive driver is set by R_SD_RX_ApiInit (), R_SD_TX_ApiInit (), set "Unused".

4.2.3 List of Option Byte settings

Table 4-3 shows the Option Byte setting.

Table 4-3 List of Option Byte settings

Address	Value	Description	
000C0H / 010C0H	11111111B	Enables the watchdog timer.	
		(Starts counting after the release from the reset state.)	
000C1H / 010C1H	00011111B	LVD reset mode, 2.81V (2.75V \sim 2.87V)	
000C2H / 010C2H	11101000B	HS mode, HOCO: 32 MHz	
000C3H / 010C3H	10000100B	Enables the on-chip debugger.	

4.2.4 C language standard (C99)

This application note supports C99 standard. To create a project using the sample program, specify the CC-RL compile option "-lang = c99".

4.2.5 Section setting

Be sure to refer to "(2) Defining sections" in "8.3.2 When the CC-RL Compiler is Used" in "RL78 Family EEPROM Emulation Library Pack02 Package Ver.2.00 Release Note" and make sure to set the section.

4.2.6 Edit hwdinit() function

In code generation, there are some codes which are deleted by regeneration.

When regeneration is done refer to the following code, please copy the red frame line and add it.

r	_system.c
	void hdwinit(void)
	<pre>{ /* Create seed value used for CRCD */ make_ram_seed(); }</pre>
	DI();
	R_Systeminit(); EI();
	}

Note: About the make_ram_seed() function

In the make_ram_seed() function a random number used by the DALI Control Gear is generated.

Please use this function according to your requirements.

4.3 Receive driver

The method of decoding the received waveform which conforms to the Receiver timing standard of "IEC 62386-101 ed.2.0" is described below.

4.3.1 Receive driver outline

The outline of the receive driver is shown below.

- 1. A waveform passed through the DALI conversion circuit is input to P31/TI03.
- 2. Processing of the received waveform uses two channels (3, 7) of Timer Array Unit 0.
- 3. Channel 3 measures the pulse width of the received waveform using the input pulse interval measurement mode (both edge detection).
- 4. Channel 7 is set to interval timer mode and used for detection of stop condition.
- 5. After detecting the stop condition, the reception of the received waveform is completed.

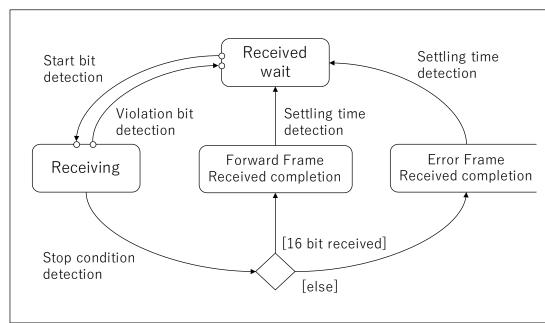


Figure 4-2 shows the state transitions of the receive driver.

Figure 4-2 Receive driver state transition

Table 4-4 and Table 4-5 list the pins and functions used by the receive driver.

The following settings are implemented in R_SD_RX_ApiInit ().

Table 4-4 Used	pins and	functions
----------------	----------	-----------

Pin Name	Description	I/O
P31 / TI03	Input function of	Input
	TAU0	

Table 4-5 Used timer and function

Timer Name	Mode	Setting time / Cycle	Interrupt
TAU0 channel3	Input pulse interval measurement	Rising / falling edge detection	Edge is detected
TAU0 channel7	Interval timer	1900µs	End of count

4.3.2 Function list

Table 4-6 and Table 4-7 list the function list of the receive driver.

Function name	Description	
R_SD_RX_ApiInit	Receive driver initialization function	
R_SD_RX_ApiGetCommand	Receive command acquisition function	

Table 4-7 Receive driver internal function list

Function name	Description	
r_sd_rx_dali_get_command	Receive command acquisition function	
r_sd_rx_stop_condition_complete	Stop condition completion processing function	
r_sd_rx_check_recv_frame_bit	Frame bit timing confirmation processing function	
r_sd_rx_forward_bit_set	Forward Frame decoding processing	
r_sd_rx_receive_status_reset	Reception state clear processing	
r_sd_rx_hw_timer_init	Timer initialization function	
r_sd_rx_hw_port_init	Port initialization function	
stop_condition_timer_interrupt	Stop condition timer interrupt handling function	
pulse_width_check_timer_interrupt	Pulse width measurement interrupt processing function	

4.3.3 Function specification

The specifications of the major functions of the receive driver are shown below.

(1) Hardware independent function

The specifications of hardware independent functions are described below. To use these functions you need to include r_softdali_rx_api.h.

Format	void R	_SD_RX_ApiInit(void)	
Parameters	I/O	Data type	Summary
-	-	void	-
Return value		Data type	Summary
Return value		void	-
Summary	Initialization processing of receive driver		
Details of processing	 Perform initialization processing to use the receive driver. Call the hardware dependent part initialization function of the receiving driver Save initialization processing completion status 		
Notice	Be sure to call it before using receive driver. Do not call more than once.		

Format	uint8_t R_SD_RX_ApiGetCommand(uint16_t * received_frame)			
Parameters	I/O	Data type	Summary	
received_frame		uint16_t *	Received frame data	
		Data type	Summary	
		uint8_t	SD_RET_NOT_INITIALIZE	
			:Not initialize	
			SD_RET_FF_RECEIVED	
Return value			:Forward frame normal received	
			SD_RET_FF_ERROR_RECEPTION	
			:Forward frame error reception	
			SD_RET_FF_NOT_RECEIVED	
			:Forward frame not received	
Summary	Receive data acquisition processing			
	Acquire received data of Forward Frame with receiving driver.			
			atus, judge the status from the return code of the	
		n command acquisition		
	• If Fo	prward Frame is rece		
Details of	\blacktriangleright	Set the received data to received_frame and return		
processing		SD_RET_FF_RECEIVED. • If Error Frame is received		
	• If Er	-		
	Return SD_RET_FF_ERROR_RECEPTION			
	If not received			
Netter	Return SD_RET_FF_NOT_RECEIVED			
Notice	Call R_SD_RX_Apilnit () before using it.			

(2) Hardware dependent function

The specifications of hardware dependent functions are described below.

Format	void r_sd_rx_hw_timer_init(void)		
Parameters	I/O	I/O Data type Summary	
-	-	void	-
Return value		Data type	Summary
Return value		void	-
Summary	Timer f	unction initialization p	processing of receive driver
Details of processing	Timer function initialization processing of receive driver Set the necessary timer for the receive driver. Stop condition measurement timer setting Setting of DALI communication input pulse measurement timer Noise filter setting of DALI reception port Input pulse of DALI communication reception port Noise filter setting of measurement timer Input pulse measurement timer interrupt setting Start input pulse measurement timer		
Notice	Be sure to call it before starting DALI communication.		

Format	void r_sd_rx_hw_port_init(void)		
Parameters	I/O	Data type	Summary
-	-	void	-
Return value		Data type	Summary
Return value		void	-
Summary	Port initialization processing of receive driver		
Details of	Configure the necessary ports for the receive driver.		
processing	Input port setting		
Notice	Be sure to call it before starting DALI communication.		

Format	static void stop_condition_timer_interrupt(void)			
Parameters	I/O	D Data type Summary		
-	-	void	-	
Return value		Data type	Summary	
Return value		void	-	
Summary	Interval timer interrupt processing for stop condition measurement			
Details of processing	 Perform interval timer interrupt processing for stop condition measurement. Stop condition completion processing execution DALI communication reception complete interrupt processing (using DALI library) Stop interval timer 			
Notice	-			

Format	static void pulse_width_check_timer_interrupt(void)			
Parameters	I/O	Data type	Summary	
-	-	void		
Return value		Data type	Summary	
Return value		void		
Summary	Receive	pulse width measurer	nent interrupt processing	
Details of processing	DALI cor • Obta • Get >	 When Overflow occurs Set 0xFFFF Normal time Set acquisition value Port status High Start Stop condition timer 		
Call of frame bit confirmation processing function			tion processing function	
Notice	-			

4.3.4 **Receiver timing definition**

IEC 62386-101 ed.2.0 Receiver timing standard and Receiver timing with this driver.

(1) **Definition in the driver**

In this driver, each logical bit shown in Figure 4-3 is divided into the following two sections.

- (A) First section : From the beginning edge of the logical bit to the next edge
- (B) Second section : From the internal edge of the logical bit to the next edge

Measure the pulse width in each section and judge each logical bit shown in Figure 4-3 from the measured time.

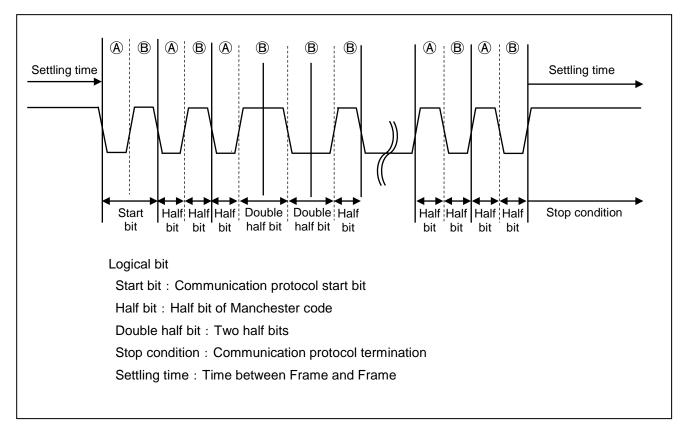


Figure 4-3 Name in driver

Receiver bit timing in each section is defined in the next chapter.

(2) Receiver bit timing definition of First section

Receiver bit timing used in First section is shown below.

Table 4-8 shows the Receiver bit timing defined in IEC 62386-101 ed.2.0 Specification Table 18.

Minimum	Typical	Maximum	Description
		< 333.3µs	Gray area
333.3µs	416.7µs	500µs	Half bit
> 500µs		< 750µs	Gray area
750µs		1400µs	Bit timing violation
> 1400µs		< 2400µs	Gray area
2400µs			Stop condition

Table 4-8 Receiver bit timing of First section (Definition of the standard)

In this driver, Receiver bit timing is redefined as shown in **Table 4-9** and Figure 4-4, and each bit is judged.

Table 4-9 Receiver bit timing of First section (Definition of receive driver)

Minimum	Typical	Maximum	Description
		< 100µs	Bit timing violation
100µs	416.7µs	625µs	Half bit
> 625µs		< 1900µs	Bit timing violation
1900µs			Stop condition

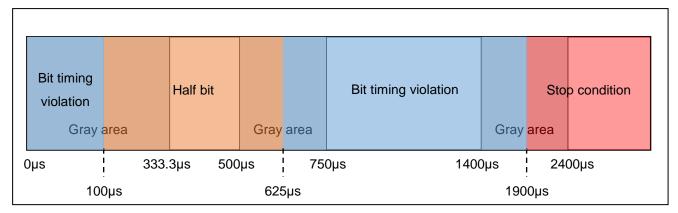


Figure 4-4 Receiver bit timing of First section

(3) Receiver bit timing definition of Second section

Receiver bit timing used in Second section is shown below.

Table 4-10 shows the Receiver bit timing defined in IEC 62386-101 ed.2.0 Specification Table 19.

Tab	le 4-10 Receiver bit timin	ng of Second section (Defi	inition of the standard)

Minimum	Typical	Maximum	Description
		< 333.3µs	Gray area
333.3µs	416.7µs	500µs	Half bit
> 500µs		< 666.7µs	Gray area
666.7µs	833.3µs	1000µs	Double half bit
> 1000µs		< 1200µs	Gray area
1200µs		1400µs	Bit timing violation
> 1400µs		< 2400µs	Gray area
2400µs			Stop condition

In this driver, Receiver bit timing is redefined as shown in Table 4-11 and Figure 4-5, and each bit is judged.

Table 4-11 Receiver bit timing of Second section (Definition of receive driver)

Minimum	Typical	Maximum	Description
		< 100µs	Bit timing violation
100µs	416.7µs	580µs	Half bit
> 580µs	833.3µs	1100µs	Double half bit
> 1100µs		< 1900µs	Bit timing violation
1900µs			Stop condition

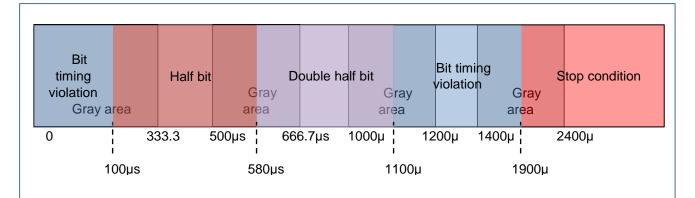


Figure 4-5 Receiver bit timing of Second section

4.3.5 **Receiver bit timing judgement**

The method of Receiver bit timing judgement is described below.

(1) Receiver bit timing judgement method

Measure the pulse width using both edge detection of input pulse interval measurement (channel 3 of Timer Array Unit 0). For the measured pulse width, as shown in Figure 4-6, judgment of Receiver bit timing is performed for each section. Stop condition does not change level and interrupt for measuring the input pulse interval does not enter, so it is detected by an interrupt by the channel 7 interval timer.

Note Since the edge does not change in Stop condition, it is detected by the interval timer. Also, when the last logical bit is 1, the Half bit of the Second section and Stop condition are integrated, so when the Stop condition is detected, the Manchester code is decoded.

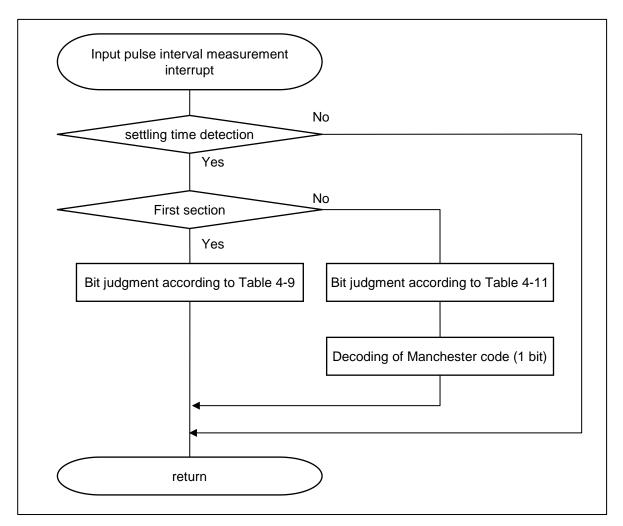


Figure 4-6 Receiver bit timing measurement flowchart

(2) Stop condition confirmation method

How to check the stop condition by the interval timer is described below.

In the receive driver, it is judged as a stop condition when the state of the receive pin continues at high level for a certain period (1900 us in this sample program).

Specifically, as shown in Figure 4-7, the interval timer starts at the rising edge and stops at the falling edge. And, it is judged as a stop condition, when the interval timer interrupt occurs from the last rising edge.

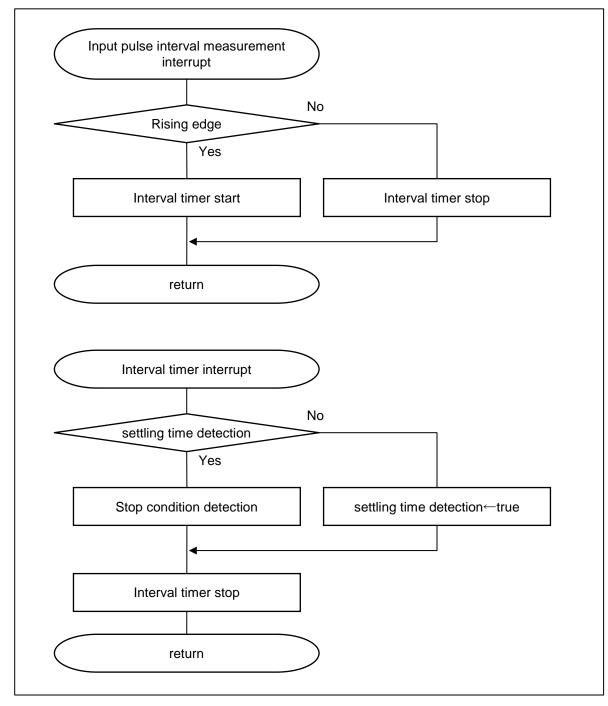


Figure 4-7 Stop condition confirmation flowchart

Figure 4-8 shows an example of pulse width measurement interrupts for the received waveform and start and stop of the interval timer.

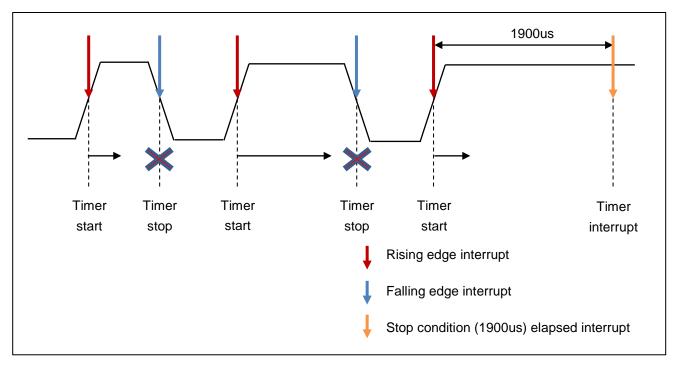


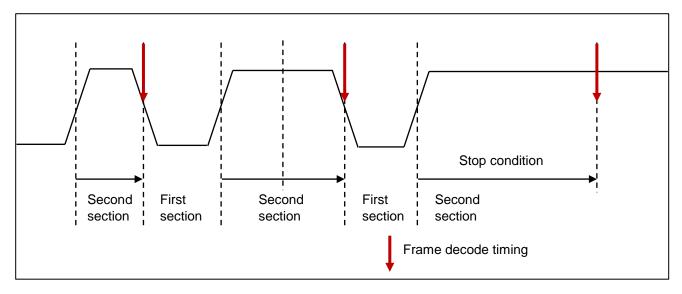
Figure 4-8 Stop condition confirmation method

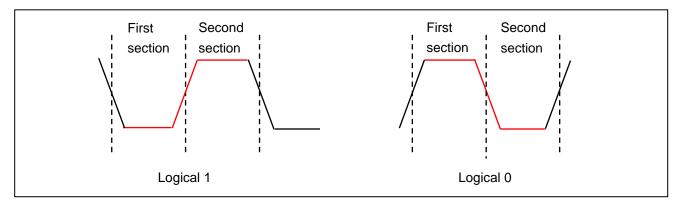
4.3.6 Forward Frame decoding method

The decoding method of Forward Frame is described below.

(1) Forward Frame decode timing

Forward Frame decoding timing is shown below.




Figure 4-9 Forward Frame decode timing

Forward Frame decode timing is set when an interrupt occurs at the second section.

When a stop condition is detected, if it is the Second section, decode Forward Frame.

(2) Forward Frame setting data

Since the received data is Manchester encoded, it decodes 1 at the rising edge and 0 at the falling edge. See Figure 4-10.

Figure 4-10 Forward Frame data

Note If Second section is Double half bit, since no interrupt occurs at 2 Half bit, so it is decoded at 3 Half bit.

Forward Frame data judgment

The method of acquiring settings data for decoding Forward Frame is described below.

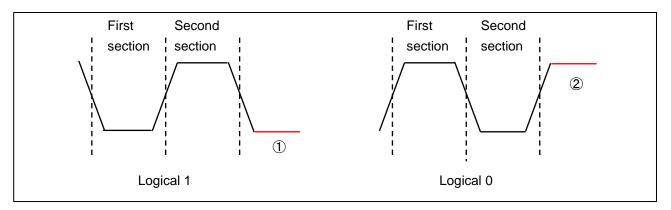


Figure 4-11 How to judge Forward Frame data

It checks the status of the output pins when an interrupt occurs of Second section.

Set "1" in the low-level state (1) and set "0" in the high-level state (2) to creates Frame data.

Status at frame decoding	Output pin status	Setting data
Half bit	low-level	"1"
	high-level	"0"
Double half bit	low-level	"1"
	high-level	"0"
Stop condition	No condition	"1"
	1.1 1 1	

* In Second section state at Stop condition, always First section is in the low-level state.

Other Frame decoding conditions

- First bit is not saved as data.
- Forward Frame is fixed to 16 bits, and if more data is received, it is recognized as a reception size error.
- Reception size error is recognized if Stop condition is received with less than 16 bits of received data.

4.4 Transmit driver

The method for realizing the encoding and waveform output of response data according to the Transmitter timing standard required for DALI Control Gear of IEC 62386-101 ed.2.0 with software is described below.

4.4.1 Transmit driver outline

Transmission waveform is output from the I/O pin P10. The following is a summary of receiving the response data from the DALI Library and starting transmission.

- 1. The response data is Manchester encoded and stored in the Transmission Data Buffer.
- 2. Output the Half bit (low level) of the Start bit to the I/O pin, set the channel 0 of Timer Array Unit 0 to interval timer mode, and start the timer.

Figure 4-12 shows the operation flow of the transmit driver.

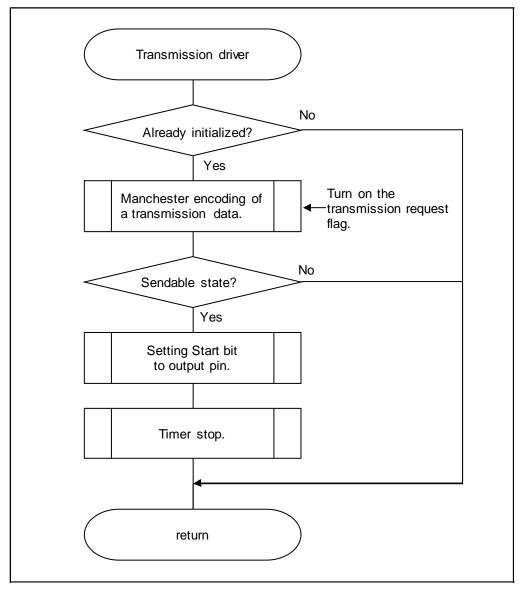


Figure 4-12 Transmit Driver Flowchart

The operation overview of interrupt processing by the timer started in the above flow is shown below.

- 1. The interval timer generates an interrupt at every Half bit width.
- 2. In interrupt handling, set the data in the transmit data buffer bit by bit to the I/O pin.
- 3. Stop the interval timer when all the data in the transmit data buffer has been transmitted.
- 4. Set the I/O pin to high-level and output Stop condition.

Figure 4-13 shows the interrupt handling flow of the transmit driver.

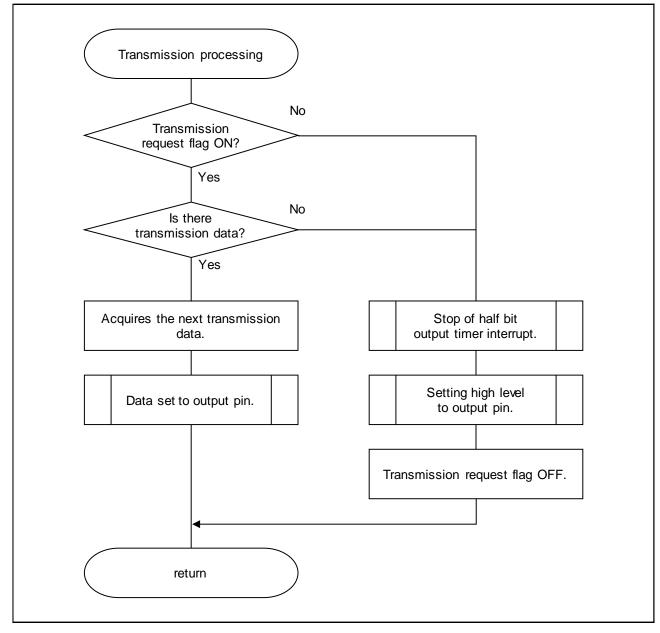


Figure 4-13 Transmit driver interrupt processing flowchart

Table 4-13 and Table 4-14 list the pins and functions used by the transmit driver.

Table 4-13 Used pins and functions

Р	'in Name	Description	I/O
Р	10	Output pin	Output

Table 4-14 Used timer and functions

Timer Name	Mode	Setting time / Cycle	Interrupt
TAU0 channel0	Interval timer	417µs	End of count

4.4.2 Function list

Table 4-15 and Table 4-16 list the functions of the transmit driver.

Table 4-15 Transmit d	lriver external	function list
-----------------------	-----------------	---------------

Function name	Description	
R_SD_TX_ApiInit	Transmit driver initialization function	
R_SD_TX_ApiSendAnswer	Command response transmission function	

Table 4-16 Transmit driver internal function list

Function name	Description
r_sd_tx_set_output_data	Command response data setting function
r_sd_tx_put_halfbit_data	Command response data output function
r_sd_tx_hw_timer_init	Timer initialization function
r_sd_tx_hw_port_init	Port initialization function
r_sd_tx_width_timer_start	Transmit bit width timer start processing function
r_sd_tx_width_timer_stop	Transmit bit width timer stop processing function
r_sd_tx_put_port	Port output processing function
tx_width_timer_interrupt	Transmit bit width timer interrupt handling function

4.4.3 Function specification

(1) Hardware independent function

The specifications of hardware independent functions are described below.

To use these functions you need to include r_softdali_tx_api.h.

Format	void R_SD_TX_ApiInit(void)		
Parameters	I/O	Data type	Summary
-	-	void	-
Return value		Data type	Summary
		void	-
Summary	Transmit driver initialization processing		
Details of processing	 Perform initialization processing to use the transmission driver. Call of hardware dependent part initialization function Save initialization processing completion status 		
Notice	Be sure to call it before using the transmission driver. Do not call more than once.		

Format	uint8_t R_SD_TX_ApiSendAnswer (uint8_t answer, uint8_t is_corrupted)							
Parameters	I/O	Data type	Summary					
answer	1	uint8_t	Transmission data					
is_corrupted	I	uint8_t	Corrupted Backward Frame transmission instruction flag					
		Data type	Summary					
		uint8_t	SD_RET_NOT_INITIALIZE					
			:Not initialize					
Return value	urn value		SD_RET_ERROR					
			: Transmission data creation error					
			SD_RET_NORMAL					
			:Backward frame normal send					
Summary	Response data transmission processing of DALI command							
Details of	Send BackwardFrame with the Transmit driver.							
processing								
Notice	Call R_SD_TX_ApiInit () before using it.							

(2) Hardware dependent function

The specifications of hardware dependent functions are described below.

Format	void r_so	void r_sd_tx_hw_timer_init (void)						
Parameters	I/O	Data type	Summary					
-	-	void	-					
Deturn volue		Data type	Summary					
Return value	void		-					
Summary	Timer fu	Timer function initialization processing of transmission driver						
Details of	Configur	Configure the timer necessary for the transmission driver.						
processing	Transmission pulse width measurement interval timer interrupt setting							
Notice	Be sure to call it before starting DALI communication.							

Format	void r_sc	void r_sd_tx_hw_timer_init (void)				
Parameters	I/O	Data type	Summary			
-	-	void	-			
Deturn volue	Data type S		Summary			
Return value	Return value		-			
Summary	Port initia	Port initialization processing of transmission driver				
Details of	Configur	Configure the necessary ports for the transmit driver.				
processing	Output port setting					
Notice	Be sure to call it before starting DALI communication.					

Format	void r_so	void r_sd_tx_width_timer_start (void)						
Parameters	I/O	Data type	Summary					
-	-	void	-					
		Data type	Summary					
Return value		void	-					
Summary	Transmi	Transmission pulse width measurement interval timer start processing						
Details of	Perform	Perform transmission pulse width measurement interval timer start processing.						
processing								
Notice								

Format	void r_so	void r_sd_tx_width_timer_stop (void)						
Parameters	I/O	Data type	Summary					
-	-	void	-					
Return value		Data type	Summary					
Return value		void	-					
Summary	Transmi	Transmission pulse width measurement interval timer stop processing						
Details of processing	If Corrup	Perform transmission pulse width measurement interval timer stop processing. If Corrupted Backward Frame is instructed, clear the Corrupted Backward Frame flag to the DALI library.						
Notice								

Format	void r_sd_tx_put_port (uint8_t data)						
Parameters	I/O	Data type	Summary				
data	I uint8_t		Port output data (0 or 1)				
Poturn voluo		Data type	Summary				
Return value	Return value		-				
Summary	Transmit	Transmit bit port output processing					
Details of	Perform	Perform processing to output the transmission bit to the port.					
processing							
Notice							

Format	static voi	static void tx_width_timer_interrupt (void)					
Parameters	I/O	Data type	Summary				
-	-	void	-				
Return value		Data type	Summary				
Return value		void	-				
Summary	Transmit	Transmit pulse width measurement interval timer interrupt processing					
Details of processing	 Transmit Pulse Width Measurement Performs processing at interrupt timer interrupt timer. Call transmission data bit output processing 						
Notice							

RL78/G13

4.4.4 Backward Frame encoding method

The encoding method of Backward Frame is described below.

Retrieve response data 1 bit at a time, Manchester encode into transmission data buffer and store "Backward Frame".

Star	rt bit		Response data (0x5A)															
8	bit	7	bit	6	bit	5 bit		4 bit		3 bit		2 bit		1 bit		0 bit		
	1	()		1	()	1		1		0		1		0		
set	 0, 1 Į	set	 1, 0 	set	 0, 1 	 set 1, 0 ↓		 set 0, 1 ↓		set	 set 0, 1 ↓		 set 1, 0 ↓		 set 0, 1 ↓		 set 1, 0 ↓	
0	1	1	0	0	1	1	0	0	1	0	1	1	0	0	1	1	0	
17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
bit	bit	bit	bit	bit	bit	bit	bit	bit	bit	bit	bit	bit	bit	bit	bit	bit	bit	
	Manchester encoded data																	

The buffer storing to "Backward Frame" by Manchester encoding requires "(number of response data bits \times 2) + Start bit", variable of uint32_t (4 bytes) is secured.

Response data is fetched 1 bit at a time, and if the fetched bits are the following,

- When it is "0", "1" is stored in the upper bit, "0" is stored in the lower bit, and the falling edge can be output.
- When it is "1", "0" is stored in the upper bit, "1" is stored in the lower bit, and the rising edge can be output.

The transmission data performed Manchester encoding of are taken out of higher bit and are set to an output port in a timing of Half bit time defined by Transmitter timing.

4.4.5 Transmitter bit timing definition

The Transmitter bit timing used within this driver is described below.

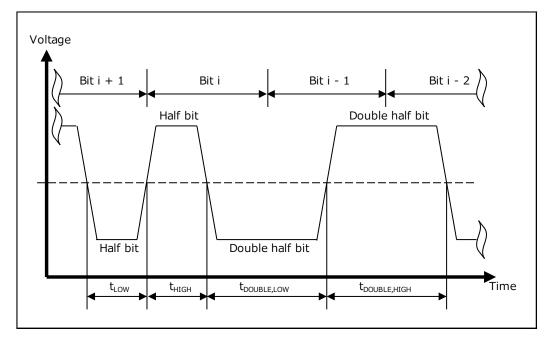


Figure 4-14 Transmitter bit timing example

	Minimum	Typical	Maximum
Half bit time t _{HIGH} , t _{LOW}	366.7us	416.7us	466.7us
Double half bit time tDOUBLE,LOW, tDOUBLE,HIGH	733.3us	833.3us	933.3us
Stop condition time T _{STOP}	2,450us		

Set the interval timer to 417 us as an approximate value of the Half bit time Typical value shown in Table 4-18, and set the output terminal for each Half bit time to transmit the backward frame.

4.4.6 **Transmitter bit timing generation**

The output method of Backward Frame is shown below.

Figure 4-15 shows the operation of the timer to be used, the timing to output to the pin, and the waveform that flows on the DALI bus. The blue arrow in the figure indicates the operation of the program (CPU). By setting the transmit data to the P10 pin, the same waveform is output on the DALI Line.

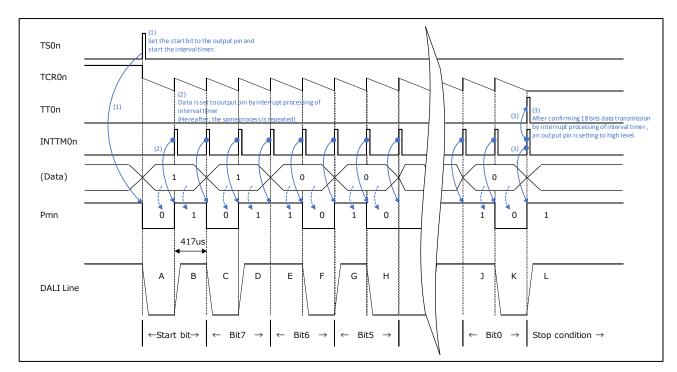


Figure 4-15 Example of Backward Frame transmission timing

- (1) When receiving a data transmission request, set the Half bit of the Start bit to the I/O pin and start the interval timer of the Transmitter bit timing. ("A" in "Figure 4-15 Example of Backward Frame transmission timing")
- (2) After that, set the data stored in the transmit data buffer at the interrupt timing of the interval timer to the output terminal in order from the most significant bit. ("B" to "K" in "Figure 4-15 Example of Backward Frame transmission timing")
- (3) At the end of all output, stop the interval timer of Transmitter bit timing, set the high level signal to the output terminal, and output the stop condition. ("L" in "Figure 4-15 Example of Backward Frame transmission timing")

Note

Delay may occur if the processing of another interrupt takes a lot of time. If the Half bit interrupt is delayed, the Backward Frame is judged to be damaged, so set the interrupt level so that it is recognized as a Backward Frame.

4.4.7 Corrupted Backward Frame generation

The following describes how to generate a Corrupted Backward Frame of IEC62386-101 ed.2.0.

If it has multiple logical units and even one of the backward frames is different, it needs to send a Corrupted Backward Frame containing Active State (low level signal) of at least 1300 μ s and a maximum of 2000 μ s. (For details, refer to chapter 9.5.2 of the DALI standard document "IEC 62386-101 Edition 2.0".)

In this driver, 0b010101010101010000 is transmitted as Corrupted Backward Frame as shown inFigure 4-16.

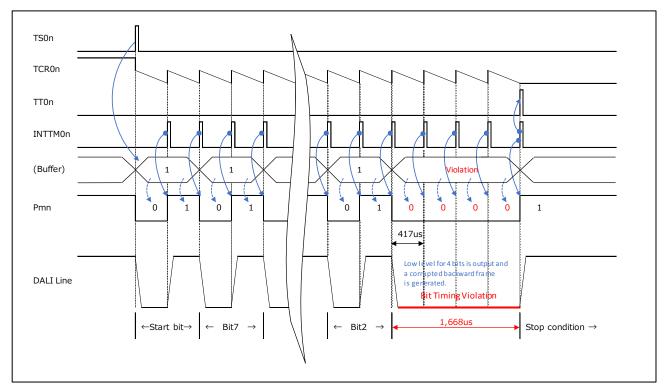


Figure 4-16 Corrupted Backward Frame

Note In this sample program, since it is composed of one logical unit, Corrupted Backward Frame will never occur. It corresponds to multiple logical units and transmits when the response differs.

4.5 **Dimming driver**

The method of outputting the dimming signal (PWM) from the set Actual Level is shown below.

4.5.1 Function list

The following is a list of functions used in the dimming driver.

Function name	Description
Lamp_SetLevel	Dimming Level setting function
Lamp_IsOn	Lighting confirmation function

4.5.2 Function specification

The specifications of each function are shown below.

Format	void Lamp_SetLevel (uint8_t ch, uint8_t level)							
Parameters	I/O	Data type	Summary					
ch	I uint8_t		Channel number					
level	1	uint8_t	Dimming Level					
Return value		Data type	Summary					
		void	-					
Summary	Setting of	Setting of dimming level						
Details of	Acquires the count value of the PWM defined in the DUTY MAP from the dimming level							
processing	and sets it in the timer register.							
Notice	-							

Format	bool Lamp_IsOn (uint8_t ch)							
Parameters	I/O	Data type	Summary					
ch	I uint8_t		Channel number					
		Data type	Summary					
Return value		bool	Current lighting state (true:ON / false:OFF)					
Summary	Return lighting status							
Details of	Returns the lighting status of the specified channel.							
processing								
Notice	startup is not taken into account.							

4.5.3 **Dimming signal driver**

With this driver, dimming signal (PWM) is output without directly adjusting the lighting of the lamp.

As for the dimming signal (PWM), control the duty ratio directly as the dimming ratio as follows.

Table 4-19	Correspondence	between d	duty ratio	and dimming ratio
------------	----------------	-----------	------------	-------------------

Duty ratio	Dimming ratio
0%	0% (turn off)
0.1~100%	Dimming at 0.1 to 100% (according to the specifications)

4.5.4 Duty value calculation method

The relationship between Actual Level (Level), Dimming ratio (Light Output), and PWM control register setting (Count Value) is shown in DUTY MAP.

DUTY MAP is based on the following.

- PWM cycle: 1ms(1kHz)
- A maximum count level: 32000 (High-speed on-chip oscillator: 32MHz)

— DALI standard book (IEC 62386-102 Edition2.0 Chapter 9.3 Table-3 Dimming curve)

The calculation method of Light Output when Actual Level is 1 to 254 is shown below.

$$Light Output = 10^{\frac{actualLevel-1}{253/3}-1}(\%)$$

Calculation method of Count Value from Light Output is shown below.

Count Value = $32000 \times \frac{\text{Light Output}}{100}$

Level	Light	Count	Level	Light	Count	Level	Light	Count	Level	Light	Count	Level	Light	Count
(bit)	output (%)	value	(bit)	output (%)	value	(bit)	output (%)	value	(bit)	output (%)	value	(bit)	output (%)	value
1	0.100	32	52	0.402	129	103	1.620	518	154	6.520	2086	205	26.241	8397
2	0.103	33	53	0.414	132	104	1.665	533	155	6.700	2144	206	26.967	8629
3	0.106	34	54	0.425	136	105	1.711	548	156	6.886	2204	207	27.713	8868
4	0.109	35	55	0.437	140	106	1.758	563	157	7.076	2264	208	28.480	9114
5	0.112	36	56	0.449	144	107	1.807	578	158	7.272	2327	209	29.269	9366
6	0.115	37	57	0.461	148	108	1.857	594	159	7.473	2391	210	30.079	9625
7	0.118	38	58	0.474	152	109	1.908	611	160	7.680	2458	211	30.911	9892
8	0.121	39	59	0.487	156	110	1.961	628	161	7.893	2526	212	31.767	10165
9	0.124	40	60	0.501	160	111	2.015	645	162	8.111	2596	213	32.646	10447
10	0.128	41	61	0.515	165	112	2.071	663	163	8.336	2668	214	33.550	10736
11	0.131	42	62	0.529	169	113	2.128	681	164	8.567	2741	215	34.479	11033
12	0.135	43	63	0.543	174	114	2.187	700	165	8.804	2817	216	35.433	11339
13	0.139	44	64	0.559	179	115	2.248	719	166	9.047	2895	217	36.414	11652
14	0.143	46	65	0.574	184	116	2.310	739	167	9.298	2975	218	37.422	11975
15	0.147	47	66	0.590	189	117	2.374	760	168	9.555	3058	219	38.457	12306
16	0.151	48	67	0.606	194	118	2.440	781	169	9.820	3142	220	39.522	12647
17	0.155	50	68	0.623	199	119	2.507	802	170	10.091	3229	221	40.616	12997
18	0.159	51	69	0.640	205	120	2.577	825	171	10.371	3319	222	41.740	13357
19	0.163	52	70	0.658	211	121	2.648	847	172	10.658	3411	223	42.895	13726
20	0.168	54	71	0.676	216	122	2.721	871	173	10.953	3505	224	44.083	14107
21	0.173	55	72	0.695	222	123	2.797	895	174	11.256	3602	225	45.303	14497
22	0.177	57	73	0.714	228	124	2.874	920	175	11.568	3702	226	46.557	14898
23	0.182	58	74	0.734	235	125	2.954	945	176	11.888	3804	227	47.846	15311
24	0.187	60	75	0.754	241	126	3.035	971	177	12.217	3909	228	49.170	15734
25	0.193	62	76	0.775	248	127	3.119	998	178	12.555	4018	229	50.531	16170
26	0.198	63	77	0.796	255	128	3.206	1026	179	12.902	4129	230	51.930	16618
27	0.203	65	78	0.819	262	129	3.294	1054	180	13.260	4243	231	53.367	17077
28	0.209	67	79	0.841	269	130	3.386	1084	181	13.627	4361	232	54.844	17550
29	0.215	69	80	0.864	276	131	3.479	1113	182	14.004	4481	233	56.362	18036
30	0.221	71	81	0.888	284	132	3.576	1144	183	14.391	4605	234	57.922	18535
31	0.227	73	82	0.913	292	133	3.675	1176	184	14.790	4733	235	59.526	19048
32	0.233	75	83	0.938	300	134	3.776	1208	185	15.199	4864	236	61.173	19575
33	0.240	77	84	0.964	308	135	3.881	1242	186	15.620	4998	237	62.866	20117
34	0.246	79	85	0.991	317	136	3.988	1276	187	16.052	5137	238	64.607	20674
35	0.253	81	86	1.018	326	137	4.099	1312	188	16.496	5279	239	66.395	21246
36	0.260	83	87	1.047	335	138	4.212	1348	189	16.953	5425	240	68.233	21835
37	0.267	85	88	1.076	344	139	4.329	1385	190	17.422	5575	241	70.121	22439
38	0.275	88	89	1.105	354	140	4.449	1424	191	17.905	5730	242	72.062	23060
39	0.282	90	90	1.136	364	141	4.572	1463	192	18.400	5888	243	74.057	23698
40	0.290	93	91	1.167	373	142	4.698	1503	193	18.909	6051	244	76.107	24354
41	0.298	95	92	1.200	384	143	4.828	1545	194	19.433	6219	245	78.213	25028
42	0.306	98	93	1.233	395	144	4.962	1588	195	19.971	6391	246	80.378	25721
43	0.315	101	94	1.267	405	145	5.099	1632	196	20.524	6568	247	82.603	26433
44	0.324	104	95	1.302	417	146	5.240	1677	197	21.092	6749	248	84.889	27164
45	0.332	106	96	1.338	428	147	5.385	1723	198	21.675	6936	249	87.239	27916
46	0.342	109	97	1.375	440	148	5.535	1771	199	22.275	7128	250	89.654	28689
47	0.351	112	98	1.413	452	149	5.688	1820	200	22.892	7325	251	92.135	29483
48	0.361	116	99	1.452	465	150	5.845	1870	201	23.526	7528	252	94.686	30300
49	0.371	119	100	1.492	477 491	151	6.007	1922	202	24.177	7737	253 254	97.307	31138
50	0.381	122	101	1.534		152	6.173	1975	203	24.846	7951 9171	204	100.000	32000
51	0.392	125	102	1.576	504	153	6.344	2030	204	25.534	8171			

 Table 4-20 DUTY MAP

5. References

- RL78/G13 User's Manual: Hardware (R01UH0146)
- RL78/G13 Target board QB-R5F100LE-TB User's Manual (R20UT0624XJ0200)
- RL78/I1A Family User's Manual DALI Library (IEC62386-102ed2.0)
- EEPROM Emulation Library Pack02 Package Ver.2.00(for CA78K0R/CC-RL Compiler) for RL78 Family (R20UT2645)
- Digital addressable lighting interface Part 101: General requirements System components (IEC 62386-101 Edition2.0)
- Digital addressable lighting interface Part 102: General requirements Control gear (IEC 62386-102 Edition2.0)

Website and Support

Renesas Electronics Website <u>http://www.renesas.com/</u>

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision History

		Description		
Rev.	Date	Page	Summary	
1.01	26 th Sep., 2019	All	First edition issued	

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.

In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not
access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

- When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.