RENESAS TECHNICAL UPDATE

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan Renesas Electronics Corporation

Product Category	MPU/MCU	Document No.	TN-RL*-A033A/E	Rev.	1.00	
Title	Correction for Incorrect Description Notice RI Descriptions in the User's Manual: Hardware Changed	Information Category	Technical Notification			
		Lot No.		PL 78/L1C Lisor's Man	ual: Hard	waro
Applicable Product	RL78/L1C Group	Reference Document	RL78/L1C User's Manual: Hardware Rev. 2.00 R01UH0409EJ0200 (Feb. 2014)			

This document describes misstatements found in the RL78/L1C User's Manual: Hardware Rev. 2.00 (R01UH0409EJ0200).

Corrections

Applicable Item	Applicable Page	Contents
3.3.4 Special function registers (SFRs) Table 3 - 8 SFR List	Pages 82 and 83	Incorrect descriptions revised
6.3.3 Timer mode register mn (TMRmn) Figure 6 - 17 Format of Timer mode register mn (TMRmn) (4/4)	Page 248	Incorrect descriptions revised
5.3.9 High-speed on-chip oscillator trimming register (HIOTRM)	Page 186	Incorrect descriptions revised
15.5.7 SNOOZE mode function Timing Chart of SNOOZE Mode Operation (Figure 14-74. and Figure 14-76.)	Pages 663 and 665	Incorrect descriptions revised
15.6.3 SNOOZE mode function	Page 688	Incorrect descriptions revised
15.6.3 SNOOZE mode function Timing Chart of SNOOZE Mode Operation (Figure 15-95., Figure 15-96. and Figure 15-96.)	Pages 690, 691 and 693	Incorrect descriptions revised
17.4.5.3 DTC Transfers (D0FIFO and D1FIFO Ports)	Page 895	Incorrect descriptions revised
21.4.3 Multiple interrupt servicing Table 19-5. Relationship Between Interrupt Requests Enabled for Multiple Interrupt Servicing During Interrupt Servicing	Page 1029	Incorrect descriptions revised
34.6.1 34.6.1 A/D converter characteristics	Page 1221	Specifications changed
34.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	Page 1234	Content change
35.8 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics	Page 1294	Content change

Document Improvement

The above corrections will be made for the next revision of the User's Manual: Hardware.

 $\ensuremath{\mathbb{C}}$ 2014 Renesas Electronics Corporation. All rights reserved.

Corrections in the User's Manual: Hardware

		Corrections and Applicable Items		Pages in this
No.	Document No.	English	R01UH0409EJ0200	document for corrections
1	3.3.4 Special function registe	rs (SFRs) Table 3 - 8 SFR List	Pages 82 and 83	Page 3 and 4
2	6.3.3 Timer mode register mr Timer mode register mn (TM	n (TMRmn) Figure 6 - 17 Format of Rmn) (4/4)	Page 248	Page 5
3	5.3.9 High-speed on-chip osc	illator trimming register (HIOTRM)	Page 186	Page 6
4	15.5.7 SNOOZE mode functi Timing Chart of SNOOZE Mo Figure 14-76.)	on de Operation (Figure 14-74. and	Pages 663 and 665	Page 7 and 8
5	15.6.3 SNOOZE mode function	on	Page 688	Page 9
6	15.6.3 SNOOZE mode functi Timing Chart of SNOOZE Mo 15-96. and Figure 15-96.)	on de Operation (Figure 15-95., Figure	Pages 690, 691 and 693	Page 10 to 12
7	17.4.5.3 DTC Transfers (D0F	IFO and D1FIFO Ports)	Page 895	Page 13
8	21.4.3 Multiple interrupt servi Table 19-5. Relationship Betv Multiple Interrupt Servicing During Interrupt Servicing	cing ween Interrupt Requests Enabled for	Page 1029	Page 14
9	34.6.1 34.6.1 A/D converter of	haracteristics	Page 1221	Page 16 and 17
10	34.9 Data Memory STOP Mo Characteristics	de Low Supply Voltage Data Retention	Page 1234	Page 18
11	35.8 Data Memory STOP Mo Characteristic	de Low Supply Voltage Data Retention s	Page 1294	Page 20

Incorrect: Bold with underline; Correct: Gray hatched

Revision History

RL78/L1C Correction for incorrect description notice

Document Number	Issue Date	Description
TN-RL*-A033A/E	Sep. 17, 2014	First edition issued
		Corrections No.1 to No.11 revised (this document)

1. <u>3.3.4 Special function registers (SFRs)</u> <u>Table 3 - 7 SFR List (Page 82 and 83)</u>

Incorrect:

Table 3-7. SFR List (1/4)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipu	lable Bit	Range	After Reset		
					1-bit	8-bit	16-bit			
	(omitted)									
FFF10H	Serial data register 00	TXD0/ SIO00	SDR00	R/W	-	\checkmark	\checkmark	0000H		
FFF11H		-			-	-				
FFF12H	Serial data register 01	RXD0	SDR01	R/W	-	\checkmark	\checkmark	0000H		
FFF13H		1			-	-				
FFF14H	Serial data register 12	TXD3	SDR12	R/W	-	\checkmark	\checkmark	0000H		
FFF15H		SIO30			-	-				
FFF16H	Serial data register 13	RXD3	SDR13	R/W	-	\checkmark	\checkmark	0000H		
FFF17H		-			-	-				
		(0	mitted)							

Date: September 17, 2014

Correct:

Table 3-7. SFR List (1/4)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipu	Iable Bit	Range	After Reset		
					1-bit	8-bit	16-bit			
	(omitted)									
FFF10H	Serial data register 00	TXD0/ SIO00	SDR00	R/W	-	\checkmark	\checkmark	0000H		
FFF11H		-			-	-				
FFF12H	Serial data register 01	RXD0	SDR01	R/W	-	\checkmark	\checkmark	0000H		
FFF13H		-			-	-				
FFF14H	Serial data register 12	TXD3/ SIO30	SDR12	R/W	-	\checkmark	\checkmark	0000H		
FFF15H					-	-				
FFF16H	Serial data register 13	RXD3	SDR13	R/W	-	\checkmark	\checkmark	0000H		
FFF17H		-			-	-				
		(0	mitted)							

Incorrect:

Correct:

Table 3-7. SFR List (2/4)

Address	Special Function Register (SFR) Name	Syn	nbol	R/W	Manipu	lable Bit	Range	After Reset	IIĪ	Address	Special Funct
					1-bit	8-bit	16-bit				
		(0	mitted)								
FFF44H	Serial data register 02	TXD1/	SDR02	R/W	-	\checkmark	\checkmark	0000H		FFF44H	Serial data
		SIO10									
FFF45H		-			-	-				FFF45H	
FFF46H	Serial data register 03	RXD1	SDR03	R/W	-	\checkmark	\checkmark	0000H		FFF46H	Serial data
FFF47H		_			-	-				FFF47H	
FFF48H	Serial data register 10	TXD2	SDR10	R/W	-	\checkmark	\checkmark	0000H		FFF48H	Serial data
FFF49H		SIO20			-	-					
FFF4AH	Serial data register 11	RXD2	SDR11	R/W	-	\checkmark	\checkmark	0000H		FFF49H	
FFF4BH		-			-	-				FFF4AH	Serial data
		(o	mitted)							FFF4BH	

Table 3-7. SFR List (2/4)

Address	Special Function Register (SFR) Name	Symbol		R/W	Manipu	Manipulable Bit Range		After Reset
					1-bit	8-bit	16-bit	
		mitted)						
FFF44H	Serial data register 02	TXD1/	SDR02	R/W	-	\checkmark	\checkmark	0000H
		SIO10						
FFF45H		-			-	1		
FFF46H	Serial data register 03	RXD1	SDR03	R/W	-	\checkmark	\checkmark	0000H
FFF47H		-			1	I		
FFF48H	Serial data register 10	TXD2/	SDR10	R/W	-	\checkmark	\checkmark	0000H
		SIO20						
FFF49H					-	Ι		
FFF4AH	Serial data register 11	RXD2	SDR11	R/W	1	\checkmark	\checkmark	0000H
FFF4BH		_			_	_		
		(0	mitted)					

© 2014 Renesas Electronics Corporation. All rights reserved.

2. <u>6.3.3 Timer mode register mn (TMRmn)</u> Figure 6 - 17 Format of Timer mode register mn (TMRmn) (4/4)(p.248)

Incorrect:

Operation mode (Value set by the MDmn3 to MDmn1 bits (see the table above))	MD mn 0	Setting of starting counting and interrupt
 Interval timer mode (0, 0, 0) 	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
• Capture mode (0, 1, 0)	1	Timer interrupt is generated when counting is started (timer output also changes).
• Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
• One-count mode Note 2 (1, 0, 0)	0	Start trigger is invalid during counting operation. At that time, interrupt is not generated.
	1	Start trigger is valid during counting operation ^{Note 3} . At that time, interrupt is also generated.
• Capture & one-count mode (1, 1, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either). Start trigger is invalid during counting operation. At that time interrupt is not generated.
Other than above		Setting prohibited

Correct:

Operation mode (Value set by the MDmn3 to MDmn1 bits (see the table above))	MD mn 0	Setting of starting counting and interrupt
 Interval timer mode (0, 0, 0) 	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
• Capture mode (0, 1, 0)	1	Timer interrupt is generated when counting is started (timer output also changes).
• Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
• One-count mode Note 2 (1, 0, 0)	0	Start trigger is invalid during counting operation. At that time, interrupt is not generated.
	1	Start trigger is valid during counting operation ^{Note 3} . At that time, interrupt is not generated.
• Capture & one-count mode (1, 1, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either). Start trigger is invalid during counting operation. At that time interrupt is not generated.
Other than above		Setting prohibited

3. <u>5.3.9 High-speed on-chip oscillator trimming register (HIOTRM)</u> (Page 186)

Incorrect:

5.3.9 High-speed on-chip oscillator trimming register (HIOTRM)

(omitted)

Figure 5-14. Format of High-Speed On-Chip Oscillator Trimming Register (HIOTRM)

Address: F0	0A0H		After reset:	undefined ^{Note}	R/W			
Symbol	7	6	5	4	3	2	1	0
HIOTRM	0	0	HIOTRM5	HIOTRM4	HIOTRM3	HIOTRM2	HIOTRM1	HIOTRM0

HIOTRM5	HIOTRM4	HIOTRM3	HIOTRM2	HIOTRM1	HIOTRM0	High-speed on-chip oscillator
0	0	0	0	0	0	Minimum speed
0	0	0	0	0	1	
0	0	0	0	1	0	
0	0	0	0	1	1	
0	0	0	1	0	0	
			•			
1	1	1	1	1	0	•
1	1	1	1	1	1	Maximum speed

Note The value after reset is the value adjusted at shipment.

- Remark1. The HIOTRM register can be used to adjust the high-speed on-chip oscillator clock to an accuracy within about 0.05%.
- Remark2. For the usage example of the HIOTRM register, see the application note for RL78 MCU series High-speed On-chip Oscillator (HOCO) Clock Frequency Correction (R01AN0464).

Correct:

5.3.9 High-speed on-chip oscillator trimming register (HIOTRM)

(omitted)

Figure 5-14. Format of High-Speed On-Chip Oscillator Trimming Register (HIOTRM)

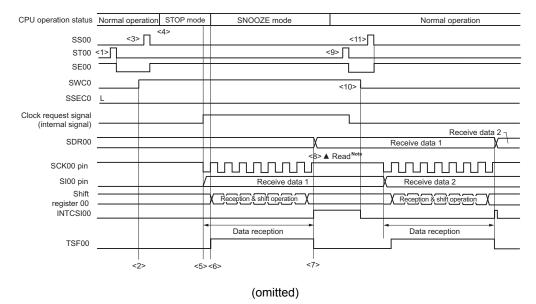
Address:	F00A0H		After reset:	undefined Note	R/W			
Symbol	7	6	5	4	3	2	1	0
HIOTRM	0	0	HIOTRM5	HIOTRM4	HIOTRM3	HIOTRM2	HIOTRM1	HIOTRM0

HIOTRM5	HIOTRM4	HIOTRM3	HIOTRM2	HIOTRM1	HIOTRM0	High-speed on-chip oscillator		
0	0	0	0	0	0	Minimum speed		
0	0	0	0	0	1	4		
0	0	0	0	1	0			
0	0	0	0	1	1			
0	0	0	1	0	0			
			•					
1	1	1	1	1	0	•		
1	1	1	1	1	1	Maximum speed		

Note The value after reset is the value adjusted at shipment.

Remarks 1. The HIOTRM register holds a six-bit value used to adjust the high-speed on-chip oscillator with an increment of 1 corresponding to an increase of frequency by about 0.05%.

Remark 2. For the usage example of the HIOTRM register, see the application note for RL78 MCU series High-speed On-chip Oscillator (HOCO) Clock Frequency Correction (R01AN0464).


4. 15.5.7 SNOOZE mode function

Timing Chart of SNOOZE Mode Operation (Figure 15-74. and Figure 15-76.) (Pages 663 and 665)

It is correction of "CPU operation status", "Clock request signal (internal signal)" and "TSF00" in this Figure.

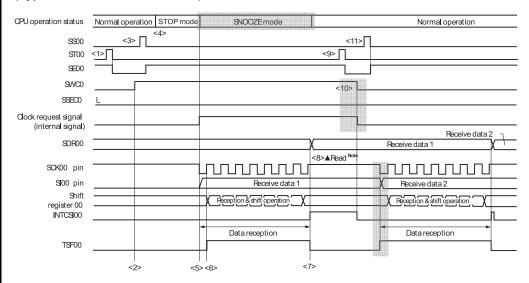
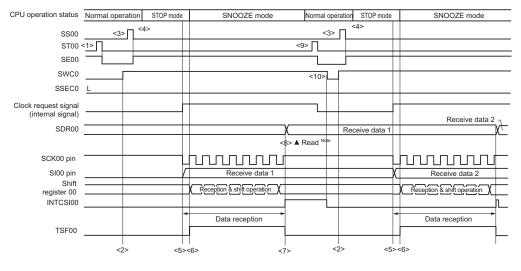

Incorrect:

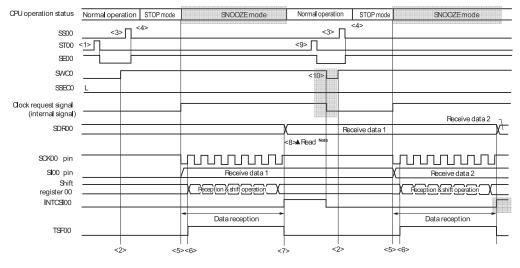
Figure 15-74. Timing Chart of SNOOZE Mode Operation (once startup) (Type 1: DAPmn = 0, CKPmn = 0)

Correct:


Figure 15-74. Timing Chart of SNOOZE Mode Operation (once startup) (Type 1: DAPmn = 0, CKPmn = 0)

It is correction of "CPU operation status", "Clock request signal (internal signal)" and "INTCSI00" in this Figure.

Incorrect:


Figure 15-76. Timing Chart of SNOOZE Mode Operation (continuous startup) (Type 1: DAPmn = 0, CKPmn = 0)

(omitted)

Figure 15-76. Timing Chart of SNOOZE Mode Operation (continuous startup) (Type 1: DAPmn = 0, CKPmn = 0)

5. 15.6.3 SNOOZE mode function (Page 688)

Incorrect:

15.6.3 SNOOZE mode function

The SNOOZE mode makes the UART perform reception operations upon RxDq pin input detection while in the STOP mode. Normally the UART stops communication in the STOP mode. However, using the SNOOZE mode enables the UART to perform reception operations without CPU operation.

(omitted)

Cautions 1. The SNOOZE mode can only be used when the high-speed on-chip oscillator clock (fill) is selected for fcLK.

(omitted)

Cautions 4. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFmn, FEFmn, or OVFmn flag is not set and an error interrupt (INTSREq) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFmn, FEFmn, or OVFmn flag before setting the SWC0 bit to 1 and read the value in bits 7 to 0 (RxDq register) of the SDRm1 register.

Correct:

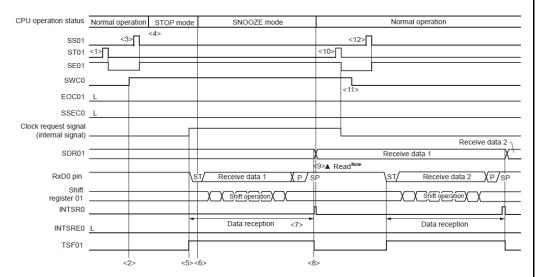
15.6.3 SNOOZE mode function

The SNOOZE mode makes the UART perform reception operations upon RxDq pin input detection while in the STOP mode. Normally the UART stops communication in the STOP mode. However, using the SNOOZE mode enables the UART to perform reception operations without CPU operation.

(omitted)

Cautions 1. The SNOOZE mode can only be used when the high-speed on-chip oscillator clock (fill) is selected for fcLk.

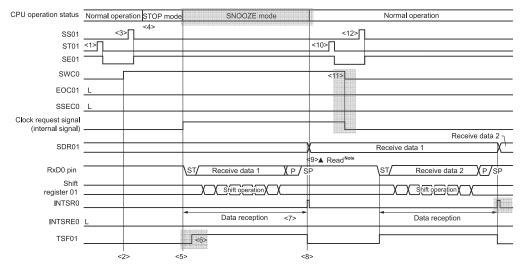
- Cautions 4. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFmn, FEFmn, or OVFmn flag is not set and an error interrupt (INTSREq) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFmn, FEFmn, or OVFmn flag before setting the SWC0 bit to 1 and read the value in bits 7 to 0 (RxDq register) of the SDRm1 register.
- Cautions 5. The CPU shifts from the STOP mode to the SNOOZE mode on detecting the valid edge of the RxDq signal. Note, however, that transfer through the UART channel may not start and the CPU may remain in the SNOOZE mode if an input pulse on the RxDq pin is too short to be detected as a start bit. In such cases, data may not be received correctly, and this may lead to a framing error or parity error in the next UART transfer.



6. <u>15.6.3 SNOOZE mode function</u> <u>Timing Chart of SNOOZE Mode Operation (Figure 15-95, Figure 15-96</u> <u>and Figure 15-98) (Pages 690, 691 and 693)</u>

It is correction of "CPU operation status", "Clock request signal (internal signal)", "INTSR0" and "TSF01" in this Figure.

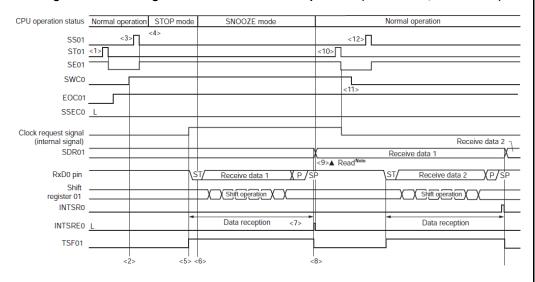
Incorrect:


Figure 15-95. Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1)

(omitted)

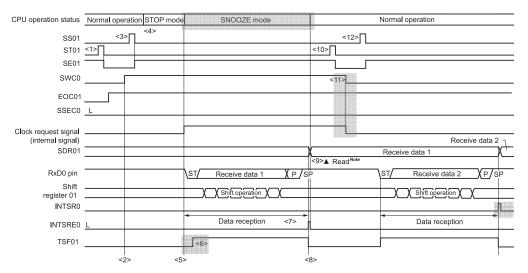
Correct:

Figure 15-95. Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1)



It is correction of "CPU operation status", "Clock request signal (internal signal)", "INTSR0" and "TSF01" in this Figure.

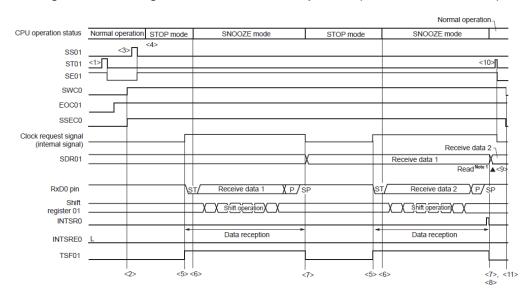
Incorrect:


Figure 15-96. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0)

(omitted)

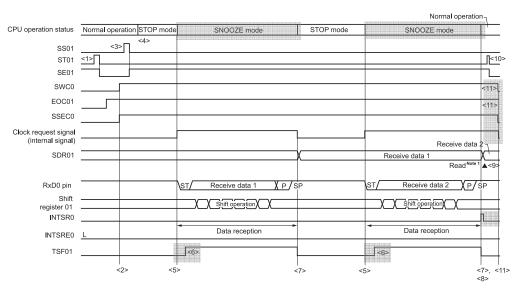
Correct:

Figure 15-96. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0)


(omitted)

It is correction of "CPU operation status", "Clock request signal (internal signal)", "INTSR0" and "TSF01" in this Figure.

Incorrect:


Figure 15-98. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)

(omitted)

Correct:

Figure 15-98. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)

7. <u>17.4.5.3 DTC Transfers (D0FIFO and D1FIFO Ports)</u> <u>Table 17 - 22 DTC Settings(p.895)</u>

Old:

New:

Table 17 - 22 DTC Settings						
	Cycle steal transfer	Block transfer				
DTCCRj	MODE = 0 (Use this setting in norn	nal mode.)				
	SAMOD = FIFO read direction: 0, FIFO write direction: 1					
	DAMOD = FIFO read direction: 1, FIFO write direction: 0					
	(Fix the address of the FIFO side.)					
	CHNE = 0 (Disable chain transfers.)					
	Specify the setting according to the	setting of Sz = MBW.				
	Setting other bits is invalid due to n	ormal mode				
DTBLSj	01H	Sz = 0: Max. Packet Size				
(DTC block size)	(Sz = 0: 1 byte/Sz = 1: 2 bytes)	Sz = 1: Max. Packet Size/2				
DTCCTj	Any value (Max. 256 times)	Any value (Max. 256 times)				

Table 17 - 22 DTC Settings							
	Cycle steal transfer	Block transfer					
DTCCRj	MODE = 0 (Use this setting in normal mode.)						
	SAMOD = FIFO read direction: 0, F	FIFO write direction: 1					
	DAMOD = FIFO read direction: 1, F	FIFO write direction: 0					
	(Fix the address of the FIFO side.)						
	CHNE = 0 (Disable chain transfers.)					
	Specify the setting according to the setting of $Sz = MBW$.						
	Setting other bits is invalid due to normal mode						
DTBLSj	01H	Sz = 0: Max. Packet Size					
(DTC block size)	(Sz = 0: 1 byte/Sz = 1: 2 bytes)	Sz = 1: Max. Packet Size/2					
DTCCTj	Any value (Max. 256 times)	Any value (Max. 256 times)					
DTDARj	FIFO Read direction: Data transfer destination address						
(Destination address)	FIFO Write direction : D0FIFOD00/	D1FIFOD00					
DTSARj	FIFO Read direction : D0FIFOD00/	D1FIFOD00					
(Source address)	FIFO Write direction: Data transfer	source address					

Caution: j=D0FIFO/D1FIFO are assigned to activation source (0~23) For details of DTC setting, see CHAPTER 19 DATA TRANSFER CONTROLLER

8. 34.6.1 A/D converter characteristics(p.1221)

Voltage Range of A/D conversion was extended. **Old:**

(1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target for conversion: ANI2 to ANI12

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, 2.7 \text{ V} \le \text{AV}_{REFP} \le \text{AV}_{DD} = \text{V}_{DD} \le 3.6 \text{ V}, \text{Vss} = 0 \text{ V}, \text{AV}_{SS} = 0 \text{ V}, \text{Reference voltage (+)} = \text{AV}_{REFP}, \text{Reference voltage (+)} = \text{AV}_{REFP}$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res				12	bit
Overall error ^{Notes 1, 2, 3}	AINL	12-bit resolution		±1.7	±3.3	LSB
Conversion time	tconv	ADTYP = 0, 12-bit resolution	3.375			μS
Zero-scale error ^{Notes 1, 2, 3}	Ezs	12-bit resolution		±1.3	±3.2	LSB
Full-scale error ^{Notes 1, 2, 3}	Efs	12-bit resolution		±0.7	±2.9	LSB
Integral linearity error Notes 1, 2, 3	ILE	12-bit resolution		±1.0	±1.4	LSB
Differential linearity error ^{Notes 1, 2, 3}	DLE	12-bit resolution		±0.9	±1.2	LSB
Analog input voltage	VAIN		0		AVREFP	V

Notes 1. TYP. Value is the average value at $AV_{DD} = AV_{REFP} = 3 V$ and $T_A = 25^{\circ}C$. MAX. value is the average value $\pm 3\sigma$ at normalized distribution.

- 2. These values are the results of characteristic evaluation and are not checked for shipment.
- **3.** Excludes quantization error ($\pm 1/2$ LSB).
- Cautions 1. Route the wiring so that noise will not be superimposed on each power line and ground line, and insert a capacitor to suppress noise.

In addition, separate the reference voltage line of AVREFP from the other power lines to keep it free from the influences of noise.

2. During A/D conversion, keep a pulse, such as a digital signal, that abruptly changes its level from being input to or output from the pins adjacent to the converter pins and P20 to P27 and P150 to P154.

New:

(1) When reference voltage (+) = AV_{REFP}/ANI0 (ADREFP1 = 0, ADREFP0 = 1), reference voltage (-) = AV_{REFM}/ANI1 (ADREFM = 1), target for conversion: ANI2 to ANI12

 $(T_A = -40 \text{ to } +85^{\circ}C, 2.4 \text{ V} \le \text{AV}_{REFP} \le \text{AV}_{DD} = \text{V}_{DD} \le 3.6 \text{ V}, \text{ V}_{SS} = 0 \text{ V}, \text{ AV}_{SS} = 0 \text{ V}, \text{ Reference voltage (+)} = \text{AV}_{REFP}, \text{ Reference voltage (-)} = \text{AV}_{REFM} = 0 \text{ V}, \text{ HALT mode})$

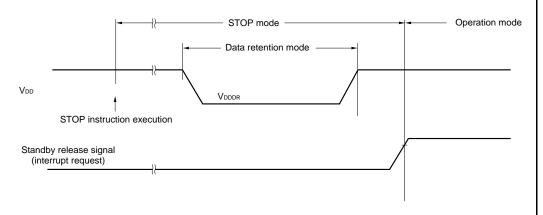
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Resolution	Res				12	bit
Overall error ^{Notes 1, 2, 3}	AINL	12-bit resolution		±1.7	±3.3	LSB
Conversion time	tconv	ADTYP = 0, 12-bit resolution	3.375			μS
Zero-scale error ^{Notes 1, 2, 3}	Ezs	12-bit resolution		±1.3	±3.2	LSB
Full-scale error ^{Notes 1, 2, 3}	Efs	12-bit resolution		±0.7	±2.9	LSB
Integral linearity error Notes 1, 2, 3	ILE	12-bit resolution		±1.0	±1.4	LSB
Differential linearity error ^{Notes 1, 2, 3}	DLE	12-bit resolution		±0.9	±1.2	LSB
Analog input voltage	VAIN		0		AVREFP	V

- **Notes 1.** TYP. Value is the average value at $AV_{DD} = AV_{REFP} = 3 V$ and $T_A = 25^{\circ}C$. MAX. value is the average value $\pm 3\sigma$ at normalized distribution.
 - 2. These values are the results of characteristic evaluation and are not checked for shipment.
 - **3.** Excludes quantization error ($\pm 1/2$ LSB).
- Cautions 1. Route the wiring so that noise will not be superimposed on each power line and ground line, and insert a capacitor to suppress noise.

In addition, separate the reference voltage line of AVREFP from the other power lines to keep it free from the influences of noise.

2. During A/D conversion, keep a pulse, such as a digital signal, that abruptly changes its level from being input to or output from the pins adjacent to the converter pins and P20 to P27 and P150 to P154.

9.34.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics (Page 1234)

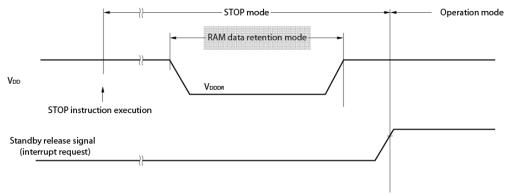

Old:

34.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}C, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit	
Data retention supply	VDDDR		1.46 ^{Note}		3.6	V	
voltage							

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.


New:

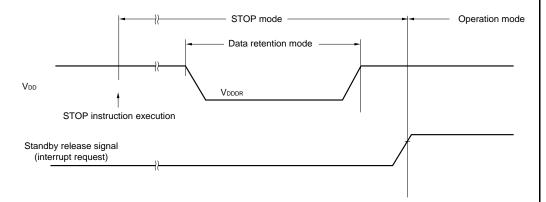
34.9 RAM Data Retention Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}C, V_{SS} = 0 \text{ V})$

3.6	V
	3.6

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

<u>10. 35.9 Data Memory STOP Mode Low Supply Voltage Data Retention</u> Characteristics (Page 1294)


Old:

35.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

(T_A = -40 to +105°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply	VDDDR		1.44 ^{Note}		3.6	V
voltage						

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR reset is effected, but data is not retained when a POR reset is effected.

New:

35.9 RAM Data Retention Characteristics

(T_A = -40 to +105°C)

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.44 ^{Note}		3.6	V

Note This depends on the POR detection voltage. For a falling voltage, data in RAM are retained until the voltage reaches the level that triggers a POR reset but not once it reaches the level at which a POR reset is generated.

