Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Renesas Starter Kit for H8S/2456R

User's Manual RENESAS SINGLE-CHIP MICROCOMPUTER H8S FAMILY

Disclaimer

By using this Renesas Starter Kit (RSK), the user accepts the following terms. The RSK is not guaranteed to be error free, and the entire risk as to the results and performance of the RSK is assumed by the User. The RSK is provided by Renesas on an "as is" basis without warranty of any kind whether express or implied, including but not limited to the implied warranties of satisfactory quality, fitness for a particular purpose, title and non-infringement of intellectual property rights with regard to the RSK. Renesas expressly disclaims all such warranties. Renesas or its affiliates shall in no event be liable for any loss of profit, loss of data, loss of contract, loss of business, damage to reputation or goodwill, any economic loss, any reprogramming or recall costs (whether the foregoing losses are direct or indirect) nor shall Renesas or its affiliates be liable for any other direct or indirect special, incidental or consequential damages arising out of or in relation to the use of this RSK, even if Renesas or its affiliates have been advised of the possibility of such damages.

Precautions

This Renesas Starter Kit is only intended for use in a laboratory environment under ambient temperature and humidity conditions. A safe separation distance should be used between this and any sensitive equipment. Its use outside the laboratory, classroom, study area or similar such area invalidates conformity with the protection requirements of the Electromagnetic Compatibility Directive and could lead to prosecution.

The product generates, uses, and can radiate radio frequency energy and may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment causes harmful interference to radio or television reception, which can be determined by turning the equipment off or on, you are encouraged to try to correct the interference by one or more of the following measures;

- ensure attached cables do not lie across the equipment
- reorient the receiving antenna
- increase the distance between the equipment and the receiver
- connect the equipment into an outlet on a circuit different from that which the receiver is connected
- power down the equipment when not is use
- consult the dealer or an experienced radio/TV technician for help NOTE: It is recommended that wherever possible shielded interface cables are used.

The product is potentially susceptible to certain EMC phenomena. To mitigate against them it is recommended that the following measures be undertaken;

- The user is advised that mobile phones should not be used within 10m of the product when in use.
- The user is advised to take ESD precautions when handling the equipment.

The Renesas Starter Kit does not represent an ideal reference design for an end product and does not fulfil the regulatory standards for an end product.

Table of Contents

Chapter 1. Preface	1
Chapter 2. Purpose	2
Chapter 3. Power Supply	3
3.1. Requirements	3
3.2. Power–up Behaviour	3
Chapter 4. Board Layout	4
4.1. Component Layout	4
4.2. Board Dimensions	5
Chapter 5. Block Diagram	6
Chapter 6. User Circuitry	7
6.1. Switches	7
6.2. LEDs	7
6.3. Potentiometer	7
6.4. Serial port	8
6.5. USB	8
6.6. Debug LCD Module	9
6.7. Option Links	9
6.8. Oscillator Sources	18
6.9. Reset Circuit	18
Chapter 7. Modes	19
7.1. Boot modes	20
7.2. User Program Modes	20
Chapter 8. Programming Methods	21
Chapter 9. Headers	22
9.1. Microcontroller Ring Headers	22
9.2. Application Headers	26
9.3. Generic TFT LCD Header	29
Chapter 10. Code Development	30
10.1. Overview	30
10.2. Compiler Restrictions	30
10.3. Breakpoint Support	30
10.4. Event point Support	30
10.5. Memory Map	31
Chapter 11. Component Placement	33
Chapter 12. Additional Information	35

Chapter 1. Preface

Cautions

This document may be, wholly or partially, subject to change without notice.

All rights reserved. Duplication of this document, either in whole or part is prohibited without the written permission of Renesas Technology Europe Limited.

Trademarks

All brand or product names used in this manual are trademarks or registered trademarks of their respective companies or organisations.

Copyright

© 2009 Renesas Technology Europe Ltd. All rights reserved.

© 2009 Renesas Technology Corporation. All rights reserved.

© 2009 Renesas Solutions Corporation. All rights reserved.

Website: www.renesas.com

Glossary

ADC	Analog to Digital Converter	CD	Compact Disc
CPU	Central Processing Unit	DAC	Digital to Analog Converter
E10A	'E10A for Starter Kit' debugger	LCD	Liquid Crystal Display
ESD	Electrostatic Discharge	EMC	Electromagnetic compatibility
HEW	High-Performance Embedded Workshop	I/O	Input / Output
LED	Light Emitting Diode	MCU	Microcontroller Unit
PC	Personal Computer	RAM	Random Access Memory
ROM	Read-Only Memory	RSK	Renesas Starter Kit
SCI	Serial Communication Interface	USB	Universal Serial Bus

Chapter 2. Purpose

This RSK is an evaluation tool for Renesas microcontrollers.

This manual describes the technical details of the RSK hardware. The Quick Start Guide and Tutorial Manual provide details of the software installation and debugging environment.

Features include:

- Renesas Microcontroller Programming.
- User Code Debugging.
- User Circuitry such as switches, LEDs and potentiometer(s).
- Sample Application.
- Sample peripheral device initialisation code.

The RSK board contains all the circuitry required for microcontroller operation.

Chapter 3. Power Supply

3.1. Requirements

This RSK board operates from a 5V DC power supply (supplied).

A diode provides reverse polarity protection only if a current limiting power supply is used.

All RSK boards are supplied with an E10A debugger.

All RSK boards have an optional centre positive supply connector using a 2.0mm barrel power jack.

Warning

The RSK board is neither under nor over voltage protected. Use a centre positive supply for this board.

3.2. Power-up Behaviour

When the RSK is purchased, the RSK board has the 'Release' or stand-alone code from the example tutorial code pre-programmed into the Renesas microcontroller. On powering up the board the user LEDs will start to flash. After 200 flashes or after pressing any switch the LEDs will flash at a rate controlled by the potentiometer.

Chapter 4. Board Layout

4.1. Component Layout

The following diagram shows the top layer component layout of the board.

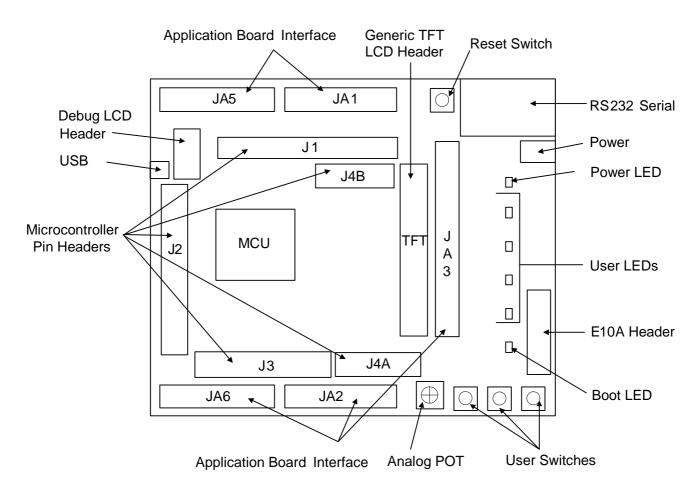


Figure 4-1: Board Layout

4.2. Board Dimensions

The following diagram gives the board dimensions and connector positions. All through-hole connectors are on a common 0.1" grid for easy interfacing.

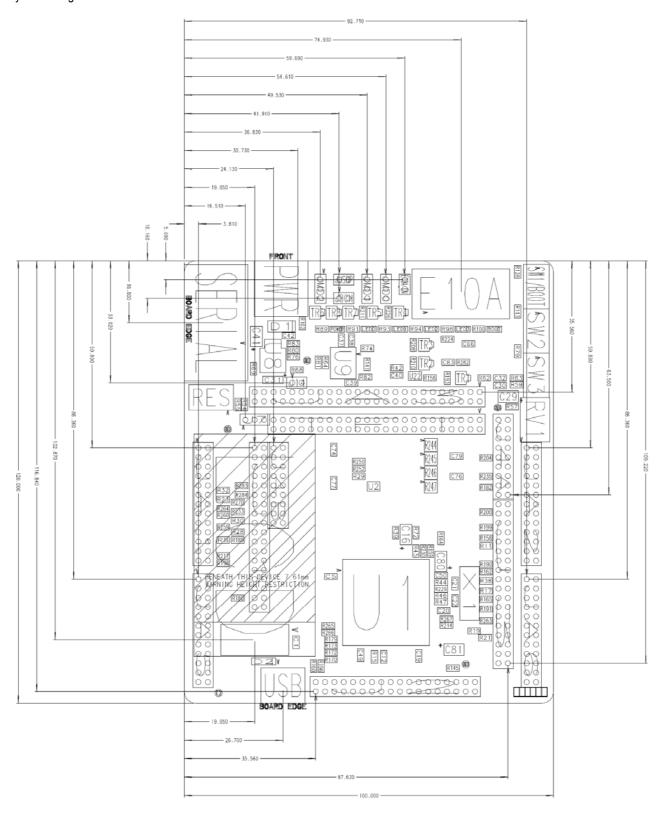


Figure 4-2: Board Dimensions

Chapter 5. Block Diagram

Figure 5-1 shows the RSK board components and their connectivity.

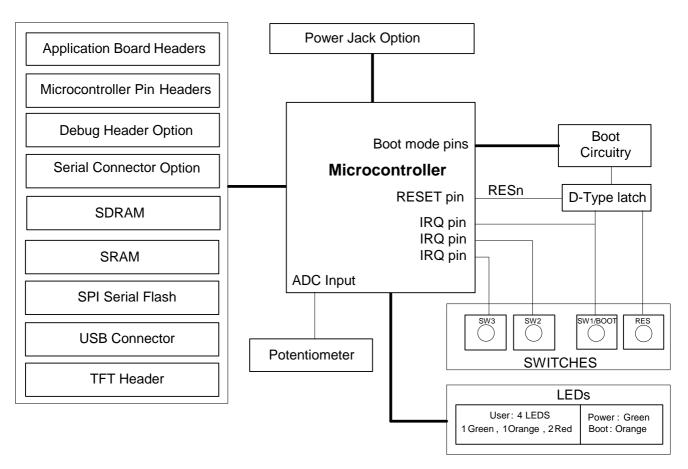


Figure 5-1: Block Diagram

Figure 5-2 shows E10A connections to the RSK.

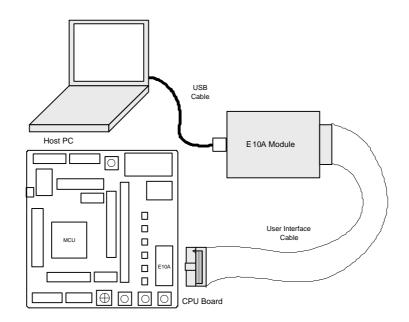


Figure 5-2: E10A RSK Connections

Chapter 6. User Circuitry

6.1. Switches

There are four switches located on the RSK board. The function of each switch and its connection are shown in Table 6-1

Switch	Function	Microcontroller
RES	When pressed, the microcontroller is reset.	RESn, Pin 92
SW1 / BOOT*	Connects to an IRQ input for user controls.	IRQ9An, Pin 82 (Port 6, bit 1)
	The switch is also used in conjunction with the RES switch to place the	
	device in BOOT mode when not using the E10A debugger.	
SW2*	Connects to an IRQ line for user controls.	IRQ1Bn, Pin 33 (Port 8, bit 1)
SW3*	Connects to an IRQ line for user controls. Option link allows connection	IRQ2Bn, Pin 34 (Port 8, bit 2)
	to ADC trigger input. For more details on option links, please refer to	
	Sec. 6.6.	

Table 6-1: Switch Functions

*Refer to the schematic for detailed connectivity information.

6.2. LEDs

There are six LEDs on the RSK board. The green 'POWER' LED lights when the board is powered. The orange BOOT LED indicates the device is in BOOT mode when lit. The four user LEDs are connected to an I/O port and will light when their corresponding port pin is set low.

Table 6-2 below shows the LED pin references and their corresponding microcontroller port pin connections.

LED Reference (As	Colour	Microcontroller Port	Microcontroller
shown on silkscreen)		Pin function	Pin Number
LED0	Green	Port 6, bit 3	104
LED1	Orange	Port 6, bit 5	106
LED2	Red	Port J, bit 0	100
LED3	Red	Port J, bit 1	101

Table 6-2: LED Port

6.3. Potentiometer

A single-turn potentiometer is connected to pin AN0 (Port 4 bit 0, pin 113) of the microcontroller. This may be used to vary the input analog voltage value to this pin between AVCC and Ground.

Note: The potentiometer is fitted to offer an easy way of supplying a variable analogue input to the controller. It does not necessarily reflect the accuracy of the controller's ADC. Please see the device manual for details.

6.4. Serial port

Serial port SCI1 is connected to the standard RS232 header. Serial port SCI0 can optionally be connected to the RS232 transceiver by moving option resistors. The connections to be moved are listed in the **Table 6-3**.

Description	Function	Microcontroller	Fit for RS232	Remove for RS232
		Port Pin		
SCI1	Default serial port (TX)	141 (Port 3, bit 1)	R150	R60, R256
SCI1	Default serial port (RX)	139 (Port 3, bit 3)	R151	R70, R257
SCI0	Spare Serial Port (TX)	142 (Port 3, bit 0)	R60	R150, R256
SCI0	Spare Serial Port (RX)	140 (Port 3, bit 2)	R70	R151, R257

Table 6-3: Serial port settings

The serial channels SCI0 and SCI1 are also available on the ring connector 'J4B'. The serial channel SCI0 is available on JA2.

The board is designed to accept a straight-through RS-232 male-to-female cable.

Serial port SCI3 can be connected to a 0.1" header, 'J7' by fitting 0Ω link resistors to R64 and R81.

6.5. USB

This RSK has a Full-speed (12 Mbps) USB port compliant to USB 2.0 specification. It is available as 'USB' (Mini-B receptacle) on the RSK. This port also allows boot mode programming.

Table 6-4 shows the pin allocation and signal names used on this connector.

Pin No.	Pin Name	Circuit Net Name	Device Pin
1	5V	VBUS	-
2	DNEG	USB-	54 (via 33 Ω resistor, R173)
3	DPOS	USB+	53 (via 33 Ω resistor, R172)
4	ID	-	-
5	GND	GROUND	-

Table 6-4: USB

For more details, please refer to H8S/2456 Group Hardware Manual.

6.6. Debug LCD Module

A debug LCD module is supplied to be connected to the connector LCD. This should be fitted so that the debug LCD module lies over J1. Care should be taken to ensure the pins are inserted correctly into LCD. The debug LCD module uses a 4 bit interface to reduce the pin allocation. No contrast control is provided; this is set by a resistor on the supplied display module.

Table 6-5 shows the pin allocation and signal names used on this connector.

The module supplied with the RSK board only supports 5V operation.

	LCD							
Pin	Circuit Net Name	Device Pin	Pin	Circuit Net Name	Device Pin			
1	Ground	-	2	5V	-			
3	No Connection	-	4	DLCDRS	137 (Port 3, bit 5)			
5	R/W (Wired to write only	-	6	DLCDE (+ 100k pull	61 (Port 8, bit 5)			
	using 10K pull down))			down to ground)				
7	No Connection	-	8	No Connection	-			
9	No Connection	-	10	No Connection	-			
11	DLCD4	42 (Port 1, bit 0)	12	DLCD5	43 (Port 1, bit 1)			
13	P26_DLCD6	57 (Port 2, bit 6)	14	P27_DLCD7	58 (Port 2, bit 7)			

Table 6-5: Debug LCD Module Connections

6.7. Option Links

In this section, the default configuration is indicated by BOLD text.

 Table 6-6 below describes the function of the option links associated with serial port configuration.

		Option Link Set	lings	
Reference	Function	Fitted	Alternative (Removed)	Related To
R54	Serial Port	Connects channel 2 (Rx pin) of the	Disconnects Channel 2 (RX pin) of the	R55, R81
	Configuration	RS232 transceiver to pin 7 of the D-type	RS232 transceiver from the D-type serial	
		serial port connector	port connector	
R55	Serial Port	Connects channel 2 (Tx pin) of the	Disconnects Channel 2 (TX pin) of the	R54, R64
	Configuration	RS232 transceiver to pin 8 of the D-type	RS232 transceiver from the D-type serial	
		serial port connector	port connector	
R60	Serial Port	Connects the TxD pin of serial port	Disconnects the TxD pin of serial port	R70, R150,
	Configuration	SCI0 to the D-type connector via the	SCI0 from the D-type connector	R256
		RS232 transceiver		
R64	Serial Port	Connects the TxD pin of serial port	Disconnects the TxD pin of serial port	R55, R81
	Configuration	SCI3 to the header 'J7' via the RS232	SCI3 from the header 'J7'	
		transceiver		
R70	Serial Port	Connects the RxD pin of serial port	Disconnects the RxD pin of serial port	R60, R151,
	Configuration	SCI0 to the D-type connector via the	SCI0 from the D-type connector	R257
		RS232 transceiver		
R78	Serial Port	Disables the RS-232 Transceiver.	Enables the RS-232 Transceiver	R82
	Configuration	(Must be removed if R82 is fitted.)		
R81	Serial Port	Connects the RxD pin of serial port	Disconnects the RxD pin of serial port	R54, R64
	Configuration	SCI3 to the header 'J7' via the RS232	SCI3 from the header 'J7'	
		transceiver		
R82	Serial Port	Enables the RS-232 Transceiver.	Disables the RS-232 Transceiver	R78
	Configuration	(Must be removed if R78 is fitted.)		
R150	Serial Port	Connects the TxD pin of serial port	Disconnects the TxD pin of serial port SCI1	R151, R60,
	Configuration	SCI1 to the D-type connector via the	from the D-type connector	R256
		RS232 transceiver		
R151	Serial Port	Connects the RxD pin of serial port	Disconnects the RxD pin of serial port SCI1	R150, R70,
	Configuration	SCI1 to the D-type connector via the	from the D-type connector	R257
		RS232 transceiver		
R255	Serial Port	Connects the shield of D-type serial port	Disconnects the shield of D-type serial	-
	Configuration	connector to GROUND	port connector from GROUND	
R256	Serial Port	Connects the RS232 serial port (Tx) to	Disconnects the RS232 serial port (Tx)	R257, R60,
	Configuration	the application board interface (JA6-5).	from application board interface (JA6-5)	R150
R257	Serial Port	Connects the RS-232 serial port (Rx) to	Disconnects the RS-232 serial port (Rx)	R256, R70,
	Configuration	application board interface (JA6-6)	from application board interface (JA6-6)	R151

Table 6-6: Serial port configuration links

 Table 6-7 below describes the function of the option links associated with CPU Mode configuration.

		Option Link	Settings	
Reference	Function	Fitted	Alternative (Removed)	Related
				То
R147	CPU Mode	MD2 pin can be controlled using	MD2 pin cannot be controlled using the BOOT	R248,
	Select	the BOOT switch	switch.	R281
			(Jumper JMD2 can be fitted to connect pins 1-2 to	
			enable controlling the MD2 pin using the BOOT	
			switch (i.e. SW1))	
R248	CPU Mode	MD0 pin can be controlled using	MD0 pin cannot be controlled using the BOOT	R147,
	Select	the BOOT switch	switch.	R281
			(Jumper JMD0 can be fitted to connect pins 1-2 to	
			enable controlling the MD0 pin using the BOOT	
			switch (i.e. SW1))	
R249	CPU Mode	USB in Self powered boot mode	USB in Bus powered boot mode.	-
	Select		Jumper JUSBP can be used as an alternate	
R281	CPU Mode	MD1 pin can be controlled using	MD1 pin cannot be controlled using the BOOT	R147,
	Select	the BOOT switch	switch.	R248
			(Jumper JMD1 can be fitted to connect pins 1-2 to	
			enable controlling the MD1 pin using the BOOT	
			switch (i.e. SW1))	

Table 6-7: CPU Mode Select Configuration Links

 Table 6-8 below describes the function of the option links associated with Power Source configuration.

		Option Link Settin	gs	
Reference	Function	Fitted	Alternative (Removed)	Related
				То
R68	Microcontroller	Supply power to the Microcontroller	Disables 5V power supply to the	-
	Power Supply	VCC pins	microcontroller VCC pins. Supply current to	
			the sections powered from VCC pin of the	
			MCU can be measured across 'J14'	
R69	Power source	5V source can be supplied to the	5V source can be supplied to the voltage	R76,
		voltage regulator IC (LM1117) at	regulator IC (LM1117) through PWR	R102
		CON_5V (JA1-1)	connector (if R102 is fitted) or from VBUS	
			via the net '5V' (if R76 is fitted)	
R76	Power source	5V source can be supplied to the	5V source can be supplied to the voltage	R69,
		voltage regulator IC (LM1117) from	regulator IC (LM1117) through PWR	R102
		VBUS via the net '5V'	connector (if R102 is fitted) or through	
			CON_5V (JA1-1) connector (if R69 is fitted)	
R80	Power Source	Connects the net CON_3V3 (JA1-3) to	Disconnects CON_3V3 from Board_VCC	R83
		Board_VCC. External 3.3V supply can		
		be connected at CON_3V3.		
		(R83 Must be removed if supplying		
		3.3V from CON_3V3.)		
R83	Power source	Connects the 3.3V output of the	Disconnects the 3.3V output of the on-board	R80
		on-board voltage regulator (LM1117) to	voltage regulator (LM1117) from	
		Board_VCC	Board_VCC	
		(Must be removed if supplying 3.3V		
		from CON_3V3.)		
R102	Power Source	5V source can be supplied to the	5V source can be supplied to the voltage	R69, R76
		voltage regulator IC (LM1117) at PWR	regulator IC (LM1117) through CON_5V	
		connector	(JA1-1) connector (if R69 is fitted) or from	
			VBUS via the net '5V' (if R76 is fitted)	

Table 6-8: Power configuration links

Table 6-9 below describes the function of the option links associated with Analog Voltage Source configuration.

	Option Link Settings						
Reference	Function	Fitted	Alternative (Removed)	Related			
				То			
R39	Analog Reference	Connects VREF to CON_VREF at JA1-7.	Disconnects VREF from CON_VREF.	R72			
	Voltage						
R56	Analog Voltage	Connects AVCC to Board_VCC.	Disconnects AVCC from Board_VCC.	R57			
	Source						
R57	Analog Voltage	Connects AVCC to CON_AVCC at JA1-5.	Disconnects AVCC from CON_AVCC.	R56			
	Source						
R62	Analog Voltage	Links analog & digital ground signals.	Separates analog & digital ground signals	-			
	Source						
R72	Analog Reference	Connects VREF to Board_VCC.	Disconnects VREF from Board_VCC.	R39			
	Voltage						

Table 6-9: Analog Configuration Links

Table 6-10 below describes the function of the option links associated with SDRAM interface.

	Option Link Settings					
Reference	Function	Fitted	Alternative (Removed)	Related To		
R45	SDRAM Interface	Connects CASn pin (port G, bit 3) of the	Disconnects CASn pin (port G, bit 3)	R230		
		MCU (part of SDRAM interface) to	of the MCU (part of SDRAM			
		CON_CASn at J4A-2	interface) from CON_CASn			
R230	SDRAM Interface	Connects RASn pin (port G, bit 2) of the	Disconnects RASn pin (port G, bit 2)	R45		
		MCU (part of SDRAM interface) to	of the MCU (part of SDRAM			
		CON_RASn at J4A-1	interface) from CON_RASn			
R265	SDRAM Interface	Connects SDRAM clock output pin of the	Disconnects SDRAM clock output	R266		
		MCU to the ring connector at J1-36	pin of the MCU from the ring			
			connector			
R266	SDRAM Interface	Connects SDRAM clock output pin of	Disconnects SDRAM clock output pin of	R265		
		the MCU to clock input pin of the	the MCU from clock input pin of the			
		on-board SDRAM	on-board SDRAM			

Table 6-10: SDRAM Interface Configuration Links

Table 6-11 below describes the function of the option links associated with application board interface.

		Option Link Settings	3	
Reference	Function	Fitted	Alternative (Removed)	Related To
R8	Application Board	Connects MCU port pin P27 (pin 58) to	Disconnects MCU port pin P27 (pin	R9
	Interface	IO7 at JA1-22	58) from IO7	
R9	Application Board	Connects MCU port pin P27 (pin 58) to	Disconnects MCU port pin P27 (pin 58)	R8
	Interface	P27_DLCD7 of the debug LCD	from P27_DLCD7	
R10	Application Board	Connects MCU port pin P52 (pin 135) to	Disconnects MCU port pin P52 (pin	R11
	Interface	SCK2 at JA6-10	135) from SCK2	
R11	Application Board	Connects MCU port pin P52 (pin 135) to	Disconnects MCU port pin P52 (pin	R10
	Interface	IRQ2An at JA2-23	135) from IRQ2An	
R19	Application Board	Connects MCU port pin P85 (pin 61) to	Disconnects MCU port pin P85 (pin 61)	R21
	Interface	DLCDE pin of debug LCD	from DLCDE pin of debug LCD	
R21	Application Board	Connects MCU port pin P85 (pin 61) to	Disconnects MCU port pin P85 (pin	R19
	Interface	SCK3 at JA6-11	61) from SCK3	
R23	Application Board	Connects MCU port pin P10 (pin 42) to	Disconnects MCU port pin P10 (pin	R25, R189
	Interface	TIOCA0 at JA2-19	42) from TIOCA0	
R25	Application Board	Connects MCU port pin P10 (pin 42) to	Disconnects MCU port pin P10 (pin 42)	R23, R189
	Interface	DLCD4 of the debug LCD	from DLCD4	
R28	Application Board	Connects MCU port pin P11 (pin 43) to	Disconnects MCU port pin P11 (pin	R276, R233
	Interface	IO5 at JA1-20	43) from IO5	
R30	Application Board	Connects MCU port pin PJ1 (pin 101) to	Disconnects MCU port pin PJ1 (pin	R33, R273
	Interface	IO3 at JA1-18	101) from IO3	
R31	Application Board	Connects MCU port pin P40 (pin 113) to	Disconnects MCU port pin P40 (pin	R32
	Interface	AD_POT	113) from AD_POT	
R32	Application Board	Connects MCU port pin P40 (pin 113) to	Disconnects MCU port pin P40 (pin	R31
	Interface	AN0 at JA1-9	113) from AN0	
R33	Application Board	Connects MCU port pin PJ1 (pin 101) to	Disconnects MCU port pin PJ1 (pin	R30, R273
	Interface	LED3	101) from LED3	
R161	Application Board	Connects MCU port pin P61 (pin 82) to	Disconnects MCU port pin P61 (pin 82)	R162
	Interface	SW1 (as IRQ9An input)	from SW1	
R162	Application Board	Connects MCU port pin P61 (pin 82) to	Disconnects MCU port pin P61 (pin	R161
	Interface	DREQ1n at JA6-1	82) from DREQ1n	
R180	Application Board	Connects MCU port pin P81 (pin 33) to	Disconnects MCU port pin P81 (pin 33)	R251
	Interface	SW2 (as IRQ1Bn input)	from SW2	
R182	Application Board	Connects MCU port pin P51 (pin 134) to	Disconnects MCU port pin P51 (pin	R184
	Interface	IRQ1An at JA2-9	134) from IRQ1An	
R184	Application Board	Connects MCU port pin P51 (pin 134) to	Disconnects MCU port pin P51 (pin	R182
	Interface	RXD2 at JA6-7	134) from RXD2	

R185	Application Board	Connects MCU port pin P26 (pin 57) to	Disconnects MCU port pin P26 (pin 57)	R277
	Interface	P26_DLCD6 of the debug LCD	from P26_DLCD6	
R186	Application Board	Connects MCU port pin P50 (pin 133) to	Disconnects MCU port pin P50 (pin	R235
	Interface	TXD2 at JA6-8	133) from TXD2	
R189	Application Board	Connects MCU port pin P10 (pin 42) to	Disconnects MCU port pin P10 (pin	R23, R25
	Interface	IO4 at JA1-19	42) from IO4	
R197	Application Board	Connects MCU port pin P35 (pin 137) to	Disconnects MCU port pin P35 (pin	R198
	Interface	DLCDRS pin of debug LCD	137) from DLCDRS pin of debug LCD	
R198	Application Board	Connects MCU port pin P35 (pin 137) to	Disconnects MCU port pin P35 (pin	R197
	Interface	SCL0 at JA1-26	137) from SCL0	
R206	Application Board	Connects MCU port pin P83 (pin 59) to	Disconnects MCU port pin P83 (pin 59)	R207, R263
	Interface	SCSn at TFT-32	from SCSn	
R207	Application Board	Connects MCU port pin P83 (pin 59) to	Disconnects MCU port pin P83 (pin	R206, R263
	Interface	IRQ3Bn at JA1-23	59) from IRQ3Bn	
R217	Application Board	Connects MCU port pin P34 (pin 138) to	Disconnects MCU port pin P34 (pin	R218
	Interface	SDA0 at JA1-25	138) from SDA0	
R218	Application Board	Connects MCU port pin P34 (pin 138) to	Disconnects MCU port pin P34 (pin	R217
	Interface	SCK0 at JA2-10	138) from SCK0	
R233	Application Board	Connects MCU port pin P11 (pin 43) to	Disconnects MCU port pin P11 (pin 43)	R28, R276
	Interface	DLCD5 of the debug LCD	from DLCD5	
R235	Application Board	Connects MCU port pin P50 (pin 133) to	Disconnects MCU port pin P50 (pin	R186
	Interface	IRQ0An at JA2-7	133) from IRQ0An	
R251	Application Board	Connects MCU port pin P81 (pin 33) to	Disconnects MCU port pin P81 (pin	R180
	Interface	TXD3 at JA6-9	33) from TXD3	
R258	Application Board	Connects MCU port pin PJ0 (pin 100) to	Disconnects MCU port pin PJ0 (pin	R259, R272
	Interface	LED2	100) from LED2	
R259	Application Board	Connects MCU port pin PJ0 (pin 100) to	Disconnects MCU port pin PJ0 (pin	R258, R272
	Interface	IO2 at JA1-17	100) from IO2	
R260	Application Board	Connects MCU port pin P65 (pin 106) to	Disconnects MCU port pin P65 (pin	R261, R271
	Interface	IO1 at JA1-16	106) from IO1	
R261	Application Board	Connects MCU port pin P65 (pin 106) to	Disconnects MCU port pin P65 (pin	R260, R271
	Interface	LED1	106) from LED1	
R262	Application Board	Connects MCU port pin P63 (pin 104) to	Disconnects MCU port pin P63 (pin	R264, R270
	Interface	LED0	104) from LED0	
R263	Application Board	Connects MCU port pin P83 (pin 59) to	Disconnects MCU port pin P83 (pin	R206, R207
	Interface	RXD3 at JA6-12	59) from RXD3	
R264	Application Board	Connects MCU port pin P63 (pin 104) to	Disconnects MCU port pin P63 (pin	R262, R270
	Interface	IO0 at JA1-15	104) from IO0	

R270	Application Board	Connects MCU port pin P63 (pin 104) to	Disconnects MCU port pin P63 (pin	R262, R264
	Interface	TEND1n at JA6-3	104) from TEND1n	
R271	Application Board	Connects MCU port pin P65 (pin 106) to	Disconnects MCU port pin P65 (pin	R260, R261
	Interface	DACK1n at JA6-2	106) from DACK1n	
R272	Application Board	Connects MCU port pin PJ0 (pin 100) to	Disconnects MCU port pin PJ0 (pin	R258, R259
	Interface	XDRIVE at TFT-41	100) from XDRIVE	
R273	Application Board	Connects MCU port pin PJ1 (pin 101) to	Disconnects MCU port pin PJ1 (pin	R30, R33
	Interface	YDRIVE at TFT-42	101) from YDRIVE	
R276	Application Board	Connects MCU port pin P11 (pin 43) to	Disconnects MCU port pin P11 (pin	R233, R28
	Interface	TIOCB0 at JA2-20	43) from TIOCB0	
R277	Application Board	Connects MCU port pin P26 (pin 57) to	Disconnects MCU port pin P26 (pin	R185
	Interface	IO6 at JA1-21	57) from IO6	

Table 6-11: Application Board Interface configuration links

 Table 6-12 below describes the function of the option links associated with Clock configuration.

		Option Link Setting	S	
Reference	Function	Fitted	Alternative (Removed)	Related
				То
R44	Main clock	External clock can be connected to the MCU	On-board clock (X1) can be connected	R46, R47
		between CON_EXTAL (at J3-25 or JA2-2) and		
		CON_XTAL (at J3-24)		
R46	Main clock	Connects the on-board clock (X1) to the	External Clock Source can be connected.	R44, R47
		MCU (at MCU pins 97 and 96)		
R47	Main clock	External clock can be connected to the MCU	On-board clock (X1) can be connected	R44, R46
		between CON_EXTAL (at J3-25 or JA2-2) and		
		CON_XTAL (at J3-24)		
R229	Main clock	Parallel resistor for oscillator X1	Not fitted.	-
R267	Clock	Connects the clock output (Φ) (port pin PF7,	Disconnects the clock output (Φ) from the	R214
	Output	MCU pin 94) to the ring connector at J3-22	ring connector	

Table 6-12: Clock configuration links

Table 6-13 below describes options links related to on-board memory interface.

	Option Link Settings								
Reference	Function	Fitted	Alternative (Removed)	Related					
				То					
R144	Serial Flash	Stops the serial communication with the serial	Enables the serial communication with the	-					
	Interface	flash (SST25VF016B)	serial flash (SST25VF016B)						
R145	SRAM	Enables byte mode access for on-board SRAM	Disables byte mode access for on-board	-					
	Interface	(R1LV1616R)	SRAM (R1LV1616R)						
R216	Serial Flash	Writing to the on-board serial flash	Writing to the on-board serial flash	-					
	Interface	(SST25VF016B) is disabled.	(SST25VF016B) is enabled.						
R231	Chip select	Enables buffered data outputs for CS0 area	Disables buffered data outputs for CS0 area	R232					
	outputs								
R232	Chip select	Enables buffered data outputs for CS1 area	Disables buffered data outputs for CS1 area	R231					
	outputs								

Table 6-13: Memory Interface Option Links

Table 6-14 below describes options links related to various peripheral configurations.

	Option Link Settings							
Reference Function		Fitted	Alternative (Removed)	Related				
				То				
R59	User	Connects MCU port pin PF0 (pin 84) to SW3	Disconnects MCU port pin PF0 (pin 84)	R63				
	Switch	(as ADTRG0Bn input)	from SW3					
R63	User	Connects MCU port pin P82 (pin 34) to SW3	Disconnects MCU port pin P82 (pin 34) from	R59				
	Switch	(as IRQ2Bn input)	SW3					
R146	USB	Connects shield of USB receptacle to	Disconnects shield of USB receptacle from	-				
	Interface	GROUND	GROUND					
R214	TFT LCD	Connects MCU port pin PF7 (pin 94) to	Disconnects MCU port pin PF7 (pin 94)	R219,				
	Interface	LCD_GPIO4_PHI at TFT-36	from LCD_GPIO4_PHI	R267				
R219	TFT LCD	Connects MCU port pin P62 (pin 83) to	Disconnects MCU port pin P62 (pin 83) from	R214				
	Interface	LCD_GPIO4_PHI at TFT-36	LCD_GPIO4_PHI					

Table 6-14: Peripheral Configuration Option Links

6.8. Oscillator Sources

A crystal oscillator is fitted on the RSK board and used to supply the main clock input to the Renesas microcontroller. **Table 6-15** details the oscillators that are fitted on this RSK:

Component						
Crystal (X1)	Fitted	16 MHz (HC49/4H package)				

Table 6-15: Oscillators / Resonators

6.9. Reset Circuit

A reset control IC (i.e. RNA51957BFP) has been used to generate the reset signal required for the H8S/2456R CPU.

Please check the hardware manual for the detailed reset requirements to ensure the reset circuit on the user's board meets all the reset timing requirements.

Chapter 7. Modes

This RSK supports Boot modes, User Program Modes and User mode.

This RSK provides the capability of changing between User and Boot mode using a simple latch circuit. This is only to provide a simple mode control on this board when the E10A debugger is not in use.

The mode pins should change state only while the reset signal is active to avoid possible device damage.

This circuit is not required on customer's boards as it is intended for providing easy evaluation of the operating modes of the device on the RSK.

To manually enter the Boot mode, press and hold the SW1/BOOT. The mode pins are held in their boot states while reset is pressed and released. Release the boot button. The BOOT LED will be illuminated to indicate that the microcontroller is in boot mode.

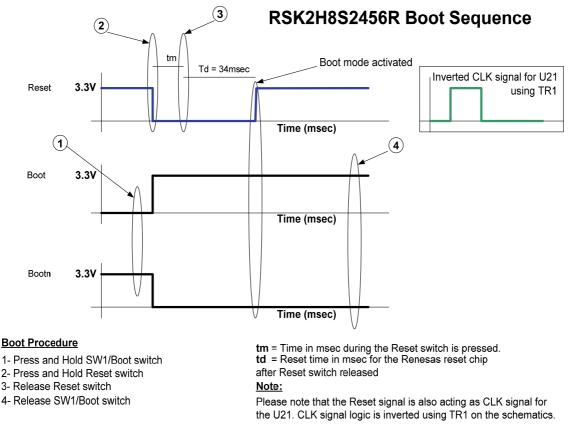


Figure 7-1: RSK2H8S2456R Boot Sequence

More information on the operating modes and programming the flash memory can be found in the H8S/2456 Group hardware manual.

7.1. Boot modes

The Boot mode (i.e. CPU mode 3) settings for this RSK board are shown in Table 7-1 below:

Mode	MD2	MD1	MD0	Description	Port Pin	Port	I/P clock	On-Chip	External Data
					P27	Pin P26	frequency	ROM	Bus Max Value
3	0	1	1	SCI Boot Mode	0	0	-	Enabled	16
3	0	1	1	USB Boot mode	0	1	16 MHz	Enabled	16

Table 7-1: Boot Mode pin settings

7.2. User Program Modes

This RSK supports single-chip and memory expanded user modes. The default mode of this RSK is indicated by BOLD text.

Mode	MD2	MD1	MD0	Description	On-Chip	External Data	External Data
					ROM	Bus Initial Value	Bus Max Value
1	0	0	1	Expansion Mode	Disabled	16	16
2	0	1	0	Expansion Mode	Disabled	8	16
4	1	0	0	Expansion Mode	Enabled	8	16
7	1	1	1	Single Chip Mode	Enabled	-	16

Table 7-2: User Mode pin settings

Chapter 8. Programming Methods

The board is intended for use with HEW and the supplied E10A debugger. Refer to H8S/2456 Group Hardware Manual for details of programming the microcontroller without using these tools. Please note that, to use E10A debugger, jumper 'E10A_EN' must be fitted.

Chapter 9. Headers

9.1. Microcontroller Ring Headers

The microcontroller pin headers and their corresponding microcontroller connections are detailed in Table 9-1 to Table 9-5.

Header	Circuit Net Name	Device pin	Header	Circuit Net Name	Device pin
Pin			Pin		
1	MD2	1	2	GROUND	2
3	EDREQ2n	3	4	UC_VCC	4
5	A(0)	5	6	A(1)	6
7	A(2)	7	8	A(3)	8
9	A(4)	9	10	GROUND	10
11	A(5)	11	12	A(6)	12
13	A(7)	13	14	A(8)	14
15	A(9)	15	16	A(10)	16
17	A(11)	17	18	GROUND	18
19	A(12)	19	20	A(13)	20
21	A(14)	21	22	A(15)	22
23	A(16)	23	24	A(17)	24
25	GROUND	25	26	A(18)	26
27	A(19)	27	28	A(20)	28
29	A(21)	29	30	A(22)	30
31	A(23)	31	32	EMLE	32
33	IRQ1Bn_TXD3	33	34	IRQ2Bn	34
35	WEn	35	36	CON_SDCLK	36 (via R265)

Table 9-1: J1 microcontroller header

Header	Circuit Net Name	Device pin	Header	Circuit Net Name	Device pin
Pin			Pin		
1	CS6n	37	2	CKE	38
3	TDO	39	4	NMIn	40
5	NC		6	TIOCA0_DLCD4_IO4	42
7	TIOCB0_DLCD5_IO5	43	8	TIOCC0	44
9	TIOCD0	45	10	SSO0A_TIOCA1	46
11	SSI0A	47	12	SSCK0A_TIOCA2	48
13	P17_SCS0An	49	14	GROUND	50
15	PUPD+	51	16	UC_VCC	52
17	NC		18	NC	
19	GROUND	55	20	VbusDTCT	56
21	P26_DLCD6_IO6	57	22	P27_DLCD7_IO7	58
23	SCSn_IRQ3Bn_RXD3	59	24	EDACK2n	60
25	DLCDE_SCK3	61	26	PJ2	62
27	D(0)	63	28	D(1)	64
29	D(2)	65	30	D(3)	66
31	D(4)	67	32	D(5)	68
33	D(6)	69	34	GROUND	70
35	D(7)	71	36	UC_VCC	72

Table 9-2: J2 microcontroller header

Header	Circuit Net Name	Device pin	Header	Circuit Net Name	Device pin
Pin			Pin		
1	D(8)	73	2	D(9)	74
3	D(10)	75	4	D(11)	76
5	D(12)	77	6	D(13)	78
7	D(14)	79	8	D(15)	80
9	LCD_GPIO3	81	10	IRQ9An_DREQ1n	82
11	LCD_GPIO4	83	12	ADTRG0Bn	84
13	DQMU	85	14	DQML	86
15	LWRn	87	16	HWRn	88
17	RDn	89	18	ASn	90
19	UC_VCC	91	20	RESn	92
21	GROUND	93	22	CON_PF7_PHI	94 (via R267)
23	GROUND	95	24	CON_XTAL	96 (via R47)
25	CON_EXTAL	97 (via R44)	26	UC_VCC	98
27	UC_VCC	99	28	XDRIVE_LED2_IO2	100
29	YDRIVE_LED3_IO3	101	30	GROUND	102
31	STBYn	103	32	TEND1n_LED0_IO0	104
33	CSn_SDRAM	105	34	DACK1n_LED1_IO1	106
35	CS0n	107	36	CS1n	108

Header	Circuit Net Name	Device pin	Header	Circuit Net Name	Device pin
Pin			Pin		
1	CON_RASn	109 (via R230)	2	CON_CASn	110 (via R45)
3	CON_AVCC		4	CON_VREF	
5	AD_POT_AN0	113	6	X_INPUT1	114
7	Y_INPUT1	115	8	X_INPUT2	116
9	Y_INPUT2	117	10	AN5	118
11	AN6	119	12	AN7	120
13	AN81	121	14	AN91	122
15	AN101	123	16	AN111	124
17	DA2	125	18	DA3	126

Table 9-4: J4A microcontroller header

Header	Circuit Net Name	Device pin	Header	Circuit Net Name	Device pin
Pin			Pin		
1	AN141	127	2	AN151	128
3	AVSS	129	4	тск	130
5	TMS	131	6	TDI	132
7	IRQ0An_TXD2	133	8	IRQ1An_RXD2	134
9	IRQ2An_SCK2	135	10	TRSTn	136
11	DLCDRS_SCL0	137	12	SCK0_SDA0	138
13	RXD1	139	14	RXD0	140
15	TXD1	141	16	TXD0	142
17	MD0	143	18	MD1	144

Table 9-5: J4B microcontroller header

9.2. Application Headers

Standard application header connections are detailed in Table 9-6 to Table 9-10.

Header	Generic	RSK board Signal	Device Pin	Header	Generic	RSK board Signal	Device pin
Pin	Header Name	Name		Pin	Header	Name	
					Name		
1	5V	CON_5V		2	0V(5V)	GROUND	
3	3V3	CON_3V3		4	0V(3V3)	GROUND	
5	AVcc	CON_AVCC		6	AVss	AVSS	129
7	AVref	CON_VREF		8	ADTRG	ADTRG0Bn	84
9	AD0	AN0	113*	10	AD1	X_INPUT1	114
11	AD2	Y_INPUT1	115	12	AD3	X_INPUT2	116
13	DAC0	DA2	125	14	DAC1	DA3	126
15	IO_0	IO0	104*	16	IO_1	IO1	106*
17	10_2	102	100*	18	IO_3	IO3	101*
19	10_4	IO4	42*	20	IO_5	IO5	43*
21	IO_6	IO6	57*	22	10_7	107	58*
23	IRQ3	IRQ3Bn	59*	24	IIC_EX	NC	
25	IIC_SDA	SDA0	138*	26	IIC_SCL	SCL0	137*

Table 9-6: JA1 Standard Generic Header

Header	Generic Header	RSK board Signal	Device Pin	Header	Generic Header	RSK board	Device Pin
Pin	Name	Name		Pin	Name	Signal Name	
1	RESn	RESn	92	2	EXTAL	CON_EXTAL	97*
3	NMIn	NMIn	40	4	Vss1	GROUND	
5	WDT_OVF	TDO	39	6	SCIaTX	TXD0	142
7	IRQ0	IRQ0An	133*	8	SCIaRX	RXD0	140
9	IRQ1	IRQ1An	134*	10	SCIaCK	SCK0	138*
11	UD	NC		12	CTSRTS	NC	
13	Up	NC		14	Un	NC	
15	Vp	NC		16	Vn	NC	
17	Wp	NC		18	Wn	NC	
19	TMR0	TIOCA0	42*	20	TMR1	TIOCB0	43*
21	TRIGa	TIOCC0	44	22	TRIGb	TIOCD0	45
23	IRQ2	IRQ2An	135*	24	TRISTn	NC	
25	Reserved	NC		26	Reserved	NC	

Table 9-7: JA2 Standard Generic Header

Header	Generic	RSK board Signal	Device Pin	Header	Generic	RSK board Signal Name	Device Pin
Pin	Header Name	Name		Pin	Header		
					Name		
1	A0	BA(0)		2	A1	BA(1)	
3	A2	BA(2)		4	A3	BA(3)	
5	A4	BA(4)		6	A5	BA(5)	
7	A6	BA(6)		8	A7	BA(7)	
9	A8	BA(8)		10	A9	BA(9)	
11	A10	BA(10)		12	A11	BA(11)	
13	A12	BA(12)		14	A13	BA(13)	
15	A14	BA(14)		16	A15	BA(15)	
17	D0	BD(0)		18	D1	BD(1)	
19	D2	BD(2)		20	D3	BD(3)	
21	D4	BD(4)		22	D5	BD(5)	
23	D6	BD(6)		24	D7	BD(7)	
25	RDn	BRDn		26	WRn	NC	
27	CSan	BCS0n*		28	CSbn	BCS6n*	
29	D8	BD(8)		30	D9	BD(9)	
31	D10	BD(10)		32	D11	BD(11)	
33	D12	BD(12)		34	D13	BD(13)	
35	D14	BD(14)		36	D15	BD(15)	
37	A16	BA(16)		38	A17	BA(17)	
39	A18	BA(18)		40	A19	BA(19)	
41	A20	BA(20)		42	A21	BA(21)	
43	A22	BA(22)		44	Reserved	NC	
45	CScn	BCS1n*		46	ALE	NC	
47	HWRn	BHWRn		48	LWRn	BLWRn	
49	Reserved	NC		50	Reserved	NC	

Table 9-8: JA3 Standard Generic Header

Header	Generic Header	RSK board Signal	Device Pin	Header	Generic	RSK board Signal	Device Pin
Pin	Name	Name		Pin	Header Name	Name	
1	AD4	Y_INPUT2	117	2	AD5	AN5	118
3	AD6	AN6	119	4	AD7	AN7	120
5	CAN1TX	NC		6	CAN1RX	NC	
7	CAN2TX	NC		8	CAN2TX	NC	
9	Reserved	NC		10	Reserved	NC	
11	Reserved	NC		12	Reserved	NC	
13	Reserved	NC		14	Reserved	NC	
15	Reserved	NC		16	Reserved	NC	
17	Reserved	NC		18	Reserved	NC	
19	Reserved	NC		20	Reserved	NC	
21	Reserved	NC		22	Reserved	NC	
23	Reserved	NC		24	Reserved	NC	

Table 9-9: JA5 Standard Generic Header

Header	Generic Header	RSK board Signal	Device Pin	Header	Generic	RSK board Signal	Device Pin
Pin	Name	Name		Pin	Header Name	Name	
1	DREQ	DREQ1n	82*	2	DACK	DACK1n	106*
3	TEND	TEND1n	104*	4	STBYn	STBYn	103
5	RS232TX	RS232TX		6	RS232RX	RS232RX	
7	SCIbRX	RXD2	134*	8	SCIbTX	TXD2	133*
9	SCIcTX	TXD3	33*	10	SCIbCK	SCK2	135*
11	SCIcCK	SCK3	61*	12	SCIcRX	RXD3	59*
13	Reserved	NC		14	Reserved	NC	
15	Reserved	NC		16	Reserved	NC	
17	Reserved	NC		18	Reserved	NC	
19	Reserved	NC		20	Reserved	NC	
21	Reserved	NC		22	Reserved	NC	
23	Reserved	NC		24	Reserved	NC	

Table 9-10: JA6 Standard Generic Header

Note: Pins marked with '*' are connected via option links.

9.3. Generic TFT LCD Header

Generic TFT LCD header connections are detailed in Table 9-11.

Header	Generic TFT LCD	RSK board Signal	Device Pin	Header	Generic TFT LCD	RSK board	Device Pin
Pin	Header Name	Name		Pin	Header Name	Signal Name	
1		5V		2		5V	
3		Board_VCC		4		Board_VCC	
5	NC	NC	-	6	NC	NC	
7	B1	D(0)	63	8	B2	D(1)	64
9	B3	D(2)	65	10	B4	D(3)	66
11	B5	D(4)	67	12	G0	D(5)	68
13	G1	D(6)	69	14	G2	D(7)	71
15	G3	D(8)	73	16	G4	D(9)	74
17	G5	D(10)	75	18	R1	D(11)	76
19	R2	D(12)	77	20	R3	D(13)	78
21	R4	D(14)	79	22	R5	D(15)	80
23	GPIO0	EDACK2n	60	24	HSYNC	TIOCC0	44
25	DOT CLK	SSCK0A_TIOCA2	48	26	GPIO1	SSO0A_TIOCA1	46
27	VSYNC	TIOCD0	45	28	GPIO2	EDREQ2n	3
29	SSCK	SCK0	138*	30	SSI	RXD0	140
31	SSO	TXD0	142	32	CSn	SCSn	59
33	RESn	RESn	92	34		GROUND	
35	GPIO3	LCD_GPIO3	81	36	GPIO4	LCD_GPIO4_PHI	83*, 94*
37		GROUND	-	38		GROUND	
39		GROUND	-	40		GROUND	
41		XDRIVE	100*	42		YDRIVE	101*
43		X_INPUT1	114	44		Y_INPUT1	115
45		X_INPUT2	116	46		Y_INPUT2	117

Table 9-11: TFT Header

Note: Pins marked with '*' are connected via option links.

Chapter 10. Code Development

10.1. Overview

Note: For all code debugging using Renesas software tools, the RSK board must be connected to a PC USB port via an E10A.

Due to the continuous process of improvements undertaken by Renesas the user is recommended to review the information provided on the Renesas website at www.renesas.com to check for the latest updates to the Compiler and Debugger manuals.

10.2. Compiler Restrictions

The compiler supplied with this RSK is fully functional for a period of 60 days from first use. After the first 60 days of use have expired, the linker will limit the object size to a maximum of 64k code and data. To use the compiler with programs greater than this size you will need to purchase the full tools from your distributor.

Warning: The protection software for the compiler will detect changes to the system clock. Changes to the system clock back in time may cause the trial period to expire prematurely.

10.3. Breakpoint Support

This RSK is supplied with an E10A emulator which supports breakpoints in ROM and RAM. Double clicking in the breakpoint column in the code sets the breakpoint. Breakpoints will be retained unless they are double clicked to remove them. For more details on breakpoints & E10A functions please refer to the '*E10A-USB Emulator User's Manual*'.

10.4. Event point Support

This RSK is supplied with an E10A emulator which supports event points in ROM. Maximum 6 event points can be placed. For more details on event points & E10A functions please refer to the '*E10A-USB Emulator User's Manual*'.

10.5. Memory Map

The memory map shown below gives the locations of each memory area.

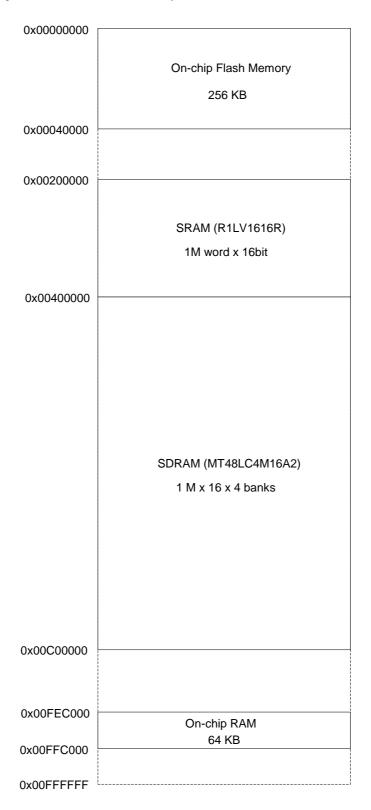


Figure 10-1: RSK2H8S2456R Memory Map

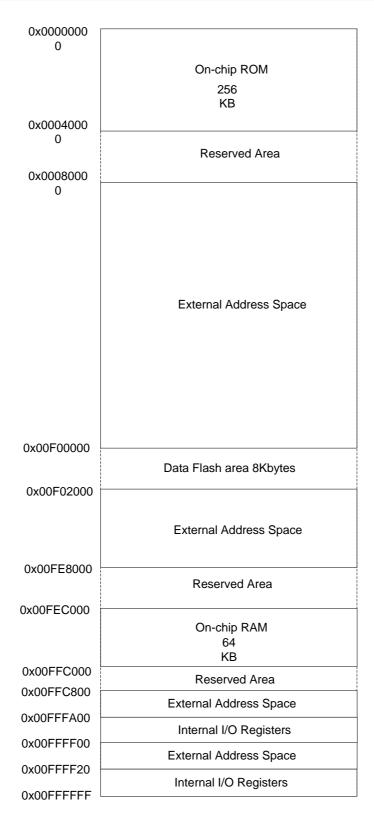


Figure 10-2: CPU memory map (H8S/24569R)

Chapter 11. Component Placement

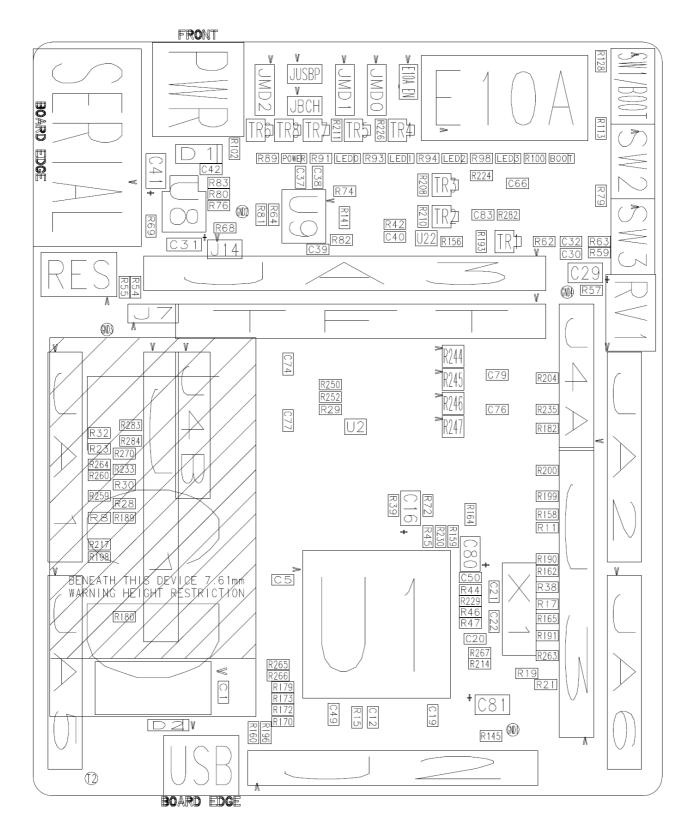


Figure 11-1: Component Placement (Top Layer)

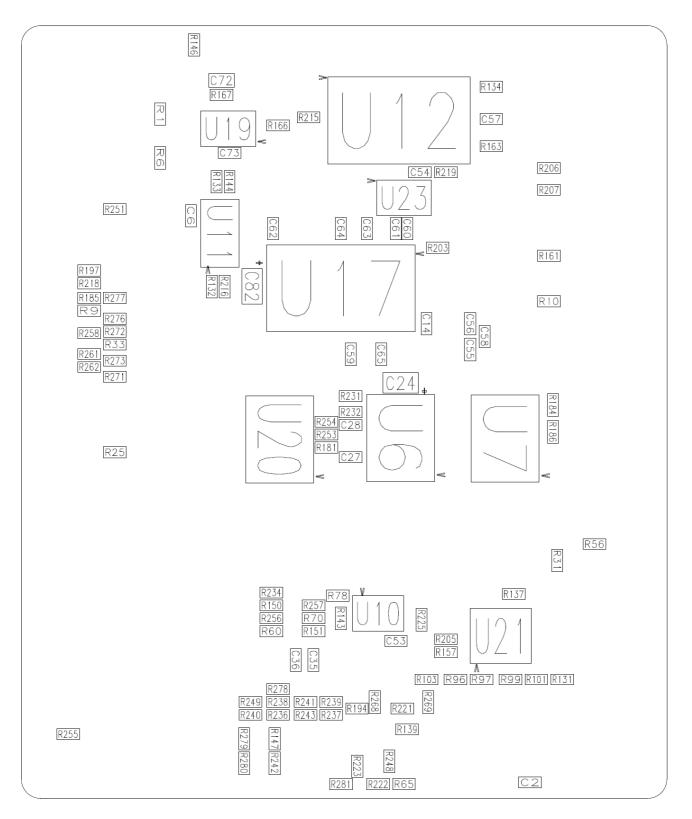


Figure 11-2: Component Placement (Bottom Layer)

Chapter 12. Additional Information

For details on how to use High-performance Embedded Workshop (HEW), refer to the HEW manual available on the CD or installed in the Manual Navigator.

For information about the H8S/2456R microcontrollers refer to the H8S/2456 Group Hardware Manual

For information about the H8S/2456R assembly language, refer to the H8S/2600 Series, H8S/2000 Series Software Manual

For information about the E10A Emulator, please refer to the E10A-USB Emulator User's Manual

Online technical support and information is available at: www.renesas.com/renesas_starter_kits

Technical Contact Details

- America: <u>techsupport.rta@renesas.com</u>
- Europe: tools.support.eu@renesas.com
- Japan: <u>csc@renesas.com</u>

General information on Renesas Microcontrollers can be found on the Renesas website at: www.renesas.com

 Renesas Starter Kit for H8S/2456R

 User's Manual

 Publication Date
 Rev.1.00 08.APR.2009

 Published by:
 Renesas Technology Europe Ltd. Duke's Meadow, Millboard Road, Bourne End Buckinghamshire SL8 5FH, United Kingdom

 $\textcircled{0} 2009 \ \mbox{Renesas Technology Europe and Renesas Solutions \ \mbox{Corp., All Rights Reserved}.$

Renesas Starter Kit for H8S/2456R User's Manual

Renesas Electronics Corporation 1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan