RLENESAS

User Manual

DA1468x Software Platform
Reference

UM-B-044

Abstract

This document should be used as a reference guide to gain a deeper understanding of the
SmartSnippets Software Development Kit (SDK). As such it covers a broad range of topics including
a brief introduction to Bluetooth Low Energy (BLE), Operating System (OS) related material and a

number of sections containing a more detailed technical analysis of hardware elements, for instance
clock and power management

UM-B-044

DA1468x Software Platform Reference

Contents
N 1 4 = (o RS PPRRRRS 1
GO NS e 2
T L= SRR 7
1= 0] =SS PSP PS 9
L0 Yo [RSP 10
1 Terms and defiNitiONS ... e e e e st e e e e e e e senr e eaaee e s 11
2 REIBIBNCES ..ottt e oot e e e e e e e et e e e e e e er e e e e e e e e e aa e eee s 13
R S 0= 0= To UYL (T PR OTPUUTT TP 14
4 An Overview of Bluetooth® low energy Platformcccooiiiiii e 15
o R B L=V ot 2 1Y o o [PR PRP 15
41.1 SINGIE MOAE DEVICESco ittt e e e e e e e e s s r e e e e e e s 15
41.2 DU MOOE DEBVICES.eeieiiieieee ittt e e e e e e e e e e snnbeaeeeas 15
4.2 Main BUildiNg BIOCKScoiiiiiiiiiiiiiie ettt s 15
4.3 Hardware CONfIQUIALIONScoiiiiiiiiiiiie ettt ettt e e e e e e e e e e e e s e annbeeeeeas 16
43.1 INTEGrAted PrOCESSON ..cceiiiiieeiiitiie ettt e e e b e e e e aaee 16
4.3.2 EXIEINAl PrOCESSOLveiiiiiiiiiee ettt e e s e e e snbeee e s naee 16
N N\ 1= 1Yo g 1Y o o =3 PR PR 16
441 BroadCastiNg........ccoiiuiiieiiiiiie it 16
4.4.2 (07e] o1 o 1=Tox 1] o FR PP PP PP PP 17
T = (0] {1 RSO 17
45.1 GENENIC Profil@S ... s 18
45.2 Use-Case-SPeCifiC ProfileScueii i 18
4521 SIG-defined GATT-based profilesccccceeevviiciiieieee e 18
4522 Vendor-Specific Profiles ... 18
45.3 Generic ACCESS Profile LAYcocuuiiiiiiiiie et 19
454 Generic Attribute Profile LAYEroooeviiiiiiiei e 19
I (0] (0T olo]] = Lo | PRR 20
B A @70 o1 o] | T SRRSO 20
4.7.1 PhySICal LAYEr (PHY) ..ottt 21
4.7.2 LINK LAYET (LL) . .etteeeiietiiee ettt ettt sttt e sttt e e e s e e e snbaeeeenaee 21
4.7.2.1 Bluetooth Device AdAreSssSoocuvieiiiiie i 22
4.7.2.2 Advertising and SCaNNINGeeiviiiriieiiieee e 22
4.7.3 Host Controller Interface — Controller Sideooovieveiiiiiee e 22
A8 HOS - 22
4.8.1 Host Controller Interface — HOSt SIide.........c.cvvvevieeiiiiieece e 23
48.2 Logical Link Control and Adaptation Protocolc.eeeeieiiiiiiiiiiieeeeiiee, 23
4.8.3 F N 1] 010 (= = 0] 1o Yo o | SO 23
4.8.4 Y=ol 120 1YL= U = Lo = SRR 23
5 The DA1468x Software PlatfOrm OVEIVIEWcoiuiiiiiiiiiie ittt seee e sreee e 25
5.1 Board Support PACkage OVEIVIEW.........ccoiuuiiiiiiiiiieiiiiee ettt seneee s 26
511 LOW-IEVEI DIIVEIS .ttt ettt ettt sttt e st e e s b e e e s snbaeeeenaee 26
5.1.2 3 1 1 TSR SUPPPRPPRRRN 26
User Manual Version 6.1 19-Jan-2022

CFR0012 2 of 206 © 2022 Renesas Electronics

UM-B-044

DA1468x Software Platform Reference

51.3 SYSTEIM IMANAGET ...ttt s 26

5.1.4 Y0 F= 1 (= £ SRS 26

5.15 The BLE FrameWOTK........uuiiiiiiiie ettt ntee e e 26

5.2 MIAAIEBWAIE SEIVICESuvviiiieeeiiiitiiiitet e e et e sttt e ae e s sset e a e e e e s sasnteaeeeeeeesesnntnreneeeeeseannnreeneees 26
5.2.1] 1 SRR 26

52.2 SECUNLY TOOIDOXeeiiiiiiiie e 27

6 USINg the OPerating SYSTEMttt e e s e e e s sbeeeeeanes 27
B.1 FIEERTOS ..ottt e e e st e et e e e s e bbb e e e e et e e e e r e et e e e s b ree s 27
6.1.1 FreeRTOS SOUICE FlES ...coooiiiiiieee e 27

6.1.2 FreeRTOS CONfIgUIAtIoNcoiuiiieiiiiiee ittt e e 29

6.1.3 Platform-specific DefinitioNscooiiiiiiii e 30

6.1.4 FreeRTOS Task PriOritiesoooceeiiiiiiiee e 30

6.1.5 Delaying the execution of a FreeRTOS TaSK.........occcvvveeeieeiiicciiieeeee e 33

6.1.6 STt 0] o1 33

6.1.7 RTOS-AgNOSHC AP ... 34

6.1.8 Resource Management APl ... 34

6.1.9 Message QUEUES APcoiiiiiiiiiiii e 35

7 The BLE FrameWO K.cccoiiiiiiiiii i 36
7.1 Developing BLE APPlICAIONSuuuiiiieeiiiiiiiiie e s e e e s sree e e e e e e s e re e e e e e e s e nnnreaeees 37
7.2 The BLE API header fileS....coo et 37
7.2.1 [T (o T =TI S 37

7.2.2 Dialog BLE SEIVICE APL.....ciiiiiiiieee et 43
7221 Connection Orientated EVENtS.........c.c.eeeeviiiiiiiiiieeee e 46

7.2.2.2 Attribute Orientated EVENLScooviiiviiiiiiiiiiee e 46

7.2.3 ConfiguriNg the PrOJECT........coueiiieiiii et 48

7.2.4 BLE appliCation StIUCIUIE.........ouiiiiiiiiiee ittt 48

7.3 BlUEOOth IOW ENEIQY SECUILYeeiiiiiiiiiiiiiiie ettt e e e eas 49
7.3.1 LT T3 1T 1SS 49

7.3.2 BV BNTS e e e 50

7.3.3 MIBICTOS ... 51

7.3.4 Message Sequence Charts (MSCS)oicuiiiiiiee e 53
7.34.1 CONLIAL .. 53

7.3.4.2 PerPheralcooouiiiiii s 58

7.3.5 BLE STOrage ...cooeeeeeeeee e 63

7.3.6 LE SeCUre CONNECLIONScciiiiiiiiiiiiie ettt e e e e e e e e e e e e ennreeeeeas 63

7.4 Logical Link Control and Adaptation Layer ProtoCOl...........ccoovcvviiieieeeiiiiiiiieeeee e 63
7.4.1 Credit-Based FIOW CONIOLcooiiiiiiiiiiiiiie e 64

7.4.2 LT T3 1T 1SS 65

7.4.3 BV N S 66

7.5 LE Data Packet Length EXIENSIONoiiiiiiiiiiiiiie e 66
75.1 FUNCHIONS ...ttt ettt e e ettt e e e st e e e snbe e e e e snbaeeessnbaeeeeane 67

7.5.2 MACTOS ... 67

7.5.3 BV NS e 67

7.6 NVPARAM fIEIUS ...eii ittt ettt et e e st e e st e e e ss e e e snaaeeesntaeeesnnaeeean 68
A A =TI = 1) (=T U] o) A CT=T 1T = 11T SO 68
User Manual Version 6.1 19-Jan-2022
CFR0012 3 of 206 © 2022 Renesas Electronics

UM-B-044

DA1468x Software Platform Reference

7.8 Considerations on BLE TaSk PrOMtIESeuiiiiiiiiiiiiiiiie e 71
7.9 BLE tasks timing reQUIFEMENTScceieeiiiiiiiiieeee e e ss sttt e e e e e e s st ee e e e e e e s s ne e e e e e e s e nnnneeeees 72
A% O I AN 11 1 o 10 (=T o] o 1T = o) 1SR 73
7.11 Bluetooth low energy Application EXamples..........cccuviiiiiieeiiiiiiiiiiieee e 73
7.11.1 Advertising APPHCALION ...cooieeiieiieeee e 73
7.11.2 Peripheral APPHCAtION.........oiuiiiieii e e e 75
7.11.3 Central APPLICALION. .. .ccciiiiiee ittt e e 75
7.11.4 MuUlti-LinK APPHCAtION....cccoiiiiiiiiiieiee e e e 76
7.11.5 External HOSt APPlICALIONuviiiiiiiei i e e 77

A A = T = o] o) {1 (=3 o () =T £ SRS 77
7.13 Using adopted Bluetooth [oW energy SEIVICES.......cccuuiiiiiiee i 78
A X (o T [o = W et U I3 (o] o ¢ JRT=T Y o] RSP 79
7.15 Extending Bluetooth low energy functionalitycccovieeiiiiiii e 79
8 The SeCUTNItY FrameEWOTKo e e e 81
8.1 LLDs of the security frameWOIKccueiiiiiiiiii e 82
8.1.1 TRNG ENQGINE LLD ...uiiiiiiiiiee ettt et n et e e e s 82

8.1.2 AES/HASH ENGINE LLDoiiiiiiie ettt nrae e 82

8.1.3 ECC ENGINE LLD ..ttt e st e e e e e e aee s 82

8.1.4 Crypto €NgINES LLD ..ot 82

L T W NN [T =T=T AT R 82
TR B O oY/ o] (o JF= To F-1 | (= ST UPTT R PPPPP 82
8.4 CryptographiC algorithimsooiiiiiiiiie e e e e e e e s eeees 83
8.4.1 Hash-based Message Authentication Code (HMAC)cccceevviiieiniiieeeniiieeeene 83

8.4.2 Elliptic Curve Diffie-Hellman (ECDH)ccuuviiiiiiiiiiieee e 84

O SYSTEM MANAGEMENT ...ttt e e e s et e e e e e e e e e e e 86
S T R =0 VYT Y, o T [T 86
0.2 WAKE-UP PrOCESS ittt ettt e e e e e e et e et e e e e e e s e e abbe e e e e e e e e s e aannbeeeeeas 87
9.2.1 WEAKE-UP MOUES. ... ittt ettt e et e e e e 87

9.2.2 WaKE-UP BVENTSuiiiiiiiie e e ittt e e e e st e e e e e s e e e e e e e e s e st ba e e e e e e e s santabaneeaaeaaas 87

9.3 SIEEP AICHILECIUIE ...ttt e bbe e e aeneeeeas 87
9.3.1 BLE WaKE-UP .. eeiiieiiiiiiiiiiii ettt e e e e e sttt e e e e e e st e e e e e e s e annrrareeas 93

9.4 POWET CONTIQUIALIONueiiiiieiiiiiiie ittt e e et e e e e e e s et e e e e e e e e s e rannbeeeeeas 94
94.1 Recommended Power-Down Power Configuration.............cccoveeeeeiiiieeeniiieeennne 95

9.4.2 SYSEM ClIOCK ... it e e a e 96
9421 XTALSZM SUPPOIT. ...ccveeeiiiiiiiieiie e et a e e e 97

9.5 Charger CONfIQUIAtION.coi it s e e e e e s e e e e e e e s e st e e e e e e e s e snnrenneeas 98
95.1 N [0 @1 o= o oo PP PUPT PR 99

9.5.2 Default CRargiNg.......cuveeiiiiiiie et seeeee s 100

9.5.3 Custom Charging PArametersoocuueeeiieeeee ittt e e e e e e 100

9.54 Charger configuration PrOCESScccoiiiieiiiiiieeiiie et 101

9.55 Issues for non-rechargeable batteries..........cccccco i, 103

9.5.6 Charger related callback fUNCHONScooiiiiiiiiii e 104

S I I VLY = (od o [0 o[RS Y= Vo SRS 106
9.6.1 DT g o] 1 o] o HA RO PPPTTR TR 106

9.6.2 (0 0T 0| 106

User Manual Version 6.1 19-Jan-2022
CFR0012 4 of 206 © 2022 Renesas Electronics

UM-B-044

DA1468x Software Platform Reference

9.6.3 EXAMPIES ... as 107

9.6.4 N PP 107

1O SYSTEIM MEIMOIY .oeeiiiieeiiiitte ettt ettt e e e s r e et e e s s e e et e e e e e s e s b b e e e e et e e e s e snnreeeees 109
10.1 RANAOM ACCESS MEIMOIYuviiiiiieeeiiiiittt et et e e ettt e e e e e sttt e e e e e e e s abe e e e e e e e e e anbebeeeeaaeaean 109
0 0 0 R @ Yo [N 1o o 1T o SRR 109
10.1.1.1 EXECULION MOESeveieeiiiiee ettt 109

10.1.2 DaAt@ HEAPS ..ottt ettt e e e 109
10.1.2.1 FY o] o] o= L1 To] g TN o 1= =T o TSRS 109

10.1.2.2 BLE Stack HEAPcocvvvieiiiiiie ettt 109

10.1.3 Optimal MEMOIY SIZEcooiiiiiiiiiiiiie et 109

10.2 NON-Volatile MemOrY STOFAQgEc.cciiiiiiiiiiiiie ettt e e e e ae e e e e e e s 110
10.2.1 QSPI FIash SUPPOIT.......uiieiiiiiieeiitite ettt 111
10.2.1.1 Modes of operation and configuration............ccccccoeviiiiieeeeeniiinnns 111

10.2.1.2 AULOAELECT MOTE. 111

10.2.1.3 = Va1 F= U 1Y/ (o To 1= OSSPSR 111

10.2.1.4 Flash Configuration ... 111

10.2.1.5 COAE SEIUCTUIE....eeiiiie et e e e e 112

10.2.1.6 The flash configuration structure gspi_flash_config_t.................. 112

10.2.1.7 Adding support for a new flash device..........cccccoveviiiciniineennn. 114

10.2.1.8 Working with a new flash devicecccocciiiiii, 115

11 Operation modes and StartuUp ProCEAUIEciiiiiiiie ittt e e 117
11.1 Generated ELF fille ... et 117
11.2 Program l0BGINGeeeiiiiiiieeiie ettt sttt anne s 119
2 T = 7N 1Y 1 T Yo [PSPPSR 119
11.2.2 Flash caChed MOAEooieiiiiiieee e a e 119

11.3 BLE ROM PAICRES .. .ottt e e n 120
11,4 SEArtUP PrOCEAUIEeeiiii ittt ettt e e ettt e e e e e e s e e bbb e et e e e e e e saabbbe e e e e e e e e sannbnbeeeaaaaaan 121
B S Y=ol I | = = o T | PRSP 122
L1501 FRAIUIES. . ceieie ettt ettt ettt e e e ettt e e e e e s bbb e et e e e e e e s e e e e e e e e e s 122
11.5.2 CONFIQUIALION ...eiiiiiiiieiitiee ettt ettt e e e s e e e e e e nneas 127
L1153 FHlES oot nreas 133

2 B AV = g o I X o = o = PP PPPPRN 134
D2 R [01 o o [F o3 1 T o RO PP PP TP PPPPTP 134
D I 1V =T RSP 134
12.2.1 LLD header EXampPle........cccuviiiiiiee ettt 136
12.2.2 DOCUMENTALION.uiiiiiiieeeiiiiiieiee e e ettt e e e e e e e et e e e e e e e st eeeaeeeeannnreneeeeaaeaean 137

G T Vo b= o] (] £ PRSPPI 137
12.3.1 The UART adapter @XampPleot 140

12,4 THE NVMS AGAPLETooiiiiiiiee ettt et e e s e e e s nnaeee s 144
D S @ Y= V= PSPPSR 144
D 1 11 =] 1 = Lo = RSSO RRRT 145
12.4.3 NVMS partition table.........cccuviiiiiee e 147
12.4.4 NVMS over QSPIin cached MOUEevviiiiiiiiiiieieeiieieieeeeeeeveeeeeeeeeeeeeeeeeeeeeeeeens 149
12.4.4.1 Slice PROGRAM OPErationccccuvvviiieeeeiiiiiiieeeee e e e s sernnneeeaeeenn 150

12.4.4.2 Suspend/Resume ERASE Operation...........cccoeeeieiiiniiiiiieeneeennne 150

User Manual Version 6.1 19-Jan-2022

CFR0012 5 of 206 © 2022 Renesas Electronics

UM-B-044

DA1468x Software Platform Reference

D2 S oo [[1o o PR PP PP PRPTP 152
13 OPUIMIZALIONS ...ttt ettt e e e e e e e bttt e e e e e e s e aaab e e e e e ae e e s e aannbeaeeaeeeeaasnnnbeeeeeas 153
13.1 Optimize BLE framework fOOIPIINToocuuiiiiiiiiiiiiiiiie e 153
13.2 Optimizing FreeRTOS AP USAQE uuueiiiieeiiiiitiiiie ettt e ettt e e e sbeae e e e e e e 153
13.2.1 FreeRTOS Memory ManagemeNtcoeueeiiiiiiriiieiieeeesiirireeeee e e e e e 154
13.2.2 OS Heap & Tasks StaCK SIZEccccoiiiciiiiiiiee et e 155
13.2.3 Optimizing FreeRTOS HEAPcoiiiiieiitiie ettt 155
13.3 Retention RAM optimization and configuration.............cccoccuviviieee i 156
13.3.1 Memory setups for QSPI Cached eXeCULiONn MOGEeeeeerererererererererereeennnns 158
13.3.11 DA14680/681 — QSPI Cached BLE non-optimized project (all
RAM cells are retained)coocvveeiiiiee e 158
13.3.1.2 DA14680/681 — QSPI Cached BLE optimized project (RAM1,
RAM2, RAM4, RAMS cells are retained)........ccccceeevevivvieeeeeeeniiinnns 159
13.3.1.3 DA14680/681 — QSPI non-BLE non-optimized project (all RAM
cells are retaiNed)oveeeeiiiiiee et 160
13.3.14 DA14680/681 — QSPI non-BLE optimized project (RAM2 cell is
(1= 2= 1] =T | PSRRI 161
13.3.1.5 DA14682/683, DA15100/1 — QSPI Cached BLE non-optimized
project (all RAM cells are retained)cccceevviveeiniie e, 161
13.3.1.6 DA14682/683, DA15100/1 — QSPI Cached BLE optimized
project (RAM1, RAM2, RAMS cells are retained)..........cccccceeenee 162
13.3.1.7 DA14682/683, DA15100/1 — QSPI Cached non-BLE non-
optimized project (all RAM cells are retained)............ccceeevviieeennns 163
13.3.1.8 DA14682/683, DA15100/1 — QSPI non-BLE optimized project
(RAM2 cell is retained)cceeeeeiiiiiiiiiiiiee e 163
13.3.2 Memory setups for RAM eXeCULION MOQEiuirrrrrrrrrerrieieirieeeeeeeeeeeeeeeeeeeeeeeeeeee 164
13.3.2.1 DA14680/681 — RAM BLE non-optimized project (all RAM cells
Are retaiNed) ..ooooiveiee e 164
13.3.2.2 DA14680/681 — RAM non-BLE non-optimized project (all RAM
cells are retained)oocevviiiiee e 165
13.3.2.3 DA14682/683, DA15100/1 — RAM BLE non-optimized project
(all RAM cells are retained)c.eeeeiiiieeeiiiiiieeieee e 166
13.3.2.4 DA14682/683, DA15100/1 — RAM non-BLE non-optimized
project (all RAM cells are retained)cccceevviiieiiiine e, 167
13.3.3 Memory setup for the OTP Cached execution mode (DA14680/1-01) 167
13.3.4 Memory setup for the OTP Mirrored execution mode (DA14680/1-01) 168
Appendix A SmartSnippets DA1468X SDK STTUCTUIEuceiiiieiiiiiiiiiiieee et ee e e serrane e 170
AL DIFECIOIY SIIUCTUIEci ittt ettt e e e e e bbbttt e e e e e e s bbb et e e e e e e s e snnbeeeeaaeeeaannees 170
YN =11 F= T 1T o [T =Tod (o] Y PPN 170
YN B @70] 1o o |1 (=Tox (o] VNPT PPURPRRN 170
F N b To Tl o |1 (=To1 (o] oY SR P PP PP UTU PPN 171
YN T o o[o 3o (1= (o PRSP 171
AS5.1 AK_APPS AIFECLONY ...eeieiiiiiee ettt 171
A.5.2 [TS = 1] 0 L3N0 [T (= Tox 1o] Y/ S 172
A.5.3 SDK GITECLONY ...ttt ettt e e e e e e st e e e e e e e e s nbebeeeeaaeaan 172
A5.4 ULIItIES dIFECLONY ...eiieieeiie ettt s 173
Appendix B Command Line Interface (CLI) Programmer.........cccooiiiiiiiiiie e 174
User Manual Version 6.1 19-Jan-2022
CFR0012 6 of 206 © 2022 Renesas Electronics

UM-B-044

DA1468x Software Platform Reference

B.1 CLI Programmer — OVEIVIEWccoiiuuriiieeiaaaiaiitieeeaaaeaeaaasstbeeeeaaeassanssbeeeeaaesssanrsseeeeaaaaaas 174
B.2 Application command deSCriPLiONuviiiiieeiiiceir s 174
B.3 Command EXaMPIEScccuiiiiiie et a e a e e e e aaaaaan 177
B.3.1 Installation and debugging ProCeUIEcooiiiiiiiiiiei e 179
B.3.2 BUIld INSTIUCTIONS. ...t 180
Appendix C QSPI programming QUIAEcoocuiiiiiiee e e e s e e e e s s st e e e e e e e s snnrnaneeeeee e s 181
O 1= o 1= - | PR 181
O S o =0 [1S (=SSR 181
C.3 Compiling for execution from flash..............eeeiiii i 181
C.4 Flashing an QSPLIMAGEcouiiiiiiieiiiie et e e ebeas 182
C.5 Debugging from QSPl ...t 183
C51 (1T 0 1= | TR 183
C5.2 Debugging with gdb SCHPLS ... 183
Appendix D SEGGER SystemView integration inStruCtioNS..........ccccevviiiiiiiiine e, 185
APPENIX E SYSTEM CIOCKS ..iiiiiiiiii ittt et e et e e e eneas 191
APPENAIX F BAILEITES ...eeiiiiiiiie ettt et e et et e e et e e s e bt e e e e e bt e e e e enbeas 192
APPENTIX G POWEToiiiiiiiiiiiii i bbb 193
Appendix H Trim and CaliDrationcoooiiiiioiiiiee e 194
Appendix | Configuration PaAramMETEISuvii i 196
REVISTON NISTOIY ettt ettt et e e e s e b e e e e e e e e e e aabbe e e e e ee e e e e sannbeeeeeas 205
Figures
Figure 1: BIUETOOtN® Bran@ingcc.coueiieiueiieeie it et cete ettt ettt et et e e steeteeteste st e ebeeaeestesbeeasesaeereeneens 15
Figure 2: Integrated vs external processor BLE hardware configurationscccccceeeeiiiiiivieeneeenn 16
Figure 3: Bluetooth low energy ProtoCol Stack LAYEISc..uvveviieeiiiiiiiiiieeee et a e 20
FIQUIE 4: LINK LAYEI STALES.....uuuviiiieie i ittt it e e e s e sttt e e e e s et e e e e e e e s e sttt e e e e e e e e s e ennabeereaaeeesnntnreeeeaaeaaan 21
Figure 5: SmartSnippets™ Bluetooth low energy development platform overviewc.cco........ 25
Figure 6: PXp_reporter task Prioritiescooiiiiiiiiiee et 33
Figure 7: BLE framework arChiteCtUIe.........ooouiiiiiie e 36
Figure 8: Structure of @ Service handleoooiiiiiiii e 44
Figure 9: Structure of SUPPOIEA SEIVICESeiiiiiiiii it 45
Figure 10: Pairing JUSTWOIKScoiiiiiiiiiiiii ettt e e e e e abn e e e aa e e an 53
Figure 11: Bonding JUSEWOTKSoiiiiiiiiiee et 54
Figure 12: Bonding Passkey Entry (Central DiSPlay)cccuuuiiiiiiiiiiiiieiee et 55
Figure 13: Bonding Passkey Entry (Peripheral DiSplay)c..covvieiiiiiiiiiiiicee et 56
Figure 14: Bonding Numeric Comparison (Secure Connections ONIY).......ccccccoeccvvveeeeeeesiicciiieeeeeeeen 57
Figure 15: Pairing JUSEWOIKScciiiiiiiiiieiic ettt e e s e e e e e e st e e e e e e s s nntnreeaeaaeaean 58
Figure 16: Bonding JUSE WOTKSooiiiiiiii et et e 59
Figure 17: Bonding Passkey Entry (Peripheral DISPlay)ccccoiiiiiiiiiiiie e 60
Figure 18: Bonding Passkey Entry (Central DISPIAY)coeeiiiiiieiiiiie et 61
Figure 19: Bonding Numeric Comparison (Secure Connections ONlY)..........ccceeiiiereeniiieeeinieee e, 62
Figure 20: L2CAP PDU format in Basic L2ZCAP mode 0N COC.........cooiiiiiiiiiiieeiiie e 64
Figure 21: Advertiser Device INterruptS GENETAtiONociiiiiieeiiiee ettt 69
Figure 22: Scanner Device INterrupts GeNEIatiON...........coiiiuiiiiiiiie et 70

Figure 23: Master Device Interrupts Generation / Link Layer Connection Event without Deep Sleep 70
Figure 24: Master Device Interrupts Generation / Link Layer Connection Event with Deep Sleep 70
Figure 25: Slave Device Interrupts Generation / Link Layer Connection Event without Deep Sleep . 71

Figure 26: Slave Device Interrupts Generation / Link Layer Connection Event with Deep Sleep 71
Figure 27: TWO CONNECLION EVENTSuiiiiiiiee i i it e et e e e se s e e e e e e s s st e e e e e e e e e s s sana e e e e e e e e s snntnreeeeaeeanas 72
User Manual Version 6.1 19-Jan-2022

CFR0012 7 of 206 © 2022 Renesas Electronics

UM-B-044

DA1468x Software Platform Reference

Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:
Figure 39:
Figure 40:
Figure 41:
Figure 42;
Figure 43:
Figure 44
Figure 45:
Figure 46:
Figure 47:
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62;
Figure 63:
Figure 64:
Figure 65:
Figure 66:
Figure 67:
Figure 68:
Figure 69:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:
Figure 77:
Figure 78:
Figure 79:
Figure 80:
Figure 81:
Figure 82:
Figure 83:
Figure 84:

Attribute Operations EXAMPIEccuvviiiiiie e e e e a e e e e aaanees 73
Architecture of Multi-Link DEMOuuuiiiiiiiiiiiieee e e e e e ar e e e e e e seanees 77

Security framework arChiteCtUIE...........cooi i e 81
[1Y AN @R o o 11 o1 o o SRS 84
1@ =1 o o] 111 o o T SRR 85
DAL468X POWEE DOMAINS ...ceuvvieiiieiieie st ree ettt e et snne e s e s nnn e s e nnneesnnes 86
SYNCAIONOUS BLE @VENT.......coiiiiiiiiiiii e 88
ASYNCAIONOUS BLE EVENL.......iiiiiiiiiiiiiiiiee ittt 89
CPM and Adapter Interaction - an Adapter aborts Sleepocovevviiiiiiiiiiie e 91
CPM and Adapter Interaction during Sleep/Active mode SWitChcccocvvvveriiieiiiiinenen. 92
Power Management UNit..........ooooiiiioiie e 94
Recommended Power CONfIgUIAtioNcooooiiiiiiiiiiiee e 95
(0 [oTo3 Q8 1 (=T= o [F=To | = T o SO PPP TR 96
Battery charging Profile 103
WatChAOQ OVEIVIEW ... e e e e s s st e e e e e e e e annrrreeeeeaeaean 106
Flash cached pre-eXeCution STAQESucviieeiiiiiiiiiiiice e e e 120
SECUE BOOL = IMAIN ...ttt et sn e nee s 123

Secure Boot — Device INtegrity ChECKciiiiiiiiiiiiii e 124
Secure BOOt — FW VAlIAALION.oiiieee ettt e et s e et e e et e e e e eae e e s eraeeererans 125

Secure Boot — Device AAMINISITAtIoNoiiiiiiiieiiiie et 126
Secure Boot — BUild CONFIQUIALIONSciuiiiiiiiiiiie et 127
Secure Boot — IDE impPOrted PrOJECES........uuuiiiiiiiiie ittt 127

secure_image_config PYthON SCHPL........ooiiiiiiiiiiic et 128
Question window to create new product Keys fileoooeieiiiiiiiieee e 128
elliptic curves used for creating aSymmetriC KEYS..........uuviiiiiiiiiiiiiiiiieee e 128
generated product_KeyS. XMl filooi i 129
inserting private key iNndeX oF @ddrESSuueiiieeiiiiiiiiiiice e 129
iNSerting pPrivate KeY VAlUE............ouiiiiiiiiieiie e e e e e enaaaee s 129
window to select the use Of Private KEYcoo i 130
selecting private key from product_keys.Xml file..........cccoiiiiiiii e, 130
move existing configuration to product_keys.xml.old file............cccocoiiiiiiiien 130
selecting hash method for SECP256R1, SECP224R1 OF SECPLII2RT ..uvvvrreeeeeiaiuerrieeeeaaaeannenes 131
add key revocations SEIECHONciiii i 131
key revocations ValUES WINGOW.........coiiiuiiiiiieee ettt e et eee e e e e snnbeeee s 131
adding minimal version of SOftWare VEISIONccooiiiiiiiieiie e 132
inserting minimal value of SOftWAIec..uviiiiie e 132
secure suota initial flash Jtag SCHPL........ccoiiiiiiii e 132
Secure Boot - generated fil@S..........oouuiiiiiiiiii e 133
Product_KeYS.XMI fIlE.....coiii e 133
secure_IMmg_CIg.XMI Il 134
Html file generated DY DOXYGEN ...t 137
W0 F= 101 (= B o)L= V= U PRRRR 138
Adapter COMMUNICALIONueiiiiieii i e e e e e st r e e e e e s e snraareeeeaeaeas 138
NVIMS OVEIVIEW ...ttt ettt etttk et e bt s e sbn e e ssne e sbe e e snne e e nnnee e 145
Virtual/Physical Addressing with and without VEScccccoiiiiiiiie e, 147
NVMS Adapter NVMS over QSPI and Virtual EEPROM emulation in Cached mode...... 149
Suspend/Resume ERASE OPErationcioiuiiieiiiiiee it ssiiee et seiee e s siieee s 150
Amount of data retained by the heap_4.0 module...........ccccoiiiiiiini e, 154
MEMOIY DIOCKS ...ttt ettt e st e e st e e e e sabreeeeaaes 157
DA14680/681 — QSPI Cached BLE non-optimized Project.........cocvveeiiiveeeniiieeeniiieeennans 159
DA14680/681 — QSPI Cached BLE optimized Projectccocueeeeiieeeiiiiieeee i 159
DA14680/681 — QSPI non-BLE non-optimized Projectccccceveeeiiiiieeie e 160
DA14680/681 — QSPI Non-BLE optimized ProjECE.........ccvviveiiiiieeiiiiieeeiiieee e siiee e siiee e 161
DA14682/683, DA15100/1 — QSPI Cached BLE non-optimized projectcccocveee.. 162
DA14682/683, DA15100/1 — QSPI Cached BLE optimized project...........c.cocevevvcvveeennnns 162
DA14682/683, DA15100/1 — QSPI non-BLE optimized project.........cccocevveviiveeeinnnnnenn 163
DA14682/683, DA15100/1 — QSPI non-BLE optimized project.........cccccvveeiiveerernnnenenn 164

User Manual Version 6.1 19-Jan-2022

CFR0012

8 of 206 © 2022 Renesas Electronics

UM-B

-044

LENESAS

DA1468x Software Platform Reference

Figure 85: DA14680/681 — RAM BLE NON-0ptimized ProjeCtccvvveeiiiiieeiiiiiee st siiee e siiee e 165
Figure 86: DA14680/681 — RAM non-BLE non-optimized Projectcccccvvieeeeiiiieee i 166
Figure 87: DA14682/683, DA15100/1 — RAM BLE non-optimized project...........ccccevvevvereeiiieeeennns 166
Figure 88: DA14682/683, DA15100/1 — RAM non-BLE non-optimized projectccccevvcvveeeenne 167
Figure 89: Memory setup for the OTP Cached execution mode (DA14680/1-01).........cccceevrvveeennnne 168
Figure 90: Setup 1 for the OTP Mirrored execution mode (DA14680/1-01)ccccvveeriireeeriiineeennns 169
Figure 91: Setup 2 for the OTP Mirrored execution mode (DA14680/1-01)ccccovveeeiiireeeriiineeennnns 169
Figure 92: Create @ NEW TOIURNuiiie e e e e e aaee 185
Figure 93: Select the LINKEr FOIAENuuiiiiiieiii e 186
Figure 94: INClude fOlAEr PALNScoii i e e e e 187
Figure 95: System Viewer apPliCALIONcoiii i 188
Figure 96: Configuring the SEGGER SYStem VIBWETccoocuiiiiiiiie e e e e 189
Figure 97: Start RECOIAINGuuuiiiieeiiiiiiiiie e e e e e s e e e e e s e s e e e e e e e s e saa e e e e eeeesasnnbaaeeeeeeesesnnrreeees 189
Tables

Table 1: Kernel source files for FIEERTOSoovviiiiiiiiie ettt aaeee s 27
Table 2: Header files for FFTEERTOSooi ittt e e snneee s 28
Table 3: Macro Definitions for the FreeRTOSCONFIG.N ..cooouiiiiiiiiii e 29
Table 4: PXP_TEPOIET TASKSoii ittt ettt e e s bbb e e sbb et e e sbb b e e s anreee s 32
Table 5: SOUICE filES fOr OSAL ...t e e e e s s eeeeeessnsnsnbeeeeeaeeesennnees 34
Table 6: OSAL wrappers of the FTEERTOS APccoiiiiiiiiie ettt 34
Table 7: OSAL resource Management APlc..oii i 34
Table 8: OSAL message qUEUES FUNCHIONSuuiiiiiiiiie ittt 35
Table 9: API Functions of the common BLE host software COmponent.............c.ceeeeeeviiiiieieieeeeeiiins 38
Table 10: GAP and L2CAP AP fUNCHONSuiiiiiiiii ittt e e 38
Table 11: GATT SEIVEI AP ...ttt e e e e et e e e e e e e e s ab b beeeeaaeeesaaneee 41
Table 12: GATT CENE AP ...ttt ettt e e sttt e e s bb e e e snbee e e e snbeeeesnneeeean 42
Table 13: Header files fOr the BLE SEIVICESuuiiiiiiiii ittt st nneeeee s 43
Table 14: BLE projects included in the SmartSnippets™ DAL1468X SDKcccccevveieveeierieie e, 48
Table 15: BLE Security APITUNCLIONSoouiiiiiiiee et 49
Table 16: BLE SeCUTtY API VENTSiiiiiiiiiee ittt e e anee e s 50
Table 17: BLE SECUILY APIIMACIOSeiiiiiiiiiiiiiiee ettt sttt e e e sanneee s 51
Table 18: Example Of L2ZCAP COCottt ettt e e sanne e s 65
Table 19: L2CAP COC API- Ble_12Cap.N.......ooo it 65
Table 20: L2CAP COC Events — received through ble_get_event() - ble_12cap.h........c.ccccccceiiiiis 66
Table 21: LE Data Length Functions — ble_gap.n.......ooeeiiiiiii e 67
Table 22: LE Data Length DefiNitiONS.........ooiiuuiiiiiiie ittt e e e e e e e e seaeeee 67
Table 23: LE Data Length Events — fetched using ble_get_event() - ble_gap.h.........cccocveveeeriinnnns 67
Table 24: NVPARAM fIEIUS ...oiiiiiiiie ittt st e e st e e st e e e snteeaesnneeee s 68
Table 25: BLE service APl Neader filES........uuii ittt 78
Table 26 : Dialog BLE APl header fileSooi i 80
Table 27 1 APLTOr the @OAPLETSciiiiiiiee ettt e e be e e snbee e e s nneeee s 90
Table 28: API for the communication With the CPM............ooiiiiiiiiiec e 90
Table 29: CoNfiQUratioN SEHINGSc.iitieeei ittt ettt e e sbbe e e e sanneee s 95
Table 30: Functions in CIOCK MaNager APoei ittt 97
Table 31: Configuration settings for integrated charger of Li-ion batteriesccccccooiiciiieeeniies 98
Table 32: Charging with default Parameters ... e 100
Table 33: Pre-charging CUrrent SEIHNGSueiiiiiieiie it e e e e e senees 100
Table 34: Charger - Configuration settings for the USB interface...........cccooccvveveeieeiiiiciiieeeee e 101
Table 35: Charger - Configuration settings for the charging algorithmcccccccooiiiiii s 102
Table 36: Charger — configuration settings for a specific batteryccccovviiiiii i, 103
Table 37: Charger related callback fUNCLIONSooiciiiiiiie e 104
Table 38: Configuration functions for sys_ watChdogcceeiiiiiiiiiiiiie e 107
Table 39: Macros for the configuration of the Flash subsystem..........ccccccovvciiiiiiiie s 111
Table 40: The gspi_flash_CONfig_t SIFUCLUIEcoiiiiiiiii e 112
User Manual Version 6.1 19-Jan-2022

CFR0012

9 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

Table 41: OPEration MOOEScciirieiiiee e e e e e e s e e e e e s e st eeeeeeesesrastaaeeeeeessassnnraeeeaaeessannnnns 117
Table 42: Example program sections in RAM operation MOde..........ccceveeviiiiiiieieeeeeeiiiiieeee e e e s 117
Table 43: Example program sections for flash cached operation mode............cccccceoviviiiieeeeee e, 118
Table 44: Example program sections for flash cached mode with BLE SUppoOrt..........cccoceveeeeeiinnns 118
Table 45: Flash image header for DAL4A680/1-0L.........c.c.ovuviiieeiiiiiieiieeee e e s esiieee e e e e e s s snrane e e e e e e sennees 119
TADIE 46: LLD OVEIVIEW. ...ceiiiiiieee ettt ettt ss e e e n e se e e nne e e s e e sne e e snre e e nne s 135
Table 47: LLD hEAUEN i€evveee ettt ettt e e e s e e e e e e s snnnn e e e e aeeeannnnnes 136
Table 48: AQAPLEN OVEIVIEW.....ciiutiiiiiiiiiee ettt ettt e et e e s et e e s et b e e e s enbbe e e e e nneas 139
Table 49: Description Of PArtition ENIYoooiiiiiiii e 149
Table 50: Available Macros for the optimization of BLE framework footprint..............ccocevviieeennnnen. 153
Table 51: Amount of data retained by the FreeRTOS for this specific exampleccceevevernnnen. 155
Table 52: DataRAM CeIIS SEQUENCEceiiiiiiiiiie ettt et e e e e e e s babe e e e e e e e e aaanees 157
Table 53: SmartSnippets™ root direCtory StrUCLUIEccoveiieiie ittt 170
Table 54 binary files inside SmartSnippets™ DAL468X SDKccceccueeiieeiieeiieeire e esre st sree e 170
I 101 LTSS o] 1o (o] [0 1= S PERR 171
TabIE 56: DOC FOIUEN ...ttt e e n e st e s e e snre e e nee s 171
Table 57: dk_apps dir€CLOrY SITUCIUMceieiieei e e e e s st e e e e e s e e e e s s s s e e e e e e s s snnnraeeeeaeeesennnnes 171
Table 58: HOSt APP QIFECLOMYcuviiiiiiiiiie ettt st e e s et e e s ennb e e e s e ebeas 172
Table 59: SDK dir€@CIOIY SIUCTUIEveiiiiiiiiie ettt st bbb e e s e e e e eaeas 172
Table 60: DSP AIrECLONY SITUCTUIEoiuviiiie ittt sttt bb e e s e e e s e ebeas 172
Table 61: interfaces dir€CtOrY SITUCTUIEiii ittt ebe e 173
Table 62: middleware dir@CtOry SITUCTUIEooiuuiiiiiiiie ettt e 173
Table 63: ULtilitieS dir€CLOrY SHUCTUIEccoiuiiiii ettt 173
Table 64: Commands and ArgUIMENTSouuuuiiiiie ettt e e e et e e e e e s s e ababeeeeeaeeeaaanees 174
Table B65: GENEIAl OPLIONScoiiiiiiiiiii ittt e e e e e e s s sae bt e e e e e e e e e saabbbaeeeeaeeeaannnes 175
Table 66: GDB server SPeCific OPIONSoiuuiiiiiiie et e e e e senees 175
Table 67: Serial port SPECIfIC OPLIONSccciiiiiiiiiii e e e e e e e s s srnrae e e e e e e e sennnees 176
Table 68: biN2IMAge OPLIONS ... e e e e e e s e e e e e e s s st eereeeesssasnraneeaeeeesannnnes 177
Table 69: Build CONfIQUIALIONSuiiiiii i e e e s s e e e e e e s e neeeaeeesannnnes 179
Table 70: QSPI programming scripts on WINAOWS HOSLE........ccooiuiiiiiiiiiieiiieee e 182
Table 71: QSPI programming SCripts 0N LINUX HOSE......cooiiiiiiiiiiiie e 183
Table 72: SYSEM CIOCKSeiiiiiiiii ittt s b e e e enb e e e e nneas 191
TaADIE 73 BAEIY TYPES. ..ttt ettt s ettt e e et bt e e s e bt e e e an e e e nneas 192
Table 74: POWEr DefiNItIONS........oi ettt e e e e st e e e e e e e et eeeaeeeaennnees 193
Table 75: Trim and Calibration Section expected values per chip VErsioncccccooecuveeeeeeeeniinnnns 194
Table 76: List of configuration PArameterScoou i iiiiiiieie e e e e e e e e e eaanees 196
Codes

Code 1: Code defining the config ASSERT () MACIOccueeiuirrierrierrieieieiesieesieesenesneeneesreesressresseneaneens 30
Code 2: Code and Data Retention SPecific CONSIANTS..........ccoiiiiiiiiiiiie e 30
Code 3: currently configured value for the configMAX_PRIORITIES ..o 31
1070 To [A (o] [o0 P= T T o] 4 o] 1O OPPPPN 31
€00 5: TASK PIIOIIES. ... eteeeee ittt ettt e e e sa b e e e sab et e e e sa b e e e e s sabeeeeesnbneeeeaae 32
Code 6: Initialization code for Immediate Alert SEIVICE..........oocuiii i 43
Code 7: Handle BLE events using BLE service frameworkccceoiiiiieiiiiiiie e 45
Code 8: Example of code for the Wt REQUESL............eiiiiiiiiiiiii e 46
Code 9: Example of code that handle the Write Request and match it with the appropriate instance47
€00 10: SEEBLE UBVICEeeiiiiiiee ittt e s e e e ri e e e s s e e e s sarneeeeaae 74
Code 11: Example of eVent hanIEocuiiiiiiiei e 74
Code 12: Configure device as @ BLE CENIalcccuvviiiieiiii i e 76
Code 13: ConNnection t0 ANOthEr EVICEuiiiiiiiiiee et 76
Code 14: Structure definition fOr XXX SEIVICEccoiiiiiiiiiii e s 79
Code 16: Initialisation fUNCLioN fOr XXX SEIVICEcccviiiiiiieierie e e 79
Code 17: Charging With CUSTOM PAramMELEIScciiiueiieieeee e iecit e e e e s s e e e e e s s st e e e e e e s e snnaneeees 100
Code 18: Callback function example to catch events sent by the USB-charger............ccccceevenneeen. 104
Code 19: Notify sys_watchdog Of the taSKccoiuiiiiiiiiii e 107
User Manual Version 6.1 19-Jan-2022

CFR0012

10 of 206 © 2022 Renesas Electronics

M0 LENESAS

DA1468x Software Platform Reference

Code 20:
Code 21:
Code 22:
Code 23:
Code 24:
Code 25:
Code 26:
Code 27:
Code 28:
Code 29:
Code 30:
Code 31:
Code 32:
Code 33:
Code 34:
Code 35:
Code 36:
Code 37:
Code 38:
Code 39:
Code 40:
Code 41:
Code 42:
Code 43:
Code 44:
Code 45:

Using sys_watchdog while suspending task for an eventccccccoecvvvveeeee i icciiieeeee e, 107
1T o g To Y =1 o] o1 o [UUEER 110
ENabling UART AGAPLETuuiiiiiiie ettt e e st e e e e e e e st e e e e e e e s snarnreeeeaaeaean 141
Parameters of UART DUS @rgUMENLScceieeiiiiiiiiiiiee e e s it e e e e e s st ee e e e e e s snrnneeeeaee e s 141
Parameters of the UART DUS........uiiiiiii et 141
(0 07T T U G 142
ACQUITE ACCESS 10 UART ...ttt ettt s e e st e e e abeas 142
LAY 1 C= N 10T Tod 1T o SO PPERR 142
L= T= 1o I 11 X 1 o SRR 142
WWIHIEE FUNCHION ...ttt e e e e e s et e e e e e e e s e snanbeeeeaaeeesannnes 143
[qCT= 1o I {1 Tod 11 o PP 143
REIEASE UART ...t e et e e e e e e e s bbbt e e e e e e e snnbabeeeaaaeaan 143
ClOSE UART TEBVICEeeeeiieeiieiiteiee ettt ettt e e e e e st e e e e e e s e st e e e e e e e e s e snnnbeeeeeas 143
Example of UART Qdapler USAQEuueiiiiiiiiiiiiieiet ettt ettt e e e s e e e e e e 144
USAQE OF NVIMS L. e e e e e e s e e e e e e s s et e et e e e e s snnnrarneeeeaeeean 146
N Ry Y ISR o= T 1] o | RP TP 148
[T 11 T0] T =T o1 Y/ SRR 148
BLE framework preproCeSSOr IMACIOScoiuiieiiiiiiieeiiiie et e ettt nibee e 153
Enabling FreeRTOS Heap Trackingcooiiiiiiiiiiiieie e 156
RAM 0ptimization SELHNGSceiiiiiiiie it 160
Execution from Flash (Cached) ... 182
Execution from Flash (Mirrored)c.ooooiiiiiii e 182
EXECULION FrOM RAM ...t e e e sttt e e e e e e s s reeeaaee e s 182
Enable System View CONfIQUIAtIONcoiiiiiiiiiiiiiee e 187
Call SYSTEIM VIBW ...ttt ettt e e e s et e e e e e e e s e s ab e e e e e e e e e s e sannbeneeeas 187
Enable/disable the MONItOIINGooouiiiiii e 190

1 Terms and definitions

ADC Analog-to-Digital Converter

AES Advanced Encryption Standard

AHB AMBA High speed Bus

AMBA Advanced Microcontroller Bus Architecture
API Application Programming Interface

APU Audio Processing Unit

ATT Attribute Protocol

BR Basic Rate

BD Bluetooth Device

BIN Binary

BLE Bluetooth Low Energy

BOD Brown-Out Detection

CBC Cipher Block Chaining

CcC Constant Current

CCcC Client Characteristic Configuration

CcoC Connection Oriented Channels

CPU Central Processing Unit

CPM Clock Power Manager

CRC Cyclic Redundancy Check

CTR Counter

Ccv Constant Voltage

User Manual Version 6.1 19-Jan-2022
CFR0012 11 of 206 © 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

DCDC Direct Current — to — Direct Current

DMA Direct Memory Access

DMIPS Dhrystone MIPS (Million Instructions Per Second)
ECB Electronic Codebook

ECC Elliptic Curve Cryptography

ELF Extensible Linking Format

EEPROM Electrically Erasable Programmable Read-Only Memory
EDR Enhanced Data Rate

FreeRTOS Free Real-Time Operating System

FW Firmware

GAP Generic Access Profile

GATT Generic Attribute Profile

GCC GNU Compiler Collection

GDB GNU Debugger

GFSK Gaussian Frequency-Shift Keying

GPADC General Purpose Analog-to-Digital Converter
GPIO General-purpose input/output

HMAC Hash-based Message Authentication Code
HID Human Interface Device

HCI Host Controller Interface

HTML HyperText Markup Language

HW Hardware

12C Inter-Integrated Circuit

IAS Immediate Alert Service

IC Integrated Circuit

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers
I/O Input/Output

IVT Interrupt Vector Table

LE Low Energy

LL Link Layer

L2CAP Logical Link Control and Adaptation Protocol
LLD Low-Level Drivers

MAC Media Access Control

MCIF Monitor and Control Interface

MITM Man In The Middle

MPS Maximum Payload Size

MTU Maximum Transmission Unit

NVM Non-volatile memory

(O] Operating System

OSAL OS Abstraction Layer

OoTP One-Time Programmable

PDM Pulse Density Modulation

PHY Physical Layer

PLL Phase-Locked Loop

PSM Protocol Service Multiplexer

User Manual Version 6.1 19-Jan-2022
CFR0012 12 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

PCB Printed Circuit Board

QSPI Queued Serial Peripheral Interface
RAM Random-Access memory

RC16 16 MHz Oscillate

RCX 10.5 kHz Oscillator

RF Radio Frequency

ROM Read-Only Memory

RTS/CTS Request to Send / Clear to Send
SDIO Secure Digital Input Output

SDK Software Development Kit

SDbuU Service Data Unit

SM Security Manager

SMP Security Manger Protocol

SIG Special Interest Group

SIP Serial Peripheral Interface

SW Software

SoC System on Chip

SRC Sample Rate Converter

SUOTA Software Upgrade Over The Air
TCS Trim and Calibration Section
TRNG True Random Number Generator
UART Universal Asynchronous Receiver/Transmitter
USB Universal Serial Bus

VBAT Battery supply voltage

VBUS External supply voltage (from USB)
VES Virtual EEPROM

XiP Executing in Place

XTAL16 16 MHz Crystal oscillator

2 References

[1] DA14681_FS_v2.1, Datasheet, Dialog Semiconductor.

[2] UM-B-057-SmartSnippets Studio user guide, User manual, Dialog Semiconductor.

[3] UM-B-056 DA1468x Software Developer's Guide, User manual, Dialog Semiconductor.
[4] UM-B-047 DA1468x Getting Started, User manual, Dialog Semiconductor

[5] RFC 2104, HMAC: Keyed-Hashing for Message Authentication

[6] FIPS PUB 198-1, The Keyed-Hash Message Authentication Code (HMAC)

[7] NIST, Special Publication 800-56A, Recommendation for Pair-Wise Key Establishment
Schemes Using Discrete Logarithm Cryptography Revision 2

[8] Bernstein, Daniel J. "Curve25519: New Diffie-Hellman Speed Records", in Proceedings of
Public Key Cryptography - PKC 2006: 9th International Conference on Theory and Practice in
Public-Key Cryptography, New York, NY, USA, April 24-26, 2006.

[9] BLUETOOTH SPECIFICATION Version 4.2

[10] AN-B-045 Application Note: DA14681 Supported QSPI Flash Devices

[11] AN-B-035 Application Note DA1468x Battery Charging Version 1.1

[12] AN-B-075 Application Note DA1468x State of Charge Functionality Version 1.2

User Manual Version 6.1 19-Jan-2022

CFR0012 13 of 206 © 2022 Renesas Electronics

RLENESAS

UM-B-044

DA1468x Software Platform Reference

3 Prerequisites

e SmartSnippets™ Studio package

e Dialog’s Semiconductor SmartSnippets™ DA1468x SDK
e Operating System (Windows or Linux)

e ProDK DA1468x and accessories

User Manual Version 6.1 19-Jan-2022

CFR0012 14 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

4 An Overview of Bluetooth® low energy Platform

Bluetooth® low energy technology was introduced in 2010 as part of the Bluetooth® version 4.0 Core
Specification published by the Bluetooth Special Interest Group (SIG). Starting from Version 4.0
onwards, the Bluetooth standard supports two distinct wireless technology systems: the Bluetooth
low energy and the Basic Rate (BR), often referred as Basic Rate / Enhanced Data Rate (BR/EDR).

During the early stages of Bluetooth low energy design, the SIG focus was on developing a low
complexity radio standard with the lowest possible power consumption, offering low bandwidth
optimization, thus enabling low cost applications. In this context, Bluetooth low energy was designed
to transmit very small packets of data each time, while consuming significantly less power than
similar BR/EDR devices. Moreover, its design also supports efficient implementations having a tight
energy and silicon budget, facilitating applications to operate for an extended period of time using a
single coin cell battery.

Note 1 The following sections are based on the book "Getting Started with Bluetooth Low Energy" by Kevin
Townsend, Carles Cufi, Akiba, Robert Davidson.

4.1 Devices Mode

Devices that support Bluetooth® low energy and BR/EDR are referred as dual-mode devices and are
branded as Bluetooth®. Typically, inside the Bluetooth ecosystem, a mobile phone or laptop
computer is considered a dual-mode device, unless specifically stated otherwise. Devices that only
support Bluetooth low energy are referred to as single-mode devices.

¢3 Bluetooth’

Figure 1: Bluetooth® Branding

411 Single Mode Devices

A Single-mode (Bluetooth low energy) device only implements Bluetooth low energy. It can
communicate with both single-mode and dual-mode devices, however not with devices that only
support BR/EDR. Bluetooth low energy support is a must-have for single-mode devices to handle
incoming messages and issue a response.

41.2 Dual Mode Devices

A Dual-mode BR/EDR/LE, Bluetooth low energy device, implements both BR/EDR and Bluetooth low
energy and can communicate with any Bluetooth device.

4.2 Main Building Blocks

In the classic Bluetooth standard, the protocol stack consists of two blocks; the Controller and the
Host. In Bluetooth BR/EDR devices, these two are usually implemented separately. However, more
recent Bluetooth devices include an increased level of integration. The main building blocks that exist
in almost every Bluetooth device are the following:

e The Application that uses the Bluetooth protocol stack interface to implement a particular use
case.

e The Host that contains the upper layers of the Bluetooth protocol stack.
The Controller that contains the lower layers of the Bluetooth protocol stack, including the radio.

User Manual Version 6.1 19-Jan-2022

CFR0012 15 of 206 © 2022 Renesas Electronics

RLENESAS

UM-B-044

DA1468x Software Platform Reference

Bluetooth specifications also offer a standard communication protocol between the host and the
controller called Host Controller Interface (HCI), which allows interoperability between hosts and
controllers when these are developed by different entities.

4.3 Hardware configurations

These main building blocks can be implemented in a single integrated circuit (IC) or System on Chip
(SoC) device, or they can be split and executed in more than one ICs that are connected through a
suitable communication interface and protocol (UART, USB, SPI, or other).

4.3.1 Integrated Processor

Most sensor applications tend to use the SoC hardware configuration as it reduces overall system
complexity and associated printed circuit board (PCB) realization costs.

43.2 External Processor

Powerful computing devices like smartphones and tablets usually opt for the external processor, with
the corresponding HCI protocol which may be either proprietary or standard. This approach also
allows additional Bluetooth low energy connectivity with specialized microcontrollers to be integrated
without modifying the overall design.

Figure 2 shows a comparison between the two approaches when Bluetooth is implemented:

Main Processor

Application

Proprietary
Protocol

System On Chip (SoC)

Application

System On Chip (Sof)

Host Controller Interface

Integrated Processor External Processor

Host Controller Interface

Figure 2: Integrated vs external processor BLE hardware configurations

4.4 Network Modes

Bluetooth low energy devices use two distinct communication methods, each with certain benefits
and limitations: Broadcasting and Connecting. Both methods follow certain procedures established
by the Generic Access Profile (GAP) as described in Section 4.5.1.

44.1 Broadcasting

When using connectionless broadcasting, a Bluetooth low energy device sends data out to any
scanning device or receiver that is within acceptable listening range. Essentially, this mechanism

User Manual Version 6.1 19-Jan-2022

CFR0012 16 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

allows a Bluetooth low energy device to send data out one-way to anyone or anything that is able to
pick up the transmission.

Broadcasting defines two separate roles:

e Broadcaster: Sends non-connectable advertising packets periodically to anyone willing to
receive them.

e Observer: Repeatedly scans the pre-set frequencies to receive any non-connectable
advertising packets.

Broadcasting is the only way for a device to transmit data to more than one peer at a time. The
broadcast data is sent out using the advertising features of Bluetooth low energy.

442 Connecting

For bi-directional data transmission in Bluetooth low energy a connection needs to be present. A
connection in Bluetooth low energy is nothing more than an established, periodical exchange of data
at certain specific points in time (connection events) between the two Bluetooth low energy peers
involved in it. Typically, the data are exchanged only between the two Bluetooth low energy
connection peers, and no other device is involved. Connections define two separate roles:

e Central (master): Repeatedly scans the pre-set Bluetooth low energy frequencies for
connectable advertising packets and, when suitable, initiates a connection. Once the
connection is established, the central manages the timing and initiates the periodical data
exchanges.

o Peripheral (slave): A device that sends connectable advertising packets periodically and
accepts incoming connections. Once in an active connection, the peripheral follows the
central’s timing and exchanges data regularly with it.

For a connection to be initiated, the central device picks up the connectable advertising packets from
a peripheral and then sends a request to the peripheral device to establish an exclusive connection
between the two devices. Once the connection is established, the peripheral stops advertising and
the two devices can begin exchanging data in both directions. Although the central is the device that
manages the connection establishment, data can be sent independently by either device during each
connection event, and the roles do not impose restrictions in data throughput or priority. It is therefore
possible for a device to act as a central and a peripheral at the same time, for a central device to be
connected to multiple peripherals as well as for a peripheral device to be connected to multiple
centrals.

Connections provide the ability to organize the data with much finer-grained control over each field or
property using additional protocol layers, more specifically, the Generic Attribute Profile (GATT).
GATT organizes data around units called services and characteristics. Moreover, connections allow
for higher throughput and support the establishment of a secure encrypted link, as well as negotiation
of connection parameters to fit the data model.

A Bluetooth low energy device can have multiple services and characteristics, organized in a
meaningful structure called a GATT Table. Services can contain multiple characteristics, each with
their own access rights and descriptive metadata.

45 Profiles

The Bluetooth specification clearly separates the concept of Protocol and Profile. This distinction is
made due to the different purposes each concept serves and the overall specifications are divided
into:

e Protocols: They are the building blocks used by all devices conforming to the Bluetooth
specification; protocols are essentially forming the layers that implement the different packet
formats, routing, multiplexing, encoding, and decoding that allow data to be sent effectively
between peers.

User Manual Version 6.1 19-Jan-2022

CFR0012 17 of 206 © 2022 Renesas Electronics

bon RRENESAS

DA1468x Software Platform Reference

e Profiles: which are vertical slices of functionality defining either basic modes of operation
required by all devices (such as the Generic Access Profile and the Generic Attribute Profile)
or specific use cases (Proximity Profile, Glucose Profile). Profiles essentially specify how
protocols should be used to achieve an objective, whether generic or specific.

45.1 Generic Profiles

Generic profiles are defined by the Bluetooth specification and two of them are fundamental as they
ensure the interoperability between Bluetooth low energy devices from different vendors:

e Generic Access Profile (GAP): Specifies the usage model of the lower-level radio protocols
to define roles, procedures, and modes that allow devices to broadcast data, discover
devices, establish connections, manage connections, and negotiate security levels; GAP is
essentially, the uppermost control layer of Bluetooth low energy. This profile is mandatory for
all Bluetooth low energy devices, and all must comply with it.

e Generic Attribute Profile (GATT): Addresses data exchanges in Bluetooth low energy and
specifies the basic data model and procedures to allow devices to discover, read, write, and
push data elements between them. It is basically, the topmost data layer of Bluetooth low
energy.

GAP and GATT are so fundamental to Bluetooth low energy that they are often used as the base for
the provision of application programming interfaces (APIs) that act as the entry point for the
application to interact with the protocol stack.

45.2 Use-Case-Specific Profiles

Use-case-specific profiles are usually limited to GATT-based profiles. Typically these profiles use the
procedures and operating models of the GATT profile as a base building block for all further
extensions. However, in version 4.1 of the specification, Logical Link Control and Adaptation Protocol
(L2CAP) connection-oriented channels have been introduced, which indicates that GATT-less
profiles are also possible.

45.2.1 SIG-defined GATT-based profiles

In addition to providing a solid reference framework for the control and data layers of devices
involved in a Bluetooth low energy network, the Bluetooth SIG also provides a predefined set of use-
case profiles based on GATT. These completely cover all procedures and data formats required to
implement a wide range of specific use cases such as:

e Find Me Profile: it allows devices to physically locate other devices (for example using a
smartphone to find a Bluetooth low energy enabled keyring, or vice versa).

e Proximity Profile: it detects the presence or absence of nearby devices (beep if an item is
forgotten when leaving an area like a room).

o HID over GATT Profile: it transfers Human Interface Device (HID) data over Bluetooth low
energy (for keyboards, mice, remote controls).

e Glucose Profile: it securely transfers glucose levels over Bluetooth low energy.

e Health Thermometer Profile: it transfers body temperature readings over Bluetooth low
energy.

The Bluetooth SIG’s Specification in its Adopted Documents page provides a full list of SIG-approved
profiles (for more information please visit https://www.bluetooth.com/specifications/adopted-
specifications). A developer can also browse directly the list of all currently adopted services for the
Bluetooth services and characteristics at the Bluetooth Developer Portal.

45.2.2 Vendor-Specific Profiles

Vendors are allowed by the Bluetooth specification to define their own profiles for use cases that are
not covered by the SIG-defined profiles. Those profiles can be kept private to the two peers involved
in the use case (for example, a new sensor accessory and a Smartphone application), or they can

User Manual Version 6.1 19-Jan-2022

CFR0012 18 of 206 © 2022 Renesas Electronics

https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications

bon RRENESAS

DA1468x Software Platform Reference

also be published by the vendor so that other parties can provide implementations of the profile
based on the vendor-supplied specification. An example of a published vendor-specific profile is
Apple’s iBeacon.

4.5.3 Generic Access Profile Layer

The Generic Access Profile (GAP) layer is responsible for the overall connection functionality; it
handles the device’s access modes and procedures including device discovery, directly interfacing
with the application and/or profiles, and handling device discovery and connection-related services
for the device. In addition, GAP takes care of the initiation of security features.

Essentially, GAP can be considered as Bluetooth low energy’s upper control layer, given that it
specifies how devices perform control procedures such as device discovery and secure connection
establishment. This ensures interoperability and thus allows data exchange between devices from
different vendors.

GAP specifies four roles that a device can adopt in a Bluetooth low energy network:

e Broadcaster: The device is advertising with specific data, letting any initiating devices know
for example that it is a connectable device. This advertisement contains the device address
and optional additional data such as the device name.

e Observer: When a scanning device receives an advertisement it sends a “scan request” to
the advertiser. The advertiser responds with a “scan response”. This is the process of device
discovery, after which the scanning device is aware of the presence of the advertising
device, and knows that it is possible to establish a connection with it.

e Central: when initiating a connection, the central must specify a peer device address to
connect to. If an Advertisement is received which matches the peer device’s address, the
central device will then send out a request to establish a connection (link) with the advertising
device with a set of connection parameters.

e Peripheral: once a connection is established, the device will function as a slave if it was the
advertiser and as master if it was the initiator.

Fundamentally, GAP establishes different sets of rules and concepts that regulate and standardize
the low-level operation of devices, in particular:

The Roles and interaction between them.

e The Operational modes and transitions across those devices.

e The Operational procedures to achieve consistent and interoperable communication.
e All Security aspects, including security modes and procedures.

e Additional data formats for non-protocol data.

454 Generic Attribute Profile Layer

The Generic Attribute Profile (GATT) layer is a service framework that defines all sub-procedures
for using the Attribute Protocol (ATT). It describes in detail how profile and user data is to be
exchanged over a Bluetooth low energy connection. In contrast to GAP which defines the low-level
interactions with devices, GATT deals only with actual data transfer procedures and formats.

GATT also provides the reference framework for all the GATT-based profiles defined by the SIG.
Effectively by covering the precise use cases for the profiles, it ensures interoperability between
devices from different vendors; all the standard Bluetooth low energy profiles are therefore based on
GATT and must comply with it to operate correctly. This makes GATT a key section of the Bluetooth
low energy specification, since every data collection that is relevant to applications and users must
be formatted, packed, and transmitted according to its rules.

GATT defines two roles for the interacting Bluetooth low energy devices:

e Client: It sends requests to a server, receives responses and potentially server initiated
updates and notifications as well. The GATT client does not know anything in advance about

User Manual Version 6.1 19-Jan-2022

CFR0012 19 of 206 © 2022 Renesas Electronics

bon RENESAS

DA1468x Software Platform Reference

the server’s attributes, so it must first inquire about the presence and nature of those
attributes by performing service discovery. After completing service discovery, it can start
reading and writing the attributes found in the server, as well as receiving server-initiated
updates and notifications. It corresponds to the ATT client.

e Server: It receives requests from a client and issues responses. It also sends server-initiated
updates and notifications when configured to do so. The server role is responsible for
organizing the user data in attributes and making them available to the client. Every
Bluetooth low energy device sold must include at least a basic GATT server that can respond
to client requests, even if only to return an error response. It corresponds to the ATT server.

It is worth mentioning once again that GATT and GAP roles are completely independent yet
concurrently compatible to each other. For instance, it is possible for both a GAP central and a GAP
peripheral to act as a GATT client or server, or even both at the same time.

GATT uses ATT as a transport protocol for data exchange between devices. This data is organized
hierarchically in sections called services, which group conceptually related pieces of user data called
characteristics.

4.6 Protocol Stack

A single-mode Bluetooth low energy device is from an architecture point of view similar to all
Bluetooth devices in that it is divided into three blocks: controller, host, and application. These basic
building blocks each consist of several layers which are tightly integrated in the so-called Protocol
Stack as shown in Figure 3:

{ o)

Application

GATT Profiles I GAP Role /Security Profiles

- >

(" Host)

~

[Generic Attribute Profile (GATT) K Generic Access Profile (GAP)

Attribute Protocol (ATT) Security Manager {SM)
(Logical Link Control and Adaptation Protocol
\ (L2CAP) j
- -k ---------- Host -Controller Interface (HCl) == ========~]- -
Controller
[Link Layer (LL)]
[Physical Layer (PHY)]

Figure 3: Bluetooth low energy Protocol Stack Layers
The following sections summarize each of these blocks along with the layers each one covers.

4.7 Controller

The Controller includes all the lower level functionality necessary for a Bluetooth low energy device
to communicate; it consists of the Physical Layer (PHY), the Link Layer (LL) and the controller side of
the Host Controller Interface (HCI).

User Manual Version 6.1 19-Jan-2022

CFR0012 20 of 206 © 2022 Renesas Electronics

M0 LENESAS

DA1468x Software Platform Reference

4.7.1 Physical Layer (PHY)

In the Physical Layer (PHY) the key block is the 1Mbps adaptive frequency-hopping Gaussian
Frequency-Shift Keying (GFSK) radio. This operates in the unlicensed 2.4 GHz Industrial, Scientific,
and Medical (ISM) band.

4.7.2 Link Layer (LL)

The Link Layer (LL) directly interfaces with the PHY; it is the hard real-time layer of the protocol
stack as it must comply with all the timing requirements defined in the specification. Given that many
of the calculations performed by the LL are computationally expensive, they are usually implemented
with hardware accelerators. This helps prevent overloading of the Central Processing Unit (CPU) that
runs all software layers in the stack, therefore the LL implementation is a combination of custom
hardware and software. The functionality provided by the LL usually includes Preamble, Access
Address, air protocol framing, CRC generation and verification, data whitening, random number
generation and AES encryption. It is usually kept isolated from the higher layers of the protocol stack
by an interface that hides this complexity and its real-time requirements.

The LL principally controls the Radio Frequency (RF) state of the device and manages the link state
of the radio which is how the device connects to other devices. A Bluetooth low energy device can be
a master, a slave, or both depending on the use case and the corresponding requirements. A master
can connect to multiple slaves and a slave can be connected to multiple masters. Typically, devices
such as smartphones or tablets tend to act as a master, while smaller, simpler, more memory-
constrained devices such as standalone sensors generally adopt the slave role. A device can only be
in one of the following five states: standby, advertising, scanning, initiating, or connected as
shown in Figure 4:

(i Idle R
[Stand by J
. 2N J
6evice Discovery / \ \
[Advertiser Scanner]
v
Initiator]
- 4
(Connection)
h 4 h 4
[Slave J [Master]
& /)

Figure 4: Link Layer States

Advertisers transmit data without being connected, while scanners listen for advertisers. An initiator
is a device that is responding to an advertiser with a connection request. If the advertiser accepts the
connection request, both the advertiser and initiator will enter a connected state. When a device is in
a connection state, it will be connected in one of two roles: master or slave. Typically, devices that
initiate connections will be masters and devices that advertise their availability and accept
connections will be slaves. Therefore, the Link Layer defines the following roles:

User Manual Version 6.1 19-Jan-2022

CFR0012 21 of 206 © 2022 Renesas Electronics

bon RRENESAS

DA1468x Software Platform Reference

e Advertiser: a device sending advertising packets.

e Scanner: a device scanning for advertising packets.

e Master: a device that initiates a connection (initiator) and manages it later.

e Slave: a device that accepts a connection request and follows the master’s timing.

These roles can be logically grouped into two pairs: advertiser and scanner (when not in an active
connection) and master and slave (when in a connection).

4.7.2.1 Bluetooth Device Address

The Bluetooth device address is the primary identifier of a Bluetooth device. This is just the same as
an Ethernet Media Access Control (MAC) address which uniquely identifies a wired ethernet device.
It is a 48-bit (6-byte) number that uniquely identifies a device among peers. There are two types of
device addresses, and it is possible for a device to obtain one or both types:

e Public device address

This is the equivalent to a fixed, factory-programmed device address as used in BR/EDR devices as
well. It must be registered with the Institute of Electrical and Electronics Engineers (IEEE)
Registration Authority and should never change throughout the device’s lifetime.

¢ Random device address

This address can either be pre-programmed or dynamically generated at runtime on the device.
There are numerous use cases in which such addresses are useful in Bluetooth low energy.

4.7.2.2 Advertising and Scanning

The Bluetooth low energy specification allows only one packet format and two types of packets,
advertising and data.

Advertising packets are used for two purposes:

e To broadcast data for applications that do not need the overhead of a full connection
establishment. This is used in Beacon applications.

e To discover slaves and connect with them so that data can be exchanged.

Data packets are used for user data transport between the master and the slave devices, in a bi-
directional manner.

Finally, the Link Layer acts as a reliable data bearer since all received packets are checked against a
24-bit Cyclic Redundancy Check (CRC) and retransmissions are scheduled when the error checking

mechanism detects a transmission failure. Since there is no pre-defined retransmission upper bound,
the Link Layer will continuously resend the packet until it is finally acknowledged by the receiver.

47.3 Host Controller Interface — Controller side

The Host Controller Interface (HCI) interface at the Controller side, provides a mean of
communication to the host via a standardized interface; the Bluetooth specification defines HCI as a
set of commands and events for the host and the controller to interact with each other, along with a
data packet format and a set of rules for flow control and other procedures. Additionally, the spec
defines several transports, each of which augments the HCI protocol for a specific physical transport
(UART, USB, SDIO, etc.).

4.8 Host

The Host block consists of a set of layers, each with specific role and functionality, which
communicate with each other to make the overall block operate. As shown in Figure 3 these layers
are the Logical Link Control and Adaptation Protocol (L2CAP), the Attribute Protocol (ATT), the
Security Manager (SM) and finally the Generic Attribute Profile (GATT) and Generic Access Profile
(GAP).

User Manual Version 6.1 19-Jan-2022

CFR0012 22 of 206 © 2022 Renesas Electronics

bon RRENESAS

DA1468x Software Platform Reference

48.1 Host Controller Interface — Host Side

The HCI interface at the Host side provides a mean of communication to the controller via a
standardized interface. As it matches the Controller Side HCI, this layer can be implemented either
through a software API or over a hardware interface (UART, SDIO, USB etc).

482 Logical Link Control and Adaptation Protocol

The Logical Link Control and Adaptation Protocol (L2CAP) layer provides data encapsulation
services to the upper layers, thus allowing logical end-to-end communication using data transfer.
Essentially, it serves as a protocol multiplexer that takes multiple protocols from the upper layers and
encapsulates them into the standard Bluetooth low energy packet format and vice versa. L2CAP is
also responsible for package fragmentation and reassembly. During this process large packets
originating from the upper layers of the transmitting side are fitted into the 27-byte maximum payload
size of the Bluetooth low energy packets. The reverse process takes place at the receiving end,
where the fragmented large upper layer packets are reassembled from multiple small Bluetooth low
energy packets and transmitted up towards the appropriate upper level entity.

The L2CAP layer is in charge of routing two main protocols: the Attribute Protocol (ATT) and the
Security Manager Protocol (SMP). Moreover, L2CAP can create its own user-defined channels for
high-throughput data transfer, a feature called LE Credit Based Flow Control Mode.

4.8.3 Attribute Protocol

The ATT layer enables a Bluetooth low energy device to provide certain pieces of data, known as
attributes, to another Bluetooth low energy device via a standardized interface. In the context of
ATT, the device exposing attributes is referred to as the server and the peer device interested in
working with these attributes is referred to as the client. The Link Layer state (master or slave) of
the device is independent from the ATT role of the device. For example, a master device may either
be an ATT server or an ATT client, while a slave device may also be either an ATT server or an ATT
client. It is also possible for a device to be both an ATT server and an ATT client simultaneously.

Essentially ATT is a simple client/server stateless protocol based on the attributes presented by a
device. A client requests data from a server, and a server sends data to clients. The protocol is strict
which means that in case of a pending request (i.e. no response has yet been received for a
previously issued request), no further requests can be submitted until the response to the first
request is received and processed. This applies to both directions independently in the case where
two peers are acting both as a client and server.

Each ATT server contains data organized in the form of attributes, each of which is assigned a 16-bit
attribute handle, called a Universally Unique Identifier (UUID), a set of permissions, and finally a
value. Effectively, the attribute handle is an identifier used to access an attribute value. The UUID
specifies the type and nature of the data contained in the value. When a client wants to read or write
attribute values from or to a server, it issues a read or write request to the server using the attribute
handle. The server will respond with the attribute value or an acknowledgement. In the case of a read
operation, it is up to the client to parse the value and understand the data type based on the UUID of
the attribute. On the other hand, during a write operation, the client is expected to provide data that is
consistent with the attribute type and the server is free to reject the write operation if the data is not in
the specified format.

4.8.4 Security Manager

The Security Manager (SM) layer defines the method for pairing and key distribution and provides
functions for the other layers of the protocol stack to securely connect and exchange data with
another Bluetooth low energy device. It includes both a protocol and a series of security algorithms
that are designed to provide the Bluetooth low energy protocol stack with the ability to generate and
exchange security keys. This allows the peers to communicate securely over an encrypted link, to
trust the identity of the remote device, and if required, to hide the public Bluetooth Address. It defines
two roles:

User Manual Version 6.1 19-Jan-2022

CFR0012 23 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

e Initiator: which always corresponds to the Link Layer master
e Responder: which always corresponds to the Link Layer slave

Moreover, it provides support for the following three procedures:

e Pairing: the procedure by which a security encryption key is generated and manipulated
to enable a secure encrypted link. This key is temporary and not stored or available for
subsequent connections.

e Bonding: a sequence of pairing followed by the generation and exchange of permanent
security keys. These are typically stored in non-volatile memory and therefore enable the
creation of a permanent bond between two devices, which will allow them to quickly set
up a secure link in subsequent connections without having to perform a bonding
procedure again.

e Encryption Reestablishment: after a bonding procedure is complete, keys might have
been stored on both sides of the connection. If encryption keys have been stored, this
procedure defines how to use those keys in subsequent connections to re-establish a
secure, encrypted connection without having to go through the pairing (or bonding)
procedure again.

Pairing can therefore create a secure link that will only last for the lifetime of the connection. Bonding
will create a permanent association (also called bond) in the form of shared security keys that will be
used in later connections until either side decides to delete them. Sometimes documentation and
APIs use the term pairing with bonding instead of simply bonding, since a bonding procedure
always includes an initial pairing phase.

Although it is always up to the initiator to request the start of a specific security procedure, the
responder can asynchronously request the start of any of the procedures listed above. There are no
guarantees however for the responder that the initiator will fulfil the request. Therefore, the request is
optional rather than binding. This security request can logically be issued only by the slave or the
peripheral end of the connection.

User Manual Version 6.1 19-Jan-2022

CFR0012 24 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

5 The DA1468x Software Platform Overview

SmartSnippets™ is Dialog’s Software Development Platform provided with the Smartbond ™
DA1468x devices family. It can be considered as a complete platform, targeted at single-CPU
Bluetooth low energy applications development.

The SmartSnippets™ Studio software development platform provides a complete Bluetooth low
energy Application development environment to enable the full potential of the DA1468x architecture.
It is based on a GNU Compiler Collection (GCC)/ Debugger (GDB) toolchain, a preconfigured Eclipse
CDT IDE and a set of utilities.

The SDK provides a Bluetooth stack, a Board Support Package and Middleware Services which all
run within an RTOS environment which ensures that all real-time requirements are met.

Board Support Package Applications
[T - p
l. —'.)_E— | | | |
8 \ SP) Powee Security Audio SW Upgrade
0 ' 6RO Manager Toolbax Manages (Serial, OTA) BLE Manager
0 | Fmr;?PWM) | \
O ppe—— 3 : _—
NIETR NVS Middleware Services & Toolboxes BLE Framework
ofjo —=H__ < - — SDK
alls] | ADL (Cryptagraphy Audio <ariol
D [White LED Adapier Adapter Adaptes
i | Temp Sensor Sy =
A | Concemame) [Mbowmesl ())) [=
(Twiad Decoder | | PMU Cantrol S é ‘ o " - <
[Keyboaed jie ~ =
IEIB |2]IB]|E g |3
(_ Sys Clock Mgmt i ‘ ’ 2
= DMA &I

Figure 5: SmartSnippets™ Bluetooth low energy development platform overview

DA1468x also provides a System Management driver that optimizes Power Consumption by
automatically putting the system in the lowest sleep mode whenever it is inactive. The application
can alter the default behavior by defining which sleep mode to use when there is no activity or even
specify that the system stays awake.

The SmartSnippets™ DA1468x SDK contains three main software packages that allow developers to
easily implement complex applications and fully exploit the hardware capabilities of a DA1468x board
(or Development Kit):

e Board Support Package: Platform-specific source files for Peripherals Drivers, OS, system
configuration/management and memory management.

e Bluetooth low energy Framework: a Framework of tasks and queues that allow access to the
BLE interface through a simple, comprehensible API.

e Middleware Services & Toolboxes: Features frequently needed services for Bluetooth low
energy based application like Monitor and Control Interface (MCIF) and Software Upgrade over
the Air (SUOTA).

User Manual Version 6.1 19-Jan-2022

CFR0012 25 of 206 © 2022 Renesas Electronics

M0 LENESAS

DA1468x Software Platform Reference

5.1 Board Support Package Overview

51.1 Low-level Drivers

Board Support Package (BSP) contains Low-level Drivers (LLDs) for all peripherals, interfaces,
timers and HW accelerators. These are Hardware Libraries providing the lowest level API to drive a
HW resource. LLDs are not Thread safe and do not rely on any OS.

51.2 RTOS

The SmartSnippets™ DA1468x SDK is based on a real-time preemptive Operating System named
FreeRTOS (www.freertos.org). FreeRTOS is a light-weight open source OS, widely used by many
embedded systems across different microcontroller architectures.

Note 2 An OS Abstraction Layer (OSAL) is provided so another RTOS could be used instead.

5.1.3 System Manager
The System Manager is responsible for providing the following services:

e A Clock and Power Management Service. It implements an automated configurable sleep/wake-
up engine.

e A Watchdog Service that monitors the system’s status by checking the state of all registered
tasks.

e A Real-Time Clock service that can be used from any execution context including Interrupt
context.

514 Adapters

As the SmartSnippets™ DA1468x SDK relies on a multi-tasking environment, resource sharing is
critical and is achieved by following a multi-layered architecture which introduces the concept of
adapters which manage the access to resources between different tasks.

An application task that accesses shared resources such as cryptographic engines must use
adapters and must not directly call Low-level drivers. Adapters also handle power management
operations related to the controlled resource, hiding power management details from the application,
such as blocking system sleep when the controlled HW resource is busy, or restoring HW
configuration upon system wake up.

515 The BLE Framework

The BLE framework provides an abstraction layer that simplifies application development by hiding
low level details of the specification. It allows performing any of the standard Central and/or
Peripheral operations including security.

5.2 Middleware Services

A set of Middleware Services allow faster development by providing a high level API for the user
application into a management framework that handles the state machines and driver calls for a
specific service.

521 SUOTA

The Bluetooth low energy platform allows the user to update the software of the device wirelessly.
This process is called Software Upgrade Over The Air (SUOTA). For more information about SUOTA
refer to chapter 9 of Software Developers Guide [3].

User Manual Version 6.1 19-Jan-2022

CFR0012 26 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

5.2.2 Security Toolbox

The Security Toolbox provides a collection of high-level cryptographic algorithms. It follows a layered
software architecture approach that consists of the LLDs for the hardware cryptographic engines, the
system services and adapters that provide higher level APIs for using the engines and the algorithm
implementations. For more information refer to section 8.

6 Using the Operating System

6.1 FreeRTOS

The SmartSnippets™ DA1468x SDK contains the FreeRTOS v8.2.0 kernel, updated with a few
back-ported bug fixes from v8.2.1 and v8.2.3. The FreeRTOS API documentation is available online
at http://www.freertos.org/modules.html#API_reference.

The SmartSnippets™ DA1468x SDK contains several FreeRTOS-based example applications. The
corresponding Eclipse projects use (as a convention) the folder
<sdk root directory>/sdk/bsp/free rtos/ to include the FreeRTOS kernel source files.

6.1.1 FreeRTOS Source Files
The FreeRTOS kernel source files are in the following directory tree:
<sdk root directory>/sdk/bsp/free rtos/
I: include
portable
GCC

L— arM MO
MemMang

The kernel source files are in <sdk root directory>/sdk/bsp/free rtos/:

Table 1: Kernel source files for FreeRTOS

Source Files Description

croutine.c Not used in the SmartSnippets™ DA1468x SDK
event_groups.c Implementation of the Event Groups API

list.c List data structure implementation, used internally by FreeRTOS
queue.c Implementation of the Queue and QueueSet API

tasks.c Implementation of the Tasks API

timers.c Implementation of the Timers API

The FreeRTOS header files are in <sdk root directory>/sdk/bsp/free rtos/include/:

User Manual Version 6.1 19-Jan-2022

CFR0012 27 of 206 © 2022 Renesas Electronics

http://www.freertos.org/modules.html#API_reference

LENESAS

UM-B-044

DA1468x Software Platform Reference

Table 2: Header files for FreeRTOS

Header files Description

FreeRTOS.h Must be always included first.
FreeRTOSConfig.h Configuration options, included by FreeRTOS.h.
StackMacros.h FreeRTOS internal.

croutine.h Not used in the SmartSnippets™ DA1468x SDK.
deprecated_definitions.h FreeRTOS legacy definitions.

event_groups.h Event Groups API.

list.h FreeRTOS internal.

mpu_wrappers.h FreeRTOS internal.

portable.h API that is platform-dependent.

projdefs.h FreeRTOS basic constants and macros.
queue.h Queue and QueueSet API.

semphr.h Semaphore API.

task.h Tasks API.

timers.h Timers API.

Some FreeRTOS code is specific for the compiler and the platform processor. The corresponding
files are located under <sdk root directory>/sdk/bsp/free rtos/portable/:

— ccc

| L— ArRM cMO
| — port.c (DA1468x-specific customizations for timers and interrupts)
| L— portmacro.h (DA1468x-specific customizations for constants and sections)
L MemMang
L— heap 4.c (heap memory manager)

The FreeRTOS kernel provides different heap memory algorithms (see
http://www.freertos.org/a00111.html for descriptions). The SmartSnippets™ DA1468x SDK employs
the heap 4 algorithm, which consolidates adjacent free blocks to avoid fragmentation. The memory
area allocated for the heap is assumed to be contiguous (i.e. there are no “holes”).

User Manual Version 6.1 19-Jan-2022

CFR0012 28 of 206 © 2022 Renesas Electronics

http://www.freertos.org/a00111.html

RENESAS

UM-B-044

DA1468x Software Platform Reference

Note 3 The SmartSnippets™ DA1468x SDK has only been tested with heap 4 algorithm.

6.1.2 FreeRTOS Configuration

Several FreeRTOS configuration options (see http://www.freertos.org/a00110.html for description) for
SmartSnippets™ SDK are specified in

<sdk root directory>/sdk/bsp/free rtos/include/FreeRTOSConfig.h using macro definitions
which are described below. For the rest of the configuration options, the defaults are used.

Table 3: Macro Definitions for the FreeRTOSConfig.h

Name Default Definitions Default Value

configUSE PREEMPTION Use the preemptive scheduler. 1

configUSE IDLE HOOK Do not use an idle hook (callback). 0

configUSE_TICK HOOK Do not use a system-tick hook (callback). | 0

configIDLE SHOULD_YIELD The idle task immediately yields if there 1

are any tasks that can be scheduled.

confiqUSE_MUTEXES The mMutex functionality is enabled. 1

configCHECK FOR STACK OVERFLOW The extended stack overflow detection is 2

enabled.

confiqUSE RECURSIVE MUTEXES The recursive mutex functionality is 1
enabled.

configUSE_MALLOC_FAILED HOOK Trigger hook (callback) on memory 1

allocation failure.

configUSE_COUNTING SEMAPHORES The counting semaphore functionality is 1
enabled.

configGENERATE RUN TIME STATS No run-time statistics are generated. 0

configUSE QUEUE SETS The QueueSet functionality is enabled. 1

configUSE_TICKLESS IDLE The periodic tick interrupt is disabled 2

during idle intervals, to save energy.

The hardware timer “Timer1” is dedicated to FreeRTOS and runs as the system timer. Due to the
width of the Timerl period and the available pre-scaling options, the maximum time that a DA1468x-
based system can stay in sleep mode is 8 seconds.

Finally, the macro config ASSERT () is defined in:

User Manual Version 6.1 19-Jan-2022

CFR0012 29 of 206 © 2022 Renesas Electronics

http://www.freertos.org/a00110.html

bon RENESAS

DA1468x Software Platform Reference

<sdk root directory>/sdk/bsp/free rtos/include/FreeRTOSConfig.h as

/* Normal assert() semantics without relying on the provision of an assert.h header file.
*/

#if (dg_configIMAGE_SETUP == DEVELOPMENT_MODE)

define configASSERT(x) if((x) == @) { taskDISABLE_INTERRUPTS();
hw_watchdog_freeze(); do {} while(1); }

ttelse
define configASSERT(x) do { } while (©)
#endif

Code 1: Code defining the config ASSERT () macro

Therefore, in development builds it generates a breakpoint, while in production builds it has no effect.

6.1.3 Platform-specific Definitions

As mentioned in Section 6.1.1 the portmacro.h file in
<sdk root directory>/sdk/bsp/free rtos/portable/GCC/ARM CMO/ path customizes certain
definitions (attributes) for DA1468x.

FreeRTOS uses the concept of “privileged” code and data which is meaningless for DA1468x as an
ARM Cortex-MO does not provide different execution levels (e.g. supervisor and user).

Therefore, on DA1468x the concept of privileged code/data is redefined to denote code/data
that should be placed in retained RAM (i.e. RAM areas that stay active even during sleep
periods).

The relevant definitions are:

/* Code and Data Retention specific constants. */

#if ((dg_configCODE_LOCATION == NON_VOLATILE_IS FLASH) && (dg_configEXEC_MODE ==
MODE_IS_CACHED))

#define PRIVILEGED_APP_FUNCTION __attribute__((section("text_retained")))
#telse

#define PRIVILEGED_APP_FUNCTION

#tendif

// RetRAM@

#tdefine PRIVILEGED_DATA
__attribute__((section("privileged data_zi")))
#tdefine INITIALISED_PRIVILEGED_DATA
__attribute__((section("privileged data_init")))

// RetRAM1
#define PRIVILEGED_DATA 1
__attribute__((section("privileged_data_1_zi")))

Code 2: Code and Data Retention specific constants

Symbols (i.e. functions and variables) that are defined with one of the above attributes will be placed
in special sections by the linker and will be moved in their appropriate RAM locations at run-time.

6.1.4 FreeRTOS Task Priorities

Note 4 Please do not modify priorities or corresponding settings, as there is a high risk of affecting
the stability of time-critical parts of your application.

User Manual Version 6.1 19-Jan-2022

CFR0012 30 of 206 © 2022 Renesas Electronics

bon RRENESAS

DA1468x Software Platform Reference

The priority (FreeRTOS: uxPriority) parameter of the 0OS TASK CREATE (FreeRTOS:
xTaskCreate ()) API function initially assigns a priority to every newly created task. It is possible to
change this priority later, after the scheduler has been started, with the use of the
vTaskPrioritySet () API function.

The priority that a task can be assigned to is in the range of 0 to (configMAX PRICRITIES — 1). The
configMAX PRIORITIES constant is defined in the FreeRTOSconfig.h file which is in the

<sdk root directory>/sdk/FreeRT0S/include folder of the project. For example, Code 3 shows
the currently configured value for configMAX PRIORITIES for the pxp_reporter demo application.

#define configMAX_PRIORITIES (7)

Code 3: currently configured value for the configMAX_ PRIORITIES

The only restriction in the maximum value that configMAX PRIORITIES constant can take is when the
port in use implements a port optimized task selection mechanism that uses a 'count leading zeros'
type instruction (for task selection in a single instruction) and

configUSE PORT OPTIMISED TASK SELECTION is setto 1 in FreeRTOSconfig.hfile. In this case
configMAX PRIORITIES cannot be higher than 32. Otherwise there is no restriction in the maximum
value that this constant can take but is advisable to set its value to minimum necessary for RAM
efficiency reasons.

The lowest priority that a task can have is zero. The priority of the idle task, which is defined by the
tskIDLE PRIORITY constant, is zero. In SmartSnippets™ DA1468x SDK the priority of the idle task
is defined in task.h file located in the <sdk root directory>/sdk/FreeRTOS/include folder as
shown in Code 4. A priority assigned to a task is not unique and can be shared among many tasks.

JEE:

* Defines the priority used by the idle task. This must not be modified.
*

* \ingroup TaskUtils
*/
#tdefine tskIDLE_PRIORITY ((UBaseType_t) oU)

Code 4: Idle task’s priority

As described in the FreeRTOS documentation (http://www.freertos.org/) the states in which a task
can exist are:

Running
Ready
Blocked
Suspended

The task that is in the Running state, is the task with the highest priority among the tasks that are
placed in the Ready state. The FreeRTOS scheduler ensures that tasks in the Ready or Running
state will get CPU time in comparison with tasks that are also placed in the Ready state but have
lower priorities.

Tasks that are in the Ready state and share the same priority will be sharing the available processing
time, using a time sliced round robin schedule, unless configUSE TIME SLICINGis defined or
configUSE TIME SLICINGis setto 0.

Code 5 below shows the task priorities as defined in the osal .h file which is in the folder
<sdk root directory>/sdk/bsp/osal. Table 6 provides information about the wrappers of the
Operating System Abstraction Layer.

User Manual Version 6.1 19-Jan-2022

CFR0012 31 of 206 © 2022 Renesas Electronics

http://www.freertos.org/

bon RENESAS

DA1468x Software Platform Reference

#tdefine OS_TASK_PRIORITY_LOWEST tskIDLE_PRIORITY
#define OS_TASK_PRIORITY_NORMAL tskIDLE_PRIORITY + 1
#define OS_TASK_PRIORITY_HIGHEST configMAX_PRIORITIES - 1

Code 5: Task priorities

Table 4 below shows the tasks of the pxp reporter demo application, starting with the lowest priority
task. The same information is illustrated in a different way in Figure 6.

Table 4: pxp_reporter tasks

Task Priority File Description
prvIdleTask tSkIDLE_PRIORITY taSkS.C The |d|e task.
rcx calibration task tskIDLE PRIORITY

sys_clock_mgr.c The RCX
calibration task.

pxp reporter task mainPXP REPORTER TASK PRIORITY main.c The PXP
(OS_TASK PRIORITY NORMAL) reporter
application
task.
ble mgr task mainBLE MGR PRIORITY ble_mgr.c The ble
(OS_TASK_PRIORITY HIGHEST - 4) manager task.
ad ble task mainBLE TASK PRIORITY ad_ble.c The ble

(OS_TASK PRIORITY HIGHEST - 3) adapter task

usb charger task OS_TASK PRIORITY HIGHEST - 2 sys_charger.c The USB
Charger task.

usb charger fsm task OS TASK PRIORITY HIGHEST - 2 sys_charger.c The USB
Charger FSM
task.

prvTimerTask configTIMER TASK PRIORITY timers.c The timer task

(configMAX PRIORITIES - 1)

system init OS TASK PRIORITY HIGHEST main.c The System
Initialization
task.

User Manual Version 6.1 19-Jan-2022

CFR0012 32 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

FreeRTOS task priorities

0 IDLE
_{ Application
i i [BLE API .
CMD EVENT
L 4
. » BLE Manager
CMD EVENT
s i] ol BLE Adapter
- E
5 »/ USB Charger I ‘
¥ -1 APls
6 BREETES oY Timer Task
7 ’ Sys_init —
2 ’ BLE stack ‘ ROM

Figure 6: Pxp_reporter task priorities

6.1.5 Delaying the execution of a FreeRTOS Task

The following two functions can be used to delay a FreeRTOS task. They are intended for different
lengths of delays:

® hw cpm delay usec() can be used to add a delay of a specific number of microseconds in the
code execution by executing a loop in assembly code. The function is as accurate as possible
(the error is less than or equal to 1usec for clocks higher than or equal to 16MHz) and it will never
generate a delay less than requested. It operates correctly with all possible clock setups. As long
as the delay is of a few microseconds it is possible to call this function with the interrupts disabled
as it will not impact the real time behavior of any other tasks. It does not call the RTOS scheduler
as it just creates the delay in the current task.

e 0S DEIAY MS() can be used to add a delay in the range of milliseconds in the execution of a task.
It will block the task and so the RTOS can schedule other lower priority tasks in the delay period.
The delay time requested is converted to system ticks, so its accuracy depends on the tick period
which is by default ~2msec. So, a call like 0S DELAY MS (5) would be rounded down to a 2 tick
delay which is ~4ms, leading to an error of ~1msec. The bigger the delay setting, the less
important is the "tick error" to the actual delay. In addition, this function will block a task for a
specific number of OS ticks. Even though it will be unblocked on time, this does not guarantee
that it will be executed immediately as this depends on its priority. If a higher priority task is
running then the task will be left in the "ready-to-run" state, waiting for the OS scheduler to allow
it to run. Finally, since calling this function results in the blocking of the running task, it does not
make any sense to call it with the interrupts disabled. Operating System Abstraction Layer

6.1.6 Scope
The SmartSnippets™ DA1468X SDK offers an Operating System Abstraction Layer (OSAL), which:

User Manual Version 6.1 19-Jan-2022

CFR0012 33 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

1. Facilitates porting to an RTOS other than FreeRTOS, by providing RTOS-agnostic wrappers
around FreeRTOS Application Programming Interface (API).

2. Provides resource management (i.e. exclusive access) capabilities.
3. Provides a message-queue data structure.

The OSAL source files are located under <sdk root directory>/sdk/bsp/osal/:

Table 5: Source files for OSAL

Source files Description

msg_queues.c Message queues implementation.

msg_queues.h Message queues API.

osal.h RTOS-agnostic APl wrappers.
resmgmt.c Resource management implementation.
resmgmt.h Resource management API.

6.1.7 RTOS-agnostic API

OSAL provides wrappers of the FreeRTOS API for the following RTOS primitives, presented in Table
6.

Table 6: OSAL wrappers of the FreeRTOS API

Description API
Tasks/Threads 0S_TASK *
Mutexes 0s_MUTEX *
Events/Notifications 0S_EVENT *
Thread-safe queues 0s_QUEUE_*
Memory allocation 0S_MALLOC *
Memory de-allocation 0S_FREE_*
Timers 0S_TIMER *

Note 5 The OSAL API does not yet completely cover the FreeRTOS API being used in the SmartSnippets™

DA1468x SDK.

6.1.8

The OSAL resource management API is:

Resource Management API

Table 7: OSAL resource management API

Function

Description

resource init()

Initialize resource management structures.

resource acquire (mask, timeout)

Attempt to acquire exclusive access to a set of resources.

User Manual

Version 6.1

19-Jan-2022

CFR0012

34 of 206

© 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

Function Description
resource_release (mask) Release exclusive access to a set of resources.
resource_add () Add new resources at run-time (compile-time configurable).

The OSAL resource management capability is used by the adapters to provide exclusive access from
hardware resources. The low-level drivers layer are bare-metal drivers, so they do not have the
notions of resource locking, synchronization etc. The adapter layer is RTOS-aware, and can provide
such capabilities.

6.1.9 Message Queues API

OSAL message queues can be used to exchange messages between tasks. Although they build on
top of the queue primitive, they add the capability to define the message allocation/de-allocation
functions per message queue or even per message.

The available APlIs are:

Table 8: OSAL message queues functions

Functions

msg_queue create(queue, size, allocator)

msg_queue delete (queue)

msg queue put (queue, msg, timeout)

msg_queue get (queue, msg, timeout)

msg_init (msg, id, type, buf, size, free cb)

msg_release (msg)

msg _queue init msg(queue, msg, id, type, size)

msg queue send(queue, id, type, buf, size, timeout)

msq_queue send zero copy(queue, id, type, buf, size, timeout, free cb)

The exact prototypes of these functions with types of arguments and returned values can be found in
the source code or in Doxygen.

Usage of message queues is demonstrated in the peripherals demo/uart demo.

User Manual Version 6.1 19-Jan-2022

CFR0012 35 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

7 The BLE Framework

Figure 7 depicts the general architectural scheme used.

Applié:afion
| Application task

R BLE Service framework
Dialog BLE API library
4

| BlEmanagertask
................. ‘r?
Event Queuve
GTL messages [m @

BLE adapter

Figure 7: BLE framework architecture

Using a top-down approach, the layers that build-up the BLE framework functionality can be
identified as the following:

1. The BLE service framework which is a library that provides implemented BLE services that the
application can use “out-of-the-box”, using simple initialization functions and defining callbacks
for the various BLE service events (like the change of an alert level attribute). The functionality of
the BLE service framework is built on top of the Dialog BLE API library. The BLE service API
header files can be found under
<sdk root directory>/sdk/interfaces/ble services/include.

The BLE service framework is called in the context of the Application.

2. The Dialog BLE APl is a set of functions that can be used to initiate BLE operations or respond to
BLE events. The API header files can be found under the path
<sdk root directory>/sdk/interfaces/ble/include. The API functions constitute a library
that can be used to send messages (commands or replies to events) to the BLE manager, using
gueues between the application task and the BLE manager task which makes the application
thread-safe. The BLE API is called in the context of the Application.

3. The BLE manager provides the interface to the BLE functionality of the chip. Application tasks
that are based on BLE functionality use the Dialog BLE API to interface with the BLE manager.
The BLE manager is a task that stands between the application and the BLE adapter. It uses the
BLE adapter to interface with the BLE stack. The BLE manager uses a Generic Transport Layer
(GTL) to communicate with the BLE adapter through a command and event queue.

The BLE Manager runs in its own task.

User Manual Version 6.1 19-Jan-2022

CFR0012 36 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

4. The BLE adapter is the system task that provides the interface to the BLE stack which is in the
ROM code. It runs the BLE stack internal scheduler, handles the BLE interrupts, receives the
commands or the replies to events from the BLE manager, and passes BLE events to the BLE
manager. BLE core functionality is implemented by the BLE adapter task.

5. The BLE stack is the software stack that interfaces with the BLE IP and implements the Link
Layer and the host stack, specifically the Logical Link Control and Adaptation Protocol (L2CAP),
the Security Manager Protocol (SMP), the Attribute Protocol (ATT), the Generic Attribute Profile
(GATT) and the Generic Access Profile (GAP). The BLE stack software is stored in the system’s
ROM and its API header files can be found under
<sdk root directory>/sdk/interfaces/ble/src/stack

The BLE stack default configuration can be modified by editing

<sdk root directory>/sdk/interfaces/ble/src/stack/config/ble stack config.h
although it is recommended to do this via project specific configuration files as described in
Section 13.1. The BLE stack software is run in the context of the BLE adapter task which
instantiates and initializes the BLE stack.

7.1 Developing BLE Applications

One of the main goals of the SmartSnippets™ DA1468x SDK is to simplify the development of
Bluetooth low energy applications and achieve a fast time to market. The SmartSnippets™ DA1468x
SDK separates the application logic from the BLE stack implementation and provide a clean and
powerful API to interact with the Bluetooth low energy capabilities of the device. The BLE framework
API gives easy access to configure the BLE manager, start air operations and set up an attribute
database inside a GATT server. The BLE service API provides access to predefined Bluetooth SIG
profiles with the definition of only a few call-back functions.

The Proximity Reporter (pxp reporter) application described in Software Developer’s Guide [3] is
the most typical of the BLE applications that are included in the SmartSnippets™ DA1468x SDK. It is
a complete and solid example of a BLE application developed on top of the SmartSnippets™
DA1468x SDK. It uses both the Dialog BLE API and the BLE service framework to implement the
functionality of a Bluetooth low energy profile.

However, it may not be the simplest example or the best starting point to become familiar with the
development of a Bluetooth low energy application from scratch. Instead, there are Bluetooth low
energy projects specifically created to serve as starting points for specific Bluetooth low energy
applications such as beacons (ble adv demo) or for specific roles such as a generic peripheral
(ble peripheral) or central (ble central) device .

This section aims to introduce the various options and examples that exist in the SmartSnippets™
DA1468x SDK which can be used as building blocks for many applications. After a short introduction
on where the API header files can be found, each section describes the functionality they implement
along with guidance on how they differ from each other. This information is essential when starting a
Bluetooth low energy application from scratch.

7.2 The BLE API header files

All demos and services API are found in the doxygen documentation. This can be found either at
<sdk root directory>/docs/html/index.html or via the Open APl Documentation button on the
welcome page of SmartSnippets™ Studio.

7.2.1 Dialog BLE API
The Dialog BLE API header files are in <sdk root directory>/sdk/interfaces/ble/include.

In most projects these API header files are symbolically linked to
<sdk root directory>/sdk/ble/include.

The API functions are declared across several header files depending on their functionality:
User Manual Version 6.1 19-Jan-2022

CFR0012 37 of 206 © 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

e Common API (ble common.h): Functions used for operations, not specific to a specific BLE host

software component. For example:

Table 9: API Functions of the common BLE host software component

Function

Description

ble register app()

Register the application to the BLE framework so that it can receive
BLE event notifications.

ble enable ()

Enable the BLE framework.

ble reset()

Reset the BLE framework.

ble central start()

Start the device as a BLE central. This is actually a helper function,
since it uses API calls ble_enable() and ble_gap_role_set().

ble peripheral start()

Start the device as a BLE peripheral. This is also a helper function
that uses ble_enable() and ble_gap_role_set().

ble get event()

Get a BLE event from the BLE manager’s event queue.

ble has event ()

Check if there is an event pending at the BLE manager’s event
queue.

ble handle event default()

Used to define handling of events that are not handled by the added
services or the application defined handlers.

® GAP & L2CAP APIs (ble_gap.h/ble_l|2cap.h): Covers a wide range of operations, like
o Device parameters configuration: device role, MTU size, device hame exposed in the GAP

service attribute, etc.

o Air operations: Advertise, scan, connect, respond to connection requests, initiate or respond

to connection parameters update, etc.

o Security operations: Initiate and respond to a pairing or bonding procedure, set the security

level, unpair, etc.

Table 10: GAP and L2CAP API functions

Function

Description

BLE device configuration

ble gap role set()

Set the GAP role.

ble gap mtu size get()

Get the MTU size currently set.

ble gap mtu size set()

Set the MTU size.

ble gap channel map get ()

Get the currently set channel map of
the device (the device must be
configured as central).

ble gap channel map set()

Set the channel map of the device
(device must be configured as central).

ble gap address get()

Get the currently set BD address of the
device.

ble gap address set ()

Set the BD address of the device.

User Manual Version 6.1

19-Jan-2022

CFR0012 38 of 206

© 2022 Renesas Electronics

UM-B-044

DA1468x Software Platform Reference

LENESAS

Function

Description

ble gap device name get ()

Get the device name used for the GAP
service.

ble gap device name set ()

Set the device name used for the GAP
service.

ble gap appearance get ()

Get the appearance used for the GAP
service.

ble gap appearance set ()

Set the appearance used for the GAP
service.

ble gap per pref conn params get ()

Get the peripheral preferred
connection parameters used for the
GAP service.

ble gap per pref conn params set ()

Set the peripheral preferred
connection parameters used for the
GAP service.

ble gap set io cap()

Set the 1/0 capabilities of the device
(combined with the peer’s I/O
capabilities, this will determine which
pairing algorithm will be used).

ble gap data length set()

Set the data length to be used for TX
on new connections.

Advertising
ble gap adv start() -
—Jap_adv_ Start advertising.
ble gap adv stop() -
—Jap_acv_stop Stop advertising.
ble gap adv data set() .
—Jap_adv_ - Set the Advertising Data and Scan
Response Data used.
ble gap adv intv set() L .
- - = - Set the advertising intervals prior to
advertising start.
ble gap adv chnl map set () . .
ISV —TeR Set the advertising channel map prior
to advertising start.
ble gap adv mode set() . -
- - = - Set the discoverability mode used for
advertising prior to advertising start.
ble gap adv direct address set() .
—Jap_adv_ - - Set the peer address used for directed
advertising prior to advertising start.
Scanning
ble gap scan start() . .
P - Start scanning for devices.
ble gap scan stop() . .
- = - Stop scanning for devices.
User Manual Version 6.1 19-Jan-2022

CFR0012 39 of 206

© 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

Function

Description

Connection management

ble gap scan params get ()

Get the scan parameters used for
connections.

ble gap scan params set ()

Set the scan parameters used for
connections.

ble gap connect ()

Initiate a direct connection to a device.

ble gap connect ce()

Initiate a direct connection with an
app-defined minimum and maximum
connection event length

ble gap connect cancel ()

Cancel an initiated connection
procedure.

ble gap disconnect ()

Initiate a disconnection procedure on
an established link.

ble gap conn rssi get()

Retrieve the RSSI of a connection.

ble gap conn param update ()

Initiate a connection parameter
update.

ble gap conn param update reply ()

Reply to a connection parameter
update request.

ble gap data length set()

Set the data length used for TX for a
specified connection.

Security

ble gap pair()

Start pairing.

ble gap pair reply()

Respond to a pairing request.

ble gap passkey reply()

Respond to a passkey request.

ble gap numeric reply()

Respond to a numeric comparison
request (Secure Connections only).

ble gap get sec level()

Get connection security level.

ble gap set sec level()

Set connection security level.

ble gap unpair()

Unpair device (will also remove bond
data from BLE storage).

Helper functions

ble gap get connected()

Get list of connected devices.

ble gap get bonded()

Get list of bonded devices.

ble gap get devices()

Return list of known devices based on

User Manual Version 6.1

19-Jan-2022

CFR0012 40 of 206

© 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

Function

Description

filter.

ble gap get device by addr()

Get the device object, given the device
address.

ble gap get device by conn idx()

Get device object, given the
connection index.

ble gap is bonded ()

Get bond state of device (by
connection index).

ble gap is addr bonded()

Get bond state of device (by address).

Expert functions

ble gap skip latency()

Temporarily ignore the connection
latency.

e GATT server API (ble_gatts.h): Set up the attribute database, set attribute values, notify/indicate
characteristic values, initiate MTU exchanges, respond to write and read requests, etc.

Table 11: GATT server API

Function

Description

ble gatts add service()

Add a new GATT service to the ATT database. Subsequent
calls to ble_gatts_add_include(),
ble_gatts_add_characteristic() and
ble_gatts_add_descriptor() will add attributes to the service
added by this call.

ble gatts add include ()

Add an included service declaration to the service added by
ble_gatts_add_service().

ble gatts add characteristic()

Add a characteristic declaration to the service added by
ble_gatts_add_service().

ble gatts add descriptor ()

Add a descriptor declaration to the service added by
ble_gatts_add_service().

ble gatts register service()

Add to the ATT database all attributes previously added to
the service.

ble gatts enable service()

Enable service in database.

ble gatts disable service()

Disable service in database.

ble gatts get characteristic prop()

Read current characteristic properties and permissions.

ble gatts set characteristic prop()

Set characteristic properties and permissions.

ble gatts get value()

Get attribute value.

ble gatts set value()

Set attribute value.

User Manual

Version 6.1

CFR0012

41 of 206 © 2022 Renesas Electronics

19-Jan-2022

UM-B-044

RENESAS

DA1468x Software Platform Reference

Function

Description

ble gatts read cfm()

Confirmation response to an attribute read request.

ble gatts write cfm()

Confirmation response to an attribute write request.

ble gatts prepare write cfm()

Confirmation response to an attribute prepare write request.

ble gatts send event ()

Send a characteristic value notification or indication.

ble gatts service changed ind()

Send indication of the Service Changed Characteristic.

ble gatts get num attr()

Calculate the number of attributes required for a service.

e GATT client API (ble_gattc.h): Used by a device configured as a GATT client to discover the

services, characteristics, etc. of a peer device, read or write its attributes, initiate MTU
exchanges, confirm the reception of indications, etc.

Table 12: GATT client API

Function

Description

ble gattc browse ()

Browse services on a remote GATT server.

ble gattc discover svc()

Discover services on a remote GATT server.

ble gattc discover include ()

Discover included services on a remote GATT
server.

ble gattc discover char ()

Discover characteristics on a remote GATT server.

ble gattc discover desc()

Discover descriptors on a remote GATT server.

ble gattc read()

Read a characteristic value or a characteristic
descriptor from the remote GATT server, depending
on the attribute handle.

ble gattc write()

Write a characteristic value or a characteristic
descriptor to the remote GATT server, depending on
the attribute handle.

ble gattc write no resp()

Write attribute to remote GATT server without
response.

ble gattc write prepare ()

Prepare long/reliable write to remote GATT server.

ble gattc write execute()

Execute long/reliable write to remote GATT server.

ble gattc indication cfm()

Send confirmation for received indication.

ble gattc get mtu()

Get current TX MTU of peer.

ble gattc exchange mtu()

Exchange MTU.

User Manual

Version 6.1 19-Jan-2022

CFR0012

42 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

Note 6 That several GAP configuration functions must be called before the attribute database is created,
because modifying the device’s configuration can clear the attribute database created up to that point.
This is noted in the Doxygen headers of the configuration functions that can have this effect.

7.2.2 Dialog BLE service API

The BLE service API header files are in
<sdk root directory>/sdk/interfaces/ble services/include.

In most projects the API header files are symbolically linked to
<sdk root directory>/sdk/ble services/include.

The services-specific API, call-back function prototypes and definitions are included in each service’s
header file. The services implemented are the following:

Table 13: Header files for the BLE services

Header file Description

bas.h Battery Service.

bcs.h Body Composition Service.
ble_service Services handling routines API.
bms.h Bond Management Service.

cts.h Current Time Service.

dis.h Device Information Service.
dlg_debug Debug service API.

dlg_suota SUOTA service implementation API.
hids.h Human Interface Device Service.
hrs.h Heart Rate Service.

ias.h Immediate Alert Service.

ls.h Link Loss Service.

scps.h Scan Parameter Service.

sps.h Serial Port Service.

svc_defines Common definitions for all services.
svc_types Characteristics common types.
tps.h Tx Power Service.

uds.h User Data Service.

wss.h Weight Scale Service.

All services have an initialization function defined. This function is called with arguments that vary for
different services.

The most common argument is a pointer to one or more call-back functions that should be called
upon a service-specific event. For example, the prototype for the initialization function of the
Immediate Alert Service (ias.h) is the following:

ble service t *ias_init(ias_alert level cb t alert_level cb)

Code 6: Initialization code for Immediate Alert Service
User Manual Version 6.1 19-Jan-2022

CFR0012 43 of 206 © 2022 Renesas Electronics

M0 LENESAS

DA1468x Software Platform Reference

Function ias init () has only one argument. It is a pointer to the call-back function that will be called
when a peer device has modified the value of the Immediate Alert Level characteristic. This callback
function is part of the user application code and should provide the application handling required for
the change to the Immediate Alert Level.

The return value from all initialization functions is the created service’s handle which is used to
reference the service in the application. So for example the handle will be used as an argument for
function ble service add() to add the created service to the BLE service framework (in SDK
release 1.0.10 and later this is seamlessly done by the service initialization function and there is no
need to explicitly use ble service add()).

The application only needs to use the service handle. However, to understand how the service
interacts with the BLE framework it is useful to know what the handle represents. The handle is a
pointer to a generic structure (ble service t). that defines how the service should interact with the
framework. Within each service there is an internal service definition (XXX service t) as shown in
Figure 8. This contains the generic service structure plus a set of handles, one for each GATT
characteristic that the service implements. This XXX service t structure is populated by XXX init ()
for that service. The start_h and end_h handles will contain the start and end positions of the
attributes for this service within the overall GATT table provided by the GATT server. So, when a
GATT client requests a Service Discovery from the server these represent the start and end handles
that the client would use to access service xXXx.

Generic Service Information

XXX service t -

bie_sarvice_t Start and end handles for the

::E‘;a;—hh‘ service in GATT table
B Optional callbacks for these events and commands

svc.connected_evt, that the particular service
svc.disconnected_evt, needs to implement.
sve.read_req, Each service has these functions statically declared
svc.write_req, s0 they share same name.
svc.prepare_write_req, For example a service with read only
sve.event sent characteristics does not need to implement the
svc.cleanup, write callbacks

XXX Service characteristic

handles

Xxx_charl_h, Declare a handle for each of the N

Kxx charN h characteristics that service XXX implements

Figure 8: Structure of a service handle

The set of optional callbacks allow each service to specify if it wants to do some specific handling on
a certain event received by the BLE framework. If the service wants to be informed when another
Bluetooth low energy device has connected to this device then it can define its own

handle connected evt () function and plug it into the connected evt callback. Each service
declares its handle connected evt () function as static in xxx.c and by convention in the
SmartSnippets™ SDK they all share the same function names in each service.

As each service is initialized and thus added to the BLE services framework with ble service add(),
its generic services structure is added to a structure of supported services as shown in Figure 9.

User Manual Version 6.1 19-Jan-2022

CFR0012 44 of 206 © 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

ble_service_add()

services

svcl | connected_evt=<>

cleanup=<>

svc2 | connected_evt=<>

cleanup=<>

svcN | connected_evt=<>

cleanup=<>

Figure 9: Structure of supported services

Now that the main internal services structure has been explained, it is easier to follow how the
service initialization defines how the service operates.

Within the BLE service framework the main event handler is ble service handle event () which is

shown below.

bool ble_service_handle_event(const ble_evt_hdr_t *evt)

{
switch (evt->evt_code) {
case BLE_EVT_GAP_CONNECTED:
connected_evt((const ble_evt_gap_connected_t *) evt);
return false; // make it "not handled" so app can handle
case BLE EVT_GAP_DISCONNECTED:
disconnected_evt((const ble_evt_gap_disconnected_t *) evt);
return false; // make it "not handled" so app can handle
case BLE _EVT GATTS_READ REQ:
return read_req((const ble_evt_gatts_read_req_t *) evt);
case BLE_EVT GATTS WRITE REQ:
return write_req((const ble_evt_gatts write req_t *) evt);
case BLE_EVT _GATTS_PREPARE_WRITE REQ:
return prepare_write_req((const ble_evt_gatts_prepare_write_req_t *)
evt);
case BLE_EVT_GATTS_EVENT_SENT:
return event_sent((const ble_evt_gatts_event_sent_t *) evt);
}
return false;
}
Code 7: Handle BLE events using BLE service framework
User Manual Version 6.1 19-Jan-2022
CFR0012 45 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

Each of these sub-handlers inside ble service handle event () search throughout the added
services to find one that has defined a behavior for this event. There are two types of events that are
handled differently

7.2.2.1 Connection Orientated Events

The connection and disconnection events are potentially of interest to all registered services and so
all services can be informed. The cleanup on shutdown is handled in the same way.

For example a connection event will call the BLE service’s statically defined connected evt ()
function (sdk/ble services/src/ble service.c). This will loop through all the services registered in
services array and if for each service a connected _evt callback has been registered during
initialization the callback function will be called.

7.2.2.2 Attribute Orientated Events

These are events that are to do with a given attribute handle. As each attribute is related to a unique
service the first step in one of these handlers is to identify which service the attribute belongs to.

For example a write request on a specific attribute will call the BLE service’s statically defined
write req() function (sdk/ble services/src/ble service.c) as shown below. This will first
identify which service owns that attribute with find service by handle() . Thenif it has a
write req callback defined it executes the callback.

static bool write_req(const ble_evt_gatts_write_req_t *evt)
{
ble_service_t *svc = find_service_by handle(evt->handle);
if (!svec) {
return false;
¥
if (svc->write_req) {
svc->write_req(svc, evt);
}
return true;
3

Code 8: Example of code for the Write Request

An example of this flow is the Write No Response procedure that can be applied to the Immediate
Alert Level characteristic of the Immediate Alert Service. When a GATT client requests a write to that
characteristic it will trigger the write req() sub-handler under ble service handle event ().

The write req() sub-handler will use find service by handle() to see if any of the added
services are registered for that characteristic. It will match it with the Immediate Alert Service (IAS)
and as the IAS has registered a Write Request handler the IAS handle write req() will be called
(<sdk _root directory>\sdk\interfaces\ble services\src\ias.c).

User Manual Version 6.1 19-Jan-2022

CFR0012 46 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

static void handle_write_req(ble_service_t *svc, const
ble evt gatts write_req_t *evt)
{
ia_service t *ias = (ia_service t *) svc;
att_error_t err = ATT_ERROR_OK;

if (evt->length == 1) {
uint8_t level;

/*

* This is write-only characteristic so we don't need to
store value written

* anywhere, can just handle it here and reply.

*/
level = get_u8(evt->value);

if (level > 2) {
err = ATT_ERROR_APPLICATION_ERROR;
} else if (ias->cb) {
ias->cb(evt->conn_idx, level);
}
}

ble_gatts_write_cfm(evt->conn_idx, evt->handle, err);

Code 9: Example of code that handle the Write Request and match it with the appropriate
instance

By calling ias—>cb () function, this handler also actually calls the application supplied call-back
function passed as an argument when ias init () was called by the application. Finally, it sends a
Write Confirmation to update the value at the attribute database maintained in the BLE stack.

This is only an example of the way the BLE service framework translates BLE events to BLE service
events. Different events in different services can have different levels of complexity, but most of the
times this complexity is contained within the BLE service API. The aim is that the application only
needs to call the service’s initialization function and define the appropriate call-back functions to
handle all service’s events.

In addition, some services define additional service-specific API calls. For instance, the Heart Rate
Service implementation defines an API to trigger notifications of the Heart Rate Measurement
characteristic, using functions hrs notify measurement () and hrs notify measurement all() (the
first is used to notify the characteristic to a specified peer, while the second is used to notify the
characteristic to all subscribed peers). Some services also define some internal helper functions that
are used to manipulate characteristic values, and some services require attribute initial values as
arguments of the initialization function.

The BLE service API adds another layer to the general BLE API. Together the BLE adapter, BLE
manager, BLE API library and BLE service framework results in the BLE framework.

The BLE services API provides an off the shelf solution to implement an application using many of
the common adopted Bluetooth low energy services. The underlying BLE APl and GATT server API
can be used to create other adopted services or even custom services using the BLE services as a
template.

User Manual Version 6.1 19-Jan-2022

CFR0012 47 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

The following sections will provide an overview of a generic application and then will describe in
detail several of the example Bluetooth low energy projects included in the SmartSnippets™
DA1468x SDK:

Table 14: BLE projects included in the SmartSnippets™ DA1468x SDK

BLE projects General description

ble_adv_demo The simplest BLE project available in the SmartSnippets DA1468x SDK, which does
not use the BLE service framework and exposes only the GAP and GATT services.

ble_peripheral A project that can be used as a template for developing BLE peripheral applications.
The project includes some of the services implemented under the BLE service
framework.

ble_central A project that can be used as a template for developing BLE central applications. The

project starts by scanning and trying to connect to a device with a pre-defined BD
address, and then discovers all services and characteristics of it.

ble_multi_link_demo This project demonstrates the Bluetooth LE Topology feature, using a custom service
that can be used to “force” a device to be master on one connection and slave on
another at the same time.

ble_external_host This project exposes an HCI controller interface on a UART. The BLE framework is
bypassed in this case as the external host provides the Bluetooth stack.

ble_suota_client This application is a SUOTA 1.2 client implementation and allows to update SUOTA-
enabled devices over the air, using a simple serial console interface.

power_demo This project is a simple connectable advertising demo. It is designed to let the user
configure several parameters such as the advertising interval and the connection
parameters using either UART commands or the GPIOs. User can select the various
preconfigured settings and examine the effect on the power consumption that these
settings have.

7.2.3 Configuring the project

In each project the BLE framework and BSP are configured via a set of custom config files that set
the defines and macros used in that project. These files are found in the config directory of each

project.
In the case of the ble adv_demo project this file is config/custom config gspi.h

Any defines set in this file will override the default SDK values which are found in the following files

sdk/config/bsp defaults.h
sdk/ble/config/ble config.h
sdk/bsp/free rtos/include/FreeRTOSconfig.h

7.2.4 BLE application structure

All the Bluetooth low energy application projects in the SmartSnippets™ DA1468x SDK have a
similar structure. This involves several FreeRTOS tasks at different priority levels (illustrated in Figure
6) to ensure that the overall systems real time requirements are met.

The Bluetooth low energy application is implemented in a FreeRTOS task that is created by the

system init () function. system init () runs at the highest priority at startup and is also

responsible for starting the BLE manager and BLE adapter tasks that run the Bluetooth low energy

stack.

The application task has the following flow:

1. Deuvice initialization and configuration: Start-up BLE, setting device role, device name,
appearance and other device parameters.

User Manual Version 6.1 19-Jan-2022

CFR0012 48 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

1. Attribute database creation (GATT server devices): Creation of services and attributes using the
BLE service framework. This must be done after (1) to prevent deletion of the attribute database.

2. Air operation configuration and initiation: Bluetooth low energy peripheral devices usually end-up
advertising and Bluetooth low energy central devices end-up scanning and/or attempting to
connect to another device. This is the last operation to be done only once as the task then drops
into its infinite loop.

3. The infinite for (; ;) loop, which is the application’s event handling loop. The application has

been set-up as desired and now it is waiting for Bluetooth low energy events to respond to, like
connections or write requests.

o The BLE adapter (ad_ble) must have a higher priority than the application task(s) because it
runs the lower stack scheduler. It handles time critical tasks, like applying connection
parameter and channel map updates, and replying to Packet Data Units (PDU) from the peer
on time. If the BLE adapter does not run in time because another task has a higher priority,
BLE events and even connections may be lost.

o Most of the Bluetooth low energy applications use the FreeRTOS task notifications
mechanism to block. ble adv demo is the simplest application and is the only project that
does not use this mechanism. Instead, it just blocks on the BLE manager’s event queue.

o In addition to the BLE-related functionality most projects also use other system modules, like
software timers or sensors. In this case, the application usually defines call-back functions to
be triggered on these system events or interrupts. These callback functions should use task
notifications to unblock the application task which can then handle the event or interrupt in
the context of the task’s for (; ;) loop. The reason for this is that the BLE framework must be
accessed by only one application task.

Calling a BLE API function inside a call-back function triggered on a timer expiry will
execute the BLE API function in the timer’s task context. Calling other functions in the
callback functions also can have implications on real time performance or in corrupting
the small stack used by the timer task.

7.3 Bluetooth low energy Security

The Bluetooth specification defines the security options for device authentication and link encryption.
These aspects of security are handled seamlessly by the BLE Framework. The APl in Table 15 is
able to set-up security, initiate pairing, do a security request or set-up encryption using previously
exchanged keys. Most details of the procedures will be handled internally by the BLE Framework and
the application will be notified only if intervention is needed or when the procedure is completed.
These options will be described in detail in sections 7.3.1 and 7.3.4.

The generation and storage of the security keys and other bonding information is also handled by the
BLE Framework. Persistent storage can also be used to enable storage of the security keys and
bonding data info in the flash. The BLE Framework can then retrieve this information after a power
cycle and use it to restore connections with previously bonded devices. This is described in 7.3.5.

7.3.1 Functions

Table 15 summarizes the API functions that can be used by the application to set-up security
features.

Table 15: BLE Security API functions

API call Description

ble gap pair() Initiate a pairing or bonding procedure with a connected
peer. Depending on whether the device is master or slave
on the connection, this call will result either in a pairing or
a security request respectively.

ble gap pair reply() Reply to a received BLE EVT GAP PAIR REQevent. This
event will only be received by a peripheral device when
User Manual Version 6.1 19-Jan-2022

CFR0012 49 of 206 © 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

API call

Description

the central peer has initiated a pairing procedure, so this
function should only be called by a peripheral application
and only after a BLE EVI GAP PAIR REQ event has been
received.

ble gap passkey reply()

Reply to a received BLE EVT GAP PASSKEY REQUEST event.
This event will be received if the combination of the
devices’ input/output capabilities results in a passkey entry
pairing algorithm. The application should use this function

proceed.

to submit the passkey for the pairing procedure to

ble gap numeric reply ()

Reply to a received BLE EVI GAP NUMERIC REQUEST event.
This event will be received if the combination of the
devices’ input/output capabilities results in a numeric
comparison pairing algorithm. The application should use
this function to accept or reject the numeric key for the
pairing procedure to proceed. This should be only used if
LE Secure Connections are enabled.

ble gap set sec level()

Set the security level for a connection. If the device is
already bonded, the existing Long Term Key (LTK) will be
used to set-up encryption. If the device is not bonded, a
pairing or a security request will be triggered (depending
on whether the device is master or slave on the
connection) with the bond flag set to false.

ble gap get sec level()

connection.

Get the security level currently established on a

ble gap unpair()

present in BLE storage.

Unpair a previously paired or bonded device. This will also
remove security keys and bonding data info currently

7.3.2 Events

Table 16 describes the BLE events related to security that may be received by the application and
the proper API functions to respond to them.

Table 16: BLE Security API events

Event

Argument

Description

BLE EVT GAP PATR REQ

ble evt gap pair req t

Pairing request received by a connected
peer. Member <bond> indicates if the peer
has requested a bond (that is, exchange
of long term security keys). The
application should use

ble gap pair reply() to respond to this
request.

BLE EVT GAP PATR COMPLETED

ble evt gap pair completed
t

A previously requested pairing procedure
has been completed. Member <status>
indicates the completion status of the
procedure, while members <bond> and
<MITM> indicate if a bond was
established with the peer and if MITM
(Man In The Middle) protection has been
enabled on the connected link.

BLE EVT GAP SECURITY REQUEST

ble evt gap security reques
tt

Security request received by a connected
peripheral peer. Members <bond> and

User Manual

Version 6.1

19-Jan-2022

CFR0012

50 of 206

© 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

Event

Argument

Description

<MITM> indicate if a bond and MITM
protection have been requested by the
peer. The application may use

ble gap pair() to initiate pairing with the
peer.

BLE EVT GAP PASSKEY NOTIFY

ble evt gap passkey notify
t

A passkey has been generated during a
pairing procedure. This event will be
received if the application has display
capability. Member <passkey> contains
the passkey that should be displayed to
the user and entered by the peer for the
pairing procedure to continue.

BLE EVT GAP PASSKEY REQUEST

ble evt gap passkey request
t

A passkey has been requested during a
pairing procedure. This event will be
received if the application has keyboard
capability. The application should use
ble gap passkey reply() to respond to
this request using the passkey entered by
the user.

BLE EVT GAP NUMERIC REQUEST

ble evt gap numeric request
t

A numeric comparison has been
requested during a pairing procedure.
This event will be received if the
application has keyboard or Yes/No and
display capability. The application should
use ble gap numeric reply() to respond
to this request using the accept or reject
input entered by the user.

BLE EVT GAP SEC LEVEL CHANGED

ble evt gap sec level chang
ed t

The security level has been changed on
an established link. Member <level>
contains the security level that has been
reached. This will be received after a
pairing or an encryption procedure has
been successfully completed.

BLE EVT GAP SET SEC LEVEL FAILED

ble evt gap set sec level f
ailed t

Setting the security level on an
established link using

ble gap set sec level() has failed.
Member <status> indicates the reason for
the failure. This will be received after an
initiated encryption procedure has been
unsuccessful. This may indicate that
pairing should be requested again for the
connected peer (for example, the peer
may have lost the previously exchanged
security keys).

7.3.3 Macros

Table 17 contains the configuration macros related to BLE security.

Table 17: BLE Security APl macros

Macro Default Description

dg_configBLE SECURE CONNECTIONS 1 Set to 1 to use LE Secure
Connections pairing if the peer
supports the feature or to 0 to
always use LE Legacy Pairing.

User Manual Version 6.1 19-Jan-2022

CFR0012 51 of 206 © 2022 Renesas Electronics

UM-B-044

LENESAS

DA1468x Software Platform Reference

Macro

Default

Description

dg_configBLE PATR INIT KEY DIST

GAP KDIST ENCKEY |
GAP KDIST IDKEY |
GAP KDIST SIGNKEY

Set the security keys requested
to be distributed by the pairing
initiator during a pairing feature
exchange procedure.

dg configBLE PAIR RESP KEY DIST

GAP_KDIST ENCKEY |
GAP KDIST IDKEY |
GAP KDIST SIGNKEY

Set the security keys requested
to be distributed by the pairing
responder during a pairing
feature exchange procedure.

User Manual

Version 6.1

19-Jan-2022

CFR0012

52 of 206

© 2022 Renesas Electronics

UM-B-044

RLENESAS

DA1468x Softwa

7.3.4 Message

re Platform Reference

Sequence Charts (MSCs)

7.3.4.1 Central

—Dble_gap_set_io_cap (GAP_IO_CAP_NO_INPUT_OUTPUT)—>|

ble_gap_pair (bond: false}———>

SMP Pairing Request—————

Bond: NO
MITM: NO
10 Caps: NolnputNoOutput (or Any)

777777777777777777777777777 Peripheral Accepts — — —————— - - ————— — —— — — — — —— — -

SMP Pairing Response
10 Caps: Any (or NolnputNoOutput)

SMP Pairing Phase 2

BLE_EVT_GAP_SEC_LEVEL_CHANGED
Level: GAP_SEC_LEVEL_2

[¢—BLE_EVT_GAP_GAP_PAIR_COMPLETED——]
Status: BLE_STATUS_OK
Bond: False
MITM: False

————————————————————— Peripheral Rejects ————————— - — — — — — — — — — — — —

BLE_EVT_GAP_GAP_PAIR_COMPLETED
Status: BLE_ERROR_FAILED

User Manual

MP Pairing Failed:

Figure 10: Pairing Just Works

Version 6.1

19-Jan-2022

CFR0012

53 of 206

© 2022 Renesas Electronics

T RLENESAS

DA1468x Software Platform Reference

—ble_gap_set_io_cap (GAP_IO_CAP_NO_INPUT_OUTPUT)—>|
e BLE_STATUS_OKi-reeeressssssssseeseessssssssneeen

ble_gap_pair (bond: true}————————>
e BLE_STATUS_OKi-reeeressssssssseeserssssssssnecen

SMP Pairing Request——————— >
Bond: YES
MITM: NO
10 Caps: NolnputNoOutput (or Any)

—————————————————————————— Peripheral Accepts- — — — — — ———— — — — — — — — — — — — — — —— —

-SMP Pairing Respons
Bond: YES
10 Caps: Any (or NolnputNoOutput)

SMP Pairing Phase 2

SMP Pairing Phase 3

BLE_EVT_GAP_SEC_LEVEL_CHANGED,

) level: GAP_SEC_LEVEL_2

le————BLE_EVT_GAP_GAP_PAIR_COMPLETED

Status: BLE_STATUS_OK
Bond: True
MITM: False

—————————————————————————— Peripheral Rejects- — — — - - —— - ——— - — — — — — — — — — — —— —

SMP Pairing Failed:

BLE_EVT_GAP_GAP_PAIR_COMPLETED

Status: BLE_ERROR_FAILED

Figure 11: Bonding Just Works

User Manual Version 6.1 19-Jan-2022

CFR0012 54 of 206 © 2022 Renesas Electronics

T RLENESAS

DA1468x Software Platform Reference

ble_gap_set_io_cap (GAP_IO_CAP_DISP_ONLY) /
(GAP_IO_CAP_KEYBOARD_DISP)

BLE_STATUS_O

ble_gap_pair (bond: true}————————»]

BLE_STATUS_O|

SMP Pairing Request————>
Bond: YES
MITM: YES
10 Caps: DisplayOnly (or KeyboardDisplay)

Pairing
Bond: YES
MITM: YES

10 Caps: KeyboardDisplay (or KeyboardOnly)

BLE_EVT_GAP_PASSKEY_NOTIFY.

le——
Passkey: <passkey>

SMP Pairing Phase 2

SMP Pairing Phase 3

|«——————BLE_EVT_GAP_SEC_LEVEL_CHANGED———
level: GAP_SEC_LEVEL_3 (no secure connection)

GAP_SEC_LEVEL_4 (secure connection)

|«—————BLE_EVT_GAP_GAP_PAIR_COMPLETED———————

Status: BLE_STATUS_OK
Bond: True
MITM: True

SMP Pairing Phase 2

BLE_EVT_GAP_GAP_PAIR_COMPLETED,
Status: BLE_ERROR_FAILED

Figure 12: Bonding Passkey Entry (Central Display)

User Manual Version 6.1 19-Jan-2022

CFR0012 55 of 206 © 2022 Renesas Electronics

UM-B-044

RLENESAS

DA1468x Software Platform Reference

| ble_gap_set_io_cap (GAP_IO_CAP_KEYBOARD_ONLY)/_|
(GAP_IO_CAP_KEYBOARD_DISP)

BLE_STATUS_OK-

ble_gap_pair (bond: true)—————————>]

BLE_STATUS_OK:

SMP Pairing Request——————>|
Bond: YES
MITM: YES
10 Caps: KeyboardOnly (or KeyboardDisplay)

[¢——————BLE_EVT_GAP_PASSKEY_REQUEST-

ble_gap_passkey_reply (accept: true, passkey)
BLE_STATUS_OK

Pairing Resp
Bond: YES
MITM: YES

10 Caps: KeyboardDisplay (or DisplayOnly)

SMP Pairing Phase 2

SMP Pairing Phase 3

|«—————BLE_EVT_GAP_SEC_LEVEL_CHANGED——————
level: GAP_SEC_LEVEL_3 (no secure connection)

GAP_SEC_LEVEL_4 (secure connection)

|[«————BLE_EVT_GAP_GAP_PAIR_COMPLETED——————
Status: BLE_STATUS_OK
Bond: True
MITM: True

BLE_EVT_GAP_GAP_PAIR_COMPLETED,
Status: BLE_ERROR_FAILED

SMP Pairing Phase 2

Figure 13: Bonding Passkey Entry (Peripheral Display)

User Manual

Version 6.1

19-Jan-2022

CFR0012

56 of 206

© 2022 Renesas Electronics

UM-B-044

RLENESAS

DA1468x Software

Platform Reference

ble_gap_set_io_cap (GAP_IO_CAP_DISP_YES_NO) /
(GAP_IO_CAP_KEYBOARD_DISP)

BLE_STATUS_OK

ble_gap_pair (bond: true)————————»

BLE_STATUS_OK-

SMP Pairing Request———————»|
ond: YES

MITM: YES

Secure Connection Pairing: YES
10 Caps: DisplayYesNo (or KeyboardDisplay)

BLE_EVT_GAP_NUMERIC_REQUEST

e
Numeric key

ble_gap_numeric_reply (accept: true)

BLE_STATUS_OK 7

BLE_STATUS_OK

Pairing Resp:
Bond: YES
MITM: YES

Secure Connection Pairing: YES

10 Caps:

DisplayYesNo (or KeyboardDisplay)

SMP Pairing Phase 2

SMP Pairing Phase 3

|«—————BLE_EVT_GAP_SEC_LEVEL_CHANGED——————
level: GAP_SEC_LEVEL_4 (secure connection)

«————BLE_EVT_GAP_GAP_PAIR_COMPLETED—————

Status: BLE_STATUS_OK
Bond: True
MITM: True

**************** Central or peripheral reje

ble_gap_numeric_reply (accept: false)—————»

BLE_STATUS_OK-

BLE_EVT_GAP_GAP_PAIR_COMPLETED,
Status: BLE_ERROR_FAILED

cts numeric key-

SMP Pairing Phase 2

Figure 14: Bonding Numeric Comparison (Secure Connections Only)

User Manual

Version 6.1

19-Jan-2022

CFR0012

57 of 206

© 2022 Renesas Electronics

T RLENESAS

DA1468x Software Platform Reference

7.3.4.2 Peripheral

ble_gap_set_io_cap
(GAP_IO_CAP_NO_INPUT_OUTPUT or any)
eveeeeeeeneessessss e BLE_STATUS_OK----rereeeeresessssssssssseeneeneeee]
———] - - F——n
| |
: ble_gap_pair (bond: false)}———> :
Optional: used by | :
i |
peripheral tf’ | Joeeenmmenmmesenae | BLE_STATUS_OK-++-rssseeessserassecmassecassecnasecs |
send a security | |
request to the | SMP Security Request———» :
central : Bond: NO |
| MITM: NO |
| |
| |
] |
SMP Pairing Request
10 Caps: Any (or NolnputNoOutput)
|¢———————BLE_EVT_GAP_PAIR_REQ————
ble_gap_pair_reply (accept: true, bond: false)———»
e BLE_STATUS_OKrrrrrssssrererssssssreeeeessconend
SMP Pairing Response
—— Bond: No
10 Caps: NolnputNoOutput (or Any)
SMP Pairing Phase 2
BLE_EVT_GAP_SEC_LEVEL_CHANGED
Level: GAP_SEC_LEVEL_2
l————BLE_EVT_GAP_GAP_PAIR_COMPLETED——————
Bond: False
MITM: False
Figure 15: Pairing Just Works
User Manual Version 6.1 19-Jan-2022

CFR0012 58 of 206 © 2022 Renesas Electronics

UM-B-044

DA1468x Software Platform Reference

ble_gap_set_io_cap
(GAP_IO_CAP_NO_INPUT_OUTPUT or any)

RLENESAS

- - -——n
| |
I ble_gap_pair (bond: true}———> I
| |
| |
. | e BLE_STATUS_OK-wreessssssssssssssssssssssseeneeees |
Optional | |
| SMP Security Request——————————>| :
I Bond: YES |
| MITM: NO |
| |
| |
) U —l
-SMP Pairing Req
Bond: YES
10 Caps: Any (or NolnputNoOutput)
BLE_EVT_GAP_PAIR_REQ
Bond: true
ble_gap_pair_reply (accept: true, bond: false)———»;
e BLE_STATUS_OK-r-veresserssseess s e
-SMP Pairing Response-
Bond: YES
MITM: NO
10 Caps: NolnputNoOutput (or Any)
SMP Pairing Phase 2
SMP Pairing Phase 3
BLE_EVT_GAP_SEC_LEVEL_CHANGED
Level: GAP_SEC_LEVEL_2
l«————BLE_EVT_GAP_GAP_PAIR_COMPLETED
Bond: True
MITM: False
Figure 16: Bonding Just Works
User Manual Version 6.1 19-Jan-2022
CFR0012 59 of 206 © 2022 Renesas Electronics

T RLENESAS

DA1468x Software Platform Reference

ble_gap_set_io_cap
(GAP_IO_CAP_NO_INPUT_OUTPUT) /————»{
GAP_IO_CAP_KEYBOARD_DISPLAY)

E_STATUS_O

ble_gap_pair (bond: true}————————f

. E_STATUS_OK
Optional

MP Security Req:
Bond: YES
MITM: YES

Pairing Req
Bond: YES
MITM: YES

10 Caps: KeyboardDisplay (or DisplayOnly)

BLE_EVT_GAP_PAIR_REQ_

e
Bond: true

ble_gap_pair_reply (accept: true, bond: true)}——>f

E_STATUS_O

Pairing Resps
Bond: YES
MITM: YES
10 Caps: KeyboardOnly (or KeyboardDisplay)

[¢———————BLE_EVT_GAP_PASSKEY_REQUEST-

ble_gap_passkey_reply (accept: true, passkey)
BLE_STATUS_OK

BLE_STATUS_OK:

SMP Pairing Phase 2

SMP Pairing Phase 3

[¢——————BLE_EVT_GAP_SEC_LEVEL_CHANGED———————
level: GAP_SEC_LEVEL_3 (no secure connection)

GAP_SEC_LEVEL_4 (secure connection)

[¢—————BLE_EVT_GAP_GAP_PAIR_COMPLETED————|

Status: BLE_STATUS_OK
Bond: True
MITM: True

Rt B L L L Lt Peripheral enters wrongkey — — — — — — — — — = — — —— — — — — — — 1 -———

BLE_EVT_GAP_GAP_PAIR_COMPLETED
Status: BLE_ERROR_FAILED

Figure 17: Bonding Passkey Entry (Peripheral Display)

User Manual Version 6.1 19-Jan-2022

CFR0012 60 of 206 © 2022 Renesas Electronics

UM-B-044

RLENESAS

DA1468x Software Platform Reference

User Manual

Optional

| ble_gap_set_io_cap (GAP_IO_CAP_KEYBOARD_ONLY) /
(GAP_IO_CAP_KEYBOARD_DISPLAY)

E_STATUS_OI

ble_gap_pair (bond: true}—————————»1

BLE_STATUS_OK:

MP Security Requ
Bond: YES
MITM: YES

MP Pairing Requ
Bond: YES
MITM: YES

10 Caps: KeyboardDisplay (or KeyboardOnly)

BLE_EVT_GAP_PAIR_REQ

e—
Bond: true

ble_gap_pair_reply (accept: true, bond: true}———>]

BLE_STATUS_OK:

Pairing Resp
Bond: YES
MITM: YES

10 Caps: DisplayOnly (or KeyboardDisplay)

BLE_EVT_GAP_PASSKEY_NOTIFY,

PR
Passkey: <passkey>

SMP Pairing Phase 2

SMP Pairing Phase 3

N
L e

{————BLE_EVT_GAP_SEC_LEVEL_CHANGED——————|
level: GAP_SEC_LEVEL_3 (no secure connection)

-OR

GAP_SEC_LEVEL_4 (secure connection)

f————BLE_EVT_GAP_GAP_PAIR_COMPLETED——————

Status: BLE_STATUS_OK
Bond: True
MITM: True

—————————————————————————— Peripheral enters wrong key— — — — — — — — — —— — — ———— — — — —{— — — -

BLE_EVT_GAP_GAP_PAIR_COMPLETED
Status: BLE_ERROR_FAILED

Figure 18: Bonding Passkey Entry (Central Display)

Version 6.1 19-Jan-2022

CFR0012

61 of 206 © 2022 Renesas Electronics

UM-B-044

RLENESAS

DA1468x Software Platform Reference

Optional

ble_gap_set_io_cap (GAP_IO_CAP_DISP_YES_|

)_(NO) /.
(GAP_IO_CAP_KEYBOARD_DISP)

E_STATUS_O}

ble_gap_pair (bond: true}

E_STATUS_OI

Security Req
Bond: YES
MITM: YES
Secure Connection Pairing: YES

BLE_EVT_GAP_PAIR_REQ_

e
Bond: true

ble_gap_pair_reply (accept: true, bond: true}——>|

E_STATUS_OI

Pairing Req:
Bond: YES
MITM: YES
Secure Connection Pairing: YES
10 Caps: DisplayYesNo (or KeyboardDisplay)

BLE_EVT_GAP_NUMERIC_REQUEST
Numeric key

ble_gap_numeric_reply (accept: truej————>|

E_STATUS_Ol

Pairing Resp
Bond: YES
MITM: YES
Secure Connection Pairing: YES
10 Caps: DisplayYesNo (or KeyboardDisplay)

SMP Pairing Phase 2

SMP Pairing Phase 3

[¢—————BLE_EVT_GAP_SEC_LEVEL_CHANGED—————
level: GAP_SEC_LEVEL_4 (secure connection)

[¢—————BLE_EVT_GAP_GAP_PAIR_COMPLETED—————|

Status: BLE_STATUS_OK
Bond: True
MITM: True

ble_gap_numeric_reply (accept: false}————>{

E_STATUS_O|

BLE_EVT_GAP_GAP_PAIR_COMPLETED,
Status: BLE_ERROR_FAILED

SMP Pairing Phase 2

Figure 19: Bonding Numeric Comparison (Secure Connections Only)

User Manual

Version 6.1

19-Jan-2022

CFR0012

62 of 206

© 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

7.3.5 BLE Storage

BLE Storage is the BLE Framework module that implements storage functionality for information
related to connected and bonded peers, like security keys, CCC descriptors configuration and
application-defined values. BLE Storage can manage the list of connected and bonded devices both
in RAM and in persistent storage (for example, in the flash). By default, devices are managed in RAM
only and persistent storage must be explicitly enabled in the application’s configuration using macro
CONFIG BLE STORAGE. Device data is then stored using Non-Volatile Memory Storage (NVMS) on the
generic partition (see Section 12.4 for details).

Two kinds of data are stored:

e Device pairing data (exchanged keys and related information).

e Application-defined data managed using the BLE storage API (only the values with the
‘persistent’ flag set are stored in flash, for example CCC descriptor values).

Persistent storage can be enabled by the application by adding the following entries in the
application’s custom configuration file:

// enable BLE persistent storage
#define CONFIG BLE STORAGE

// enable Flash and NVMS adapters with VES (required by BLE persistent storage)

#define dg configFLASH ADAPTER 1
#define dg configNVMS ADAPTER 1
#define dg configNVMS VES 1

The maximum number of bonded devices can be set using the defaultBLE MAX BONDED macro
(defined to 8 by default). If the application attempts to bond more devices than its allowed, an error
will be returned. This error should be handled by the application. It can then either unpair one of the
currently bonded devices (using ble gap unpair () API function) or perform pairing without bonding.

Technical details on the BLE Storage implementation can be found in the following readme file:

<sdk root directory>/sdk/interfaces/ble/readme.md

7.3.6 LE Secure Connections

LE Secure Connections pairing is supported and enabled by default by the SDK using the API
described in section 7.3.1. LE Secure Connections pairing will be used if the connected peer
supports the feature without the need for the application to specifically request it. If the combination
of the devices’ capabilities result in a numeric comparison pairing algorithm (introduced for and used
for the LE Secure Connections pairing), the application will be notified of a numeric comparison
request during pairing by the reception of a BLE EVT GAP NUMERIC REQUEST event and should
respond using ble gap numeric reply () function.

If the application needs to use only LE Legacy Pairing and disable LE Secure Connections support in
the SDK, it should define dg configBLE SECURE CONNECTIONS macro to O in the application config
file.

7.4 Logical Link Control and Adaptation Layer Protocol

The Logical Link Control and Adaptation Layer Protocol, referred to as L2CAP provides connection-
oriented and connectionless data services to upper layer protocols with protocol multiplexing
capability and segmentation and reassembly operation. As referred in [9], L2ZCAP permits higher
level protocols and applications to transmit and receive upper layer data packets (L2CAP Service
Data Units, SDU) up to 64 kilobytes in length. L2ZCAP also permits per-channel flow control and
retransmission.

User Manual Version 6.1 19-Jan-2022

CFR0012 63 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

The L2CAP layer provides logical channels, named L2CAP channels, which are multiplexed over one
or more logical links. Each one of the endpoints of an L2ZCAP channel is referred to by a channel
identifier (CID).

L2CAP channels may operate in one of five different modes as selected for each L2CAP channel.
The modes are:

Basic L2CAP Mode (equivalent to L2CAP specification in Bluetooth v1.1)

Flow Control Mode

Retransmission Mode

Enhanced Retransmission Mode

Streaming Mode

LE Credit Based Flow Control Mode

The null CID (0x0000) is never used as destination endpoint. Identifiers from 0x0001 to 0x003F are
reserved for specific LZCAP functions. These channels are referred to as Fixed Channels.

CID 0x0004 is used by the ATT, CID 0x0006 is used by the SMP while CID is used by the signaling
channel.

As referred above, the connection-oriented data channels represent a connection between two
devices, where a CID, combined with the logical link, identifies each endpoint of the channel.

Figure 20 illustrates the format of the L2ZCAP PDU in basic mode.

Basic L2CAP Header

Length CiD Payload
LS8 | MSB |
| «—2Bytes—> | «— 2Bytes—> | < 0 - 65535 Bytes >

Figure 20: L2CAP PDU format in Basic L2ZCAP mode on COC

Summarizing:

e [2CAP implementations transfer data between upper layer protocols and the lower layer
protocol.

e L2CAP maps channels to Controller logical links, which in turn run over Controller physical links.
All logical links going between a local Controller and remote Controller run over a single physical
link.

e | 2CAP is packet-based but follows a communication model based on channels. A channel
represents a data flow between L2CAP entities in remote devices. Channels may be connection-
oriented or connectionless. Fixed channels other than the L2CAP connectionless channel (CID
0x0002) and the two L2CAP signaling channels (CIDs 0x0001 and 0x0005) are considered
connection-oriented. All channels with dynamically assigned CIDs are connection-oriented.

7.4.1 Credit-Based Flow Control

The Credit-Based Flow Control is an L2ZCAP mode of operation that when used, allows both devices
involved in the LE connection to have complete control over how many packets the peer device is
allowed to send. This is achieved by the use of credits that represent the absolute maximum number

User Manual Version 6.1 19-Jan-2022

CFR0012 64 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

of LE frames that the device is willing to accept at a particular moment. The sending entity may send
only as many LE-frames as it has credits. If the credit count reaches zero the transmission must stop.
If more frames are sent the connection will be closed.

7.4.2 Functions

To establish a LE-Credit Based L2CAP connection, the initiator should send a LE Credit-Based
connection request, specifying parameters like the Protocol Service Multiplexer (PSM), Maximum
Transmission Unit (MTU), Maximum Payload Size (MPS), and the initial number of credits that the
remote peer has to send data. The responding device should respond with a LE Credit-Based
Connection Response specifying its own MTU, MPS and initial credits value. PSM is 2-byte odd
number that can be used to support multiple implementations of a protocol. The valid range for PSM
is between 0x80 - OxFF. The fixed SIG assigned PSM values are between 0x00 and Ox7F. MTU
represents the maximum size of data that the service above L2CAP can send to the remote peer
(Maximum size of an SDU — Service Data Unit). MPS is the maximum payload size that an L2CAP
entity can receive from the lower layer, and it is equivalent to the maximum PDU payload size. Each
MPS corresponds to one credit. One SDU (of size MTU) can be fragmented to one or more PDUs (of
size MPS). If the SDU length field value exceeds the receiver's MTU, the receiver shall disconnect
the channel. If the payload length of any LE-frame exceeds the receiver's MPS, the receiver shall
disconnect the channel. If the sum of the payload lengths for the LE-frames exceeds the specified
SDU length, the receiver shall disconnect the channel. After the LE Credit-Based connection request
and response frames are received or exchanged, the two entities agree to use the minimum values
of MTU and MPS.

As an example, consider two devices that use the following values during the Credit-Based
connection request/response procedure:

Table 18: Example of L2CAP COC

Device A Device B
Connection Request Connection Response
PSM 0x80 -
(Field not available on Connection
Response)
MTU 100 250
MPS 50 23
Initial Credits 10 20

In this scenario, device B can receive PDUs of size at most 23, and SDUs of size at most 250. On
the other hand, device A can receive PDUs of size at most 100, and SDUs of size at most

50. Device A can send 20 PDUs to device B, and should stop until device B updates the available
credits. This update could be performed any time during the connection. If device A was to transmit
an SDU of size 100 bytes (MTU), it would be fragmented to 5 PDUs of data sizes 21, 23, 23, 23 and
10 respectively. This transmission would consume 5 credits (one credit for every PDU that could be
received from device B). Note that the usable payload size of the first PDU is 2 bytes less than the
value of MPS as the first LE-frame contains a 2-byte field specifying the total length of the SDU. This
is true only for the first frame. In the same manner, the transmission of a 23-byte SDU would require
two credits and two PDUs of size 21 and 2 bytes respectively whereas the transmission of a 21-byte
SDU would require just one PDU. Maximum SDU length (MTU) can be specified using the

ble gap mtu size set () API call.

Table 19: L2CAP COC API- ble_l2cap.h

API call

Description

ble 12cap connect ()

Create a I2cap connection oriented channel with remote
peer. Connection establishment will be signaled using

User Manual

Version 6.1

19-Jan-2022

CFR0012

65 of 206

© 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

API call Description

BLE EVT L2CAP CONNECTED event.

ble 12cap listen() Create a connection oriented channel listening for

incoming connections. Incoming connection will be
signaled using BLE EVT L2CAP CONNECTED event.

ble 12cap disconnect () Disconnect an established L2CAP channel.

ble 12cap send() Send data on channel, response code is signaled using

the BLE_EVT_L2CAP_SENT event.

ble 12cap add credits () Provide additional credits to remote peer.

BLE_EVT_L2CAP_REMOTE_CREDITS_CHANGED
event will be signaled on the remote peer.

7.4.3 Events

Table 20: L2CAP COC Events —received through ble_get_event() - ble_I2cap.h

Event Argument Description

BLE EVT L2CAP CONNECTED ble evt 12cap connected t Channel connected. Members

<local_credits> and
<remote_credits> specify the
initial credits for both sides of
connections, whereas <mtu>
indicates the negotiated MTU
value (Maximum SDU length).

BLE EVT L2CAP CONNECTION FA | ble evt 12cap connection failed t
ILED

Channel connection failed.
Member <status> indicates the
reason that connection failed.

BLE EVT L2CAP DISCONNECTED ble evt 12cap disconnected t Channel disconnected. Member

<reason> indicates the reason
of disconnection.

BLE EVT L2CAP SENT ble evt 12cap sent t Data sent on channel

<remote_credits> member
specifies the remaining number
of credits that are available for
transmission.

BLE EVT L2CAP REMOTE CREDIT | ble evt 12cap credit changed t
S CHANGED

Available remote credits
changed on channel.
<remote_credits> member
specifies the remaining number
of credits that are available for
transmission.

BLE EVT L2CAP DATA IND ble evt 12cap data ind t Data received on channel

<local_credits_consumed>
member specifies the local
credits consumed for the
received data.

7.5 LE Data Packet Length Extension

For Bluetooth Core versions 4.0 and 4.1 the maximum Packet Data Unit (PDU) size was 27 octets.
Bluetooth Core version 4.2 introduced an important enhancement, namely LE Data Packet Length
Extension, which allows for the PDU size to be anywhere between 27 and 251 octets. This means
that, for example, the L2CAP layer can now fill up to 245 octets of higher layer data packets in every
L2CAP PDU compared to 21 octets with previous Bluetooth Core versions. This significant increase

User Manual Version 6.1 19-Jan-2022

CFR0012 66 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

(more than 10 times) in the number of octets of user data sent per packet allows devices to transfer
data up to 2.5 times faster than with previous versions. This will be of great benefit to applications
that might require transferring large amounts of data such as Over-the-Air (OTA) firmware updates or
downloading large data logs from sensors.

For the default PDU size to be extended on an established connection, the Data Length Update
procedure must be performed. According to this control procedure, the L1 LENGTH REQ and

LL LENGTH RSP PDUs must be exchanged by the connected devices so that each is notified of its
peer device’s capabilities. Each device uses these PDUs to report its maximum receive data channel
and maximum transmit data channel PDU payload length and PDU time. After this update procedure,
the PDU size for each direction of the connection’s data path is set by both controllers to the
minimum of the values exchanged.

The DA1468x supports the LE Data Length Extension feature, so the values for the Receive and
Transmit Data Length are set by default to the maximum allowed, which is 251 octets. The DA1468x
controller when configured as a Bluetooth low energy central device will initiate a Data Length
Update upon a new connection if the peer device’s controller supports this feature. The BLE
Manager will use the values defined by dg configBLE DATA LENGTH RX MAX and

dg configBLE DATA LENGTH TX MAX macros for this initial Data Length Update negotiation.

7.5.1 Functions

Table 21: LE Data Length Functions — ble_gap.h

Function Description

ble gap data length set() Set the maximum Transmit data length and time for an
existing connection or the preferred Transmit data length
for future connections (that is, the Transmit data length to
be used in future data length update negotiations).
Connection data length change will be signaled using
BLE_EVT_GAP_DATA_LENGTH_CHANGED event.

7.5.2 Macros

Table 22: LE Data Length Definitions

Macro Default Description

dg_configBLE DATA LENGTH RX MAX 251 Set the maximum Receive Data Channel

PDU Payload Length. Unless
ble_gap_data_length_set() is used by the
application, this will define the Receive data
length present in the LE Data Length
Update negotiations done by the device.

dg_configBLE DATA LENGTH_TX MAX 251 Set the maximum Transmit Data Channel
PDU Payload Length. Unless
ble_gap_data_length_set() is used by the
application, this will define the Transmit data
length present in the LE Data Length
Update negotiations done by the device.

7.5.3 Events

Table 23: LE Data Length Events — fetched using ble_get_event() - ble _gap.h

Event Argument Description

BLE EVT GAP DATA LENGTH CHA | ble evt gap data length cha

= Data Length changed for specified
NGED nged t

connection. Members <rx_length>,

User Manual Version 6.1 19-Jan-2022

CFR0012 67 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

Event Argument Description

<rx_time>, <tx_length> and <tx_time>
specify the values obtained after an LE
Data Length Update negotiation (each
direction’s data length is typically set to
the minimum of the values reported by the
connected devices).

BLE EVT GAP DATA LENGTH SET | ble evt gap data length set

— : Data Length Set operation failed. Member
_FATLIED _failed t

<status> indicates the reason the set
operation failed.

7.6 NVPARAM fields

Table 24 shows the Non-Volatile memory parameters which can be found in
<sdk root directory>/sdk/adapters/include/platform nvparam.h

Table 24: NVPARAM fields

Tag Offset Length
TAG BLE PLATFORM BD ADDRESS 0x0000 7
TAG BLE PLATFORM LPCLK DRIFT 0x0007 3
TAG BLE PLATFORM EXT WAKEUP TIME 0x000A 3
TAG BLE PLATFORM OSC WAKEUP TIME 0x000D 3
TAG BLE PLATFORM RM WAKEUP TIME 0x0010 3
TAG BLE PLATFORM SLEEP ENABLE 0x0013 2
TAG BLE PLATFORM EXT WAKEUP ENABLE 0x0015 2
TAG BLE PLATFORM BLE CA TIMER DUR 0x0017 3
TAG BLE PLATFORM BLE CRA TIMER DUR 0x001A 2
TAG BLE PLATFORM BLE CA MIN RSSI 0x001C 2
TAG BLE PLATFORM BLE CA NB PKT 0x001E 3
TAG BLE PLATFORM BLE CA NB BAD PKT 0x0021 3
TAG BLE PLATFORM IRK 0x0024 17

7.7 BLE Interrupt Generation

The BLE Core generates interrupts that are used to synchronize with the BLE Software. These
interrupts are:

e Dble cscnt irg: 625ps (slot) base time reference clock interrupt. When sleep mode is used,
this interrupt will also be used to program the next advertising, scanning or connection event
if it fires before the finetgtim interrupt.

e Dble rx irqg: Reception interrupt at the end of either each CS-RXTHR number of received
packets or each received packet. CS-RXTHR can be configured at compile time using

User Manual Version 6.1 19-Jan-2022

CFR0012 68 of 206 © 2022 Renesas Electronics

UM-B

LENESAS

-044

DA1468x Software Platform Reference

position 44 of rom cfg table var([]
(sdk\interfaces\ble\src\stack\plf\black orca\src\arch\main\ble\jump table.c).

ble slp irqg: End of sleep mode events.

ble event irg: End of Advertising / Scanning / Connection event. Used to cleanup/re-
initialize state and defer TX/RX handling operations.

ble error irq: Error interrupt generated on internal error.

ble finetgtim irg: Fine target interrupt. Used to program the next advertising, scanning or
connection event. When sleep mode is not used, programming of events will be done by this
interrupt’s service routine and not by the cscnt interrupt service routine.

ble grossgtim irg: Gross target timer interrupt. Used by BLE stack SW timers, e.g.
supervision timeout, link layer timeout, etc.

Depending on the context, these interrupts are generated or not. The grayed ble cscnt irginterrupt
pulses in the following figures can be masked or unmasked. The figures that follow assume the
following:

e Either extended or deep sleep mode is used.
® CS-RXTHRIs 1.

When a

sleep mode is used, the event will be programmed in the cscnt _isr only if it fires before the

finetgtim irq after waking up. The original figures assumed a sleep mode was used, so the points
where a finetgtiminterrupt will fire instead of a cscnt interrupt are noted with red color in the same

row.

Figure 21 shows an example of interrupt generation for an advertiser device during an advertising
event. The first advertising event shows advertising packets only. The second advertising event
shows a scanner that tried to exchange data with the advertiser device. The definitions of values

such as T advEvent and T IFS can be found in Bluetooth Specification.
I_odvEvent T_odvvent
4] : ADVINT 12 AT o S : NANT ala AWt o
T Ta Ta Tx 4—» R Tx Tx
ble_csent_irg 1 1 1 1 L
ble_rx_irgq 1
ble_event_irq N N
ble_sip_irq

Figure 21: Advertiser Device Interrupts Generation

Figure 22 shows an example of interrupt generation for a scanner device during a scanning event.
The first scanning window shows a passive scan event onto channel 39. The second scanning

window

shows an active scan event with no scan response onto channel 37.

User Manual Version 6.1 19-Jan-2022

CFR0012

69 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

Scanner im Rx Wide Window (channe! 39) Sconner i Rx Wide Window (channe) 27)
9 ADVINT 21 ADVINT e £ R = ADVNVT P P ADVINT %
. 4 3 s
Rx Rx fx { B 4—p Ix x o
ble_cscnt_irg 1
ble_rx_irq 1 | 1
ble_event_irg ‘

ble_slp_irq

Figure 22: Scanner Device Interrupts Generation

Figure 23 shows an example of interrupt generation for a master device during a Link Layer
connection event without Deep Sleep in between anchor points. The first and third connection event
show a two packet exchange, while the second connection event shows a four packet exchange.

conninterval conninterval canninterval
M TS s ")
| Tx 44— Rx | Tx 4> Ax 4—P Tx 4—> B Tx 44— Bx
ble_csent_irg 1 1 1 1 1 1 : . i i 1 1 1
1 1 1
ble_rx_irg 4 X & i
ble_event_irq f 1 1

ble_slp_irq

Figure 23: Master Device Interrupts Generation / Link Layer Connection Event without Deep
Sleep

Figure 24 shows an example of interrupt generation for a master device during a Link Layer
connection event with Deep Sleep in between anchor points.

conninterval connietenval
AL "
| Te 4 x Tx 4 K
ble_csent_irg 1 1 i 1 1 1 ! 1
ble_rx_irq 1 i
ble_event_irg 1 1
ble_slp_irq 2
sﬂ.._. Deep Sleep Mode ,_‘_6

Figure 24: Master Device Interrupts Generation / Link Layer Connection Event with Deep
Sleep

Figure 25 shows an example of interrupt generation for a slave device during a Link Layer
connection event without Deep Sleep in between anchor points.

User Manual Version 6.1 19-Jan-2022

CFR0012 70 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

conninterva conninterval
ix window "/',"'/‘."l 7S Re window /'/,-"/ S
TR L i 5%
fix 4—» Tx A 4—» T) 4—» fix > Tx
ble_csent_irg 1 1 1 1 Il 1 1 1 1
ble_rx_irg 1 s '
ble_event_irg 4 4
ble_slp_irg

Figure 25: Slave Device Interrupts Generation / Link Layer Connection Event without Deep
Sleep

Figure 26 shows an example of interrupt generation for a slave device during a Link Layer
connection event with Deep Sleep in between anchor points.

conninterval

e
ISP
STy S

Sle
TR
ST

fox window /Ry window
| & 4—'> T | Ax 4'—'\» ™
ble_csent_irg L 1 1 1 1
ble_rx_irg 1 '
ble_event_irg ' 2
ble_slp_irq 1
GziH Deep Sleep Mode »—A

Figure 26: Slave Device Interrupts Generation / Link Layer Connection Event with Deep Sleep

The CSCNT/FINE interrupt which each coming event is programmed in should be serviced
with a maximum latency of 300us. If the CSCNT/FINE Interrupt Servicing Routine (ISR) that will
program the event is not run 300us+ after the interrupt is asserted, this may result in losing the next
connection event (i.e. no data transmission or reception in this connection event).

7.8 Considerations on BLE Task Priorities
The BLE Software in the SDK consists of three modules as shown previously in Figure 6:

1. BLE manager: Provides the interface to the Bluetooth low energy functionality of the chip. The application
task uses the BLE API to interface with the BLE manager. The BLE manager is a task that stands between
the application and the BLE adapter. It uses the BLE adapter to interface with the BLE stack.

2. BLE adapter: The system task that provides the interface to the BLE stack, hence the
BLE IP module. It runs the BLE stack internal scheduler, handles the BLE interrupts,
receives the commands or the replies to events from the BLE manager, and passes BLE
events to the BLE manager. BLE core functionality is implemented by the BLE adapter task.

3. BLE stack: The software stack that interfaces with the BLE IP and implements the Link
Layer and the host stack, specifically the Logical Link Control and Adaptation Protocol
(L2CAP), the Security Manager Protocol (SMP), the Attribute Protocol (ATT), the Generic
Attribute Profile (GATT) and the Generic Access Profile (GAP). The BLE stack software is
stored in the system’s ROM and its API header files can be found in
<sdk root directory>/sdk/interfaces/ble/src/stack. The BLE stack default
configuration can be modified by editing ble stack config.h located in
<sdk root directory>/sdk/interfaces/ble/src/stack/config. However, for an application
specific change it is better to add the new configuration to the applications
config/custom config gspi.h file which will override the stack defaults.

The BLE stack software is run under the BLE adapter’s task context, which instantiates
and initializes the stack.

User Manual Version 6.1 19-Jan-2022

CFR0012 71 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

The two BLE system tasks have by default a higher priority than application tasks in the SDK.

Application developers should always make sure BLE adapter and BLE manager tasks always
have a higher priority than application tasks, and that BLE adapter is higher priority than BLE
manager.

The BLE adapter instantiates the BLE stack scheduler, which dispatches all the messages between
the BLE stack’s different layers and calls the appropriate handlers. For example, when an application
uses APl ble gatts send event () to send a GATT notification, this will result in a propagation of
messages between the BLE manager, the BLE adapter and several BLE stack’s internal layers until
it reaches a transmission buffer and, eventually, the air. BLE stack’s reception handlers are also run
in the context of the BLE adapter’s task, so it is crucial that the BLE adapter is always run after a BLE
interrupt to handle received data, check if the data programmed for transmission were transmitted
and/or acknowledged by the peer device, etc.

7.9 BLE tasks timing requirements

When the application is not making any BLE API calls, the BLE adapter will typically run for a short
period of time following every BLE interrupt. For example, in the scenario where a GATT server
application sends a notification at every connection event, the BLE adapter will only need to run for
about 18us following the ble cscnt/finetgtim irginterrupt that programs the connection event
and about 68us following the ble event irg(rough average times when 96MHz clock is used and
no control packet is received or sent during that connection event but only the notification data). In
this scenario, the BLE adapter only needs to run between two consecutive events when the
application uses ble gatts_send event () to send a new notification. In this case it needs roughly
190us for the data to be put in a TX buffer and to be programmed for the next connection event.
Figure 27 shows two connection events and the period between them.

Figure 27: Two connection events

In some scenarios the BLE manager and the BLE adapter will communicate with messages without
notifying the application. As an example, upon connection with a peer that uses a resolvable private
address the BLE manager will attempt to resolve using known devices IRKs. In this case the BLE
manager and BLE adapter will have more running slots. These periods will also be placed right after
the ble event irq.

There are also other cases when the BLE framework will require a reply from the application when,
for example, a pair request or a write request is received from the peer. Again, in these cases the
BLE adapter and BLE manager will have to run more times in a period between two connection
events.

User Manual Version 6.1 19-Jan-2022

CFR0012 72 of 206 © 2022 Renesas Electronics

M0 LENESAS

DA1468x Software Platform Reference

7.10 Attribute operations

As the Attribute protocol is strict (section 4.8.3) when an attribute request such as a read or a write
request is received, the BLE stack’s GATT layer will switch to a busy state for as long as the request
is not completed/handled. In the case of a write request or a read request of an attribute whose value
is to be provided by the application, then the application will have to confirm these operations using
ble gatts read cfm() or ble gatts write cfm() respectively (after receiving

BLE EVT GATTS READ REQOf BLE EVI GATTS WRITE REQ). In this case, other GATT operations, such
as notification sending, will be queued until this request is confirmed. See an example of this in
Figure 28.

A s 8 & B

TASKSWITCH

Sensorfamping Tash

atf Sle Lok

ele_gutts wend ecent

eLE_GEN IR

SLE FINLGTON fRE)

FVT FND R

ATTS BUSY

Figure 28: Attribute operations example

This plot shows the period after a connection event during which a write request was received from
the peer. In this case this request is confirmed by a task different than the one making the

ble gatts send event () call. In this case the BLE adapter runs for an additional slot of about
180us. BLE manager also needs to be run in between since it implements the BLE framework
functionality on top of the BLE adapter/stack. BLE manager will need in general smaller time slots to
run, unless it reads/writes data from/to the flash.

7.11 Bluetooth low energy Application Examples

7.11.1 Advertising Application

The simplest Bluetooth low energy project in the SmartSnippets™ DA1468x SDK is ble adv demo
which is found in the folder <sdk root directory>/projects/dk apps/demos/ble adv. The
application starts the device as a peripheral, sets the device name and advertising data and starts
advertising. Code 7 is an extract from main.c.

User Manual Version 6.1 19-Jan-2022

CFR0012 73 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

// Start BLE module as a peripheral device
ble peripheral start();

// Set device name
ble gap device name set("Dialog ADV Demo", ATT PERM READ);

// Set advertising data
ble gap adv data set (sizeof (adv _data), adv_data, 0, NULL);

// Start advertising
ble gap adv start (GAP CONN MODE UNDIRECTED) ;

Code 10: Set BLE device

No BLE service is added, and the ones exposed are just GAP and GATT services. The infinite loop
that implements the lifetime behavior of the application uses just ble get event (true) to block
indefinitely on the BLE manager’s event queue. As soon as an event is posted there, the task
unblocks and handles it using a switch case. Code 11 shows main loop from main.c.

for (;;) |
ble evt hdr t *hdr;
/* notify watchdog on each loop */
sys _watchdog notify(wdog id);
/* suspend watchdog while blocking on ble get event() */
sys watchdog suspend(wdog id) ;
/*
* Wait for a BLE event - this task will block
* indefinitely until something is received.
*/
hdr = ble get event(true);
/* resume watchdog */
sys _watchdog notify and resume (wdog id);
if (!hdr) {
continue;
}
switch (hdr->evt code) {
case BLE_EVT_GAP_CONNECTED:
handle evt gap connected((ble evt gap connected t *) hdr);
break;
case BLE EVT GAP DISCONNECTED:
handle evt gap disconnected((ble evt gap disconnected t *) hdr);
break;
case BLE EVT GAP PAIR REQ:
{

ble evt gap pair req t *evt = (ble evt gap pair req t *) hdr;
ble gap pair reply(evt->conn idx, true, evt->bond);
break;
}
default:
ble handle event default (hdr);
break;

}
// Free event buffer

OS_FREE (hdr) ;

Code 11: Example of event handle

Since the BLE service framework is not used, the only events handled by the application are the
three events handled by the switch case: connection, disconnection and pair request. This makes
sense for this application as its only purpose is to start a connectable advertising, restart it in case of
a disconnection and respond to pair requests from devices that require pairing/bonding upon
connection.

User Manual Version 6.1 19-Jan-2022

CFR0012 74 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

Running this project will result in an advertising Bluetooth low energy peripheral device exposing
GAP and GATT services. GAP service attributes can be read using any standard Bluetooth low
energy central device. An example is described in Section 4.1.5 of the Software Developers Guide

[3].

7.11.2 Peripheral Application

The ble peripheral project is a good starting point for developing Bluetooth low energy peripheral
applications. It is found in folder

<sdk root directory>/projects/dk apps/demos/ble peripheral. Unlike other example projects,
it does not implement a specific profile, but instead exposes several BLE services via a GATT server.

The application’s initialization is similar to other projects that implement Bluetooth low energy
peripheral applications. It uses the BLE service framework to instantiate several Bluetooth low
energy services:

Battery Service (multiple instances)

Current Time Service

Device Information Service

Scan Parameter Service

Dialog Debug Service

Custom User Service

In addition to Bluetooth SIG-adopted services, ble peripheral project instantiates two more
services, Dialog Debug Service and a custom user service.

The Dialog Debug Service can be used to interact with the services that the application exposes
using a Control Point characteristic to write commands and receive notifications from. A detailed
description of the ways to interact with the Dialog Debug Service is included in the readme.md file
inside the project’s folder.

The custom user service does not define any specific functionality other than using 128-bit UUIDs for
services, characteristics and descriptors. This custom service, referred to as myservice in the project
source code, is an example of implementing a custom service using BLE API calls to create its
attribute database. No specific functionality is defined when one of these attributes is read or written.
More details on how to create and use custom services will be given in section 7.14.

After the attribute database is created, the device will end-up advertising and it will wait for a
connection event.

The ble peripheral project uses the BLE service framework to handle service events, the
application also defines handlers for connection, advertising completion and pair request events. The
ble peripheral project stands in terms of its completeness somewhere between the ble adv demo
and a full profile like the pxp reporter.

The services the project will expose can be configured using the file
config/ble peripheral config.h.

7.11.3 Central Application

The ble central project is found in folder

<sdk root directory>/projects/dk apps/ble central. Itisthe recommended starting point for
creating a Bluetooth low energy central application. The application initialization is similar to the
previously described projects. The difference is that the device is configured as a Bluetooth low
energy central device and no attribute database is created as the device implements a GATT client.
Code 12 is extracted from ble central task.c.

User Manual Version 6.1 19-Jan-2022

CFR0012 75 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

ble central start();
ble register app();

Code 12: Configure device as a BLE central

After configuring the Bluetooth low energy parameters, the device attempts to connect to another
device. To work with this demo the other device must expose the specific Bluetooth Device (BD)
address defined in the addr structure:

ble gap connect (&addr, &cp);

Code 13: Connection to another device

The project is configured to connect by default to another DA1468x device, preferably one that
exposes a couple of services such as ble peripheral. A good experiment would be to run the
ble central project after having programmed another DA1468x board with ble peripheral. Of
course, addr must be modified to force the ble central device to connect to a device with a
different BD address. The default BD address of a project can be changed via the project’s
config/custom config gspi.h by adding the following override.

#define defaultBLE STATIC ADDRESS {0x02, 0x00, 0x80, 0xCA, OXEA, 0x80}

Upon connection, the handle evt gap connected() handler uses BLE API call ble gattc browse ()
(or ble gattc discover svc(), ble gattc discover char() and ble gattc discover desc(), if
CFG_USE_BROWSE API macro is set to 0) to discover all services, characteristics and descriptors of the
peer device. The project uses the serial interface to print information of the discovered attribute
database.

The options of the project can be configured using the file config/ble central config.h.

7.11.4 Multi-Link Application

The ble multi link demo located in <sdk root directory>/projects/dk apps/demos folder is a
project designed to demonstrate the Bluetooth Core version 4.1 feature LE Topology. The device is
initialized to have both Bluetooth low energy central and peripheral roles using ble enable () and
ble gap set role(GAP PERIPHERAL ROLE | GAP CENTRAL ROLE) API calls. The project instantiates
the custom Dialog Multi-Link Service, which exposes a single characteristic, named Peripheral
Address.

The demo flow is illustrated in Figure 29. The Multi-link device with BD_ADDR?2 starts advertising
and waiting for a connection originating from a central Bluetooth low energy device (BD_ADDR3).
After the central device is connected to the Multi-Link demo device (step 1), it can write the BD
address of another BLE peripheral device (BD_ADDR3) to the Peripheral Address characteristic
exposed by the Dialog Multi-Link Service (step 2). This will result in the Multi-Link demo device trying
to connect, as a Bluetooth low energy central device to the peripheral device with BD_ADDR3 (step
3). After this connection is established, the Multi-Link demo device will have two concurrent
connections one as master and one as slave.

User Manual Version 6.1 19-Jan-2022

CFR0012 76 of 206 © 2022 Renesas Electronics

bon RENESAS

DA1468x Software Platform Reference

Peripheral Device Multi-Link Device Central Device

Central Role Peripheral Role | =

GATT table
MLS Peripheral Addr
2 BD_ADDR3

BD ADDRZ2 BED_ADDRZ BD_ADDRL

Figure 29: Architecture of Multi-Link Demo

The Multi-Link demo project uses the serial interface to output information about the connected
devices.

7.11.5 External Host Application

7.

The Bluetooth low energy external host project is found in folder

<sdk root directory>/projects/dk apps/demos/ble external host. Itis the only project that
does not use the BLE framework and the Dialog BLE API. Instead, its application task is a
custom adapter created to send and receive HCI and BLE stack proprietary messages over the
serial interface, allowing the development of the host on a separate processor.

After building the project, the user should make sure that the RTS/CTS pins are connected on the
Development Kit. Then, a host can send HCI messages over the serial interface and receive the
controller’'s responses.

12 BLE profile projects

In addition to the projects described in the previous sections, there are several application
projects that implement Bluetooth low energy profiles. These projects are more complex and
provide a full implementation of Bluetooth low energy applications. As such they provide a good
reference on how to combine the Bluetooth low energy functionality with several OS
mechanisms, GPIO handling and interfacing with external sensors.

The profiles implemented are the following:

o HID over GATT Profile (HOGP) — Device role (hogp device) located under
<sdk root directory>/projects/dk apps/ble profiles

o HID over GATT Profile (HOGP) — Host role (hogp host) located under
<sdk root directory>/projects/dk apps/ble profiles

o Heart Rate Profile — Sensor role (hrp_sensor) located under
<sdk root directory>/projects/dk apps/ble profiles

o Proximity Profile — Reporter role (pxp reporter) located under
<sdk root directory>/projects/dk apps/demos

o Weight Scale Profile — Weight Scale role (wsp weightscale) located under
<sdk root directory>/projects/dk apps/ble profiles

User Manual Version 6.1 19-Jan-2022

CFR0012 77 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

o Apple Notification Center Service (ANCS) - Notification Consumer (NC) role (ancs) located
under <sdk root directory>/projects/dk apps/ble profiles

o Blood Pressure Profile (BLP) — Blood Pressure Sensor role (blp sensor) located under
<sdk root directory>/projects/dk apps/ble profiles

o Bond Management Service (BMS) located under
<sdk root directory>/projects/dk apps/ble profiles

o Cycling Speed And Cadence collector (CSCP) located under
<sdk root directory>/projects/dk apps/ble profiles

o Health Thermometer Profile — Thermometer role (htp thermometer) located under
<sdk root directory>/projects/dk apps/ble profiles

7.13 Using adopted Bluetooth low energy services

Table 25 summarizes the API header files of the Bluetooth low energy services implemented by the
SmartSnippets™ DA1468x SDK. These files can be found under

<sdk root directory>/sdk/interfaces/ble services/include. The developer can use these
APIs to add these services to another project.

Table 25: BLE service APl header files

File name Description

ble_service.h BLE service framework API:
e Add service to framework
e Handle event using BLE service framework
e Elevate permission
e Get number of attributes in a service
e Add included services

bas.h Battery Service — BAS

bcs.h Body Composition Service — BCS

bms.h Bond Management Service — BMS

cts.h Current Time Service — CTS

dis.h Device Information Service — DIS

dig_debug.h Dialog Debug Service

dlg_suota.h Dialog SUOTA Service

hids.h Human Interface Device Service — HID

hrs.h Heart Rate Service — HRS

ias.h Immediate Alert Service — IAS

lIs.h Link Loss Service — LLS

scps.h Scan Parameters Service — ScPS

sps.h Serial Port Service — SPS

tps.h Tx Power Service — TPS

uds.h User Data Service — UDS

wss.h Weight Scale Service — WSS

User Manual Version 6.1 19-Jan-2022

CFR0012

78 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

7.14 Adding a custom service

The following code segments provide an overview of the initialization required to create a new
custom service called xxX. It requires the files xxx.c and xxx.h to be created. A good example to
base these on is the d1j mls service in the Multi-Link demo. This provides a single write only
characteristic in the service.

Each service needs a structure containing both the generic ble service t structure and any
callbacks and characteristic handles required by the service. In the example below for service xxx
there is one callback and one characteristic defined.

typedef struct {

ble service t svc; // Core BLE service structure
xxx_cb t cb; // Callback provided by app to xxx
// service to process an event
uintl6é t xxx charl val h; // Declare handle for each characteristic

// that can be read or written
} xxXx service t;

Code 14: Structure definition for XXX service

The requirements of the initialization function xxx init() are illustrated below. They key information
here is the comments which are explaining what each line is doing.

XXX service t* xxx init (callbackl) {

// Allocate and initialise xxx service t structure

// Define any callback functions required by the service, write only in this case
xXx->svc.write req = <this services write request handler>

// Create primary service UUID with either 16 or 128 bit value
uuid=ble uuid_ from_string() or uuid=ble uuid createl6 ()

// add PRIMARY service with X attributes

num_attrs=X

ble gatts add service(&uuid, GATT SERVICE PRIMARY, num attrs)

//Create characteristic 1 for this service and allocate handle for it in GATT
table

ble gatts add characteristic(&uuid, GATT property, ATT permissions, size,0, NULL,
&xxx->xxx charl h)

// Set start h and pass in null terminated variable 1length 1list of all
characteristic handles in the service

ble gatts register service (&xxx->svc.start h, &xxx->xxx charl h,0);

// Calculate end handle for service based on number of attributes in service
xxx->svc.end h= xxx->svc.start h + num attrs;

// add the passed in callback function to service structure

xXx->xxx cbl=callbackl;

// add newly created service to ble framework

ble service add(&xxx->svc);

// and return handle for the service to the application

return &xxx—->svc

}

Code 15: Initialisation function for XXX service

7.15 Extending Bluetooth low energy functionality

The Dialog BLE API can be used to create any Bluetooth low energy application. These API header
files are in folder <sdk _root directory>/sdk/interfaces/ble/include. They come with additional
Doxygen documentation and are summarized in Table 26.

User Manual Version 6.1 19-Jan-2022

CFR0012 79 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

Table 26 : Dialog BLE API header files

File name Description

ble_att.h Attribute Protocol API: Mostly definitions.

ble_attribdb Helper to manage complex attributes database.

ble_bufops Helpers to put and get data from BLE buffers.

ble_common.h Common API: Functions used for operations not specific to a certain BLE host
software component

ble_gap.h GAP API:

e Device parameters configuration: device role, MTU size, device
name exposed in the GAP service attribute, etc.

e Air operations: Advertise, scan, connect, respond to connection
requests, initiate or respond to connection parameters update, etc.

e Security operations: Initiate and respond to a pairing or bonding
procedure, set the security level, unpair, etc.

ble_gatt Common definitions for GATT API

ble_gattc.h GATT client API:

e Discover services, characteristics, etc. of a peer device
o Read or write a peer device’s attributes

e Initiate MTU exchanges

e Confirm the reception of indications

ble_gatts.h GATT server API:

e Set up the attribute database

e Set attribute values

¢ Notify/indicate characteristic values
e Initiate MTU exchanges

e Respond to write and read requests

ble_I2cap BLE L2CAP API.

ble_storage.h BLE persistent storage API.

ble_uuid.h BLE UUID declarations and helper functions.

User Manual Version 6.1 19-Jan-2022

CFR0012 80 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

8 The Security Framework

The Security Framework provides a collection of high-level cryptographic algorithms. It is intended to
allow the application to access the cryptographic algorithms. It follows a layered software architecture
approach that consists of the LLDs of the hardware cryptographic engines, the system services and
adapters that provide a higher level API for using the engines and the algorithm implementations.
The layered architecture is depicted in Figure 30.

Security framework architecture:

Application
Cryptographic Algorithms
HMAC-SHA256 ECDH
TRNG service Crypto Adapter
sys_trng ad_crypto
LLDs
hw_ecc
hw_trng hw_aes_hash hw_ecc_curves
hw_ecc_ucode
hw_crypto
HW Engines

Figure 30: Security framework architecture

User Manual Version 6.1 19-Jan-2022

CFR0012 81 of 206 © 2022 Renesas Electronics

bon RRENESAS

DA1468x Software Platform Reference

8.1 LLDs of the security framework

8.1.1 TRNG Engine LLD

The True Random Number Generator (TRNG) engine is a non-deterministic 32-bit random number
generator. The TRNG LLD provides the API for reading generated random numbers, controlling clock
enable signals and handling TRNG interrupts. Please refer to the Doxygen documentation of the LLD
for details of the API.

8.1.2 AES/HASH Engine LLD

The AES/HASH engine is a hardware accelerator for AES (Advanced Encryption Standard)
encryption and HASH functions. It supports ECB, CBC and CTR AES for 128, 192 or 256 bit keys.
The supported hash functions are MD5, SHA-1 and SHA-2. The AES/HASH LLD provides the API for
controlling clock enable signals, configuring the engine, and handling its interrupts. Please refer to
the Doxygen documentation of the LLD for details of the API.

8.1.3 ECC Engine LLD

The ECC engine is a hardware accelerator for Elliptic Curve Cryptography (ECC) operations. It
supports arbitrary operand sizes up to 256 bits and uses a part of the system RAM for exchanging
input and output data. The ECC LLD provides an API for controlling clock enable signals, configuring
the engine, handling its interrupts, writing and reading input/output data. Please refer to the Doxygen
documentation of the LLD for details of the API.

8.1.4 Crypto engines LLD

The AES/HASH and ECC engines share a common interrupt source towards the ARM Cortex MO
(crypto irq). The Crypto Engines LLD provides an API for managing this common interrupt for each
of the two engines. Please refer to the Doxygen documentation of the LLD for details of the API.

8.2 TRNG service

The TRNG service is a system service for providing random numbers while minimizing the power
consumption due to the TRNG engine. It provides an API for reading one or multiple 32-bit numbers
or bytes. Please refer to the Doxygen documentation of the service for details of the API.

8.3 Crypto adapter

The crypto adapter is a module that guarantees exclusive access to each of the cryptographic
engines (AES/HASH and ECC). It also prevents the system from going into sleep mode while a task
has acquired one of the engines for performing cryptographic operations. Finally, it provides a
mechanism for event notification related to the engines' operation, thus allowing a task to block until
an operation is completed.

The crypto adapter is also the module that allocates and configures the system RAM block that is
needed by the ECC engine and loads the ECC microcode whenever it is necessary.

The use of the crypto adapter by a task follows the sequence shown in Figure 70. When task has
acquired the resource via the adapter it can then directly call the relevant LLD APIs. When it is
finished it must release the resource through the adapter so that any other tasks with pending
acquisition requests can use it.

It is possible to reduce the code size of the crypto adapter as an optimization in the use case of only
one task needing to access the resource or when the application uses only one of the two
cryptographic resources. This is achieved through specific configuration macros that can be found in
the adapter's header file located in the <sdk root directory>/bsp/adapters/include/ folder.
Please note that the BLE framework is one of the users of the ECC engine.

User Manual Version 6.1 19-Jan-2022

CFR0012 82 of 206 © 2022 Renesas Electronics

bon RENESAS

DA1468x Software Platform Reference

Please refer to the Doxygen documentation of the crypto adapters for details of the APl and
application examples.

8.4 Cryptographic algorithms

A set of high-level security-related cryptographic algorithm implementations are provided in folder
<sdk root directory>/sdk/interfaces/crypto/include. These implementations hide the details
of the lower layers of the security framework architecture and provide an easy to use API.

8.4.1 Hash-based Message Authentication Code (HMAC)

The hash-based message authentication code (HMAC) is a specific type of message authentication
code algorithm that involves the use of a specific cryptographic hash function. The process of
generating an HMAC and then validating it at the receiver is shown in Figure 31 and further details
on the algorithm can be found in [5] and [6]. The SmartSnippets™ DA1468x SDK provides an
implementation of a SHA256 based HMAC, the API of which can be found in

<sdk root directory>/sdk/interfaces/crypto/include/crypto hmac.h. The APl is fully
documented in Doxygen and provides examples of use.

User Manual Version 6.1 19-Jan-2022

CFR0012 83 of 206 © 2022 Renesas Electronics

N-B-044 RENESAS

DA1468x Software Platform Reference

e |

KEY K—> HMAC

SEND

[
< MESSAGE, MACA >
HMAC «“«—KEY kK——

MACA==MACB

TRUE FALSE

Figure 31: HMAC algorithm

8.4.2 Elliptic Curve Diffie-Hellman (ECDH)

Elliptic Curve Diffie-Hellman is an elliptic curve variant of the Diffie-Hellman algorithm. It allows two
parties to generate a common shared secret by exchanging public keys over an insecure channel,
after agreeing to use a common set of domain (curve) parameters, as shown in Figure 32. More
information about ECDH with ECC can be found in [7]. Curve25519 is a specific Diffie-Hellman
function that allows fast and secure implementations of ECDH. More details about Curve25519 can

User Manual Version 6.1 19-Jan-2022

CFR0012 84 of 206 © 2022 Renesas Electronics

RLENESAS

UM-B-044

DA1468x Software Platform Reference

be found in [8].The SmartSnippets™ DA1468x SDK provides an implementation of ECDH in

<sdk root directory>/sdk/interfaces/crypto/include/crypto ecdh.h. The curves supported
currently are secp192rl, secp224rl, secp256rl and Curve25519. It is possible to reduce the code
size of the ECDH by configuring specific macros regarding the use of Curve25519. For more details
you can refer to the Doxygen documentation that includes also examples of usage.

Note 7 That the shared secret obtained with the ECDH key agreement protocol should not be used directly.

Instead it should be passed through some form of key derivation function (KDF). The SmartSnippets™
DA1468x SDK security framework does not currently provide KDF implementations.

Agreed domain parameters
of elliptic curve (G is the
curve’s generator point).

SEND
<QLA>

SEND
<QLB >

Figure 32: ECDH algorithm

User Manual Version 6.1 19-Jan-2022

CFR0012 85 of 206 © 2022 Renesas Electronics

N-B-044 RENESAS

DA1468x Software Platform Reference

9 System Management

The DA1468x has a number of independent power domains which are shown in Figure 33 that can
be switched off to minimize power consumption.

| |[e | Romemr |
=l | T === o ——
, Aol I"u‘:.‘z I o ” poMIZS " e/ 12c2 Hmoomsml A
Device GPIO Multiplexing

Always On Domain (FD_AON) - BLE MAC Domain {(PD_BLE)
Penpherats Domain (PD_PER) - Radio Domain (PD_RAD)
B syt Domain (FD_SYS) Analog/RF

Figure 33: DA1468x Power Domains

The Clock and Power Manager (CPM) is responsible for managing these power domains, putting the
system into sleep, handling the wake-up and providing the application tasks with a seamless way to
control all system clocks. These are described in detail in the following sub-sections.

9.1 Power Modes
DA1468x supports the following power states (modes):

1. Active,

2. Idle,

3. Extended sleep,
4. Hibernation.

In Active mode, both System (PD_sSvs) and Peripheral (PD_PER) power domains remain active. The
BLE MAC (PD BLE) and the Radio (PD_RAD) power domains may or may not remain active while the
ARM Cortex MO processor is able to execute code.

Idle mode is identical to Active mode, except that the ARM Cortex MO core is executing a WFI ()
instruction which is just waiting for an interrupt to restart code execution. This interrupt may be an
external one or simply the internal tick interrupt originating from the system’s clock. Idle mode offers
significantly lower power consumption than the Active one.

When in Extended Sleep mode all power domains are powered down except for the Always-ON
(PD_AON) domain. The PD_ACN domain remains active to supply power to the blocks that can wake the
system up, such as the BLE timer, the wake-up controller etc. The XTAL16M is stopped with only the

User Manual Version 6.1 19-Jan-2022

CFR0012 86 of 206 © 2022 Renesas Electronics

bon RRENESAS

DA1468x Software Platform Reference

low power clock remaining operational and the configured retained RAM blocks (Section 13.3) which
retain data or in certain cases, code during extended sleep.

Hibernation mode bears two significant differences to Extended Sleep mode:

1. Retained RAM is also powered down.
2. The next wakeup event will internally generate a reset signal.
The first two modes, Active and Idle are categorized as power-up modes, during which the system is

fully functional. The other two modes, Extended Sleep and Hibernation are categorized as power-
down modes, during which the system is sleeping and thus consuming significantly less power.

9.2 Wake-up Process

9.2.1 Wake-up modes
Two wake-up modes are supported:

1. Resume the OS without waiting for the XTAL16M to settle. This is the default setting.
2. Resume the OS only after the xTAL16M has settled. This mode ensures that the application will
run using the high-precision clock.

If any task that requires an accurate clock can be blocked until the xTAL16M clock becomes available,
using the default setting is always recommended. Resuming the OS without waiting for the XTAT.16M
to settle ensures the lowest possible power consumption in typical applications. This is possible since
there are tasks which only require RC16 to run and so they can finish earlier. This allows the system
to return to Sleep mode with minimal delay.

9.2.2 Wake-up events
When in power-down mode, DA1468x can wake-up in two ways:

1. Synchronously, from the Timerl or the BLE timer in Extended Sleep mode only.
2. Asynchronously, from the Wake-up timer or the VBUS interrupt.
Certain applications require the system to exit Sleep mode to serve an OS Timer or a BLE event. If

these are time-based events the low-power clock must be available during Sleep mode.
Synchronous wake-up however is only supported in the Extended Sleep mode.

9.3 Sleep architecture
The Sleep architecture design is built around the following principles:

The system must be able to wake up synchronously to serve OS and BLE events.

2. The requirements of OS and BLE events may be different. Specifically, BLE events require the
XTAL16M to have settled and be set as the system clock. On the other hand, an OS event may or
may not have such requirement. For instance, an OS task that needs to read a value from a
sensor via the 12C interface does not require the XTAL16M clock. However, if the OS task uses
the UART to read the sensor then the XTAL16Mis mandatory.

3. The system must be able to wake-up asynchronously.

The process of switching between Sleep and Wake-up modes should be both simple and
deterministic.

5. The Clock and Power Manager (CPM) must control only the System and the Peripherals power
domains. The BLE and the Radio power domains must be controlled independently by the BLE
driver.

6. No error will be introduced by the software architecture to the low power clock other than that
caused by the inherent physical characteristics of the external crystal (in the case of XTAL32K) or
the RCX.

User Manual Version 6.1 19-Jan-2022

CFR0012 87 of 206 © 2022 Renesas Electronics

bon RRENESAS

DA1468x Software Platform Reference

There are two sources that control the synchronous system wake-up, the OS and the BLE. The
implementation should use a single timer to wake-up the system, regardless of which source it
serves. This is to ensure that statements 4 and 6 of the previous list are covered. Since the BLE
timer is not accessible when the BLE is powered-down, Timerl becomes the only available option.

The implementation of Timerl facilitates a system wake-up process with enough time for both BLE
initiation and XTAL16M settling. When an XTAL 16RDY interrupt arrives, XTAL16M is set as the system
clock and BLE wake-up takes place. Provided that the only task of BLE LP ISRis to power-up the
BLE core, the necessary BLE WAKEUP LP interrupt is programmed to occur in a time window in which
the BLE core should be already functional.

The CPM prevents the system entering Sleep mode when the BLE power domain is still active. Only
after the BLE completes event handling and the existing BLE driver puts the BLE power domain into
power down, will the CPM take over and put the whole system in Sleep mode. To ensure that the
system will exit Sleep mode, the CPM calculates the next wake-up time. A certain time-frame which
is defined as the maximum sleep time, may be applied prior to servicing the next synchronous event.
To correctly program the sleep time, the CPM takes into account which OS or BLE event should be
considered as the next wake-up source. XTAL16M settling time is not included in the calculation when
an OS event wakeup is expected, only in the case of a BLE wakeup event. Possible overlaps of OS
and BLE events are also taken into consideration.

Active Period Active Period
- TW)
BLE Active BLE Active
Period Period
©
A A A A
@)
® ®

1 BLE SLP IRQn BLE Power-down

vy
SWTIM1 IROm O
- 3

BLE WAREUP LP IRQn

Figure 34: Synchronous BLE event

Figure 34 presents a typical scenario, where the system wakes-up for servicing a BLE event. The
interrupts along with the system state each one triggers are clearly depicted:

1. After SWTIML IROn interrupt, the system wakes-up and the clock is RC16.

2. XTaLleM settling time window. During this time, the system clock switches back to XTAL16M (or
PLL) from RC16.

3. Using a BLE WAKEUP LP IRQOn interrupt, the BLE notifies the system that it has woken-up and is
now available.

4. The BLE core is active when a BLE_SLP_IRQn interrupt occurs.

5. BLE goes to power-down after informing the CPM of the next wake-up time (Tw).

6. Inactive Period.

The inactive period is calculated by the CPM based on the time that BLE is scheduled to wake-up.

By the time the next BLE WAKEUP_LP IRQn arrives, the XTAL16M must have already settled and the
clock switching from RC16 to XTAL16M must have been completed.

This scenario can be extended to include a wake-up from an asynchronous request, where the
system is triggered by a request originated from the wake-up controller. In such case, the system is
solely based on the RC16 clock, therefore doesn’t involve the XTAL16M. After the interrupt has been

User Manual Version 6.1 19-Jan-2022

CFR0012 88 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

handled, the CPM puts the system back into Sleep mode by repeating the same process used in the
synchronous case.

. Tvl
Active Period ~ Active Period
T« t°
<
BLE Active Eg BLE Active
Period =X < 2) Period
3 (3
L~ A A A
- :‘ ?’ (7
o BLE SL? IRgn BLE Power-down WEUP GBI TEQn

BLE WAREUP LP IRQn
Figure 35: Asynchronous BLE event

Figure 35 presents the wake-up and sleeping process during an asynchronous event.

1. After SWTIML IROn interrupt, the system wakes-up and the clock is RC16.

2. XTALleM settling time window. During this time, the system clock switches back to XTAL16M (or
PLL) from RC16.

3. Using a BLE WAKEUP LP IRQn interrupt, the BLE notifies the system that has woken-up and is

now available.

The BLE core is active when a BLE SLP_IRQn interrupt occurs.

BLE goes to power-down after informing the CPM of the next wake-up time (Tw).

Inactive Period.

A WKUP_GPIO IRQn interrupt is received by the system. During inactive period, the clock is set to

RC1eé.

H. After serving the asynchronous request the CPM puts the system back to Sleep mode. However,
the time to wake up is not Tw any more. The CPM must recalculate the time window based on the
next scheduled event when BLE needs to be active. The new value is depicted as Twl in Figure
35.

To ensure correct operation it is necessary for the CPM to manage all the requirements of the
various subsystems of DA1468x. The driver Adapters are designed to simplify the operation of the
CPM in managing the sleep requirements of all the drivers in the system.

Homomoks

The Adapter for each driver implements a layer between the application and the low level hardware
drivers. They control the tasks’ access to the resource so that multiple tasks can safely use the
resource. The sharing of a resource between multiple tasks is illustrated Figure 70.

The Adapter is also responsible for handling the power management for the driver. It will initialize the
hardware resource during wake-up and deal with the special case where the resource cannot be fully
operational until the xTAL.16Mis available. In this case the Adapter can handle separately the partial
initialization via the callback ad wake up ind and the full initialization of the resource via the callback
ad xtallém ready ind.

The Adapter(s) register to the CPM so that the CPM can inform them about the progress of wake-up
or sleep entry. The API that is provided to the Adapters for this purpose is:

User Manual Version 6.1 19-Jan-2022

CFR0012 89 of 206 © 2022 Renesas Electronics

bon RRENESAS

DA1468x Software Platform Reference

Table 27 : API for the adapters

API for the adapters Description

pm id t pm register adapter (const

Registers an Adapter to the CPM.
adapter call backs t *cb)

vold pm unregister_adapter (pm id t id) Unregisters an Adapter from the CPM.

At registration, the Adapter provides its APIs for communication with the CPM. This API is listed in
Table 28 and used by Adapters that are implemented as part of the SmartSnippets™ DA1468x
SDK.

Table 28: API for the communication with the CPM

API for the communication with the CPM Description

bool ad prepare for_sleep(void) The CPM inquires the Adapter about whether the

system can go to sleep.

void ad sleep_canceled (void) If an Adapter rejects sleep, the CPM calls this function

to resume any Adapters that have previously accepted
it.

void ad wake up ind(bool) The CPM informs the Adapter that the pad latches are

to be removed so that it re-initializes the GPIOs that
are used by the hardware resource it controls and,
depending on the resource type, the resource itself.

void ad xtallém ready ind(void) The CPM informs the Adapter that the XTAL16M is
ready and is or may be set as the system clock.

The Adapter also informs the CPM about the time it needs to prepare the hardware resource for
power-down. The CPM uses this information when it executes the sleep entry procedure. This time
will be zero in general but there are exceptions (e.g. the UART interface).

When the CPM is invoked to put the system to sleep (the OS is idle) and the BLE is powered-down,
the CPM executes the following steps:

Calculates the time when the OS needs to wake-up to serve its next scheduled event.
Calculates the time when the BLE needs to wake-up to serve its next scheduled event.
Determines the maximum sleep time that is allowed based on the results from Steps 1 and 2.

If the calculated sleep time is larger than a pre-set minimum sleep time below which sleeping is
not power efficient (dg configMIN SLEEP TIME), then the CPM informs all the registered
Adapters about its intention to put the system in power-down by calling each Adapter’'s

ad prepare for sleep() function. The return value of this function allows the Adapters to tell
the CPM that it cannot enter sleep as it still has work to do.

5. If all Adapters confirm the power-down entry, the CPM continues and puts the system into sleep.

6. If at least one Adapter rejects the power-down entry, the CPM informs the Adapters that have
already accepted it, to resume normal operation and puts the system into Idle mode.

B

During wake-up, CPM and Adapters interact twice:

First, when it prepares the system for power-up the CPM activates the Peripherals power-domain
where it calls each Adapter’s ad wake up ind() to inform them of the imminent removal of the pad
latches.

Second, when the XTAL16RDY IROn ISR is called after the XTAL16M has settled it calls each
Adapter’s ad xtallém ready ind() to inform them that the clock is ready.

Any Adapters such as the UART which need the high precision clock will perform the initialization of
the resource at this point.

User Manual Version 6.1 19-Jan-2022

CFR0012 90 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

UART

05 / Main cPM Adapter X UART Adapter UART LLD

OS_EVENT_WAIT ()
0s_idle ()

[yw_rexv_tsag) e mQ

O5_EVENT_SIGNAL_FROM_ISR ()

Figure 36: CPM and Adapter Interaction - an Adapter aborts sleep

The interaction between the CPM and the Adapters is shown in Figure 36. According to the scenario
presented there, a system that consists of the OS, the CPM and two Adapters (Adapter X and UART
Adapter) is about to switch mode, from Active to Sleep. The UART module includes two submodules,
UART Adapter and UART LLD, which exchange hardware status messages [e.g.

hw uart receive ()] while waiting for an OS-originated event.

To enter power-down 0S_Idle() issues a “Enter Sleep Mode Req” [pm sleep enter ()] to the CPM.
The CPM will first calculate sleep time and if sleep is possible will contact the first Adapter in the
system, Adapter X, and send it a “Prepare for Sleep Req” [*ad prepare for sleep()]. Adapter X
accepts the power-down, starts preparing for it and responds by a simple “TRUE” response. Then
the CPM calls the next Adapter in sequence, the UART. This adapter tries to deactivate the UART
block unit, by notifying UART LLD via a “UART HW Sleep Req” [hw uart rx off ()]. However,
during this process a character is received in the UART LLD, the Flow OFF check fails and the UART
Adapter receives a “FALSE” notification which is forwarded to the CPM. After receiving the “FALSE”
notification, CPM contacts Adapter X to inform that the system will remain in power-up state by
sending a “Cancel Sleep” message [*ad sleep canceled()]. Finally, the system is placed in Idle
state.

User Manual Version 6.1 19-Jan-2022

CFR0012 91 of 206 © 2022 Renesas Electronics

M0 LENESAS

DA1468x Software Platform Reference

UART
0S / Main CcPM Adapter X UART Adapter UART LLD

OS_EVENT_WAIT ()
05_idle ()

WAKING-UP

ACTIVE

Figure 37: CPM and Adapter Interaction during Sleep/Active mode switch

Figure 37 illustrates the interaction of the CPM with the Adapters of the previous example (Figure
36), in a successful sleep entry and a subsequent wake-up from an external event (the CTS pin
changes state). In this example, both Adapter X and the UART Adapter accept the power-down so
the CPM puts the system into the proper power-down state. While sleeping, a transmit request from
the remote host is issued and the system wakes-up. Before removing the pad latches, the CPM calls
the ad wakeup ind() of both Adapters to perform partial or full initialization. The UART Adapter
detects the remote host’s request and instructs the CPM not to put the system back to sleep until the
XTAL16M has settled and the UART block is turned-on by calling the pm defer sleep for(). Thisis
the simpler approach as the CPM will immediately put the system to Idle state if there is nothing else
to be done. If the call to pm_defer sleep for() is omitted then the system will be put into Idle state
but following a more complex procedure. This procedure involves the CPM contacting the Adapters,
the UART Adapter will deny the sleep request and the CPM will call the Idle WFT () after cancelling
sleep for Adapter X. When the XTAL16M settles the CPM calls the ad xtallém ready ind() of both
Adapters. The UART Adapter will check whether the system clock is the high precision clock and, if
not, request it be changed. This is completed without delay. Then it can proceed with the initialization
of the UART hardware.

User Manual Version 6.1 19-Jan-2022

CFR0012 92 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

9.3.1 BLE Wake-up

Special code is included in the SmartSnippets™ DA1468x SDK to ensure the proper wake-up of the
BLE core. If a problem occurs, then an assertion is triggered. Two macros can be used to allow a
percentage of such errors to occur without triggering an assertion: BLE MAX MISSES ALLOWED and
BLE MAX DELAYS ALILOWED. Before explaining how these macros operate, a discussion about the BLE
sleep and wake-up procedures is necessary.

During the BLE sleep preparation step the software calculates the time (time=ts) that the BLE core
can be in sleep mode (or, in other words, the time when the BLE core must wake-up). The software
then programs this time to the BLE core and instructs it to enter power-down state. Then the BLE
core switches from the 16MHz clock to the low power clock and enters power-down state. While in
this mode, the BLE power domain can be turned off to save power.

The wake-up sequence of the BLE core consist of the following steps (please refer also to the
datasheet):

e BLE WAKEUP LP IRQ occurs at a predefined number of clocks (time = tw) before the time (time =
tS) when the BLE core must wake-up. The term "wake-up" refers to the BLE core being powered
up and running at 16MHz. So, the service routine of this interrupt is responsible for powering-up
the BLE power domain and starting the fast clock before the time ts. It then waits for the
BLE SLP IRQto occur to pass the execution to its handler.

e BLE SLP IRQOccurs attime tsor later. Ideally, if no delays have occurred then BLE SLP IRQ will
occur exactly at ts. If, for any reason, the wake-up of the BLE core was delayed then
BLE SLP_IRQWwill occur later than tS. When BLE SLP IRQ occurs the BLE core automatically
switches from the low power clock to the 16MHz clock and enters power-up state. The ISR is
responsible for performing clock compensation. This is readjusting the time counters of the BLE
core (slot and uses timer) to take into account the sleep period (ts or a time period larger than
tS).

The time tWis calculated to take account of potential normal delays in the system (i.e. a critical
section that runs with the interrupts disabled) and make sure they do not affect the wake-up of the
BLE core. So, by default, twis larger than the "optimal" setting. Therefore, the service routine of the
BLE WAKEUP LP IRQ assumes that the wake-up of the BLE core will have been completed well before
the BLE SLP IRQis triggered. Based on this assumption, if the BLE SLP IRQ hits right after the wake-
up of the BLE core, there is a high chance that the servicing of the BLE WAKEUP LP IRQ has been
delayed. This case is checked in the ble 1p isr() when the code is built in DEVELOPMENT MODE.
Normally, an assertion would hit to indicate this "error". However, the macro

BLE MAX MISSES ALLOWED can be used to allow for a small percentage of such delays. This can be
used in applications where the maximum time that the system runs with the interrupts disabled,
blocking the servicing of the BLE WAKEUP LP IRQ, is larger than usual. The percentage is calculated
as:

misses allowed = (BLE MAX MISSES ALLOWED / BLE WAKEUP MONITOR PERIOD) * 100%

After the BLE WAKEUP LP IRQISR, the BLE SLP IRQ ISR executes. slp isr () checks whether the
BLE core was woken up in time or the wake-up was delayed. This is done by checking the
programmed sleep time tS with the actual sleep time ta. If tA > tSthen the wake-up was delayed
by ta-ts low power clock cycles. This is as error as in most cases, it results in missing the BLE event
that the system woke-up for. This case can happen if the interrupts were disabled for quite a long
time. In that case, ble wakeup lp isr interrupt would have been latched but its servicing would
have been deferred until the interrupts were enabled. During this period, the BLE core would be
sleeping. So, after powering the BLE core up, the BLE SLP TRQ would hit but the actual sleep time
would have been larger than the programmed time. The macro BLE MAX DELAYS ALLOWED can be
used to allow for a small percentage of such delays in the same way as the macro

BLE MAX MISSES ALLOWED is used. The percentage is calculated as:

delays allowed = (BLE MAX DELAYS ALIOWED / BLE WAKEUP MONITOR PERIOD) * 100%

User Manual Version 6.1 19-Jan-2022

CFR0012 93 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

BLE WAKEUP MONITOR PERIODis setto 1024 by default.

9.4 Power configuration

The term “power configuration” is used to denote the configuration of the system during sleep. In
power-up modes, the system uses the DCDC converter as the main power supply (unless otherwise
configured) as this setup offers lower power consumption.

Although the power setup is quite straightforward for the power-up modes, this is not the case for the
power-down modes as there are various options for providing power to the power rails (see Figure
38). More specifically,

e The 3.3V output can be driven by the LDO ret (low power, low driving strength) or the
1LDO VBAT RET (high driving strength but resampling is required periodically to keep the correct
voltage level, which increases power consumption).

e The 1.8V output for the Flash can be provided by the LbO 10 RET or the DCDC. Note that the
LDO IO RET is powered from the 3.3V rail. Note that the DCDC requires periodic recharging to
keep the outputs constant, which increases power consumption.

e The 1.8V output for the external peripherals can be provided by the LbO T0 RET2 or the DCDC.

Note that the LDO IO RET2 is also powered from the 3.3V rail. Note that the DCDC requires
periodic recharging to keep the outputs constant, which increases power consumption.

e The 1.4V output is not provided during sleep.

The low power clock is required to be active during sleep to be able to wake-up the part of the
system that does the resampling of the bandgap or restoring the energy of the inductor of the bchc.

VBUS b (4.2V - 5.75V) ccev (1.7V - 4.5V) VBAE‘
J_ charger o » J_
4.7uF 3x g 4
O _ED' + T 1F
VDDIO D—E— QSPI-I/O LDO- LDO_ret LDO_ret LDO- LbO- drain == .
= usB | ~3V, (clamp ~3V) VBAT VBAT_ = =
3.3V (Ifoa\i/\r/ngower) Low power 3.3V RET SOCPT
= L GZUUEGLE O.10hm§
GPIOs Vcont (<3.3V) A Vcore
ﬁ L > SpCNE
V33 a J- - \ J Vsys (1.7V - 3.3V) \ \ o
4.7uF ¢ l
I LDO_IO) vy) J USB
= RetT || -PO-1© | sand-gap | LDO_sleep LDO_core | | LDO_radio || usB- ?— Dp
Y | (clamp ~1v) (by-pass) (by-pass) || Charge Dn
‘ ¢ Low power 1.2v 1.4v detect | =
vDD1v8 GJ_ ;’ ;’ Vflash (1.8V) RCX
10uF 75mA/2mA
I 10010 [, o6 100 y Veore(L2V) § 50mA/LmA o V12
= _RET2 - A * J_
4.7uF
VDD1V8P & ‘ # Som2 |:"] Digital core I
J_ Vext (L.8V) 75mA/2mA SIMO RC16 L
10uF I Buck I_V[l Dkig, =
DCDC XTAL32k Wake-up
L |1x - 20mA v +
0.47uH > RC32 ¥ ON/OFF black blocks
LY | ON/OFF green blocks
VBAT2 D >
V14 GJ_ Vradio (1.4V) A aVld RF
4.7uF
A IA A
I Lbo e Radio 3 LDEL' VE/S» XTAL16M
1v2 PLL 1v2
Figure 38: Power Management Unit
User Manual Version 6.1 19-Jan-2022

CFR0012 94 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

In Figure 38, the red color is used for the Sleep state and the green for the Active state.

9.4.1 Recommended Power-Down Power Configuration

1. In the recommended power-down Power Configuration the 3.3V rail is powered via the
1LDO VBAT RET. In this case it is required to bring-up part of the system periodically to resample
the bandgap. The 1.8V for the Flash and for the external peripherals are provided via the
LDO IO RET and LDO IO RETI2 respectively.

VBUS D -I_ (4.2V-575V) ‘;S'(;\'Ir s (1.7V-4.5V) = Vsig
4 TuF ‘ ‘ ‘ o 3x #i
VDDIO D—E— QSPI-I/0 LDO_rot LDO_rot LDO- o > I’“F
= % (clamp ~3V) (clamp ~3V) VBAT_ SOCP L
Low power Low power RET —
b | l L olronm;
GPIOs Veont (<3.3V)
SPCN=
J' V33c T L v Vsys (1.7V-3.3V) e
AAAAAAAAA W | ¢ W% : ! l uUsB
Penpheral ® L?:E-;o ln'mu o LDO_sloep Use- Dp
e Y. | (ctamp ~1V) Charge Dn
Low power ~detect s
g VPoBaT T—o—> o 17575 RCX
uF 75mARMA
g‘g‘l 10 :l: Veore (1.2V) S0mA/ImA oVi2
VDD1V8P G Ty Digital core
, 10uF% Vext (1.8V) V2mA m 4
18v I XTAL32K I ako-up
Perghera = |LX - 7
ol o > RC32 I ONIOFF black blocks
VBAT2 o - e
V14 O Vradio is not provided qV14_RF
4 7uF"L |
Al !
\
Figure 39: Recommended Power configuration
The SmartSnippets™ DA1468x SDK provides the following configuration settings:
Table 29: Configuration settings
Available configuration settings Description
dg_configSET RECHRRGE PERIOD This is the period of the Sleep Timer that is used to bring-up

part of the system periodically to resample the bandgap
voltage or to restore the energy of the inductor of the DCDC.

dg_configPOWER FLASH If set to ‘1’ then the 1.8V for the external QSPI Flash is
supplied.
dg_configFLASH POWER DOWN If set to ‘1’ then the QSPI Flash is put to “Power Down” for

the duration of the sleep period.

dg_configFTASH POWER OFF If set to ‘1’ then the QSPI Flash is powered-off during sleep
(the 1.8V is turned-off during sleep). Note that

dg configFIASH POWER DOWN has priority over
dg_configFIASH POWER OFF. If both are set, then the QSPI
Flash will be put to “Power Down” mode while sleeping.

dg_configPOWER EXT 1V8_PERIPHERALS If set to ‘1’ then the 1.8V for the external peripherals is
supplied.
User Manual Version 6.1 19-Jan-2022

CFR0012 95 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

9.4.2 System Clock
The clock tree diagram of the DA1468x is depicted in Figure 40.

Controlled by HW.
Automatically selects Ip_clk
when Deep/Sleep Mode activated

Wake UP

APB Interfaces

Divide by
PCLK_DIV

CLK_AMBA_REG
[OTP_ENABLE]

ARM MO

OTP Controller
CLK_PER_REG
[IR_CLK_ENABLE]

IR Generator
CLK_PER_REG
[QUAD_ENABLE]

CLK_AMBA_REG
[ECC_CLK_ENABLE]

QUAD Decoder

ECC

CLK_AMBA_REG
[AES_CLK_ENABLE] AES/HASH
CLK_AMBA_REG

[Divideby | [TRNG_CLK_ENABLE]
HCLK_DIV TRNG
ahb_clk

CLK_PER_REG[KBSCAN_CLK_SEL]
Divide by CLK_PER_REG[KBSCAN_ENABLE]
L KBSCN_CLKDIV | KEYB SCAN
CLK_PER_REG[SPI_CLK_SEL]
) "y CLK_PER_REG[SPI_ENABLE]
Divide b
) H Pl oLy ‘ SPI/SPI2
0
1

CLK_PER_REG[I2C_CLK_SEL]

CLK_PER_REG[I2C_ENABLE]

12C/12C2

CLK_PER_REG[UART_ENABLE]

UART/UART2

[APB intertaces |
[ARMMO |

CLK_PER_REG[ADC_SEL_SEL]

0
ADC
1
Divide by SocC
16 (fixed)
Divide by
SRC_DIV }* e R
[Divide by
| PDM_DIV .
0 Divide by | PCM_DIV_REG[CLK_PCM_EN]
D—{ Pcm DIV | CLK_AMBA_REG[QSPI_ENABLE PEMHES
PCM_DIV_REG[PCM_SEC_SEL] | Divide by

— QSPI Controller

CLK_CTRL_REG[RUNNING_AT_32K] QSPI_DIV
Divide by i
32 (fixed) o WDOG Timer
Divide by 2**
CLK_TMR_REG[TMRO_ENABLE]

TIMERO_CTRL_REG[TIMO_CLK_SEL] Breath Timer

it

CLK_TMR_REG[TMRO_CLK_SEL] o CLK TMR REG

Divide by 1 [TMRO_ENABLE -
TMRO_DIV v Timer0

CAPTIM_CTRL_REG[CAPTIM_SYS_CLK_EN]

= o

CLK_TMR_REG

[
CLK_TMR_REG[TMR1_CLK_SEL] [TMR1_ENABLE, "
Lp_clk o\ —— S 1 Timerl
— Divide by
1 TMR1_DIV

o Divide by CLK_TMR_REG[TMR2_ENABLE]
i

TMR2_DIV CLK_CTRL_REG[USB_CLK_SRC]

Timer2

CLK_TMR_REG[TMR2_CLK_SEL] ahb_clk i USB Controller
o

Divide by CLK_RADIO_REG[BLE_ENABLE]
1 BLE_DIV
BLE Core

Divide by
2 (fixed)

CLK_CTRL_REG[PLL_DIV2]

RC16M
oscC
XTALOSC diVN_CIk CLK_RADIO_REG[RFCU_ENABLE]
] 16miE2Mm || - Divide by e - Digital PAY/
DivN RFCU_DIV

CLK_CTRL_REG([SYS_CLK_SEL] Coex

sys_clk

O r WN

H

Automatically adopts the division if PLL
or XTAL16M is used. Program
CLK_CTRL_REG[XTAL32M_MODE] ¢\« CTRL_REG[DIVN_XTAL32M_MODE]

in case of a 32MHz crystal used
I
N RF_ADC_div
-2 Analog PHY
DCDC
Divide by
16 (fixed) | BOD

Figure 40: Clock tree diagram

The clock manager, which is part of the CPM, has the following characteristics:

Performs the clock initialization of the system after boot.

Controls only the “system level” clocks. The driver of each hardware resource (or the Adapter, if
one exists) is responsible for controlling the clock setting for the resource. In this context, the
CPM controls the “system clock”, which is the green line in the figure above, the AHB and APB
clocks, which are the blue lines at the top of the figure, and the low power clock, which is the
black line.

User Manual Version 6.1 19-Jan-2022

CFR0012 96 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

e After wake-up, the system runs by default using the RC16 clock. The clock manager switches
back to the last configuration set by the application (system clock type and divider, and AHB and
APB dividers) either immediately if possible, or after the XTAL16M has settled. This procedure is
transparent to the application tasks. The CPM unblocks any task that has blocked waiting for the
high precision clock.

e Handles requests to switch to another clock configuration. A request may be denied if this switch
affects a hardware resource that is active (i.e. a hardware timer).

e Conditionally lowers the clocks (using the 1:N dividers for the system clock and the AHB and
APB clocks) automatically when the system enters Idle mode. This procedure is not performed if
the lower clock frequencies affect a hardware resource that is active.

e Hides the complexity of the clock tree from the applications by offering a unified API for clock
control.

e Offers the application tasks the ability to switch to another clock configuration during runtime, if
possible. The low power clock cannot be changed during runtime.

The clock manager API consists of the following functions:

Table 30: Functions in Clock Manager API

Function Description

bool cm sys clk set(sys clk t type) Set the system clock. The available options

are: RC16, XTAL1eM (or XTAL32M), PLL48 and
PLL96. The low power clock cannot be set as
the system clock.

bool cm cpu_clk set(cpu_clk t clk) Set the system clock and the aHB divisor such
that the requested clock frequency is
achieved.

void cm apb set clock divider(apb div_t div) Set the clock divisor for the 2PB clock. The

actual frequency depends on the system clock
used.

bool cm_ahb_set_clock divider (ahb div_t div) Set the clock divisor for the 2HB clock. The

actual frequency depends on the system clock
used.

get and _fromISR variants of the above _set_functions are also
available.

void cam lp clk init(void) Initialize the Low Power clock.

bool cm sys clk set(sys clk t type) Set system clock.

bool cm lp clk is avail(void) Check if the Low Power clock is available.

void em clk init low level (void) Execute clock initialization after power-up.

void cm sys clk init(sys_clk t type) Execute clock initialization after the OS has

started.

9421 XTAL32M support

Note 8 XTAL32M support is available only for DA14683 devices —it is not supported for DA14681
devices.

In order to set XTAL32M clock as the main system clock user must follow next steps:

1. Update clock configuration in the application’s (e.g. pxp_reporter) custom_config_qgspi.h header
file by defining:
#define dg configEXT CRYSTAL FREQ EXT CRYSTAL IS 32M

User Manual Version 6.1 19-Jan-2022

CFR0012 97 of 206 © 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

2. Update clock initialization in the application’s main function (in main.c file). The following

functions must be altered as:

cm sys_clk init (sysclk XTAL32M)

cm sys clk set (sysclk XTAL32M)

9.5 Charger configuration

Three different charging configurations are currently supported by the SmartSnippets™ SDK. More
details on charging can be found in [13]. The available configuration settings for the charger are:

e No Charging
e Charging with default parameters
e Charging with custom parameters

The configuration settings for the integrated charger of Li-ion batteries can be found in
sdk/config/bsp defaults.h. These parameters should not be modified in-place but overridden in
the project specific config/custom config gspi.h folder if needed. Table 31 shows the available

settings for the charger.

Table 31: Configuration settings for integrated charger of Li-ion batteries

Configuration settings

Description

dg configUSE USB CHARGER

It enables / disables the use of the Charger from the
application.

dg configUSE USB ENUMERATICN

It controls whether enumeration with the USB Host will
take place or not.

dg_configALIOW CHARGING NOT ENUM

It controls whether the Charger will start charging
using charge current up to 100mA until the
enumeration completes.

dg_configUSE_NOT ENUM CHARGING TIMEOUT

According to the USB Specification, there is a time
limit that a device, which is connected to the USB bus
but not enumerated, can draw power. This
configuration setting controls whether the Charger will
respect this time limit or not.

dg_configPRECHARGING INITIAL MFASURE DELAY

This is the time to wait before doing the first voltage
measurement after starting pre-charging. This is to
ensure that an initial battery voltage overshoot will not
trigger the Charger to stop pre-charging and move to
normal charging.

dg configPRECHARGING THRESHOLD

The voltage threshold below which pre-charging starts.

dg configCHARGING THRESHOLD

The voltage threshold at which pre-charging stops and
charging starts.

dg configPRECHARGING TIMEOUT

The maximum time that pre-charging will last. If the
dg_configCHARGING THRESHOLD is not met within this
period then charging is stopped.

dg configCHARGING TIMEOUT

The maximum time that charging will last. This setting
covers both the cc and cv phases of charging.

dg configCHARGING CC TIMEOUT

The maximum time that the charging hardware will
stay in the cC phase. If this period elapses and the
charging phase is still cC then charging stops.

User Manual

Version 6.1

19-Jan-2022

CFR0012

98 of 206 © 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

Configuration settings

Description

dg configCHARGING CV TIMEOUT

The maximum time that the charging hardware will
stay in the cv phase. If this period elapses and the
charging phase is still cv then charging stops.

dg_configUSB CHARGER POLLING INTERVAL

While being attached to a USB cable and the battery
has been charged, this is the interval that the VBAT is
polled to decide whether a new charge cycle will be
started.

dg_configBATTERY CHARGE GAP

This is the safety limit used to check for battery
overcharging.

dg_configBATTERY REPLENISH GAP

This is the threshold below the maximum voltage level
of the battery where charging will be restarted to keep
the battery fully charged.

dg configBATTERY TYPE

This is the battery type that is used in the system.
Valid options are BATTERY TYPE LICOO2,

BATTERY TYPE LIMN204, BATTERY TYPE LIFEPO4,
BATTERY TYPE LINICOAIO2 (charging voltage for all the
options is 4.2V), BATTERY TYPE CUSTOM (charging
voltage dg_configBATTERY TYPE CUSTOM ADC VOLTAGE)
and BATTERY TYPE NO RECHARGE.

dg_configBATTERY TYPE CUSTOM ADC VOLTAGE

In case of a custom battery, this parameter must be
defined to provide the charging voltage level of the
battery (in ADC measurement units). It is used by the
charger to check if the battery is charged before
starting charging, possible over-charging etc.

dg_configBATTERY CHARGE VOLTAGE

This is the charging voltage setting for the charger
hardware. See [1],
CHARGER_CTRL1_REG:CHARGE_LEVEL
description for more details.

dg_configBATTERY CHARGE CURRENT

This is the charging current setting for the charger
hardware. See [1],
CHARGER_CTRL1_REG:CHARGE_CUR description
for more details.

dg configBATTERY PRECHARGE CURRENT

This is the pre-charging current setting for the charger
hardware. The correlation of settings between the
configured value and the current is shown in the Table
33.

dg configBATTERY LOW LEVEL

If not zero, this is the lowest allowed limit of the battery
voltage. If VBAT drops below this limit, the system
enters hibernation mode.

dg configBATTERY CHARGE NTC

It controls whether the thermal protection will be
enabled or not. Using this requires an external
thermistor.

951 No Charging

To enable the “No Charging” configuration, the user has to set dg configUSE USB CHARGER = 0 in the
project’s config/custom config gspi.h file.

Note 9 It is important to use this configuration when no battery is attached to avoid any unwanted
behavior.

User Manual Version 6.1 19-Jan-2022

CFR0012 99 of 206 © 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

9.5.2 Default Charging

If no custom parameters are defined in the project’'s config/custom config gspi.h file then the
default ones will be used. The default configuration settings for the charger are shown in Table 32.

Table 32: Charging with default parameters

Configuration settings

Description

dg configPRECHARGING THRESHOLD

2462 (3.006V)

dg configBATTERY TYPE

BATTERY TYPE CUSTOM &&
dg configBATTERY CHARGE VOLTAGE = OxA (4.2V)

dg configBATTERY PRECHARGE CURRENT

18

dg configCHARGING THRESHOLD

2498 (3.05V)

dg configBATTERY CHARGE CURRENT

2 (30mA)

dg_configBATTERY CHARGE NTC

1 (disabled)

dg configPRECHARGING TIMEOUT

30 * 60 * 100 (30min)

9.5.3 Custom Charging parameters

The user may also define custom parameters for the charger. For example, the pxp reporter demo
application uses custom charging parameters, as shown in Code 16: Charging with custom

parameters. These parameters are defined in the application’s config/custom config gspi.h file.

ttdefine
ttdefine
ttdefine
ttdefine
ttdefine
#tdefine
t#tdefine
#tdefine
ttdefine

t#tdefine
t#tdefine
t#tdefine
ttdefine

dg_configBATTERY_TYPE
dg_configBATTERY_CHARGE_VOLTAGE
dg_configBATTERY_TYPE_CUSTOM ADC_VOLTAGE
dg_configPRECHARGING_THRESHOLD
dg_configCHARGING_THRESHOLD
dg_configBATTERY_CHARGE_CURRENT
dg_configBATTERY_PRECHARGE_CURRENT
dg_configBATTERY_CHARGE_NTC
dg_configPRECHARGING_TIMEOUT

dg_configUSE_USB
dg_configUSE_USB_CHARGER
dg_configALLOW_CHARGING_NOT_ENUM
dg_configUSE_NOT_ENUM CHARGING TIMEOUT

(BATTERY_TYPE_CUSTOM)

OXA // 4.2V
(3439)

(2462) // 3.006V

(2498) // 3.05V

4 // 60mA

20 // 2.1mA

1 // disabled

(30 * 60 * 100) // N x 1@msec

1
1
1
0

Code 16: Charging with custom parameters

Table 33: Pre-charging current settings

dg_configBATTERY_PRECHARGE_CURRENT setting Pre-charging current (mA)

16 Reserved

17 Reserved

18 1

19 1.5

20 2.1

21 3.2

22 4.3

User Manual Version 6.1 19-Jan-2022
CFR0012 100 of 206 © 2022 Renesas Electronics

M0 LENESAS

DA1468x Software Platform Reference

dg_configBATTERY_PRECHARGE_CURRENT setting Pre-charging current (mA)
23 Reserved

24 6.6

25 7.8

26 Reserved

27 11.3

28 13.3

29 15.3

9.54 Charger configuration process

Charger configuration (process) description can be divided into three distinct parts. The first is related
to the USB configuration, the second to the charging algorithm and the third to the actual charging
parameters.

The first part of the Charger configuration process depends on the application capabilities. In Table
34 below, two typical configurations are listed, one when enumeration is not supported and a second
when it is supported, i.e. the application includes a USB driver.

Table 34: Charger - Configuration settings for the USB interface

Without enumeration

dg_configUSE USB CHARGER 1

dg_configUSE USB ENUMERATION 0
(or left to the default value)

dg configALLOW CHARGING NOT ENUM 1

This will be the most common setting as it offers the option
to charge from an SDP port.

dg_configUSE NOT ENUM CHARGING TIMEOUT 0

May be set to 1 if adhering to the USB specification is
mandatory. Even if it is left as 0 and the SDP port shuts
down the power after 45 minutes, the charging will simply

stop.
With enumeration
dg_configUSE USB CHARGER 1
dg_configUSE USB ENUMERATION 1
dg configALLOW CHARGING NOT ENUM 1
dg configUSE NOT ENUM CHARGING TIMEOUT 0

The configuration of the charging algorithm is more complex as it requires the setting of various
voltage levels in ADC measurement unitst. In Table 35 below, a typical configuration for the charging
algorithm is listed.

The mathematical formula used for converting Vbat to ADC is the following:
y[ADC units] = (4095 * Vbat[Volts]) / 5)

lFora Spreadsheet-based tool that helps calculate the voltage from the ADC value, please contact Dialog customer support.
User Manual Version 6.1 19-Jan-2022

CFR0012 101 of 206 © 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

Table 35: Charger - Configuration settings for the charging algorithm

Configuration settings Values
dg_configPRECHARGING INITIAL MEASURE DELAY Undefined

(the default setting is used)
dg_configPRECHARGING THRESHOLD 2462

(3.006V)
dg_configCHARGING THRESHOLD 2498

(3.05V)
dg_configPRECHARGING TIMEOUT 30 * 60 * 100

(30 minutes, the default setting is 15 minutes)

dg_configCHARGING CC_TIMEOUT

120 * 60 * 100
(2 hours, the default setting is 3 hours)

dg configCHARGING CV TIMEOUT

180 * 60 * 100
(3 hours, the default setting is 6 hours)

dg configUSB CHARGER POLLING INTERVAL

1*60*100
(1 minute, the default setting is 1 second)

dg configBATTERY CHARGE GAP

Undefined
(the default setting of 0.1V is used)

dg configBATTERY REPLENISH GAP

Undefined
(the default setting of 0.2V is used)

The final part of the Charger configuration depends on the characteristics of the battery that is used
in the system. Let’s consider a battery that has the charging profile which is depicted in Figure 41

with a charging voltage of 4.35V. There are three phases to the charging process.

e Pre-Charge

Below 3.0V pre-charging with a very low charging current of 2.1mA is required until the 3.0V level

is reached.

e Constant Current (CC)

The normal charging current of 30mA is applied in the Constant Current phase of the charging
until the voltage reaches the charging voltage.

e Constant Voltage (CV)

The charging current is gradually reduced to keep the normal charging voltage on the battery.
Charging is considered completed when the charging current drops to 10% of the nominal value,

i.e. 3mA.
User Manual Version 6.1 19-Jan-2022
CFR0012 102 of 206 © 2022 Renesas Electronics

bon RENESAS

DA1468x Software Platform Reference

A A
| V

30mA

———————————— 4.35v

- / ”””””””””””””””””””””””””””””””””” 3.0v
3mA

2.1mA

Pre-charging CC phase CV phase

Time

Figure 41: Battery charging profile

The configuration of the charger for this specific battery is listed in Table 36.

Table 36: Charger — configuration settings for a specific battery

Configuration settings Values

dg_configBATTERY TYPE BATTERY_TYPE_CUSTOM

(Since this Li-ion battery has a charging voltage level
other than 4.2V, this is a custom battery.)

dg_configBATTERY TYPE CUSTOM ADC VOLTAGE 3562

(4.35V)
dg_configBATTERY CHARGE VOLTAGE 0xD

(the hardware setting for 4.35V)
dg configBATTERY CHARGE CURRENT 2

(the hardware setting for 30mA)
dg configBATTERY PRECHARGE CURRENT 20

(the setting for 2.1mA)
dg_configBATTERY LOW LEVEL 2496

(3.05V)

9.55 Issues for non-rechargeable batteries

If the user uses a non-rechargeable battery, header files must be modified. In that case please
contact Dialog Customer Support.

If the user uses a USB charger with an invalid battery type such as BATTERY TYPE NO RECHARGE Or
BATTERY TYPE NO BATTERY the compilation will be aborted with an error. When using a non-
rechargeable battery, the Hibernation option is disabled because of low voltage detection.

User Manual Version 6.1 19-Jan-2022

CFR0012 103 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

9.5.6 Charger related callback functions

Table 37 below refers to charger related callback functions which can be found in the sys_charger.c
file located in <sdk root directory>\sdk\bsp\system\sys man. These functions are defined as
weak (__attribute ((weak)).

Note 10 These call-backs may be implemented by the application code in order to catch events sent by the
USB charger. Note that the USB charger task is started before the application task. Thus, these call-
backs may be called before the application task is started. The application code should handle this
case, if there is a need. For example, a possible implementation of the usb attach cb() call-back is
shown in Code 17:

PRIVILEGED_DATA bool app_task_is_initialized;

enum RCV_USB_INDICATIONS {
RCV_USB_NONE,
RCV_USB_ATTACH,

} app_usb_indication;

void usb_attach_cb(void)

{
if (app_task_is_initialized) {
// Do something
} else {
// Raise a flag for the app to check when started.
app_usb_indication = RCV_USB_ATTACH;

}

{

switch (app_usb_indication) {
case RCV_USB_NONE:

break;
case RCV_USB_ATTACH:

break;
default:
break;

}

app_usb_indication = RCV_USB_NONE;

*
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

* void app_task(void *pvParameters)
*

*

*

*

*

*

*

*

*

*

*

*

*

*

* app_task_is_initialized = true;
*
*

Code 17: Callback function example to catch events sent by the USB-charger

Table 37: Charger related callback functions

Function

Description

usb attach cb()

Callback function used to notify the application task
that the usb cable has been attached.

usb detach cb()

Callback function used to notify the application task
that the usb cable has been detached.

usb start enumeration cb()

Callback function used to notify the application task

User Manual

Version 6.1 19-Jan-2022

CFR0012

104 of 206 © 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

Function

Description

that the charger will start to enumerate if possible. This
means that the dg_configUSE USB ENUMERATION flag
has been set to 1. This also means that the

dg configUSE USB is set to 1 and the USB interface
will be used for data transfers.

usb charging ()

Callback function used to notify the application task
that the charger has started the charging procedure
according to the predefined settings.

usb precharging ()

Callback function used to notify the application task
that pre-charging has started (the pre-charging current
has been set). The charging state is set to

USB_PRE CHARGING ON.

usb precharging aborted ()

Callback function used to notify the application task
that pre-charging has stopped. It means that the
charging state has been set to USB_ CHARGING BLOCKED.
This could happen if after a period, defined by the

dg configPRECHARGING TIMEOUT parameter, the Vbat
is not higher than 3.0 V.

usb_charging stopped ()

Callback function used to notify the application task
that stop of battery charging has been detected. The
charging state will be set to USB_CHARGING OFF
afterwards.

usb charging aborted ()

Callback function used to notify the application task
that the charging process has been aborted. The
charger state has been set to USB_CHARGER ATTACHED.

usb charging paused()

Callback function used to notify the application task
that the charging process has been paused. It means
that the charger state is set to USB_ CHARGER PAUSED.

usb_charged ()

Callback function used to notify the application task
that the charging of the battery (Li-ion) has ended. The
charger state has been set to USB CHARGER ATTACHED.

usb charger battery full ()

Callback function used to notify the application task
that the charging has stopped because vbat level
has reached the defined level. The charging state has
been set to USB_CHARGING OFF.

usb charger bad battery()

Callback function used to notify the application task
that there is a problem with the vbat level of the
battery. The charging state has been set to
USB_CHARGING BLOCKED.

usb charger temp low ()

Callback function used to notify the application task
that the charging process has been aborted. This
caused by a persisting error generated due to the fact
that the battery temperature is too low.

usb charger temp high ()

Callback function used to notify the application task
that the charging process has been aborted. This
caused by a persisting error generated due to the fact
that the battery temperature is too high.

usb is suspended ()

Callback function used to notify the application task
that the USB has been suspended.

usb is resumed ()

Callback function used to notify the application task
that the USB has been resumed. The system clock and
the IRQs have been resumed while the charger state

User Manual

Version 6.1

CFR0012

105 of 206

19-Jan-2022

© 2022 Renesas Electronics

M0 LENESAS

DA1468x Software Platform Reference

Function Description

has been set to USB_CHARGER ATTACHED.

9.6 Watchdog Service

9.6.1 Description

The system watchdog service (sys watchdog) has been designed to monitor system tasks and avoid
system freezes. The interaction of this service with other parts of the system is shown in Figure 42:

o‘\\
&
A

‘ register() S R
hw_watchdog | ¢mmmb | sys_watchdog | Gmemmmmd (TASK2
‘ notyfy()

oy,
%, ®)
N

Figure 42: Watchdog overview

(TAsK1)

(TAsK3)

Effectively, sys watchdogis a layer on top of the watchdog low-level driver that allows multiple tasks
to share the underlying hardware watchdog timer. The watchdog service can be used to trigger a full
system reset. This will allow system to recover from a catastrophic failure in one or more tasks.

9.6.2 Concept

A task that should be monitored has to first register itself with this service to receive a unique handle
(id). The task must then periodically notify sys watchdog using this id, to signal that the task is
working properly. In case of any error during registration, the invalid id -1 is returned.

The hardware watchdog is essentially a countdown timer, which will trigger a full system reset if it
expires. To prevent this, the watchdog timer must be reset to its starting value before it expires. This
starting value can be configured in the application custom configuration files via the numerical macro
dg configWDOG RESET VALUE. Its default value is the maximum OxFF, which corresponds to
approximately 2.6 seconds (the time unit is 10.24 msec). The maximum number of tasks that can be
monitored is defined by the configuration macro dg_configWbOG MAX TASKS CNT (the absolute
maximum is 32).

If during one watchdog period all monitored tasks notify sys watchdog, the hardware watchdog will
be updated via the hw watchdog set pos val () LLD API function; in this case, no platform reset will
be triggered for this watchdog period. However, a platform reset will be triggered if at least one task
does not notify sys watchdog in time. There are two ways for a task to notify sys watchdog.

Each task is responsible for periodically notifying sys watchdog that it is still running using

sys watchdog notify () . This must be done before the watchdog timer expires. Occasionally a
registered task may want to temporarily exclude itself from being monitored if it expects to be blocked
for a long time waiting for an event. This is done using the sys watchdog suspend () API function.
This function suspends monitoring of specific tasks in sys watchdog, as there is no need to monitor a
task that is blocked waiting for an event that might take too long to occur (i.e. it would lead to the task

User Manual Version 6.1 19-Jan-2022

CFR0012 106 of 206 © 2022 Renesas Electronics

bon RENESAS

DA1468x Software Platform Reference

failing to notify the watchdog service, thus resulting in a system reset). When the task is unblocked,
the sys watchdog resume () API function should be called to restore task monitoring by the
watchdog service. From that moment on the task shall notify the watchdog service as usual.

Finally, the sys watchdog set latency () API function is intended to be used in cases where a task
would require a watchdog period greater than the configured watchdog timer reset value. Using this
API allows a task to delay notification of sys watchdog for a given number of watchdog periods,
without triggering a system reset. The effect of calling the API function is one-off, thus it must be set
every time increased latency is required.

9.6.3 Examples

To register the task with sys watchdog use the following code snippet.

/* registration pxp task to be monitored by watchdog */

wdog_id = sys_watchdog register(false);

Code 18: Notify sys_watchdog of the task

To notify sys watchdog use sys watchdog notify (). If the task is going to suspend for an event
then temporarily exclude the current task from being monitored using sys watchdog suspend().
Once the task has received an event it can resume its watchdog operation with

sys_watchdog resume (). This flow is shown below:

/** notify watchdog on each loop since there's no other trigger for this - monitoring
* will be suspended while blocking on OS_TASK_NOTIFY_WAIT()
*/
sys_watchdog_notify(wdog_id);

/*

* Wait on any of the event group bits, then clear them all

*/
sys_watchdog_suspend(wdog_id);
ret = OS_TASK_NOTIFY_WAIT(@, OS_TASK_NOTIFY_ALL_BITS, ¬if, OS_TASK_NOTIFY_FOREVER);

/* Blocks forever waiting for the task notification.
Therefore, the return value must

* always be 0S_OK
*/
OS_ASSERT(ret == 0S_OK);

sys_watchdog_resume(wdog_id);

Code 19: Using sys_watchdog while suspending task for an event

9.6.4 API

Table 38: Configuration functions for sys_watchdog

Function Description

vold sys watchdog_init (void) Initialize sys_watchdog service.

This should be called before using the sys watchdog

User Manual Version 6.1 19-Jan-2022

CFR0012 107 of 206 © 2022 Renesas Electronics

UM-B-044

LENESAS

DA1468x Software Platform Reference

Function

Description

service, preferably at application startup.

int8 t sys watchdog register (bool
notify trigger)

Register current task with the sys_watchdog service.
Returned identifier shall be used in all other
sys_watchdog API calls from current task. Once
registered, the task shall notify sys watchdog
periodically using sys watchdog notify () to prevent
watchdog expiration. It is up to each task how this is
done, but a task can request that it will be triggered
periodically using the task notification capability, to
notify sys watchdog back as a response.

void sys watchdog unregister (int8 t id)

Unregister task from the sys watchdog service.

void sys watchdog suspend(int8 t id)

Suspend task being monitoring by the sys watchdog
service.

A monitor-suspended task is not unregistered entirely,
but it is ignored by the watchdog service until its
monitoring is resumed. It is faster than unregistering
and registering the task again.

void sys watchdog resume (int8 t id)

Resume monitoring of a task by the sys watchdog
service.

It should be called as soon as the reason that
sys watchdog_suspend () was called is removed.

void sys watchdog notify(int8 t id)

Notify sys watchdog module about task. A registered
task shall call this API function periodically to notify
sys_watchdog that it is alive. This should be done
frequently enough to fit into the watchdog timer interval
set by dg_configWDOG RESET VALUE.

void sys watchdog set latency (uint8 t id,
uint8 t latency)

Set watchdog latency for a task.

This allows a task to miss a given number of
notification periods to sys watchdog without triggering
a system reset. Once set, the task is allowed to not
notify sys watchdog for “latency” consecutive watchdog
timer intervals as defined by
dg_configWDOG RESET VALUE. This option can be used
to facilitate the operation of code that is expected to
remain blocked for long periods of time (i.e.
computation). This value is set once and does not
reload automatically, thus it shall be set every time
increased latency is required.

User Manual

Version 6.1

CFR0012

108 of 206 © 2022 Renesas Electronics

19-Jan-2022

RENESAS

UM-B-044

DA1468x Software Platform Reference

10 System Memory
10.1 Random Access Memory

10.1.1 Code Location

The complete BLE stack (both the Controller and Host) is in the system’s Read Only Memory (ROM)
and it is executed from there as well.

Application code on the other hand may reside either in on-chip OTP or in external QSPI Flash. It
can be executed either in place (cached mode) or be copied into RAM and then executed from there
(mirrored mode).

10.1.1.1 Execution Modes
There are two execution modes for the application code:

(a) Cached Mode, where the application code is in the OTP or Flash and is executed in place using
the 16KB cache RAM.

(b) Mirrored mode, where the entire application code is copied into the RAM from where it is
executed.

Depending on the execution mode, the available RAM size for Application Data varies.

e In Cached Mode, code is executed in place from either OTP or Flash memory. There is 128KB of
RAM available for data and any code that is moved there.

e In Mirrored Mode, both application code and data are eventually located in the platform’s 144KB
RAM. In this mode the 16KB cache RAM is added to the 128KB of normal RAM

Note 11 The SDK has been developed to support only cached mode from flash.

10.1.2 Data Heaps

All data variables are allocated from one of two memory heaps

10.1.2.1 Application Heap

The Application Heap is used to allocate memory for every RTOS task including the OS itself. Its size
is dependent on the actual application and must be configured together with the RTOS configuration.

The retained variables that need to be maintained when the system is sleeping should be clearly
declared using the PRIVILEGED DATA or INITIALISED PRIVILEGED DATA attributes, which inform the
linker that these elements must be placed in the data sections that will be retained when the system
goes to sleep.

10.1.2.2 BLE Stack Heap

The BLE Stack has its own dedicated Data Heap. Its size and retention scheme is pre-configured in
the SmartSnippets™ DA1468x SDK and should not be changed by the application developer.

10.1.3 Optimal Memory Size

The Application heap and retained memory configuration is application-dependent and so must be
optimized by the developer.

Optimizing Heap size is done empirically by configuring the system with a big heap and then
measuring Heap ratio usage while executing final application. FreeRTOS provides some advanced
methods of monitoring RTOS Heap usage during the development phase. Refer to section 13.2 for
more details about the optimization of the Heap size.

User Manual Version 6.1 19-Jan-2022

CFR0012 109 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

10.2 Non-Volatile Memory Storage

The SmartSnippets™ DA1468x SDK defines a set of storage classification rules that enable the
good design of memory storage requirements and memory budget estimation. It is essential for the
developer to have a clear understanding of their requirements for the following elements that could
use non-volatile storage:

System Parameters that need to be stored in NVM (e.g. device address)

Firmware upgrade (dual images)

App-specific binaries (e.g. pre-recorded audio messages)

Logging (e.g. event logs)

Application data (e.g. sensor values, statistics, authentication keys)

For each storage type a corresponding, dedicated region is mapped in the Flash partition. Each
region is identified by a partition ID. When the NVMS Adapter makes read/write accesses to storage
it uses the partition ID and an offset. Additional details can be found in the NVMS Adapter section,
12.4.

The SmartSnippets™ DA1468x SDK defines the following memory partitions (in a non-SUOTA build)
to manage the storage:

e (FW) Firmware Image Region

e (PARAMS) Parameters Region

e (BIN) Binaries Region

e (LOG) Logging of events or values

e (DATA) Generic data Region, Statistics etc

The exact Memory mapping depends on the actual Flash device (i.e. size, sector size) used on the
board. It needs to be specified during compilation in

<sdk root directory>/config/1M/partition table.h. A default partition table is provided with
the SmartSnippets™ DA1468x SDK which fits in DK QSPI Flash (1Mbytes with sectors of 4KB), the
actual definition of which is shown in Code 20:

PARTITIONZ (0x000000,0x07F000,NVMS FIRMWARE PART ,0)

PARTITIONZ (0x07F000,0x001000,NVMS PARTITION TABLE, PARTITION FLAG READ ONLY)

PARTITIONZ (0x080000,0x010000,NVMS PARAM PART ,0)
PARTITIONZ (0x090000,0x030000,NVMS BIN PART ,0)
PARTITIONZ (0x0C0000,0x020000,NVMS IOG PART ,0)

PARTITIONZ (0xOE0000, 0x020000,NVMS GENERIC PART , PARTITION FLAG VES)

Code 20: Memory mapping

Other partition tables for different sized Flash (on a custom board) could be selected by adding one
of these defines to config/custom config gspi.h

#define USE PARTITION TABLE 2MB
#define USE PARTITION TABLE 2MB WITH SUOTA
#define USE PARTITION TABLE 512K
#define USE PARTITION TABLE 512K WITH SUOTA
#define USE PARTITION TABLE 1MB WITH SUOTA

User Manual Version 6.1 19-Jan-2022

CFR0012 110 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

10.2.1 QSPI Flash Support

This section describes the QSPI Flash support in SmartSnippets™ DA1468x SDK and the steps
required to add support for a new Flash memory.

The SDK supports by default three different flash types:

e Winbond: W25Q80EW, 8Mbit
e Gigadevice: GD25LQ80B, 8Mbit
e Macronix: MX25U51245G, 512 Mbit

These three devices have been tested with the SDK release using the modes of operation listed
below. The default device is the Winbond W25Q80EW because this is the flash type that is mounted
on the Pro and Basic DK boards. Another device can be selected by changing the macros shown in
section 10.2.1.4.

Section 10.2.1.7 explains how to add other flash devices that have the same boot sequence as the
three supported devices. The user will need to check carefully the Flash command set and verify
correct read/write/erase operation at the desired clock speed.

Flash types with a different boot sequence can be used on the DA14681-SDK by modifying the QSPI
Flash Initialization Section (QFIS) in the OTP of the DA1468x. This method is explained in [10].

10.2.1.1 Modes of operation and configuration

The SmartSnippets™ DA1468x SDK supports two modes of operation: Autodetect mode and
Manual mode. The Autodetect mode can detect the flash type at runtime, while the Manual mode
involves explicitly declaring the flash used in the project at compile time.

Note 12 The Manual Mode is the default and recommended mode. The Autodetect Mode will greatly increase
code size and Retained RAM usage, and may prevent the project fitting in RAM.

10.2.1.2 Autodetect Mode

The Autodetect mode detects the flash that is used in runtime, and selects the proper flash driver to
use. The Autodetect mode can only detect among the flash devices officially supported by the
SmartSnippets™ DA1468x SDK. If no match is found, a default driver will be used (which may or
may not work).

Since the Autodetect mode needs to select the driver to use in runtime, it has the code for all the
drivers in the binary. It also keeps the selected driver's configuration parameters in Retained RAM.
Therefore, the Autodetect mode is NOT recommended for production builds.

10.2.1.3 Manual Mode

The Manual mode simply consists of a hardcoded declaration of the flash driver to use. Therefore,
only the code of the selected driver needs to be compiled in the binary, and there is no need to retain
the driver parameters in Retained RAM, since the compiler optimizes them out. This mode is suitable
for Production builds.

10.2.1.4 Flash Configuration

The Flash subsystem is configured using the macros shown in Table 39, which must be defined in
the config/custom config gspi.h file of the project:

Table 39: Macros for the configuration of the Flash subsystem

gspi_flash config t field Description

dg_configFLASH AUTODETECT Default: 0. This macro, if set, enables the Autodetect
Mode. Please note, that the use of this macro is NOT
recommended.

User Manual Version 6.1 19-Jan-2022

CFR0012 111 of 206 © 2022 Renesas Electronics

M0 LENESAS

DA1468x Software Platform Reference

gspi_flash config t field Description

dg configFLASH HEADER FILE O This macro must be defined as a string named
B B B after the header file to use for the specific flash
driver. E.g. gqspi_w25q80ew.h,
gspi_gd251g80b.h, gspi_mx25u51245.h.This
header file must be either one of the
gspi_<part_nr>.h header files found in

<sdk root directory>\sdk\bsp\memory\includ
e, or a header file under the project's folder, as
long as this path is in the compiler’s include path
(see the document section 10.2.1.7 about
adding support for new flash devices).

dg_configFLASH MANUFACTURER ID This macro must be defined to the Flash manufacturer
ID, as defined in the respective driver header file (e.qg.
WINBOND ID, GIGADEVICE ID, MACRONIX ID).

dg_configFLASH DEVICE TYPE This macro must be defined to the corresponding device
type macro, as defined in the driver header file (e.g.
W25Q80EW, GD25LQ SERIES, MX25U MX66U SERIES).

dg configFLASH DENSITY This macro must be defined to the corresponding device
density macro, as defined in the driver header file (e.qg.
W25Q 8Mp SIZE, GD25LO80B SIZE, Mx25U51245 SIZE).

When the system is in Manual Mode (dg_configFLASH AUTODETECT == 0), which is the default, all
the three macros above are defined in sdk/config/bsp defaults.h to enable the default flash used,
which is the Winbond W25Q80EW.

10.2.1.5 Code Structure

The QSPI Flash access functionality is implemented in gspi automode.c and gspi_automode.h file.
Common command definitions and functions needed for all devices are declared in gspi common.h.
Device specific code is defined in header files named as gspi <flash device name>.h.

The code in gspi_automode.c (and in some other parts of the SmartSnippets™ DA1468x SDK, as
well), calls device-specific functions and uses device-specific values to properly initialize the flash
device. Each driver header file provides an instance of the structure gspi flash config t to the
main driver, containing all the device-specific function pointers and variables.

10.2.1.6 The flash configuration structure gspi_flash_config_t

Each driver header file must provide its own instance of gspi_flash config t. Please note that this
instance must be named with a unique name, like flash <device name> config, since all the device
header files are included in the gspi_automode.c file. Therefore, there is a single global namespace.
Also, please note that the struct instance must be declared as const so that the compiler can
optimize references to it.

The gspi flash config t structure, as shown in Table 40, has the following fields (see
<sdk root directory>/sdk/memory/include gspi common.h for more information):

Table 40: The gspi_flash_config_t structure

gspi_flash config t field Description

Initialize Pointer to the flash-specific initialization function.

is suspended Pointer to a flash-specific function that checks if flash
is in erase/program suspend state.

User Manual Version 6.1 19-Jan-2022

CFR0012 112 of 206 © 2022 Renesas Electronics

UM-B-044

DA1468x Software Platform Reference

RENESAS

gspi_flash config t field

Description

deactivate command entry mode

Pointer to a flash-specific function that performs
extra steps needed when command entry mode is
deactivated.

sys _clk cfg

Pointer to a flash-specific function that performs
Flash configuration when system clock is changed
(e.g. change dummy bytes or QSPIC clock divider).

get dummy bytes

Pointer to a flash-specific function that returns the
number of dummy bytes currently needed (it may
change when the clock changes).

manufacturer id

The Flash JEDEC vendor ID (Cmd 0x9F, 1st byte).
This and the device type and device density are
needed for flash autodetection, when on Autodetect
mode.

device type

O The Flash JEDEC device type (Cmd 0x9F,
2nd byte).

device density

The Flash JEDEC device type (Cmd 0x9F, 3rd byte).

erase opcode

The Flash erase opcode to use.

erase_suspend opcode

The Flash erase suspend opcode to use.

erase resume opcode

The Flash erase resume opcode to use.

page program opcode

The Flash page program opcode to use.

quad page program address

If true, the address will be transmitted in QUAD mode
when writing a page. Otherwise, it will be transmitted
in serial mode.

read erase progress opcode

The opcode to use to check if erase is in progress
(Usually the Read Status Reg opcode (0x5).

erase in progress bit

The bit to check when reading the erase progress.

erase in progress bit high level

The active state (true: high, false: low) of the bit
above.

send once

If set to 1, the "Performance mode" (or “burst”, or
“continuous”; differs per vendor) will be used for read
accesses. In this mode, the read opcode is only sent
once, and subsequent accesses only transfer the
address.

extra byte

The extra byte to transmit, when in "Performance
mode" (send once is 1), that tells the flash that it
should stay in this continuous, performance mode.

address size

Whether the flash works in 24- or 32-bit addressing
mode.

break seq size

Whether the break sequence, that puts flash out of
the continuous mode, is one or two bytes long (the
break byte is 0xFF).

ucode wakeup

The QSPIC microcode to use to setup the flash on
wakeup. This is automatically used by the QSPI
Controller after wakeup, and before CPU starts code

User Manual

Version 6.1

CFR0012

113 of 206

19-Jan-2022

© 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

gspi_flash config t field Description

execution. This is different based on whether flash
was active, in deep power down or completely off
while the system was sleeping.

power down delay This is the time, in usec, needed for the flash togoto
power down, after the Power Down command is
issued.

release power down delay This is the time, in usec, needed for the flash to exit

the power down mode, after the Release Power
Down command is issued.

In Autodetect mode, these structures reside in the .rodata section of the code. As soon as the flash
subsystem is initialized, it reads the flash JEDEC ID(command 0x9F) to find out which is the actual
flash device that is used. It then uses the JEDEC IDto select the corresponding flash <flash
device> config structure, and copies it in the Retained RAM. It then uses it for all the flash
operations that need it.

When in Manual mode, no JEDED ID is read and no copy is performed to the Retained RAM.
Instead, the constant pointer flash_config is directly initialized (inside the flash-specific driver file) to
the specific (and constant) flash <device name> config structure. The compiler then optimizes out
the entire structure.

10.2.1.7 Adding support for a new flash device

The SmartSnippets™ DA1468x SDK driver subsystem currently supports a specific set of QSPI flash
devices. It provides, however, the capability to add support for other flash devices as well.

Each device driver must have its own header file that should be named gspi <device name>.h. The
programmer can either use the gspi XXX template.h, or start from an existing driver file.

The new flash driver file should be placed inside the project's path, in a folder that is in the
compiler's include path (an obvious choice is the config/ folder, but others can be used as
well). This is recommended so that potential SDK upgrades will not interfere with the project-
specific flash driver implementation.

Common code among flash families or vendors can be factored out in common header file per
family/vendor. There are currently such common header files, like gspi macronix.h and

gspi winbond.h. However, this is NOT necessary; moreover, it is the responsibility of the device
driver header file to include the common header file, if needed.

Note 13 A custom flash driver can ONLY be used in Manual mode, which means that the macros described in
Table 39 MUST be defined in config/custom config gspi.h.

The following steps are usually needed to create the new flash driver:

Copy and rename the template header file, or an existing driver file.

2. Rename all the functions and variables appropriately. It is important to remember that all the
drivers reside in the same namespace and so all function and variable names must be unique.

3. Define the proper JEDEC ID values for the Manufacturer code, the device type and the device
density

4. Verify that the suspend, resume, exit power-down, enter power-down, fast read, write
enable, read status register are valid for the new device type.

5. Guard the header file using an #if preprocessor macro that checks for the specific driver
selection.

Define any other driver-specific macros that are needed (like timings etc).

7. Define the constant wakeup microcode arrays that will be needed, per configuration mode that
will be supported (dg configFIASH POWER OFF, dg configFLASH POWER DOWN or none of them).
The microcode will be copied during the driver initialization in a special memory in the QSPI

User Manual Version 6.1 19-Jan-2022

CFR0012 114 of 206 © 2022 Renesas Electronics

bon RRENESAS

DA1468x Software Platform Reference

controller, and will be used after system wakeup to initialize the QSPI (since the CPU isn't yet
running code at this time). Please see [1] for the uCode format.

#. Declare the constant struct instance of type gspi flash config t, named flash <device
name> config, and initialize it with proper values. Please note that this must be declared as
const.

5. Extend the function flash <device name> initialize() if needed, e.g. to write some special
QSPI configuration registers or the QUAD enable bit. Otherwise, leave empty.

10. Extend the function flash <device name> sys clock cfg() if needed. This can include
modifying the dummy bytes when the system (and hence the QSPI) clock changes, or changing
the QSPI clock divider (if, for example, the flash device cannot cope with 96MHz). Otherwise,
leave empty.

11. The function is suspended () should read the flash Status Register and return true if Erase or
Write is suspended on the device.

12. If Continuous Read Mode (sometimes referred to as Performance or Burst Mode) is used, make
sure to set send once to 1, and set extra byte to a proper value for the flash to keep working in
this mode. This is flash-specific.

13, If the flash supports 32-bit addressing (e.g. the Macronix MX25U51245G Flash), make sure to
use the proper uCode for wakeup. Also set page program opcode, erase opcode,
break seq size (this should also take into consideration whether the device will be working in
Continuous Read mode as well) and address_size.

14. If the address, during write, will be provided in QUAD mode, set quad page program address to
true.

Note 14 The SmartSnippets™ DA1468x SDK supports reading in QUAD I/0O mode (where the address and
data are read in QUAD mode, and only the command is transferred in serial mode), both in
Continuous Read and normal mode.

To test the flash driver, use the PXP Reporter demo application, and configure the new flash driver in
its custom config gspi.hand custom config gspi suota.hfiles. Do the following tests:

1. Verify that the application boots by using SmartSnippets™ Studio Power Profiler and a cell
phone to connect to the device

2. Verify that the application continues working after the system starts going to sleep (after ~8
seconds), that the cell phone can connect to the device and that it can maintain the connection
for a while.

3. Repeat steps 1 and 2 by changing the application clock to 96 MHz (change sysclk_ XTAL16M in
main.c to sysclk_PLL96)

4. Repeat steps 1, 2 and 3 and change dg_configPOWER 1v8 SLEEP to O (in flashes where this
makes sense) and (separately), dg configFIASH POWER DOWN to 1, to test the supported wake up
sequence driver modes.

5. Repeat steps 1 through 4 using the SUOTA Configuration of the PXP Reporter application. This
will test the write/erase functionality of the driver.

10.2.1.8 Working with a new flash device

Read/Erase/Program of new QSPI flash devices should be done using SmartSnippets™ Studio
standard procedure (check "General Installation and Debugging Procedure" in SDK's Doxygen
documentation).

Before working with new QSPI flash devices the following steps are required:

e Support for the new flash is added to the SDK as described in "Adding support for a new
flash device" paragraph.

e SDK uartboot project (the secondary bootloader used by SDK flash programming tools) is
built with support for the new QSPI flash as described in "Flash configuration" paragraph.

User Manual Version 6.1 19-Jan-2022

CFR0012 115 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

e SDK cli programmer project (the tool used in the SDK for accessing flash) is re-built in
Release static (if working in Linux) or Release static win (if working in Windows)
configuration, as described in SDK's Doxygen documentation "CLI programmer application”
paragraph.

Note 15 SmartSnippets™ Toolbox only supports read/erase/programming of the default supported QSPI flash
devices. Therefore, it is not recommended to be used with new flash devices.

User Manual Version 6.1 19-Jan-2022

CFR0012 116 of 206 © 2022 Renesas Electronics

M0 LENESAS

DA1468x Software Platform Reference

11 Operation modes and startup procedure

The SmartSnippets™ DA1468x SDK supports two operational modes that correspond to the
configurations described in section 10.1.1.1. They are:

Table 41: Operation modes

Operation mode Code location Cache Description

enabled
RAM RAM No Program is loaded directly to RAM.
Flash cached Flash (quad SPI mode) Yes Program runs in-place from QSPI

flash. The first 0x100 — flash image
header size bytes are copied to RAM
by the boot loader.

11.1 Generated ELF file

After the project code is compiled, the linker generates an Extensible Linking Format (ELF) file based
on the supplied linker scripts of each project (sections.1d and mem. 1d). The following tables show
the section structure (as obtained by the readelf utility with the -s option) for the three combinations
of RAM mode with no Bluetooth low energy, flash cached mode with no Bluetooth low energy and
flash cached mode with Bluetooth low energy.

The key difference with Bluetooth low energy support is the jump table mem area section that holds
pointers to callback functions used by the BLE ROM code.

.copy.table is used by the startup procedure in order to copy (load) code and data sections onto
RAM. The table contains one or more section entries. The first 4 bytes in each entry are the section’s
source address, the next 4 bytes are the section’s destination address in RAM and the last 4 bytes
are the section’s size. Usually there are two sections that are loaded onto RAM: the .data section
and the RETENTION ROMO section. .zero.table works in a similar manner, but it only writes zero’s to
memory areas with zero-initialized data. Its entries contain a destination address (4 bytes) and size
(4 bytes). The sections that are initialized to zero are .bss and the zero-initialized part of

RETENTION RAMO.

Table 42: Example program sections in RAM operation mode

Nr Name Type Addr Off Size ES Flag Link Info Align
[0] NULL 00000000 000000 000000 00 0 0 0
[1] .text PROGBITS 07£c0000 008000 0055c4 00 AX 0 0 16
[2] .ARM.exidx ARM EXTIDX 07£c55c4 00d5c4 000008 00 AL 1 0 4
[3] .copy.table PROGBITS 07£c55cc 00d5cc 000018 00 WA 0 0 1
[4] .zero.table PROGBITS 07£c55e4 00d5e4 000018 00 WA 0 0 1
[5] .data PROGBITS 07£d8000 010000 000064 00 WA 0 0 4
[6] .bss NOBITS 07£d8064 018064 00020c 00 WA 0 0 4
[7] .heap PROGBITS 07£d8270 018008 001c00 00 0 0 8
[8] .stack dummy PROGBITS 07£d8270 019c08 000200 00 0 0 8
[9] RETENTION ROMO PROGBITS 07£d40000 018000 000008 00 WA 0 0 4
[10] RETENTION RAMO NOBITS 07£d40008 018008 001£58 00 WA 0 0 4
[11] RETENTION RAM1 PROGBITS 00000000 019e08 000000 00 W 0 0 1
[12] .ARM.attributes ARM ATTRIBUTE 00000000 019e08 000028 00 0 0 1

S
[13] . comment PROGBITS 00000000 019e30 000070 01 MS 0 0 1
[14] .shstrtab STRTAB 00000000 019%eal 0000a8 00 0 0
User Manual Version 6.1 19-Jan-2022

CFR0012 117 of 206 © 2022 Renesas Electronics

M0 LENESAS

DA1468x Software Platform Reference

Nr Name Type Addr Off Size ES Flag Link Info | Align ‘
[15] symtab SYMTAB 00000000 01alf0 003b40 10 16 642 4

[16] strtab STRTAB 00000000 01dd30 001e73 00 0 0 1

Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
O (extra OS processing required) o (0OS specific), p (processor specific)

Table 43: Example program sections for flash cached operation mode

[Nr] Name Type Addr Off Size ES Flag | Link | Info | Align
[0] NULL 00000000 | 000000 000000 00 0 0 0
[1] .text PROGBITS 08000000 | 008000 004fb0 00 AX 0 0 16
[2] ARM.exidx ARM EXIDX 08004 £fb0 00cfb0 000008 00 AL 1 0 4
[3] .copy.table PROGBITS 08004£fb8 00cfb8 000018 00 WA 0 0 1
[4] .zero.table PROGBITS 08004£d0 00cfdo 000018 00 WA 0 0 1
[5] .data PROGBITS 07£c8000 | 010000 000064 00 WA 0 0 4
[6] .bss NOBITS 07£c8064 018064 000210 00 WA 0 0 4
[7] .heap PROGBITS 07£c8278 | 010e48 001c00 00 0 0 8
[8] .stack durmy PROGBITS 07£c8278 012a48 000200 00 0 0 8
[9] RETENTION ROMO PROGBITS 07£c0100 010100 000048 00 WAX 0 0 4
[10] RETENTION RAMO NOBITS 07fc0e48 | 010e48 001£54 00 WA 0 0 4
[11] RETENTION RAM1 PROGBITS 00000000 | 012c48 000000 00 W 0 0 1
[12] .ARM.attributes | ARM ATTRIBUTE | 00000000 | 012c48 000028 00 0 0 1
S
[13] .comment PROGBITS 00000000 012c70 000070 01 MS 0 0 1
[14] .shstrtab STRTAB 00000000 012ce0 0000a8 00 0 0 1
[15] . symtab SYMTAB 00000000 | 013030 004130 01 16 717 4
[16] . strtab STRTAB 00000000 | 017160 002187 00 0 0 1
Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
O (extra OS processing required) o (0OS specific), p (processor specific)

Table 44: Example program sections for flash cached mode with BLE support

[Nr] Name Type Addr Off Size ES Flag | Link | Info | Align
[0] NULL 00000000 000000 | 000000 00 0 0 0
[1] .text PROGBITS 08000000 008000 | 00c7f4 00 AX 0 0 16
[2] .ARM.exidx ARM EXIDX 0800c7£4 0147£4 | 000008 00 AL 1 0 4
[3] jurp table mem | PROGBITS 0800c7fc | 0147fc | 000240 00 A 0 0 4
_ar
[4] .copy.table PROGBITS 0800ca3c 014a3c | 000018 00 WA 0 0 1
[5] .zero.table PROGBITS 0800cab54 014a54 | 000018 00 WA 0 0 1
[6] .data PROGBITS 07£c0100 018100 | 000074 00 WA 0 0 4
[7] .bss NOBITS 07£c0174 018174 | 001e28 00 WA 0 0 4
[8] .heap PROGBITS 07fclfal 01££fd0 | 000800 00 0 0 8
[9] .stack durmy PROGBITS 07fclfal 0207d0 | 000800 00 0 0 8
[10] RETENTION ROMO | PROGBITS 07£d6000 01e000 | 00lfcc 00 WAX 0 0 4
[11] RETENTION RAMO | NOBITS 07fd7fcc 0lffcc | 005df8 00 WA 0 0 4
[12] RETENTION RAMI | PROGBITS 00000000 020£d0 | 000000 00 W 0 0 1
[13] RETENTION BLE NOBITS 07£dec00 0lffcc | 001400 00 WA 0 0 1
[14] .ARM.attribute | ARM ATTRIBUTE | 00000000 020£d0 | 000028 00 0 0 1
s S
[15] . comment PROGBITS 00000000 020££8 | 000070 01 MS 0 0 1
User Manual Version 6.1 19-Jan-2022

CFR0012 118 of 206 © 2022 Renesas Electronics

bon RRENESAS

DA1468x Software Platform Reference

[Nr] Name Type Addr Off Size ES Flag | Link | Info | Align
[16] .shstrtab STRTAB 00000000 021068 | 0000ca 00 0 0 1
[17] .symtab SYMTAB 00000000 02142c | 00c510 10 18 2314 | 4
[18] . strtab STRTAB 00000000 02d93c | 0086£5 00 0 0 1
Key to Flags:

W (write), A (alloc), X (execute), M (merge), S (strings)
I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown)
O (extra OS processing required) o (OS specific), p (processor specific)

11.2 Program loading

11.2.1 RAM mode

A program built for RAM operation can be loaded to RAM either directly using the ELF file and J-Link
debugger or be first converted to a raw binary and then written to RAM with the CLI programmer tool.
RAM operation is used only for debugging purposes as it avoids the step of programming the QSPI
flash. After loading the program, SYS CTRL REG must be configured so that RAM is mapped to
address 0x00000000. After a soft reset is issued, the written program starts execution. RAM operation
does not rely on the boot loader.

11.2.2 Flash cached mode

A program built for flash cached mode is written into QSPI flash memory with the CLI programmer
tool. After a hard reset, the boot loader detects the valid program in QSPI flash and prepares to run
it. When executing from flash, the first 0x100 virtual addresses are mapped to the beginning of RAM,
i.e. memory area 0x00000000 — 0x000000ff is mapped to memory area 0x07fc0000 — 0x07fc00ff
(SYS CTRL REG[REMAP INTVECT] must always be set to 1). This ensures that ARM Interrupt Vector
Table (IVT) is always in RAM memory for quick access.

The bootloader checks if the flash has a valid program by looking for the presence of a special
header which is added to the image before the actual program. This header is added prior to writing
the image into flash by the bin2image utility. The following tables describe the structure of the flash
header.

Table 45: Flash image header for DA14680/1-01

Address (byte) Value Description

0:1 ‘P, ‘P or‘q,‘Q ASCII header to identify the functional mode of the device.
“pP”: Mirrored mode (SPI)
“qQ”: Cached mode (QSPI)

2:3 0,0 Reserved

4.7 Any Image length (big endian)

Simply prepending the header to the binary image would shift the entire image in flash and corrupt
the code as all the function addresses would be wrong. Instead, bin2image only modifies the first
0x100 bytes.

As shown in Figure 43, the reserved area that follows the IVT is reduced by the size of the flash
header (H). This is harmless, since the contents of the reserved area are written after the program
starts execution. After the boot loader detects the valid image in flash, it copies memory area
[0x80000000 + H, - 0x800000ff] to RAM [0x07fc0000, 0x07fc00ff - H], thus skipping the
header and placing the TvT in the beginning of RAM, restoring the reserved area to its original size.

User Manual Version 6.1 19-Jan-2022

CFR0012 119 of 206 © 2022 Renesas Electronics

RLENESAS

UM-B-044

DA1468x Software Platform Reference

aw binary file with head
Raw binary file 0x00000000 Raw binary file with header gxn0000000

Ox 00000000 + H

Ox000000c0

Ox 0000000 ~ H

Ux00000100

cli_programmer
write to flash

Ox00D00 100

Program ready 0x07fc0000 Image in Flash 0x80000000

f IVT Ox071c00c0 Ox00000000 -~ H
Ox800000c0 < H
boot loader .
Ox80000100 0x80000100

H: Flash header size(bytes)

Figure 43: Flash cached pre-execution stages

11.3 BLE ROM patches

DA1468x employs special hardware to support BLE ROM patching. The patch controller is a memory
address translator with 28 entries and it has additional registers for validating and invalidating entries.
20 of those entries are for patching BLE ROM functions, and the remaining 8 are for patching data.
The patch controller intercepts memory read accesses from the processor. If the memory read
address matches any of the addresses of the valid patch controller entries, a patch action is
triggered.

For data patches, the patch controller simply redirects the read access to the address written in the
entry’s data address register.

For function patches, the patch controller redirects execution to the corresponding function address
at virtual memory location 0x000000C0 + N, where N (0 <= N < 20) is the index of the entry of the

User Manual Version 6.1 19-Jan-2022

CFR0012 120 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

patch controller that has been triggered. This implies that virtual memory addresses 0x000000C0 to
0x0000010c must contain patch function addresses (4 byte aligned), if the corresponding entry of the
patch controller is marked as valid. This is the reserved memory area described in the previous
section after the IVT. The patch memory area includes 8 * 4 additional reserved bytes for a total size
of 28 * 4 = 112 bytes. Its first 64 bytes reside in the Reserved Area in RAM as discussed previously
in this document, and the remaining bytes are in flash memory (Bluetooth low energy applications do
not support RAM operation mode), beginning at address 0x80000100.

11.4 Startup procedure

The startup procedure is the part of the program that runs after reset and before entering main (). It
consists briefly of the following steps (please consult startup code within the SmartSnippets™
DA1468x SDK for details).

Reset Handler in sdk\bsp\startup\startup ARMCMO.S

e Deactivate cache and include it to available RAM (RAM operation only)
e Copy first 0x100 —H bytes from Flash to RAM (Flash cached operation and flash offset = 0)

SystemInitPre () in sdk\bsp\startup\system ARMCMO.c
e Enable debugger (if corresponding option is enabled)
e Enable Fast clocks

e Check alignment of copy and zero tables

SystemInit () in sdk\bsp\startup\system ARMCMO.c

Check IC version compatibility with SW

Initialize TCS (see Appendix H for details on TCS contents)
Activate BOD protection

Configure interrupt priorities

If executing from RAM ensure PMU is in a known good state
RC16 Clock setup

Disable XTAL16M

Set QSPI to highest speed

SystemInitPost () in sdk\bsp\startup\system ARMCMO.c
Start LDOs

Set Radio voltage to 1.4V

Initialize the QSPI flash (flash cached mode only)
Read Trim values from OTP

Apply Trim values from OTP

Enable the QSPI Flash (flash cached mode only)
Apply the System values from TCS

Configure cache (flash cached mode only)

Reset Handler in sdk\bsp\startup\startup ARMCMO.S
Note 16 In RAM configuration these steps take place before SystemInitXxX()calls

e Copy code and data to RAM according to .copy.table section

User Manual Version 6.1 19-Jan-2022

CFR0012 121 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

e |Initialize certain memory areas to zero according to .zero.table section

11.5 Secure Boot

Note 17 XTAL32M support is available only for DA14683 devices —it is not supported for DA14681
devices.

Secure Boot is an alternative bootloader which could be used as a second stage bootloader during
Software Update over the Air (SUOTA) procedure which supports:

e FW (firmware) Authentication: securely ensures validity and authenticity of entire Application
firmware during booting.
e Rollback Prevention: prevents execution of out-of-date vulnerable code.

e Public Keys administration: Root keys being used for Integrity protection can be revoked.

Secure Boot depends on cryptographic Engines Low-level drivers only. Being the only thread running
at boot time, it does not require thread-safe APIs from Security framework.

11.5.1 Features

Secure Boot is implemented in main_secure.c file located in:
<sdk root directory>\sdk\bsp\system\loaders\ble suota loader. Figure 44 below presents
Secure Boot’s main functionality.

User Manual Version 6.1 19-Jan-2022

CFR0012 122 of 206 © 2022 Renesas Electronics

RLENESAS

UM-B-044

DA1468x Software Platform Reference

Secure Boot - Main

Secure Boot Loader (SBL) Custom Code
(Start
~ SecareBootFallureNook(|
Deviee ¥ | N ———————P
* ‘ \ AR | | WD_Reset l |
H T
S |
oK
| i, A
FW Upgrade i sttermpted |
whenever S50 detects Dut & ! r -
PV Inage & in the Update =
partinen 1« trss 2 bytes of A
Update persticn match PO ~ves—< Upgose S0
Image iderafier) NG e —- P
S _

\,_\. =
e FW Valdation [NOx
Update lrrage ’ 2
4 i Ml

[

- S

5 Device Admizisn aticn !
= Checx Admisiananen Cana
ES Perform FW aapy, —t v
z | Ky rewocaTion, Minkm um r \
E ! FW Valsation | | SecwreBootFallureHook])
2 i Version number cpane ‘ Cutvent B pa—y] e N ‘ ‘
81
il | .
Copy NT/PT e '
Semap Flash @ 0ud
Lz] 3
3 (END)
g |

Figure 44: Secure Boot - Main

Next list presents Secure Boot’s features:

“Device Integrity”, Figure 45, is a feature of Secure Boot which:
1. Compares bootloader's CRC placed in OTP header with the calculated CRC

2. Checks “Secure Device” field in OTP header (some functionalities of Secure Boot are available
only for secured devices)

3. Validates the symmetric keys that stored in OTP and used in encryption/decryption
4. Validates the root/public keys that stored in OTP and used in image signature validation
5. Checks minimum FW version image stored in the OTP ()

User Manual Version 6.1 19-Jan-2022

CFR0012 123 of 206 © 2022 Renesas Electronics

T RLENESAS

DA1468x Software Platform Reference

Secure Boot — Device Integrity Check
Secure Boot Loader (SBL) Custom Code
z (Start
o
Z
B Compares OTP HEADER 1
c CRC to CRC16 Checksum \
g of bootloader Image =
2 Length also read from SBL Integrity NOK » Se(umm“;:su:ﬂm()
g OTP header. =
£
I+
4 0K
l .
Returns NOK
Secure Device Read Secure Device Flag in OTP
Secure Device flagin OTP
Header indicates that HW
secure encryption
mechanism is to be
activated. Secure Device? NO
0: non-secured
any other value means
Secure Device 2
\/\ YES
| Read keys in SKA |
Secure OTP Section
All keys should have a
valid inverse. Thanks to
OTP programming
restriction !F rom O' to’l MO A SecureBootFailureHook()
only), it is impossible for Keys found (Al "0) » Create keys
an attacker to change a
key and its inverse so SBL
will always detect altered 3
symmetric keys. YES
In the custom code |
sample project, 1k
if no keys are present (i.e.
all ‘0" in SKA), it considers ;
itis a first secure ol 2 NO e e SecureBootFailureHook()
bootload, and just all keys? WD_Reset
creates them before
5 proceeding.
e _/_\ Set Secure_Boot_En bit
=
\! Returns
= OK

Figure 45: Secure Boot — Device Integrity Check

e “Firmware Validation” is a feature of Secure Boot which:

1. Checks SUOTA 1.1 header

2. Checks image's CRC

3. Validates the header of security extension content

4. Checks FW version number with the current minimum FW version

User Manual Version 6.1 19-Jan-2022

CFR0012 124 of 206 © 2022 Renesas Electronics

RLENESAS

UM-B-044

DA1468x Software Platform Reference

[

| Secure Boot — FW Validation

Secure Boot Loader (SBL) Custom Code
/ \
(Sant
Pt _ ol 1 2 3
Elbptic Curve Sgnature
VerifySignatursHookl) ":::::m NP:M‘ ikl
> ECDSA/SHA-256/0TP ECC wmhmc"‘ m"' ‘“‘w' "r‘
uCode varification method and 3 roct key,
I VerfySigraturerooks)
s ensures that the public key i
L vabit
7N p——
// NG __/ .
o sums? D=NOK > SecureBootfailureHook{)
\‘ / y
3 I I
i o [Retummox)
=
L
CompareVersionHookd) 4
image Version, Min Version
,/’J' \\\
N\,
"\ States? CeSMALLER > SecureBootf allureHook{)
5
N
GREATER or EQUAL
I v
: 7’ .
< ([metumsox) ’\ Returns NOK)
3 ~ - & -
i

Figure 46: Secure Boot — FW validation

e Copying of the FW stored on the 'update' partition to the 'executable’ partition (section 1, Figure
47)

Upgrade of the minimum FW version array (section 2, Figure 47)
e Customizable code (hooks), (section 3, Figure 47)
Root/public keys revocation possibility (section 4, Figure 47)

User Manual Version 6.1 19-Jan-2022

CFR0012 125 of 206 © 2022 Renesas Electronics

UM-B-044

RLENESAS

DA1468x Software Platform Reference

Secure Boot — Device Administration

Secure Boot Loader (SBL) Custom Code
Froduct Stast
W m:;le CompareVersionHook() Version Formst
Update Version, Version Msjor 163its
1 & : Version Minor 16ditz
urrent Image Verzion AR
tus | All ‘0"z meanz not
programmed
Status * ALL s BootFailure Hook()
|
GREATER or EQUAL CopyFWHook()
|
oK <, R, T, . .—::,
|
§
z
[
CompareVersionHook{)

New Min Version,
Image Version

Status

SMALLER or EQUAL

e s

_O” *
a,

CompareVersionHook({)
New Min Yersion,
Current Min Version

SMALLER:

GREATER or EQUAL

A 4

UpdateVersion Hook()
Program new entry in OTP
Min Varzion Array + invalicate old
one {write 2l '1'z)

Rolinack Prevention — Update Min. Version foptional)

Revoke Asymmetric Keys Prevent revoking
4 “last” valid key
[
E
Figure 47: Secure Boot — Device Administration
User Manual Version 6.1 19-Jan-2022
CFR0012 126 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

Note 18 Secure Boot loader is stored in the OTP by default. Proper build configuration of the project must be
used in order for the Secure Boot’s features to be available. Each configuration with _Secure suffix
builds Secure Boot Loader as shown in Figure 48.

1 DA14681-01-Debug_QSPI (Applicable for DA14680/1-01. Debug build configuration for cached QSPI mode..)
v 2 DA14681-01-Release QSPI {Applicable for DA14680/1-01 Release build configuration for cached QSPI mode..)
3 DAE#SSS(}O-Debu%_OT?_Secure {Applicable for DA14682/3-00, DA.M’I—OO. Debug build configuration for mirrored OTP mode.)
£ DA34683-00-Debug_QSPI (Applicable for DA14682/3-00, DA15100/1-00. Debug build configuration for cached QSPI mode.)
5 DA14683-00-Release OTP Secure {Appiicable for DA14682/3-00, DA15100/1-00. Refease build configuration for mirrored QSPI mode.)
6 DA14683-00-Release_QSPI {Applicable for DA14632/3-00, DA15100/1-00. Release build configuration for cached QS;I mode.)

Figure 48: Secure Boot — Build Configurations

Secure Boot doesn't use FreeRTOS and BLE. The SUOTA procedure must be handled by firmware -
application image e.g. PXP Reporter. The installation and use of Secure Boot is described in the
following section Error! Reference source not found..

11.5.2 Configuration

This section describes the installation and use of Secure Boot. At first user must import in the
workspace of SmartSnippets™ Studio the following:

1. ble_suota_loader project. For more information about importing ble_suota_loader project in
SmartSnippets™ Studio please refer to [4].

2. Any application which supports SUOTA feature, e.g. pxp_reporter demo project with SUOTA
support. For more information about importing and building pxp_reporter demo application please
refer to section 5 of [3].

3. Python scripts. To import Python scripts into SmartSnippets™ Studio follow the same procedure
as importing any other project in SmartSnippets™ Studio.

The list of aforementioned projects, imported to SmartSnippets™ Studio is shown in Figure 49.

@ C/C++ - SmartSnippets Studiov1.63918 =~ .
File Edit Source Refactor Navigate Search Project Run Window

Nrba @@ v@EvavidvGrHr@v @~

C’:lﬁ

dar

@z Project Explorer 52 =
- & python_scripts
b L-T” bIe_suétaT[oader
i 5 pxp_reporter

Figure 49: Secure Boot — IDE imported projects

User must follow next steps in order to install Secure Boot:

1. Build firmware image of the imported application (e.g pxp_reporter) using any mode (Release or
Debug) with SUOTA support e.g. DA14683-00-Debug QSPI SUOTA

2. Build ble_suota_loader project using DA14683-00-Release OTP Secure build configuration
(Figure 48)

3. Use secure image config.py Python script as show in Figure 50. Answering on few questions
will be required during script execution as shown in next figures.

User Manual Version 6.1 19-Jan-2022

CFR0012 127 of 206 © 2022 Renesas Electronics

I RLENESAS

DA1468x Software Platform Reference

1 collect_debug_info_win

2 get_memory_snapshot_win
3 erase_gspi_jtag_win

4 erase_gspi_serial_win

5 program_gspi_config_win

6 program_gspi_jtag_win

7 program_gspi_nvparam_win
8 program_gspi_serial_win

9 suota_initial_flash_jtag_win
initj dag win

PPRPPFPPPEPF PP

secure_image_config

Run As 4
External Tools Configurations...

Organize Favorites...

Figure 50: secure_image_config Python script

4. First window after launching secure image config script is shown in Figure 51. By selecting
“Yes” new product keys file is generated automatically.

' Answer question

Would you like to create new product keys file?

Figure 51: Question window to create new product keys file

5. After selecting “Yes” in the previous dialog next window, Figure 52, pops out. User must decide,
which type of elliptic curve would like to use for creating asymmetric keys. The curve will be used
during an asymmetric key generation and image signature generation. After this procedure
completes, product_keys.xml file will be generated in python_scripts project in secure_image
subdirectory (Figure 53).

Select elliptic curve used for asymmetrnic keys

SECP224R1
SECP192R1
EDWARDS25519

Cancel l oK I

Figure 52: elliptic curves used for creating asymmetric keys

User Manual Version 6.1 19-Jan-2022

CFR0012 128 of 206 © 2022 Renesas Electronics

I RLENESAS

DA1468x Software Platform Reference

File Edit Source Refactor Navigate Search Project Run Window
- [BvS 2@ X I% Wvadvldv@-

L W Project Expiorer &) =w TR
« & python_scripts
& apl
qspi
« I8 secure_image

L] product_keysxml

o ime g R
& suota

¢ secure_image_configlaunch

¢ secure_suota_initial_flash_jtag.launch
@ Python3.5 (C\Di ... thon35\python.exe)
¥ ble_suota_loader
& pxp_reporter
e snpts

Figure 53: generated product_keys.xml file

Note 19 User may need to refresh workspace (or hit F5) in order to make product_keys.xml file visible

Note 20 By selecting “No” in Figure 52 the user must provide the private key manually by inserting a private
key index and its value as shown in Figure 54 and Figure 55.

’ Input value

Insert key index or address in OTP

key index:

Cancel | OK |

Figure 54: inserting private key index or address

f Input value

Insert private key to be used

private key:

Cancel I OKI

Figure 55: inserting private key value

User Manual Version 6.1 19-Jan-2022

CFR0012 129 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

6. Inthis step the user decides to create private key manually (by answering “NO”) or automatically
(by answering “YES”) by choosing it from existed product_keys.xml file (Figure 56).

3

’ Answer question el

Would you like to choose private key from file: product_keys.xml

—— y

Figure 56: window to select the use of private key

7. User must select one public key index as shown in Fig. 11 which will be used during image
signature validation (on the platform). Public keys should be stored in a proper order in the OTP

memory.
¥ Selectitem = X ’
Select item
ISECPISERY | ED3DSOCIDTN2FBI75CAEBA02ESCE1BICFIBRIRE22D64ABDMOFED7NOETADBF7TA4
SECP256R1 | BBAB3AECB1CE42F4038FS7EDCDF41EF3E958092A008609D 1FSCIADGF34FELS

SECP256R1 | 3913DF606338CAD3ABBDEAAA4ADSBAS3FA0MB00722DF2DA93113B3F10CABRICE
SECP256R1 | B18AE319ES95SECC2DF1C55CD2027981C3BACB0OCS476E025FFESBAAIBCTE6ET]

Cancel ﬂl

7

Figure 57: selecting private key from product_keys.xml file

8. To each public key index a private key is assigned. This private key is then used during image
signature generation. If product_keys.xml file already exists then the user is prompted to create a
new product_keys.xml file with new keys and save old keys in product_keys.xml.old file (Figure
58).

f Answer question = X

Product keys file already exists.
Would you like to move it to "product_keys.xml.old” and make new file?

ND| Ye5|

Figure 58: move existing configuration to product_keys.xml.old file

9. For SECP256R1, SECP224R1 or SECP192R1 types of curves hash method must be selected (Fig. 13).
In case of EDWARDS25519 it is not needed because by default this curve uses SHA-512. It will be
used during image signature generation.

User Manual Version 6.1 19-Jan-2022

CFR0012 130 of 206 © 2022 Renesas Electronics

T RLENESAS

DA1468x Software Platform Reference

Select hash method

SHA-224

SHA-256

SHA-384
SHA-512

Cancel [OK I

Figure 59: selecting hash method for SECP256R1, SECP224R1 or SECP192R1

10. In this optional step, shown in Figure 60, the user can enter public key index/indexes or
address/addresses (Figure 61) which will be revoked after image validation on the platform.
Allowed values are number of indexes of asymmetric keys (0 — 3 for DA1468x Platform) or
addresses of symmetric keys (sO — s7 for DA1468x Platform).

Would you like to add key revocations?

Figure 60: add key revocations selection

Insert values separated by spaces

key revocations: \

Cancel l OK|

Figure 61: key revocations values window

[§

11. In this step the user can add minimal SW version on the platform (this is optional) as shown in
Figure 62. This will be done after image validation on the platform. If the user doesn’t write any
version in the window show in Figure 63, then SW version of the used image will be used as new
minimal SW version.

User Manual Version 6.1 19-Jan-2022

CFR0012 131 of 206 © 2022 Renesas Electronics

T RLENESAS

DA1468x Software Platform Reference

Would you like to add minimal version?

[N

Figure 62: adding minimal version of software version

(Input value = X |

Insert value

minimal version:

Cancel | oK ‘

~ >,

Figure 63: inserting minimal value of software

12. Use secure suota initial flash jtag python script as shown in Figure 64. This script is
used to save all generated keys and the secure bootloader in OTP memory and then flash the
selected application in secure mode into DA1468x board.

Note 21 Before launching the secure application (e.g. pxp_reporter) and ble_suota_loader must be first built
with the following modes:

o ble_suota_loader in Release mode — DA14683-00-Release OTP_ Secure

O pxp_reporter in any kind of mode with SUOTA support e.g. — DA14683-00-
Debug QSPI SUOTA.

1 collect_debug_info_win
2 get_memory_snapshot_win
3 erase_gspi_jtag_win
4 erase_gspi_serial_win
5 program_gspi_config_win
6 program_gspi_jtag_win
7 program_gspi_nvparam_win
8 program_gspi_serial_win
9 suota_initial_flash_jtag_win
suousb_initial_flash_jtag_win
secure_image_config

| secure_suota_initial_flash_jtag |

PPPPPPP PP PPP

Run As 4
External Tools Configurations...

Organize Favorites...

Figure 64: secure suota initial flash jtag script

User Manual Version 6.1 19-Jan-2022

CFR0012 132 of 206 © 2022 Renesas Electronics

RLENESAS

UM-B-044

DA1468x Software Platform Reference

11.5.3 Files

When the configuration procedure (described in 11.5.2) of Secure Boot ends two xml files are
created: product_keys.xml (Figure 66) file and secure_img_cfg.xml (Figure 67) as shown in Figure
65.

[y Project Explorer &

4 & python_scripts

- Bt api

- B gspi

4 1 secure_image
¢ [E _init_py

i [F] generate_keys.py
product_keys.xml
product_keys.xml.old
i [l secure_image_config.py
secure_img_cfgml
I # suota o
secure_image_config.launch
secure_suota_initial_flash_jtag.launch
i & Python3.5 (CA\Di .. thon35\python.exe)
i % ble suota_loader

i ¥ pxp_reporter
i = scripts

Figure 65: Secure Boot - generated files

- product_keysxmi =2
<2xml version<"1.8" encoding=-"UTF-8"7>
<keys>
csymmetrics
<symmetric_key>724526092850260452E048 3018 7FADTEL2FF 2DF A1009EDO82434C0D7AT1EEELL</ symmetric_key>
<symmetric_key>SEQAGE987B0D87AA2FASCIIAGFODAFE6FBT16A8501GARSIFSA6500C19F137910< / symnetric_key>
<symsetric_key>COA33GFESFCOI1DCCIFOALZFOSBFCS56608I6EBBAE JTDAF 3169 704 20ABBDCCBI8< /symmetric_key>
<symmetric_key>9F@OFAEDAABAIAAZF FODIF I6BATT66258018FB2CABIEED1841FG25D984ADFACDS</symnetric_key>
<symmetric_key>0420E18C32F(5849DE94FCSBFBOF FOACAISEDOO25BD2ECABG T 2CEESTBIB5EAB2< /symmetric_key>
<symmetric_key>FOCFA704D10C647360BE03BC659EAT829ESMD5EG8RD71857ARE585ARIAGIAGF ¢« /symmetric_key>
<symmetric_key> 7DFEGCTCAFARZ2(BBIALFCEBCFDC187083863540B71519E565ED31FF375878B8</ symmetric_key»
<symmetric_key>Al95991D522258F0BS462EECC2C133RDEOR942F171FASTIDECAAINTRRLSA6L A< /symmetric_key>
</symmetric>
<asymmetric>
<asymmeteic_keys»
<private>B819966F 505 IDE0S4ADSA04C SE70249CF TAES2ERBASDBF 1(@7S9F 365E8BC9B431< /private>
<public>7A91E1A232343861FA162E4645C9T9EEBDF 300 F 2E 766F L3500 3A850C 228ACD00 75AEABSS186F055903D 75961 7AF
<elliptic_curve>SECP256R1</elliptic_curve>
</asymmetric_keys>
<asymmetric_keys>
<private>E2B076C4649981747A29C61EF 779BFEDC 266504 1D7BAFF 268E68874820F 17F@24 /private>
<public>3E6107105468898C 1572EEAESA1AFDSAODC 7B80AG7TO7064214728370775F170B43FC 7360 20206 4EARCASISASAS:
<elliptic_cturvesSECP256R1</elliptic_curve>
</osymmetric_keys>
<asymmetric_keys>
<private>840302B2980550E631DE1CREIS6AF 1 18DESATSARBE1C6CEFOI2AFCCFFI627150< /privates
<public>97A4B2A714607803198286948A4393E 5506420808 30079 2E88D58BE6FFCBT11CALEGB136756CFD160595213770"
<elliptic_curve>SECP256R1</elliptic_curve>
</asymmetric_keys>
<asymmetric_keys>
<private>A7D2B9FEB1C2FF2A7DFBASEADF 1 3F AEDSLFBBC 7D98CF 79DAGD1 FD428435CCAB3¢ /private>
<public>6BCBED29E6240962EACRITETS1484A84E13D99E1661BEISERA2A2CE7AC165992DES2E157D5198414FATROAIAF 7
<elliptic_curvesSECP256R1¢/elliptic_curves
<fasymmetric_keys>

<fasymmetricy
</keys>
Figure 66: product_keys.xml file
User Manual Version 6.1 19-Jan-2022

CFR0012 133 of 206 © 2022 Renesas Electronics

bon RENESAS

DA1468x Software Platform Reference

secure_img_cfg.emi
<?xml version="1.8" encoding="UTF-8"1>
<secure_img_cfg>
<security>
<key_idx>8</key_idx>
<private_key>819966FSDS3DEQ400980ACSETOR249C F74EO2EBASDBF1C@759F 365E8B(9B431< /private_key>
<hash_method>SHA-256</hash_method>
<elliptic_curve>SECP256R1</elliptic_curve>
</security>
<device_administration>
<key_revocation>@</key revocation»
<key_revocation>2</key_revocation>
<key_revocation>s@</key_revocation>
<key_revocation>sé</key revocation>
<key_revocation>sd</key_revocation>
</device_administration»
</secure_img cfg>

Figure 67: secure_img_cfg.xml file

These files are used by other scripts (e.g. secure suota initial flash jtag and mkimage) as input
files.

Note 22 For more info about SUOTA please refer to section 9 of [3].

Note 23 initial flash.py script performs writing to the One Time Programmable (OTP) memory. When this
procedure is called with invalid configuration/firmware/bootloader files then the device may become
unusable!

Note 24 Scripts are using Python 3

12 Drivers and Adapters

12.1 Introduction

The DA1468x family of devices supports several peripherals on different interfaces. To support them
the SmartSnippets™ DA1468x SDK provides Low Level Drivers (LLD) and/or Adapters for each of
the available hardware peripherals.

A LLD provides a simple API to use the peripheral and abstract the complexities of using the
peripheral registers directly.

An Adapter provides a higher level service allowing different tasks to safely share the peripheral and
also integrate with the CPM to manage power-down modes

The rest of this Section will provide an overview of the available Drivers and Adapters.

Note 25 All drivers and adapters in the SmartSnippets™ DA1468x SDK are supplied in full source to aid
debugging. However, modifying the drivers is not advised.

12.2 Drivers

This section will cover the LLDs for the peripherals of the DA1468x. The LLDs allow application
software code to access and use the device peripherals without detailed knowledge of the hardware
implementation, such as bits and their position within hardware registers.

It is recommended to only use the LLD drivers to access the device peripherals as the LLDs are
tested and verified. Direct access to hardware resources (e.g. registers or peripheral interfaces)
might lead to conflicts with lower level FW functions accessing the same resources through LLDs

User Manual Version 6.1 19-Jan-2022

CFR0012 134 of 206 © 2022 Renesas Electronics

UM-B-044

LENESAS

DA1468x Software Platform Reference

and lead to system instabilities. For each hardware peripheral a dedicated header file describes the
API functions of the peripheral, lists capabilities and defines control structures which are needed to
interact with its particular LLD. The header files can be found under

<sdk root directory>/sdk/bsp/peripherals/include. Table 46 lists all available LLDs.

Table 46: LLD overview

Filename

Description

hw_aes_hash.h

Definition of API for the AES/HASH Engine Low Level Driver.

hw_breath.h Definition of API for the Breath timer Low Level Driver.
hw_cpm.h Clock and Power Manager header file.

hw_crypto.h Interrupt handling for the crypto engines (AES/HASH, ECC)
hw_dma.h Definition of API for the DMA Low Level Driver.

hw_ecc.h Definition of API for the ECC Engine Low Level Driver.

hw_ecc_curves.h

ECC Engine curves parameters.

hw_ecc_ucode.h

ECC Engine microcode.

hw_fem_sky66112-11.h

FEM Driver for SKYWORKS SKY66112-11 Low Level Driver API.

hw_gpadc.h

Definition of API for the GPADC Low Level Driver.

hw_gpio.h

Definition of API for the GPIO Low Level Driver.

hw_hard_fault.h

Hard-Fault Handler.

hw_i2c.h

Definition of API for the 12C Low Level Driver.

hw_irgen.h

Definition of API for the IR generator Low Level Driver.

hw_keyboard_scanner.h

Definition of API for the Keyboard scanner Low Level Driver.

hw_led.h

Definition of API for the LED Low Level Driver.

hw_otpc.h Definition of API for the OTP Controller driver.

hw_gspi.h Definition of API for the QSPI Low Level Driver.
hw_quad.h Definition of API for the QUAD Decoder Low Level Driver.
hw_rf.h Radio module (RF) Low Level Driver API.

hw_soc.h Definition of API for the SOC Low Level Driver.

hw_spi.h Definition of API for the SPI Low Level Driver.

hw_tempsens.h

Implementation of the Hardware Temperature Sensor interface
abstraction layer.

hw_timer0.h Definition of API for the TimerO Low Level Driver.

hw_timerl.h Definition of API for the Timerl Low Level Driver.

hw_timer2.h Definition of API for the Timer2 Low Level Driver.

hw_trng.h Definition of API for the True Random Number Generator Low Level
Driver.

hw_uart.h Definition of API for the UART Low Level Driver.

hw_usb.h Header for low level DA1680 USB drive

hw_usb_ch9.h Header file with USB configuration info for DA1680 USB driver.

User Manual Version 6.1 19-Jan-2022

CFR0012 135 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

Filename Description

hw_usb_charger.h Definition of API for the USB Charger.

hw_watchdog.h Definition of API for the Watchdog timer Low Level Driver.
hw_wkup.h Definition of API for the Wakeup timer Low Level Driver.
sys_tcs.h TCS Handler header file.

In addition to the LLDs listed above, there is also a Low Level Pulse Density Modulation (PDM) Audio
Interface driver. The PDM audio interface driver uses the Audio Processing Unit (APU) and the
Sample Rate Converter (SRC) devices to implement a PDM interface with input and output support.
The driver supports input and output directly from/to an application using the SRC /O registers at
various sample rates. It also supports both master and slave PDM mode. The Low Level Interface
driver file can be found under <sdk root directory>/sdk/interfaces/audio/include/if pdm.h

12.2.1 LLD header Example

The table included below shows the typedefs, the enumerations and the functions for the quadrature
decoder hardware as an example.

Note 26 All API calls starting with hw_xx indicate an LLD function.

Table 47: LLD header file

Typedefs

typedef void(* hw quad handler cb) (void)

QUAD interrupt callback.

Enumerations

typedef enum { HW QUAD CHANNEL NONE = O,

HW QUAD CHANNEL X = (1 << 0),

HW QUAD CHANNEL Y = (1 << 1),

HW_QUAD CHANNEL Z = (1 << 2),

HW_QUAD CHANNEL XY = HW QUAD CHANNEL X | HW QUAD CHANNEL Y,
HW QUAD CHANNEL XZ = HW QUAD CHANNEL X | HW QUAD CHANNEL Z,
HW QUAD CHANNEL YZ = HW QUAD CHANNEL Y | HW QUAD CHANNEL Z,
HW QUAD CHANNEL XYZ = HW QUAD CHANNEL X | HW QUAD CHANNEL Y |
HW_QUAD CHANNEL Z,

HW QUAD CHANNEL ALL = HW QUAD CHANNEL XYZ

} HW QUAD CHANNEL;

Channels definitions.

Functions

static inline void hw quad init (uintl6 t clk div)
Initialization of QUAD driver

static inline void hw quad enable (void)
Fnable QUAD driver

static inline void hw quad disable (void)
Disable QUAD driver.

static inline void hw quad set channels (HW QUAD CHANNEL ch mask)
Set channels state

static inline void hw _quad enable channels (uint8 t ch mask)
Enable channels

static inline void hw quad disable channels (uint8 t ch mask)
Disable channels

static inline hw quad get channels (void)

HW_QUAD CHANNEL -
Get channels state

User Manual Version 6.1 19-Jan-2022

CFR0012 136 of 206 © 2022 Renesas Electronics

bon RENESAS

DA1468x Software Platform Reference

Typedefs |
Void hw quad register interrupt (hw quad handler cb handler, uintl6 t
tnum) ;
Turn on QUAD interrupt
static inline bool hw quad is irg gen(void)
Check if interrupt has occurred
Void hw quad unregister interrupt (void)
Turn off QUAD interrupt
static inline intlé t hw quad get x(void)
Get the number of steps from X channel
static inline intlé6 t hw quad get y(void)
Get the number of steps from Y channel
static inline intl6 t hw quad get z(void)
Get the number of steps from Z channel

12.2.2 Documentation

All LLD header files contain the description of the individual APl methods, any types they define and
their input and output parameter as well as their output types. The LLD header files were written to
support the documentation generation tool Doxygen (http://www.doxygen.org). This approach allows
the generation of an HTML-like description of each of the individual LLD header files including all
possible typedefs and defines as well as an accurate description of all API calls and their
parameters. Additionally, it gives a short summary of what each one of the API calls does.

Please refer to [2] to find more details on how to generate an HTML description of a particular LLD.
Figure 68 presents the main Doxygen page found at

<sdk root directory>/doc/html/index.html

et

Smarchpippet§ DA1468x/DA15xxx SDK version 1.0.10.1072

Axtewt Fagre Vemdn Dats Bmimtures Ll S

SmartSnippets DA1468x/DA15xxx SDK Documentation

Fobow ! 1) browte 1w STErtlnpoes DA 4462 DA 150 500 nurwreston
twrn e T e s TR T paneanvT: farage e EOONNG Seeean

Mo i S Tt dat Bash mgporn 1 e SOK

Instructions for example projects
DK Applications

o ADPAE NONTCANN Sortar Borvien (BT ICATO0

+ BLE Cartrel duma spsbestion

o Mt Mate o
o Mt L

te dume applcatu

* appdcanrsn
o Eatanded swep epotcation
o« BE Snte P | anebeut.

Figure 68: Html file generated by Doxygen

12.3 Adapters

Drivers may also contain a higher layer —the adapter- which allows more than one application thread
to request access and get serviced by the driver. Please note that the same “adapter” scheme is

User Manual Version 6.1 19-Jan-2022

CFR0012 137 of 206 © 2022 Renesas Electronics

http://www.doxygen.org/

RLENESAS

UM-B-044

DA1468x Software Platform Reference

used for data buffers, utilities and other system resources that could be utilized by an application as
shown in Figure 69.

Application
Thread #2
N Application Level
.._..._-........_:*\.: _________________________
Adapter Adapter Adapter
<<Singleton>> <<Singleton>> <<Singleton>>
_] System Level

Driver

Data Buffer

Utility <<Singeton>> |

Low Level

Figure 69: Adapter overview

The adapters as provided by the SmartSnippets™ SDK enables requests for a specific driver or
resource from different tasks to be managed to handle resource availability.

The adapters use OS features such as semaphores or events and the resource management APl in
the osal layer to manage multiple simultaneous resource acquisition/release requests. The adapters
not only provide access to the peripheral, but also make sure that other tasks which are currently
accessing it, suspend their operation until the peripheral is once again released. They also interact
with the CPM module so that device will only sleep if all peripherals are inactive.

Task A Shared Besouroe . Tas_k B
Running acquire Idle .
T ‘ » Y , Running
acquire
USing Assigned . ..
the togA Task
resource - suspended
Assigned Using
o B the
release resource
Running T . r
Idle Running

Figure 70: Adapter communication

User Manual Version 6.1 19-Jan-2022

CFR0012 138 of 206 © 2022 Renesas Electronics

M0 LENESAS

DA1468x Software Platform Reference

Note 27 Adapters are not implemented as separate tasks and should be considered as an additional layer
between the application and the LLD. The Adapter executes in the context of the calling task.

Note 28 The recommendation is to use the adapters to access the hardware peripherals where
possible.

The adapter header files can be found under <sdk root directory>/sdk/bsp/adapters/include.
Table 48 lists all available adapters.

Table 48: Adapter overview

Filename Description

ad_battery.h Battery adapter API.

ad_crypto.h ECC and AES/HASH device access API
ad_defs.h Common definitions for adapters.
ad_flash.h Flash adapter.

ad_gpadc.h GPADC adapter API.

ad_i2c.h 12C device access API.
ad_keyboard_scanner.h Keyboard Scanner Adapter API

ad_spi.h SPI adapter API.

ad_uart.h UART adapter API.

ad_nvms.h Nonvolatile memory storage API.
ad_nvparam.h NV Parameters adapter interface.
ad_nvparam_defs.h Define NV Parameters adapter interface.
ad_nvms_direct.h NVMS direct access driver.
ad_nvms_ves.h NVMS VES driver.

ad_rf.h Radio module access functions.
ad_temp_sens.h Temperature Sensor adapter API.
flash_partitions.h Default partition table.

partition_def Partition table entry definition
partition_table.h Partition table.

platform_devices.h Configuration of devices connected to board.
platform_nvparam.h Configuration of non-volatile parameters on platform.
platform_nvparam_values.h Parameter value.

The SDK includes a "Peripherals demo application” which provides an excellent example of how
many of the adapters are used. Please refer to the related Doxygen documentation and source code.

User Manual Version 6.1 19-Jan-2022

CFR0012 139 of 206 © 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

12.3.1 The UART adapter example

The UART adapter is an intermediate layer between the UART LLD and a user application. It allows
the user to utilize the UART interface in a simpler way than using the pure LLD functions.

Features:

Synchronous writing/reading operations block the calling task while the operation is performed
using sempahores rather than relying on a polling loop approach. This means that while the
hardware is busy transferring data, the Operating System (OS) scheduler may select another
task for execution, thus utilizing processor time more efficiently. After the transfer finishes the
calling task is released and resumes execution.

DMA channel resource management for shared usage among various peripherals (e.g. 12C,
UART). Interconnected peripherals may use the same DMA channel if necessary. The adapter
takes care of DMA channel resource management.

Ensuring that only one device can use the UART after acquiring it.

Putting code between ad_uart_bus_acquire(dev) and ad_uart_bus_release(dev) ensures that
only this task can use the UART to communicate with device dev which was previously opened
with ad_uart_open. During this period no other device or task can use the UART until the
ad_uart_bus_release function is called by the owning task.

Unlike other serial adapters (12C and SPI), the UART adapter additionally allows direction-
specific resource management. This allows two tasks to access the “read” and the “write”
resource simultaneously. Use ad_uart_bus_acquire_ex and ad_uart_bus_release_ex to acquire
and release a direction specific resource respectively.

User Manual Version 6.1 19-Jan-2022

CFR0012 140 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

Using the UART Adapter

" . dg_configUART ADAPTER and dg configUSE HW UART definition

To enable the UART adapter, both dg configUART ADAPTER and dg configUSE HW UART mMacros
must be defined and set to 1 in the project’'s config/custom config gspi.h header file:

#tdefine dg_configUART_ADAPTER (1)

#tdefine dg_configUSE_HW UART (1)

Code 21: Enabling UART Adapter
From this point on, the overall adapter implementation with all its integrated functions becomes
available.
2. The platform devices.hheader and UART BUS macro(s)

Before utilizing the UART adapter the necessary UART_BUS macro(s) must be created using the
following definition pattern:

UART_BUS(bus_id, // valid values: UART1, UART2
name, // name of UART, e.g. COM1
baud_rate, // UART baud rate from enum
HW_UART_BAUDRATE
data_bits, // value from enum HW_UART_DATABITS
parity, // value from enum HW_UART_PARITY
stop, // value from enum HW_UART_STOPBITS
auto_flow_control, // 1 if hardware flow control (CTS/RTS) is used,

0 otherwise

dma_channel) // DMA number for Rx channel, Tx will
have next number,

// pass -1 for no

Code 22: Parameters of UART bus arguments

Macro(s) should be placed in a platform devices.h header file, which can be found and copied
from <sdk root directory>/sdk/bsp/adapters/include to the user’s project /config directory. If a
new platform devices.hfile is not included there, the application will inherit the default macro(s)
definitions from the original platform devices.h header file, located in the

<sdk root directory>/sdk/bsp/adapters/include.

These macro(s) describe the parameters of each UART bus and devices connected to it, as shown in
Code 23:

UART BUS (UART1, SERIALL, HW UART BAUDRATE 115200, HW UART DATABITS 8, HW UART PARITY NONE,
HW UART STOPBITS 1, 0, 0, HW DMA CHANNEL 1, HW DMA CHANNEL 0, 0, 0)

Code 23: Parameters of the UART bus

User code
1. Open the UART device

User Manual Version 6.1 19-Jan-2022

CFR0012 141 of 206 © 2022 Renesas Electronics

bon RRENESAS

DA1468x Software Platform Reference

The first step is to open the UART device, which was defined by the UART BUS macro. Calling the
function shown in Code 24 opens the device and returns a handle to the main flow for using it in
other adapter functions as well.

uart_device ad_uart_open(const uart_device_id dev_id);

Code 24: Open UART

The initial function call configures the UART block. Subsquent calls from other tasks simply return the
already existing handle to the initialized UART, together with the parameters related for each device
ID. The dev_id parameter is a second parameter of UART BUS, for instance, SERIALL. The returned
uart device handler will then be used in all other adapter functions from now on such as

ad uart bus acquire (handler device) Or ad uart write (handler device).

2. Acquire access to the UART bus

Before using the UART the application task must request access to it so that no other tasks can use
it and potentially corrupt the data transmitted or received. The access is acquired by using the
function presented in Code 25:

void ad_uart_bus_acquire(uart_device dev);

Code 25: Acquire access to UART

This function waits for the UART bus to become available and when it is available locks it down and
so reserves it for the current task. The function can be called several times. However, it is essential
that the number of ad uart bus release () function calls used for releasing the UART bus matches
the number of ad uart bus acquire () calls. When using the ad uart bus acquire () function, only
one task has access to the bus and another task is able to use it only after the

ad uart bus release() function has been successfully called.

3. Write/Read to/from the UART device
Write and read functions can be divided into two methods:

e Synchronous

void ad_uart_write(uart_device dev, const char *wbuf, size t wlen);

Code 26: Write function

The function shown in Code 26 is used for writing to the UART device in a synchronous manner.

int ad_uart_read(uart_device dev, char *rbuf, size_t rlen, OS_TICK_TIME timeout);

Code 27: Read function

Similarly, the function presented in Code 27, is used for reading rlen bytes from the UART device, in
a synchronous manner as well.

These two functions block the UART bus, however they do not block the operating system.
FreeRTOS initially waits for bus access, and then blocks the calling task until a transaction is
completed. Once a Write/Read process is finished, the UART bus is free to make another
Read/Write operation for the same device.

User Manual Version 6.1 19-Jan-2022

CFR0012 142 of 206 © 2022 Renesas Electronics

bon RRENESAS

DA1468x Software Platform Reference

In synchronous mode the calling task is blocked for the duration of the read or write access but other
tasks are not.

e Asynchronous

void ad_uart_write_async(uart_device dev, const char *wbuf, size_t wlen,
ad_uart_user_cb cb, void *user_data);

Code 28: Write function

The function presented in Code 28, works in an asynchronous manner for writing wlen bytes to the
UART device. Once the data is written to the UART the callback function cb is called. After that the
ad uart bus release () function is called. It is essential that until the callback is received, the caller
does not release the wouf memory buffer.

void ad_uart_read_async(uart_device dev, char *rbuf, size_t rlen, ad_uart_user_cb
cb, void *user_data);

Code 29: Read function

The function presented in Code 29, is used for reading rlen bytes from the UART device. The
function does not necessary wait for the read operation to finish and starts from gaining access to the
UART bus by calling the ad uart bus acquire ()function. Once the read operation begins, the user
must not release the rbuf memory buffer. After all data is received the ad uart bus release()
function is called just before the callback function cb is called. To abort an already initiated read
operation it is necessary to call the ad vart abort read async() function.

In the asynchronous case the calling task is not blocked by the read or write operation. It can
continue with other operations while waiting for callback function to signal the completion of the read
or write. Only at this point can rbuf be read or wbuf be refilled.

4. Release the UART bus.

The function presented in Code 30 should be used for releasing the UART bus:

void ad_uart_bus_release(uart_device dev);

Code 30: Release UART

The function decrements an already acquired counter for a specific dev device and as soon as an
internal countdown reaches zero, the UART bus is released and can be used by other tasks.

5. Closing the UART device.

After all user operations are done and the device is not needed anymore for additional tasks, it
should be closed by using the function presented in Code 31.

void ad_uart_close(uart_device device);

Code 31: Close UART device

Example of Synchronous access:

User Manual Version 6.1 19-Jan-2022

CFR0012 143 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

uart_device dev;
static char wbuf[5] = ,Test”;

char rbuf[5];

dev = ad_uart_open(SERIAL1); /* Open selected device */
ad_uart_bus_acquire(dev); /* Acquire access to bus */
ad_uart_write(dev, wbuf, sizeof(wbuf)); /* Write synchronously some data to

UART device */

ad_uart_read(dev, rbuf, sizeof(rbuf), 100); /* Read synchronously the data
from UART device */

ad_uart_bus_release(dev); /*Release the UART

ad_uart_close(dev); /* Close selected device */

Code 32: Example of UART adapter usage
12.4 The NVMS Adapter

12.4.1 Overview

The SmartSnippets™ DA1468x SDK includes a Non-Volatile Memory Storage (NVMS) Adapter
providing non-volatile memory storage access capabilities to the application (including cached
mode). The Adapter provides two main functions:

e Non-Volatile Memory Storage to external Flash devices over standard SPI and Quad SPI
performing Write / Read / Erase operations
e Virtual EEPROM (VES) emulation with the following functionalities
o Wear-levelling
o Garbage Collection
o Power failure protection

The VES partition should be used for data that is frequently written to flash. The wear levelling and
garbage collection allow the driver to maximize the number of write cycles from software given the
limitations of the number of erase & write cycles of the actual flash device.

An overview of NVMS Adapter is shown in Figure 71.

User Manual Version 6.1 19-Jan-2022

CFR0012 144 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

Application

VES (Virtual Addressing)

NVMS Adaptor

NVMS (Physical Addressing)

Interface Driver
SPI1, QSPI

FLASH Device

Figure 71: NVMS Overview

In theory NVMS is interface agnostic, as it is independent from the interface type being used
(Standard SPI, 12C or QuadSPI) for data storage. However, the QSPI interface is a special interface
from the NVMS perspective. As well as performing eXecution in Place (XiP), the QSPI Controller
hardware block is also handling specific Flash-aware actions when Flash devices Read/Write/Erase
operations are executed. As shown in Figure 73 when DA1468x is in cached mode, special
mechanisms from the QSPI block are invoked.

The main consequence of this approach is that all Flash memory models used when utilizing NVMS
over QSPI in cached mode must support Erase suspend/resume.

The rest of this section gives an overview on:

Common NVMS interface for all usage scenarios

Mechanisms implemented specifically for NVMS over QSPI in cached mode usage scenario
Virtual EEPROM (VES) emulation

Flash Memory Map in various usage scenarios.

12.4.2 Interface

NVMS Adapter exposes functions: ad nvms_init (), ad nvms open(), ad nvms write() and

ad nvms read(), ad nvms_erase (). Function ad nvms init () must be called once at platform start
to perform all necessary initialization routines, including discovering underlying storage partitions.
The Application must open one of the partitions before any read or write activity can be performed. If
several partitions are stored on one physical device (i.e. SPI Flash), opening one partition will limit
read and writes to this partition only, making all addressing relative to beginning of that partition and
not the whole flash. After opening, each partition is accessed in same way, but the exact way that

User Manual Version 6.1 19-Jan-2022

CFR0012 145 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

data is stored depends on partition type. Only in the Virtual EEPROM (VES) partition do all reads and
writes use virtual addresses that are independent of actual flash location.

nvms_t ad_nvms_open(nvms_partition_id_t id);

for (;;) |
/* addr is any address in partition address space
* buf can be any address in memory including QSPI mapped flash */

ad_nvms_read(part, addr, buf, sizeof(buf));

ad_nvms_write(part, addr, buf, sizeof(buf));

Code 33: Usage of NVMS

Function ad nvms_open () can be called many times since it does not allocate any resources.

Function ad nvms read() can be called with any address within the partition. If address is outside
the partition boundaries ad nvms read() will return O. If the address is inside the partition but the
size would exceed the partition boundary only the data from within the partition will be accessed.

Function ad nvms_write () can be called with any address inside partition address space.

How read or write actually work depends on the accessing method. In the current version of the
platform, two accessing methods are supported: (a) Direct Access and (b) VES.

a. Direct Access

Direct access driver uses the relative address from the beginning of the partition but apart from this
there is no address translation. Writes are performed exactly at requested addresses. If write would
not change data (same data written) it will not be performed at all. If write can be performed without
erasing it will be executed. If write can’t be performed without an erase, then the erase is also
initiated. Currently the direct driver does not support caching so writing small pieces of data on an
already used sector will trigger many erase operations. If a small write is required for some reason,
then ad nvms erase () should be called explicitly before each write for efficiency reasons. Power
failure during write or erase will result in data loss including data that was not touched by the last
write. For power fail safe operation the VES partition should be used.

b. VES
For an application to use VES there are two prerequisites:
e The Partition ID should only be NVMS_GENERIC_PART.
e dg_configNVMS_VES variable should be defined.

VES driver provides access to the partition with power failure protection. It uses virtual addressing.
The address space available for the user application is smaller than physical flash space occupied by
the partition, but user can read and write to this address space without worrying that data will be lost.
If power fails during a write, the specific data being written can be lost but other data will not be
affected.

User Manual Version 6.1 19-Jan-2022

CFR0012 146 of 206 © 2022 Renesas Electronics

UM-B-044

LENESAS

DA1468x Software Platform Reference

FLASH Device
Code Section 1
o
2
m
o=
[}
[%]
E Code Section 2
-
=L
™
L=
‘™
=
=
=
Code Section 3
e T
-
P
T
o
1]
%]
=
T VES Section
-
=L
™
3
T E
VA I I

FLASH Device

Code Section 1

Code Section 2

Code Section 3

AT T TR

Physical Address Range

—_— = =

Figure 72: Virtual/Physical Addressing with and without VES

When VES is used:

e The application configures NVMS with the VES section information. The VES section is
represented by a virtual address range that is mapped to a physical address range.

e NVMS prevents the application from performing “raw” writes to the allocated VES section

12.4.3 NVMS partition table
Code 34 shows the full list of the NVMS IDs and it can be found in

<sdk root directory>/sdk/bsp/adapters/include/partition def.h

User Manual

Version 6.1

19-Jan-2022

CFR0012

147 of 206

© 2022 Renesas Electronics

T RLENESAS

DA1468x Software Platform Reference

/**
* \brief NVMS Partition IDs
*/

typedef enum {

NVMS_FIRMWARE PART =1,
NVMS_PARAM PART = 2,
NVMS_BIN PART = 3,
NVMS_LOG_PART = 4,
NVMS_GENERIC PART = 5,
NVMS_PLATFORM PARAMS PART = 15,
NVMS_PARTITION TABLE = 16,
NVMS_FW_EXEC_ PART =17,
NVMS_FW UPDATE_PART = 18,
NVMS_PRODUCT HEADER PART =19,
NVMS_IMAGE HEADER PART = 20,

} nvms partition id t;

Code 34: NVMS Partition IDs

Code 35 shows the format for the data of the NVMS.

/**

* \brief Partition entry.

*/

typedef struct partition entry t {
uint8 t magic; /**< Partition magic number OxEA */
uint8 t type; /**< Partition ID */
uint8 t valid; /**< Valid marker OxFF */
uint8 t flags; /EF< x/
uintl6 t start sector; /**< Partition start sector */
uintl6 t sector count; /**< Number of sectors in partition */
uint8 t reserved2[8]; /**< Reserved for future use */

} partition entry t;

Code 35: Partition entry

Table 49 describes each entry value.

User Manual Version 6.1 19-Jan-2022

CFR0012 148 of 206 © 2022 Renesas Electronics

RLENESAS

UM-B-044

DA1468x Software Platform Reference

Table 49: Description of Partition entry

Magic | Partition Valid | Flags Start Sector Reserve
code ID flag (1 byte) sector of count of (8 bytes)
6! (1 byte) @1 partition partition

byte) byte) (2 bytes) (2 bytes)

OxEA. | From oxpp | foefine Start Sector For future
nvm partit | mean | onLiTTON FLAG READ ONLY 1 sectorin | countof | use.
ionid t, |gipg | TOCEire flashof | this
OxFE RTITION FLAG VES 2 this partition.

it a lid 0 means it's a normal partition.
means II ds va It' i writable/readable direct partition.
an invai partii | 4 means it's read only partition
partition on
entry. entry. | 2 means it's a VES partition

12.4.4 NVMS over QSPI in cached mode

Application
Application dat
SW Upgrade o Ica. fon ca a'
i Storage (i.e. security

R 08s keys, etc.)

T ar

0 2 4

S [NVMS Adapter }

XiP it
[Direct Access] NVMS VES

t { Flash Adapter }

Write /|Read / Erase

QSPI Controller

Controller

Flash device

Figure 73: NVMS Adapter NVMS over QSPI and Virtual EEPROM emulation in Cached mode
When executing in place (XiP) from Flash in cached mode, the Flash device is used to store both
firmware images and data.

Preemptive RTOS scheduling remains operational while programming the Flash.

PROGRAM and ERASE are the 2 critical Flash operations triggered by NVMS that need to be
considered, as they can’t be performed at the same time as the READ operations triggered by the
cache controller when it fetches cache lines from the FLASH to the cache RAM. To handle this
conflict a specific mechanism is needed.

This mechanism is disabled when DA1468x is not in cached mode.

User Manual Version 6.1 19-Jan-2022

CFR0012 149 of 206 © 2022 Renesas Electronics

bon RENESAS

DA1468x Software Platform Reference

12.4.4.1 Slice PROGRAM operation

When writing a buffer to the Flash, the NVMS Adapter will slice the buffer into several smaller buffers
and will issue several uninterruptible PROGRAM QSPI requests. Note that one parameter
determining the size of the slice in bytes is stored in the flash itself. This parameter is determined by:

1. The interrupt latency time in microseconds that the application authorizes.
2. The flash model and the time taken to perform a program.

In general, the first byte to be programmed takes longer than the subsequent bytes so a trade-off is
possible and the exact value is left to the application developer. However, a default value of 16 bytes
is currently used.

12.4.4.2 Suspend/Resume ERASE Operation

Instead of slicing ERASE, the SmartSnippets™ DA1468x SDK leverages from Smartbond ™ QSPI
Controller SUSPEND/ERASE in auto-mode capability. It is assumed here that all selected Flash
models support suspending ERASE.

Flash

APP/OS NVS Adaptor Cache Control QSPIC My

Figure 74: Suspend/Resume ERASE Operation

When requested to erase a sector by NVMS Adapter (staying in auto-mode), the QSPIC will
automatically suspend the Erasing operation when a “read” from the Cache controller is triggered
due to a miss hit. 2 parameters to be stored in the flash itself are SW configurable:

e ERASE/RESUME Hold: Refer to QSPIC ERASECMDB REG[QSPIC ERSRES HLD]
e RESUME/SUSPEND delay: Refer to QSPIC ERASECMDB REG[QSPIC RESSUS DLY]

As QSPIC is not firing any interrupt on Erase completion, NVMS adapter must poll
QSPIC ERASECTRL CMD.

User Manual Version 6.1 19-Jan-2022

CFR0012 150 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

A detailed analysis of the Suspend/Resume ERASE Operation is shown in Figure 74. The overall
process begins when the Application/OS issues an “Erase Command” Request. The NVMS Adapter
receives the Request and issues an “Erase Sector” Request to the QSPIC (Set

QOSPIC ERASECTRL REC [QSPIC ERASE EN]). This request changes the QSPIC state (Figure 74,
Reference Point 1), which checks whether the Flash Memory is idle for a certain number of Clock
Cycles before initiating the ERASE process (QSPIC ERASECMDB REC [QSPIC ERSRES HLD]) .
Provided that the process can be initiated, QSPIC issues an “Erase Sector” Request to the Flash
Memory and erasing begins. In the meantime, NVMS adapter also switches state, by writing

CHECK ERASE REG and ERASECTRL REQ bits (Figure 74, Reference Point 2). The Erase process taking
place in the Flash Memory is able to be suspended by the QSPIC via an “Erase Suspend” Request in
two cases

(0 if a Cache Miss Notification arrives in the Cache control, leading to a “Fetch cache —
Read” Request towards the QSPIC, and

(i) if a Read Request is issued by the Application/OS directly to the QSPIC.

The consequent “Erase Suspend” Request initiates the READ process shown in Figure 74,
where QSPIC reads data from the Flash Memory and issues a “Read Done” Response to (i)
Cache Control or (ii) Application/OS respectively. Then, the QSPIC state switches again,
intending to resume Flash erase if memory is idle for a certain number of Clock Cycles
(OSPIC ERASECMDB REG [QSPIC ERSRES HLD]) as shown in Figure 74, Reference Point 3.
Provided that the Flash erase can be resumed, QSPIC issues an “Erase Resume” Request
towards the Flash Memory and changes state once more. In its current state (Figure 74,
Reference Point 4) QPSIC is programmed to delay any new suspension of the newly-resumed
Erase for a pre-defined number of Clock Cycles (0SPIC ERASECMDB REG [QSPIC RESSUS DLY]).
In the meantime, Flash Memory concludes the erasing process and notifies the QSPIC with an
“Erase Complete” Response. QSPIC then issues an “Erase Complete” Response to the NVMS
adapter, changing its state thus clearing CHECK _ERASE REG and ERASECTRL REQ bits (Figure 74,
Reference Point 5). Finally, NVMS Adapter issues the conclusive “Erase Complete” Response to
the Application/OS.

User Manual Version 6.1 19-Jan-2022

CFR0012 151 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

12.5 Logging

In the SDK the supported method of logging is to use the standard C APl printf () in the application
code. There are four mutually exclusive configuration options that will over-ride printf () in the file
sdk/bsp/startup/config.c. These config options need to be set in config/custom config gspi.h

Note 29 As printf takes a variable length list of arguments and supports many formatting options the
execution time and memory usage are unbounded. This can easily break an embedded system.

The recommendation is to be very careful in using printf()

Ideally use printf() in application tasks as they are lowest priority and tend to have larger
stacks.

If it needs to log inside a high priority RTOS task such as atimer callback then do not pass any
variables to be parsed. Just print a short string with no formatting to avoid blowing the small
100 byte stack for the timer task and corrupting other variables.

The possible configuration options are
1. CONFIG RETARGET

In this mode the logging data is redirected to a UART with an over-ridden version of the low level API
_write() . The UART used is set using the further configuration option

#define CONFIG RETARGET UART UART2

In this case the function periph_init() must enable the UART2 pins in the pin mux.

hw gpio set pin function(HW GPIO PORT 1, HW GPIO PIN 3, HW GPIO MODE OUTPUT,
HW GPIO FUNC UART2 TX);

hw gpio set pin function (HW GPIO PORT 2, HW GPIO PIN 3, HW GPIO MODE INPUT,
HW GPIO FUNC UART2 RX);

With this configuration the printf () statements appear on the host PC on the lower numbered COM
port that is enumerated for the USB cable (CoMx on Windows (both Pro DK and Basic DK)
/dev/ttyUSBO for Pro DK and /dev/ttyACMO for Basic DK on Linux).

2. dg configSYSTEMVIEW

In this mode the logging data is redirected to SEGGER’s SystemView tool running on the Host PC.
See Appendix D for instructions on setting up SystemView. Note that SystemView only supports
integer arguments (ie %d)

3. CONFIG RTT

In this mode the logging data is redirected to a Segger Real Time Transfer (RTT) link which uses
JTAG to communicate the data to the Segger RTT tools running on the Host PC.

4. CONFIG NO PRINT

In this mode nothing is logged and in fact the printf () function is overridden by an empty stub
function.

User Manual Version 6.1 19-Jan-2022

CFR0012 152 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

13 Optimizations

13.1 Optimize BLE framework footprint

This section describes macros that can be used to reduce the application image size. Usually an
application implements only one of the supported Bluetooth low energy roles (for example it is only
central or peripheral), so code relevant to unused Bluetooth low energy roles can be excluded from
the final build. Additionally, most of the time a Bluetooth low energy application would be a GATT
server or a GATT client, and therefore extra functionality can be removed. Table 50 shows the
available preprocessor macros that could be used to reduce the footprint of the user application.

Table 50: Available Macros for the optimization of BLE framework footprint

Macro Default Description

dg_configBLE PERTPHERAL 1 Set to O if the application is not using BLE-
peripheral related code.

dg_configBLE CENTRAL 1 Set to 0 if the application is not using BLE-
central related code.

dg configBLE OBSERVER 1 Set to 0 if the application is not using BLE-
observer related code.

dg_configBLE BROADCASTER 1 Set to 0 if the application is not using BLE-
broadcaster related code.

dg _configBLE GATT CLIENT 1 Set to 0 if the application is not using GATT
client related code.

dg_configBLE GATT SERVER 1 Set to O if the application is not using GATT
server related code.

dg_configBLE L2CAP COC 1 Set to 0 if the application is not using L2ZCAP
connection oriented channels related code.

Note 30 All macros are defined as 1 (enabled) by default. To disable a macro define it as 0 in the project
custom configuration file config/custom config gspi.h so that it will override the default setting.

As an example Code 36 shows the Macros that are defined as 0 to optimize the BLE framework
footprint in the pxp reporter demo application as it only needs to be a peripheral and run a GATT
server.

* BLE device config

*/

#define dg_configBLE_CENTRAL (0)

#define dg_configBLE_GATT_CLIENT (0)

#define dg_configBLE_OBSERVER (0)

#tdefine dg_configBLE_BROADCASTER (0)

#define dg_configBLE_L2CAP_COC (9)

Code 36: BLE framework preprocessor Macros

13.2 Optimizing FreeRTOS heap usage

This section discusses optimizing the FreeRTOS heap. The OS heap is a RAM buffer reserved for all
dynamically allocated objects. This section focuses on how to profile FreeRTOS heap usage so that
the configured heap size is optimal.

User Manual Version 6.1 19-Jan-2022

CFR0012 153 of 206 © 2022 Renesas Electronics

bon RRENESAS

DA1468x Software Platform Reference

13.2.1 FreeRTOS Memory Management

Every application based on FreeRTOS must select and use the FreeRTOS memory management
module. This memory management module enables objects to be dynamically allocated (by calling
FreeRTOS pvPortMalloc () function) and eventually freed (by calling pvPortFree () function).

The FreeRTOS distribution provides four memory management implementations with different
features and trade-offs: heap_1, heap_2, heap_3 and heap_4.

The SDK uses heap_4. This scheme permits memory to be freed, implements a simple first-fit
algorithm with a coalescence algorithm that combines adjacent freed blocks into a single large block.
More information about the various FreeRTOS heap_x modules can be found on www.freertos.org.

All dynamically allocated objects (allocated using pvPortMalloc () function) are taken from a fixed
size buffer. This buffer is the FreeRTOS Heap.

The OS Heap size is defined statically in each application configuration file. Heap size is application
dependent; hence each application requires a different size for the OS Heap. On one hand, the OS
Heap must be big enough to support dynamic allocated memory requirements. On the other hand,
the Retention Memory budget impacts Power Consumption while sleeping, so heap needs to be
minimized. The goal is to have just enough heap memory allocated for the application.

FreeRTOS Heap contains the OS execution contexts of the application tasks so it needs to be
retained. A look at the map file (*.map) generated during build, shows the amount of data retained by
heap_4.0 module (the SDK redefines privileged datato mean data that needs to be in retained
RAM section 6.1.3). The application privileged data is the major part of the retained memory
budget, with the remainder being retained static variables from other modules like tasks, queues and
timers.

privileged_dat
Mang/heap_4.0
privileged_dat

privileged_data

ded

chedulerRunning
ickCount

privileged_data_z

Figure 75: Amount of data retained by the heap_4.0 module

User Manual Version 6.1 19-Jan-2022

CFR0012 154 of 206 © 2022 Renesas Electronics

file:///C:/Users/kskaltsa/Desktop/Dialog/680/1.0.12/docs/Soft_Plat_Ref/www.freertos.org

RENESAS

UM-B-044

DA1468x Software Platform Reference

Table 51: Amount of data retained by the FreeRTOS for this specific example

FreeRTOS Retention

Code Data
heap_4.0 0 13336
queue.o 0 64
tasks.o 0 252
timers 0 56
ad_nvms_ves.o 0 4
Total 0 13712

13.2.2 OS Heap & Tasks Stack size

OS Heap Size is application dependent. In FreeRTOS whenever a heap allocation cannot be
serviced, the hook vApplicationMallocFailedHook () is called to handle the error.

In addition to the heap, each Task created by the application requires its own stack. The stack is
allocated form the heap and its size should be:

e Big enough so that its stack pointer remains in the stack. FreeRTOS checks on every context
switch whether the stack has overflowed and calls vApplicationStackOverflowHook ()when an
overflow is detected.

e As small as possible, so that Power Consumption while sleeping is limited (section 13.3).
The size of the required stack varies according to the number of nested function calls, the number of

parameters that are passed in function calls and the number and the type of local variables in
functions.

If the “worst case” execution path is known, it might be easy to calculate the optimal stack size for a
task. However, knowing this “worst-case” execution path is not always simple, so a more practical
method is proposed in the next paragraph.

13.2.3 Optimizing FreeRTOS Heap

The following steps describe a practical and empirical approach to the optimization of the FreeRTOS
Heap memory.

Step 1:

For every task, the application developer should continuously monitor and optimize stack size. This
should be done as early as possible during the development phase and eventually during testing as
well. FreeRTOS provides the uxTaskGetStackHighWaterMark () function that helps measuring Stack
utilization. All applications tasks need to be monitored. SDK middleware tasks such as BLE Adapter,
BLE Manager and USB charger should also be tracked.

Step 2:

Continuously Monitor and adjust OS Heap utilization. This assumes that every task stack is being
continuously monitored and optimized. FreeRTOS provides a xPortGetMinimumEverFreeHeapSize ()

User Manual Version 6.1 19-Jan-2022

CFR0012 155 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

function that helps measuring Total heap utilization. To minimize the impact on the application Task
Stack and total Heap monitoring should:

e Be done when the application is Idle. Therefore the preferred place in the context of FreeRTOS is
in vApplicationIdleHook ().

e Not require a bigger Idle stack size.

SmartSnippets™ DA1468x SDK provides a development configuration that activates OS Heap
monitoring. The project <sdk root directory>\projects\dk apps\demos\ble adv contains code to
monitor FreeRTOS Heap usage. To enable this, the user needs to enable dg configTRACK OS HEAP
macro inside the config/custom config gspi.h file as shown in Code 37.

//

// Enable the settings below to track OS heap usage, for profiling
//

//#if (dg_configIMAGE_SETUP == DEVELOPMENT_MODE)

//#define dg_configTRACK_OS_HEAP 1

//#else

//#define dg_configTRACK_OS_HEAP 0

//#endif

Code 37: Enabling FreeRTOS Heap Tracking

13.3 Retention RAM optimization and configuration
Note 31 By default, retention RAM optimization is disabled.

This section describes the different retention RAM configurations that can be used to achieve the
lowest possible power consumption for a specific application. As described in [1], the memory
controller of the DA1468x chip provides a unified memory space for the RAM while allowing the
reshuffling of the first 3 RAM cells. This way, it is possible for the application to retain only the
absolutely required amount of RAM, thus saving power.

There are five different RAM cells in total, as shown in Figure 76. Each one can be selected to be
retained or not. The 5th RAM cell must always be retained because BLE ROM variables are stored in
it. The memory region [0x7£c0000 - 0x7£c0200] must also be retained because the Interrupt Vector
Table (IVT) is stored in it.

User Manual Version 6.1 19-Jan-2022

CFR0012 156 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

SYS_CTRL_REG[REMAP_RAMS]

DataRAM 1
8KB
_| Sequence || EOVERIRVNV
e 24KB
E
2 DataRAM 3
=5 32KB
——0x7FD0000] DataRAM 4
B 32KB
047po
0000
Nl DataRAM 5
Memory Controller 32KB

Figure 76: Memory blocks

The Sequence Configuration block controls the ordering of the first 3 memory cells according to the
REMAP RAMS value. Shuffling the memory cells allows the minimum number of RAM blocks to be
retained to get the lowest power-down current consumption. The configuration setting

dg configSHUFFLING MODE encodes the ordering of the first 3 RAM cells (RAM1, RAM2 and RAM3).
The possible configurations are listed in Table 52.

Table 52: DataRAM cells sequence

Value Cell Address Size (kB)

0x0 DataRAM1 0x7FC0000 8
DataRAM2 0x7FC2000 24
DataRAM3 0x7FC8000 32

Ox1 DataRAM2 0x7FC0000 24
DataRAM1 0x7FC6000 8
DataRAM3 0x7FC8000 32

0x2 DataRAM3 0x7FC0000 32
DataRAM1 0x7FC8000 8
DataRAM2 0x7FCA000 24

0x3 DataRAM3 0x7FC0000 32
DataRAM2 0x7FC8000 24
DataRAM1 0x7FCEQ00 8

User Manual Version 6.1 19-Jan-2022

CFR0012 157 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

For example, if 50 KB of RAM needs to be retained then the optimal dg configSHUFFLING MODE
value is Ox1. In this way, RAM5 cell (mandatory, 32 KB) and RAM2 cell (mapped at 0x7£c0000 after
shuffling, 24 KB) may be retained by setting the configuration macro dg configMEM RETENTION MODE
to 0x1D, resulting in 56 KB of total retained RAM.

For the DA1680/1-01, there are three different memory layouts depending on the build configuration.
The following sections describe these memory layouts in detail.

In the linker scripts of the applications distributed with the SDK, there are typically two retained
memory sections defined. The first section, RetRAMO, contains the BLE ROM variables and the
exchange table used for the communication with the BLE core, any code that must be retained and
the zero initialized and RW variables retained by the application. The other section, RetRAM1, may
contain, apart from the IVT, large blocks of zero-initialized retained data, like OS or BLE heaps.
Other allocations of which type of data is placed in each section are possible by modifying the linker
script accordingly.

Note32 Linker scripts are centralized and so there is not a dedicated linker script per project. Centralized linker
scripts are backwards compatible and can be overridden by a custom linker script if needed so. There
are two flavors of linker scripts one for BLE and one for non-BLE projects. Centralized linker scripts
are found in <sdk _root folder>/sdk/bsp/ldscripts/.

13.3.1 Memory setups for QSPI Cached execution mode

The following sections describe various memory configurations for executing the application code
from the QSPI flash memory. In these memory setups, the application code located in the QSPI
Flash memory is executed in place and the Cache memory is enabled.

The presented projects are BLE and non-BLE and they are split into two categories:

e non-optimized (all RAM cells are retained)
e optimized for low power consumption (some RAM cells are retained)

13.3.1.1 DA14680/681 — QSPI Cached BLE non-optimized project (all RAM cells are
retained)

In Figure 77, an example memory layout is given. Here the non-optimized BLE project is executed in
QSPI cached mode. In this example, RetRAMO uses RAM cells 4 (32 KB) and 5 (32 KB). In this
setup, the overall retained memory is 128 KB (all RAM cells are retained).

User Manual Version 6.1 19-Jan-2022

CFR0012 158 of 206 © 2022 Renesas Electronics

N-B-044 RENESAS

DA1468x Software Platform Reference

RAM3 (32KB)

ROM

RAM2 (24K8) RAM Code NS | QSPIFLASH
______ 2R,

RAMSZ (32KB) \/—
RetRAMO

RAMS (32KB)

Figure 77: DA14680/681 — QSPI Cached BLE non-optimized project

Note 33 The BLE ROM variables start at 0x07FDC000 address.

13.3.1.2 DA14680/681 — QSPI Cached BLE optimized project (RAM1, RAM2, RAM4,
RAMS cells are retained)

In Figure 78, an example memory layout is given. Here the optimized BLE project is executed in
QSPI cached mode. In this example, RetRAMO uses RAM4 and RAM5 cells (64 KB) while RetRAM1
uses RAM1 and RAM2 cells (32 KB). In this setup, the overall retained memory is 96 KB.

RAM1 (8kB) [P

RetRAM1
......... —

Code NENNNNN) | QSPIFLASH

RAMS3 (32K8) RAM

RAMA (32KB)
RetRAMO \/

RAMS {32KB)

Figure 78: DA14680/681 — QSPI Cached BLE optimized project

Retention RAM optimization settings

User Manual Version 6.1 19-Jan-2022

CFR0012 159 of 206 © 2022 Renesas Electronics

T RLENESAS

DA1468x Software Platform Reference

The following defines must be added in the config/custom config gspi.h file of the application to
enable RAM optimization.

#define dg configOPTIMAL RETRAM (1)
#define dg configMEM RETENTION MODE (0x1B)
#define dg configSHUFFLING MODE (0x0)

An example taken from pxp reporter demo application is shown in Code 38.

#define dg_configOPTIMAL_RETRAM (1)

#if (dg_configOPTIMAL_RETRAM == 1)
#if (dg_configBLACK_ORCA IC_REV == BLACK_ORCA_IC_REV_A)

#tdefine dg_configMEM_RETENTION_MODE (ox1B)

#define dg_configSHUFFLING_MODE (ox0)
#else

#define dg_configMEM RETENTION_MODE (0x07)

#tdefine dg_configSHUFFLING_MODE (0x0)
#tendif

#tendif

Code 38: RAM optimization settings

Note 34 BLE ROM variables start at 0x07FDC000 address.

13.3.1.3 DA14680/681 — QSPI non-BLE non-optimized project (all RAM cells are
retained)

In Figure 79, an example memory layout is given. Here the non-optimized non-BLE project is
executed in QSPI cached mode. In this example, RetRAMO uses RAM cells 4 (32 KB) and 5 (32 KB).
In this setup, the overall retained memory is 128 KB (all RAM cells are retained).

RAM3 {32KB) ROM
A2 Fa] RAM Code EEEESEENp | QSPIFLASH
RAM1 (8KB] | e
RAMS {32KB)
RetRAMO \/

RAMS (32KB)

Figure 79: DA14680/681 — QSPI non-BLE non-optimized project

User Manual Version 6.1 19-Jan-2022

CFR0012 160 of 206 © 2022 Renesas Electronics

RLENESAS

UM-B-044

DA1468x Software Platform Reference

13.3.1.4 DA14680/681 — QSPI non-BLE optimized project (RAM2 cell is retained)

In Figure 80, an example memory layout is given. Here the optimized non-BLE project is executed in
QSPI cached mode. In this example, RetRAMO uses only RAM cell 2 (24 KB). In this setup, the
overall retained memory is 24 KB.

RAM2 (24KB) RetRAMO

......... e ccmaaa

ROM

Code NN | QSPI FLASH

RAM1 (8KB)

RAM3 (32K8B)

RAM4 (32K8) \/—

RAMS (32K8)

1 =
P
=

Figure 80: DA14680/681 — QSPI non-BLE optimized project

Retention RAM optimization settings

The following defines must be added in the custom config gspi.h file of the application to enable
RAM optimization.

#define dg configOPTIMAL RETRAM (1)
#define dg configMEM RETENTION MODE (0x02)
#define dg configSHUFFLING MODE (0x1)

13.3.1.5 DA14682/683, DA15100/1 — QSPI Cached BLE non-optimized project (all
RAM cells are retained)

In Figure 81, an example memory layout is given. Here the non-optimized BLE project is executed in
QSPI cached mode. In this example, RetRAMO uses RAM cells 3 (32 KB), 2 (24 KB) and 1 (8 KB). In
this setup, the overall retained memory is 128 KB.

User Manual Version 6.1 19-Jan-2022

CFR0012 161 of 206 © 2022 Renesas Electronics

RLENESAS

UM-B-044

DA1468x Software Platform Reference

RAM3 (32KB) e

RAM2 (208} RetRAMO Code NENENNNE) | QSPI FLASH

RAMI (8k8) |

RAMS (32KB) \/
RAM

RAMS (32K8)

Figure 81: DA14682/683, DA15100/1 — QSPI| Cached BLE non-optimized project

Note 35 BLE ROM variables start at 0x07FC0200 address.

13.3.1.6 DA14682/683, DA15100/1 — QSPI Cached BLE optimized project (RAM1,
RAM2, RAMS3 cells are retained)

In Figure 82, an example memory layout is given. Here the optimized BLE project is executed in
QSPI cached mode. In this example, RetRAMO uses RAM cells 1 (8 KB), 2 (24 KB) and 3 (32 KB). In
this setup, the overall retained memory is 64 KB.

RAM1 |8KB]

RAM2 (24X8) ROM

RetRAMO Code- QSPI FLASH

RAMS3 (32K8B)

RAM4 (32K8) \/-
RAM

RAMS (32KB)

Figure 82: DA14682/683, DA15100/1 — QSPI Cached BLE optimized project

Retention RAM optimization settings

User Manual Version 6.1 19-Jan-2022

CFR0012 162 of 206 © 2022 Renesas Electronics

RLENESAS

UM-B-044

DA1468x Software Platform Reference

The following defines must be added in the config/custom config gspi.h file of the application to
enable RAM optimization.

#define dg configOPTIMAL RETRAM (1)
#define dg configMEM RETENTION MODE (0x07)
#define dg configSHUFFLING MODE (0x0)

Note 36 BLE ROM variables start at 0x07FC0200 address.

13.3.1.7 DA14682/683, DA15100/1 — QSPI Cached non-BLE non-optimized project
(all RAM cells are retained)

In Figure 83, an example memory layout is given. Here the non-optimized non-BLE project is
executed in QSPI cached mode. In this example, RetRAMO uses RAM cells 1 (8 KB), 2 (24 KB) and
3 (32 KB). In this setup, the overall retained memory is 128 KB (all RAM cells are retained).

RetRAMO Code EENEENEE | QSPI FLASH
________ -
. \/

Figure 83: DA14682/683, DA15100/1 — QSPI non-BLE optimized project

13.3.1.8 DA14682/683, DA15100/1 — QSPI non-BLE optimized project (RAM2 cell is
retained)

In Figure 84, an example memory layout is given. Here the optimized non-BLE project is executed in
QSPI cached mode. In this example, RetRAMO uses only RAM cell 2 (24 KB). In this setup, the
overall retained memory is 24 KB (all RAM cells are retained).

User Manual Version 6.1 19-Jan-2022

CFR0012 163 of 206 © 2022 Renesas Electronics

T RLENESAS

DA1468x Software Platform Reference

........ g m—————

RAM2 (24KB) RetRAMO

snalasaninis

ROM

Code NN | QSPI FLASH

RAM1 (8KB)

RAM3 (32KB) RAM

RAMA4 (32KB) \/-

RAMS (32KB)

Figure 84: DA14682/683, DA15100/1 — QSPI non-BLE optimized project

Retention RAM optimization settings

The following defines must be added in the config/custom config gspi.h file of the application to
enable RAM optimization.

#define dg configOPTIMAL RETRAM (1)
#define dg configMEM RETENTION MODE (0x02)
#define dg configSHUFFLING MODE (0x1)

13.3.2 Memory setups for RAM execution mode

This section describes several configurations that allow executing the application code from RAM
memory (although defined as ROM in linker). In these memory configurations the application code
located in the defined as ROM retained RAM memory cells, is executed in place. The Cache memory
is enabled.

The presented projects are BLE and non-BLE and they are split into two categories:

e non-optimized (all RAM cells are retained)
e optimized for low power consumption (some RAM cells are retained)

13.3.2.1 DA14680/681 — RAM BLE non-optimized project (all RAM cells are retained)

In Figure 85, an example memory layout is given. Here the non-optimized BLE project is executed in
RAM execution mode. In this example the ROM memory has 64 KB size and uses RAM cells 1 (8
KB), 2 (24 KB) and 3 (32 KB). RetRAMO uses RAM cell 4 (32 KB) and 5 (32 KB). In this setup, the
overall retained memory is 128 KB (all RAM cells are retained).

User Manual Version 6.1 19-Jan-2022

CFR0012 164 of 206 © 2022 Renesas Electronics

RLENESAS

UM-B-044

DA1468x Software Platform Reference

RAM3 {32K8)

Loaded/Executed Code + data

RAM2 (24KB) ROM
RAM1 (BKB) | N
RAMA {32KB)

RetRAMO
RAMS (32KB)

....... AN

Figure 85: DA14680/681 — RAM BLE non-optimized project

Note 37 BLE ROM variables start at 0x07FDC000 address.

13.3.2.2 DA14680/681 — RAM non-BLE non-optimized project (all RAM cells are
retained)

In Figure 86, an example memory layout is given. Here the non-optimized non-BLE project is
executed in RAM execution mode. In this example the ROM memory has 64 KB size and uses RAM
cells 1 (8 KB), 2 (24 KB) and 3 (32 KB). RetRAMO uses RAM cell 4 (32 KB) and 5 (32 KB). In this
setup, the overall retained memory is 128 KB (all RAM cells are retained).

User Manual Version 6.1 19-Jan-2022

CFR0012 165 of 206 © 2022 Renesas Electronics

UM-B-044 :{EN ESAS

DA1468x Software Platform Reference

RAMS3 (32K8B)

Loaded/Executed Code + data

RAM2 (24K8) ROM
RAM1 (5kB) | |
RAM4 (32KB)
RetRAMO
RAMS (32KB)
- , RAM

Figure 86: DA14680/681 — RAM non-BLE non-optimized project

13.3.2.3 DA14682/683, DA15100/1 - RAM BLE non-optimized project (all RAM cells
are retained)

In Figure 87, an example memory layout is given. Here the non-optimized BLE project is executed in
RAM execution mode. In this example the ROM memory has 128 KB size. RetRAMO uses RAM cell
3 (32 KB. In this setup, the overall retained memory is 128 KB (all RAM cells are retained).

RAM3 (32K8B)

..... el 60 e s s . 0 s e 0 50 50 50 - B 6 £ @ 5.0 50 B0 So So ST TGP CCCTceess

RetRAMO
" Loaded Code + data

RAMZ (24K8)

RAMI (BKB)

RAMA (32KB)

Executed Code + data

.. Assssssssnnna

RAMS (32KB)

—— e

Figure 87: DA14682/683, DA15100/1 - RAM BLE non-optimized project

User Manual Version 6.1 19-Jan-2022

CFR0012 166 of 206 © 2022 Renesas Electronics

RLENESAS

UM-B-044

DA1468x Software Platform Reference

Note 38 BLE ROM variables start at 0x07FC0200 address.

13.3.24 DA14682/683, DA15100/1 - RAM non-BLE non-optimized project (all RAM
cells are retained)

In Figure 88, an example memory layout is given. Here the non-optimized BLE project is executed in
RAM execution mode. In this example the ROM memory has 128 KB size. RetRAMO uses RAM cell
3 (32 KB. In this setup, the overall retained memory is 128 KB (all RAM cells are retained).

RAM3 (32¢8) [T R
RetRAMO
Loaded Code + data
ez oare) I T sl o s
RAM1 (8KB) RAM ROM

R R T

RAMA (32KB)

Executed Code + data

vemdnsmrrrmrnnerrererennderrrerneeeeey

RAMS (32KB)

PURPRRPRN. | SR

Figure 88: DA14682/683, DA15100/1 - RAM non-BLE non-optimized project

13.3.3 Memory setup for the OTP Cached execution mode (DA14680/1-01)

The only difference with the QSPI cached mode is that the code resides in the OTP instead of the
QSPI Flash. Due to the limited size of the OTP, the maximum size of the application image is 58 KB.
Figure 89 depicts the memory setup for an OTP cached application with image size 58 KB, retaining
64 KB of RAM during sleep (cells 1, 2 and 5).

User Manual Version 6.1 19-Jan-2022

CFR0012 167 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

DataRAM 1
(8KB)

— RetRAM 1

DataRAM 2

(24KB)

oTP

-

DataRAM 3
(32KB)

DataRAM 4
(32KB)

'l
=

{32KB)

 CE—

DataRAM 5 -{_ RetRAM O

Figure 89: Memory setup for the OTP Cached execution mode (DA14680/1-01)

13.3.4 Memory setup for the OTP Mirrored execution mode (DA14680/1-01)

Note 39 The SDK has been developed to support only cached mode from Flash. This section is
provided only as reference.

In mirrored mode, the application code is copied into RAM before it is executed. There are two
available memory setups for the OTP Mirrored execution mode. The main difference is whether 1 or
2 sections will be used for non-retained data. In both configurations Cache memory is off and so may
be used by the application. There is no RetRAML1 section since all memory is retained in this mode.
The application code has to be retained during sleep as there is no mechanism to restore it at wake-
up. Due to this requirement, RAM cell shuffling is irrelevant while the value of the

dg configMEM RETENTION MODE must be 0x1F.

In the first configuration, the RAM section of the linker script (normally non-retained data) is placed in
the RAM cell of Cache. The ECC buffer cannot be placed in this region. This setup is shown in
Figure 32.

User Manual Version 6.1 19-Jan-2022

CFR0012 168 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

DataRAM 1
8KB)
i | Executed
DataRAM 2 L Code oTP
(24KB) (58KB)

Original
Code =]

(32KB) \/

DataRAM 4
(32KB)

DataRAM 3

DataRAM 5
(32KB)

Figure 90: Setup 1 for the OTP Mirrored execution mode (DA14680/1-01)

In the second configuration, the linker script has two RAM sections. The first one (RAM1) is placed in
the RAM cell of the Cache as in the first configuration. Here there is also space after the end of the
application image in RAM and the beginning of RetRAMO section which can also be used for data
(RAM2). Note that the ECC buffer can be placed in RAM2. This configuration is shown in Figure 91.

DataRAM 1

{588} Executed

— Code OTP

DataRAM 2
(58KB)

(24KB)

Original
Chide (=g
DataRAM 3

(32KB) : \/.

DataRAM 4
(32KB) ~ RAM2

DataRAM 5 - RetRAMO
(32KB)

|
v

Figure 91: Setup 2 for the OTP Mirrored execution mode (DA14680/1-01)

User Manual Version 6.1 19-Jan-2022

CFR0012 169 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

Appendix A SmartSnippets DA1468x SDK structure

A.1 Directory structure

This section describes the structure of the directories of the SmartSnippets™ DA1468x SDK. The
root directory contains the subfolders shown below. Each subdirectory is described in the following
sections.

Table 53: SmartSnippets™ root directory structure

Directory Subdirectory Description
DA1468x_SDK_BTLE_v_1.0.10.xxx | binaries Executables.
config Configuration files for the SmartSnippets DA168x
SDK.
doc Documentation.
projects Project examples.
sdk Software development kit.
utilities Utilities (image creation, programming etc.).

A.2 Binaries directory

The Binaries directory contains the executable binaries of the Windows and Linux applications which
are needed to generate the final image file and to interact with the Pro and Basic DK boards.
Currently these binaries are in the binaries folder of the SmartSnippets™ DA1468x SDK:

Table 54 binary files inside SmartSnippets™ DA1468x SDK

Filename Notes

bin2image Utility for creating a bootable image from an executable raw
binary (for Linux).

bin2image.exe Utility for creating a bootable image from an executable raw
binary (for Windows).

cli_programmer Utility to download image file to ProDK development board (for
Linux).

cli_programmer.exe Utility to download image file to ProDK development board (for
Windows).

Libprogrammer.dll Utility which supports download/programming of image files to

ProDK board (for Windows).

Libprogrammer.so Utility which supports download/programming of image files to
ProDK board (for Linux).

Mkimage Utility for creating a firmware image for SmartSnippets DA1468x
SDK (for Linux).

mkimage.exe Utility for creating a firmware image for SmartSnippets DA1468x
SDK (for Windows).

A.3 Config directory
The Config directory contains configuration files for the SmartSnippets™ DA1468x SDK.

User Manual Version 6.1 19-Jan-2022

CFR0012 170 of 206 © 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

Table 55: Config folder

Documents

Description

Embsys

DA1468x register definitions

DA1468x_1.0.10_SDK_config

Configuration file for the SmartSnippets DA1468x SDK.

ATTACH.launch

Global debug configuration launcher

QSPl.launch

Global debug configuration launcher

RAM.launch

Global debug configuration launcher

studio_config

SmartSnippets Studio configuration

A.4 Doc directory

The Doc directory shall contain all relevant documentation which makes sure the reader understands

the set-up and can use the SmartSnippets™ DA1468x SDK version 1.0.10. At present the folder

contains the following documents:

Table 56: Doc folder

Documents

Description

Html folder, Doxygen

SmartSnippets DA1468x SDK Documentation generated by
Doxygen.

Installation_and_debugging_procedure

The file presents steps which should be done by a user to
properly run example demos from SDK.

Licensing

License Agreement for the software.

sdk_eclipse_formatter.xml

Coding style formatter description for Eclipse.

VERSION

Version of the SmartSnippets DA1468x SDK.

A.5 Projects directory

A.5.1 dk_apps directory

The dk_apps directory contains a collection of sample projects which can run on the DA1468x family

of devices. These projects all use the board support package which consists of all peripherals
drivers, the RTOS, the BLE stack if applicable, etc. This will be described in more detail in a later
section of this document. The following subfolders are present in the dk_apps directory.

Table 57: dk_apps directory structure

Directory Subdirectory Description
dk_apps ble_profiles Sample projects implementing BLE available profiles.
demos Sample projects, such as standalone peripheral tests.
features Contains projects that exhibit some basic features of the
SmartSnippets DA1468x SDK.
reference_designs Contains all reference design projects, which are out of scope of
the SmartSnippets DA1468x SDK. As an exception, we include
plt_fw in a form of a “reference design”.
templates Several projects which offer templates for different device
configurations such as support of a real-time terminal for easier
User Manual Version 6.1 19-Jan-2022
CFR0012 171 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

Directory Subdirectory Description
debugging.
A.5.2 Host_apps directory
Table 58: Host App directory
Directory Subdirectory Description
host_apps Examples Includes usb_cdc_echo_test

A.5.3 SDK directory

The SDK directory is the central part of the complete SmartSnippets™ DA1468x SDK and contains
the code and header files for BLE framework support, middleware components (such as e.g. audio,
firmware upgrade and security toolboxes) as well as low-level drivers and adapter implementations.
The directories are structured as shown in the tables below.

Table 59: SDK directory structure

Directory Subdirectory Description
sdk bsp Includes header and source files for board support package.
Interfaces Includes header and source files for supported interfaces such as
e.g. audio/crypto toolbox, BLE adapter, etc.
Middleware Includes header and source files for supported middleware and
services such as e.g. fw_upgrade and logging support.
Table 60: bsp directory structure
Directory Subdirectory Description
bsp adapters Contains projects for all supported adapters such as e.g. SPI, 12C
and UART adapter.
config Configuration header files.
free_rtos Contains projects for FreeRTOS implementation.
Include HW specific 14680 macros, structure and register definitions,
interrupt priority definitions and low level API calls.
Idscripts linker scripts for Bluetooth low energy projects and non-Bluetooth
projects
memory Contains code for access QSPI flash when running in auto mode.
misc Contains ROM symbol table.
osal OS abstraction layer implementation, customized queue and
resource management implementation.
peripherals Low level drivers for all supported peripherals.
startup Contains code for the initialization of the ARM processor.
system Contains power/clock manager code and header files.
arm_license License agreement
User Manual Version 6.1 19-Jan-2022
CFR0012 172 of 206 © 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

Table 61: interfaces directory structure

Directory Subdirectory Description

interfaces audio Contains the PDM audio interface driver.
ble Contains the implementation of the BLE framework.
ble_services Contains sample implementations of the BLE services.
ble_stack Contains a lower level BLE stack implementation library.
ble_clients Contains sample BLE client implementations.
crypto Empty.
ftdf FTDF PHY test
usb Contains the USB low level driver.

Table 62: middleware directory structure

Directory Subdirectory Description

middleware audio Empty.
ble_net Empty.
cli CLI service for the Dialog SmartSnippets DA1468x SDK.
console Serial console service for the Dialog SmartSnippets DA1468x SDK.
datl DGTL framework
fw_upgrade Empty.
ip_net Empty.
logging Implementation of a thread safe, UART based logging module.
mcif Monitor and Control I/F API.
Monitoring FreeRTOS task monitoring tools
rf_tools Contains project for the RF_tools.
segger_tools Modules used to support SEGGER'’s RTT and SystemView
security Empty.

Ab5.4 Utilities directory

The Utilities directory contains a collection of useful tools in source format — mostly to interact with
the Pro and Basic DK boards. Table 63 below shows the content of this directory.

Table 63: Utilities directory structure

Directory Subdirectory Description
Utilities bin2image Utility for creating a bootable image from an executable raw binary.
cli_programmer Command line interface programmer source code. For details
please refer to Appendix A.
mkimage Utility for creating a firmware image for SmartSnippets DA1468x
SDK.
Scripts Scripts for Windows and Linux for QSPI flash programming,
Debugging with GDB, OTP patching, etc.
nvparam Creates an image of NV Parameters which can be then written
User Manual Version 6.1 19-Jan-2022
CFR0012 173 of 206 © 2022 Renesas Electronics

M0 LENESAS

DA1468x Software Platform Reference

Directory Subdirectory Description

directly to proper partition on flash.

Appendix B Command Line Interface (CLI) Programmer

B.1 CLI Programmer — Overview

cli programmer is a command line tool for reading & writing to FLASH/OTP/RAM. It also provides
some extra functions like loading & executing an image from RAM. The tool communicates with the
target device over uart port or swd/jtag interface. It executes on Windows and Linux platforms.

Note 40 Writing an image to flash requires adding a header to the image. This process is handled by the
bin2image tool, or the cli programmer write gspi exec command.

B.2 Application command description

Open a terminal and navigate to the folder <sdk root directory>/binaries/ To run
cli programmer the interface (GDB server or serial port) and the requested command must be
supplied.

> cli programmer [<options>] <interface> <command> [<args>]

For the interface name the user must use the name presented by the operating system. For the serial
port the file name is e.g. coM5 (Windows) or /dev/ttyUSBO (Linux) and for the SWD interface (J-Link
debugger with the GDB server) is ‘gdoserver’.

Table 64: Commands and arguments

Option Description

write gspi <address> <file> [<size>] Writes up to “size’ bytes of “file' into the FLASH at
‘address’. If “size’ is omitted, a complete file is written.

write gspi bytes <address> <datal> [<data2> | Writes bytes specified on command line into the FLASH at
[...11 ‘address’.

write gspi exec <image file> Writes binary file (.bin) to flash at address 0, after adding
- - - header for execution in place (cached mode).

write suota image <image file> <version> Writes SUOTA enabled “image file' to executable
- B - partition. The user supplied “version™ string goes to image
header.

read gspi <address> <file> <size> Reads “size’ bytes from the FLASH memory, starting at
B ‘address’ into “file'. If "file' is specified as either '-' or
'——', data is output to stdout as hexdump. The hexdump
is either 16-bytes (-) or 32-bytes (--) wide.

erase gspi <address> <size> Erases “size’ bytes of the FLASH, starting at "address’.
N Note: an actual erased area may be different due to the
size of an erase block.

chip erase gspi Erases the whole FLASH.
copy gspi <address ram> <address gspi> Copies “size bytes from the RAM memory, starting at
<size> - - ‘address ram to FLASH at “address_flash'. Thisis an
advanced command and is not needed by end user.
is empty gspi [start address size] Checks that FLASH contains only 0xFF values. If no
B B B arguments are specified starting address is 0 and size is
User Manual Version 6.1 19-Jan-2022

CFR0012 174 of 206 © 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

Option

Description

1M. Command prints whether flash is empty and if offset of
first non-empty byte.

read partition table

Reads the partition table (if any exists) and prints its
contents.

write <address> <file> [<size>]

Writes up to “size’ bytes of “file" into the RAM memory at
‘address’. If “size’ is omitted, a complete “file' is written.

read <address> <file> <size>

Reads “size’ bytes from the RAM memory, starting at
‘address’ into “file'. If "file is specified as either '-' or
'—-', data is output to stdout as hexdump. The hexdump is
either 16-bytes (-) or 32-bytes (--) wide.

write otp <address> <length> [<data>
[<data> [...]1]1]

Writes “length™ words to the OTP at “address’. "data” are
32-bit words to be written, if less than

“length” words are specified, remaining words are
assumed to be 0x00.

read otp <address> <length>

Reads “length’ 32-bit words from the OTP address
‘address’.

write otp file <file>

Writes data to the OTP as defined in “file (default
specified values are written).

read otp file <file>

Reads data from the OTP as defined in “file’ (cells with
default value provided are read) contents of each cell is
printed to stdout.

write tcs <length> [<reg addr> <reg data>
[<reg addr> <reg data> [...]]]

Writes “length’ 64-bit words to the OTP TCS section at
first available (filled with 0) section of

size "length’. "reg_addr': the register address. It will be
written as a 64-bit word ['reg addr’, “~reg addr’].
‘reg_data’: the register data. It will be written as a 64-bit
word [reg data’, “~reg data’].

Boot

Boots the 2nd stage bootloader or the application binary
(defined with -b) and exits.

read chip info

Reads chip information from chip revision registers and
OTP header.

Table 65: General options

Option Description
-h Prints help screen and exits.
—--save-ini Saves CLI programmer configuration to the
“cli programmer.ini’ file and exits.
-b file Filename of 2nd stage bootloader or an application binary.

Table 66: GDB server specific options

Option

Description

-p <port num>

TCP port number that GDB server listens to. The Default
value is 2331.

-r <host> GNU server host. The default is “localhost'.
User Manual Version 6.1 19-Jan-2022
CFR0012 175 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

Option Description

—~no-kill Don't stop already running GDB server instance.

~~gdb-amd <cmd> GDB server command used for executing and passing the

right parameters to GDB server.

Without this parameter no GDB server instance will be started or stopped. As GDB server command
line can be quite long, to avoid typing it every time the tool is executed and the best way to store this
command line in cli_programmer.ini file is by using the ‘--save-ini’ command line option.

Table 67: Serial port specific options

Option Description

—s <baudrate> Baud rate used for UART by uartboot. The parameter is

patched to the uploaded uartboot binary (in that way
passed as a parameter). This can be 9600, 19200, 57600
(default), 115200, 230400, 500000, 1000000.

-1 <baudrate> Initial baud rate used for uploading the “uartboot” or a

user supplied binary. This depends on the rate used by the
bootloader of the device. The default behavior is to use the
value passed by '-s' or its default, if the parameter is not
given. The argument is ignored by the “boot™ command. '-
s' option should be used in this case.

~—tx-port <port num> GPIO port used for UART Tx by the “uartboot. This
parameter is patched to the uploaded uartboot binary (in
that way passed as a parameter). The default value is 1.
This argument is ignored when the "boot™ command is
given.

—~tx-pin <pin num> GPIO pin used for UART Tx by uartboot. This parameter
is patched to the uploaded uartboot binary (in that way
passed as a parameter). The default value is 3. The
argument is ignored when the “boot™ command is givern.

~Trx-port <port num> GPIO port used for UART Rx by uartboot. This parameter
is patched to the uploaded uartboot binary (in that way
passed as a parameter). The default value is 2. The
argument is ignored when the “boot command is given.

—~rx-pin <pin num> GPIO pin used for UART Rx by uartboct. This parameter is
patched to the uploaded uartboot binary (in that way
passed as a parameter). The default value is 3. The
argument is ignored when the "boot™ command is given.

—w timeout Serial port communication timeout is used only during
download of uartboot binary, if during this time board will
not respond cli programmer exits with timeout error.

User Manual Version 6.1 19-Jan-2022

CFR0012 176 of 206 © 2022 Renesas Electronics

bon RENESAS

DA1468x Software Platform Reference

Table 68: bin2image options

Option Description

-—prod-id DA14681-01 DA14680-01, DA14681-01. Selects the chip product ID.
This option applies only when write gspi exec cmdis
used.

It instructs c1i programmer to set the flash header which
corresponds to the selected chip revision.

When cli programmer is executed it tries to read the cli programmer.ini file which may contain
various cli programmer options. Instead of creating this file manually, the user should use the *--
save-ini’ command line option. The format of the c1i programmer.ini adheres to standard
Windows ini file syntax. The c1i programmer looks for ini file in the following locations:

e current directory
e home directory
® cli programmer executable directory

B.3 Command examples
Example 1
Upload binary data to FLASH.

Windows:
> cli programmer COM40 write gspi Ox0 data i
Linux:

> cli programmer /dev/ttyUSBO write gspi Ox0 data i

Example 2
Upload binary data to FLASH using maximum serial port baudrate.
> cli programmer -s 1000000 -i 57600 COM40 write gspi 0x0 data i

Example 3
Read data from FLASH to local file.
> cli programmer COM40 read gspi 0x0 data o 0x100

Example 4

Upload custom binary "test api.bin’ to RAM and execute it, using UART Tx/Rx P1_0/P1_5 (uses
boot rom booter baud rate at 57600)

> cli programmer -b test api.bin COM40 boot
Example 5
Upload custom binary “test api.bin to RAM and execute it, using UART Tx/Rx P1_3/P2_3 (uses

boot rom booter baud rate ata 9600)

User Manual Version 6.1 19-Jan-2022

CFR0012 177 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

> cli programmer —s 9600 -b test api.bin COM40 boot

Example 6
Modify FLASH at specified location with arguments passed in command line.
> cli programmer COM40 write gspi bytes 0x80000 0x11 0x22 0x33

Example 7

Run a few commands with uartboot, using UART Tx/Rx P1_0/P1_5 at baud rate 115200
(initial rate for uartboot uploading must be 57600).

> cli programmer -i 57600 -s 115200 COM40 write gspi 0x0 data i

> cli programmer -i 57600 -s 115200 COM40 read gspi 0x0 data o 0x100

Example 8
Run a few commands with uartboot, using UART Tx/Rx P1_3/P2_3 at baud rate 115200
(initial rate for uartboot uploading is 9600).

> cli programmer -i 9600 -s 115200 --tx-port 1 --tx-pin 3 —--rx-port 2 --rx-pin 3
COM40 write gspi 0x0 data i

> cli programmer -i 9600 -s 115200 —-tx-port 1 --tx-pin 3 —--rx-port 2 --rx-pin 3
COM40 read gspi 0x0 data o 0x100

Example 9
Read FLASH contents (10 bytes at address 0x0).

Start gdbserver manually!

> cli programmer gdbserver read gspi 0 -- 10

Example 10
Write register 0x50003000 with value 0x00FF and register 0x50003002 with value 0x002A.
> cli programmer gdbserver write tcs 4 0x50003000 O0xOOFF 0x50003002 0x00AA

Example 11

Write settings to the cli programmer.ini file. Long bootloader path is passed with -b option and
command line to start GDB server is passed with ‘--gdb-cmd’. In this example GDB server command
line contains arguments and path to executable has space so whole command line is put in quotes
and quotes required by Windows path are additionally escaped.

> cli programmer -b

c:\users\jon\<sdk root directory>/bsp\system\loaders\uartboot\Release\uartboot.bin --
save-ini --gdb-cmd "\"C:\Program Files\SEGGER\JLink V510d\JLinkGDBServerCL.exe\" -if
SWD -device Cortex-MO -singlerun -silent -speed auto"

User Manual Version 6.1 19-Jan-2022

CFR0012 178 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

Example 12
Program a DA14681-01 chip with an executable flash image.

> cli programmer --prod-id DA14681-01 gdbserver write gspi exec
../../../../projects/dk apps/features/tickless/DA14681-01-Debug QSPI/tickless.bin

Example 13
Write 6 bytes specified in command line to flash at address 0x80000.

> cli programmer gdbserver write gspi bytes 0x80000 0x11 0x22 0x33 0x44 0x55 0x66

Example 14
Write SUOTA enable application to proper location in flash.

> cli programmer gdbserver write suota image pxp reporter.bin “1.1.0.1 a”

Example 15

Write OTP address 0x07f80128 with the following contents: B0:0x00, B1:0x01, B2:0x02, B3:0x03,
B4:0x04, B5:0x05, B6:0x06, B7:0x07

> cli programmer gdbserver write otp 0x07£80128 2 0x03020100 0x07060504

Read OTP address 0x07{80128.
> cli programmer gdbserver read otp 0x07£80128 2

If written with the contents from above write example, it should return:
0025 00 01 02 03 04 05 06 07

B.3.1 Installation and debugging procedure

The cli programmer make use of the 1ibprogrammer library which implements the underlying
functionality on the host side. The cli programmer can be linked either statically or dynamically with
libprogrammer.

The cli programmer uses uartboot application which acts as a secondary bootloader which
cli programmer downloads to the target for performing the read/write operations.

The project is found in <sdk root directory>/utilities/cli programmer/cli.

Table 69: Build configurations

Configuration Description
Debug Debug version for Linux.
Debug_static Debug version linked with a static version of the 1ibprogrammer

and it's recommended for Linux. It also builds vartboot project
and includes it in cli programmer executable.

Debug_static_win32 Debug version for Windows linked with a static version of
libprogrammer.

Release Release version for Linux.

Release_static Release version linked with a static version of 1ibprogrammer and

it's recommended for Linux. It also builds uartboot project and
includes it in cli programmer executable.

User Manual Version 6.1 19-Jan-2022

CFR0012 179 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

Configuration Description
Release_static_win32 Release version for Windows linked with a static version of
libprogrammer.

B.3.2 Build instructions
Build instructions:

® Import libprogrammer, cli programmer and uartboot into SmartSnippetsTM Studio

e Build libprogrammer , cli programmer and uartboot in Release static configuration
(recommended)

® Run cli programmer with proper parameters as described in Appendix B.2 and B.3.

Note 41 A prebuilt version of c1i programmer can be found under SmartSnippets™ DA1468x SDK's binaries
folder.

User Manual Version 6.1 19-Jan-2022

CFR0012 180 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

Appendix C QSPI programming guide

C.1 General
This guide describes the methods and tools used for:

e Programming QSPI flash
e Debugging programs which execute from QSPI flash

After programming the QSPI, the image will execute by resetting or power cycling the board.

C.2 Prerequisites
Compile the following tools (sources and projects available on SmartSnippets™ DA1468x SDK):
cli_programmer:

Compile <sdk root directory>/utilities/cli programmer project.

Linux: Use Debug_static build configuration in SmartSnippets™ Studio

Windows: Compile cli programmer.sln using Visual studio OR use the binaries from
SmartSnippets™ DA1468x SDK's binaries folder

(cli programmer.exe, libprogrammer.dll)

bin2image:
Compile <sdk root directory>/utilities/bin2image project.
Linux: Run make from project's folder

Windows: Check README .win32 in project's folder OR use the binary from SmartSnippets™
DA1468x SDK's binaries folder (bin2image.exe)

uartboot.bin:

This is the intermediate bootloader that c1i programmer uses for communicating with the
target.

The uartboot firmware will automatically detect the device variant. This means that the
provided uartboot binary file does not have to be rebuilt if a different device variant of the
DA1468x family is used.

Compile ./sdk/bsp/system/loaders/uartboot/ in SmartSnippets™ Studio using the
release configuration

Note 42 cli programmer Uses uartboot.bin for communicating with the target.

Copying uartboot.bin to the folder of the c1i programmer binary will allow cl1i programmer
to automatically detect & use uartboot.bin.

Alternatively, the path to uartboot.bin can be provided to cli programmer using -b
commandline option.

Import scripts project into the current SmartSnippets™ Studio workspace.

This is needed to starts the c1i_programmer from within SmartSnippets™ Studio IDE

C.3 Compiling for execution from flash

SmartSnippets™ DA1468x SDK projects come with SmartSnippets™ Studio build configurations
which compile for execution for FLASH (cached) or RAM.

Configuring a project for execution from FLASH/RAM breaks down to the following steps:

User Manual Version 6.1 19-Jan-2022

CFR0012 181 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

. Configure the memory mapping in linker script.
2. Using SmartSnippets™ Studio:

a. Edit 1dscripts/mem.1d.hin project's folder (instructions can be found in file's header
comments).

b. During project build the mem. 1d file will be automatically updated.
3. Not using SmartSnippets™ Studio:

a. Edit project's 1dscripts/mem. 1d file.

Configure project to compile for execution from FLASH.

5. In<sdk root folder>/sdk/bsp/custom config xxx.h header file, set the macros described
below as follows and compile normally:

a. For execution from FLASH (cached):

#define dg configEXEC MODE MODE IS CACHED
#define dg configCODE LOCATION NON VOLATILE IS FLASH

Code 39: Execution from Flash (cached)

b. For execution from FLASH (mirrored):

#define dg configEXEC MODE MODE IS MIRRORED
#define dg_configCODE LOCATION NON VOLATILE IS FLASH

Code 40: Execution from Flash (mirrored)

c. For execution from RAM:

#define dg configCODE LOCATION NON_VOLATILE IS NONE

Code 41: Execution from RAM

Note 43 The BINARY output (<project name>.bin, NOT the <project name>.elf) will be used in the next
steps.

C.4 Flashing an QSPI image
Using SmartSnippets™ Studio:

Select the folder which includes <project name>.bin (e.g. the project's Debug folder) and execute
one of the following scripts from SmartSnippets™ Studio external tools menu button.

Table 70: QSPI programming scripts on Windows Host

Script name Notes
Program_qspi_serial_win Use this script in case you want to program the selected binary to
(Note 1) external QSPI memory using a serial interface. Please follow

instructions given on the SmartSnippets Studio console window.

Program_qspi_jtag_win Use this script in case you want to program the selected binary to
(Note 1) external QSPI memory using the JTAG interface.

Note 44 When calling one of these scripts for the first time you will be prompted to enter configuration options.
You may change the selected configuration any time using the program gspi config win script.

User Manual Version 6.1 19-Jan-2022

CFR0012 182 of 206 © 2022 Renesas Electronics

M0 LENESAS

DA1468x Software Platform Reference

Table 71: QSPI programming scripts on Linux Host

Script name Notes
Program_qspi_serial_linux Use this script in case you want to program the selected binary to
(Note 1) external QSPI memory using a serial interface. Please follow

instructions given on the SmartSnippets Studio console window.

Program_qspi_jtag_linux Use this script in case you want to program the selected binary to
(Note 1) external QSPI memory using the JTAG interface.

Note 45 When calling one of these scripts for the first time you will be prompted to enter configuration options.
You may change the selected configuration any time using the program gspi config linux Script.

C.5 Debugging from QSPI

C5.1 General

The user may use J-Link SWD interface to attach to the running target & debug, OR reset board &
debug as follows:

Using SmartSnippets™ Studio :

The SmartSnippets™ DA1468x SDK includes SmartSnippets™ Studio launch configurations
provided with the SmartSnippets™ DA1468x SDK projects (ATTACH for attaching to running target
and * gspi.launch for resetting & attaching to QSPI, RAM for debugging from RAM (where
applicable)).

Outside SmartSnippets™ Studio :

The SmartSnippets™ DA1468x SDK includes sample scripts & gdb commands in
utilities/scripts/gspi folder:

e boot gspi dbg* scripts reset board and put a breakpoint in main (). The scripts invoke J-Link
gdb server and issue gdb commands

e gdbo cnd gspi *files are the gdb command files used by the above scripts

Instructions on using these scripts are provided in the next paragraph.

C.5.2 Debugging with gdb scripts
1. The scripts include references to the executables:
e JLinkGDBServerCL
e arm-none-eabi-gdb
and can be found in the following SmartSnippets™ DA1468x SDK path:
<sdk root directory>/utilities/scripts/qgspi

2. Make sure that you have the paths to these executables included in your platform’'s system path.
If not, edit script files and add the absolute paths to these executables, for instance in
boot gspi dbg.bat: replace JLinkGDBServerCL.exe With: C:/Program
Files/SEGGER/JLink V512h/JLinkGDBServerCL.exe

3. Edit the Debug scripts (boot _gspi dog.*) and replace PUT YOUR APP ELF HERE.elf with the
name of the .elf file you want to debug. This should be the .elf file of the binary image flashed
in the QSPI.

4. Execute the boot agspi dog. * script.

User Manual Version 6.1 19-Jan-2022

CFR0012 183 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

5. The J-Link gdb server running must be operational, connected to target, downloading & running
the boot loader and CPU halting at main () breakpoint. After this point a "continue" command can
be issued and debug process may proceed, using the same gdb server instance.

6. Alternatively, it is possible to invoke a second instance of J-Link gdb server and attach it to the
target.

Note 46 Since hardware breakpoints are used, only 4 breakpoints are available.

User Manual Version 6.1 19-Jan-2022

CFR0012 184 of 206 © 2022 Renesas Electronics

T LENESAS

DA1468x Software Platform Reference

Appendix D SEGGER SystemView integration instructions

SEGGER SystemView is a real-time recording and visualization tool that reveals the true runtime
behavior of an application. To enable SystemView, follow the instructions below.

Configuring SmartSnippets™ Studio projects to support SystemView:

To enable SystemView for a specific build configuration of any SmartSnippets™ Studio project,
configure the project to build SystemView’s source files and include header file directories:

1. Select a project which has the "OS_FREERTOS" definition enabled. Bare metal projects are
currently not supported.

2. Right click project's "sdk" subfolder and select New > Folder

File Edil Source Refactor Navigate Search Project Run Window Help

PRyl B> v B A gryidvw v vy@vyipy Qe
4 > il L N s
€ = Project Explorer ¥ EIR = FELL | e maine 5
i £ ble_peripheral ¢ * @file m
I & ble_stack
I &8 ble_suota_client #include <

I &5 peripherals_demo A <

« &5 pxp_reporter

2 _ #include "
+ 45 Binaries #include "
» ¥ Inchudes #include "
= (onﬁg #include "

(= DA14681-01-Release_QSPI #include "
G DA14681-01-Release QSPL SUOTA #includs "

: #include

& m.scnpts #include "
' mMIsC #include "
' [splke Mlmm a8t

cxs| New » [P Project..

) i Go Into % File
» 9 q Open in New Window i File from Tempfate
B s Show In 3 Folder

j: = Copy Ctri+C 6 Cles

~ | Paste Ctrisy | Header F.'le

L : % Delete Delete : Ss:::fz i';ledef

¢ Source v

21 Move.. [€ Project

=1 Rename.. F2 |k Cs+Project

|

:.‘ i Impart.. = Other.. Col+N

Figure 92: Create a new folder

3. Inthe pop-up window select: Advanced > "Link to alternate location" > Browse...and select
the <sdk root directory>\sdk\middleware\segger tools folder as shown in Figure 93.

User Manual Version 6.1 19-Jan-2022

CFR0012 185 of 206 © 2022 Renesas Electronics

UM-B-044
DA1468x Software Platform Reference

i & New Folder [1

Create 2 new folder resource,

Enter or select the parent folder:
pxp_reporter/sgk
o ew
4 & pxp reporter -
‘ @& settings
L= config
’: o2 DA14681-01-Release_QSPI
| ir DA14681-01-Release_QSPLSUQTA
> |dscripts
g misc - l
| cGasdk z ‘
Cwy startup

Folder name: RTT

<< Advanced |

I (= Use default location

(" (Folder is not located in the file system (Virtual Folder)
L‘s Link to 2liernate focation (Linked Folder)

ChUsers\kskaltsa\Desktop\Dizlog\dialog\documentat Browse.., H Variables.

' Resource Filters..,

| @ Finish || Cancel |

R — i)

Figure 93: Select the Linker Folder

4. Right click project's name and go to Properties > C/C++ Build > Settings > Tool Settings >
Cross ARM C Compiler > Includes > Include Paths (see Figure 94), add the following
Workspace folders and click apply:

${workspace loc:/${ProjName}/sdk/segger tools/Config}
${workspace loc:/${ProjName}/sdk/segger tools/OS}
${workspace loc:/${ProjName}/sdk/segger tools/SEGGER}

User Manual Version 6.1 19-Jan-2022

CFR0012 186 of 206 © 2022 Renesas Electronics

RLENESAS

UM-B-044

DA1468x Software Platform Reference

& Properties for freertos_nt =gl
type filter text m . ..
Resource .
\ Builders | :
a C/C++ Buid Configuration: | DA14681-01-Redease_QSPI [Active | v! | Manage Configurations..
Bulld Variables
e ® Tool Settings | ® T ‘. l i itact | Parsess |
Legging ngs | % Toolchains | B Devices | » Build Steps | Build Artifact | w4 Binary 1 O Emor Parsers|
i Tool Chain Ed & Target Processor | Include paths (- YRR
ool Chain Editor B [— ety ——
Too's Paths & Optimization “§{workspace_loc/${ProjName]/sdk/adapters/include)”
& Wamings | “$lworkspace_loc/S(ProjNamel/sak/memory/include} 2
C"’c_' *Smer & Debugging | “${workspace_loc/$[ProjName)/sdk/configl”
Project References « 1 Cross ARM GNU Assembler || “${workspace_loc/$(ProjName)/sdx/bsp_include}”
Run/Debug Settings B Praprocessor | "Siworkspace_loc/${ProjNamel/sdi/free_rtos/include}”
B Tnudes "${workspace_loc/${ProjName)/sak/osal}"
TB || "Slworkspace_loc/$[ProjNamel/sdi/sys_man/include}”
\ - wémngﬁ “${workspace_loc/${ProiName)/sdk/peripherals/include)”
& Miscelianeous | "$lworkspace_Joc/S(ProjNamel/sdk/segger_toois/Configl®
« & Cross ARM C Compiler "${workspace_loc/${ProjNamel/sdi/segger_tools/SEGGER}
& Preprocessor S iworkspace loc/SProsNamel/sdk/segger oo/ O8]
& Includes
& Optimization
& Warnings
& Miscellaneous ‘
: 4 ® Cross ARM C Linker | Include fites {-include) &4 @
L |
" & General
3 Linraries
0 & Miscellaneous v
I
@ [ok | cancer |

Figure 94: Include folder paths

5. Open the project's config/custom config *.hfile and add Code 42 to add and enable the
System View configuration:

#define dg_configSYSTEMVIEW (1)

Code 42: Enable System View configuration

e Note that configTOTAL HEAP SIZE should be increased by
dg configSYSTEMVIEW STACK OVERHEAD bytes for each system task. For example, if there are 8
system tasks, configTOTAL HEAP SIZE should be increased by:

® (8*dg configSYSTEMVIEW STACK OVERHEAD) bytes.

G. To call SEGGER SYSVIEW Conf () from application add Code 43. A good place to do this is inside
system init () after the configuration of system clocks:

#if dg_configSYSTEMVIEW
SEGGER_SYSVIEW Conf();
#endif

Code 43: Call System View

User Manual Version 6.1 19-Jan-2022

CFR0012 187 of 206 © 2022 Renesas Electronics

N-B-044 RENESAS

DA1468x Software Platform Reference

7. Build and download the application image to DA1468x. Then run the application either by
pressing the Reset Button (Release Build) or by start debugging the application.

#. To disable SystemView, set dg configSYSTEMVIEW to O and rebuild the application.

Running SystemView on the Host:

1. Start the Segger System View application from SmartSnippets™ Studio.

@ Wekome - Semtsippen SndioviI2We - -
Foe Em1 Soure Refsam Ngne Sesth Progert fun Wirdow bep

e -9 - Wepen -

' © Weicome 1 Imemsl Wab Srowss

. & dialog

Imart o

SELECT THE DEVICE ON YOUR DEVELOPMENT BOARD
DASSEA0-01 v
WHTY DA YOOr R Mmmard Cick o)

SELECT YOUR SDK ROOT DIRECTORY HERE
G ‘Wsamshaaitsa Dowdoads DA 1 400 SOK_BTLE Y

AP COCUNMENTATION SOF TWARS RESOURCES PROJUCT DOCUNENTATION PORUMS D Paq
FTFON S I N) W ' o ™ER
=

Figure 95: System Viewer application

2. Configure the SEGGER System View as shown in Figure 96.

Y SEGGER SystemVie

Connection to J-Link
@ use [serial ho
() TCR/P

Existing Session

Target Device

CORTEX-MO W
Target Interface & Speed

SWD ~| 8000 2] kuz

RTT Control Block Detection

() Auto Detection (@) Address () Search Range

0x07fc29a4]

Exact RTT Control Block Address.
i.e. 0x20000010

[ok || cancel

User Manual Version 6.1 19-Jan-2022

CFR0012 188 of 206 © 2022 Renesas Electronics

bon RENESAS

DA1468x Software Platform Reference

Figure 96: Configuring the SEGGER System Viewer

Note 47 The address for the RTT Control Block Detection is located in application’s .map file. For example, for
PXP reporter the .map file is located at pxp reporter\DA14681-01-Release QSPI. Press Ctrl+F and
search the address of the SEGGER RTT variable.

3. On the main SystemView window, press the upper right "Start Recording Button" button.

) SEGGER SystemViewer V2.34 - embOS/IP Webserver [embOS] or
i View Go Target Tool Window Help

H E|0|=|HEH

Timestamp Context Event
1 00:00:00.000.0.. Idle ¢ Start
2 00:00:00.000.0.. Idle * System Info
3 00:00:00.000.0.. Idle * System Descr
4 00:00:00.000.0.. Idle * System Descr
3 00:00:00.000.0.. Idle ®* Resource Nan
& 00:00:00.000.0.. Idle = 08 GetTime u
7 00:00:00.000.0.. Idle * Target Time
g 00:00:00.000.0.. Idle * Task Info
S 00:00:00.000.0.. Idle * Stack

10 00:00:00.000.0.. Idle * Task Info

11 00:00:00.000.0.. Idle * Stack

12 00:00:00.000.0.. Idle % ISR Exit

00:00:00.000.000.000
Unified T
0

Figure 97: Start Recording

4. One can Stop and Restart the recording at any time using the buttons from SystemView PC
Application.

Additional information:

1. The processing overhead of SystemView is not negligible and can potentially affect system
dynamics or cause assertions due to the delays inserted from ISR monitoring. To minimize the
impact on time critical ISRs there are some configuration options that allow the user to
enable/disable the monitoring of certain aspects of the system, as shown below:

User Manual Version 6.1 19-Jan-2022

CFR0012 189 of 206 © 2022 Renesas Electronics

RENESAS

UM-B-044

DA1468x Software Platform Reference

/*
* Enable/Disable SystemView monitoring for BLE related ISRs (BLE_GEN Handler
BLE WAKEUP LP Handler) .
* */
#ifndef dg configSYSTEMVIEW MONITOR BLE ISR
#define dg configSYSTEMVIEW MONITOR BLE ISR (1)
#endif

/*
* Enable/Disable SystemView monitoring for CPM related ISRs (SWTIM1 Handler
WKUP GPIO Handler).
* *k/
#ifndef dg configSYSTEMVIEW MONITOR CPM ISR
#define dg configSYSTEMVIEW MONITOR CPM ISR (1)
#endif

/*
* Enable/Disable SystemView monitoring for USB related ISRs (USB_Handler
VBUS Handler) .
* *k/
#ifndef dg configSYSTEMVIEW MONITOR USB ISR
#define dg configSYSTEMVIEW MONITOR USB ISR (1)
#endif

Code 44: Enable/disable the monitoring

2. In applications with heavy IRQ usage it is possible that the currently used 2kb RTT buffer cannot
hold all the monitored events and this may cause RTT overflows which simple means that some
events are lost. The number of lost events is visible in the System View GUI RTT overflows

property.
To avoid this SEGGER suggest:

e Minimize the interactions of the debugger with J-Link while the target is running. (i.e. disable live
watches)

e Select a higher interface speed in all instances connected to J-Link. (i.e. The debugger and
System Viewer)

e Choose a larger buffer for System View. (1 - 4 kByte)

e Run System Viewer stand-alone without a debugger.

3. System View uses sdk's RTC, which is clocked by one of the LP clocks. For example, if the LP
clock is XTAL32K each timer tic corresponds to ~31us. Events that last less than 30us will be
visualized as events that last 31us.

4. Application/Device name can be set in SEGGER SYSVIEW Config FreeRTOS.c
SYSVIEW APP NAME/SYSVIEW DEVICE NAME definitions. At the same file function
_cbSendSystembDesc () is located which sends comma separated IRQ names to the Host PC.
Because the internal used buffer is only 128 bytes, not all IRQs are named there. One could use
multiple SEGGER SYSVIEW SendSysDesc () calls to name all IRQs but this means more processing
requirements. It is recommended to leave just one packet there.

5. Memory overhead is 2Kb RAM for RTT buffers, 256 bytes heap for every thread, 256 bytes stack
for the shared IRQ stack and ~5Kb rom.

6. Itis possible to redirect printf messages on SystemView’s host window:

e if CONFIG RETARGET is defined, messages go to UART
e if CONFIG RTTis defined, messages go to RTT
e if CONFIG NO PRINT is defined, messages are discarded

e If nothing of the above is defined, but the dg configSYSTEMVIEW is enabled, messages go to
System View's GUI terminal.

User Manual Version 6.1 19-Jan-2022

CFR0012 190 of 206 © 2022 Renesas Electronics

bon RENESAS

DA1468x Software Platform Reference

Currently System View supports only integer variables, so %s strings are not printed properly. printf
using SystemView inserts delays (because of the temporary disabled IRQs) that may trigger
assertions so it is not recommended to be used.

Appendix E System Clocks

Table 72: System Clocks

Clocks Description

XTAL16M Crystal oscillator for the system clock (16MHz or 32MHz). Crystal Constraint should be up to
+/-40ppm.

XTAL32K Crystal oscillator for the low power clock. Crystal Constraint should be up to +/-500ppm.

RCX XTAL_LP replacement (10.5 KHz).

RC16 RC oscillator (~15.5MHz) for the initial CPU clocking until the XTAL is settled.

RC32K RC oscillator (32KHz) for clocking the HW-FSM at power up.

PLL96 A PLL which will increase the system clock to 96MHz.

User Manual Version 6.1 19-Jan-2022

CFR0012 191 of 206 © 2022 Renesas Electronics

UM-B-044

RLENESAS

DA1468x Software Platform Reference

Appendix F Batteries

Table 73: Battery types

Battery types Description

BATTERY TYPE LICOO2 Lithium cobalt oxide (LiCo0O2).

BATTERY TYPE LIMN204, Lithium ion manganese oxide battery.

BATTERY TYPE LIFEPO4 Lithium iron phosphate.

BATTERY TYPE LINICOATO2 Lithium Nickel Cobalt Aluminum Oxide.

User Manual Version 6.1 19-Jan-2022

CFR0012 192 of 206

© 2022 Renesas Electronics

UM-B-044

RENESAS

DA1468x Software Platform Reference

Appendix G Power

Table 74: Power Definitions

Power Definition

100 ret This low drop out (LDO) provides power to internal registers that need to retain
- their content when the system is sleeping.

100 IO RET/ These LDOs provide power to input/output blocks that need to retain their

1DO IO RET2 configuration.

DCDC Direct Current — to — Direct Current.

100 VBAT RET This LDO makes sure that only the current needed for retention is drown form the
- - battery.

cc Constant Current.

v Constant Voltage.

VBAT Battery supply voltage.

User Manual Version 6.1 19-Jan-2022

CFR0012

193 of 206 © 2022 Renesas Electronics

UM-B-044

LENESAS

DA1468x Software Platform Reference

Appendix H Trim and Calibration

The following table presents a list of the registers which are included in the TCS. Not all of them are
required but no other than those in the Table 75 can be included.

Table 75: Trim and Calibration Section expected values per chip version

TRIM & CALIBRATION SECTION Chip Revision

Register What Who DA14680/1-01

1 CLK_32K REG Program RC32K_TRIM Dialog at Used
Production Testing

2 CLR_RCX20K REG Program RCX20K_TRIM | Dialog at Used
Production Testing

3 CLK 16M REG RC16M_TRIM Dialog at Used
Production Testing

4 CLK_FREQ_TRIM REG Crystal Dependent Customer at Used
Product Line
Testing

5 XTALRDY_CTRL,_REG Crystal Dependent Customer at Used
Product Line
Testing

6 BANDGAP REG Dialog at Used
Production Testing

7 CHARGER CTRL2 REG Dialog at Used
Production Testing

8 RF BIAS CIRL1 BLE RE Dialog at Used

G Production Testing

9 RE_INA CTRLL REG Dialog at Used
Production Testing

10 | RF_INA CTRL2 REG Dialog at Used
Production Testing

11 RF VCOCAL CTRL REG Dialog at Used
Production Testing

User Manual Version 6.1 19-Jan-2022

CFR0012 194 of 206 © 2022 Renesas Electronics

bon RRENESAS

DA1468x Software Platform Reference

TRIM & CALIBRATION SECTION Chip Revision

12 | RF MIXER CTRLL BLE R

Dialog at Used
EG

Production Testing

13 | RF_VCO_CTRL REG Dialog at Used

Production Testing

14 RF_SPARE]._BLE_REG Dlalog at Used

Production Testing

15 | RF_DIV_IQ RX REG Dialog at Not Used

Production Testing

16 | RF_DIV_IQ TX REG Dialog at Not Used

Production Testing

17 BOD_CTRLZ_REG Which rail to BOD protect Customer at Used
Product Line
Testing

18 | RF BIAS CTRL1 FTDF R

Dialog at Used
EG

Production Testing

19 | RF MIXER CTRL1 FTDF

Dialog at Used
REG

Production Testing

20 | LED CONTROL REG Dialog at Not Used

Production Testing

21 | Free
22 Free
23 | Free
24 Free

Note 48 TCS value of XTALRDY CTRL REG s in clock cycles for 32000/32768. In the case of RCX, it will not be
applied. Instead, the hard-coded value of the SmartSnippets™ DA1468x SDK will be applied.

User Manual Version 6.1 19-Jan-2022

CFR0012 195 of 206 © 2022 Renesas Electronics

LENESAS

UM-B-044

DA1468x Software Platform Reference

Appendix | Configuration parameters

Table 76 is a list of configuration parameters. For more up-to-date information please refer to
Doxygen files.

Table 76: List of configuration parameters

Macro Documented | Description
In

dg configUSE LP CLK
) e Low Power clock used

(LP_CIK 32000, LP CIK 32768,
LP CIK RCX, LP CIK ANY).

dg configEXEC MODE
o 9 - C.3 Configuration of a project for cached

or mirrored execution from FLASH.

dg configCODE LOCATION . . .
- - C.3 Configuration of a project for

execution from RAM.

dg configEXT CRYSTAL FREQ
e Ea - Frequency of the crystal connected to

the XTAL Oscillator: 16MHz or
32MHz.

dg configIMAGE FLASH OFFSET) .
- - - Offset of the image if not placed at

the beginning of QSPI Flash.

dg configUSER CAN USE TIMER1 .
- - - = Timer 1 usage. When set to 0,

Timerl is reserved for the OS tick.

dg configMEM RETENTION MODE . . .
- - - Retention memory configuration. 5

bits field; each bit controls whether
the relevant memory block will be
retained (1) or not (0).

dg configSHUFFLING MODE)
9 g - Memory Shuffling mode. See

SYS CTRL REG:REMAP RAMS field.

dg configUSE WDOG .
- - Watchdog Service.

1: enabled
0: disabled

d figFLASH POWER DOWN
d_contig - - Table 29 Puts QSPI Flash to “Power Down” for

the duration of the sleep period.

dg configPOWER 1V8 ACTIVE . . .
& g - = The rail from which the Flash is

powered, if a Flash is used.

FLASH IS NOT CONNECTED
FLASH CONNECTED TO 1V8
FLASH CONNECTED TO 1V8P

When set to 1, the 1V8 rail is
powered, when the system is in
active state.

dg configPOWER 1V8 SLEEP .
- - - When set to 1, the 1V8 is powered

during sleep.

User Manual Version 6.1 19-Jan-2022

CFR0012 196 of 206 © 2022 Renesas Electronics

bon RENESAS

DA1468x Software Platform Reference

Macro Documented | Description
In

dg configPOWER 1V8P .
- - When set to 1, the 1V8P rail is

powered.

dg configBATTERY TYPE . i
- - Table 31 Defines the battery type that is used

in the system.

dg configBATTERY CHARGE VOLTAGE . i .
- - - Table 31 Defines the charging voltage setting

for the charger hardware.

dg configBATTERY TYPE CUSTOM ADC VOLTAGE .
- - - - - Table 31 In case of a custom battery, this

parameter must be defined to provide
the charging voltage level of the
battery (in ADC measurement units).

dg configBATTERY LOW LEVEL L
- - - Table 31 If not zero, this is the lowest allowed

limit of the battery voltage.

d figPRECHARGING THRESHOLD
9eontg - Table 31 The threshold below which pre-

charging starts

dg configCHARGING THRESHOLD
- - Table 31 The threshold that, when met, pre-

charging stops and charging starts.

dg configBATTERY CHARGE CURRENT . . .
- - - Table 31 This is the charging current setting for

the charger hardware.

dg configBATTERY PRECHARGE CURRENT .)
- - - Table 31 This is the pre-charging current

setting for the charger hardware.

dg configBATTERY CHARGE NTC
- - - Table 31 It controls whether the thermal

protection will be enabled or not.

dg configPRECHARGING TIMEOUT . . .
- - Table 31 The maximum time that pre-charging

will last.

dg configUSE SOC
9 Ehaas When set to 1, State of Charge

function is enabled.

dg configUSE USB
= Ehaas When set to 1, the USB interface is

used

dg configUSE USB CHARGER .
9 IR Table 31 It enables / disables the use of the

Charger from the application.

e 0:disables the charger (must be
used when no battery is
attached)

e 1:enables the charger

dg configUSE USB ENUMERATICON

Table 31 It controls whether enumeration with
the USB
dg configALLOW CHARGING NOT ENUM .
- - - = Table 31 It controls whether the Charger will

start charging using charge current
up to 100mA until the enumeration
completes.

User Manual Version 6.1 19-Jan-2022

CFR0012 197 of 206 © 2022 Renesas Electronics

bon RENESAS

DA1468x Software Platform Reference

Macro Documented | Description
In

dg configUSE NOT ENUM CHARGING TIMEOUT . L
- - - - - Table 31 According to the USB Specification,

there is a time limit that a device,
which is connected to the USB bus
but not enumerated, can draw power.
This configuration setting controls
whether the Charger will respect this
time limit or not.

dg configPRECHARGING INITIAL MFASURE DELAY o i .)
- - - - Table 31 This is the time to wait before doing

the first voltage measurement after
starting pre-charging.

dg configCHARGING CC TIMEOUT) . .
- - = Table 31 The maximum time that the charging

hardware will stay in the cC phase.

dg configCHARGING CV TIMEOUT) . .
- - - Table 31 The maximum time that the charging

hardware will stay in the cv phase.

dg configUSB CHARGER POLLING INTERVAL .)
9 Ehaac - - Table 31 While being attached to a USB cable

and the battery has been charged,
this is the interval that the VBAT is
polled to decide whether a new
charge cycle will be started.

dg configBATTERY CHARGE GAP . R
- - - Table 31 This is the safety limit used to check

for battery overcharging.

dg configBATTERY REPLENISH GAP .
- - - Table 31 This is the threshold below the

maximum voltage level of the battery
where charging will be restarted in
order to recharge the battery.

dg configUSE ProDK .
- - When set to 1, the ProDK is used

(controls specific settings for this
board).

dg configUSE SW CURSOR
- - - Use SW cursor.

dg configCACHEABLE QSPI ARFA IEN o
e d - - - Set the size (in bytes) of the QSPI

flash cacheable area. All reads from
offset 0 up to (not including) offset

dg configCACHEABLE QSPI AREA LEN
will be cached. In addition, any writes
to this area will trigger cache flushing,
to avoid any cache incoherence. The
size must be 64KB-aligned, due to
the granularity of

CACHE CTRL2 REG[CACHE LEN].

e 0: Turn off cache.

e -1:Don't configure
cacheable area size (i.e.
leave as set by booter).

d figFLASH ADAPTER
J_contig - When enabled the FLASH adapter is

included in the compilation of the
SDK.

User Manual Version 6.1 19-Jan-2022

CFR0012 198 of 206 © 2022 Renesas Electronics

bon RENESAS

DA1468x Software Platform Reference

Macro Documented | Description
In

e 0: Disabled
e 1:Enabled

d figNVMS ADAPTER
J_contid - When enabled the NVMS (Non

Volatile Memory Storage) adapter is
included in the compilation of the
SDK.

e 0: Disabled
e 1:Enabled

dg configNVMS VES . .
- - 12.4.2 Must be defined in order to use VES

(Virtual EEPROM).

d figNVPARAM ADAPTER
g_contig = When enabled the NVPARAM

(Analog to Digital Converter) adapter
is included in the compilation of the
SDK.

e 0: Disabled
e 1:Enabled

dg configGPADC ADAPTER
- - When enabled the GPADC (Non

Volatile Parameters) adapter is
included in the compilation of the
SDK.

e 0: Disabled
e 1:Enabled

dg configBLE PERIPHERAL . L .
- - Table 50 Set to 0 if the application is not using

BLE-peripheral related code.

dg configBLE CENTRAL . L .
- - Table 50 Set to O if the application is not using

BLE- central related code.

dg configBLE OBSERVER . N .
- - Table 50 Set to 0 if the application is not using

BLE-observer related code.

dg configBLE BROADCASTER . S .
- - Table 50 Set to O if the application is not using

BLE-broadcaster related code.

dg configBLE GATT CLIENT) C .
- - - Table 50 Set to 0 if the application is not using

GATT client related code.

dg configBLE GATT SERVER . S .
- - - Table 50 Set to O if the application is not using

GATT client related code.

dg configBLE L2CAP COC . L .
- - - Table 50 Set to O if the application is not using

L2CAP connection oriented channels
related code.

dg configBLE EVENT COUNTER ENABRLE .
- - - - Enable Event Counters in BLE ISR. If

the application has not defined
dg_configBLE EVENT COUNTER ENABL
Ein its custom_config file, this is
defined to the default value of 0 to

User Manual Version 6.1 19-Jan-2022

CFR0012 199 of 206 © 2022 Renesas Electronics

file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___b_l_e___c_o_n_f_i_g.html%23ga10e29ffa0f672e6c916a08a294590245
file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___b_l_e___c_o_n_f_i_g.html%23ga10e29ffa0f672e6c916a08a294590245

RENESAS

UM-B-044

DA1468x Software Platform Reference

Macro Documented | Description
In

disable the Event Counters in BLE
stack ISR.

dg configBLE ADV STOP DELAY ENABLE
- - = - - Enable ADV_UNDERRUN

workaround. If the application has not
defined
dg_configBLE ADV STOP DEIAY ENAB
LE in its custom_config file, this is
defined to the default value of 0 to
disable the ADV_UNDERRUN workaround
in the BLE adapter.

dg configBLE SKIP LATENCY API)
— - - - Enable Secure Connections.

If the application has not defined

dg configBLE SECURE CONNECTIONS
in its custom configuration file, this is
defined by default to 1 to enable LE

Secure Connections.

dg configBLE CONN EVENT LENGTH MIN . .
- - - - - Minimum Connection Event Length.

Minimum length for Connection Event
in steps of 0.625ms. This is used in
outgoing connection requests,
connection parameter requests and
connection updates.

dg configBLE CONN EVENT LENGTH MAX _)
- - - - - Maximum Connection Event Length.

Maximum length for Connection
Event in steps of 0.625ms. This is
used in outgoing connection
requests, connection parameter
requests and connection updates.

dg configBLE DATA LENGTH RX MAX . .
- - - - = Maximum Receive Data Channel

PDU Payload Length. If the
application has not defined

dg configBLE DATA LENGTH RX MAX
in its custom_config file, this is
defined to the maximum value
allowed by Bluetooth Core v_4.2,
which is 251 octets.

dg configBLE DATA LENGTH TX MAX]]
- - - - = Maximum Transmit Data Channel

PDU Payload Length. If the
application has not defined
dg_configBLE DATA LENGTH TX MAX
in its custom_config file, this is
defined to the maximum value
allowed by Bluetooth Core v_4.2,
which is 251 octets.

dg configBLE DUPLICATE FILTER MAX) o .)
- - - - Duplicate Filtering List Maximum

size. This defines the size of the list
used for duplicate filtering. When the
duplicate filtering list is full, additional
advertising reports or scan responses
will be dropped.

User Manual Version 6.1 19-Jan-2022

CFR0012 200 of 206 © 2022 Renesas Electronics

file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___b_l_e___c_o_n_f_i_g.html%23ga182ec698bd26b6dd0b50ce065833a7ca
file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___b_l_e___c_o_n_f_i_g.html%23ga182ec698bd26b6dd0b50ce065833a7ca
file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___b_l_e___c_o_n_f_i_g.html%23gaf2c2b5aaecfa0833f08527e2d8765c8b
file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___b_l_e___c_o_n_f_i_g.html%23ga4743020d3280d02ef2630058c82315d8
file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___b_l_e___c_o_n_f_i_g.html%23ga844b5cedf9aa19796f0dd52bdf2c8c45

LENESAS

UM-B-044

DA1468x Software Platform Reference

Macro Documented | Description
In

dg configBLE PAIR INIT KEY DIST . .
- - - - = Table 17 Security keys to be distributed by the

pairing initiator. This defines which
security keys will be requested to be
distributed by the pairing initiator
during a pairing feature exchange
procedure.

dg configBLE PAIR RESP KEY DIST . L
- - - - - Table 17 Security keys to be distributed by the

pairing responder. This defines which
security keys will be requested to be
distributed by the pairing responder
during a pairing feature exchange
procedure.

dg configBLE SECURE CONNECTIONS .
- - - Table 17 Enable Secure Connections. If the

application has not defined
dg_configBLE SECURE CONNECTIONS
in its custom configuration file, this is
defined by default to 1 to enable LE
Secure Connections.

d figTRACK OS HEAP
geont - - 13.2.3 Activation of OS Heap tracking.

dg configUSE DGTL i .
- - Enable DGTL interface. When this

macro is enabled, the DGTL
framework is available for use. The
framework must furthermore be
initialized in the application using
dgtl init() . Additionally, the UART
adapter must be initialized
accordingly. Please see
sdk/middleware/dgtl/include/ for
further DGTL configuration (in
dotl_config.h) and API.

dg configI2C ADAPTER
9 Eac When enabled the 12C (Inter-

Integrated Circuit) adapter is included
in the compilation of the SDK.

e 0: Disabled
e 1:Enabled

dg configUSE HW I2C
9 grsk When enabled the Inter-Integrated

Circuit low level driver is included in
the compilation of the SDK.

e 0: Disabled
e 1:Enabled

dg configSPI ADAPTER .
- - When enabled the SPI (Serial

Peripheral Interface) adapter is
included in the compilation of the
SDK.

e 0: Disabled
e 1:Enabled

User Manual Version 6.1 19-Jan-2022

CFR0012 201 of 206 © 2022 Renesas Electronics

file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___b_l_e___c_o_n_f_i_g.html%23gaf2c2b5aaecfa0833f08527e2d8765c8b
file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___d_g_t_l.html%23ga2b2ec4dc2c0502cc2f80a08bbf07dcf1
file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/dgtl__config_8h.html

LENESAS

UM-B-044

DA1468x Software Platform Reference

Macro Documented | Description
In

dg configUSE HW SPI . i
- - = When enabled the Serial Peripheral

Interface low level driver is included
in the compilation of the SDK.

e 0: Disabled
e 1:Enabled

dg configUART ADAPTER . .
- - 12.3.1 Must be defined and setto 1, in a

project, in order to enable the UART
adapter

dg configUSE HW UART . .
- - - 12.3.1 Must be defined and setto 1, in a

project, in order to enable the UART
adapter

dg configTESTMODE MEASURE SLEEP CURRENT)
- - - - When set to 1, the system will go to

sleep and never exit allowing for the
sleep current to be measured.

d fi gTEMPSENS ADAPTER
dcontt - When enabled the TEMPSENS

(Temperature Sensor) adapter is
included in the compilation of the
SDK.

e 0:Disabled
e 1:Enabled

dg configUSE HW IRGEN
£ g When enabled the Infra-Red

Generator low level driver is included
in the compilation of the SDK.

e 0: Disabled
e 1:Enabled

dg configUSE HW QUAD
- - = When enabled the Quadrature

decoder low level driver is included in
the compilation of the SDK.

e 0: Disabled
e 1:Enabled

dg configRF ADAPTER .)
= R When enabled the Radio adapter is

included in the compilation of the
SDK.

e 0: Disabled
e 1:Enabled

dg configUSE HW RF .
9 g When enabled the Radio module low

level driver is included in the
compilation of the SDK.

e 0:Disabled
e 1:Enabled

dg configUSE HW TIMERO .
- - = When enabled the Timer 0 low level

driver is included in the compilation of

User Manual Version 6.1 19-Jan-2022

CFR0012 202 of 206 © 2022 Renesas Electronics

UM-B-044

LENESAS

DA1468x Software Platform Reference

Macro

Documented
In

Description

the SDK.
e 0O: Disabled
e 1:Enabled

dg configUSE HW TIMERL

When enabled the Timer 1 low level
driver is included in the compilation of
the SDK.

e 0: Disabled
e 1:Enabled

dg configUSE HW TIMERZ2

When enabled the Timer 2 low level
driver is included in the compilation of
the SDK.

0 : Disabled
1 : Enabled

dg configPM MAX ADAPTERS CNT

Maximum adapters count. Should be
equal to the number of Adapters used
by the Application. It can be larger
(up to 254) than needed, at the
expense of increased Retention
Memory requirements. It cannot be 0.

dg confiqUSE CLI

Enable Command Line Interface
module.

dg configUSE CONSOLE

Enable serial console module.

dg configUSE CLI STUBS

Enable Command Line Interface
stubbed API.

dg configUSE CONSOLE STUBS

Enable serial console stubbed API.

dg configUSE BOD

brief Brown-out Detection
e 1:used

e 0:notused

dg configUSE DCDC

When set to 1, the DCDC is used.

dg_configDISABLE BACKGROUND FLASH OPS

Disable background operations.
When enabled, outstanding QSPI
operations will take place during
sleep time increasing the efficiency.

e 1 :Disabled
e 0:Enabled

dg configCRYPTO ADAPTER

The adapter for the cryptographic
engines (AES/HASH and ECC).

dg configUSE HW WKUP

When enabled the Wakeup Timer low
level driver is included in the

User Manual

Version 6.1

19-Jan-2022

CFR0012

203 of 206

© 2022 Renesas Electronics

RLENESAS

UM-B-044

DA1468x Software Platform Reference

Macro Documented | Description
In

compilation of the SDK.
e 0:Disabled
e 1:Enabled

User Manual Version 6.1 19-Jan-2022

CFR0012 204 of 206 © 2022 Renesas Electronics

UM-B-044

LENESAS

DA1468x Software Platform Reference

Revision history

Revision Date Description

1.0 19-Nov-2015 First released version

2.0 22-Apr-2016 Update for SmartSnippets DA1468x SDK Release 1.0.4.812

21 17-Jun-2016 Update for SmartSnippets DA1468x SDK Engineering Release
1.0.5.885

3.0 26-Jul-2016 Update for SmartSnippets DA1468x SDK Release 1.0.6.968

4.0 07-Dec-2016 Update for SmartSnippets DA1468x SDK Release 1.0.8

5.0 21-Jul-2017 Update for SmartSnippets DA1468x SDK Release 1.0.10

5.0.1 9-Nov-2017 Update for SmartSnippets DA1468x SDK Release 1.0.10

5.0.2 27-Nov-2017 Update for SmartSnippets DA1468x SDK Release 1.0.10

6.0 08-Dec-2017 Update for SmartSnippets DA1468x SDK Release 1.0.12

6.1 19-Jan-2022 Updated logo, disclaimer, copyright.

User Manual Version 6.1 19-Jan-2022

CFR0012 205 of 206 © 2022 Renesas Electronics

T LENESAS

DA1468x Software Platform Reference

Status definitions

Status Definition

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or
additions.

APPROVED The content of this document has been approved for publication.

or unmarked

RoHS Compliance
Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European

Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our
suppliers are available on request.

User Manual Version 6.1 19-Jan-2022

CFR0012 206 of 206 © 2022 Renesas Electronics

	Abstract
	Contents
	Figures
	Tables
	Codes
	1 Terms and definitions
	2 References
	3 Prerequisites
	4 An Overview of Bluetooth® low energy Platform
	4.1 Devices Mode
	4.1.1 Single Mode Devices
	4.1.2 Dual Mode Devices

	4.2 Main Building Blocks
	4.3 Hardware configurations
	4.3.1 Integrated Processor
	4.3.2 External Processor

	4.4 Network Modes
	4.4.1 Broadcasting
	4.4.2 Connecting

	4.5 Profiles
	4.5.1 Generic Profiles
	4.5.2 Use-Case-Specific Profiles
	4.5.2.1 SIG-defined GATT-based profiles
	4.5.2.2 Vendor-Specific Profiles

	4.5.3 Generic Access Profile Layer
	4.5.4 Generic Attribute Profile Layer

	4.6 Protocol Stack
	4.7 Controller
	4.7.1 Physical Layer (PHY)
	4.7.2 Link Layer (LL)
	4.7.2.1 Bluetooth Device Address
	4.7.2.2 Advertising and Scanning

	4.7.3 Host Controller Interface – Controller side

	4.8 Host
	4.8.1 Host Controller Interface – Host Side
	4.8.2 Logical Link Control and Adaptation Protocol
	4.8.3 Attribute Protocol
	4.8.4 Security Manager

	5 The DA1468x Software Platform Overview
	5.1 Board Support Package Overview
	5.1.1 Low-level Drivers
	5.1.2 RTOS
	5.1.3 System Manager
	5.1.4 Adapters
	5.1.5 The BLE Framework

	5.2 Middleware Services
	5.2.1 SUOTA
	5.2.2 Security Toolbox

	6 Using the Operating System
	6.1 FreeRTOS
	6.1.1 FreeRTOS Source Files
	6.1.2 FreeRTOS Configuration
	6.1.3 Platform-specific Definitions
	6.1.4 FreeRTOS Task Priorities
	6.1.5 Delaying the execution of a FreeRTOS Task
	6.1.6 Scope
	6.1.7 RTOS-agnostic API
	6.1.8 Resource Management API
	6.1.9 Message Queues API

	7 The BLE Framework
	7.1 Developing BLE Applications
	7.2 The BLE API header files
	7.2.1 Dialog BLE API
	7.2.2 Dialog BLE service API
	7.2.2.1 Connection Orientated Events
	7.2.2.2 Attribute Orientated Events

	7.2.3 Configuring the project
	7.2.4 BLE application structure

	7.3 Bluetooth low energy Security
	7.3.1 Functions
	7.3.2 Events
	7.3.3 Macros
	7.3.4 Message Sequence Charts (MSCs)
	7.3.4.1 Central
	7.3.4.2 Peripheral

	7.3.5 BLE Storage
	7.3.6 LE Secure Connections

	7.4 Logical Link Control and Adaptation Layer Protocol
	7.4.1 Credit-Based Flow Control
	7.4.2 Functions
	7.4.3 Events

	7.5 LE Data Packet Length Extension
	7.5.1 Functions
	7.5.2 Macros
	7.5.3 Events

	7.6 NVPARAM fields
	7.7 BLE Interrupt Generation
	7.8 Considerations on BLE Task Priorities
	7.9 BLE tasks timing requirements
	7.10 Attribute operations
	7.11 Bluetooth low energy Application Examples
	7.11.1 Advertising Application
	7.11.2 Peripheral Application
	7.11.3 Central Application
	7.11.4 Multi-Link Application
	7.11.5 External Host Application

	7.12 BLE profile projects
	7.13 Using adopted Bluetooth low energy services
	7.14 Adding a custom service
	7.15 Extending Bluetooth low energy functionality

	8 The Security Framework
	8.1 LLDs of the security framework
	8.1.1 TRNG Engine LLD
	8.1.2 AES/HASH Engine LLD
	8.1.3 ECC Engine LLD
	8.1.4 Crypto engines LLD

	8.2 TRNG service
	8.3 Crypto adapter
	8.4 Cryptographic algorithms
	8.4.1 Hash-based Message Authentication Code (HMAC)
	8.4.2 Elliptic Curve Diffie-Hellman (ECDH)

	9 System Management
	9.1 Power Modes
	9.2 Wake-up Process
	9.2.1 Wake-up modes
	9.2.2 Wake-up events

	9.3 Sleep architecture
	9.3.1 BLE Wake-up

	9.4 Power configuration
	9.4.1 Recommended Power-Down Power Configuration
	9.4.2 System Clock
	9.4.2.1 XTAL32M support

	9.5 Charger configuration
	9.5.1 No Charging
	9.5.2 Default Charging
	9.5.3 Custom Charging parameters
	9.5.4 Charger configuration process
	9.5.5 Issues for non-rechargeable batteries
	9.5.6 Charger related callback functions

	9.6 Watchdog Service
	9.6.1 Description
	9.6.2 Concept
	9.6.3 Examples
	9.6.4 API

	10 System Memory
	10.1 Random Access Memory
	10.1.1 Code Location
	10.1.1.1 Execution Modes

	10.1.2 Data Heaps
	10.1.2.1 Application Heap
	10.1.2.2 BLE Stack Heap

	10.1.3 Optimal Memory Size

	10.2 Non-Volatile Memory Storage
	10.2.1 QSPI Flash Support
	10.2.1.1 Modes of operation and configuration
	10.2.1.2 Autodetect Mode
	10.2.1.3 Manual Mode
	10.2.1.4 Flash Configuration
	10.2.1.5 Code Structure
	10.2.1.6 The flash configuration structure qspi_flash_config_t
	10.2.1.7 Adding support for a new flash device
	10.2.1.8 Working with a new flash device

	11 Operation modes and startup procedure
	11.1 Generated ELF file
	11.2 Program loading
	11.2.1 RAM mode
	11.2.2 Flash cached mode

	11.3 BLE ROM patches
	11.4 Startup procedure
	11.5 Secure Boot
	11.5.1 Features
	11.5.2 Configuration
	11.5.2 Configuration
	11.5.3 Files

	12 Drivers and Adapters
	12.1 Introduction
	12.2 Drivers
	12.2.1 LLD header Example
	12.2.2 Documentation

	12.3 Adapters
	12.3.1 The UART adapter example

	12.4 The NVMS Adapter
	12.4.1 Overview
	12.4.2 Interface
	12.4.3 NVMS partition table
	12.4.4 NVMS over QSPI in cached mode
	12.4.4.1 Slice PROGRAM operation
	12.4.4.2 Suspend/Resume ERASE Operation

	12.5 Logging

	13 Optimizations
	13.1 Optimize BLE framework footprint
	13.2 Optimizing FreeRTOS heap usage
	13.2.1 FreeRTOS Memory Management
	13.2.2 OS Heap & Tasks Stack size
	13.2.3 Optimizing FreeRTOS Heap

	13.3 Retention RAM optimization and configuration
	13.3.1 Memory setups for QSPI Cached execution mode
	13.3.1.1 DA14680/681 – QSPI Cached BLE non-optimized project (all RAM cells are retained)
	13.3.1.2 DA14680/681 – QSPI Cached BLE optimized project (RAM1, RAM2, RAM4, RAM5 cells are retained)
	13.3.1.3 DA14680/681 – QSPI non-BLE non-optimized project (all RAM cells are retained)
	13.3.1.4 DA14680/681 – QSPI non-BLE optimized project (RAM2 cell is retained)
	13.3.1.5 DA14682/683, DA15100/1 – QSPI Cached BLE non-optimized project (all RAM cells are retained)
	13.3.1.6 DA14682/683, DA15100/1 – QSPI Cached BLE optimized project (RAM1, RAM2, RAM3 cells are retained)
	13.3.1.7 DA14682/683, DA15100/1 – QSPI Cached non-BLE non-optimized project (all RAM cells are retained)
	13.3.1.8 DA14682/683, DA15100/1 – QSPI non-BLE optimized project (RAM2 cell is retained)

	13.3.2 Memory setups for RAM execution mode
	13.3.2.1 DA14680/681 – RAM BLE non-optimized project (all RAM cells are retained)
	13.3.2.2 DA14680/681 – RAM non-BLE non-optimized project (all RAM cells are retained)
	13.3.2.3 DA14682/683, DA15100/1 – RAM BLE non-optimized project (all RAM cells are retained)
	13.3.2.4 DA14682/683, DA15100/1 – RAM non-BLE non-optimized project (all RAM cells are retained)

	13.3.3 Memory setup for the OTP Cached execution mode (DA14680/1-01)
	13.3.4 Memory setup for the OTP Mirrored execution mode (DA14680/1-01)

	Appendix A SmartSnippets DA1468x SDK structure
	A.1 Directory structure
	A.2 Binaries directory
	A.3 Config directory
	A.4 Doc directory
	A.5 Projects directory
	A.5.1 dk_apps directory
	A.5.2 Host_apps directory
	A.5.3 SDK directory
	A.5.4 Utilities directory

	Appendix B Command Line Interface (CLI) Programmer
	B.1 CLI Programmer – Overview
	B.2 Application command description
	B.3 Command examples
	B.3.1 Installation and debugging procedure
	B.3.2 Build instructions

	Appendix C QSPI programming guide
	C.1 General
	C.2 Prerequisites
	C.3 Compiling for execution from flash
	C.4 Flashing an QSPI image
	C.5 Debugging from QSPI
	C.5.1 General
	C.5.2 Debugging with gdb scripts

	Appendix D SEGGER SystemView integration instructions
	Appendix E System Clocks
	Appendix F Batteries
	Appendix G Power
	Appendix H Trim and Calibration
	Appendix I Configuration parameters
	Revision history

