
 

 

  

   

   

   

User Manual 

DA1468x Software Platform 
Reference 

UM-B-044 

Abstract 

This document should be used as a reference guide to gain a deeper understanding of the 
SmartSnippets Software Development Kit (SDK). As such it covers a broad range of topics including 
a brief introduction to Bluetooth Low Energy (BLE), Operating System (OS) related material and a 
number of sections containing a more detailed technical analysis of hardware elements, for instance 
clock and power management 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 2 of 206 © 2022 Renesas Electronics 

Contents 

Abstract ................................................................................................................................................ 1 

Contents ............................................................................................................................................... 2 

Figures .................................................................................................................................................. 7 

Tables ................................................................................................................................................... 9 

Codes .................................................................................................................................................. 10 

1 Terms and definitions ................................................................................................................. 11 

2 References ................................................................................................................................... 13 

3 Prerequisites ................................................................................................................................ 14 

4 An Overview of Bluetooth® low energy Platform .................................................................... 15 

4.1 Devices Mode ..................................................................................................................... 15 

4.1.1 Single Mode Devices ........................................................................................... 15 

4.1.2 Dual Mode Devices .............................................................................................. 15 

4.2 Main Building Blocks ........................................................................................................... 15 

4.3 Hardware configurations ..................................................................................................... 16 

4.3.1 Integrated Processor ........................................................................................... 16 

4.3.2 External Processor .............................................................................................. 16 

4.4 Network Modes ................................................................................................................... 16 

4.4.1 Broadcasting ........................................................................................................ 16 

4.4.2 Connecting ........................................................................................................... 17 

4.5 Profiles ................................................................................................................................ 17 

4.5.1 Generic Profiles ................................................................................................... 18 

4.5.2 Use-Case-Specific Profiles .................................................................................. 18 

4.5.2.1 SIG-defined GATT-based profiles ................................................... 18 

4.5.2.2 Vendor-Specific Profiles .................................................................. 18 

4.5.3 Generic Access Profile Layer .............................................................................. 19 

4.5.4 Generic Attribute Profile Layer ............................................................................ 19 

4.6 Protocol Stack ..................................................................................................................... 20 

4.7 Controller ............................................................................................................................. 20 

4.7.1 Physical Layer (PHY) ........................................................................................... 21 

4.7.2 Link Layer (LL) ..................................................................................................... 21 

4.7.2.1 Bluetooth Device Address ............................................................... 22 

4.7.2.2 Advertising and Scanning ................................................................ 22 

4.7.3 Host Controller Interface – Controller side .......................................................... 22 

4.8 Host ..................................................................................................................................... 22 

4.8.1 Host Controller Interface – Host Side .................................................................. 23 

4.8.2 Logical Link Control and Adaptation Protocol ..................................................... 23 

4.8.3 Attribute Protocol ................................................................................................. 23 

4.8.4 Security Manager ................................................................................................. 23 

5 The DA1468x Software Platform Overview ............................................................................... 25 

5.1 Board Support Package Overview ...................................................................................... 26 

5.1.1 Low-level Drivers ................................................................................................. 26 

5.1.2 RTOS ................................................................................................................... 26 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 3 of 206 © 2022 Renesas Electronics 

5.1.3 System Manager .................................................................................................. 26 

5.1.4 Adapters .............................................................................................................. 26 

5.1.5 The BLE Framework ............................................................................................ 26 

5.2 Middleware Services ........................................................................................................... 26 

5.2.1 SUOTA ................................................................................................................ 26 

5.2.2 Security Toolbox .................................................................................................. 27 

6 Using the Operating System ...................................................................................................... 27 

6.1 FreeRTOS ........................................................................................................................... 27 

6.1.1 FreeRTOS Source Files ...................................................................................... 27 

6.1.2 FreeRTOS Configuration ..................................................................................... 29 

6.1.3 Platform-specific Definitions ................................................................................ 30 

6.1.4 FreeRTOS Task Priorities ................................................................................... 30 

6.1.5 Delaying the execution of a FreeRTOS Task ...................................................... 33 

6.1.6 Scope ................................................................................................................... 33 

6.1.7 RTOS-agnostic API ............................................................................................. 34 

6.1.8 Resource Management API ................................................................................ 34 

6.1.9 Message Queues API .......................................................................................... 35 

7 The BLE Framework .................................................................................................................... 36 

7.1 Developing BLE Applications .............................................................................................. 37 

7.2 The BLE API header files .................................................................................................... 37 

7.2.1 Dialog BLE API .................................................................................................... 37 

7.2.2 Dialog BLE service API ........................................................................................ 43 

7.2.2.1 Connection Orientated Events ......................................................... 46 

7.2.2.2 Attribute Orientated Events ............................................................. 46 

7.2.3 Configuring the project......................................................................................... 48 

7.2.4 BLE application structure ..................................................................................... 48 

7.3 Bluetooth low energy Security ............................................................................................ 49 

7.3.1 Functions ............................................................................................................. 49 

7.3.2 Events .................................................................................................................. 50 

7.3.3 Macros ................................................................................................................. 51 

7.3.4 Message Sequence Charts (MSCs) .................................................................... 53 

7.3.4.1 Central ............................................................................................. 53 

7.3.4.2 Peripheral ........................................................................................ 58 

7.3.5 BLE Storage ........................................................................................................ 63 

7.3.6 LE Secure Connections ....................................................................................... 63 

7.4 Logical Link Control and Adaptation Layer Protocol ........................................................... 63 

7.4.1 Credit-Based Flow Control .................................................................................. 64 

7.4.2 Functions ............................................................................................................. 65 

7.4.3 Events .................................................................................................................. 66 

7.5 LE Data Packet Length Extension ...................................................................................... 66 

7.5.1 Functions ............................................................................................................. 67 

7.5.2 Macros ................................................................................................................. 67 

7.5.3 Events .................................................................................................................. 67 

7.6 NVPARAM fields ................................................................................................................. 68 

7.7 BLE Interrupt Generation .................................................................................................... 68 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 4 of 206 © 2022 Renesas Electronics 

7.8 Considerations on BLE Task Priorities ............................................................................... 71 

7.9 BLE tasks timing requirements ........................................................................................... 72 

7.10 Attribute operations ............................................................................................................. 73 

7.11 Bluetooth low energy Application Examples ....................................................................... 73 

7.11.1 Advertising Application ........................................................................................ 73 

7.11.2 Peripheral Application .......................................................................................... 75 

7.11.3 Central Application ............................................................................................... 75 

7.11.4 Multi-Link Application ........................................................................................... 76 

7.11.5 External Host Application .................................................................................... 77 

7.12 BLE profile projects ............................................................................................................. 77 

7.13 Using adopted Bluetooth low energy services .................................................................... 78 

7.14 Adding a custom service ..................................................................................................... 79 

7.15 Extending Bluetooth low energy functionality ..................................................................... 79 

8 The Security Framework ............................................................................................................. 81 

8.1 LLDs of the security framework .......................................................................................... 82 

8.1.1 TRNG Engine LLD ............................................................................................... 82 

8.1.2 AES/HASH Engine LLD ....................................................................................... 82 

8.1.3 ECC Engine LLD ................................................................................................. 82 

8.1.4 Crypto engines LLD ............................................................................................. 82 

8.2 TRNG service ...................................................................................................................... 82 

8.3 Crypto adapter .................................................................................................................... 82 

8.4 Cryptographic algorithms .................................................................................................... 83 

8.4.1 Hash-based Message Authentication Code (HMAC) .......................................... 83 

8.4.2 Elliptic Curve Diffie-Hellman (ECDH) .................................................................. 84 

9 System Management ................................................................................................................... 86 

9.1 Power Modes ...................................................................................................................... 86 

9.2 Wake-up Process ................................................................................................................ 87 

9.2.1 Wake-up modes ................................................................................................... 87 

9.2.2 Wake-up events ................................................................................................... 87 

9.3 Sleep architecture ............................................................................................................... 87 

9.3.1 BLE Wake-up ....................................................................................................... 93 

9.4 Power configuration ............................................................................................................ 94 

9.4.1 Recommended Power-Down Power Configuration ............................................. 95 

9.4.2 System Clock ....................................................................................................... 96 

9.4.2.1 XTAL32M support ............................................................................ 97 

9.5 Charger configuration .......................................................................................................... 98 

9.5.1 No Charging ......................................................................................................... 99 

9.5.2 Default Charging ................................................................................................ 100 

9.5.3 Custom Charging parameters ........................................................................... 100 

9.5.4 Charger configuration process .......................................................................... 101 

9.5.5 Issues for non-rechargeable batteries ............................................................... 103 

9.5.6 Charger related callback functions .................................................................... 104 

9.6 Watchdog Service ............................................................................................................. 106 

9.6.1 Description ......................................................................................................... 106 

9.6.2 Concept ............................................................................................................. 106 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 5 of 206 © 2022 Renesas Electronics 

9.6.3 Examples ........................................................................................................... 107 

9.6.4 API ..................................................................................................................... 107 

10 System Memory ......................................................................................................................... 109 

10.1 Random Access Memory .................................................................................................. 109 

10.1.1 Code Location .................................................................................................... 109 

10.1.1.1 Execution Modes ........................................................................... 109 

10.1.2 Data Heaps ........................................................................................................ 109 

10.1.2.1 Application Heap ............................................................................ 109 

10.1.2.2 BLE Stack Heap ............................................................................ 109 

10.1.3 Optimal Memory Size ........................................................................................ 109 

10.2 Non-Volatile Memory Storage ........................................................................................... 110 

10.2.1 QSPI Flash Support ........................................................................................... 111 

10.2.1.1 Modes of operation and configuration ........................................... 111 

10.2.1.2 Autodetect Mode ............................................................................ 111 

10.2.1.3 Manual Mode ................................................................................. 111 

10.2.1.4 Flash Configuration ....................................................................... 111 

10.2.1.5 Code Structure ............................................................................... 112 

10.2.1.6 The flash configuration structure qspi_flash_config_t ................... 112 

10.2.1.7 Adding support for a new flash device........................................... 114 

10.2.1.8 Working with a new flash device ................................................... 115 

11 Operation modes and startup procedure ............................................................................... 117 

11.1 Generated ELF file ............................................................................................................ 117 

11.2 Program loading ................................................................................................................ 119 

11.2.1 RAM mode ......................................................................................................... 119 

11.2.2 Flash cached mode ........................................................................................... 119 

11.3 BLE ROM patches ............................................................................................................ 120 

11.4 Startup procedure ............................................................................................................. 121 

11.5 Secure Boot ...................................................................................................................... 122 

11.5.1 Features ............................................................................................................. 122 

11.5.2 Configuration ..................................................................................................... 127 

11.5.3 Files ................................................................................................................... 133 

12 Drivers and Adapters ................................................................................................................ 134 

12.1 Introduction ....................................................................................................................... 134 

12.2 Drivers ............................................................................................................................... 134 

12.2.1 LLD header Example ......................................................................................... 136 

12.2.2 Documentation ................................................................................................... 137 

12.3 Adapters ............................................................................................................................ 137 

12.3.1 The UART adapter example .............................................................................. 140 

12.4 The NVMS Adapter ........................................................................................................... 144 

12.4.1 Overview ............................................................................................................ 144 

12.4.2 Interface ............................................................................................................. 145 

12.4.3 NVMS partition table .......................................................................................... 147 

12.4.4 NVMS over QSPI in cached mode .................................................................... 149 

12.4.4.1 Slice PROGRAM operation ........................................................... 150 

12.4.4.2 Suspend/Resume ERASE Operation ............................................ 150 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 6 of 206 © 2022 Renesas Electronics 

12.5 Logging ............................................................................................................................. 152 

13 Optimizations ............................................................................................................................. 153 

13.1 Optimize BLE framework footprint .................................................................................... 153 

13.2 Optimizing FreeRTOS heap usage ................................................................................... 153 

13.2.1 FreeRTOS Memory Management ..................................................................... 154 

13.2.2 OS Heap & Tasks Stack size ............................................................................ 155 

13.2.3 Optimizing FreeRTOS Heap .............................................................................. 155 

13.3 Retention RAM optimization and configuration ................................................................. 156 

13.3.1 Memory setups for QSPI Cached execution mode ........................................ 158 

13.3.1.1 DA14680/681 – QSPI Cached BLE non-optimized project (all 

RAM cells are retained) ................................................................. 158 

13.3.1.2 DA14680/681 – QSPI Cached BLE optimized project (RAM1, 

RAM2, RAM4, RAM5 cells are retained) ....................................... 159 

13.3.1.3 DA14680/681 – QSPI non-BLE non-optimized project (all RAM 

cells are retained) .......................................................................... 160 

13.3.1.4 DA14680/681 – QSPI non-BLE optimized project (RAM2 cell is 

retained) ......................................................................................... 161 

13.3.1.5 DA14682/683, DA15100/1  – QSPI Cached BLE non-optimized 

project (all RAM cells are retained) ............................................... 161 

13.3.1.6 DA14682/683, DA15100/1  – QSPI Cached BLE optimized 

project (RAM1, RAM2, RAM3 cells are retained) .......................... 162 

13.3.1.7 DA14682/683, DA15100/1  – QSPI Cached non-BLE non-

optimized project (all RAM cells are retained) ............................... 163 

13.3.1.8 DA14682/683, DA15100/1  – QSPI non-BLE optimized project 

(RAM2 cell is retained) .................................................................. 163 

13.3.2 Memory setups for RAM execution mode ....................................................... 164 

13.3.2.1 DA14680/681  – RAM BLE non-optimized project (all RAM cells 

are retained) .................................................................................. 164 

13.3.2.2 DA14680/681  – RAM non-BLE non-optimized project (all RAM 

cells are retained) .......................................................................... 165 

13.3.2.3 DA14682/683, DA15100/1   – RAM BLE non-optimized project 

(all RAM cells are retained) ........................................................... 166 

13.3.2.4 DA14682/683, DA15100/1   – RAM non-BLE non-optimized 

project (all RAM cells are retained) ............................................... 167 

13.3.3 Memory setup for the OTP Cached execution mode (DA14680/1-01) ............. 167 

13.3.4 Memory setup for the OTP Mirrored execution mode (DA14680/1-01) ............ 168 

Appendix A SmartSnippets DA1468x SDK structure .................................................................. 170 

A.1 Directory structure ............................................................................................................. 170 

A.2 Binaries directory .............................................................................................................. 170 

A.3 Config directory ................................................................................................................. 170 

A.4 Doc directory ..................................................................................................................... 171 

A.5 Projects directory .............................................................................................................. 171 

A.5.1 dk_apps directory .............................................................................................. 171 

A.5.2 Host_apps directory ........................................................................................... 172 

A.5.3 SDK directory ..................................................................................................... 172 

A.5.4 Utilities directory ................................................................................................ 173 

Appendix B Command Line Interface (CLI) Programmer ............................................................ 174 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 7 of 206 © 2022 Renesas Electronics 

B.1 CLI Programmer – Overview ............................................................................................ 174 

B.2 Application command description ..................................................................................... 174 

B.3 Command examples ......................................................................................................... 177 

B.3.1 Installation and debugging procedure ............................................................... 179 

B.3.2 Build instructions ................................................................................................ 180 

Appendix C QSPI programming guide .......................................................................................... 181 

C.1 General ............................................................................................................................. 181 

C.2 Prerequisites ..................................................................................................................... 181 

C.3 Compiling for execution from flash .................................................................................... 181 

C.4 Flashing an QSPI image ................................................................................................... 182 

C.5 Debugging from QSPI ....................................................................................................... 183 

C.5.1 General .............................................................................................................. 183 

C.5.2 Debugging with gdb scripts ............................................................................... 183 

Appendix D SEGGER SystemView integration instructions ....................................................... 185 

Appendix E System Clocks ............................................................................................................ 191 

Appendix F Batteries ....................................................................................................................... 192 

Appendix G Power ........................................................................................................................... 193 

Appendix H Trim and Calibration .................................................................................................. 194 

Appendix I Configuration parameters ........................................................................................... 196 

Revision history ............................................................................................................................... 205 

Figures 

Figure 1: Bluetooth® Branding ............................................................................................................. 15 
Figure 2: Integrated vs external processor BLE hardware configurations .......................................... 16 
Figure 3: Bluetooth low energy Protocol Stack Layers ....................................................................... 20 
Figure 4: Link Layer States.................................................................................................................. 21 
Figure 5: SmartSnippets™ Bluetooth low energy development platform overview ............................ 25 
Figure 6: Pxp_reporter task priorities .................................................................................................. 33 
Figure 7: BLE framework architecture ................................................................................................. 36 
Figure 8: Structure of a service handle ............................................................................................... 44 
Figure 9: Structure of supported services ........................................................................................... 45 
Figure 10: Pairing Just Works ............................................................................................................. 53 
Figure 11: Bonding Just Works ........................................................................................................... 54 
Figure 12: Bonding Passkey Entry (Central Display) .......................................................................... 55 
Figure 13: Bonding Passkey Entry (Peripheral Display) ..................................................................... 56 
Figure 14: Bonding Numeric Comparison (Secure Connections Only) ............................................... 57 
Figure 15: Pairing Just Works ............................................................................................................. 58 
Figure 16: Bonding Just Works ........................................................................................................... 59 
Figure 17: Bonding Passkey Entry (Peripheral Display) ..................................................................... 60 
Figure 18: Bonding Passkey Entry (Central Display) .......................................................................... 61 
Figure 19: Bonding Numeric Comparison (Secure Connections Only) ............................................... 62 
Figure 20: L2CAP PDU format in Basic L2CAP mode on COC .......................................................... 64 
Figure 21: Advertiser Device Interrupts Generation ............................................................................ 69 
Figure 22: Scanner Device Interrupts Generation ............................................................................... 70 
Figure 23: Master Device Interrupts Generation / Link Layer Connection Event without Deep Sleep 70 
Figure 24: Master Device Interrupts Generation / Link Layer Connection Event with Deep Sleep .... 70 
Figure 25: Slave Device Interrupts Generation / Link Layer Connection Event without Deep Sleep . 71 
Figure 26: Slave Device Interrupts Generation / Link Layer Connection Event with Deep Sleep ...... 71 
Figure 27: Two connection events ...................................................................................................... 72 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 8 of 206 © 2022 Renesas Electronics 

Figure 28: Attribute operations example ............................................................................................. 73 
Figure 29: Architecture of Multi-Link Demo ......................................................................................... 77 
Figure 30: Security framework architecture ......................................................................................... 81 
Figure 31: HMAC algorithm ................................................................................................................. 84 
Figure 32: ECDH algorithm ................................................................................................................. 85 
Figure 33: DA1468x Power Domains .................................................................................................. 86 
Figure 34: Synchronous BLE event ..................................................................................................... 88 
Figure 35: Asynchronous BLE event ................................................................................................... 89 
Figure 36: CPM and Adapter Interaction - an Adapter aborts sleep ................................................... 91 
Figure 37: CPM and Adapter Interaction during Sleep/Active mode switch ....................................... 92 
Figure 38: Power Management Unit .................................................................................................... 94 
Figure 39: Recommended Power configuration .................................................................................. 95 
Figure 40: Clock tree diagram ............................................................................................................. 96 
Figure 41: Battery charging profile .................................................................................................... 103 
Figure 42: Watchdog overview .......................................................................................................... 106 
Figure 43: Flash cached pre-execution stages ................................................................................. 120 
Figure 44: Secure Boot - Main .......................................................................................................... 123 
Figure 45: Secure Boot – Device Integrity Check ............................................................................. 124 
Figure 46: Secure Boot – FW validation ............................................................................................ 125 
Figure 47: Secure Boot – Device Administration .............................................................................. 126 
Figure 48: Secure Boot – Build Configurations ................................................................................. 127 
Figure 49: Secure Boot – IDE imported projects ............................................................................... 127 
Figure 50: secure_image_config Python script ................................................................................. 128 
Figure 51: Question window to create new product keys file ............................................................ 128 
Figure 52: elliptic curves used for creating asymmetric keys ............................................................ 128 
Figure 53: generated product_keys.xml file ...................................................................................... 129 
Figure 54: inserting private key index or address ............................................................................. 129 
Figure 55: inserting private key value ................................................................................................ 129 
Figure 56: window to select the use of private key ........................................................................... 130 
Figure 57: selecting private key from product_keys.xml file .............................................................. 130 
Figure 58: move existing configuration to product_keys.xml.old file ................................................. 130 
Figure 59: selecting hash method for SECP256R1, SECP224R1 or SECP192R1 ..................................... 131 
Figure 60: add key revocations selection .......................................................................................... 131 
Figure 61: key revocations values window ........................................................................................ 131 
Figure 62: adding minimal version of software version ..................................................................... 132 
Figure 63: inserting minimal value of software .................................................................................. 132 
Figure 64: secure_suota_initial_flash_jtag script ..................................................................... 132 
Figure 65: Secure Boot - generated files ........................................................................................... 133 
Figure 66: product_keys.xml file ........................................................................................................ 133 
Figure 67: secure_img_cfg.xml file .................................................................................................... 134 
Figure 68: Html file generated by Doxygen ....................................................................................... 137 
Figure 69: Adapter overview.............................................................................................................. 138 
Figure 70: Adapter communication ................................................................................................... 138 
Figure 71: NVMS Overview ............................................................................................................... 145 
Figure 72: Virtual/Physical Addressing with and without VES .......................................................... 147 
Figure 73: NVMS Adapter NVMS over QSPI and Virtual EEPROM emulation in Cached mode ..... 149 
Figure 74: Suspend/Resume ERASE Operation .............................................................................. 150 
Figure 75: Amount of data retained by the heap_4.o module ........................................................... 154 
Figure 76: Memory blocks ................................................................................................................. 157 
Figure 77: DA14680/681 – QSPI Cached BLE non-optimized project ............................................... 159 
Figure 78: DA14680/681 – QSPI Cached BLE optimized project ...................................................... 159 
Figure 79: DA14680/681 – QSPI non-BLE non-optimized project ..................................................... 160 
Figure 80: DA14680/681 – QSPI non-BLE optimized project ............................................................. 161 
Figure 81: DA14682/683, DA15100/1  – QSPI Cached BLE non-optimized project ........................ 162 
Figure 82: DA14682/683, DA15100/1  – QSPI Cached BLE optimized project ................................ 162 
Figure 83: DA14682/683, DA15100/1  – QSPI non-BLE optimized project ...................................... 163 
Figure 84: DA14682/683, DA15100/1  – QSPI non-BLE optimized project ...................................... 164 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 9 of 206 © 2022 Renesas Electronics 

Figure 85: DA14680/681  – RAM BLE non-optimized project ........................................................... 165 
Figure 86: DA14680/681  – RAM non-BLE non-optimized project .................................................... 166 
Figure 87: DA14682/683, DA15100/1   – RAM BLE non-optimized project ...................................... 166 
Figure 88: DA14682/683, DA15100/1   – RAM non-BLE non-optimized project .............................. 167 
Figure 89: Memory setup for the OTP Cached execution mode (DA14680/1-01) ............................ 168 
Figure 90: Setup 1 for the OTP Mirrored execution mode (DA14680/1-01) ..................................... 169 
Figure 91: Setup 2 for the OTP Mirrored execution mode (DA14680/1-01) ..................................... 169 
Figure 92: Create a new folder .......................................................................................................... 185 
Figure 93: Select the Linker Folder ................................................................................................... 186 
Figure 94: Include folder paths .......................................................................................................... 187 
Figure 95: System Viewer application ............................................................................................... 188 
Figure 96: Configuring the SEGGER System Viewer ....................................................................... 189 
Figure 97: Start Recording ................................................................................................................ 189 

Tables 

Table 1: Kernel source files for FreeRTOS ......................................................................................... 27 
Table 2: Header files for FreeRTOS .................................................................................................... 28 
Table 3: Macro Definitions for the FreeRTOSConfig.h ....................................................................... 29 
Table 4: pxp_reporter tasks ................................................................................................................. 32 
Table 5: Source files for OSAL ............................................................................................................ 34 
Table 6: OSAL wrappers of the FreeRTOS API .................................................................................. 34 
Table 7: OSAL resource management API ......................................................................................... 34 
Table 8: OSAL message queues functions ......................................................................................... 35 
Table 9: API Functions of the common BLE host software component .............................................. 38 
Table 10: GAP and L2CAP API functions ........................................................................................... 38 
Table 11: GATT server API ................................................................................................................. 41 
Table 12: GATT client API ................................................................................................................... 42 
Table 13: Header files for the BLE services ........................................................................................ 43 
Table 14: BLE projects included in the SmartSnippetsTM  DA1468x SDK .......................................... 48 
Table 15: BLE Security API functions ................................................................................................. 49 
Table 16: BLE Security API events ..................................................................................................... 50 
Table 17: BLE Security API macros .................................................................................................... 51 
Table 18: Example of L2CAP COC ..................................................................................................... 65 
Table 19: L2CAP COC API- ble_l2cap.h ............................................................................................. 65 
Table 20: L2CAP COC Events – received through ble_get_event() -  ble_l2cap.h ............................ 66 
Table 21: LE Data Length Functions – ble_gap.h ............................................................................... 67 
Table 22: LE Data Length Definitions .................................................................................................. 67 
Table 23: LE Data Length Events – fetched using ble_get_event() -  ble_gap.h ................................ 67 
Table 24: NVPARAM fields ................................................................................................................. 68 
Table 25: BLE service API header files ............................................................................................... 78 
Table 26 : Dialog BLE API header files ............................................................................................... 80 
Table 27 : API for the adapters ........................................................................................................... 90 
Table 28: API for the communication with the CPM ............................................................................ 90 
Table 29: Configuration settings .......................................................................................................... 95 
Table 30: Functions in Clock Manager API ......................................................................................... 97 
Table 31: Configuration settings for integrated charger of Li-ion batteries ......................................... 98 
Table 32: Charging with default parameters ..................................................................................... 100 
Table 33: Pre-charging current settings ............................................................................................ 100 
Table 34: Charger - Configuration settings for the USB interface ..................................................... 101 
Table 35: Charger - Configuration settings for the charging algorithm ............................................. 102 
Table 36: Charger – configuration settings for a specific battery ...................................................... 103 
Table 37: Charger related callback functions .................................................................................... 104 
Table 38: Configuration functions for sys_watchdog ........................................................................ 107 
Table 39: Macros for the configuration of the Flash subsystem ........................................................ 111 
Table 40: The qspi_flash_config_t structure ..................................................................................... 112 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 10 of 206 © 2022 Renesas Electronics 

Table 41: Operation modes ............................................................................................................... 117 
Table 42: Example program sections in RAM operation mode ......................................................... 117 
Table 43: Example program sections for flash cached operation mode ........................................... 118 
Table 44: Example program sections for flash cached mode with BLE support ............................... 118 
Table 45: Flash image header for DA14680/1-01 ............................................................................. 119 
Table 46: LLD overview ..................................................................................................................... 135 
Table 47: LLD header file .................................................................................................................. 136 
Table 48: Adapter overview ............................................................................................................... 139 
Table 49: Description of Partition entry ............................................................................................. 149 
Table 50: Available Macros for the optimization of BLE framework footprint .................................... 153 
Table 51: Amount of data retained by the FreeRTOS for this specific example ............................... 155 
Table 52: DataRAM cells sequence .................................................................................................. 157 
Table 53: SmartSnippetsTM root directory structure .......................................................................... 170 
Table 54 binary files inside SmartSnippetsTM DA1468x SDK ........................................................... 170 
Table 55: Config folder ...................................................................................................................... 171 
Table 56: Doc folder .......................................................................................................................... 171 
Table 57: dk_apps directory structure ............................................................................................... 171 
Table 58: Host App directory ............................................................................................................. 172 
Table 59: SDK directory structure ..................................................................................................... 172 
Table 60: bsp directory structure ....................................................................................................... 172 
Table 61: interfaces directory structure ............................................................................................. 173 
Table 62: middleware directory structure .......................................................................................... 173 
Table 63: Utilities directory structure ................................................................................................. 173 
Table 64: Commands and arguments ............................................................................................... 174 
Table 65: General options ................................................................................................................. 175 
Table 66: GDB server specific options .............................................................................................. 175 
Table 67: Serial port specific options ................................................................................................ 176 
Table 68: bin2image options ............................................................................................................. 177 
Table 69:  Build configurations .......................................................................................................... 179 
Table 70: QSPI programming scripts on Windows Host ................................................................... 182 
Table 71: QSPI programming scripts on Linux Host ......................................................................... 183 
Table 72: System Clocks ................................................................................................................... 191 
Table 73: Battery types ...................................................................................................................... 192 
Table 74: Power Definitions............................................................................................................... 193 
Table 75: Trim and Calibration Section expected values per chip version ....................................... 194 
Table 76: List of configuration parameters ........................................................................................ 196 

Codes 

Code 1: Code defining the config_ASSERT() macro .......................................................................... 30 
Code 2: Code and Data Retention specific constants ......................................................................... 30 
Code 3: currently configured value for the configMAX_PRIORITIES ................................................. 31 
Code 4: Idle task’s priority ................................................................................................................... 31 
Code 5: Task priorities ......................................................................................................................... 32 
Code 6: Initialization code for Immediate Alert Service ....................................................................... 43 
Code 7: Handle BLE events using BLE service framework ................................................................ 45 
Code 8: Example of code for the Write Request ................................................................................. 46 
Code 9: Example of code that handle the Write Request and match it with the appropriate instance 47 
Code 10: Set BLE device .................................................................................................................... 74 
Code 11: Example of event handle ..................................................................................................... 74 
Code 12: Configure device as a BLE central ...................................................................................... 76 
Code 13: Connection to another device .............................................................................................. 76 
Code 14: Structure definition for XXX service ..................................................................................... 79 
Code 16: Initialisation function for XXX service .................................................................................. 79 
Code 17: Charging with custom parameters ..................................................................................... 100 
Code 18: Callback function example to catch events sent by the USB-charger ............................... 104 
Code 19:  Notify sys_watchdog of the task ....................................................................................... 107 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 11 of 206 © 2022 Renesas Electronics 

Code 20: Using sys_watchdog while suspending task for an event ................................................. 107 
Code 21: Memory mapping ............................................................................................................... 110 
Code 22: Enabling UART Adapter .................................................................................................... 141 
Code 23: Parameters of UART bus arguments ................................................................................ 141 
Code 24: Parameters of the UART bus ............................................................................................. 141 
Code 25: Open UART ....................................................................................................................... 142 
Code 26: Acquire access to UART .................................................................................................... 142 
Code 27: Write function ..................................................................................................................... 142 
Code 28: Read function ..................................................................................................................... 142 
Code 29: Write function ..................................................................................................................... 143 
Code 30: Read function ..................................................................................................................... 143 
Code 31: Release UART ................................................................................................................... 143 
Code 32: Close UART device ........................................................................................................... 143 
Code 33: Example of UART adapter usage ...................................................................................... 144 
Code 34: Usage of NVMS ................................................................................................................. 146 
Code 35: NVMS Partition IDs ............................................................................................................ 148 
Code 36: Partition entry ..................................................................................................................... 148 
Code 37: BLE framework preprocessor Macros ............................................................................... 153 
Code 38: Enabling FreeRTOS Heap Tracking .................................................................................. 156 
Code 39: RAM optimization settings ................................................................................................. 160 
Code 40: Execution from Flash (cached) .......................................................................................... 182 
Code 41: Execution from Flash (mirrored) ........................................................................................ 182 
Code 42: Execution from RAM .......................................................................................................... 182 
Code 43: Enable System View configuration .................................................................................... 187 
Code 44: Call System View ............................................................................................................... 187 
Code 45: Enable/disable the monitoring ........................................................................................... 190 
 

1 Terms and definitions  

ADC Analog-to-Digital Converter 

AES Advanced Encryption Standard 

AHB AMBA High speed Bus 

AMBA Advanced Microcontroller Bus Architecture 

API Application Programming Interface 

APU Audio Processing Unit  

ATT Attribute Protocol 

BR Basic Rate 

BD Bluetooth Device  

BIN Binary 

BLE Bluetooth Low Energy 

BOD Brown-Out Detection 

CBC Cipher Block Chaining 

CC Constant Current 

CCC Client Characteristic Configuration 

COC Connection Oriented Channels 

CPU Central Processing Unit 

CPM  Clock Power Manager 

CRC Cyclic Redundancy Check 

CTR Counter 

CV Constant Voltage 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 12 of 206 © 2022 Renesas Electronics 

DCDC Direct Current – to – Direct Current  

DMA  Direct Memory Access  

DMIPS Dhrystone MIPS (Million Instructions Per Second) 

ECB Electronic Codebook 

ECC Elliptic Curve Cryptography 

ELF Extensible Linking Format 

EEPROM Electrically Erasable Programmable Read-Only Memory 

EDR Enhanced Data Rate 

FreeRTOS Free Real-Time Operating System 

FW Firmware 

GAP Generic Access Profile 

GATT Generic Attribute Profile 

GCC GNU Compiler Collection 

GDB GNU Debugger 

GFSK Gaussian Frequency-Shift Keying  

GPADC General Purpose Analog-to-Digital Converter  

GPIO General-purpose input/output 

HMAC Hash-based Message Authentication Code 

HID Human Interface Device  

HCI Host Controller Interface 

HTML HyperText Markup Language   

HW  Hardware 

I2C Inter-Integrated Circuit 

IAS Immediate Alert Service 

IC Integrated Circuit  

IDE Integrated Development Environment 

IEEE Institute of Electrical and Electronics Engineers 

I/O Input/Output 

IVT Interrupt Vector Table 

LE Low Energy  

LL Link Layer 

L2CAP Logical Link Control and Adaptation Protocol 

LLD Low-Level Drivers 

MAC Media Access Control 

MCIF Monitor and Control Interface 

MITM Man In The Middle 

MPS  Maximum Payload Size 

MTU Maximum Transmission Unit 

NVM Non-volatile memory 

OS Operating System 

OSAL OS Abstraction Layer 

OTP One-Time Programmable 

PDM Pulse Density Modulation 

PHY Physical Layer 

PLL Phase-Locked Loop 

PSM  Protocol Service Multiplexer 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 13 of 206 © 2022 Renesas Electronics 

PCB Printed Circuit Board 

QSPI Queued Serial Peripheral Interface 

RAM Random-Access memory 

RC16 16 MHz Oscillate 

RCX 10.5 kHz Oscillator 

RF Radio Frequency 

ROM Read-Only Memory 

RTS/CTS Request to Send / Clear to Send 

SDIO Secure Digital Input Output 

SDK Software Development Kit 

SDU Service Data Unit 

SM Security Manager 

SMP Security Manger Protocol 

SIG Special Interest Group 

SIP Serial Peripheral Interface 

SW  Software  

SoC System on Chip 

SRC Sample Rate Converter 

SUOTA Software Upgrade Over The Air 

TCS Trim and Calibration Section  

TRNG True Random Number Generator 

UART Universal Asynchronous Receiver/Transmitter 

USB Universal Serial Bus 

VBAT Battery supply voltage 

VBUS External supply voltage (from USB) 

VES Virtual EEPROM 

XiP Executing in Place 

XTAL16 16 MHz Crystal oscillator 

2 References 

[1] DA14681_FS_v2.1, Datasheet, Dialog Semiconductor.  

[2] UM-B-057-SmartSnippets Studio user guide, User manual, Dialog Semiconductor. 

[3] UM-B-056 DA1468x Software Developer's Guide, User manual, Dialog Semiconductor. 

[4] UM-B-047 DA1468x Getting Started, User manual, Dialog Semiconductor 

[5] RFC 2104, HMAC: Keyed-Hashing for Message Authentication 

[6] FIPS PUB 198-1, The Keyed-Hash Message Authentication Code (HMAC) 

[7] NIST, Special Publication 800-56A, Recommendation for Pair-Wise Key Establishment 
Schemes Using Discrete Logarithm Cryptography Revision 2 

[8] Bernstein, Daniel J. "Curve25519: New Diffie-Hellman Speed Records", in Proceedings of 
Public Key Cryptography - PKC 2006: 9th International Conference on Theory and Practice in 
Public-Key Cryptography, New York, NY, USA, April 24-26, 2006. 

[9] BLUETOOTH SPECIFICATION Version 4.2 

[10] AN-B-045 Application Note: DA14681 Supported QSPI Flash Devices 

[11] AN-B-035 Application Note DA1468x Battery Charging Version 1.1 

[12] AN-B-075 Application Note DA1468x State of Charge Functionality Version 1.2 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 14 of 206 © 2022 Renesas Electronics 

3 Prerequisites  

• SmartSnippetsTM  Studio package  

• Dialog’s Semiconductor SmartSnippetsTM DA1468x SDK  

• Operating System (Windows or Linux) 

• ProDK DA1468x and accessories  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 15 of 206 © 2022 Renesas Electronics 

4 An Overview of Bluetooth® low energy Platform 

Bluetooth® low energy technology was introduced in 2010 as part of the Bluetooth® version 4.0 Core 
Specification published by the Bluetooth Special Interest Group (SIG). Starting from Version 4.0 
onwards, the Bluetooth standard supports two distinct wireless technology systems: the Bluetooth 
low energy and the Basic Rate (BR), often referred as Basic Rate / Enhanced Data Rate (BR/EDR). 

During the early stages of Bluetooth low energy design, the SIG focus was on developing a low 
complexity radio standard with the lowest possible power consumption, offering low bandwidth 
optimization, thus enabling low cost applications. In this context, Bluetooth low energy was designed 
to transmit very small packets of data each time, while consuming significantly less power than 
similar BR/EDR devices. Moreover, its design also supports efficient implementations having a tight 
energy and silicon budget, facilitating applications to operate for an extended period of time using a 
single coin cell battery. 

Note 1 The following sections are based on the book "Getting Started with Bluetooth Low Energy" by Kevin 
Townsend, Carles Cufí, Akiba, Robert Davidson. 

4.1 Devices Mode 

Devices that support Bluetooth® low energy and BR/EDR are referred as dual-mode devices and are 
branded as Bluetooth®. Typically, inside the Bluetooth ecosystem, a mobile phone or laptop 
computer is considered a dual-mode device, unless specifically stated otherwise. Devices that only 
support Bluetooth low energy are referred to as single-mode devices. 

 

Figure 1: Bluetooth® Branding 

4.1.1 Single Mode Devices 

A Single-mode (Bluetooth low energy) device only implements Bluetooth low energy. It can 
communicate with both single-mode and dual-mode devices, however not with devices that only 
support BR/EDR. Bluetooth low energy support is a must-have for single-mode devices to handle 
incoming messages and issue a response. 

4.1.2 Dual Mode Devices 

A Dual-mode BR/EDR/LE, Bluetooth low energy device, implements both BR/EDR and Bluetooth low 
energy and can communicate with any Bluetooth device. 

4.2 Main Building Blocks 

In the classic Bluetooth standard, the protocol stack consists of two blocks; the Controller and the 
Host. In Bluetooth BR/EDR devices, these two are usually implemented separately. However, more 
recent Bluetooth devices include an increased level of integration. The main building blocks that exist 
in almost every Bluetooth device are the following: 

● The Application that uses the Bluetooth protocol stack interface to implement a particular use 
case. 

● The Host that contains the upper layers of the Bluetooth protocol stack. 

● The Controller that contains the lower layers of the Bluetooth protocol stack, including the radio. 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 16 of 206 © 2022 Renesas Electronics 

Bluetooth specifications also offer a standard communication protocol between the host and the 
controller called Host Controller Interface (HCI), which allows interoperability between hosts and 
controllers when these are developed by different entities. 

4.3 Hardware configurations 

These main building blocks can be implemented in a single integrated circuit (IC) or System on Chip 
(SoC) device, or they can be split and executed in more than one ICs that are connected through a 
suitable communication interface and protocol (UART, USB, SPI, or other).  

4.3.1 Integrated Processor 

Most sensor applications tend to use the SoC hardware configuration as it reduces overall system 
complexity and associated printed circuit board (PCB) realization costs. 

4.3.2 External Processor 

Powerful computing devices like smartphones and tablets usually opt for the external processor, with 
the corresponding HCI protocol which may be either proprietary or standard. This approach also 
allows additional Bluetooth low energy connectivity with specialized microcontrollers to be integrated 
without modifying the overall design.   

Figure 2 shows a comparison between the two approaches when Bluetooth is implemented: 

 

Figure 2: Integrated vs external processor BLE hardware configurations 

4.4 Network Modes 

Bluetooth low energy devices use two distinct communication methods, each with certain benefits 
and limitations: Broadcasting and Connecting.  Both methods follow certain procedures established 
by the Generic Access Profile (GAP) as described in Section 4.5.1. 

4.4.1 Broadcasting  

When using connectionless broadcasting, a Bluetooth low energy device sends data out to any 
scanning device or receiver that is within acceptable listening range. Essentially, this mechanism 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 17 of 206 © 2022 Renesas Electronics 

allows a Bluetooth low energy device to send data out one-way to anyone or anything that is able to 
pick up the transmission. 

Broadcasting defines two separate roles: 

• Broadcaster: Sends non-connectable advertising packets periodically to anyone willing to 
receive them. 

• Observer: Repeatedly scans the pre-set frequencies to receive any non-connectable 
advertising packets. 

Broadcasting is the only way for a device to transmit data to more than one peer at a time. The 
broadcast data is sent out using the advertising features of Bluetooth low energy. 

4.4.2 Connecting   

For bi-directional data transmission in Bluetooth low energy a connection needs to be present. A 
connection in Bluetooth low energy is nothing more than an established, periodical exchange of data 
at certain specific points in time (connection events) between the two Bluetooth low energy peers 
involved in it. Typically, the data are exchanged only between the two Bluetooth low energy 
connection peers, and no other device is involved. Connections define two separate roles: 

• Central (master): Repeatedly scans the pre-set Bluetooth low energy frequencies for 
connectable advertising packets and, when suitable, initiates a connection. Once the 
connection is established, the central manages the timing and initiates the periodical data 
exchanges. 

• Peripheral (slave): A device that sends connectable advertising packets periodically and 
accepts incoming connections. Once in an active connection, the peripheral follows the 
central’s timing and exchanges data regularly with it. 

For a connection to be initiated, the central device picks up the connectable advertising packets from 
a peripheral and then sends a request to the peripheral device to establish an exclusive connection 
between the two devices. Once the connection is established, the peripheral stops advertising and 
the two devices can begin exchanging data in both directions. Although the central is the device that 
manages the connection establishment, data can be sent independently by either device during each 
connection event, and the roles do not impose restrictions in data throughput or priority. It is therefore 
possible for a device to act as a central and a peripheral at the same time, for a central device to be 
connected to multiple peripherals as well as for a peripheral device to be connected to multiple 
centrals. 

Connections provide the ability to organize the data with much finer-grained control over each field or 
property using additional protocol layers, more specifically, the Generic Attribute Profile (GATT). 
GATT organizes data around units called services and characteristics. Moreover, connections allow 
for higher throughput and support the establishment of a secure encrypted link, as well as negotiation 
of connection parameters to fit the data model. 

A Bluetooth low energy device can have multiple services and characteristics, organized in a 
meaningful structure called a GATT Table. Services can contain multiple characteristics, each with 
their own access rights and descriptive metadata. 

4.5 Profiles 

The Bluetooth specification clearly separates the concept of Protocol and Profile. This distinction is 
made due to the different purposes each concept serves and the overall specifications are divided 
into: 

• Protocols: They are the building blocks used by all devices conforming to the Bluetooth 
specification; protocols are essentially forming the layers that implement the different packet 
formats, routing, multiplexing, encoding, and decoding that allow data to be sent effectively 
between peers. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 18 of 206 © 2022 Renesas Electronics 

• Profiles: which are vertical slices of functionality defining either basic modes of operation 
required by all devices (such as the Generic Access Profile and the Generic Attribute Profile) 
or specific use cases (Proximity Profile, Glucose Profile). Profiles essentially specify how 
protocols should be used to achieve an objective, whether generic or specific. 

4.5.1 Generic Profiles 

Generic profiles are defined by the Bluetooth specification and two of them are fundamental as they 
ensure the interoperability between Bluetooth low energy devices from different vendors: 

• Generic Access Profile (GAP): Specifies the usage model of the lower-level radio protocols 
to define roles, procedures, and modes that allow devices to broadcast data, discover 
devices, establish connections, manage connections, and negotiate security levels; GAP is 
essentially, the uppermost control layer of Bluetooth low energy. This profile is mandatory for 
all Bluetooth low energy devices, and all must comply with it. 

• Generic Attribute Profile (GATT): Addresses data exchanges in Bluetooth low energy and 
specifies the basic data model and procedures to allow devices to discover, read, write, and 
push data elements between them. It is basically, the topmost data layer of Bluetooth low 
energy. 

GAP and GATT are so fundamental to Bluetooth low energy that they are often used as the base for 
the provision of application programming interfaces (APIs) that act as the entry point for the 
application to interact with the protocol stack. 

4.5.2 Use-Case-Specific Profiles 

Use-case-specific profiles are usually limited to GATT-based profiles. Typically these profiles use the 
procedures and operating models of the GATT profile as a base building block for all further 
extensions. However, in version 4.1 of the specification, Logical Link Control and Adaptation Protocol 
(L2CAP) connection-oriented channels have been introduced, which indicates that GATT-less 
profiles are also possible. 

4.5.2.1 SIG-defined GATT-based profiles 

In addition to providing a solid reference framework for the control and data layers of devices 
involved in a Bluetooth low energy network, the Bluetooth SIG also provides a predefined set of use-
case profiles based on GATT. These completely cover all procedures and data formats required to 
implement a wide range of specific use cases such as: 

• Find Me Profile: it allows devices to physically locate other devices (for example using a 
smartphone to find a Bluetooth low energy enabled keyring, or vice versa). 

• Proximity Profile: it detects the presence or absence of nearby devices (beep if an item is 
forgotten when leaving an area like a room). 

• HID over GATT Profile: it transfers Human Interface Device (HID) data over Bluetooth low 
energy (for keyboards, mice, remote controls). 

• Glucose Profile: it securely transfers glucose levels over Bluetooth low energy. 

• Health Thermometer Profile: it transfers body temperature readings over Bluetooth low 
energy. 

The Bluetooth SIG’s Specification in its Adopted Documents page provides a full list of SIG-approved 
profiles (for more information please visit https://www.bluetooth.com/specifications/adopted-
specifications ). A developer can also browse directly the list of all currently adopted services for the 
Bluetooth services and characteristics at the Bluetooth Developer Portal. 

4.5.2.2 Vendor-Specific Profiles 

Vendors are allowed by the Bluetooth specification to define their own profiles for use cases that are 
not covered by the SIG-defined profiles. Those profiles can be kept private to the two peers involved 
in the use case (for example, a new sensor accessory and a Smartphone application), or they can 

https://www.bluetooth.com/specifications/adopted-specifications
https://www.bluetooth.com/specifications/adopted-specifications


 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 19 of 206 © 2022 Renesas Electronics 

also be published by the vendor so that other parties can provide implementations of the profile 
based on the vendor-supplied specification. An example of a published vendor-specific profile is 
Apple’s iBeacon. 

4.5.3 Generic Access Profile Layer  

The Generic Access Profile (GAP) layer is responsible for the overall connection functionality; it 
handles the device’s access modes and procedures including device discovery, directly interfacing 
with the application and/or profiles, and handling device discovery and connection-related services 
for the device. In addition, GAP takes care of the initiation of security features. 

Essentially, GAP can be considered as Bluetooth low energy’s upper control layer, given that it 
specifies how devices perform control procedures such as device discovery and secure connection 
establishment. This ensures interoperability and thus allows data exchange between devices from 
different vendors. 

GAP specifies four roles that a device can adopt in a Bluetooth low energy network: 

• Broadcaster: The device is advertising with specific data, letting any initiating devices know 
for example that it is a connectable device. This advertisement contains the device address 
and optional additional data such as the device name. 

• Observer: When a scanning device receives an advertisement it sends a “scan request” to 
the advertiser. The advertiser responds with a “scan response”. This is the process of device 
discovery, after which the scanning device is aware of the presence of the advertising 
device, and knows that it is possible to establish a connection with it. 

• Central: when initiating a connection, the central must specify a peer device address to 
connect to. If an Advertisement is received which matches the peer device’s address, the 
central device will then send out a request to establish a connection (link) with the advertising 
device with a set of connection parameters. 

• Peripheral: once a connection is established, the device will function as a slave if it was the 
advertiser and as master if it was the initiator. 

Fundamentally, GAP establishes different sets of rules and concepts that regulate and standardize 
the low-level operation of devices, in particular: 

• The Roles and interaction between them.  

• The Operational modes and transitions across those devices. 

• The Operational procedures to achieve consistent and interoperable communication. 

• All Security aspects, including security modes and procedures. 

• Additional data formats for non-protocol data. 

4.5.4 Generic Attribute Profile Layer 

The Generic Attribute Profile (GATT) layer is a service framework that defines all sub-procedures 
for using the Attribute Protocol (ATT). It describes in detail how profile and user data is to be 
exchanged over a Bluetooth low energy connection. In contrast to GAP which defines the low-level 
interactions with devices, GATT deals only with actual data transfer procedures and formats.  

GATT also provides the reference framework for all the GATT-based profiles defined by the SIG. 
Effectively by covering the precise use cases for the profiles, it ensures interoperability between 
devices from different vendors; all the standard Bluetooth low energy profiles are therefore based on 
GATT and must comply with it to operate correctly. This makes GATT a key section of the Bluetooth 
low energy specification, since every data collection that is relevant to applications and users must 
be formatted, packed, and transmitted according to its rules. 

GATT defines two roles for the interacting Bluetooth low energy devices: 

• Client: It sends requests to a server, receives responses and potentially server initiated 
updates and notifications as well. The GATT client does not know anything in advance about 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 20 of 206 © 2022 Renesas Electronics 

the server’s attributes, so it must first inquire about the presence and nature of those 
attributes by performing service discovery. After completing service discovery, it can start 
reading and writing the attributes found in the server, as well as receiving server-initiated 
updates and notifications. It corresponds to the ATT client. 

• Server: It receives requests from a client and issues responses. It also sends server-initiated 
updates and notifications when configured to do so. The server role is responsible for 
organizing the user data in attributes and making them available to the client. Every 
Bluetooth low energy device sold must include at least a basic GATT server that can respond 
to client requests, even if only to return an error response. It corresponds to the ATT server. 

It is worth mentioning once again that GATT and GAP roles are completely independent yet 
concurrently compatible to each other. For instance, it is possible for both a GAP central and a GAP 
peripheral to act as a GATT client or server, or even both at the same time.  

GATT uses ATT as a transport protocol for data exchange between devices. This data is organized 
hierarchically in sections called services, which group conceptually related pieces of user data called 
characteristics. 

4.6 Protocol Stack 

A single-mode Bluetooth low energy device is from an architecture point of view similar to all 
Bluetooth devices in that it is divided into three blocks: controller, host, and application. These basic 
building blocks each consist of several layers which are tightly integrated in the so-called Protocol 
Stack as shown in Figure 3: 

 

Figure 3: Bluetooth low energy Protocol Stack Layers 

The following sections summarize each of these blocks along with the layers each one covers. 

4.7 Controller 

The Controller includes all the lower level functionality necessary for a Bluetooth low energy device 
to communicate; it consists of the Physical Layer (PHY), the Link Layer (LL) and the controller side of 
the Host Controller Interface (HCI).  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 21 of 206 © 2022 Renesas Electronics 

4.7.1 Physical Layer (PHY) 

In the Physical Layer (PHY) the key block is the 1Mbps adaptive frequency-hopping Gaussian 
Frequency-Shift Keying (GFSK) radio. This operates in the unlicensed 2.4 GHz Industrial, Scientific, 
and Medical (ISM) band. 

  

4.7.2 Link Layer (LL) 

The Link Layer (LL) directly interfaces with the PHY; it is the hard real-time layer of the protocol 
stack as it must comply with all the timing requirements defined in the specification. Given that many 
of the calculations performed by the LL are computationally expensive, they are usually implemented 
with hardware accelerators. This helps prevent overloading of the Central Processing Unit (CPU) that 
runs all software layers in the stack, therefore the LL implementation is a combination of custom 
hardware and software. The functionality provided by the LL usually includes Preamble, Access 
Address, air protocol framing, CRC generation and verification, data whitening, random number 
generation and AES encryption. It is usually kept isolated from the higher layers of the protocol stack 
by an interface that hides this complexity and its real-time requirements. 

The LL principally controls the Radio Frequency (RF) state of the device and manages the link state 
of the radio which is how the device connects to other devices. A Bluetooth low energy device can be 
a master, a slave, or both depending on the use case and the corresponding requirements. A master 
can connect to multiple slaves and a slave can be connected to multiple masters. Typically, devices 
such as smartphones or tablets tend to act as a master, while smaller, simpler, more memory-
constrained devices such as standalone sensors generally adopt the slave role. A device can only be 
in one of the following five states: standby, advertising, scanning, initiating, or connected as 
shown in Figure 4: 

 

Figure 4: Link Layer States 

Advertisers transmit data without being connected, while scanners listen for advertisers. An initiator 
is a device that is responding to an advertiser with a connection request. If the advertiser accepts the 
connection request, both the advertiser and initiator will enter a connected state. When a device is in 
a connection state, it will be connected in one of two roles: master or slave. Typically, devices that 
initiate connections will be masters and devices that advertise their availability and accept 
connections will be slaves. Therefore, the Link Layer defines the following roles: 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 22 of 206 © 2022 Renesas Electronics 

• Advertiser: a device sending advertising packets. 

• Scanner: a device scanning for advertising packets. 

• Master: a device that initiates a connection (initiator) and manages it later. 

• Slave: a device that accepts a connection request and follows the master’s timing. 

These roles can be logically grouped into two pairs: advertiser and scanner (when not in an active 
connection) and master and slave (when in a connection). 

4.7.2.1 Bluetooth Device Address 

The Bluetooth device address is the primary identifier of a Bluetooth device. This is just the same as 
an Ethernet Media Access Control (MAC) address which uniquely identifies a wired ethernet  device. 
It is a 48-bit (6-byte) number that uniquely identifies a device among peers. There are two types of 
device addresses, and it is possible for a device to obtain one or both types: 

• Public device address 

This is the equivalent to a fixed, factory-programmed device address as used in BR/EDR devices as 
well. It must be registered with the Institute of Electrical and Electronics Engineers (IEEE) 
Registration Authority and should never change throughout the device’s lifetime. 

• Random device address 

This address can either be pre-programmed or dynamically generated at runtime on the device. 
There are numerous use cases in which such addresses are useful in Bluetooth low energy. 

4.7.2.2 Advertising and Scanning 

The Bluetooth low energy specification allows only one packet format and two types of packets, 
advertising and data. 

Advertising packets are used for two purposes: 

• To broadcast data for applications that do not need the overhead of a full connection 
establishment. This is used in Beacon applications.  

• To discover slaves and connect with them so that data can be exchanged. 

Data packets are used for user data transport between the master and the slave devices, in a bi-
directional manner. 

Finally, the Link Layer acts as a reliable data bearer since all received packets are checked against a 
24-bit Cyclic Redundancy Check (CRC) and retransmissions are scheduled when the error checking 
mechanism detects a transmission failure. Since there is no pre-defined retransmission upper bound, 
the Link Layer will continuously resend the packet until it is finally acknowledged by the receiver. 

4.7.3 Host Controller Interface – Controller side  

The Host Controller Interface (HCI) interface at the Controller side, provides a mean of 
communication to the host via a standardized interface; the Bluetooth specification defines HCI as a 
set of commands and events for the host and the controller to interact with each other, along with a 
data packet format and a set of rules for flow control and other procedures. Additionally, the spec 
defines several transports, each of which augments the HCI protocol for a specific physical transport 
(UART, USB, SDIO, etc.).   

4.8 Host 

The Host block consists of a set of layers, each with specific role and functionality, which 
communicate with each other to make the overall block operate. As shown in Figure 3 these layers 
are the Logical Link Control and Adaptation Protocol (L2CAP), the Attribute Protocol (ATT), the 
Security Manager (SM) and finally the Generic Attribute Profile (GATT) and Generic Access Profile 
(GAP). 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 23 of 206 © 2022 Renesas Electronics 

4.8.1 Host Controller Interface – Host Side 

The HCI interface at the Host side provides a mean of communication to the controller via a 
standardized interface. As it matches the Controller Side HCI, this layer can be implemented either 
through a software API or over a hardware interface (UART, SDIO, USB etc). 

4.8.2 Logical Link Control and Adaptation Protocol  

The Logical Link Control and Adaptation Protocol (L2CAP) layer provides data encapsulation 
services to the upper layers, thus allowing logical end-to-end communication using data transfer. 
Essentially, it serves as a protocol multiplexer that takes multiple protocols from the upper layers and 
encapsulates them into the standard Bluetooth low energy packet format and vice versa. L2CAP is 
also responsible for package fragmentation and reassembly. During this process large packets 
originating from the upper layers of the transmitting side are fitted into the 27-byte maximum payload 
size of the Bluetooth low energy packets. The reverse process takes place at the receiving end, 
where the fragmented large upper layer packets are reassembled from multiple small Bluetooth low 
energy packets and transmitted up towards the appropriate upper level entity. 

The L2CAP layer is in charge of routing two main protocols: the Attribute Protocol (ATT) and the 
Security Manager Protocol (SMP). Moreover, L2CAP can create its own user-defined channels for 
high-throughput data transfer, a feature called LE Credit Based Flow Control Mode. 

4.8.3 Attribute Protocol  

The ATT layer enables a Bluetooth low energy device to provide certain pieces of data, known as 
attributes, to another Bluetooth low energy device via a standardized interface. In the context of 
ATT, the device exposing attributes is referred to as the server and the peer device interested in 
working with these attributes is referred to as the client. The Link Layer state (master or slave) of 
the device is independent from the ATT role of the device. For example, a master device may either 
be an ATT server or an ATT client, while a slave device may also be either an ATT server or an ATT 
client. It is also possible for a device to be both an ATT server and an ATT client simultaneously.  

Essentially ATT is a simple client/server stateless protocol based on the attributes presented by a 
device. A client requests data from a server, and a server sends data to clients. The protocol is strict 
which means that in case of a pending request (i.e. no response has yet been received for a 
previously issued request), no further requests can be submitted until the response to the first 
request is received and processed. This applies to both directions independently in the case where 
two peers are acting both as a client and server. 

Each ATT server contains data organized in the form of attributes, each of which is assigned a 16-bit 
attribute handle, called a Universally Unique Identifier (UUID), a set of permissions, and finally a 
value. Effectively, the attribute handle is an identifier used to access an attribute value. The UUID 
specifies the type and nature of the data contained in the value. When a client wants to read or write 
attribute values from or to a server, it issues a read or write request to the server using the attribute 
handle. The server will respond with the attribute value or an acknowledgement. In the case of a read 
operation, it is up to the client to parse the value and understand the data type based on the UUID of 
the attribute. On the other hand, during a write operation, the client is expected to provide data that is 
consistent with the attribute type and the server is free to reject the write operation if the data is not in 
the specified format. 

4.8.4 Security Manager  

The Security Manager (SM) layer defines the method for pairing and key distribution and provides 
functions for the other layers of the protocol stack to securely connect and exchange data with 
another Bluetooth low energy device. It includes both a protocol and a series of security algorithms 
that are designed to provide the Bluetooth low energy protocol stack with the ability to generate and 
exchange security keys. This allows the peers to communicate securely over an encrypted link, to 
trust the identity of the remote device, and if required, to hide the public Bluetooth Address. It defines 
two roles: 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 24 of 206 © 2022 Renesas Electronics 

• Initiator: which always corresponds to the Link Layer master 

• Responder: which always corresponds to the Link Layer slave 

Moreover, it provides support for the following three procedures: 

• Pairing: the procedure by which a security encryption key is generated and manipulated 
to enable a secure encrypted link. This key is temporary and not stored or available for 
subsequent connections. 

• Bonding: a sequence of pairing followed by the generation and exchange of permanent 
security keys. These are typically stored in non-volatile memory and therefore enable the 
creation of a permanent bond between two devices, which will allow them to quickly set 
up a secure link in subsequent connections without having to perform a bonding 
procedure again. 

• Encryption Reestablishment: after a bonding procedure is complete, keys might have 
been stored on both sides of the connection. If encryption keys have been stored, this 
procedure defines how to use those keys in subsequent connections to re-establish a 
secure, encrypted connection without having to go through the pairing (or bonding) 
procedure again. 

Pairing can therefore create a secure link that will only last for the lifetime of the connection. Bonding 
will create a permanent association (also called bond) in the form of shared security keys that will be 
used in later connections until either side decides to delete them. Sometimes documentation and 
APIs use the term pairing with bonding instead of simply bonding, since a bonding procedure 
always includes an initial pairing phase. 

Although it is always up to the initiator to request the start of a specific security procedure, the 
responder can asynchronously request the start of any of the procedures listed above. There are no 
guarantees however for the responder that the initiator will fulfil the request. Therefore, the request is 
optional rather than binding. This security request can logically be issued only by the slave or the 
peripheral end of the connection. 

  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 25 of 206 © 2022 Renesas Electronics 

5 The DA1468x Software Platform Overview 

SmartSnippets™ is Dialog’s Software Development Platform provided with the Smartbond™ 
DA1468x devices family. It can be considered as a complete platform, targeted at single-CPU 
Bluetooth low energy applications development. 

The SmartSnippets™ Studio software development platform provides a complete Bluetooth low 
energy Application development environment to enable the full potential of the DA1468x architecture. 
It is based on a GNU Compiler Collection (GCC)/ Debugger (GDB) toolchain, a preconfigured Eclipse 
CDT IDE and a set of utilities.  

The SDK provides a Bluetooth stack, a Board Support Package and Middleware Services which all 
run within an RTOS environment which ensures that all real-time requirements are met.  

 

Figure 5: SmartSnippets™ Bluetooth low energy development platform overview 

DA1468x also provides a System Management driver that optimizes Power Consumption by 
automatically putting the system in the lowest sleep mode whenever it is inactive. The application 
can alter the default behavior by defining which sleep mode to use when there is no activity or even 
specify that the system stays awake. 

The SmartSnippetsTM DA1468x SDK contains three main software packages that allow developers to 
easily implement complex applications and fully exploit the hardware capabilities of a DA1468x board 
(or Development Kit): 

● Board Support Package: Platform-specific source files for Peripherals Drivers, OS, system 
configuration/management and memory management. 

● Bluetooth low energy Framework: a Framework of tasks and queues that allow access to the 
BLE interface through a simple, comprehensible API.  

● Middleware Services & Toolboxes: Features frequently needed services for Bluetooth low 
energy based application like Monitor and Control Interface (MCIF) and Software Upgrade over 
the Air (SUOTA). 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 26 of 206 © 2022 Renesas Electronics 

5.1 Board Support Package Overview 

5.1.1 Low-level Drivers 

Board Support Package (BSP) contains Low-level Drivers (LLDs) for all peripherals, interfaces, 
timers and HW accelerators. These are Hardware Libraries providing the lowest level API to drive a 
HW resource. LLDs are not Thread safe and do not rely on any OS. 

5.1.2 RTOS 

The SmartSnippetsTM  DA1468x SDK is based on a real-time preemptive Operating System named 
FreeRTOS (www.freertos.org). FreeRTOS is a light-weight open source OS, widely used by many 
embedded systems across different microcontroller architectures.  

Note 2 An OS Abstraction Layer (OSAL) is provided so another RTOS could be used instead.  

5.1.3 System Manager 

The System Manager is responsible for providing the following services: 

● A Clock and Power Management Service. It implements an automated configurable sleep/wake-
up engine. 

● A Watchdog Service that monitors the system’s status by checking the state of all registered 
tasks.  

● A Real-Time Clock service that can be used from any execution context including Interrupt 
context.  

5.1.4 Adapters 

As the SmartSnippetsTM  DA1468x SDK relies on a multi-tasking environment, resource sharing is 
critical and is achieved by following a multi-layered architecture which introduces the concept of 
adapters which manage the access to resources between different tasks. 

An application task that accesses shared resources such as cryptographic engines must use 
adapters and must not directly call Low-level drivers. Adapters also handle power management 
operations related to the controlled resource, hiding power management details from the application, 
such as blocking system sleep when the controlled HW resource is busy, or restoring HW 
configuration upon system wake up. 

5.1.5 The BLE Framework 

The BLE framework provides an abstraction layer that simplifies application development by hiding 
low level details of the specification. It allows performing any of the standard Central and/or 
Peripheral operations including security.  

5.2 Middleware Services 

A set of Middleware Services allow faster development by providing a high level API for the user 
application into a management framework that handles the state machines and driver calls for a 
specific service. 

5.2.1 SUOTA 

The Bluetooth low energy platform allows the user to update the software of the device wirelessly. 
This process is called Software Upgrade Over The Air (SUOTA). For more information about SUOTA 
refer to chapter 9 of Software Developers Guide [3]. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 27 of 206 © 2022 Renesas Electronics 

5.2.2 Security Toolbox 

The Security Toolbox provides a collection of high-level cryptographic algorithms. It follows a layered 
software architecture approach that consists of the LLDs for the hardware cryptographic engines, the 
system services and adapters that provide higher level APIs for using the engines and the algorithm 
implementations. For more information refer to section 8. 

6 Using the Operating System  

6.1 FreeRTOS 

The SmartSnippetsTM  DA1468x SDK contains the FreeRTOS v8.2.0 kernel, updated with a few 
back-ported bug fixes from v8.2.1 and v8.2.3. The FreeRTOS API documentation is available online 
at http://www.freertos.org/modules.html#API_reference. 

The SmartSnippetsTM  DA1468x SDK contains several FreeRTOS-based example applications. The 
corresponding Eclipse projects use (as a convention) the folder 
<sdk_root_directory>/sdk/bsp/free_rtos/ to include the FreeRTOS kernel source files. 

6.1.1 FreeRTOS Source Files 

The FreeRTOS kernel source files are in the following directory tree: 

<sdk_root_directory>/sdk/bsp/free_rtos/ 

├── include 

└── portable 

    ├── GCC 

    │   └── ARM_CM0 

    └── MemMang 

The kernel source files are in <sdk_root_directory>/sdk/bsp/free_rtos/: 

Table 1: Kernel source files for FreeRTOS 

Source Files Description 

croutine.c Not used in the SmartSnippetsTM DA1468x SDK 

event_groups.c Implementation of the Event Groups API 

list.c List data structure implementation, used internally by FreeRTOS 

queue.c Implementation of the Queue and QueueSet API 

tasks.c Implementation of the Tasks API 

timers.c Implementation of the Timers API 

 

The FreeRTOS header files are in <sdk_root_directory>/sdk/bsp/free_rtos/include/: 

http://www.freertos.org/modules.html#API_reference


 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 28 of 206 © 2022 Renesas Electronics 

Table 2: Header files for FreeRTOS 

Header files Description  

FreeRTOS.h Must be always included first. 

FreeRTOSConfig.h Configuration options, included by FreeRTOS.h. 

StackMacros.h FreeRTOS internal. 

croutine.h Not used in the SmartSnippetsTM DA1468x SDK. 

deprecated_definitions.h FreeRTOS legacy definitions. 

event_groups.h Event Groups API. 

list.h FreeRTOS internal. 

mpu_wrappers.h FreeRTOS internal. 

portable.h API that is platform-dependent. 

projdefs.h FreeRTOS basic constants and macros. 

queue.h Queue and QueueSet API. 

semphr.h Semaphore API. 

task.h Tasks API. 

timers.h Timers API. 

 

Some FreeRTOS code is specific for the compiler and the platform processor. The corresponding 
files are located under <sdk_root_directory>/sdk/bsp/free_rtos/portable/: 

├── GCC 

│   └── ARM_CM0 

│       ├── port.c (DA1468x-specific customizations for timers and interrupts) 

│       └── portmacro.h (DA1468x-specific customizations for constants and sections) 

└── MemMang 

    └── heap_4.c (heap memory manager) 

The FreeRTOS kernel provides different heap memory algorithms (see 
http://www.freertos.org/a00111.html for descriptions). The SmartSnippetsTM  DA1468x SDK employs 
the heap_4 algorithm, which consolidates adjacent free blocks to avoid fragmentation. The memory 

area allocated for the heap is assumed to be contiguous (i.e. there are no “holes”). 

http://www.freertos.org/a00111.html


 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 29 of 206 © 2022 Renesas Electronics 

Note 3 The SmartSnippetsTM  DA1468x SDK has only been tested with heap_4 algorithm.  

6.1.2 FreeRTOS Configuration 

Several FreeRTOS configuration options (see http://www.freertos.org/a00110.html for description) for 
SmartSnippetsTM SDK are specified in 
<sdk_root_directory>/sdk/bsp/free_rtos/include/FreeRTOSConfig.h using macro definitions 

which are described below. For the rest of the configuration options, the defaults are used. 

Table 3: Macro Definitions for the FreeRTOSConfig.h 

Name  Default Definitions Default Value 

configUSE_PREEMPTION Use the preemptive scheduler. 1 

configUSE_IDLE_HOOK Do not use an idle hook (callback). 0 

configUSE_TICK_HOOK Do not use a system-tick hook (callback). 0 

configIDLE_SHOULD_YIELD            The idle task immediately yields if there 

are any tasks that can be scheduled. 

1 

configUSE_MUTEXES                  The mMutex functionality is enabled. 1 

configCHECK_FOR_STACK_OVERFLOW  The extended stack overflow detection is 

enabled. 

2 

configUSE_RECURSIVE_MUTEXES        The recursive mutex functionality is 

enabled. 

1 

configUSE_MALLOC_FAILED_HOOK       Trigger hook (callback) on memory 

allocation failure. 

1 

configUSE_COUNTING_SEMAPHORES  The counting semaphore functionality is 

enabled. 

1 

configGENERATE_RUN_TIME_STATS      No run-time statistics are generated. 0 

configUSE_QUEUE_SETS               The QueueSet functionality is enabled. 1 

configUSE_TICKLESS_IDLE            The periodic tick interrupt is disabled 

during idle intervals, to save energy. 

2 

The hardware timer “Timer1” is dedicated to FreeRTOS and runs as the system timer. Due to the 
width of the Timer1 period and the available pre-scaling options, the maximum time that a DA1468x-
based system can stay in sleep mode is 8 seconds. 

Finally, the macro config_ASSERT() is defined in:  

http://www.freertos.org/a00110.html


 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 30 of 206 © 2022 Renesas Electronics 

<sdk_root_directory>/sdk/bsp/free_rtos/include/FreeRTOSConfig.h as: 

/* Normal assert() semantics without relying on the provision of an assert.h header file. 
*/ 

#if (dg_configIMAGE_SETUP == DEVELOPMENT_MODE) 

# define configASSERT( x ) if( ( x ) == 0 ) { taskDISABLE_INTERRUPTS(); 
hw_watchdog_freeze(); do {} while(1); } 

#else 

# define configASSERT( x ) do { } while (0) 

#endif 

Code 1: Code defining the config_ASSERT() macro  

Therefore, in development builds it generates a breakpoint, while in production builds it has no effect. 

6.1.3 Platform-specific Definitions 

As mentioned in Section 6.1.1 the portmacro.h file in 

<sdk_root_directory>/sdk/bsp/free_rtos/portable/GCC/ARM_CM0/ path customizes certain 

definitions (attributes) for DA1468x. 

FreeRTOS uses the concept of “privileged” code and data which is meaningless for DA1468x as an 
ARM Cortex-M0 does not provide different execution levels (e.g. supervisor and user).  

Therefore, on DA1468x the concept of privileged code/data is redefined to denote code/data 
that should be placed in retained RAM (i.e. RAM areas that stay active even during sleep 
periods). 

The relevant definitions are: 

/* Code and Data Retention specific constants. */ 
#if ((dg_configCODE_LOCATION == NON_VOLATILE_IS_FLASH) && (dg_configEXEC_MODE == 
MODE_IS_CACHED)) 
#define PRIVILEGED_APP_FUNCTION                 __attribute__((section("text_retained"))) 
#else 
#define PRIVILEGED_APP_FUNCTION 
#endif 
 
// RetRAM0 
#define PRIVILEGED_DATA                         
__attribute__((section("privileged_data_zi"))) 
#define INITIALISED_PRIVILEGED_DATA             
__attribute__((section("privileged_data_init"))) 
 
// RetRAM1 
#define PRIVILEGED_DATA_1                       
__attribute__((section("privileged_data_1_zi"))) 

Code 2: Code and Data Retention specific constants  

Symbols (i.e. functions and variables) that are defined with one of the above attributes will be placed 
in special sections by the linker and will be moved in their appropriate RAM locations at run-time. 

6.1.4 FreeRTOS Task Priorities 

Note 4 Please do not modify priorities or corresponding settings, as there is a high risk of affecting 
the stability of time-critical parts of your application. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 31 of 206 © 2022 Renesas Electronics 

The priority (FreeRTOS: uxPriority) parameter of the OS_TASK_CREATE (FreeRTOS: 

xTaskCreate()) API function initially assigns a priority to every newly created task. It is possible to 

change this priority later, after the scheduler has been started, with the use of the 
vTaskPrioritySet() API function.  

The priority that a task can be assigned to is in the range of 0 to (configMAX_PRIORITIES – 1). The 

configMAX_PRIORITIES constant is defined in the FreeRTOSconfig.h file which is in the 

<sdk_root_directory>/sdk/FreeRTOS/include folder of the project. For example, Code 3 shows 

the currently configured value for configMAX_PRIORITIES for the pxp_reporter demo application. 

 

#define configMAX_PRIORITIES                    ( 7 ) 

Code 3: currently configured value for the configMAX_PRIORITIES  

The only restriction in the maximum value that configMAX_PRIORITIES constant can take is when the 

port in use implements a port optimized task selection mechanism that uses a 'count leading zeros' 
type instruction (for task selection in a single instruction) and 
configUSE_PORT_OPTIMISED_TASK_SELECTION is set to 1 in FreeRTOSconfig.h file. In this case 

configMAX_PRIORITIES cannot be higher than 32. Otherwise there is no restriction in the maximum 

value that this constant can take but is advisable to set its value to minimum necessary for RAM 
efficiency reasons. 

The lowest priority that a task can have is zero. The priority of the idle task, which is defined by the 
tskIDLE_PRIORITY constant, is zero. In SmartSnippetsTM  DA1468x SDK the priority of the idle task 

is defined in task.h file located in the <sdk_root_directory>/sdk/FreeRTOS/include folder as 

shown in Code 4. A priority assigned to a task is not unique and can be shared among many tasks. 

/** 
 * Defines the priority used by the idle task.  This must not be modified. 
 * 
 * \ingroup TaskUtils 
 */ 
#define tskIDLE_PRIORITY                ( ( UBaseType_t ) 0U ) 

Code 4: Idle task’s priority 

As described in the FreeRTOS documentation (http://www.freertos.org/) the states in which a task 
can exist are: 

● Running 

● Ready 

● Blocked 

● Suspended 

The task that is in the Running state, is the task with the highest priority among the tasks that are 
placed in the Ready state. The FreeRTOS scheduler ensures that tasks in the Ready or Running 
state will get CPU time in comparison with tasks that are also placed in the Ready state but have 
lower priorities.  

Tasks that are in the Ready state and share the same priority will be sharing the available processing 
time, using a time sliced round robin schedule, unless configUSE_TIME_SLICING is defined or 

configUSE_TIME_SLICING is set to 0. 

Code 5 below shows the task priorities as defined in the osal.h file which is in the folder 

<sdk_root_directory>/sdk/bsp/osal. Table 6 provides information about the wrappers of the 

Operating System Abstraction Layer. 

 

http://www.freertos.org/


 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 32 of 206 © 2022 Renesas Electronics 

#define OS_TASK_PRIORITY_LOWEST    tskIDLE_PRIORITY 
#define OS_TASK_PRIORITY_NORMAL    tskIDLE_PRIORITY + 1 
#define OS_TASK_PRIORITY_HIGHEST   configMAX_PRIORITIES - 1 

Code 5: Task priorities 

Table 4 below shows the tasks of the pxp_reporter demo application, starting with the lowest priority 

task. The same information is illustrated in a different way in Figure 6. 

Table 4: pxp_reporter tasks 

Task  Priority File Description 

prvIdleTask tskIDLE_PRIORITY tasks.c The idle task. 

rcx_calibration_task tskIDLE_PRIORITY sys_clock_mgr.c The RCX 

calibration task. 

pxp_reporter_task mainPXP_REPORTER_TASK_PRIORITY 

(OS_TASK_PRIORITY_NORMAL) 
main.c The PXP 

reporter 
application 

task. 

ble_mgr_task mainBLE_MGR_PRIORITY 

(OS_TASK_PRIORITY_HIGHEST - 4) 
ble_mgr.c The ble 

manager task. 

ad_ble_task mainBLE_TASK_PRIORITY 

(OS_TASK_PRIORITY_HIGHEST - 3) 
ad_ble.c The ble 

adapter task. 

usb_charger_task OS_TASK_PRIORITY_HIGHEST – 2 sys_charger.c The USB 

Charger task. 

usb_charger_fsm_task OS_TASK_PRIORITY_HIGHEST - 2 sys_charger.c The USB 
Charger FSM 

task. 

prvTimerTask configTIMER_TASK_PRIORITY 

(configMAX_PRIORITIES - 1) 
timers.c The timer task. 

system_init OS_TASK_PRIORITY_HIGHEST main.c The System 
Initialization 

task. 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 33 of 206 © 2022 Renesas Electronics 

 

Figure 6: Pxp_reporter task priorities 

6.1.5 Delaying the execution of a FreeRTOS Task 

The following two functions can be used to delay a FreeRTOS task. They are intended for different 
lengths of delays: 

● hw_cpm_delay_usec() can be used to add a delay of a specific number of microseconds in the 

code execution by executing a loop in assembly code. The function is as accurate as possible 
(the error is less than or equal to 1usec for clocks higher than or equal to 16MHz) and it will never 
generate a delay less than requested. It operates correctly with all possible clock setups. As long 
as the delay is of a few microseconds it is possible to call this function with the interrupts disabled 
as it will not impact the real time behavior of any other tasks. It does not call the RTOS scheduler 
as it just creates the delay in the current task.  

● OS_DELAY_MS() can be used to add a delay in the range of milliseconds in the execution of a task. 

It will block the task and so the RTOS can schedule other lower priority tasks in the delay period. 
The delay time requested is converted to system ticks, so its accuracy depends on the tick period 
which is by default ~2msec. So, a call like OS_DELAY_MS(5) would be rounded down to a 2 tick 

delay which is ~4ms, leading to an error of ~1msec. The bigger the delay setting, the less 
important is the "tick error" to the actual delay. In addition, this function will block a task for a 
specific number of OS ticks. Even though it will be unblocked on time, this does not guarantee 
that it will be executed immediately as this depends on its priority. If a higher priority task is 
running then the task will be left in the "ready-to-run" state, waiting for the OS scheduler to allow 
it to run. Finally, since calling this function results in the blocking of the running task, it does not 
make any sense to call it with the interrupts disabled. Operating System Abstraction Layer 

6.1.6 Scope 

The SmartSnippetsTM DA1468X SDK offers an Operating System Abstraction Layer (OSAL), which: 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 34 of 206 © 2022 Renesas Electronics 

 Facilitates porting to an RTOS other than FreeRTOS, by providing RTOS-agnostic wrappers 
around FreeRTOS Application Programming Interface (API). 

 Provides resource management (i.e. exclusive access) capabilities. 

 Provides a message-queue data structure. 

The OSAL source files are located under <sdk_root_directory>/sdk/bsp/osal/: 

Table 5: Source files for OSAL 

Source files Description 

msg_queues.c Message queues implementation. 

msg_queues.h Message queues API. 

osal.h RTOS-agnostic API wrappers. 

resmgmt.c Resource management implementation. 

resmgmt.h Resource management API. 

6.1.7 RTOS-agnostic API 

OSAL provides wrappers of the FreeRTOS API for the following RTOS primitives, presented in Table 
6. 

Table 6: OSAL wrappers of the FreeRTOS API 

Description  API 

Tasks/Threads OS_TASK_* 

Mutexes OS_MUTEX_* 

Events/Notifications OS_EVENT_* 

Thread-safe queues OS_QUEUE_* 

Memory allocation OS_MALLOC_* 

Memory de-allocation OS_FREE_* 

Timers OS_TIMER_* 

Note 5 The OSAL API does not yet completely cover the FreeRTOS API being used in the SmartSnippetsTM  
DA1468x SDK. 

6.1.8 Resource Management API 

The OSAL resource management API is: 

Table 7: OSAL resource management API 

Function Description 

resource_init() Initialize resource management structures. 

resource_acquire(mask, timeout) Attempt to acquire exclusive access to a set of resources. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 35 of 206 © 2022 Renesas Electronics 

Function Description 

resource_release(mask) Release exclusive access to a set of resources. 

resource_add() Add new resources at run-time (compile-time configurable). 

The OSAL resource management capability is used by the adapters to provide exclusive access from 
hardware resources. The low-level drivers layer are bare-metal drivers, so they do not have the 
notions of resource locking, synchronization etc. The adapter layer is RTOS-aware, and can provide 
such capabilities. 

6.1.9 Message Queues API 

OSAL message queues can be used to exchange messages between tasks. Although they build on 
top of the queue primitive, they add the capability to define the message allocation/de-allocation 
functions per message queue or even per message. 

The available APIs are: 

Table 8: OSAL message queues functions 

Functions 

msg_queue_create(queue, size, allocator) 

msg_queue_delete(queue) 

msg_queue_put(queue, msg, timeout) 

msg_queue_get(queue, msg, timeout) 

msg_init(msg, id, type, buf, size, free_cb) 

msg_release(msg) 

msg_queue_init_msg(queue, msg, id, type, size) 

msg_queue_send(queue, id, type, buf, size, timeout) 

msq_queue_send_zero_copy(queue, id, type, buf, size, timeout, free_cb) 

The exact prototypes of these functions with types of arguments and returned values can be found in 
the source code or in Doxygen. 

Usage of message queues is demonstrated in the peripherals_demo/uart demo.  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 36 of 206 © 2022 Renesas Electronics 

7 The BLE Framework 

Figure 7 depicts the general architectural scheme used. 

 

Figure 7: BLE framework architecture 

Using a top-down approach, the layers that build-up the BLE framework functionality can be 
identified as the following: 

 The BLE service framework which is a library that provides implemented BLE services that the 
application can use “out-of-the-box”, using simple initialization functions and defining callbacks 
for the various BLE service events (like the change of an alert level attribute). The functionality of 
the BLE service framework is built on top of the Dialog BLE API library. The BLE service API 
header files can be found under 
<sdk_root_directory>/sdk/interfaces/ble_services/include. 

The BLE service framework is called in the context of the Application. 

 The Dialog BLE API is a set of functions that can be used to initiate BLE operations or respond to 
BLE events. The API header files can be found under the path 
<sdk_root_directory>/sdk/interfaces/ble/include. The API functions constitute a library 

that can be used to send messages (commands or replies to events) to the BLE manager, using 
queues between the application task and the BLE manager task which makes the application 
thread-safe. The BLE API is called in the context of the Application.  

 The BLE manager provides the interface to the BLE functionality of the chip. Application tasks 
that are based on BLE functionality use the Dialog BLE API to interface with the BLE manager. 
The BLE manager is a task that stands between the application and the BLE adapter. It uses the 
BLE adapter to interface with the BLE stack. The BLE manager uses a Generic Transport Layer 
(GTL) to communicate with the BLE adapter through a command and event queue. 

The BLE Manager runs in its own task. 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 37 of 206 © 2022 Renesas Electronics 

 The BLE adapter is the system task that provides the interface to the BLE stack which is in the 
ROM code. It runs the BLE stack internal scheduler, handles the BLE interrupts, receives the 
commands or the replies to events from the BLE manager, and passes BLE events to the BLE 
manager. BLE core functionality is implemented by the BLE adapter task. 

 The BLE stack is the software stack that interfaces with the BLE IP and implements the Link 
Layer and the host stack, specifically the Logical Link Control and Adaptation Protocol (L2CAP), 
the Security Manager Protocol (SMP), the Attribute Protocol (ATT), the Generic Attribute Profile 
(GATT) and the Generic Access Profile (GAP). The BLE stack software is stored in the system’s 
ROM and its API header files can be found under 
<sdk_root_directory>/sdk/interfaces/ble/src/stack.  

The BLE stack default configuration can be modified by editing 
<sdk_root_directory>/sdk/interfaces/ble/src/stack/config/ble_stack_config.h 

although it is recommended to do this via project specific configuration files as described in 
Section 13.1. The BLE stack software is run in the context of the BLE adapter task which 
instantiates and initializes the BLE stack. 

7.1 Developing BLE Applications 

One of the main goals of the SmartSnippetsTM DA1468x SDK is to simplify the development of 
Bluetooth low energy applications and achieve a fast time to market. The SmartSnippetsTM DA1468x 
SDK separates the application logic from the BLE stack implementation and provide a clean and 
powerful API to interact with the Bluetooth low energy capabilities of the device. The BLE framework 
API gives easy access to configure the BLE manager, start air operations and set up an attribute 
database inside a GATT server. The BLE service API provides access to predefined Bluetooth SIG 
profiles with the definition of only a few call-back functions. 

The Proximity Reporter (pxp_reporter) application described in Software Developer’s Guide [3] is 

the most typical of the BLE applications that are included in the SmartSnippetsTM  DA1468x SDK. It is 
a complete and solid example of a BLE application developed on top of the SmartSnippetsTM  
DA1468x SDK. It uses both the Dialog BLE API and the BLE service framework to implement the 
functionality of a Bluetooth low energy profile.  

However, it may not be the simplest example or the best starting point to become familiar with the 
development of a Bluetooth low energy application from scratch. Instead, there are Bluetooth low 
energy  projects specifically created to serve as starting points for specific Bluetooth low energy  
applications such as beacons (ble_adv_demo) or for specific roles such as a generic peripheral 

(ble_peripheral) or central (ble_central) device .  

This section aims to introduce the various options and examples that exist in the SmartSnippetsTM  
DA1468x SDK which can be used as building blocks for many applications. After a short introduction 
on where the API header files can be found, each section describes the functionality they implement 
along with guidance on how they differ from each other. This information is essential when starting a 
Bluetooth low energy application from scratch. 

7.2 The BLE API header files 

All demos and services API are found in the doxygen documentation. This can be found either at 
<sdk_root_directory>/docs/html/index.html or via the Open API Documentation button on the 

welcome page of SmartSnippetsTM Studio. 

7.2.1 Dialog BLE API 

The Dialog BLE API header files are in <sdk_root_directory>/sdk/interfaces/ble/include. 

In most projects these API header files are symbolically linked to 

<sdk_root_directory>/sdk/ble/include. 

 

The API functions are declared across several header files depending on their functionality: 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 38 of 206 © 2022 Renesas Electronics 

● Common API (ble_common.h): Functions used for operations, not specific to a specific BLE host 

software component. For example:  

 

Table 9: API Functions of the common BLE host software component  

Function Description 

ble_register_app() Register the application to the BLE framework so that it can receive 

BLE event notifications. 

ble_enable() Enable the BLE framework. 

ble_reset() Reset the BLE framework. 

ble_central_start() Start the device as a BLE central. This is actually a helper function, 

since it uses API calls ble_enable() and ble_gap_role_set(). 

ble_peripheral_start() Start the device as a BLE peripheral. This is also a helper function 

that uses ble_enable() and ble_gap_role_set(). 

ble_get_event() Get a BLE event from the BLE manager’s event queue. 

ble_has_event() Check if there is an event pending at the BLE manager’s event 

queue. 

ble_handle_event_default() Used to define handling of events that are not handled by the added 

services or the application defined handlers. 

● GAP & L2CAP APIs (ble_gap.h/ble_l2cap.h): Covers a wide range of operations, like 

○ Device parameters configuration: device role, MTU size, device name exposed in the GAP 
service attribute, etc. 

○ Air operations: Advertise, scan, connect, respond to connection requests, initiate or respond 
to connection parameters update, etc. 

○ Security operations: Initiate and respond to a pairing or bonding procedure, set the security 
level, unpair, etc. 

Table 10: GAP and L2CAP API functions  

Function  Description  

BLE device configuration 

ble_gap_role_set() 
Set the GAP role. 

ble_gap_mtu_size_get() 
Get the MTU size currently set. 

ble_gap_mtu_size_set() 
Set the MTU size. 

ble_gap_channel_map_get() 
Get the currently set channel map of 
the device (the device must be 

configured as central). 

ble_gap_channel_map_set() 
Set the channel map of the device 

(device must be configured as central). 

ble_gap_address_get() 
Get the currently set BD address of the 

device. 

ble_gap_address_set() 
Set the BD address of the device. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 39 of 206 © 2022 Renesas Electronics 

Function  Description  

ble_gap_device_name_get() 
Get the device name used for the GAP 

service. 

ble_gap_device_name_set() 
Set the device name used for the GAP 

service. 

ble_gap_appearance_get() 
Get the appearance used for the GAP 

service. 

ble_gap_appearance_set() 
Set the appearance used for the GAP 

service. 

ble_gap_per_pref_conn_params_get() 
Get the peripheral preferred 
connection parameters used for the 

GAP service. 

ble_gap_per_pref_conn_params_set() 
Set the peripheral preferred 
connection parameters used for the 

GAP service. 

ble_gap_set_io_cap() 
Set the I/O capabilities of the device 
(combined with the peer’s I/O 
capabilities, this will determine which 

pairing algorithm will be used). 

ble_gap_data_length_set() 
Set the data length to be used for TX 

on new connections. 

Advertising 

ble_gap_adv_start() 
Start advertising. 

ble_gap_adv_stop() 
Stop advertising. 

ble_gap_adv_data_set() 
Set the Advertising Data and Scan 

Response Data used. 

ble_gap_adv_intv_set() 
Set the advertising intervals prior to 

advertising start. 

ble_gap_adv_chnl_map_set() 
Set the advertising channel map prior 

to advertising start. 

ble_gap_adv_mode_set() 
Set the discoverability mode used for 

advertising prior to advertising start. 

ble_gap_adv_direct_address_set() 
Set the peer address used for directed 

advertising prior to advertising start. 

Scanning 

ble_gap_scan_start() 
Start scanning for devices. 

ble_gap_scan_stop() 
Stop scanning for devices. 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 40 of 206 © 2022 Renesas Electronics 

Function  Description  

Connection management 

ble_gap_scan_params_get() 
Get the scan parameters used for 

connections. 

ble_gap_scan_params_set() 
Set the scan parameters used for 

connections. 

ble_gap_connect() 
Initiate a direct connection to a device. 

ble_gap_connect_ce() 
Initiate a direct connection with an 
app-defined minimum and maximum 

connection event length 

ble_gap_connect_cancel() 
Cancel an initiated connection 

procedure. 

ble_gap_disconnect() 
Initiate a disconnection procedure on 

an established link. 

ble_gap_conn_rssi_get() 
Retrieve the RSSI of a connection. 

ble_gap_conn_param_update() 
Initiate a connection parameter 

update. 

ble_gap_conn_param_update_reply() 
Reply to a connection parameter 

update request. 

ble_gap_data_length_set() 
Set the data length used for TX for a 

specified connection. 

Security 

ble_gap_pair() 
Start pairing. 

ble_gap_pair_reply() 
Respond to a pairing request. 

ble_gap_passkey_reply() 
Respond to a passkey request. 

ble_gap_numeric_reply() 
Respond to a numeric comparison 

request (Secure Connections only). 

ble_gap_get_sec_level() 
Get connection security level. 

ble_gap_set_sec_level() 
Set connection security level. 

ble_gap_unpair() 
Unpair device (will also remove bond 

data from BLE storage). 

Helper functions 

ble_gap_get_connected() 
Get list of connected devices. 

ble_gap_get_bonded() 
Get list of bonded devices. 

ble_gap_get_devices() 
Return list of known devices based on 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 41 of 206 © 2022 Renesas Electronics 

Function  Description  

filter. 

ble_gap_get_device_by_addr() 
Get the device object, given the device 

address. 

ble_gap_get_device_by_conn_idx() 
Get device object, given the 

connection index. 

ble_gap_is_bonded() 
Get bond state of device (by 

connection index). 

ble_gap_is_addr_bonded() 
Get bond state of device (by address). 

Expert functions 

ble_gap_skip_latency() 
Temporarily ignore the connection 

latency. 

 

● GATT server API (ble_gatts.h): Set up the attribute database, set attribute values, notify/indicate 
characteristic values, initiate MTU exchanges, respond to write and read requests, etc. 

Table 11: GATT server API 

Function Description 

ble_gatts_add_service() Add a new GATT service to the ATT database. Subsequent 
calls to ble_gatts_add_include(), 
ble_gatts_add_characteristic() and 
ble_gatts_add_descriptor() will add attributes to the service 

added by this call. 

ble_gatts_add_include() Add an included service declaration to the service added by 

ble_gatts_add_service(). 

ble_gatts_add_characteristic() Add a characteristic declaration to the service added by 

ble_gatts_add_service(). 

ble_gatts_add_descriptor() Add a descriptor declaration to the service added by 

ble_gatts_add_service(). 

ble_gatts_register_service() Add to the ATT database all attributes previously added to 

the service. 

ble_gatts_enable_service() Enable service in database. 

ble_gatts_disable_service() Disable service in database. 

ble_gatts_get_characteristic_prop() Read current characteristic properties and permissions. 

ble_gatts_set_characteristic_prop() Set characteristic properties and permissions. 

ble_gatts_get_value() Get attribute value. 

ble_gatts_set_value() Set attribute value. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 42 of 206 © 2022 Renesas Electronics 

Function Description 

ble_gatts_read_cfm() Confirmation response to an attribute read request. 

ble_gatts_write_cfm() Confirmation response to an attribute write request. 

ble_gatts_prepare_write_cfm() Confirmation response to an attribute prepare write request. 

ble_gatts_send_event() Send a characteristic value notification or indication. 

ble_gatts_service_changed_ind() Send indication of the Service Changed Characteristic. 

ble_gatts_get_num_attr() Calculate the number of attributes required for a service. 

 

● GATT client API (ble_gattc.h): Used by a device configured as a GATT client to discover the 
services, characteristics, etc. of a peer device, read or write its attributes, initiate MTU 
exchanges, confirm the reception of indications, etc. 

Table 12: GATT client API 

Function Description 

ble_gattc_browse() Browse services on a remote GATT server. 

ble_gattc_discover_svc() Discover services on a remote GATT server. 

ble_gattc_discover_include() Discover included services on a remote GATT 

server. 

ble_gattc_discover_char() Discover characteristics on a remote GATT server. 

ble_gattc_discover_desc() Discover descriptors on a remote GATT server. 

ble_gattc_read() Read a characteristic value or a characteristic 
descriptor from the remote GATT server, depending 

on the attribute handle. 

ble_gattc_write() Write a characteristic value or a characteristic 
descriptor to the remote GATT server, depending on 

the attribute handle. 

ble_gattc_write_no_resp() Write attribute to remote GATT server without 

response. 

ble_gattc_write_prepare() Prepare long/reliable write to remote GATT server. 

ble_gattc_write_execute() Execute long/reliable write to remote GATT server. 

ble_gattc_indication_cfm() Send confirmation for received indication. 

ble_gattc_get_mtu() Get current TX MTU of peer. 

ble_gattc_exchange_mtu() Exchange MTU. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 43 of 206 © 2022 Renesas Electronics 

 

Note 6 That several GAP configuration functions must be called before the attribute database is created, 
because modifying the device’s configuration can clear the attribute database created up to that point. 
This is noted in the Doxygen headers of the configuration functions that can have this effect. 

7.2.2 Dialog BLE service API 

The BLE service API header files are in 
<sdk_root_directory>/sdk/interfaces/ble_services/include. 

 In most projects the API header files are symbolically linked to 
<sdk_root_directory>/sdk/ble_services/include. 

The services-specific API, call-back function prototypes and definitions are included in each service’s 
header file. The services implemented are the following: 

Table 13: Header files for the BLE services  

Header file Description 

bas.h Battery Service. 

bcs.h Body Composition Service. 

ble_service Services handling routines API. 

bms.h Bond Management Service. 

cts.h Current Time Service. 

dis.h Device Information Service. 

dlg_debug Debug service API. 

dlg_suota SUOTA service implementation API. 

hids.h Human Interface Device Service. 

hrs.h Heart Rate Service. 

ias.h Immediate Alert Service. 

lls.h Link Loss Service. 

scps.h Scan Parameter Service. 

sps.h Serial Port Service. 

svc_defines Common definitions for all services. 

svc_types Characteristics common types. 

tps.h Tx Power Service. 

uds.h User Data Service. 

wss.h Weight Scale Service. 

 

All services have an initialization function defined. This function is called with arguments that vary for 
different services.  

The most common argument is a pointer to one or more call-back functions that should be called 
upon a service-specific event. For example, the prototype for the initialization function of the 
Immediate Alert Service (ias.h) is the following: 

ble_service_t *ias_init(ias_alert_level_cb_t alert_level_cb) 

Code 6: Initialization code for Immediate Alert Service  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 44 of 206 © 2022 Renesas Electronics 

Function ias_init() has only one argument. It is a pointer to the call-back function that will be called  

when a peer device has modified the value of the Immediate Alert Level characteristic. This callback 
function is part of the user application code and should provide the application handling required for 
the change to the Immediate Alert Level.  

The return value from all initialization functions is the created service’s handle which is used to 
reference the service in the application. So for example the handle will be used as an argument for 
function ble_service_add() to add the created service to the BLE service framework (in SDK 

release 1.0.10 and later this is seamlessly done by the service initialization function and there is no 
need to explicitly use ble_service_add()).  

The application only needs to use the service handle. However, to understand how the service 
interacts with the BLE framework it is useful to know what the handle represents. The handle is a 
pointer to a generic structure (ble_service_t). that defines how the service should interact with the 

framework. Within each service there is an internal service definition (XXX_service_t) as shown in 

Figure 8. This contains the generic service structure plus a set of handles, one for each GATT 
characteristic that the service implements. This XXX_service_t structure is populated by XXX_init() 

for that service. The start_h and end_h handles will contain the start and end positions of the 
attributes for this service within the overall GATT table provided by the GATT server. So, when a 
GATT client requests a Service Discovery from the server these represent the start and end handles 
that the client would use to access service XXX.   

 

Figure 8: Structure of a service handle 

 

The set of optional callbacks allow each service to specify if it wants to do some specific handling on 
a certain event received by the BLE framework. If the service wants to be informed when another 
Bluetooth low energy device has connected to this device then it can define its own 
handle_connected_evt() function and plug it into the connected_evt callback. Each service 

declares its handle_connected_evt() function as static in xxx.c and by convention in the 

SmartSnippetsTM SDK they all share the same function names in each service. 

As each service is initialized and thus added to the BLE services framework with ble_service_add(), 

its generic services structure is added to a structure of supported services as shown in Figure 9. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 45 of 206 © 2022 Renesas Electronics 

 

Figure 9: Structure of supported services 

 

Now that the main internal services structure has been explained, it is easier to follow how the 
service initialization defines how the service operates. 

Within the BLE service framework the main event handler is ble_service_handle_event() which is 

shown below. 

bool ble_service_handle_event(const ble_evt_hdr_t *evt) 

{ 

        switch (evt->evt_code) { 

        case BLE_EVT_GAP_CONNECTED: 

                connected_evt((const ble_evt_gap_connected_t *) evt); 

                return false; // make it "not handled" so app can handle 

        case BLE_EVT_GAP_DISCONNECTED: 

                disconnected_evt((const ble_evt_gap_disconnected_t *) evt); 

                return false; // make it "not handled" so app can handle 

        case BLE_EVT_GATTS_READ_REQ: 

                return read_req((const ble_evt_gatts_read_req_t *) evt); 

        case BLE_EVT_GATTS_WRITE_REQ: 

                return write_req((const ble_evt_gatts_write_req_t *) evt); 

        case BLE_EVT_GATTS_PREPARE_WRITE_REQ: 

                return prepare_write_req((const ble_evt_gatts_prepare_write_req_t *) 
evt); 

        case BLE_EVT_GATTS_EVENT_SENT: 

                return event_sent((const ble_evt_gatts_event_sent_t *) evt); 

        } 

        return false; 

} 

Code 7: Handle BLE events using BLE service framework 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 46 of 206 © 2022 Renesas Electronics 

Each of these sub-handlers inside ble_service_handle_event() search throughout the added 

services to find one that has defined a behavior for this event. There are two types of events that are 
handled differently 

7.2.2.1 Connection Orientated Events 

The connection and disconnection events are potentially of interest to all registered services and so 
all services can be informed. The cleanup on shutdown is handled in the same way.  

For example a connection event will call the BLE service’s statically defined connected_evt() 

function (sdk/ble_services/src/ble_service.c). This will loop through all the services registered in 

services array and if for each service a connected_evt callback has been registered during 

initialization the callback function will be called. 

 

7.2.2.2 Attribute Orientated Events 

These are events that are to do with a given attribute handle. As each attribute is related to a unique 
service the first step in one of these handlers is to identify which service the attribute belongs to. 

For example a write request on a specific attribute will call the BLE service’s statically defined 
write_req() function (sdk/ble_services/src/ble_service.c) as shown below. This will first 

identify which service owns that attribute with find_service_by_handle(). Then if it has a 

write_req callback defined it executes the callback. 

 

static bool write_req(const ble_evt_gatts_write_req_t *evt) 

{ 

        ble_service_t *svc = find_service_by_handle(evt->handle); 

        if (!svc) { 

                return false; 

        } 

        if (svc->write_req) { 

                svc->write_req(svc, evt); 

        } 

        return true; 

} 

Code 8: Example of code for the Write Request 

An example of this flow is the Write No Response procedure that can be applied to the Immediate 
Alert Level characteristic of the Immediate Alert Service. When a GATT client requests a write to that 
characteristic it will trigger the write_req() sub-handler under ble_service_handle_event(). 

The write_req() sub-handler will use find_service_by_handle() to see if any of the added 

services are registered for that characteristic. It will match it with the Immediate Alert Service (IAS) 
and as the IAS has registered a Write Request handler the IAS handle_write_req() will be called 

(<sdk_root_directory>\sdk\interfaces\ble_services\src\ias.c). 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 47 of 206 © 2022 Renesas Electronics 

static void handle_write_req(ble_service_t *svc, const 
ble_evt_gatts_write_req_t *evt) 
{ 
        ia_service_t *ias = (ia_service_t *) svc; 
        att_error_t err = ATT_ERROR_OK; 
 
        if (evt->length == 1) { 
                uint8_t level; 
 
                /* 
                * This is write-only characteristic so we don't need to 
store value written 
                * anywhere, can just handle it here and reply. 
                */ 
 
                level = get_u8(evt->value); 
 
                if (level > 2) { 
                        err = ATT_ERROR_APPLICATION_ERROR; 
                } else if (ias->cb) { 
                        ias->cb(evt->conn_idx, level); 
                } 
        } 
 
        ble_gatts_write_cfm(evt->conn_idx, evt->handle, err); 
} 

Code 9: Example of code that handle the Write Request and match it with the appropriate 
instance  

By calling ias->cb() function, this handler also actually calls the application supplied call-back 

function passed as an argument when ias_init() was called by the application. Finally, it sends a 

Write Confirmation to update the value at the attribute database maintained in the BLE stack. 

This is only an example of the way the BLE service framework translates BLE events to BLE service 
events. Different events in different services can have different levels of complexity, but most of the 
times this complexity is contained within the BLE service API. The aim is that the application only 
needs to call the service’s initialization function and define the appropriate call-back functions to 
handle all service’s events. 

In addition, some services define additional service-specific API calls. For instance, the Heart Rate 
Service implementation defines an API to trigger notifications of the Heart Rate Measurement 
characteristic, using functions hrs_notify_measurement() and hrs_notify_measurement_all() (the 

first is used to notify the characteristic to a specified peer, while the second is used to notify the 
characteristic to all subscribed peers). Some services also define some internal helper functions that 
are used to manipulate characteristic values, and some services require attribute initial values as 
arguments of the initialization function. 

The BLE service API adds another layer to the general BLE API. Together the BLE adapter, BLE 
manager, BLE API library and BLE service framework results in the BLE framework.  

The BLE services API provides an off the shelf solution to implement an application using many of 
the common adopted Bluetooth low energy services. The underlying BLE API and GATT server API 
can be used to create other adopted services or even custom services using the BLE services as a 
template. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 48 of 206 © 2022 Renesas Electronics 

The following sections will provide an overview of a generic application and then will describe in 
detail several of the example Bluetooth low energy projects included in the SmartSnippetsTM  
DA1468x SDK: 

Table 14: BLE projects included in the SmartSnippetsTM  DA1468x SDK 

BLE projects General description 

ble_adv_demo The simplest BLE project available in the SmartSnippets DA1468x SDK, which does 

not use the BLE service framework and exposes only the GAP and GATT services. 

ble_peripheral A project that can be used as a template for developing BLE peripheral applications. 
The project includes some of the services implemented under the BLE service 

framework. 

ble_central A project that can be used as a template for developing BLE central applications. The 
project starts by scanning and trying to connect to a device with a pre-defined BD 

address, and then discovers all services and characteristics of it. 

ble_multi_link_demo This project demonstrates the Bluetooth LE Topology feature, using a custom service 
that can be used to “force” a device to be master on one connection and slave on 

another at the same time. 

ble_external_host This project exposes an HCI controller interface on a UART. The BLE framework is 

bypassed in this case as the external host provides the Bluetooth stack. 

ble_suota_client This application is a SUOTA 1.2 client implementation and allows to update SUOTA-

enabled devices over the air, using a simple serial console interface. 

power_demo This project is a simple connectable advertising demo. It is designed to let the user 
configure several parameters such as the advertising interval and the connection 
parameters using either UART commands or the GPIOs. User can select the various 
preconfigured settings and examine the effect on the power consumption that these 

settings have. 

7.2.3 Configuring the project 

In each project the BLE framework and BSP are configured via a set of custom config files that set 
the defines and macros used in that project. These files are found in the config directory of each 

project. 

In the case of the ble_adv_demo project this file is config/custom_config_qspi.h 

Any defines set in this file will override the default SDK values which are found in the following files 

sdk/config/bsp_defaults.h 

sdk/ble/config/ble_config.h 

sdk/bsp/free_rtos/include/FreeRTOSconfig.h 

7.2.4 BLE application structure 

All the Bluetooth low energy application projects in the SmartSnippetsTM  DA1468x SDK have a 
similar structure. This involves several FreeRTOS tasks at different priority levels (illustrated in Figure 
6) to ensure that the overall systems real time requirements are met. 

The Bluetooth low energy application is implemented in a FreeRTOS task that is created by the 
system_init() function.  system_init() runs at the highest priority at startup and is also 

responsible for starting the BLE manager and BLE adapter tasks that run the Bluetooth low energy 
stack. 

The application task has the following flow: 

 Device initialization and configuration: Start-up BLE, setting device role, device name, 
appearance and other device parameters. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 49 of 206 © 2022 Renesas Electronics 

1. Attribute database creation (GATT server devices): Creation of services and attributes using the 
BLE service framework. This must be done after (1) to prevent deletion of the attribute database. 

2. Air operation configuration and initiation: Bluetooth low energy peripheral devices usually end-up 
advertising and Bluetooth low energy central devices end-up scanning and/or attempting to 
connect to another device. This is the last operation to be done only once as the task then drops 
into its infinite loop. 

3. The infinite for(;;) loop, which is the application’s event handling loop. The application has 

been set-up as desired and now it is waiting for Bluetooth low energy events to respond to, like 
connections or write requests. 

○ The BLE adapter (ad_ble) must have a higher priority than the application task(s) because it 
runs the lower stack scheduler. It handles time critical tasks, like applying connection 
parameter and channel map updates, and replying to Packet Data Units (PDU) from the peer 
on time. If the BLE adapter does not run in time because another task has a higher priority, 
BLE events and even connections may be lost. 

○ Most of the Bluetooth low energy applications use the FreeRTOS task notifications 
mechanism to block. ble_adv_demo is the simplest application and is the only project that 

does not use this mechanism. Instead, it just blocks on the BLE manager’s event queue. 

○ In addition to the BLE-related functionality most projects also use other system modules, like 
software timers or sensors. In this case, the application usually defines call-back functions to 
be triggered on these system events or interrupts. These callback functions should use task 
notifications to unblock the application task which can then handle the event or interrupt in 
the context of the task’s for(;;) loop. The reason for this is that the BLE framework must be 

accessed by only one application task.  

       Calling a BLE API function inside a call-back function triggered on a timer expiry will 
execute the BLE API function in the timer’s task context. Calling other functions in the 
callback functions also can have implications on real time performance or in corrupting 
the small stack used by the timer task. 

7.3 Bluetooth low energy Security 

The Bluetooth specification defines the security options for device authentication and link encryption. 
These aspects of security are handled seamlessly by the BLE Framework. The API in Table 15 is 
able to set-up security, initiate pairing, do a security request or set-up encryption using previously 
exchanged keys. Most details of the procedures will be handled internally by the BLE Framework and 
the application will be notified only if intervention is needed or when the procedure is completed. 
These options will be described in detail in sections 7.3.1 and 7.3.4. 

The generation and storage of the security keys and other bonding information is also handled by the 
BLE Framework. Persistent storage can also be used to enable storage of the security keys and 
bonding data info in the flash. The BLE Framework can then retrieve this information after a power 
cycle and use it to restore connections with previously bonded devices. This is described in 7.3.5. 

7.3.1 Functions 

Table 15 summarizes the API functions that can be used by the application to set-up security 
features. 

Table 15: BLE Security API functions 

API call Description 

ble_gap_pair()  Initiate a pairing or bonding procedure with a connected 
peer. Depending on whether the device is master or slave 
on the connection, this call will result either in a pairing or 

a security request respectively. 

ble_gap_pair_reply() Reply to a received BLE_EVT_GAP_PAIR_REQ event. This 

event will only be received by a peripheral device when 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 50 of 206 © 2022 Renesas Electronics 

API call Description 

the central peer has initiated a pairing procedure, so this 
function should only be called by a peripheral application 
and only after a BLE_EVT_GAP_PAIR_REQ event has been 

received. 

ble_gap_passkey_reply() Reply to a received BLE_EVT_GAP_PASSKEY_REQUEST event. 

This event will be received if the combination of the 
devices’ input/output capabilities results in a passkey entry 
pairing algorithm. The application should use this function 
to submit the passkey for the pairing procedure to 

proceed. 

ble_gap_numeric_reply() Reply to a received BLE_EVT_GAP_NUMERIC_REQUEST event. 

This event will be received if the combination of the 
devices’ input/output capabilities results in a numeric 
comparison pairing algorithm. The application should use 
this function to accept or reject the numeric key for the 
pairing procedure to proceed. This should be only used if 

LE Secure Connections are enabled. 

ble_gap_set_sec_level() Set the security level for a connection. If the device is 
already bonded, the existing Long Term Key (LTK) will be 
used to set-up encryption. If the device is not bonded, a 
pairing or a security request will be triggered (depending 
on whether the device is master or slave on the 

connection) with the bond flag set to false. 

ble_gap_get_sec_level() Get the security level currently established on a 

connection. 

ble_gap_unpair() Unpair a previously paired or bonded device. This will also 
remove security keys and bonding data info currently 

present in BLE storage. 

 

7.3.2 Events 

Table 16 describes the BLE events related to security that may be received by the application and 
the proper API functions to respond to them. 

Table 16: BLE Security API events 

Event Argument Description 

BLE_EVT_GAP_PAIR_REQ ble_evt_gap_pair_req_t Pairing request received by a connected 
peer. Member <bond> indicates if the peer 

has requested a bond (that is, exchange 
of long term security keys). The 
application should use 
ble_gap_pair_reply() to respond to this 

request. 

BLE_EVT_GAP_PAIR_COMPLETED ble_evt_gap_pair_completed_

t 
A previously requested pairing procedure 
has been completed. Member <status> 

indicates the completion status of the 
procedure, while members <bond> and 
<MITM> indicate if a bond was 
established with the peer and if MITM 
(Man In The Middle) protection has been 

enabled on the connected link. 

BLE_EVT_GAP_SECURITY_REQUEST ble_evt_gap_security_reques

t_t 
Security request received by a connected 
peripheral peer. Members <bond> and 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 51 of 206 © 2022 Renesas Electronics 

Event Argument Description 

<MITM> indicate if a bond and MITM 

protection have been requested by the 
peer. The application may use 
ble_gap_pair() to initiate pairing with the 

peer. 

BLE_EVT_GAP_PASSKEY_NOTIFY ble_evt_gap_passkey_notify_

t 
A passkey has been generated during a 
pairing procedure. This event will be 
received if the application has display 
capability. Member <passkey> contains 

the passkey that should be displayed to 
the user and entered by the peer for the 

pairing procedure to continue. 

BLE_EVT_GAP_PASSKEY_REQUEST ble_evt_gap_passkey_request

_t 
A passkey has been requested during a 
pairing procedure. This event will be 
received if the application has keyboard 
capability. The application should use 
ble_gap_passkey_reply() to respond to 

this request using the passkey entered by 

the user. 

BLE_EVT_GAP_NUMERIC_REQUEST ble_evt_gap_numeric_request

_t 
A numeric comparison has been 
requested during a pairing procedure. 
This event will be received if the 
application has keyboard or Yes/No and 
display capability. The application should 
use ble_gap_numeric_reply() to respond 

to this request using the accept or reject 

input entered by the user. 

BLE_EVT_GAP_SEC_LEVEL_CHANGED ble_evt_gap_sec_level_chang

ed_t 
The security level has been changed on 
an established link. Member <level> 

contains the security level that has been 
reached. This will be received after a 
pairing or an encryption procedure has 

been successfully completed. 

BLE_EVT_GAP_SET_SEC_LEVEL_FAILED ble_evt_gap_set_sec_level_f

ailed_t 
Setting the security level on an 
established link using 
ble_gap_set_sec_level() has failed. 

Member <status> indicates the reason for 

the failure. This will be received after an 
initiated encryption procedure has been 
unsuccessful. This may indicate that 
pairing should be requested again for the 
connected peer (for example, the peer 
may have lost the previously exchanged 

security keys). 

 

7.3.3 Macros 

Table 17 contains the configuration macros related to BLE security. 

Table 17: BLE Security API macros 

Macro Default Description 

dg_configBLE_SECURE_CONNECTIONS 1 Set to 1 to use LE Secure 
Connections pairing if the peer 
supports the feature or to 0 to 

always use LE Legacy Pairing. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 52 of 206 © 2022 Renesas Electronics 

Macro Default Description 

dg_configBLE_PAIR_INIT_KEY_DIST GAP_KDIST_ENCKEY | 

GAP_KDIST_IDKEY | 

GAP_KDIST_SIGNKEY 

Set the security keys requested 
to be distributed by the pairing 
initiator during a pairing feature 

exchange procedure. 

dg_configBLE_PAIR_RESP_KEY_DIST GAP_KDIST_ENCKEY | 

GAP_KDIST_IDKEY | 

GAP_KDIST_SIGNKEY 

Set the security keys requested 
to be distributed by the pairing 
responder during a pairing 

feature exchange procedure. 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 53 of 206 © 2022 Renesas Electronics 

7.3.4 Message Sequence Charts (MSCs) 

7.3.4.1 Central 

App
BLE

 Framework
Peripheral

ble_gap_set_io_cap (GAP_IO_CAP_NO_INPUT_OUTPUT)

ble_gap_pair (bond: false)

BLE_STATUS_OK

SMP Pairing Request 

Central
Pairing: Just works

Bond: NO
MITM: NO

IO Caps:  NoInputNoOutput (or Any) 

Peripheral Accepts

SMP Pairing Response
IO Caps:  Any  (or NoInputNoOutput)

SMP Pairing Phase 2

ENCRYPTED with STK

BLE_EVT_GAP_SEC_LEVEL_CHANGED
Level: GAP_SEC_LEVEL_2

BLE_EVT_GAP_GAP_PAIR_COMPLETED

Status: BLE_STATUS_OK 
Bond: False
MITM: False

Peripheral Rejects

BLE_EVT_GAP_GAP_PAIR_COMPLETED
Status: BLE_ERROR_FAILED

 

Figure 10: Pairing Just Works 

 

 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 54 of 206 © 2022 Renesas Electronics 

App
BLE

 Framework

ble_gap_set_io_cap (GAP_IO_CAP_NO_INPUT_OUTPUT)

ble_gap_pair (bond: true)

BLE_STATUS_OK

SMP Pairing Request 

Central
Bonding: Just works

Bond: YES
MITM: NO

IO Caps: NoInputNoOutput (or Any) 

Peripheral Accepts

SMP Pairing Phase 2

ENCRYPTED with STK

BLE_EVT_GAP_SEC_LEVEL_CHANGED
level: GAP_SEC_LEVEL_2

BLE_EVT_GAP_GAP_PAIR_COMPLETED

Status: BLE_STATUS_OK 
Bond: True

MITM: False

Peripheral Rejects

BLE_EVT_GAP_GAP_PAIR_COMPLETED
Status: BLE_ERROR_FAILED

Peripheral

Bond: YES
IO Caps: Any (or NoInputNoOutput)

BLE_STATUS_OK

SMP Pairing Phase 3

Keys stored in BLE storage

 

Figure 11: Bonding Just Works 

 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 55 of 206 © 2022 Renesas Electronics 

App
BLE

 Framework

ble_gap_set_io_cap (GAP_IO_CAP_DISP_ONLY) /
(GAP_IO_CAP_KEYBOARD_DISP)

ble_gap_pair (bond: true)

BLE_STATUS_OK

SMP Pairing Request 

Central
Bonding: Passkey Entry

(Central Display)

Bond: YES
MITM: YES

IO Caps: DisplayOnly (or  KeyboardDisplay) 

Peripheral enters correct passkey

SMP Pairing Phase 2

ENCRYPTED with STK

BLE_EVT_GAP_SEC_LEVEL_CHANGED

BLE_EVT_GAP_GAP_PAIR_COMPLETED

Status: BLE_STATUS_OK 
Bond: True
MITM: True

Peripheral enters wrong key

BLE_EVT_GAP_GAP_PAIR_COMPLETED
Status: BLE_ERROR_FAILED

Peripheral

Bond: YES
MITM: YES

IO Caps: KeyboardDisplay (or KeyboardOnly) 

BLE_STATUS_OK

SMP Pairing Phase 3

Keys stored in BLE storage

BLE_EVT_GAP_PASSKEY_NOTIFY
Passkey: <passkey>

Passkey displayed
 to user

level: GAP_SEC_LEVEL_3 (no secure connection) 
 - OR -

     GAP_SEC_LEVEL_4 (secure connection)

SMP Pairing Phase 2

 

Figure 12: Bonding Passkey Entry (Central Display) 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 56 of 206 © 2022 Renesas Electronics 

App
BLE

 Framework

ble_gap_set_io_cap (GAP_IO_CAP_KEYBOARD_ONLY) /
(GAP_IO_CAP_KEYBOARD_DISP)

ble_gap_pair (bond: true)

BLE_STATUS_OK

SMP Pairing Request 

Central
Bonding: Passkey Entry

(Peripheral Display)

Bond: YES
MITM: YES

IO Caps: KeyboardOnly (or KeyboardDisplay) 

Central enters correct passkey

SMP Pairing Phase 2

ENCRYPTED with STK

BLE_EVT_GAP_SEC_LEVEL_CHANGED

BLE_EVT_GAP_GAP_PAIR_COMPLETED

Status: BLE_STATUS_OK 
Bond: True
MITM: True

Central enters wrong key

BLE_EVT_GAP_GAP_PAIR_COMPLETED
Status: BLE_ERROR_FAILED

Peripheral

Bond: YES
MITM: YES

IO Caps: KeyboardDisplay (or DisplayOnly) 

BLE_STATUS_OK

SMP Pairing Phase 3

Keys stored in BLE storage

BLE_EVT_GAP_PASSKEY_REQUEST

User enters passkey

level: GAP_SEC_LEVEL_3 (no secure connection) 
 - OR -

     GAP_SEC_LEVEL_4 (secure connection)

SMP Pairing Phase 2

ble_gap_passkey_reply (accept: true, passkey)
BLE_STATUS_OK

 

Figure 13: Bonding Passkey Entry (Peripheral Display) 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 57 of 206 © 2022 Renesas Electronics 

App
BLE

 Framework

ble_gap_set_io_cap (GAP_IO_CAP_DISP_YES_NO) /
(GAP_IO_CAP_KEYBOARD_DISP)

ble_gap_pair (bond: true)

BLE_STATUS_OK

SMP Pairing Request 

Central
Bonding: Numeric Comparison

(Secure Connections Only)

Bond: YES
MITM: YES

Secure Connection Pairing: YES
IO Caps: DisplayYesNo (or KeyboardDisplay) 

Central accepts numeric key

SMP Pairing Phase 2

ENCRYPTED with STK

BLE_EVT_GAP_SEC_LEVEL_CHANGED

BLE_EVT_GAP_GAP_PAIR_COMPLETED

Status: BLE_STATUS_OK 
Bond: True
MITM: True

Central or peripheral rejects numeric key

BLE_EVT_GAP_GAP_PAIR_COMPLETED
Status: BLE_ERROR_FAILED

Peripheral

Bond: YES
MITM: YES

Secure Connection Pairing: YES
IO Caps: DisplayYesNo (or KeyboardDisplay) 

BLE_STATUS_OK

SMP Pairing Phase 3

Keys stored in BLE storage

BLE_EVT_GAP_NUMERIC_REQUEST
Numeric key

level:  GAP_SEC_LEVEL_4 (secure connection)

SMP Pairing Phase 2

ble_gap_numeric_reply (accept: true)
BLE_STATUS_OK

BLE_STATUS_OK

ble_gap_numeric_reply (accept: false)

BLE_STATUS_OK

 

Figure 14: Bonding Numeric Comparison (Secure Connections Only) 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 58 of 206 © 2022 Renesas Electronics 

7.3.4.2 Peripheral 

App
BLE

 Framework
Central

ble_gap_set_io_cap
 (GAP_IO_CAP_NO_INPUT_OUTPUT or any)

ble_gap_pair (bond: false)

BLE_STATUS_OK

SMP Security Request 

Peripheral
Pairing: Just works

Bond: NO
MITM: NO

SMP Pairing Request
IO Caps:  Any  (or NoInputNoOutput)

SMP Pairing Phase 2

ENCRYPTED with STK

BLE_EVT_GAP_SEC_LEVEL_CHANGED
Level: GAP_SEC_LEVEL_2

BLE_EVT_GAP_GAP_PAIR_COMPLETED

Bond: False
MITM: False

BLE_STATUS_OK

Optional: used by 
peripheral to 

send a security 
request to the 

central

BLE_EVT_GAP_PAIR_REQ

ble_gap_pair_reply (accept: true, bond: false)

BLE_STATUS_OK

SMP Pairing Response
Bond: No

IO Caps: NoInputNoOutput (or Any)

 

Figure 15: Pairing Just Works 

 

 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 59 of 206 © 2022 Renesas Electronics 

 

App
BLE

 Framework
Central

ble_gap_set_io_cap
 (GAP_IO_CAP_NO_INPUT_OUTPUT or any)

ble_gap_pair (bond: true)

BLE_STATUS_OK

SMP Security Request 

Peripheral
Bonding: Just works

Bond: YES
MITM: NO

SMP Pairing Request

SMP Pairing Phase 2

ENCRYPTED with STK

BLE_EVT_GAP_SEC_LEVEL_CHANGED
Level: GAP_SEC_LEVEL_2

BLE_EVT_GAP_GAP_PAIR_COMPLETED

Bond: True
MITM: False

BLE_STATUS_OK

Optional

BLE_EVT_GAP_PAIR_REQ
Bond: true

ble_gap_pair_reply (accept: true, bond: false)

BLE_STATUS_OK

SMP Pairing Response

Bond: YES
IO Caps:  Any  (or NoInputNoOutput)

Bond: YES
MITM: NO

IO Caps: NoInputNoOutput (or Any)

SMP Pairing Phase 3

Keys stored in BLE storage

 

Figure 16: Bonding Just Works 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 60 of 206 © 2022 Renesas Electronics 

App
BLE

 Framework
Central

ble_gap_set_io_cap
 (GAP_IO_CAP_NO_INPUT_OUTPUT) / 

GAP_IO_CAP_KEYBOARD_DISPLAY)

ble_gap_pair (bond: true)

BLE_STATUS_OK

SMP Security Request 

Peripheral
Bonding: Passkey Entry

(Peripheral Display)

Bond: YES
MITM: YES

SMP Pairing Request

SMP Pairing Phase 2

ENCRYPTED with STK

BLE_STATUS_OK

Optional

BLE_EVT_GAP_PAIR_REQ
Bond: true

ble_gap_pair_reply (accept: true, bond: true)

BLE_STATUS_OK

SMP Pairing Response

Bond: YES
MITM: YES

IO Caps: KeyboardDisplay (or DisplayOnly) 

Bond: YES
MITM: YES

IO Caps: KeyboardOnly (or KeyboardDisplay) 

SMP Pairing Phase 3

Keys stored in BLE storage

Peripheral enters correct passkey

BLE_EVT_GAP_SEC_LEVEL_CHANGED

level: GAP_SEC_LEVEL_3 (no secure connection) 
 - OR -

     GAP_SEC_LEVEL_4 (secure connection)

BLE_EVT_GAP_GAP_PAIR_COMPLETED

Status: BLE_STATUS_OK 
Bond: True
MITM: True

Peripheral enters wrong key

BLE_EVT_GAP_GAP_PAIR_COMPLETED
Status: BLE_ERROR_FAILED

BLE_EVT_GAP_PASSKEY_REQUEST

User enters passkey

ble_gap_passkey_reply (accept: true, passkey)
BLE_STATUS_OK

BLE_STATUS_OK

 

Figure 17: Bonding Passkey Entry (Peripheral Display) 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 61 of 206 © 2022 Renesas Electronics 

App
BLE

 Framework
Central

ble_gap_pair (bond: true)

BLE_STATUS_OK

SMP Security Request 

Peripheral
Bonding: Passkey Entry

(Central Display)

Bond: YES
MITM: YES

SMP Pairing Request

SMP Pairing Phase 2

ENCRYPTED with STK

BLE_STATUS_OK

Optional

BLE_EVT_GAP_PAIR_REQ
Bond: true

ble_gap_pair_reply (accept: true, bond: true)

BLE_STATUS_OK

SMP Pairing Response

Bond: YES
MITM: YES

IO Caps:  KeyboardDisplay  (or KeyboardOnly)

Bond: YES
MITM: YES

IO Caps: DisplayOnly (or KeyboardDisplay)

SMP Pairing Phase 3

Keys stored in BLE storage

Passkey displayed
 to the user

Peripheral enters correct passkey

BLE_EVT_GAP_SEC_LEVEL_CHANGED

level: GAP_SEC_LEVEL_3 (no secure connection) 
 - OR -

     GAP_SEC_LEVEL_4 (secure connection)

BLE_EVT_GAP_GAP_PAIR_COMPLETED

Status: BLE_STATUS_OK 
Bond: True
MITM: True

Peripheral enters wrong key

BLE_EVT_GAP_GAP_PAIR_COMPLETED
Status: BLE_ERROR_FAILED

BLE_EVT_GAP_PASSKEY_NOTIFY
Passkey: <passkey>

ble_gap_set_io_cap (GAP_IO_CAP_KEYBOARD_ONLY) /
(GAP_IO_CAP_KEYBOARD_DISPLAY)

 

Figure 18: Bonding Passkey Entry (Central Display) 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 62 of 206 © 2022 Renesas Electronics 

App
BLE

 Framework
Central

ble_gap_pair (bond: true)

BLE_STATUS_OK

SMP Security Request 

Peripheral
Bonding: Numeric Comparison

(Secure Connections Only)

Bond: YES
MITM: YES

Secure Connection Pairing: YES

SMP Pairing Request

SMP Pairing Phase 2

ENCRYPTED with STK

BLE_STATUS_OK

Optional

BLE_EVT_GAP_PAIR_REQ
Bond: true

ble_gap_pair_reply (accept: true, bond: true)

BLE_STATUS_OK

SMP Pairing Response

Bond: YES
MITM: YES

Secure Connection Pairing: YES
IO Caps: DisplayYesNo (or KeyboardDisplay) 

Bond: YES
MITM: YES

Secure Connection Pairing: YES
IO Caps: DisplayYesNo (or KeyboardDisplay) 

SMP Pairing Phase 3

Keys stored in BLE storage

Numeric key displayed
 to the user

Peripheral enters correct passkey

Peripheral or Central rejects numeric key

ble_gap_set_io_cap (GAP_IO_CAP_DISP_YES_NO) /
(GAP_IO_CAP_KEYBOARD_DISP)

BLE_EVT_GAP_NUMERIC_REQUEST
Numeric key

ble_gap_numeric_reply (accept: true)

BLE_STATUS_OK

BLE_EVT_GAP_SEC_LEVEL_CHANGED

level:  GAP_SEC_LEVEL_4 (secure connection)

BLE_EVT_GAP_GAP_PAIR_COMPLETED

Status: BLE_STATUS_OK 
Bond: True
MITM: True

BLE_EVT_GAP_GAP_PAIR_COMPLETED
Status: BLE_ERROR_FAILED

SMP Pairing Phase 2

ble_gap_numeric_reply (accept: false)

BLE_STATUS_OK

 

Figure 19: Bonding Numeric Comparison (Secure Connections Only) 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 63 of 206 © 2022 Renesas Electronics 

7.3.5 BLE Storage 

BLE Storage is the BLE Framework module that implements storage functionality for information 
related to connected and bonded peers, like security keys, CCC descriptors configuration and 
application-defined values. BLE Storage can manage the list of connected and bonded devices both 
in RAM and in persistent storage (for example, in the flash). By default, devices are managed in RAM 
only and persistent storage must be explicitly enabled in the application’s configuration using macro 
CONFIG_BLE_STORAGE. Device data is then stored using Non-Volatile Memory Storage (NVMS) on the 

generic partition (see Section 12.4 for details). 

Two kinds of data are stored: 

● Device pairing data (exchanged keys and related information). 

● Application-defined data managed using the BLE storage API (only the values with the 
‘persistent’ flag set are stored in flash, for example CCC descriptor values). 

Persistent storage can be enabled by the application by adding the following entries in the 
application’s custom configuration file: 

// enable BLE persistent storage 

#define CONFIG_BLE_STORAGE 

 

// enable Flash and NVMS adapters with VES (required by BLE persistent storage) 

#define dg_configFLASH_ADAPTER                  1 

#define dg_configNVMS_ADAPTER                   1 

#define dg_configNVMS_VES                                     1 

 

The maximum number of bonded devices can be set using the defaultBLE_MAX_BONDED macro 

(defined to 8 by default). If the application attempts to bond more devices than its allowed, an error 
will be returned. This error should be handled by the application. It can then either unpair one of the 
currently bonded devices (using ble_gap_unpair() API function) or perform pairing without bonding. 

Technical details on the BLE Storage implementation can be found in the following readme file: 

<sdk_root_directory>/sdk/interfaces/ble/readme.md 

7.3.6 LE Secure Connections 

LE Secure Connections pairing is supported and enabled by default by the SDK using the API 
described in section 7.3.1. LE Secure Connections pairing will be used if the connected peer 
supports the feature without the need for the application to specifically request it. If the combination 
of the devices’ capabilities result in a numeric comparison pairing algorithm (introduced for and used 
for the LE Secure Connections pairing), the application will be notified of a numeric comparison 
request during pairing by the reception of a BLE_EVT_GAP_NUMERIC_REQUEST event and should 

respond using ble_gap_numeric_reply() function. 

If the application needs to use only LE Legacy Pairing and disable LE Secure Connections support in 
the SDK, it should define dg_configBLE_SECURE_CONNECTIONS macro to 0 in the application config 

file. 

7.4 Logical Link Control and Adaptation Layer Protocol 

The Logical Link Control and Adaptation Layer Protocol, referred to as L2CAP provides connection-
oriented and connectionless data services to upper layer protocols with protocol multiplexing 
capability and segmentation and reassembly operation. As referred in [9], L2CAP permits higher 
level protocols and applications to transmit and receive upper layer data packets (L2CAP Service 
Data Units, SDU) up to 64 kilobytes in length. L2CAP also permits per-channel flow control and 
retransmission. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 64 of 206 © 2022 Renesas Electronics 

The L2CAP layer provides logical channels, named L2CAP channels, which are multiplexed over one 
or more logical links. Each one of the endpoints of an L2CAP channel is referred to by a channel 
identifier (CID). 

L2CAP channels may operate in one of five different modes as selected for each L2CAP channel. 
The modes are: 

● Basic L2CAP Mode (equivalent to L2CAP specification in Bluetooth v1.1) 

● Flow Control Mode 

● Retransmission Mode 

● Enhanced Retransmission Mode 

● Streaming Mode 

● LE Credit Based Flow Control Mode 

The null CID (0x0000) is never used as destination endpoint. Identifiers from 0x0001 to 0x003F are 

reserved for specific L2CAP functions. These channels are referred to as Fixed Channels. 

CID 0x0004 is used by the ATT, CID 0x0006 is used by the SMP while CID is used by the signaling 

channel. 

As referred above, the connection-oriented data channels represent a connection between two 
devices, where a CID, combined with the logical link, identifies each endpoint of the channel. 

Figure 20 illustrates the format of the L2CAP PDU in basic mode. 

 

 

Figure 20: L2CAP PDU format in Basic L2CAP mode on COC 

 

Summarizing: 

● L2CAP implementations transfer data between upper layer protocols and the lower layer 
protocol. 

● L2CAP maps channels to Controller logical links, which in turn run over Controller physical links. 
All logical links going between a local Controller and remote Controller run over a single physical 
link. 

● L2CAP is packet-based but follows a communication model based on channels. A channel 
represents a data flow between L2CAP entities in remote devices. Channels may be connection-
oriented or connectionless. Fixed channels other than the L2CAP connectionless channel (CID 
0x0002) and the two L2CAP signaling channels (CIDs 0x0001 and 0x0005) are considered 
connection-oriented. All channels with dynamically assigned CIDs are connection-oriented. 

7.4.1 Credit-Based Flow Control 

The Credit-Based Flow Control is an L2CAP mode of operation that when used, allows both devices 
involved in the LE connection to have complete control over how many packets the peer device is 
allowed to send. This is achieved by the use of credits that represent the absolute maximum number 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 65 of 206 © 2022 Renesas Electronics 

of LE frames that the device is willing to accept at a particular moment. The sending entity may send 
only as many LE-frames as it has credits. If the credit count reaches zero the transmission must stop. 
If more frames are sent the connection will be closed. 

7.4.2 Functions 

To establish a LE-Credit Based L2CAP connection, the initiator should send a LE Credit-Based 
connection request, specifying parameters like the Protocol Service Multiplexer (PSM), Maximum 
Transmission Unit (MTU), Maximum Payload Size (MPS), and the initial number of credits that the 
remote peer has to send data. The responding device should respond with a LE Credit-Based 
Connection Response specifying its own MTU, MPS and initial credits value. PSM is 2-byte odd 
number that can be used to support multiple implementations of a protocol. The valid range for PSM 
is between 0x80 - 0xFF. The fixed SIG assigned PSM values are between 0x00 and 0x7F. MTU 
represents the maximum size of data that the service above L2CAP can send to the remote peer 
(Maximum size of an SDU – Service Data Unit). MPS is the maximum payload size that an L2CAP 
entity can receive from the lower layer, and it is equivalent to the maximum PDU payload size. Each 
MPS corresponds to one credit. One SDU (of size MTU) can be fragmented to one or more PDUs (of 
size MPS). If the SDU length field value exceeds the receiver's MTU, the receiver shall disconnect 
the channel. If the payload length of any LE-frame exceeds the receiver's MPS, the receiver shall 
disconnect the channel. If the sum of the payload lengths for the LE-frames exceeds the specified 
SDU length, the receiver shall disconnect the channel. After the LE Credit-Based connection request 
and response frames are received or exchanged, the two entities agree to use the minimum values 
of MTU and MPS. 

As an example, consider two devices that use the following values during the Credit-Based 
connection request/response procedure: 

Table 18: Example of L2CAP COC 

 Device A 

Connection Request 

Device B 

Connection Response 

PSM 0x80 - 

(Field not available on Connection 

Response) 

MTU 100 250 

MPS 50 23 

Initial Credits 10 20 

 

In this scenario, device B can receive PDUs of size at most 23, and SDUs of size at most 250. On 
the other hand, device A can receive PDUs of size at most 100, and SDUs of size at most 
50.  Device A can send 20 PDUs to device B, and should stop until device B updates the available 
credits. This update could be performed any time during the connection. If device A was to transmit 
an SDU of size 100 bytes (MTU), it would be fragmented to 5 PDUs of data sizes 21, 23, 23, 23 and 
10 respectively. This transmission would consume 5 credits (one credit for every PDU that could be 
received from device B). Note that the usable payload size of the first PDU is 2 bytes less than the 
value of MPS as the first LE-frame contains a 2-byte field specifying the total length of the SDU. This 
is true only for the first frame. In the same manner, the transmission of a 23-byte SDU would require 
two credits and two PDUs of size 21 and 2 bytes respectively whereas the transmission of a 21-byte 
SDU would require just one PDU. Maximum SDU length (MTU) can be specified using the 
ble_gap_mtu_size_set() API call. 

Table 19: L2CAP COC API- ble_l2cap.h 

API call Description 

ble_l2cap_connect()  Create a l2cap connection oriented channel with remote 
peer. Connection establishment will be signaled using 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 66 of 206 © 2022 Renesas Electronics 

API call Description 

BLE_EVT_L2CAP_CONNECTED event. 

ble_l2cap_listen() Create a connection oriented channel listening for 
incoming connections. Incoming connection will be 
signaled using BLE_EVT_L2CAP_CONNECTED event. 

ble_l2cap_disconnect() Disconnect an established L2CAP channel. 

ble_l2cap_send() Send data on channel, response code is signaled using 

the BLE_EVT_L2CAP_SENT event. 

ble_l2cap_add_credits() Provide additional credits to remote peer. 
BLE_EVT_L2CAP_REMOTE_CREDITS_CHANGED 

event will be signaled on the remote peer. 

7.4.3 Events  

Table 20: L2CAP COC Events – received through ble_get_event() -  ble_l2cap.h 

Event Argument Description 

BLE_EVT_L2CAP_CONNECTED ble_evt_l2cap_connected_t Channel connected. Members 
<local_credits> and 
<remote_credits> specify the 
initial credits for both sides of 
connections, whereas <mtu> 
indicates the negotiated MTU 

value (Maximum SDU length). 

BLE_EVT_L2CAP_CONNECTION_FA

ILED 

ble_evt_l2cap_connection_failed_t Channel connection failed. 
Member <status> indicates the 

reason that connection failed. 

BLE_EVT_L2CAP_DISCONNECTED ble_evt_l2cap_disconnected_t Channel disconnected. Member 
<reason> indicates the reason 

of disconnection. 

BLE_EVT_L2CAP_SENT ble_evt_l2cap_sent_t Data sent on channel. 
<remote_credits> member 
specifies the remaining number 
of credits that are available for 

transmission.  

BLE_EVT_L2CAP_REMOTE_CREDIT

S_CHANGED 

ble_evt_l2cap_credit_changed_t Available remote credits 
changed on channel. 
<remote_credits> member 
specifies the remaining number 
of credits that are available for 

transmission. 

BLE_EVT_L2CAP_DATA_IND ble_evt_l2cap_data_ind_t Data received on channel. 
<local_credits_consumed> 
member specifies the local 
credits consumed for the 

received data. 

7.5 LE Data Packet Length Extension  

For Bluetooth Core versions 4.0 and 4.1 the maximum Packet Data Unit (PDU) size was 27 octets. 
Bluetooth Core version 4.2 introduced an important enhancement, namely LE Data Packet Length 
Extension, which allows for the PDU size to be anywhere between 27 and 251 octets. This means 
that, for example, the L2CAP layer can now fill up to 245 octets of higher layer data packets in every 
L2CAP PDU compared to 21 octets with previous Bluetooth Core versions. This significant increase 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 67 of 206 © 2022 Renesas Electronics 

(more than 10 times) in the number of octets of user data sent per packet allows devices to transfer 
data up to 2.5 times faster than with previous versions. This will be of great benefit to applications 
that might require transferring large amounts of data such as Over-the-Air (OTA) firmware updates or 
downloading large data logs from sensors. 

For the default PDU size to be extended on an established connection, the Data Length Update 
procedure must be performed. According to this control procedure, the LL_LENGTH_REQ and 

LL_LENGTH_RSP PDUs must be exchanged by the connected devices so that each is notified of its 

peer device’s capabilities. Each device uses these PDUs to report its maximum receive data channel 
and maximum transmit data channel PDU payload length and PDU time. After this update procedure, 
the PDU size for each direction of the connection’s data path is set by both controllers to the 
minimum of the values exchanged. 

The DA1468x supports the LE Data Length Extension feature, so the values for the Receive and 
Transmit Data Length are set by default to the maximum allowed, which is 251 octets. The DA1468x 
controller when configured as a Bluetooth low energy central device will initiate a Data Length 
Update upon a new connection if the peer device’s controller supports this feature. The BLE 
Manager will use the values defined by dg_configBLE_DATA_LENGTH_RX_MAX and 

dg_configBLE_DATA_LENGTH_TX_MAX macros for this initial Data Length Update negotiation. 

7.5.1 Functions 

Table 21: LE Data Length Functions – ble_gap.h 

Function Description 

ble_gap_data_length_set() Set the maximum Transmit data length and time for an 
existing connection or the preferred Transmit data length 
for future connections (that is, the Transmit data length to 
be used in future data length update negotiations). 
Connection data length change will be signaled using 

BLE_EVT_GAP_DATA_LENGTH_CHANGED event. 

7.5.2 Macros  

Table 22: LE Data Length Definitions 

Macro Default Description 

dg_configBLE_DATA_LENGTH_RX_MAX 251 Set the maximum Receive Data Channel 
PDU Payload Length. Unless 
ble_gap_data_length_set() is used by the 
application, this will define the Receive data 
length present in the LE Data Length 

Update negotiations done by the device. 

dg_configBLE_DATA_LENGTH_TX_MAX 251 Set the maximum Transmit Data Channel 
PDU Payload Length. Unless 
ble_gap_data_length_set() is used by the 
application, this will define the Transmit data 
length present in the LE Data Length 

Update negotiations done by the device. 

7.5.3 Events  

Table 23: LE Data Length Events – fetched using ble_get_event() -  ble_gap.h 

Event Argument Description 

BLE_EVT_GAP_DATA_LENGTH_CHA

NGED 

ble_evt_gap_data_length_cha

nged_t 
Data Length changed for specified 
connection. Members <rx_length>, 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 68 of 206 © 2022 Renesas Electronics 

Event Argument Description 

<rx_time>, <tx_length> and <tx_time> 
specify the values obtained after an LE 
Data Length Update negotiation (each 
direction’s data length is typically set to 
the minimum of the values reported by the 

connected devices). 

BLE_EVT_GAP_DATA_LENGTH_SET

_FAILED 

ble_evt_gap_data_length_set

_failed_t 
Data Length Set operation failed. Member 
<status> indicates the reason the set 

operation failed. 

7.6 NVPARAM fields 

Table 24 shows the Non-Volatile memory parameters which can be found in 
<sdk_root_directory>/sdk/adapters/include/platform_nvparam.h  

Table 24: NVPARAM fields 

Tag Offset Length 

TAG_BLE_PLATFORM_BD_ADDRESS 0x0000 7 

TAG_BLE_PLATFORM_LPCLK_DRIFT 0x0007 3 

TAG_BLE_PLATFORM_EXT_WAKEUP_TIME 0x000A 3 

TAG_BLE_PLATFORM_OSC_WAKEUP_TIME 0x000D 3 

TAG_BLE_PLATFORM_RM_WAKEUP_TIME 0x0010 3 

TAG_BLE_PLATFORM_SLEEP_ENABLE 0x0013 2 

TAG_BLE_PLATFORM_EXT_WAKEUP_ENABLE 0x0015 2 

TAG_BLE_PLATFORM_BLE_CA_TIMER_DUR 0x0017 3 

TAG_BLE_PLATFORM_BLE_CRA_TIMER_DUR 0x001A 2 

TAG_BLE_PLATFORM_BLE_CA_MIN_RSSI 0x001C 2 

TAG_BLE_PLATFORM_BLE_CA_NB_PKT 0x001E 3 

TAG_BLE_PLATFORM_BLE_CA_NB_BAD_PKT 0x0021 3 

TAG_BLE_PLATFORM_IRK 0x0024 17 

 

7.7 BLE Interrupt Generation 

The BLE Core generates interrupts that are used to synchronize with the BLE Software. These 
interrupts are: 

• ble_cscnt_irq: 625μs (slot) base time reference clock interrupt. When sleep mode is used, 

this interrupt will also be used to program the next advertising, scanning or connection event 
if it fires before the finetgtim interrupt. 

• ble_rx_irq: Reception interrupt at the end of either each CS-RXTHR number of received 

packets or each received packet. CS-RXTHR can be configured at compile time using 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 69 of 206 © 2022 Renesas Electronics 

position 44 of rom_cfg_table_var[] 

(sdk\interfaces\ble\src\stack\plf\black_orca\src\arch\main\ble\jump_table.c). 

• ble_slp_irq: End of sleep mode events. 

• ble_event_irq: End of Advertising / Scanning / Connection event. Used to cleanup/re-

initialize state and defer TX/RX handling operations. 

• ble_error_irq: Error interrupt generated on internal error. 

• ble_finetgtim_irq: Fine target interrupt. Used to program the next advertising, scanning or 

connection event. When sleep mode is not used, programming of events will be done by this 
interrupt’s service routine and not by the cscnt interrupt service routine. 

• ble_grossgtim_irq: Gross target timer interrupt. Used by BLE stack SW timers, e.g. 

supervision timeout, link layer timeout, etc. 

Depending on the context, these interrupts are generated or not. The grayed ble_cscnt_irq interrupt 

pulses in the following figures can be masked or unmasked. The figures that follow assume the 
following: 

● Either extended or deep sleep mode is used. 

● CS-RXTHR is 1. 

 

When a sleep mode is used, the event will be programmed in the cscnt_isr only if it fires before the 

finetgtim_irq after waking up. The original figures assumed a sleep mode was used, so the points 

where a finetgtim interrupt will fire instead of a cscnt interrupt are noted with red color in the same 

row. 

Figure 21 shows an example of interrupt generation for an advertiser device during an advertising 
event. The first advertising event shows advertising packets only. The second advertising event 
shows a scanner that tried to exchange data with the advertiser device. The definitions of values 
such as T_advEvent and T_IFS can be found in Bluetooth Specification. 

 

Figure 21: Advertiser Device Interrupts Generation 

Figure 22 shows an example of interrupt generation for a scanner device during a scanning event. 
The first scanning window shows a passive scan event onto channel 39. The second scanning 
window shows an active scan event with no scan response onto channel 37. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 70 of 206 © 2022 Renesas Electronics 

 

Figure 22: Scanner Device Interrupts Generation 

Figure 23 shows an example of interrupt generation for a master device during a Link Layer 
connection event without Deep Sleep in between anchor points. The first and third connection event 
show a two packet exchange, while the second connection event shows a four packet exchange. 

 

Figure 23: Master Device Interrupts Generation / Link Layer Connection Event without Deep 
Sleep 

 

Figure 24 shows an example of interrupt generation for a master device during a Link Layer 
connection event with Deep Sleep in between anchor points. 

 

 

Figure 24: Master Device Interrupts Generation / Link Layer Connection Event with Deep 
Sleep 

Figure 25 shows an example of interrupt generation for a slave device during a Link Layer 
connection event without Deep Sleep in between anchor points. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 71 of 206 © 2022 Renesas Electronics 

 

Figure 25: Slave Device Interrupts Generation / Link Layer Connection Event without Deep 
Sleep 

Figure 26 shows an example of interrupt generation for a slave device during a Link Layer 
connection event with Deep Sleep in between anchor points. 

 

Figure 26: Slave Device Interrupts Generation / Link Layer Connection Event with Deep Sleep 

The CSCNT/FINE interrupt which each coming event is programmed in should be serviced 
with a maximum latency of 300us. If the CSCNT/FINE Interrupt Servicing Routine (ISR) that will 
program the event is not run 300us+ after the interrupt is asserted, this may result in losing the next 
connection event (i.e. no data transmission or reception in this connection event). 

7.8 Considerations on BLE Task Priorities 

The BLE Software in the SDK consists of three modules as shown previously in Figure 6: 

 BLE manager: Provides the interface to the Bluetooth low energy functionality of the chip. The application 
task uses the BLE API to interface with the BLE manager. The BLE manager is a task that stands between 
the application and the BLE adapter. It uses the BLE adapter to interface with the BLE stack. 

 BLE adapter: The system task that provides the interface to the BLE stack, hence the 
BLE IP module. It runs the BLE stack internal scheduler, handles the BLE interrupts, 
receives the commands or the replies to events from the BLE manager, and passes BLE 
events to the BLE manager. BLE core functionality is implemented by the BLE adapter task. 

 BLE stack: The software stack that interfaces with the BLE IP and implements the Link 
Layer and the host stack, specifically the Logical Link Control and Adaptation Protocol 
(L2CAP), the Security Manager Protocol (SMP), the Attribute Protocol (ATT), the Generic 
Attribute Profile (GATT) and the Generic Access Profile (GAP). The BLE stack software is 
stored in the system’s ROM and its API header files can be found in 
<sdk_root_directory>/sdk/interfaces/ble/src/stack. The BLE stack default 
configuration can be modified by editing ble_stack_config.h located in 
<sdk_root_directory>/sdk/interfaces/ble/src/stack/config. However, for an application 

specific change it is better to add the new configuration to the applications 
config/custom_config_qspi.h file which will override the stack defaults.  

 

The BLE stack software is run under the BLE adapter’s task context, which instantiates 
and initializes the stack. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 72 of 206 © 2022 Renesas Electronics 

The two BLE system tasks have by default a higher priority than application tasks in the SDK.  

Application developers should always make sure BLE adapter and BLE manager tasks always 
have a higher priority than application tasks, and that BLE adapter is higher priority than BLE 
manager.  

The BLE adapter instantiates the BLE stack scheduler, which dispatches all the messages between 
the BLE stack’s different layers and calls the appropriate handlers. For example, when an application 
uses API ble_gatts_send_event() to send a GATT notification, this will result in a propagation of 

messages between the BLE manager, the BLE adapter and several BLE stack’s internal layers until 
it reaches a transmission buffer and, eventually, the air. BLE stack’s reception handlers are also run 
in the context of the BLE adapter’s task, so it is crucial that the BLE adapter is always run after a BLE 
interrupt to handle received data, check if the data programmed for transmission were transmitted 
and/or acknowledged by the peer device, etc. 

7.9 BLE tasks timing requirements 

When the application is not making any BLE API calls, the BLE adapter will typically run for a short 
period of time following every BLE interrupt. For example, in the scenario where a GATT server  
application sends a notification at every connection event, the BLE adapter will only need to run for 
about 18us following the ble_cscnt/finetgtim_irq interrupt that programs the connection event 

and about 68us following the ble_event_irq (rough average times when 96MHz clock is used and 

no control packet is received or sent during that connection event but only the notification data). In 
this scenario, the BLE adapter only needs to run between two consecutive events when the 
application uses ble_gatts_send_event() to send a new notification. In this case it needs roughly 

190us for the data to be put in a TX buffer and to be programmed for the next connection event. 
Figure 27 shows two connection events and the period between them. 

 

Figure 27: Two connection events 

In some scenarios the BLE manager and the BLE adapter will communicate with messages without 
notifying the application. As an example, upon connection with a peer that uses a resolvable private 
address the BLE manager will attempt to resolve using known devices IRKs. In this case the BLE 
manager and BLE adapter will have more running slots. These periods will also be placed right after 
the ble_event_irq. 

There are also other cases when the BLE framework will require a reply from the application when, 
for example, a pair request or a write request is received from the peer. Again, in these cases the 
BLE adapter and BLE manager will have to run more times in a period between two connection 
events. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 73 of 206 © 2022 Renesas Electronics 

7.10 Attribute operations 

As the Attribute protocol is strict (section 4.8.3) when an attribute request such as a read or a write 
request is received, the BLE stack’s GATT layer will switch to a busy state for as long as the request 
is not completed/handled. In the case of a write request or a read request of an attribute whose value 
is to be provided by the application, then the application will have to confirm these operations using 
ble_gatts_read_cfm() or ble_gatts_write_cfm() respectively (after receiving 

BLE_EVT_GATTS_READ_REQ or BLE_EVT_GATTS_WRITE_REQ). In this case, other GATT operations, such 

as notification sending, will be queued until this request is confirmed. See an example of this in 
Figure 28. 

 

Figure 28: Attribute operations example 

This plot shows the period after a connection event during which a write request was received from 
the peer. In this case this request is confirmed by a task different than the one making the 
ble_gatts_send_event() call. In this case the BLE adapter runs for an additional slot of about 

180us. BLE manager also needs to be run in between since it implements the BLE framework 
functionality on top of the BLE adapter/stack. BLE manager will need in general smaller time slots to 
run, unless it reads/writes data from/to the flash. 

7.11 Bluetooth low energy Application Examples 

7.11.1 Advertising Application 

The simplest Bluetooth low energy project in the SmartSnippetsTM DA1468x SDK is ble_adv_demo 

which is found in the folder <sdk_root_directory>/projects/dk_apps/demos/ble_adv. The 

application starts the device as a peripheral, sets the device name and advertising data and starts 
advertising. Code 7 is an extract from main.c. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 74 of 206 © 2022 Renesas Electronics 

// Start BLE module as a peripheral device 

ble_peripheral_start(); 

 

// Set device name 

ble_gap_device_name_set("Dialog ADV Demo", ATT_PERM_READ); 

 

// Set advertising data 

ble_gap_adv_data_set(sizeof(adv_data), adv_data, 0, NULL); 

 

// Start advertising 

        ble_gap_adv_start(GAP_CONN_MODE_UNDIRECTED); 

Code 10: Set BLE device 

No BLE service is added, and the ones exposed are just GAP and GATT services. The infinite loop 
that implements the lifetime behavior of the application uses just ble_get_event(true) to block 

indefinitely on the BLE manager’s event queue. As soon as an event is posted there, the task 
unblocks and handles it using a switch case. Code 11 shows main loop from main.c. 

for (;;) { 

        ble_evt_hdr_t *hdr; 

        /* notify watchdog on each loop */ 

        sys_watchdog_notify(wdog_id); 

        /* suspend watchdog while blocking on ble_get_event() */ 

        sys_watchdog_suspend(wdog_id); 

        /* 

         * Wait for a BLE event - this task will block 

         * indefinitely until something is received. 

         */ 

        hdr = ble_get_event(true); 

        /* resume watchdog */ 

        sys_watchdog_notify_and_resume(wdog_id); 

        if (!hdr) { 

                continue; 

        } 

        switch (hdr->evt_code) { 

        case BLE_EVT_GAP_CONNECTED: 

                handle_evt_gap_connected((ble_evt_gap_connected_t *) hdr); 

                break; 

        case BLE_EVT_GAP_DISCONNECTED: 

                handle_evt_gap_disconnected((ble_evt_gap_disconnected_t *) hdr); 

                break; 

        case BLE_EVT_GAP_PAIR_REQ: 

        { 

                ble_evt_gap_pair_req_t *evt = (ble_evt_gap_pair_req_t *) hdr; 

                ble_gap_pair_reply(evt->conn_idx, true, evt->bond); 

                break; 

        } 

        default: 

                ble_handle_event_default(hdr); 

                break; 

       } 

        // Free event buffer 

        OS_FREE(hdr); 

} 

Code 11: Example of event handle 

Since the BLE service framework is not used, the only events handled by the application are the 
three events handled by the switch case: connection, disconnection and pair request. This makes 

sense for this application as its only purpose is to start a connectable advertising, restart it in case of 
a disconnection and respond to pair requests from devices that require pairing/bonding upon 
connection. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 75 of 206 © 2022 Renesas Electronics 

Running this project will result in an advertising Bluetooth low energy peripheral device exposing 
GAP and GATT services. GAP service attributes can be read using any standard Bluetooth low 
energy central device. An example is described in Section 4.1.5 of the Software Developers Guide 
[3]. 

 

7.11.2 Peripheral Application 

The ble_peripheral project is a good starting point for developing Bluetooth low energy peripheral 

applications. It is found in folder 
<sdk_root_directory>/projects/dk_apps/demos/ble_peripheral. Unlike other example projects, 

it does not implement a specific profile, but instead exposes several BLE services via a GATT server.  

The application’s initialization is similar to other projects that implement Bluetooth low energy 
peripheral applications. It uses the BLE service framework to instantiate several Bluetooth low 
energy services: 

● Battery Service (multiple instances) 

● Current Time Service 

● Device Information Service 

● Scan Parameter Service 

● Dialog Debug Service 

● Custom User Service 

In addition to Bluetooth SIG-adopted services, ble_peripheral project instantiates two more 

services, Dialog Debug Service and a custom user service. 

The Dialog Debug Service can be used to interact with the services that the application exposes 
using a Control Point characteristic to write commands and receive notifications from. A detailed 
description of the ways to interact with the Dialog Debug Service is included in the readme.md file 
inside the project’s folder. 

The custom user service does not define any specific functionality other than using 128-bit UUIDs for 
services, characteristics and descriptors. This custom service, referred to as myservice in the project 

source code, is an example of implementing a custom service using BLE API calls to create its 
attribute database. No specific functionality is defined when one of these attributes is read or written. 
More details on how to create and use custom services will be given in section 7.14. 

After the attribute database is created, the device will end-up advertising and it will wait for a 
connection event. 

The ble_peripheral project uses the BLE service framework to handle service events, the 

application also defines handlers for connection, advertising completion and pair request events. The 
ble_peripheral project stands in terms of its completeness somewhere between the ble_adv_demo 

and a full profile like the pxp_reporter. 

The services the project will expose can be configured using the file 
config/ble_peripheral_config.h. 

7.11.3 Central Application 

The ble_central project is found in folder 

<sdk_root_directory>/projects/dk_apps/ble_central. It is the recommended starting point for 

creating a Bluetooth low energy central application. The application initialization is similar to the 
previously described projects. The difference is that the device is configured as a Bluetooth low 
energy central device and no attribute database is created as the device implements a GATT client. 
Code 12 is extracted from ble_central_task.c. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 76 of 206 © 2022 Renesas Electronics 

 ble_central_start(); 

 ble_register_app(); 

Code 12: Configure device as a BLE central  

After configuring the Bluetooth low energy parameters, the device attempts to connect to another 
device. To work with this demo the other device must expose the specific Bluetooth Device (BD) 
address defined in the addr structure:  

 ble_gap_connect(&addr, &cp); 

Code 13: Connection to another device  

The project is configured to connect by default to another DA1468x device, preferably one that 
exposes a couple of services such as ble_peripheral. A good experiment would be to run the 

ble_central project after having programmed another DA1468x board with ble_peripheral. Of 

course, addr must be modified to force the ble_central device to connect to a device with a 

different BD address. The default BD address of a project can be changed via the project’s 
config/custom_config_qspi.h by adding the following override. 

 

#define defaultBLE_STATIC_ADDRESS      {0x02,0x00,0x80,0xCA,0xEA,0x80} 

 

Upon connection, the handle_evt_gap_connected() handler uses BLE API call ble_gattc_browse() 

(or ble_gattc_discover_svc(), ble_gattc_discover_char() and ble_gattc_discover_desc(), if 

CFG_USE_BROWSE_API macro is set to 0) to discover all services, characteristics and descriptors of the 

peer device. The project uses the serial interface to print information of the discovered attribute 
database. 

The options of the project can be configured using the file config/ble_central_config.h. 

7.11.4 Multi-Link Application 

The ble_multi_link demo located in <sdk_root_directory>/projects/dk_apps/demos folder is a 

project designed to demonstrate the Bluetooth Core version 4.1 feature LE Topology. The device is 
initialized to have both Bluetooth low energy central and peripheral roles using ble_enable() and 

ble_gap_set_role(GAP_PERIPHERAL_ROLE | GAP_CENTRAL_ROLE) API calls. The project instantiates 

the custom Dialog Multi-Link Service, which exposes a single characteristic, named Peripheral 
Address. 

The demo flow is illustrated in Figure 29. The Multi-link device with BD_ADDR2 starts advertising 
and waiting for a connection originating from a central Bluetooth low energy device (BD_ADDR3). 
After the central device is connected to the Multi-Link demo device (step 1), it can write the BD 
address of another BLE peripheral device (BD_ADDR3) to the Peripheral Address characteristic 
exposed by the Dialog Multi-Link Service (step 2). This will result in the Multi-Link demo device trying 
to connect, as a Bluetooth low energy central device to the peripheral device with BD_ADDR3 (step 
3). After this connection is established, the Multi-Link demo device will have two concurrent 
connections one as master and one as slave. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 77 of 206 © 2022 Renesas Electronics 

 

Figure 29: Architecture of Multi-Link Demo 

 

 

The Multi-Link demo project uses the serial interface to output information about the connected 
devices.  

7.11.5 External Host Application 

● The Bluetooth low energy external host project is found in folder 
<sdk_root_directory>/projects/dk_apps/demos/ble_external_host. It is the only project that 

does not use the BLE framework and the Dialog BLE API. Instead, its application task is a 
custom adapter created to send and receive HCI and BLE stack proprietary messages over the 
serial interface, allowing the development of the host on a separate processor. 

● After building the project, the user should make sure that the RTS/CTS pins are connected on the 
Development Kit. Then, a host can send HCI messages over the serial interface and receive the 
controller’s responses. 

7.12 BLE profile projects 

● In addition to the projects described in the previous sections, there are several application 
projects that implement Bluetooth low energy profiles. These projects are more complex and 
provide a full implementation of Bluetooth low energy applications. As such they provide a good 
reference on how to combine the Bluetooth low energy functionality with several OS 
mechanisms, GPIO handling and interfacing with external sensors. 

● The profiles implemented are the following: 

○ HID over GATT Profile (HOGP) – Device role (hogp_device) located under 
<sdk_root_directory>/projects/dk_apps/ble_profiles 

○ HID over GATT Profile (HOGP) – Host role (hogp_host) located under 
<sdk_root_directory>/projects/dk_apps/ble_profiles 

○ Heart Rate Profile – Sensor role (hrp_sensor) located under 
<sdk_root_directory>/projects/dk_apps/ble_profiles 

○ Proximity Profile – Reporter role (pxp_reporter) located under 
<sdk_root_directory>/projects/dk_apps/demos 

○ Weight Scale Profile – Weight Scale role (wsp_weightscale) located under 
<sdk_root_directory>/projects/dk_apps/ble_profiles 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 78 of 206 © 2022 Renesas Electronics 

○ Apple Notification Center Service (ANCS) - Notification Consumer (NC) role (ancs) located 
under <sdk_root_directory>/projects/dk_apps/ble_profiles 

○ Blood Pressure Profile (BLP) – Blood Pressure Sensor role (blp_sensor) located under 
<sdk_root_directory>/projects/dk_apps/ble_profiles 

○ Bond Management Service (BMS) located under 
<sdk_root_directory>/projects/dk_apps/ble_profiles 

○ Cycling Speed And Cadence collector (CSCP) located under 
<sdk_root_directory>/projects/dk_apps/ble_profiles 

○ Health Thermometer Profile – Thermometer role (htp_thermometer) located under 
<sdk_root_directory>/projects/dk_apps/ble_profiles 

7.13 Using adopted Bluetooth low energy services 

Table 25 summarizes the API header files of the Bluetooth low energy services implemented by the 
SmartSnippetsTM DA1468x SDK. These files can be found under 
<sdk_root_directory>/sdk/interfaces/ble_services/include. The developer can use these 

APIs to add these services to another project. 

Table 25: BLE service API header files 

File name Description  

ble_service.h BLE service framework API: 

• Add service to framework 

• Handle event using BLE service framework 

• Elevate permission 

• Get number of attributes in a service 

• Add included services 

bas.h Battery Service – BAS 

bcs.h Body Composition Service – BCS 

bms.h Bond Management Service – BMS 

cts.h Current Time Service – CTS 

dis.h Device Information Service – DIS 

dlg_debug.h Dialog Debug Service 

dlg_suota.h Dialog SUOTA Service 

hids.h Human Interface Device Service – HID 

hrs.h Heart Rate Service – HRS 

ias.h Immediate Alert Service – IAS 

lls.h Link Loss Service – LLS 

scps.h Scan Parameters Service – ScPS 

sps.h Serial Port Service – SPS 

tps.h Tx Power Service – TPS 

uds.h User Data Service – UDS 

wss.h Weight Scale Service – WSS 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 79 of 206 © 2022 Renesas Electronics 

7.14 Adding a custom service 

The following code segments provide an overview of the initialization required to create a new 
custom service called XXX. It requires the files xxx.c and xxx.h to be created. A good example to 

base these on is the dlj_mls service in the Multi-Link demo. This provides a single write only 

characteristic in the service. 

Each service needs a structure containing both the generic ble_service_t structure and any 

callbacks and characteristic handles required by the service. In the example below for service XXX 

there is one callback and one characteristic defined. 

typedef struct { 

        ble_service_t svc;        // Core BLE service structure 

        xxx_cb_t cb;              // Callback provided by app to xxx 

                                  // service to process an event 

        uint16_t xxx_char1_val_h; // Declare handle for each characteristic      

                                  // that can be read or written 

} xxx_service_t; 

 

Code 14: Structure definition for XXX service   

The requirements of the initialization function xxx_init() are illustrated below. They key information 

here is the comments which are explaining what each line is doing. 

 

xxx_service_t* xxx_init(callback1){ 

// Allocate and initialise xxx_service_t structure 

// Define any callback functions required by the service, write only in this case 

xxx->svc.write_req = <this services write request handler> 

// Create primary service UUID with either 16 or 128 bit value 

uuid=ble_uuid_from_string() or uuid=ble_uuid_create16() 

// add PRIMARY service with X attributes 

num_attrs=X 

ble_gatts_add_service(&uuid, GATT_SERVICE_PRIMARY, num_attrs) 

//Create characteristic 1 for this service and allocate handle for it in GATT 

table 

ble_gatts_add_characteristic(&uuid, GATT property, ATT permissions, size,0, NULL, 

&xxx->xxx_char1_h) 

// Set start_h and pass in null terminated variable length list of all 

characteristic handles in the service 

ble_gatts_register_service(&xxx->svc.start_h, &xxx->xxx_char1_h,0); 

// Calculate end handle for service based on number of attributes in service 

xxx->svc.end_h= xxx->svc.start_h + num_attrs; 

// add the passed in callback function to service structure 

xxx->xxx_cb1=callback1; 

// add newly created service to ble framework 

ble_service_add(&xxx->svc); 

// and return handle for the service to the application 

return &xxx->svc 

} 

 

 Code 15: Initialisation function for XXX service   

7.15 Extending Bluetooth low energy functionality 

The Dialog BLE API can be used to create any Bluetooth low energy application. These API header 
files are in folder <sdk_root_directory>/sdk/interfaces/ble/include. They come with additional 

Doxygen documentation and are summarized in Table 26. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 80 of 206 © 2022 Renesas Electronics 

Table 26 : Dialog BLE API header files 

File name Description 

ble_att.h Attribute Protocol API: Mostly definitions. 

ble_attribdb Helper to manage complex attributes database. 

ble_bufops Helpers to put and get data from BLE buffers. 

ble_common.h Common API: Functions used for operations not specific to a certain BLE host 

software component 

ble_gap.h GAP API: 

• Device parameters configuration: device role, MTU size, device 

name exposed in the GAP service attribute, etc. 

• Air operations: Advertise, scan, connect, respond to connection 

requests, initiate or respond to connection parameters update, etc. 

• Security operations: Initiate and respond to a pairing or bonding 

procedure, set the security level, unpair, etc. 

 

ble_gatt Common definitions for GATT API 

ble_gattc.h GATT client API: 

• Discover services, characteristics, etc. of a peer device 

• Read or write a peer device’s attributes 

• Initiate MTU exchanges 

• Confirm the reception of indications 

• … 

ble_gatts.h GATT server API:  

• Set up the attribute database 

• Set attribute values 

• Notify/indicate characteristic values 

• Initiate MTU exchanges 

• Respond to write and read requests 

• … 

ble_l2cap BLE L2CAP API. 

ble_storage.h BLE persistent storage API. 

ble_uuid.h BLE UUID declarations and helper functions. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 81 of 206 © 2022 Renesas Electronics 

8 The Security Framework 

The Security Framework provides a collection of high-level cryptographic algorithms. It is intended to 
allow the application to access the cryptographic algorithms. It follows a layered software architecture 
approach that consists of the LLDs of the hardware cryptographic engines, the system services and 
adapters that provide a higher level API for using the engines and the algorithm implementations. 
The layered architecture is depicted in Figure 30. 

 

Security framework architecture: 
 

Application

Cryptographic Algorithms 

HMAC-SHA256 ECDH

TRNG service Crypto Adapter 

sys_trng ad_crypto 

 LLDs  

hw_trng hw_aes_hash
hw_ecc

hw_ecc_curves
hw_ecc_ucode

HW Engines  

TRNG AES/HASH  ECC 

hw_crypto 

 

 

Figure 30: Security framework architecture 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 82 of 206 © 2022 Renesas Electronics 

8.1 LLDs of the security framework 

8.1.1 TRNG Engine LLD  

The True Random Number Generator (TRNG) engine is a non-deterministic 32-bit random number 
generator. The TRNG LLD provides the API for reading generated random numbers, controlling clock 
enable signals and handling TRNG interrupts. Please refer to the Doxygen documentation of the LLD 
for details of the API. 

8.1.2 AES/HASH Engine LLD 

The AES/HASH engine is a hardware accelerator for AES (Advanced Encryption Standard) 
encryption and HASH functions. It supports ECB, CBC and CTR AES for 128, 192 or 256 bit keys. 
The supported hash functions are MD5, SHA-1 and SHA-2. The AES/HASH LLD provides the API for 
controlling clock enable signals, configuring the engine, and handling its interrupts. Please refer to 
the Doxygen documentation of the LLD for details of the API. 

8.1.3 ECC Engine LLD  

The ECC engine is a hardware accelerator for Elliptic Curve Cryptography (ECC) operations. It 
supports arbitrary operand sizes up to 256 bits and uses a part of the system RAM for exchanging 
input and output data. The ECC LLD provides an API for controlling clock enable signals, configuring 
the engine, handling its interrupts, writing and reading input/output data. Please refer to the Doxygen 
documentation of the LLD for details of the API. 

8.1.4 Crypto engines LLD 

The AES/HASH and ECC engines share a common interrupt source towards the ARM Cortex M0 
(crypto_irq). The Crypto Engines LLD provides an API for managing this common interrupt for each 

of the two engines. Please refer to the Doxygen documentation of the LLD for details of the API. 

8.2 TRNG service 

The TRNG service is a system service for providing random numbers while minimizing the power 
consumption due to the TRNG engine. It provides an API for reading one or multiple 32-bit numbers 
or bytes. Please refer to the Doxygen documentation of the service for details of the API. 

8.3 Crypto adapter 

The crypto adapter is a module that guarantees exclusive access to each of the cryptographic 
engines (AES/HASH and ECC). It also prevents the system from going into sleep mode while a task 
has acquired one of the engines for performing cryptographic operations. Finally, it provides a 
mechanism for event notification related to the engines' operation, thus allowing a task to block until 
an operation is completed. 

The crypto adapter is also the module that allocates and configures the system RAM block that is 
needed by the ECC engine and loads the ECC microcode whenever it is necessary. 

The use of the crypto adapter by a task follows the sequence shown in Figure 70. When task has 
acquired the resource via the adapter it can then directly call the relevant LLD APIs. When it is 
finished it must release the resource through the adapter so that any other tasks with pending 
acquisition requests can use it.  

It is possible to reduce the code size of the crypto adapter as an optimization in the use case of only 
one task needing to access the resource or when the application uses only one of the two 
cryptographic resources. This is achieved through specific configuration macros that can be found in 
the adapter's header file located in the <sdk_root_directory>/bsp/adapters/include/ folder. 

Please note that the BLE framework is one of the users of the ECC engine. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 83 of 206 © 2022 Renesas Electronics 

Please refer to the Doxygen documentation of the crypto adapters for details of the API and 
application examples. 

8.4 Cryptographic algorithms 

A set of high-level security-related cryptographic algorithm implementations are provided in folder 
<sdk_root_directory>/sdk/interfaces/crypto/include. These implementations hide the details 

of the lower layers of the security framework architecture and provide an easy to use API. 

8.4.1 Hash-based Message Authentication Code (HMAC) 

The hash-based message authentication code (HMAC) is a specific type of message authentication 
code algorithm that involves the use of a specific cryptographic hash function. The process of 
generating an HMAC and then validating it at the receiver is shown in Figure 31 and further details 
on the algorithm can be found in [5] and [6]. The SmartSnippetsTM DA1468x SDK provides an 
implementation of a SHA256 based HMAC, the API of which can be found in 
<sdk_root_directory>/sdk/interfaces/crypto/include/crypto_hmac.h. The API is fully 

documented in Doxygen and provides examples of use. 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 84 of 206 © 2022 Renesas Electronics 

DEVICE_1 DEVICE_2

HMAC

KEY K

Agreed key K

Message

HMAC

MAC A

Message

HMAC KEY K

MAC B

MAC A = = MAC B

TRUE FALSE

Message
Accepted

Message
Rejected

 

Figure 31: HMAC algorithm 

8.4.2 Elliptic Curve Diffie-Hellman (ECDH) 

Elliptic Curve Diffie-Hellman is an elliptic curve variant of the Diffie-Hellman algorithm. It allows two 
parties to generate a common shared secret by exchanging public keys over an insecure channel, 
after agreeing to use a common set of domain (curve) parameters, as shown in Figure 32. More 
information about ECDH with ECC can be found in [7]. Curve25519 is a specific Diffie-Hellman 

function that allows fast and secure implementations of ECDH. More details about Curve25519 can 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 85 of 206 © 2022 Renesas Electronics 

be found in [8].The SmartSnippetsTM  DA1468x SDK provides an implementation of ECDH in 
<sdk_root_directory>/sdk/interfaces/crypto/include/crypto_ecdh.h. The curves supported 

currently are secp192r1, secp224r1, secp256r1 and Curve25519. It is possible to reduce the code 
size of the ECDH by configuring specific macros regarding the use of Curve25519. For more details 

you can refer to the Doxygen documentation that includes also examples of usage.  

Note 7 That the shared secret obtained with the ECDH key agreement protocol should not be used directly. 
Instead it should be passed through some form of key derivation function (KDF). The SmartSnippetsTM 
DA1468x SDK security framework does not currently provide KDF implementations. 

DEVICE_1 DEVICE_2
Agreed domain parameters 
of elliptic curve (G is the 
curve’s generator point). 

ECDH

GENERATE SECRET 
KEY dA

GENERATE SECRET 
KEY dB

GENERATE PUBLIC KEY QLA
 QLA = dA x G

GENERATE PUBLIC KEY QLB
 QLB = dB x G

GENERATE  SHARED SECRET 
KEY

S = dA x QLB

GENERATE  SHARED SECRET 
KEY

S = dB x QLA

 

 

Figure 32: ECDH algorithm 

  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 86 of 206 © 2022 Renesas Electronics 

9 System Management 

The DA1468x has a number of independent power domains which are shown in Figure 33 that can 
be switched off to minimize power consumption. 

 

Figure 33: DA1468x Power Domains 

The Clock and Power Manager (CPM) is responsible for managing these power domains, putting the 
system into sleep, handling the wake-up and providing the application tasks with a seamless way to 
control all system clocks. These are described in detail in the following sub-sections. 

9.1 Power Modes 

DA1468x supports the following power states (modes): 

 Active, 

2. Idle, 

3. Extended sleep, 

4. Hibernation. 

In Active mode, both System (PD_SYS) and Peripheral (PD_PER) power domains remain active. The 

BLE MAC (PD_BLE) and the Radio (PD_RAD) power domains may or may not remain active while the 

ARM Cortex M0 processor is able to execute code.  

Idle mode is identical to Active mode, except that the ARM Cortex M0 core is executing a WFI() 

instruction which is just waiting for an interrupt to restart code execution. This interrupt may be an 
external one or simply the internal tick interrupt originating from the system’s clock. Idle mode offers 
significantly lower power consumption than the Active one. 

When in Extended Sleep mode all power domains are powered down except for the Always-ON 
(PD_AON) domain. The PD_AON domain remains active to supply power to the blocks that can wake the 

system up, such as the BLE timer, the wake-up controller etc. The XTAL16M is stopped with only the 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 87 of 206 © 2022 Renesas Electronics 

low power clock remaining operational and the configured retained RAM blocks (Section 13.3) which 
retain data or in certain cases, code during extended sleep. 

Hibernation mode bears two significant differences to Extended Sleep mode: 

 Retained RAM is also powered down. 

 The next wakeup event will internally generate a reset signal.   

The first two modes, Active and Idle are categorized as power-up modes, during which the system is 
fully functional. The other two modes, Extended Sleep and Hibernation are categorized as power-
down modes, during which the system is sleeping and thus consuming significantly less power. 

9.2 Wake-up Process 

9.2.1 Wake-up modes 

Two wake-up modes are supported: 

 Resume the OS without waiting for the XTAL16M to settle. This is the default setting. 

 Resume the OS only after the XTAL16M has settled. This mode ensures that the application will 

run using the high-precision clock.  

If any task that requires an accurate clock can be blocked until the XTAL16M clock becomes available, 

using the default setting is always recommended. Resuming the OS without waiting for the XTAL16M 

to settle ensures the lowest possible power consumption in typical applications. This is possible since 
there are tasks which only require RC16 to run and so they can finish earlier. This allows the system 

to return to Sleep mode with minimal delay. 

9.2.2 Wake-up events 

When in power-down mode, DA1468x can wake-up in two ways: 

 Synchronously, from the Timer1 or the BLE timer in Extended Sleep mode only. 

 Asynchronously, from the Wake-up timer or the VBUS interrupt. 

Certain applications require the system to exit Sleep mode to serve an OS Timer or a BLE event. If 
these are time-based events the low-power clock must be available during Sleep mode. 
Synchronous wake-up however is only supported in the Extended Sleep mode.  

9.3 Sleep architecture 

The Sleep architecture design is built around the following principles:  

 The system must be able to wake up synchronously to serve OS and BLE events. 

 The requirements of OS and BLE events may be different. Specifically, BLE events require the 
XTAL16M to have settled and be set as the system clock. On the other hand, an OS event may or 

may not have such requirement. For instance, an OS task that needs to read a value from a 
sensor via the I2C interface does not require the XTAL16M clock. However, if the OS task uses 

the UART to read the sensor then the XTAL16M is mandatory. 

 The system must be able to wake-up asynchronously. 

 The process of switching between Sleep and Wake-up modes should be both simple and 
deterministic. 

 The Clock and Power Manager (CPM) must control only the System and the Peripherals power 
domains. The BLE and the Radio power domains must be controlled independently by the BLE 
driver. 

 No error will be introduced by the software architecture to the low power clock other than that 
caused by the inherent physical characteristics of the external crystal (in the case of XTAL32K) or 

the RCX. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 88 of 206 © 2022 Renesas Electronics 

There are two sources that control the synchronous system wake-up, the OS and the BLE. The 
implementation should use a single timer to wake-up the system, regardless of which source it 
serves. This is to ensure that statements 4 and 6 of the previous list are covered. Since the BLE 
timer is not accessible when the BLE is powered-down, Timer1 becomes the only available option. 

The implementation of Timer1 facilitates a system wake-up process with enough time for both BLE 
initiation and XTAL16M settling. When an XTAL 16RDY interrupt arrives, XTAL16M is set as the system 

clock and BLE wake-up takes place. Provided that the only task of BLE_LP_ISR is to power-up the 

BLE core, the necessary BLE_WAKEUP_LP interrupt is programmed to occur in a time window in which 

the BLE core should be already functional.     

The CPM prevents the system entering Sleep mode when the BLE power domain is still active. Only 
after the BLE completes event handling and the existing BLE driver puts the BLE power domain into 
power down, will the CPM take over and put the whole system in Sleep mode. To ensure that the 
system will exit Sleep mode, the CPM calculates the next wake-up time. A certain time-frame which 
is defined as the maximum sleep time, may be applied prior to servicing the next synchronous event. 
To correctly program the sleep time, the CPM takes into account which OS or BLE event should be 
considered as the next wake-up source. XTAL16M settling time is not included in the calculation when 

an OS event wakeup is expected, only in the case of a BLE wakeup event. Possible overlaps of OS 
and BLE events are also taken into consideration.  

 

Figure 34: Synchronous BLE event 

Figure 34 presents a typical scenario, where the system wakes-up for servicing a BLE event. The 
interrupts along with the system state each one triggers are clearly depicted: 

 After SWTIM1_IRQn interrupt, the system wakes-up and the clock is RC16. 

  XTAL16M settling time window. During this time, the system clock switches back to XTAL16M (or 

PLL) from RC16. 

 Using a BLE_WAKEUP_LP_IRQn interrupt, the BLE notifies the system that it has woken-up and is 

now available. 

 The BLE core is active when a BLE_SLP_IRQn interrupt occurs. 

 BLE goes to power-down after informing the CPM of the next wake-up time (Tw). 

 Inactive Period.  

The inactive period is calculated by the CPM based on the time that BLE is scheduled to wake-up. 
By the time the next BLE_WAKEUP_LP_IRQn arrives, the XTAL16M must have already settled and the 

clock switching from RC16 to XTAL16M must have been completed. 

This scenario can be extended to include a wake-up from an asynchronous request, where the 
system is triggered by a request originated from the wake-up controller. In such case, the system is 
solely based on the RC16 clock, therefore doesn’t involve the XTAL16M. After the interrupt has been 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 89 of 206 © 2022 Renesas Electronics 

handled, the CPM puts the system back into Sleep mode by repeating the same process used in the 
synchronous case.  

 

Figure 35: Asynchronous BLE event 

Figure 35 presents the wake-up and sleeping process during an asynchronous event. 

 After SWTIM1_IRQn interrupt, the system wakes-up and the clock is RC16. 

 XTAL16M settling time window. During this time, the system clock switches back to XTAL16M (or 

PLL) from RC16. 

 Using a BLE_WAKEUP_LP_IRQn interrupt, the BLE notifies the system that has woken-up and is 

now available. 

 The BLE core is active when a BLE_SLP_IRQn interrupt occurs. 

 BLE goes to power-down after informing the CPM of the next wake-up time (Tw). 

 Inactive Period. 

 A WKUP_GPIO_IRQn interrupt is received by the system. During inactive period, the clock is set to 

RC16. 

 After serving the asynchronous request the CPM puts the system back to Sleep mode. However, 
the time to wake up is not Tw any more. The CPM must recalculate the time window based on the 

next scheduled event when BLE needs to be active. The new value is depicted as Tw1 in Figure 

35.  

To ensure correct operation it is necessary for the CPM to manage all the requirements of the 
various subsystems of DA1468x. The driver Adapters are designed to simplify the operation of the 
CPM in managing the sleep requirements of all the drivers in the system. 

The Adapter for each driver implements a layer between the application and the low level hardware 
drivers. They control the tasks’ access to the resource so that multiple tasks can safely use the 
resource. The sharing of a resource between multiple tasks is illustrated Figure 70.  

The Adapter is also responsible for handling the power management for the driver. It will initialize the 
hardware resource during wake-up and deal with the special case where the resource cannot be fully 
operational until the XTAL16M is available. In this case the Adapter can handle separately the partial 

initialization via the callback ad_wake_up_ind and the full initialization of the resource via the callback 

ad_xtal16m_ready_ind. 

The Adapter(s) register to the CPM so that the CPM can inform them about the progress of wake-up 
or sleep entry. The API that is provided to the Adapters for this purpose is: 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 90 of 206 © 2022 Renesas Electronics 

Table 27 : API for the adapters 

API for the adapters Description  

pm_id_t pm_register_adapter(const 

adapter_call_backs_t *cb) 
Registers an Adapter to the CPM. 

void pm_unregister_adapter(pm_id_t id) Unregisters an Adapter from the CPM. 

 

At registration, the Adapter provides its APIs for communication with the CPM. This API is listed in 
Table 28  and used by Adapters that are implemented as part of the SmartSnippetsTM  DA1468x 
SDK. 

Table 28: API for the communication with the CPM 

API for the communication with the CPM Description  

bool ad_prepare_for_sleep(void) The CPM inquires the Adapter about whether the 

system can go to sleep. 

void ad_sleep_canceled(void) If an Adapter rejects sleep, the CPM calls this function 
to resume any Adapters that have previously accepted 

it. 

void ad_wake_up_ind(bool) The CPM informs the Adapter that the pad latches are 
to be removed so that it re-initializes the GPIOs that 
are used by the hardware resource it controls and, 

depending on the resource type, the resource itself.    

void ad_xtal16m_ready_ind(void) The CPM informs the Adapter that the XTAL16M is 

ready and is or may be set as the system clock. 

The Adapter also informs the CPM about the time it needs to prepare the hardware resource for 
power-down. The CPM uses this information when it executes the sleep entry procedure. This time 
will be zero in general but there are exceptions (e.g. the UART interface). 

When the CPM is invoked to put the system to sleep (the OS is idle) and the BLE is powered-down, 
the CPM executes the following steps: 

 Calculates the time when the OS needs to wake-up to serve its next scheduled event. 

 Calculates the time when the BLE needs to wake-up to serve its next scheduled event. 

 Determines the maximum sleep time that is allowed based on the results from Steps 1 and 2. 

 If the calculated sleep time is larger than a pre-set minimum sleep time below which sleeping is 
not power efficient (dg_configMIN_SLEEP_TIME), then the CPM informs all the registered 

Adapters about its intention to put the system in power-down by calling each Adapter’s 
ad_prepare_for_sleep() function. The return value of this function allows the Adapters to tell 

the CPM that it cannot enter sleep as it still has work to do. 

 If all Adapters confirm the power-down entry, the CPM continues and puts the system into sleep. 

 If at least one Adapter rejects the power-down entry, the CPM informs the Adapters that have 
already accepted it, to resume normal operation and puts the system into Idle mode. 

During wake-up, CPM and Adapters interact twice: 

First, when it prepares the system for power-up the CPM activates the Peripherals power-domain 
where it calls each Adapter’s ad_wake_up_ind() to inform them of the imminent removal of the pad 

latches.  

Second, when the XTAL16RDY_IRQn ISR is called after the XTAL16M has settled it calls each 

Adapter’s ad_xtal16m_ready_ind() to inform them that the clock is ready.  

Any Adapters such as the UART which need the high precision clock will perform the initialization of 
the resource at this point. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 91 of 206 © 2022 Renesas Electronics 

 

Figure 36: CPM and Adapter Interaction - an Adapter aborts sleep 

The interaction between the CPM and the Adapters is shown in Figure 36. According to the scenario 
presented there, a system that consists of the OS, the CPM and two Adapters (Adapter X and UART 
Adapter) is about to switch mode, from Active to Sleep. The UART module includes two submodules, 
UART Adapter and UART LLD, which exchange hardware status messages [e.g. 
hw_uart_receive()] while waiting for an OS-originated event.  

To enter power-down OS_Idle() issues a “Enter Sleep Mode Req” [pm_sleep_enter()] to the CPM. 

The CPM will first calculate sleep time and if sleep is possible will contact the first Adapter in the 
system, Adapter X, and send it a “Prepare for Sleep Req” [*ad_prepare_for_sleep()]. Adapter X 

accepts the power-down, starts preparing for it and responds by a simple “TRUE” response. Then 
the CPM calls the next Adapter in sequence, the UART. This adapter tries to deactivate the UART 
block unit, by notifying UART LLD via a “UART HW Sleep Req” [hw_uart_rx_off()]. However, 

during this process a character is received in the UART LLD, the Flow OFF check fails and the UART 
Adapter receives a “FALSE” notification which is forwarded to the CPM. After receiving the “FALSE” 
notification, CPM contacts Adapter X to inform that the system will remain in power-up state by 
sending a “Cancel Sleep” message [*ad_sleep_canceled()]. Finally, the system is placed in Idle 

state. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 92 of 206 © 2022 Renesas Electronics 

 

Figure 37: CPM and Adapter Interaction during Sleep/Active mode switch 

Figure 37 illustrates the interaction of the CPM with the Adapters of the previous example (Figure 
36), in a successful sleep entry and a subsequent wake-up from an external event (the CTS pin 
changes state). In this example, both Adapter X and the UART Adapter accept the power-down so 
the CPM puts the system into the proper power-down state. While sleeping, a transmit request from 
the remote host is issued and the system wakes-up. Before removing the pad latches, the CPM calls 
the ad_wakeup_ind() of both Adapters to perform partial or full initialization. The UART Adapter 

detects the remote host’s request and instructs the CPM not to put the system back to sleep until the 
XTAL16M has settled and the UART block is turned-on by calling the pm_defer_sleep_for(). This is 

the simpler approach as the CPM will immediately put the system to Idle state if there is nothing else 
to be done. If the call to pm_defer_sleep_for() is omitted then the system will be put into Idle state 

but following a more complex procedure. This procedure involves the CPM contacting the Adapters, 
the UART Adapter will deny the sleep request and the CPM will call the Idle WFI() after cancelling 

sleep for Adapter X. When the XTAL16M settles the CPM calls the ad_xtal16m_ready_ind() of both 

Adapters. The UART Adapter will check whether the system clock is the high precision clock and, if 
not, request it be changed. This is completed without delay. Then it can proceed with the initialization 
of the UART hardware. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 93 of 206 © 2022 Renesas Electronics 

9.3.1 BLE Wake-up 

Special code is included in the SmartSnippetsTM  DA1468x SDK to ensure the proper wake-up of the 
BLE core. If a problem occurs, then an assertion is triggered. Two macros can be used to allow a 
percentage of such errors to occur without triggering an assertion: BLE_MAX_MISSES_ALLOWED and 

BLE_MAX_DELAYS_ALLOWED. Before explaining how these macros operate, a discussion about the BLE 

sleep and wake-up procedures is necessary. 

During the BLE sleep preparation step the software calculates the time (time=tS) that the BLE core 

can be in sleep mode (or, in other words, the time when the BLE core must wake-up). The software 
then programs this time to the BLE core and instructs it to enter power-down state. Then the BLE 
core switches from the 16MHz clock to the low power clock and enters power-down state. While in 
this mode, the BLE power domain can be turned off to save power. 

The wake-up sequence of the BLE core consist of the following steps (please refer also to the 
datasheet): 

● BLE_WAKEUP_LP_IRQ occurs at a predefined number of clocks (time = tW) before the time (time = 

tS) when the BLE core must wake-up. The term "wake-up" refers to the BLE core being powered 

up and running at 16MHz. So, the service routine of this interrupt is responsible for powering-up 
the BLE power domain and starting the fast clock before the time tS. It then waits for the 

BLE_SLP_IRQ to occur to pass the execution to its handler. 

● BLE_SLP_IRQ occurs at time tS or later. Ideally, if no delays have occurred then BLE_SLP_IRQ will 

occur exactly at tS. If, for any reason, the wake-up of the BLE core was delayed then 

BLE_SLP_IRQ will occur later than tS. When BLE_SLP_IRQ occurs the BLE core automatically 

switches from the low power clock to the 16MHz clock and enters power-up state. The ISR is 
responsible for performing clock compensation. This is readjusting the time counters of the BLE 
core (slot and uses timer) to take into account the sleep period (tS or a time period larger than 

tS).  

The time tW is calculated to take account of potential normal delays in the system (i.e. a critical 

section that runs with the interrupts disabled) and make sure they do not affect the wake-up of the 
BLE core. So, by default, tW is larger than the "optimal" setting. Therefore, the service routine of the 

BLE_WAKEUP_LP_IRQ assumes that the wake-up of the BLE core will have been completed well before 

the BLE_SLP_IRQ is triggered. Based on this assumption, if the BLE_SLP_IRQ hits right after the wake-

up of the BLE core, there is a high chance that the servicing of the BLE_WAKEUP_LP_IRQ has been 

delayed. This case is checked in the ble_lp_isr() when the code is built in DEVELOPMENT_MODE. 

Normally, an assertion would hit to indicate this "error". However, the macro 
BLE_MAX_MISSES_ALLOWED can be used to allow for a small percentage of such delays. This can be 

used in applications where the maximum time that the system runs with the interrupts disabled, 
blocking the servicing of the BLE_WAKEUP_LP_IRQ, is larger than usual. The percentage is calculated 

as: 

 misses_allowed = (BLE_MAX_MISSES_ALLOWED / BLE_WAKEUP_MONITOR_PERIOD) * 100% 

After the BLE_WAKEUP_LP_IRQ ISR, the BLE_SLP_IRQ ISR executes.  slp_isr() checks whether the 

BLE core was woken up in time or the wake-up was delayed. This is done by checking the 
programmed sleep time tS with the actual sleep time tA. If tA > tS then the wake-up was delayed 

by tA-tS low power clock cycles. This is as error as in most cases, it results in missing the BLE event 

that the system woke-up for. This case can happen if the interrupts were disabled for quite a long 
time. In that case, ble_wakeup_lp_isr interrupt would have been latched but its servicing would 

have been deferred until the interrupts were enabled. During this period, the BLE core would be 
sleeping. So, after powering the BLE core up, the BLE_SLP_IRQ would hit but the actual sleep time 

would have been larger than the programmed time. The macro BLE_MAX_DELAYS_ALLOWED can be 

used to allow for a small percentage of such delays in the same way as the macro 
BLE_MAX_MISSES_ALLOWED is used. The percentage is calculated as: 

 delays_allowed = (BLE_MAX_DELAYS_ALLOWED / BLE_WAKEUP_MONITOR_PERIOD) * 100% 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 94 of 206 © 2022 Renesas Electronics 

BLE_WAKEUP_MONITOR_PERIOD is set to 1024 by default. 

9.4 Power configuration 

The term “power configuration” is used to denote the configuration of the system during sleep. In 
power-up modes, the system uses the DCDC converter as the main power supply (unless otherwise 

configured) as this setup offers lower power consumption.  

Although the power setup is quite straightforward for the power-up modes, this is not the case for the 
power-down modes as there are various options for providing power to the power rails (see Figure 
38). More specifically, 

● The 3.3V output can be driven by the LDO_ret (low power, low driving strength) or the 

LDO_VBAT_RET (high driving strength but resampling is required periodically to keep the correct 

voltage level, which increases power consumption). 

● The 1.8V output for the Flash can be provided by the LDO_IO_RET or the DCDC. Note that the 

LDO_IO_RET is powered from the 3.3V rail. Note that the DCDC requires periodic recharging to 

keep the outputs constant, which increases power consumption. 

● The 1.8V output for the external peripherals can be provided by the LDO_IO_RET2 or the DCDC. 

Note that the LDO_IO_RET2 is also powered from the 3.3V rail. Note that the DCDC requires 

periodic recharging to keep the outputs constant, which increases power consumption. 

● The 1.4V output is not provided during sleep. 

The low power clock is required to be active during sleep to be able to wake-up the part of the 
system that does the resampling of the bandgap or restoring the energy of the inductor of the DCDC. 

 

 

Figure 38: Power Management Unit 

VBUS
VBAT1

LDO-

VBAT

3.3V

Digital core

Dig.

Wake-up

ON/OFF black blocks

ON/OFF green blocks

V12

LDO_core

(by-pass)

1.2V

SIMO

Buck

DCDC
LX

LDO-

USB

3.3V

CCCV

charger

LDO_ret

(clamp ~3V)

Low power

LDO_sleep

(clamp ~1V)

Low power

LDO_ret

(clamp ~3V)

Low power

Radio

USB

Dp

Dn

Vsys (1.7V - 3.3V)

Vcore (1.2V)

Vflash (1.8V)

Vradio (1.4V)

LDO_IO Band-gap

RC16

RCX

3x

Open-

drain

Vcont (<3.3V)

USB-

Charge

-detect

XTAL16M

XTAL32k

LDO-

VBAT_

RET

LDO_IO

_RET

VDD1V8

VDDIO QSPI-I/O

LDO_radio

(by-pass)

1.4V

V33

Vsys

GPIOs

SOCP

SOCN

(4.2V - 5.75V)

75mA/2mA

50mA

0.47uH

4.7uF

10uF

4.7uF

0.1Ohm

(1.7V - 4.5V)

FUEL 

GAUGE

4.7uF

20mA

LY

V14

Vcore

10uF

VDD1V8P

LDO_IO2
LDO_IO

_RET2

Vext (1.8V) 75mA/2mA

RC32

50mA/1mA

VBAT2

4.7uF
1uF

LDO

1V2

V14_RF

ADC,

PLL
LDO

1V2



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 95 of 206 © 2022 Renesas Electronics 

In Figure 38, the red color is used for the Sleep state and the green for the Active state. 

9.4.1 Recommended Power-Down Power Configuration  

 In the recommended power-down Power Configuration the 3.3V rail is powered via the 
LDO_VBAT_RET. In this case it is required to bring-up part of the system periodically to resample 

the bandgap. The 1.8V for the Flash and for the external peripherals are provided via the 
LDO_IO_RET and LDO_IO_RET2 respectively. 

 

Figure 39: Recommended Power configuration  

The SmartSnippetsTM  DA1468x SDK provides the following configuration settings: 

Table 29: Configuration settings  

Available configuration settings Description  

dg_configSET_RECHARGE_PERIOD This is the period of the Sleep Timer that is used to bring-up 
part of the system periodically to resample the bandgap 
voltage or to restore the energy of the inductor of the DCDC. 

dg_configPOWER_FLASH If set to ‘1’ then the 1.8V for the external QSPI Flash is 

supplied. 

dg_configFLASH_POWER_DOWN If set to ‘1’ then the QSPI Flash is put to “Power Down” for 

the duration of the sleep period. 

dg_configFLASH_POWER_OFF If set to ‘1’ then the QSPI Flash is powered-off during sleep 
(the 1.8V is turned-off during sleep). Note that 
dg_configFLASH_POWER_DOWN has priority over 

dg_configFLASH_POWER_OFF. If both are set, then the QSPI 

Flash will be put to “Power Down” mode while sleeping. 

dg_configPOWER_EXT_1V8_PERIPHERALS If set to ‘1’ then the 1.8V for the external peripherals is 

supplied. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 96 of 206 © 2022 Renesas Electronics 

9.4.2 System Clock 

The clock tree diagram of the DA1468x is depicted in Figure 40.

 

Figure 40: Clock tree diagram 

The clock manager, which is part of the CPM, has the following characteristics: 

● Performs the clock initialization of the system after boot. 

● Controls only the “system level” clocks. The driver of each hardware resource (or the Adapter, if 
one exists) is responsible for controlling the clock setting for the resource. In this context, the 
CPM controls the “system clock”, which is the green line in the figure above, the AHB and APB 
clocks, which are the blue lines at the top of the figure, and the low power clock, which is the 
black line. 

XTALOSC

16M/32M 

RC16M 

OSC

2

3

1

0

PLL96M

CLK_CTRL_REG[SYS_CLK_SEL]

RC32K 

OSC

RCX

OSC

XTAL32K 

OSC

0

1

2

CLK_CTRL_REG[CLK32K_SOURCE]

3

RF_ADC_div

ahb_clk

sys_clk

DivN

Analog PHY

Digital PHY/ 

Coex

BLE Core

USB Controller

Divide by

BLE_DIV

CLK_RADIO_REG[BLE_ENABLE]

Timer0

Timer1

Breath Timer

WDOG Timer

QSPI Controller

PCM/I2S

PDM

SRC

SOC

ADC

I2C/I2C2

SPI/SPI2

QUAD Decoder

KEYB SCAN

IR Generator

TRNG

AES/HASH

ECC

ARM M0

OTP Controller

APB Interfaces

Wake UP

CLK_TMR_REG[TMR2_CLK_SEL]

Timer2

0

1

Divide by

TMR2_DIV

CLK_TMR_REG[TMR2_ENABLE]

CLK_TMR_REG[TMR1_CLK_SEL]

0

1

Divide by

TMR1_DIV

CLK_TMR_REG
[TMR1_ENABLE]

CAPTIM_CTRL_REG[CAPTIM_SYS_CLK_EN]

0

1

TIMER0_CTRL_REG[TIM0_CLK_SEL]

0

1

Divide by

TMR0_DIV

CLK_TMR_REG
[TMR0_ENABLE]

CLK_TMR_REG[TMR0_ENABLE]

Divide by 

32 (fixed)

Divide by

QSPI_DIV

Divide by

PCM_DIV

PCM_DIV_REG[CLK_PCM_EN]

PCM_DIV_REG[PCM_SEC_SEL]

Divide by

PDM_DIV

Divide by

SRC_DIV

Divide by

16 (fixed)

CLK_PER_REG[ADC_SEL_SEL]

0

1

0

1

UART/UART2
CLK_PER_REG[UART_ENABLE]

CLK_PER_REG[I2C_CLK_SEL]

0

1

CLK_PER_REG[I2C_ENABLE]

CLK_PER_REG[SPI_CLK_SEL]

CLK_PER_REG[SPI_ENABLE]

0

1

Divide by

KBSCN_CLKDIV

CLK_PER_REG[KBSCAN_ENABLE]

CLK_PER_REG[KBSCAN_CLK_SEL]

0

1

Divide by

SPI_CLK

Divide by

HCLK_DIV

Divide by

PCLK_DIV

CLK_AMBA_REG
[TRNG_CLK_ENABLE]

CLK_AMBA_REG
[AES_CLK_ENABLE]

CLK_AMBA_REG
[ECC_CLK_ENABLE]

CLK_PER_REG
[QUAD_ENABLE]

CLK_PER_REG
[IR_CLK_ENABLE]

CLK_AMBA_REG
[OTP_ENABLE]

Controlled by HW.
Automatically selects lp_clk 
when Deep/Sleep Mode activated

Lp_clk

ahb_clk

divN_clk

Automatically adopts the division if PLL 
or XTAL16M is used. Program 
CLK_CTRL_REG[DIVN_XTAL32M_MODE] 
in case of a 32MHz crystal used.

CLK_RADIO_REG[RFCU_ENABLE]

CLK_AMBA_REG[QSPI_ENABLE]

Divide by 2
14

0

1
CLK_CTRL_REG[RUNNING_AT_32K]

Divide by

RFCU_DIV

Divide by

2 (fixed)

CLK_CTRL_REG[USB_CLK_SRC]

0

1

0

1Div by

2 

CLK_CTRL_REG[PLL_DIV2]

D
iv

 b
y

2 

0

1
CLK_CTRL_REG
[XTAL32M_MODE]

0

1
Div by

2 

CLK_CTRL_REG[XTAL32M_MODE]

DCDC

BOD
Divide by 

16 (fixed)

CLK_TMR_REG[TMR0_CLK_SEL]

0

1



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 97 of 206 © 2022 Renesas Electronics 

● After wake-up, the system runs by default using the RC16 clock. The clock manager switches 
back to the last configuration set by the application (system clock type and divider, and AHB and 
APB dividers) either immediately if possible, or after the XTAL16M has settled. This procedure is 
transparent to the application tasks. The CPM unblocks any task that has blocked waiting for the 
high precision clock. 

● Handles requests to switch to another clock configuration. A request may be denied if this switch 
affects a hardware resource that is active (i.e. a hardware timer). 

● Conditionally lowers the clocks (using the 1:N dividers for the system clock and the AHB and 
APB clocks) automatically when the system enters Idle mode. This procedure is not performed if 
the lower clock frequencies affect a hardware resource that is active. 

● Hides the complexity of the clock tree from the applications by offering a unified API for clock 
control. 

● Offers the application tasks the ability to switch to another clock configuration during runtime, if 
possible. The low power clock cannot be changed during runtime. 

 

The clock manager API consists of the following functions: 

Table 30: Functions in Clock Manager API 

Function Description 

bool cm_sys_clk_set(sys_clk_t type) Set the system clock. The available options 
are: RC16, XTAL16M (or XTAL32M), PLL48 and 

PLL96. The low power clock cannot be set as 

the system clock. 

bool cm_cpu_clk_set(cpu_clk_t clk) Set the system clock and the AHB divisor such 

that the requested clock frequency is 

achieved. 

void cm_apb_set_clock_divider(apb_div_t div) Set the clock divisor for the APB clock. The 

actual frequency depends on the system clock 

used. 

bool cm_ahb_set_clock_divider(ahb_div_t div) Set the clock divisor for the AHB clock. The 

actual frequency depends on the system clock 

used. 

_get_ and _fromISR variants of the above _set_ functions are also 

available. 

void cm_lp_clk_init(void) Initialize the Low Power clock. 

bool cm_sys_clk_set(sys_clk_t type) Set system clock. 

bool cm_lp_clk_is_avail(void) Check if the Low Power clock is available. 

void cm_clk_init_low_level(void) Execute clock initialization after power-up. 

void cm_sys_clk_init(sys_clk_t type) Execute clock initialization after the OS has 

started. 

9.4.2.1 XTAL32M support 

Note 8 XTAL32M support is available only for DA14683 devices – it is not supported for DA14681 
devices. 

In order to set XTAL32M clock as the main system clock user must follow next steps: 

1. Update clock configuration in the application’s (e.g. pxp_reporter) custom_config_qspi.h header 
file by defining: 

#define dg_configEXT_CRYSTAL_FREQ   EXT_CRYSTAL_IS_32M 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 98 of 206 © 2022 Renesas Electronics 

2. Update clock initialization in the application’s main function (in main.c file). The following 

functions must be altered as: 

 

cm_sys_clk_init(sysclk_XTAL32M) 

 

cm_sys_clk_set(sysclk_XTAL32M) 

 

9.5 Charger configuration 

Three different charging configurations are currently supported by the SmartSnippetsTM  SDK. More 
details on charging can be found in [13]. The available configuration settings for the charger are: 

● No Charging 

● Charging with default parameters 

● Charging with custom parameters 

The configuration settings for the integrated charger of Li-ion batteries can be found in 
sdk/config/bsp_defaults.h. These parameters should not be modified in-place but overridden in 

the project specific config/custom_config_qspi.h folder if needed. Table 31 shows the available 

settings for the charger. 

Table 31: Configuration settings for integrated charger of Li-ion batteries  

Configuration settings Description  

dg_configUSE_USB_CHARGER It enables / disables the use of the Charger from the 

application. 

dg_configUSE_USB_ENUMERATION It controls whether enumeration with the USB Host will 

take place or not. 

dg_configALLOW_CHARGING_NOT_ENUM It controls whether the Charger will start charging 
using charge current up to 100mA until the 

enumeration completes. 

dg_configUSE_NOT_ENUM_CHARGING_TIMEOUT According to the USB Specification, there is a time 
limit that a device, which is connected to the USB bus 
but not enumerated, can draw power. This 
configuration setting controls whether the Charger will 

respect this time limit or not. 

dg_configPRECHARGING_INITIAL_MEASURE_DELAY This is the time to wait before doing the first voltage 
measurement after starting pre-charging. This is to 
ensure that an initial battery voltage overshoot will not 
trigger the Charger to stop pre-charging and move to 

normal charging. 

dg_configPRECHARGING_THRESHOLD The voltage threshold below which pre-charging starts. 

dg_configCHARGING_THRESHOLD The voltage threshold at which pre-charging stops and 

charging starts. 

dg_configPRECHARGING_TIMEOUT The maximum time that pre-charging will last. If the 
dg_configCHARGING_THRESHOLD is not met within this 

period then charging is stopped. 

dg_configCHARGING_TIMEOUT The maximum time that charging will last. This setting 
covers both the CC and CV phases of charging. 

dg_configCHARGING_CC_TIMEOUT The maximum time that the charging hardware will 
stay in the CC phase. If this period elapses and the 

charging phase is still CC then charging stops. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 99 of 206 © 2022 Renesas Electronics 

Configuration settings Description  

dg_configCHARGING_CV_TIMEOUT The maximum time that the charging hardware will 
stay in the CV phase. If this period elapses and the 

charging phase is still CV then charging stops. 

dg_configUSB_CHARGER_POLLING_INTERVAL While being attached to a USB cable and the battery 
has been charged, this is the interval that the VBAT is 
polled to decide whether a new charge cycle will be 

started. 

dg_configBATTERY_CHARGE_GAP This is the safety limit used to check for battery 

overcharging. 

dg_configBATTERY_REPLENISH_GAP This is the threshold below the maximum voltage level 
of the battery where charging will be restarted to keep 

the battery fully charged. 

dg_configBATTERY_TYPE This is the battery type that is used in the system. 
Valid options are BATTERY_TYPE_LICOO2, 
BATTERY_TYPE_LIMN2O4, BATTERY_TYPE_LIFEPO4, 

BATTERY_TYPE_LINICOAIO2 (charging voltage for all the 

options is 4.2V), BATTERY_TYPE_CUSTOM (charging 

voltage dg_configBATTERY_TYPE_CUSTOM_ADC_VOLTAGE) 

and BATTERY_TYPE_NO_RECHARGE. 

dg_configBATTERY_TYPE_CUSTOM_ADC_VOLTAGE In case of a custom battery, this parameter must be 
defined to provide the charging voltage level of the 
battery (in ADC measurement units). It is used by the 
charger to check if the battery is charged before 

starting charging, possible over-charging etc. 

dg_configBATTERY_CHARGE_VOLTAGE This is the charging voltage setting for the charger 
hardware. See [1], 
CHARGER_CTRL1_REG:CHARGE_LEVEL 

description for more details. 

dg_configBATTERY_CHARGE_CURRENT This is the charging current setting for the charger 
hardware. See [1], 
CHARGER_CTRL1_REG:CHARGE_CUR description 

for more details. 

dg_configBATTERY_PRECHARGE_CURRENT This is the pre-charging current setting for the charger 
hardware. The correlation of settings between the 
configured value and the current is shown in the Table 

33. 

dg_configBATTERY_LOW_LEVEL If not zero, this is the lowest allowed limit of the battery 
voltage. If VBAT drops below this limit, the system 

enters hibernation mode. 

dg_configBATTERY_CHARGE_NTC It controls whether the thermal protection will be 
enabled or not. Using this requires an external 

thermistor. 

9.5.1 No Charging 

To enable the “No Charging” configuration, the user has to set dg_configUSE_USB_CHARGER = 0 in the 

project’s config/custom_config_qspi.h file.  

Note 9 It is important to use this configuration when no battery is attached to avoid any unwanted 
behavior. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 100 of 206 © 2022 Renesas Electronics 

9.5.2 Default Charging 

If no custom parameters are defined in the project’s config/custom_config_qspi.h file then the 

default ones will be used. The default configuration settings for the charger are shown in Table 32.  

Table 32: Charging with default parameters 

Configuration settings Description  

dg_configPRECHARGING_THRESHOLD 2462 (3.006V) 

dg_configBATTERY_TYPE BATTERY_TYPE_CUSTOM && 

dg_configBATTERY_CHARGE_VOLTAGE = 0xA (4.2V) 

dg_configBATTERY_PRECHARGE_CURRENT 18 

dg_configCHARGING_THRESHOLD 2498 (3.05V) 

dg_configBATTERY_CHARGE_CURRENT 2 (30mA) 

dg_configBATTERY_CHARGE_NTC 1 (disabled) 

dg_configPRECHARGING_TIMEOUT 30 * 60 * 100 (30min) 

9.5.3 Custom Charging parameters 

The user may also define custom parameters for the charger. For example, the pxp_reporter demo 

application uses custom charging parameters, as shown in Code 16: Charging with custom 
parameters. These parameters are defined in the application’s config/custom_config_qspi.h  file. 

#define dg_configBATTERY_TYPE                   (BATTERY_TYPE_CUSTOM) 
#define dg_configBATTERY_CHARGE_VOLTAGE         0xA     // 4.2V 
#define dg_configBATTERY_TYPE_CUSTOM_ADC_VOLTAGE        (3439) 
#define dg_configPRECHARGING_THRESHOLD          (2462)  // 3.006V 
#define dg_configCHARGING_THRESHOLD             (2498)  // 3.05V 
#define dg_configBATTERY_CHARGE_CURRENT         4       // 60mA 
#define dg_configBATTERY_PRECHARGE_CURRENT      20      // 2.1mA 
#define dg_configBATTERY_CHARGE_NTC             1       // disabled 
#define dg_configPRECHARGING_TIMEOUT            (30 * 60 * 100)  // N x 10msec 
  
#define dg_configUSE_USB                        1 
#define dg_configUSE_USB_CHARGER                1 
#define dg_configALLOW_CHARGING_NOT_ENUM        1 
#define dg_configUSE_NOT_ENUM_CHARGING_TIMEOUT  0 

Code 16: Charging with custom parameters 

 

Table 33: Pre-charging current settings 

dg_configBATTERY_PRECHARGE_CURRENT setting Pre-charging current (mA) 

16 Reserved 

17 Reserved 

18 1 

19 1.5 

20 2.1 

21 3.2 

22 4.3 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 101 of 206 © 2022 Renesas Electronics 

dg_configBATTERY_PRECHARGE_CURRENT setting Pre-charging current (mA) 

23 Reserved 

24 6.6 

25 7.8 

26 Reserved 

27 11.3 

28 13.3 

29 15.3 

9.5.4 Charger configuration process 

Charger configuration (process) description can be divided into three distinct parts. The first is related 
to the USB configuration, the second to the charging algorithm and the third to the actual charging 
parameters.  

The first part of the Charger configuration process depends on the application capabilities. In Table 
34 below, two typical configurations are listed, one when enumeration is not supported and a second 
when it is supported, i.e. the application includes a USB driver. 

Table 34: Charger - Configuration settings for the USB interface 

Without enumeration 

dg_configUSE_USB_CHARGER 1 

dg_configUSE_USB_ENUMERATION 0 

(or left to the default value) 

dg_configALLOW_CHARGING_NOT_ENUM 1 

This will be the most common setting as it offers the option 

to charge from an SDP port. 

dg_configUSE_NOT_ENUM_CHARGING_TIMEOUT 0 

May be set to 1 if adhering to the USB specification is 
mandatory. Even if it is left as 0 and the SDP port shuts 
down the power after 45 minutes, the charging will simply 

stop. 

With enumeration 

dg_configUSE_USB_CHARGER 1 

dg_configUSE_USB_ENUMERATION 1 

dg_configALLOW_CHARGING_NOT_ENUM 1 

dg_configUSE_NOT_ENUM_CHARGING_TIMEOUT 0 

The configuration of the charging algorithm is more complex as it requires the setting of various 
voltage levels in ADC measurement units1. In Table 35 below, a typical configuration for the charging 
algorithm is listed. 

The mathematical formula used for converting Vbat to ADC is the following: 

y[ADC units] = (4095 * Vbat[Volts]) / 5) 

 

 
1 For a Spreadsheet-based tool that helps calculate the voltage from the ADC value, please contact Dialog customer support.  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 102 of 206 © 2022 Renesas Electronics 

Table 35: Charger - Configuration settings for the charging algorithm 

Configuration settings Values 

dg_configPRECHARGING_INITIAL_MEASURE_DELAY Undefined 

(the default setting is used) 

dg_configPRECHARGING_THRESHOLD 2462 

(3.006V) 

dg_configCHARGING_THRESHOLD 2498 

(3.05V) 

dg_configPRECHARGING_TIMEOUT 30 * 60 * 100 

(30 minutes, the default setting is 15 minutes) 

dg_configCHARGING_CC_TIMEOUT 120 * 60 * 100 

(2 hours, the default setting is 3 hours) 

dg_configCHARGING_CV_TIMEOUT 180 * 60 * 100 

(3 hours, the default setting is 6 hours) 

dg_configUSB_CHARGER_POLLING_INTERVAL 1 * 60 * 100 

(1 minute, the default setting is 1 second) 

dg_configBATTERY_CHARGE_GAP Undefined 

(the default setting of 0.1V is used) 

dg_configBATTERY_REPLENISH_GAP Undefined 

(the default setting of 0.2V is used) 

The final part of the Charger configuration depends on the characteristics of the battery that is used 
in the system. Let’s consider a battery that has the charging profile which is depicted in Figure 41 
with a charging voltage of 4.35V. There are three phases to the charging process.  

● Pre-Charge 

Below 3.0V pre-charging with a very low charging current of 2.1mA is required until the 3.0V level 
is reached.  

● Constant Current (CC) 

The normal charging current of 30mA is applied in the Constant Current phase of the charging 
until the voltage reaches the charging voltage.  

● Constant Voltage (CV) 

The charging current is gradually reduced to keep the normal charging voltage on the battery. 
Charging is considered completed when the charging current drops to 10% of the nominal value, 
i.e. 3mA. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 103 of 206 © 2022 Renesas Electronics 

 

Figure 41: Battery charging profile 

 

The configuration of the charger for this specific battery is listed in Table 36. 

Table 36: Charger – configuration settings for a specific battery 

Configuration settings  Values  

dg_configBATTERY_TYPE BATTERY_TYPE_CUSTOM 

(Since this Li-ion battery has a charging voltage level 

other than 4.2V, this is a custom battery.) 

dg_configBATTERY_TYPE_CUSTOM_ADC_VOLTAGE 3562 

(4.35V) 

dg_configBATTERY_CHARGE_VOLTAGE 0xD 

(the hardware setting for 4.35V) 

dg_configBATTERY_CHARGE_CURRENT 2 

(the hardware setting for 30mA) 

dg_configBATTERY_PRECHARGE_CURRENT 20 

(the setting for 2.1mA) 

dg_configBATTERY_LOW_LEVEL 2496 

(3.05V) 

 

9.5.5 Issues for non-rechargeable batteries  

If the user uses a non-rechargeable battery, header files must be modified. In that case please 
contact Dialog Customer Support. 

If the user uses a USB charger with an invalid battery type such as BATTERY_TYPE_NO_RECHARGE or 

BATTERY_TYPE_NO_BATTERY the compilation will be aborted with an error. When using a non-

rechargeable battery, the Hibernation option is disabled because of low voltage detection. 

I

2.1mA

3mA

30mA

4.35V

3.0V

V

Time

Pre-charging CC phase CV phase



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 104 of 206 © 2022 Renesas Electronics 

9.5.6 Charger related callback functions 

Table 37 below refers to charger related callback functions which can be found in the sys_charger.c 
file located in <sdk_root_directory>\sdk\bsp\system\sys_man. These functions are defined as 

weak (__attribute__((weak)). 

Note 10 These call-backs may be implemented by the application code in order to catch events sent by the 
USB charger. Note that the USB charger task is started before the application task. Thus, these call-
backs may be called before the application task is started. The application code should handle this 
case, if there is a need. For example, a possible implementation of the usb_attach_cb() call-back is 

shown in Code 17: 

/* 
 * PRIVILEGED_DATA bool app_task_is_initialized; 
 * 
 * enum RCV_USB_INDICATIONS { 
 *         RCV_USB_NONE, 
 *         RCV_USB_ATTACH, 
 *         ... 
 * } app_usb_indication; 
 * 
 * void usb_attach_cb(void) 
 * { 
 *         if (app_task_is_initialized) { 
 *                 // Do something 
 *         } else { 
 *                 // Raise a flag for the app to check when started. 
 *                 app_usb_indication = RCV_USB_ATTACH; 
 *         } 
 * } 
 * 
 * void app_task(void *pvParameters) 
 * { 
 *         ... 
 *         switch (app_usb_indication) { 
 *         case RCV_USB_NONE: 
 *                 break; 
 *         case RCV_USB_ATTACH: 
 *                 ... 
 *                 break; 
 *         ... 
 *         default: 
 *                 break; 
 *         } 
 * 
 *         app_usb_indication = RCV_USB_NONE; 
 *         app_task_is_initialized = true; 
 * } 
 * 
 */ 

Code 17: Callback function example to catch events sent by the USB-charger 

 

Table 37: Charger related callback functions 

Function Description  

usb_attach_cb() Callback function used to notify the application task 

that the usb cable has been attached. 

usb_detach_cb() Callback function used to notify the application task 

that the usb cable has been detached. 

usb_start_enumeration_cb() Callback function used to notify the application task 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 105 of 206 © 2022 Renesas Electronics 

Function Description  

that the charger will start to enumerate if possible. This 
means that the dg_configUSE_USB_ENUMERATION flag 

has been set to 1. This also means that the 
dg_configUSE_USB is set to 1 and the USB interface 

will be used for data transfers. 

usb_charging() Callback function used to notify the application task 
that the charger has started the charging procedure 

according to the predefined settings. 

usb_precharging() Callback function used to notify the application task 
that pre-charging has started (the pre-charging current 
has been set). The charging state is set to 
USB_PRE_CHARGING_ON. 

usb_precharging_aborted() Callback function used to notify the application task 
that pre-charging has stopped. It means that the 
charging state has been set to USB_CHARGING_BLOCKED. 

This could happen if after a period, defined by the 
dg_configPRECHARGING_TIMEOUT parameter, the Vbat 

is not higher than 3.0 V.  

usb_charging_stopped() Callback function used to notify the application task 
that stop of battery charging has been detected. The 
charging state will be set to USB_CHARGING_OFF 

afterwards. 

usb_charging_aborted() Callback function used to notify the application task 
that the charging process has been aborted. The 
charger state has been set to USB_CHARGER_ATTACHED. 

usb_charging_paused() Callback function used to notify the application task 
that the charging process has been paused. It means 
that the charger state is set to USB_CHARGER_PAUSED. 

usb_charged() Callback function used to notify the application task 
that the charging of the battery (Li-ion) has ended. The 
charger state has been set to USB_CHARGER_ATTACHED. 

usb_charger_battery_full() Callback function used to notify the application task 
that the charging has stopped because vbat_level 

has reached the defined level. The charging state has 
been set to USB_CHARGING_OFF. 

usb_charger_bad_battery() Callback function used to notify the application task 
that there is a problem with the vbat_level of the 

battery. The charging state has been set to 
USB_CHARGING_BLOCKED. 

usb_charger_temp_low() Callback function used to notify the application task 
that the charging process has been aborted. This 
caused by a persisting error generated due to the fact 

that the battery temperature is too low. 

usb_charger_temp_high() Callback function used to notify the application task 
that the charging process has been aborted. This 
caused by a persisting error generated due to the fact 

that the battery temperature is too high. 

usb_is_suspended() Callback function used to notify the application task 

that the USB has been suspended. 

usb_is_resumed() Callback function used to notify the application task 
that the USB has been resumed. The system clock and 
the IRQs have been resumed while the charger state 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 106 of 206 © 2022 Renesas Electronics 

Function Description  

has been set to USB_CHARGER_ATTACHED. 

 

9.6 Watchdog Service 

9.6.1 Description 

The system watchdog service (sys_watchdog) has been designed to monitor system tasks and avoid 

system freezes. The interaction of this service with other parts of the system is shown in Figure 42: 

 

Figure 42: Watchdog overview 

Effectively, sys_watchdog is a layer on top of the watchdog low-level driver that allows multiple tasks 

to share the underlying hardware watchdog timer. The watchdog service can be used to trigger a full 
system reset. This will allow system to recover from a catastrophic failure in one or more tasks. 

9.6.2 Concept 

A task that should be monitored has to first register itself with this service to receive a unique handle 
(id). The task must then periodically notify sys_watchdog using this id, to signal that the task is 

working properly. In case of any error during registration, the invalid id -1 is returned. 

The hardware watchdog is essentially a countdown timer, which will trigger a full system reset if it 
expires. To prevent this, the watchdog timer must be reset to its starting value before it expires. This 
starting value can be configured in the application custom configuration files via the numerical macro 
dg_configWDOG_RESET_VALUE. Its default value is the maximum 0xFF, which corresponds to 

approximately 2.6 seconds (the time unit is 10.24 msec). The maximum number of tasks that can be 
monitored is defined by the configuration macro dg_configWDOG_MAX_TASKS_CNT (the absolute 

maximum is 32). 

If during one watchdog period all monitored tasks notify sys_watchdog, the hardware watchdog will 

be updated via the hw_watchdog_set_pos_val() LLD API function; in this case, no platform reset will 

be triggered for this watchdog period. However, a platform reset will be triggered if at least one task 
does not notify sys_watchdog in time. There are two ways for a task to notify sys_watchdog. 

Each task is responsible for periodically notifying sys_watchdog that it is still running using 

sys_watchdog_notify(). This must be done before the watchdog timer expires. Occasionally a 

registered task may want to temporarily exclude itself from being monitored if it expects to be blocked 
for a long time waiting for an event. This is done using the sys_watchdog_suspend() API function. 

This function suspends monitoring of specific tasks in sys_watchdog, as there is no need to monitor a 

task that is blocked waiting for an event that might take too long to occur (i.e. it would lead to the task 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 107 of 206 © 2022 Renesas Electronics 

failing to notify the watchdog service, thus resulting in a system reset). When the task is unblocked, 
the sys_watchdog_resume() API function should be called to restore task monitoring by the 

watchdog service. From that moment on the task shall notify the watchdog service as usual. 

Finally, the sys_watchdog_set_latency() API function is intended to be used in cases where a task 

would require a watchdog period greater than the configured watchdog timer reset value. Using this 
API allows a task to delay notification of sys_watchdog for a given number of watchdog periods, 

without triggering a system reset. The effect of calling the API function is one-off, thus it must be set 
every time increased latency is required. 

9.6.3 Examples 

To register the task with sys_watchdog use the following code snippet. 

 

/* registration pxp task to be monitored by watchdog */ 

        wdog_id = sys_watchdog_register(false); 

Code 18:  Notify sys_watchdog of the task 

To notify sys_watchdog use sys_watchdog_notify(). If the task is going to suspend for an event 

then temporarily exclude the current task from being monitored using sys_watchdog_suspend(). 

Once the task has received an event it can resume its watchdog operation with 
sys_watchdog_resume(). This flow is shown below: 

 

/** notify watchdog on each loop since there's no other trigger for this - monitoring 

* will be suspended while blocking on OS_TASK_NOTIFY_WAIT() 

*/ 

    sys_watchdog_notify(wdog_id); 

 /* 

  * Wait on any of the event group bits, then clear them all 

  */ 

sys_watchdog_suspend(wdog_id); 

ret = OS_TASK_NOTIFY_WAIT(0, OS_TASK_NOTIFY_ALL_BITS, &notif, OS_TASK_NOTIFY_FOREVER); 

                /* Blocks forever waiting for the task notification.    
  Therefore, the return value must 

                 * always be OS_OK 

                 */ 

                OS_ASSERT(ret == OS_OK); 

                sys_watchdog_resume(wdog_id); 

 

Code 19: Using sys_watchdog while suspending task for an event 

9.6.4 API 

Table 38: Configuration functions for sys_watchdog 

Function Description  

void sys_watchdog_init(void) Initialize sys_watchdog service. 

This should be called before using the sys_watchdog 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 108 of 206 © 2022 Renesas Electronics 

Function Description  

service, preferably at application startup. 

int8_t sys_watchdog_register(bool 

notify_trigger) 
Register current task with the sys_watchdog service. 

Returned identifier shall be used in all other 
sys_watchdog API calls from current task. Once 

registered, the task shall notify sys_watchdog 

periodically using sys_watchdog_notify() to prevent 

watchdog expiration. It is up to each task how this is 
done, but a task can request that it will be triggered 
periodically using the task notification capability, to 
notify sys_watchdog back as a response. 

void sys_watchdog_unregister(int8_t id) Unregister task from the sys_watchdog service. 

void sys_watchdog_suspend(int8_t id) Suspend task being monitoring by the sys_watchdog 

service. 

A monitor-suspended task is not unregistered entirely, 
but it is ignored by the watchdog service until its 
monitoring is resumed. It is faster than unregistering 

and registering the task again. 

void sys_watchdog_resume(int8_t id) Resume monitoring of a task by the sys_watchdog 

service. 

It should be called as soon as the reason that 
sys_watchdog_suspend() was called is removed. 

void sys_watchdog_notify(int8_t id) Notify sys_watchdog module about task. A registered 

task shall call this API function periodically to notify 
sys_watchdog that it is alive. This should be done 

frequently enough to fit into the watchdog timer interval 
set by dg_configWDOG_RESET_VALUE. 

void sys_watchdog_set_latency(uint8_t id, 

uint8_t latency) 
Set watchdog latency for a task. 

This allows a task to miss a given number of 
notification periods to sys_watchdog without triggering 

a system reset. Once set, the task is allowed to not 
notify sys_watchdog for “latency” consecutive watchdog 

timer intervals as defined by 
dg_configWDOG_RESET_VALUE. This option can be used 

to facilitate the operation of code that is expected to 
remain blocked for long periods of time (i.e. 
computation). This value is set once and does not 
reload automatically, thus it shall be set every time 

increased latency is required. 

  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 109 of 206 © 2022 Renesas Electronics 

10 System Memory 

10.1 Random Access Memory 

10.1.1 Code Location  

The complete BLE stack (both the Controller and Host) is in the system’s Read Only Memory (ROM) 
and it is executed from there as well.  

Application code on the other hand may reside either in on-chip OTP or in external QSPI Flash. It 
can be executed either in place (cached mode) or be copied into RAM and then executed from there 
(mirrored mode).    

10.1.1.1 Execution Modes 

There are two execution modes for the application code: 

(a) Cached Mode, where the application code is in the OTP or Flash and is executed in place using 
the 16KB cache RAM. 

(b) Mirrored mode, where the entire application code is copied into the RAM from where it is 
executed. 

Depending on the execution mode, the available RAM size for Application Data varies.   

● In Cached Mode, code is executed in place from either OTP or Flash memory. There is 128KB of 
RAM available for data and any code that is moved there. 

● In Mirrored Mode, both application code and data are eventually located in the platform’s 144KB 
RAM. In this mode the 16KB cache RAM is added to the 128KB of normal RAM 

 

Note 11 The SDK has been developed to support only cached mode from flash. 

10.1.2 Data Heaps 

All data variables are allocated from one of two memory heaps 

10.1.2.1 Application Heap 

The Application Heap is used to allocate memory for every RTOS task including the OS itself. Its size 
is dependent on the actual application and must be configured together with the RTOS configuration.  

The retained variables that need to be maintained when the system is sleeping should be clearly 
declared using the PRIVILEGED_DATA or INITIALISED_PRIVILEGED_DATA attributes, which inform the 

linker that these elements must be placed in the data sections that will be retained when the system 
goes to sleep. 

10.1.2.2 BLE Stack Heap 

The BLE Stack has its own dedicated Data Heap. Its size and retention scheme is pre-configured in 
the SmartSnippetsTM  DA1468x SDK and should not be changed by the application developer.  

10.1.3 Optimal Memory Size 

The Application heap and retained memory configuration is application-dependent and so must be 
optimized by the developer. 

Optimizing Heap size is done empirically by configuring the system with a big heap and then 
measuring Heap ratio usage while executing final application. FreeRTOS provides some advanced 
methods of monitoring RTOS Heap usage during the development phase. Refer to section 13.2 for 
more details about the optimization of the Heap size.  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 110 of 206 © 2022 Renesas Electronics 

10.2 Non-Volatile Memory Storage  

The SmartSnippetsTM  DA1468x SDK defines a set of storage classification rules that enable the 
good design of memory storage requirements and memory budget estimation. It is essential for the 
developer to have a clear understanding of their requirements for the following elements that could 
use non-volatile storage: 

● System Parameters that need to be stored in NVM (e.g. device address) 

● Firmware upgrade (dual images) 

● App-specific binaries (e.g. pre-recorded audio messages) 

● Logging (e.g. event logs) 

● Application data (e.g. sensor values, statistics, authentication keys)  

For each storage type a corresponding, dedicated region is mapped in the Flash partition. Each 
region is identified by a partition ID. When the NVMS Adapter makes read/write accesses to storage 
it uses the partition ID and an offset. Additional details can be found in the NVMS Adapter section, 
12.4. 

The SmartSnippetsTM  DA1468x SDK defines the following memory partitions (in a non-SUOTA build) 
to manage the storage:  

● (FW)  Firmware Image Region 

● (PARAMS)  Parameters Region 

● (BIN)  Binaries Region 

● (LOG)  Logging of events or values  

● (DATA)  Generic data Region, Statistics etc 

The exact Memory mapping depends on the actual Flash device (i.e. size, sector size) used on the 
board. It needs to be specified during compilation in 
<sdk_root_directory>/config/1M/partition_table.h . A default partition table is provided with 

the SmartSnippetsTM  DA1468x SDK which fits in DK QSPI Flash (1Mbytes with sectors of 4KB), the 
actual definition of which is shown in Code 20: 

PARTITION2( 0x000000,0x07F000,NVMS_FIRMWARE_PART  ,0 ) 

PARTITION2( 0x07F000,0x001000,NVMS_PARTITION_TABLE,PARTITION_FLAG_READ_ONLY ) 

PARTITION2( 0x080000,0x010000,NVMS_PARAM_PART     ,0 ) 

PARTITION2( 0x090000,0x030000,NVMS_BIN_PART       ,0 ) 

PARTITION2( 0x0C0000,0x020000,NVMS_LOG_PART       ,0 ) 

PARTITION2( 0x0E0000,0x020000,NVMS_GENERIC_PART   ,PARTITION_FLAG_VES ) 

Code 20: Memory mapping 

Other partition tables for different sized Flash (on a custom board) could be selected by adding one 
of these defines to config/custom_config_qspi.h 

 

#define USE_PARTITION_TABLE_2MB 

#define USE_PARTITION_TABLE_2MB_WITH_SUOTA 

#define USE_PARTITION_TABLE_512K 

#define USE_PARTITION_TABLE_512K_WITH_SUOTA 

#define USE_PARTITION_TABLE_1MB_WITH_SUOTA 

 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 111 of 206 © 2022 Renesas Electronics 

10.2.1 QSPI Flash Support  

This section describes the QSPI Flash support in SmartSnippetsTM  DA1468x SDK and the steps 
required to add support for a new Flash memory. 

The SDK supports by default three different flash types: 

● Winbond: W25Q80EW, 8Mbit 

● Gigadevice: GD25LQ80B, 8Mbit 

● Macronix: MX25U51245G, 512 Mbit 

These three devices have been tested with the SDK release using the modes of operation listed 
below. The default device is the Winbond W25Q80EW because this is the flash type that is mounted 
on the Pro and Basic DK boards. Another device can be selected by changing the macros shown in 
section 10.2.1.4.  

Section 10.2.1.7 explains how to add other flash devices that have the same boot sequence as the 
three supported devices. The user will need to check carefully the Flash command set and verify 
correct read/write/erase operation at the desired clock speed. 

Flash types with a different boot sequence can be used on the DA14681-SDK by modifying the QSPI 
Flash Initialization Section (QFIS) in the OTP of the DA1468x. This method is explained in [10]. 

10.2.1.1 Modes of operation and configuration 

The SmartSnippetsTM  DA1468x SDK supports two modes of operation: Autodetect mode and 
Manual mode. The Autodetect mode can detect the flash type at runtime, while the Manual mode 
involves explicitly declaring the flash used in the project at compile time. 

Note 12 The Manual Mode is the default and recommended mode. The Autodetect Mode will greatly increase 
code size and Retained RAM usage, and may prevent the project fitting in RAM. 

10.2.1.2 Autodetect Mode 

The Autodetect mode detects the flash that is used in runtime, and selects the proper flash driver to 
use. The Autodetect mode can only detect among the flash devices officially supported by the 
SmartSnippetsTM  DA1468x SDK. If no match is found, a default driver will be used (which may or 
may not work).  

Since the Autodetect mode needs to select the driver to use in runtime, it has the code for all the 
drivers in the binary. It also keeps the selected driver's configuration parameters in Retained RAM. 
Therefore, the Autodetect mode is NOT recommended for production builds.  

10.2.1.3 Manual Mode 

The Manual mode simply consists of a hardcoded declaration of the flash driver to use. Therefore, 
only the code of the selected driver needs to be compiled in the binary, and there is no need to retain 
the driver parameters in Retained RAM, since the compiler optimizes them out. This mode is suitable 
for Production builds. 

10.2.1.4 Flash Configuration 

The Flash subsystem is configured using the macros shown in Table 39, which must be defined in 
the config/custom_config_qspi.h file of the project: 

Table 39: Macros for the configuration of the Flash subsystem 

qspi_flash_config_t field Description  

dg_configFLASH_AUTODETECT Default: 0. This macro, if set, enables the Autodetect 
Mode. Please note, that the use of this macro is NOT 

recommended. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 112 of 206 © 2022 Renesas Electronics 

qspi_flash_config_t field Description  

dg_configFLASH_HEADER_FILE ○ This macro must be defined as a string named 
after the header file to use for the specific flash 
driver. E.g. qspi_w25q80ew.h, 
qspi_gd25lq80b.h, qspi_mx25u51245.h.This 
header file must be either one of the 
qspi_<part_nr>.h header files found in 
<sdk_root_directory>\sdk\bsp\memory\includ

e, or a header file under the project's folder, as 

long as this path is in the compiler’s include path 
(see the document section 10.2.1.7 about 

adding support for new flash devices).  

dg_configFLASH_MANUFACTURER_ID This macro must be defined to the Flash manufacturer 
ID, as defined in the respective driver header file (e.g. 
WINBOND_ID, GIGADEVICE_ID, MACRONIX_ID). 

dg_configFLASH_DEVICE_TYPE This macro must be defined to the corresponding device 
type macro, as defined in the driver header file (e.g. 
W25Q80EW, GD25LQ_SERIES, MX25U_MX66U_SERIES). 

dg_configFLASH_DENSITY This macro must be defined to the corresponding device 
density macro, as defined in the driver header file (e.g. 
W25Q_8Mb_SIZE, GD25LQ80B_SIZE, MX25U51245_SIZE). 

When the system is in Manual Mode (dg_configFLASH_AUTODETECT == 0), which is the default, all 

the three macros above are defined in sdk/config/bsp_defaults.h to enable the default flash used, 

which is the Winbond W25Q80EW. 

10.2.1.5 Code Structure 

The QSPI Flash access functionality is implemented in qspi_automode.c and qspi_automode.h file. 

Common command definitions and functions needed for all devices are declared in qspi_common.h. 

Device specific code is defined in header files named as qspi_<flash device name>.h. 

The code in qspi_automode.c (and in some other parts of the SmartSnippetsTM  DA1468x SDK, as 

well), calls device-specific functions and uses device-specific values to properly initialize the flash 
device. Each driver header file provides an instance of the structure qspi_flash_config_t to the 

main driver, containing all the device-specific function pointers and variables. 

10.2.1.6 The flash configuration structure qspi_flash_config_t 

Each driver header file must provide its own instance of qspi_flash_config_t. Please note that this 

instance must be named with a unique name, like flash_<device name>_config, since all the device 

header files are included in the qspi_automode.c file.  Therefore, there is a single global namespace. 

Also, please note that the struct instance must be declared as const so that the compiler can  

optimize references to it. 

The qspi_flash_config_t structure, as shown in Table 40, has the following fields (see 

<sdk_root_directory>/sdk/memory/include qspi_common.h for more information): 

Table 40: The qspi_flash_config_t structure 

qspi_flash_config_t field Description  

Initialize Pointer to the flash-specific initialization function. 

is_suspended Pointer to a flash-specific function that checks if flash 

is in erase/program suspend state. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 113 of 206 © 2022 Renesas Electronics 

qspi_flash_config_t field Description  

deactivate_command_entry_mode Pointer to a flash-specific function that performs 
extra steps needed when command entry mode is 

deactivated. 

sys_clk_cfg Pointer to a flash-specific function that performs 
Flash configuration when system clock is changed 
(e.g. change dummy bytes or QSPIC clock divider). 

get_dummy_bytes Pointer to a flash-specific function that returns the 
number of dummy bytes currently needed (it may 

change when the clock changes). 

manufacturer_id The Flash JEDEC vendor ID (Cmd 0x9F, 1st byte). 

This and the device_type and device_density are 

needed for flash autodetection, when on Autodetect 

mode. 

device_type ○ The Flash JEDEC device type (Cmd 0x9F, 

2nd byte). 

device_density The Flash JEDEC device type (Cmd 0x9F, 3rd byte). 

erase_opcode The Flash erase opcode to use. 

erase_suspend_opcode The Flash erase suspend opcode to use. 

erase_resume_opcode The Flash erase resume opcode to use. 

page_program_opcode The Flash page program opcode to use. 

quad_page_program_address If true, the address will be transmitted in QUAD mode 

when writing a page. Otherwise, it will be transmitted 

in serial mode. 

read_erase_progress_opcode The opcode to use to check if erase is in progress 
(Usually the Read Status Reg opcode (0x5). 

erase_in_progress_bit The bit to check when reading the erase progress. 

erase_in_progress_bit_high_level The active state (true: high, false: low) of the bit 

above. 

send_once If set to 1, the "Performance mode" (or “burst”, or 
“continuous”; differs per vendor) will be used for read 
accesses. In this mode, the read opcode is only sent 
once, and subsequent accesses only transfer the 

address. 

extra_byte The extra byte to transmit, when in "Performance 
mode" (send once is 1), that tells the flash that it 

should stay in this continuous, performance mode. 

address_size Whether the flash works in 24- or 32-bit addressing 

mode. 

break_seq_size Whether the break sequence, that puts flash out of 
the continuous mode, is one or two bytes long (the 
break byte is 0xFF). 

ucode_wakeup The QSPIC microcode to use to setup the flash on 
wakeup. This is automatically used by the QSPI 
Controller after wakeup, and before CPU starts code 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 114 of 206 © 2022 Renesas Electronics 

qspi_flash_config_t field Description  

execution. This is different based on whether flash 
was active, in deep power down or completely off 

while the system was sleeping. 

power_down_delay This is the time, in usec, needed for the flash to go to 
power down, after the Power Down command is 

issued. 

release_power_down_delay This is the time, in usec, needed for the flash to exit 
the power down mode, after the Release Power 

Down command is issued. 

In Autodetect mode, these structures reside in the .rodata section of the code. As soon as the flash 
subsystem is initialized, it reads the flash JEDEC ID (command 0x9F) to find out which is the actual 

flash device that is used. It then uses the JEDEC ID to select the corresponding flash_<flash 

device>_config structure, and copies it in the Retained RAM. It then uses it for all the flash 

operations that need it. 

When in Manual mode, no JEDED ID is read and no copy is performed to the Retained RAM. 
Instead, the constant pointer flash_config is directly initialized (inside the flash-specific driver file) to 
the specific (and constant) flash_<device name>_config structure. The compiler then optimizes out 

the entire structure. 

10.2.1.7 Adding support for a new flash device 

The SmartSnippetsTM  DA1468x SDK driver subsystem currently supports a specific set of QSPI flash 
devices. It provides, however, the capability to add support for other flash devices as well. 

Each device driver must have its own header file that should be named qspi_<device name>.h. The 

programmer can either use the qspi_XXX_template.h, or start from an existing driver file. 

The new flash driver file should be placed inside the project's path, in a folder that is in the 
compiler's include path (an obvious choice is the config/ folder, but others can be used as 
well). This is recommended so that potential SDK upgrades will not interfere with the project-
specific flash driver implementation. 

Common code among flash families or vendors can be factored out in common header file per 
family/vendor. There are currently such common header files, like qspi_macronix.h and 

qspi_winbond.h. However, this is NOT necessary; moreover, it is the responsibility of the device 

driver header file to include the common header file, if needed. 

Note 13 A custom flash driver can ONLY be used in Manual mode, which means that the macros described in 
Table 39 MUST be defined in config/custom_config_qspi.h. 

The following steps are usually needed to create the new flash driver: 

 Copy and rename the template header file, or an existing driver file. 

 Rename all the functions and variables appropriately. It is important to remember that all the 
drivers reside in the same namespace and so all function and variable names must be unique. 

 Define the proper JEDEC ID values for the Manufacturer code, the device type and the device 

density 

 Verify that the suspend, resume, exit power-down, enter power-down, fast read, write 

enable, read status register are valid for the new device type. 

 Guard the header file using an #if preprocessor macro that checks for the specific driver 

selection. 

 Define any other driver-specific macros that are needed (like timings etc). 

 Define the constant wakeup microcode arrays that will be needed, per configuration mode that 
will be supported (dg_configFLASH_POWER_OFF, dg_configFLASH_POWER_DOWN or none of them). 

The microcode will be copied during the driver initialization in a special memory in the QSPI 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 115 of 206 © 2022 Renesas Electronics 

controller, and will be used after system wakeup to initialize the QSPI (since the CPU isn't yet 
running code at this time). Please see [1] for the uCode format. 

 Declare the constant struct instance of type qspi_flash_config_t, named flash_<device 

name>_config, and initialize it with proper values. Please note that this must be declared as 

const. 

 Extend the function flash <device name>_initialize() if needed, e.g. to write some special 

QSPI configuration registers or the QUAD enable bit. Otherwise, leave empty. 

 Extend the function flash_<device name>_sys_clock_cfg() if needed. This can include 

modifying the dummy bytes when the system (and hence the QSPI) clock changes, or changing 
the QSPI clock divider (if, for example, the flash device cannot cope with 96MHz). Otherwise, 
leave empty. 

 The function is_suspended() should read the flash Status Register and return true if Erase or 

Write is suspended on the device. 

 If Continuous Read Mode (sometimes referred to as Performance or Burst Mode) is used, make 
sure to set send_once to 1, and set extra_byte to a proper value for the flash to keep working in 

this mode. This is flash-specific. 

 If the flash supports 32-bit addressing (e.g. the Macronix MX25U51245G Flash), make sure to 
use the proper uCode for wakeup. Also set page_program_opcode, erase_opcode, 

break_seq_size (this should also take into consideration whether the device will be working in 

Continuous Read mode as well) and address_size. 

 If the address, during write, will be provided in QUAD mode, set quad_page_program_address to 

true. 

Note 14 The SmartSnippetsTM  DA1468x SDK supports reading in QUAD I/O mode (where the address and 
data are read in QUAD mode, and only the command is transferred in serial mode), both in 
Continuous Read and normal mode. 

To test the flash driver, use the PXP Reporter demo application, and configure the new flash driver in 
its custom_config_qspi.h and custom_config_qspi_suota.h files. Do the following tests: 

 Verify that the application boots by using SmartSnippetsTM  Studio Power Profiler and a cell 
phone to connect to the device 

 Verify that the application continues working after the system starts going to sleep (after ~8 
seconds), that the cell phone can connect to the device and that it can maintain the connection 
for a while. 

 Repeat steps 1 and 2 by changing the application clock to 96 MHz (change sysclk_XTAL16M in 
main.c to sysclk_PLL96) 

 Repeat steps 1, 2 and 3 and change dg_configPOWER_1V8_SLEEP to 0 (in flashes where this 

makes sense) and (separately), dg_configFLASH_POWER_DOWN to 1, to test the supported wake up 

sequence driver modes. 

 Repeat steps 1 through 4 using the SUOTA Configuration of the PXP Reporter application. This 
will test the write/erase functionality of the driver. 

10.2.1.8 Working with a new flash device 

Read/Erase/Program of new QSPI flash devices should be done using SmartSnippetsTM  Studio 
standard procedure (check "General Installation and Debugging Procedure" in SDK's Doxygen 
documentation).  

Before working with new QSPI flash devices the following steps are required:  

• Support for the new flash is added to the SDK as described in "Adding support for a new 
flash device" paragraph. 

• SDK uartboot project (the secondary bootloader used by SDK flash programming tools) is 

built with support for the new QSPI flash as described in "Flash configuration" paragraph. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 116 of 206 © 2022 Renesas Electronics 

• SDK cli_programmer project (the tool used in the SDK for accessing flash) is re-built in 

Release_static (if working in Linux) or Release_static_win (if working in Windows) 

configuration, as described in SDK's Doxygen documentation "CLI programmer application" 
paragraph. 

Note 15 SmartSnippetsTM  Toolbox only supports read/erase/programming of the default supported QSPI flash 
devices. Therefore, it is not recommended to be used with new flash devices. 

  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 117 of 206 © 2022 Renesas Electronics 

11 Operation modes and startup procedure 

The SmartSnippetsTM  DA1468x SDK supports two operational modes that correspond to the 
configurations described in section 10.1.1.1. They are: 

Table 41: Operation modes 

Operation mode Code location Cache 

enabled 
Description 

RAM RAM No Program is loaded directly to RAM. 

Flash cached Flash (quad SPI mode) Yes Program runs in-place from QSPI 
flash. The first 0x100 – flash image 
header size bytes are copied to RAM 

by the boot loader. 

11.1 Generated ELF file 

After the project code is compiled, the linker generates an Extensible Linking Format (ELF) file based 
on the supplied linker scripts of each project (sections.ld and mem.ld). The following tables show 

the section structure (as obtained by the readelf utility with the -s option) for the three combinations 

of RAM mode with no Bluetooth low energy, flash cached mode with no Bluetooth low energy and 
flash cached mode with Bluetooth low energy. 

The key difference with Bluetooth low energy support is the jump_table_mem_area section that holds 

pointers to callback functions used by the BLE ROM code.  

.copy.table is used by the startup procedure in order to copy (load) code and data sections onto 

RAM. The table contains one or more section entries. The first 4 bytes in each entry are the section’s 
source address, the next 4 bytes are the section’s destination address in RAM and the last 4 bytes 
are the section’s size. Usually there are two sections that are loaded onto RAM: the .data section 

and the RETENTION_ROM0 section. .zero.table works in a similar manner, but it only writes zero’s to 

memory areas with zero-initialized data. Its entries contain a destination address (4 bytes) and size 
(4 bytes). The sections that are initialized to zero are .bss and the zero-initialized part of 

RETENTION_RAM0. 

Table 42: Example program sections in RAM operation mode 

Nr Name Type Addr Off Size ES Flag Link Info Align 

[ 0]  NULL             00000000 000000 000000 00  0 0 0 

[ 1] .text              PROGBITS         07fc0000 008000 0055c4 00 AX   0 0 16 

[ 2] .ARM.exidx   ARM_EXIDX        07fc55c4 00d5c4 000008 00 AL 1 0 4 

[ 3] .copy.table        PROGBITS         07fc55cc 00d5cc 000018 00 WA 0 0 1 

[ 4] .zero.table        PROGBITS         07fc55e4 00d5e4 000018 00 WA 0 0 1 

[ 5] .data              PROGBITS         07fd8000 010000 000064 00 WA 0 0 4 

[ 6] .bss               NOBITS           07fd8064 018064 00020c 00 WA 0 0 4 

[ 7] .heap   PROGBITS         07fd8270 018008 001c00 00  0 0 8 

[ 8] .stack_dummy       PROGBITS         07fd8270 019c08 000200 00  0 0 8 

[ 9] RETENTION_ROM0     PROGBITS         07fd0000 018000 000008 00 WA 0 0 4 

[10] RETENTION_RAM0     NOBITS           07fd0008 018008 001f58 00 WA 0 0 4 

[11] RETENTION_RAM1     PROGBITS         00000000 019e08 000000 00 W  0 0 1 

[12] .ARM.attributes    ARM_ATTRIBUTE

S   

00000000 019e08 000028 00  0 0 1 

[13] .comment           PROGBITS         00000000 019e30 000070 01 MS   0 0 1 

[14] .shstrtab          STRTAB           00000000 019ea0 0000a8 00  0 0 1 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 118 of 206 © 2022 Renesas Electronics 

Nr Name Type Addr Off Size ES Flag Link Info Align 

[15] symtab            SYMTAB           00000000 01a1f0 003b40 10       16 642 4 

[16] strtab           STRTAB           00000000 01dd30 001e73 00  0 0 1 

 

Key to Flags: 

  W (write), A (alloc), X (execute), M (merge), S (strings) 

  I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown) 

  O (extra OS processing required) o (OS specific), p (processor specific) 

Table 43: Example program sections for flash cached operation mode 

[Nr] Name Type Addr Off Size ES Flag Link Info Align 

[ 0]  NULL             00000000 000000 000000 00        0 0 0 

[ 1] .text              PROGBITS         08000000 008000 004fb0 00 AX   0 0 16 

[ 2] ARM.exidx         ARM_EXIDX        08004fb0 00cfb0 000008 00 AL   1 0 4 

[ 3] .copy.table        PROGBITS         08004fb8 00cfb8 000018 00 WA 0 0 1 

[ 4] .zero.table        PROGBITS         08004fd0 00cfd0 000018 00 WA 0 0 1 

[ 5] .data              PROGBITS         07fc8000 010000 000064 00 WA 0 0 4 

[ 6] .bss               NOBITS           07fc8064 018064 000210 00 WA 0 0 4 

[ 7] .heap              PROGBITS         07fc8278 010e48 001c00 00  0 0 8 

[ 8] .stack_dummy       PROGBITS         07fc8278 012a48 000200 00  0 0 8 

[ 9] RETENTION_ROM0     PROGBITS         07fc0100 010100 000d48 00 WAX 0 0 4 

[10] RETENTION_RAM0     NOBITS           07fc0e48 010e48 001f54 00 WA 0 0 4 

[11] RETENTION_RAM1     PROGBITS         00000000 012c48 000000 00 W 0 0 1 

[12] .ARM.attributes    ARM_ATTRIBUTE

S   

00000000 012c48 000028 00  0 0 1 

[13] .comment           PROGBITS         00000000 012c70 000070 01 MS 0 0 1 

[14] .shstrtab          STRTAB           00000000 012ce0 0000a8 00  0 0 1 

[15] .symtab            SYMTAB           00000000 013030 004130 01  16 717 4 

[16] . strtab            STRTAB           00000000 017160 002187 00  0 0 1 

 

Key to Flags: 

  W (write), A (alloc), X (execute), M (merge), S (strings) 

  I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown) 

  O (extra OS processing required) o (OS specific), p (processor specific) 

Table 44: Example program sections for flash cached mode with BLE support 

[Nr] Name Type Addr Off Size ES Flag Link Info Align 

[ 0]  NULL 00000000 000000 000000 00  0 0 0 

[ 1] .text              PROGBITS         08000000 008000 00c7f4 00 AX 0 0 16 

[ 2] .ARM.exidx         ARM_EXIDX        0800c7f4 0147f4 000008 00 AL 1 0 4 

[ 3] jump_table_mem

_ar 

PROGBITS         0800c7fc 0147fc 000240 00 A 0 0 4 

[ 4] .copy.table PROGBITS         0800ca3c 014a3c 000018 00 WA 0 0 1 

[ 5] .zero.table        PROGBITS         0800ca54 014a54 000018 00 WA 0 0 1 

[ 6] .data              PROGBITS         07fc0100 018100 000074 00 WA 0 0 4 

[ 7] .bss               NOBITS           07fc0174 018174 001e28 00 WA 0 0 4 

[ 8] .heap              PROGBITS         07fc1fa0 01ffd0 000800 00  0 0 8 

[ 9] .stack_dummy       PROGBITS         07fc1fa0 0207d0 000800 00  0 0 8 

[10] RETENTION_ROM0     PROGBITS         07fd6000 01e000 001fcc 00 WAX 0 0 4 

[11] RETENTION_RAM0 NOBITS           07fd7fcc 01ffcc 005df8 00 WA 0 0 4 

[12] RETENTION_RAM1     PROGBITS         00000000 020fd0 000000 00 W 0 0 1 

[13] RETENTION_BLE      NOBITS           07fdec00 01ffcc 001400 00 WA 0 0 1 

[14] .ARM.attribute

s    

ARM_ATTRIBUTE

S   

00000000 020fd0 000028 00  0 0 1 

[15] .comment           PROGBITS         00000000 020ff8 000070 01 MS 0 0 1 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 119 of 206 © 2022 Renesas Electronics 

[Nr] Name Type Addr Off Size ES Flag Link Info Align 

[16] .shstrtab          STRTAB           00000000 021068 0000ca 00  0 0 1 

[17] .symtab            SYMTAB           00000000 02142c 00c510 10  18 2314 4 

[18] . strtab            STRTAB           00000000 02d93c 0086f5 00  0 0 1 

 

Key to Flags: 

  W (write), A (alloc), X (execute), M (merge), S (strings) 

  I (info), L (link order), G (group), T (TLS), E (exclude), x (unknown) 

  O (extra OS processing required) o (OS specific), p (processor specific) 

11.2 Program loading 

11.2.1 RAM mode 

A program built for RAM operation can be loaded to RAM either directly using the ELF file and J-Link 
debugger or be first converted to a raw binary and then written to RAM with the CLI programmer tool. 
RAM operation is used only for debugging purposes as it avoids the step of programming the QSPI 
flash. After loading the program, SYS_CTRL_REG must be configured so that RAM is mapped to 

address 0x00000000. After a soft reset is issued, the written program starts execution. RAM operation 

does not rely on the boot loader. 

11.2.2 Flash cached mode 

A program built for flash cached mode is written into QSPI flash memory with the CLI programmer 
tool. After a hard reset, the boot loader detects the valid program in QSPI flash and prepares to run 
it. When executing from flash, the first 0x100 virtual addresses are mapped to the beginning of RAM, 

i.e. memory area 0x00000000 – 0x000000ff is mapped to memory area 0x07fc0000 – 0x07fc00ff 

(SYS_CTRL_REG[REMAP_INTVECT] must always be set to 1). This ensures that ARM Interrupt Vector 

Table (IVT) is always in RAM memory for quick access.  

The bootloader checks if the flash has a valid program by looking for the presence of a special 
header which is added to the image before the actual program. This header is added prior to writing 
the image into flash by the bin2image utility. The following tables describe the structure of the flash 

header. 

Table 45: Flash image header for DA14680/1-01 

Address (byte) Value Description 

0:1 ‘p’, ‘P’ or ‘q’, ‘Q’ ASCII header to identify the functional mode of the device. 
“pP”: Mirrored mode (SPI) 
“qQ”: Cached mode (QSPI) 

2:3 0, 0 Reserved 

4:7  Any Image length (big endian) 

Simply prepending the header to the binary image would shift the entire image in flash and corrupt  
the code as all the function addresses would be wrong. Instead, bin2image only modifies the first 

0x100 bytes.  

As shown in Figure 43, the reserved area that follows the IVT is reduced by the size of the flash 
header (H). This is harmless, since the contents of the reserved area are written after the program 
starts execution. After the boot loader detects the valid image in flash, it copies memory area 
[0x80000000 + H, – 0x800000ff] to RAM [0x07fc0000, 0x07fc00ff – H], thus skipping the 

header and placing the IVT in the beginning of RAM, restoring the reserved area to its original size. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 120 of 206 © 2022 Renesas Electronics 

 

Figure 43: Flash cached pre-execution stages 

11.3 BLE ROM patches 

DA1468x employs special hardware to support BLE ROM patching. The patch controller is a memory 
address translator with 28 entries and it has additional registers for validating and invalidating entries. 
20 of those entries are for patching BLE ROM functions, and the remaining 8 are for patching data. 
The patch controller intercepts memory read accesses from the processor. If the memory read 
address matches any of the addresses of the valid patch controller entries, a patch action is 
triggered.  

For data patches, the patch controller simply redirects the read access to the address written in the 
entry’s data address register. 

For function patches, the patch controller redirects execution to the corresponding function address 
at virtual memory location 0x000000C0 + N, where N (0 <= N < 20) is the index of the entry of the 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 121 of 206 © 2022 Renesas Electronics 

patch controller that has been triggered. This implies that virtual memory addresses 0x000000C0 to 

0x0000010c must contain patch function addresses (4 byte aligned), if the corresponding entry of the 

patch controller is marked as valid. This is the reserved memory area described in the previous 
section after the IVT. The patch memory area includes 8 * 4 additional reserved bytes for a total size 
of 28 * 4 = 112 bytes. Its first 64 bytes reside in the Reserved Area in RAM as discussed previously 
in this document, and the remaining bytes are in flash memory (Bluetooth low energy applications do 
not support RAM operation mode), beginning at address 0x80000100. 

11.4 Startup procedure 

The startup procedure is the part of the program that runs after reset and before entering main(). It 

consists briefly of the following steps (please consult startup code within the SmartSnippetsTM  
DA1468x SDK for details). 

Reset_Handler in sdk\bsp\startup\startup_ARMCM0.S 

● Deactivate cache and include it to available RAM (RAM operation only) 

● Copy first 0x100 –H bytes from Flash to RAM (Flash cached operation and flash offset = 0) 

 

SystemInitPre() in sdk\bsp\startup\system_ARMCM0.c 

● Enable debugger (if corresponding option is enabled) 

● Enable Fast clocks 

● Check alignment of copy and zero tables  

 

SystemInit() in sdk\bsp\startup\system_ARMCM0.c 

● Check IC version compatibility with SW 

● Initialize TCS (see Appendix H for details on TCS contents) 

● Activate BOD protection 

● Configure interrupt priorities  

● If executing from RAM ensure PMU is in a known good state 

● RC16 Clock setup 

● Disable XTAL16M 

● Set QSPI to highest speed 

 

SystemInitPost() in sdk\bsp\startup\system_ARMCM0.c 

● Start LDOs 

● Set Radio voltage to 1.4V 

● Initialize the QSPI flash (flash cached mode only) 

● Read Trim values from OTP 

● Apply Trim values from OTP 

● Enable the QSPI Flash (flash cached mode only) 

● Apply the System values from TCS 

● Configure cache (flash cached mode only) 

 

Reset_Handler in sdk\bsp\startup\startup_ARMCM0.S 

Note 16 In RAM configuration these steps take place before SystemInitXXX()calls 

● Copy code and data to RAM according to .copy.table section 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 122 of 206 © 2022 Renesas Electronics 

● Initialize certain memory areas to zero according to .zero.table section 

11.5 Secure Boot 

Note 17 XTAL32M support is available only for DA14683 devices – it is not supported for DA14681 
devices. 

Secure Boot is an alternative bootloader which could be used as a second stage bootloader during 
Software Update over the Air (SUOTA) procedure which supports: 

● FW (firmware) Authentication: securely ensures validity and authenticity of entire Application 
firmware during booting.  

● Rollback Prevention: prevents execution of out-of-date vulnerable code. 

● Public Keys administration: Root keys being used for Integrity protection can be revoked.  

Secure Boot depends on cryptographic Engines Low-level drivers only. Being the only thread running 
at boot time, it does not require thread-safe APIs from Security framework. 

11.5.1 Features 

Secure Boot is implemented in main_secure.c file located in: 
<sdk_root_directory>\sdk\bsp\system\loaders\ble_suota_loader. Figure 44 below presents 

Secure Boot’s main functionality. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 123 of 206 © 2022 Renesas Electronics 

 

Figure 44: Secure Boot - Main 

 Next list presents Secure Boot’s features:  

● “Device Integrity”, Figure 45, is a feature of Secure Boot which: 

1. Compares bootloader’s CRC placed in OTP header with the calculated  CRC 

2. Checks “Secure Device” field in OTP header (some functionalities of Secure Boot are available 
only for secured devices) 

3. Validates the symmetric keys that stored in OTP and used in encryption/decryption 

4. Validates the root/public keys that stored in OTP and used in image signature validation 

5. Checks minimum FW version image stored in the OTP () 

1 

2 

3 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 124 of 206 © 2022 Renesas Electronics 

 

Figure 45: Secure Boot – Device Integrity Check 

 

● “Firmware Validation” is a feature of Secure Boot which: 

1.   Checks SUOTA 1.1 header 

2.   Checks image's CRC 

3.   Validates the header of security extension content 

4.   Checks FW version number with the current minimum FW version 

 

1 

2 

3 

4 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 125 of 206 © 2022 Renesas Electronics 

 

Figure 46: Secure Boot – FW validation 

 

● Copying of the FW stored on the 'update' partition to the 'executable' partition (section 1, Figure 
47) 

● Upgrade of the minimum FW version array (section 2, Figure 47) 

● Customizable code (hooks), (section 3, Figure 47) 

● Root/public keys revocation possibility (section 4, Figure 47) 

 

4 

1 3 2 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 126 of 206 © 2022 Renesas Electronics 

 

Figure 47: Secure Boot – Device Administration 

1 

2 

4 

3 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 127 of 206 © 2022 Renesas Electronics 

 

Note 18 Secure Boot loader is stored in the OTP by default. Proper build configuration of the project must be 
used in order for the Secure Boot’s features to be available. Each configuration with _Secure suffix 

builds Secure Boot Loader as shown in Figure 48. 

 

Figure 48: Secure Boot – Build Configurations 

Secure Boot doesn't use FreeRTOS and BLE. The SUOTA procedure must be handled by firmware - 
application image e.g. PXP Reporter. The installation and use of Secure Boot is described in the 
following section Error! Reference source not found.. 

11.5.2 Configuration 

This section describes the installation and use of Secure Boot.  At first user must import in the 
workspace of SmartSnippets™ Studio the following: 

1. ble_suota_loader project. For more information about importing ble_suota_loader project in 
SmartSnippets™ Studio please refer to [4]. 

2. Any application which supports SUOTA feature, e.g. pxp_reporter demo project with SUOTA 
support. For more information about importing and building pxp_reporter demo application please 
refer to section 5 of [3]. 

3. Python scripts. To import Python scripts into SmartSnippets™ Studio follow the same procedure 
as importing any other project in SmartSnippets™ Studio. 

 

The list of aforementioned projects, imported to SmartSnippets™ Studio is shown in Figure 49. 

 

Figure 49: Secure Boot – IDE imported projects 

User must follow next steps in order to install Secure Boot: 

1. Build firmware image of the imported application (e.g pxp_reporter) using any mode (Release or 
Debug) with SUOTA support e.g.  DA14683-00-Debug_QSPI_SUOTA 

2. Build ble_suota_loader project using DA14683-00-Release_OTP_Secure build configuration 

(Figure 48) 

3. Use secure_image_config.py  Python script as show in Figure 50. Answering on few questions 

will be required during script execution as shown in next figures. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 128 of 206 © 2022 Renesas Electronics 

 

Figure 50: secure_image_config Python script 

4. First window after launching secure_image_config script is shown in Figure 51. By selecting 

“Yes” new product keys file is generated automatically.  

 

 

Figure 51: Question window to create new product keys file 

5. After selecting “Yes” in the previous dialog next window, Figure 52, pops out. User must decide, 
which type of elliptic curve would like to use for creating asymmetric keys. The curve will be used 
during an asymmetric key generation and image signature generation. After this procedure 
completes, product_keys.xml file will be generated in python_scripts project in secure_image 
subdirectory (Figure 53). 

 

Figure 52: elliptic curves used for creating asymmetric keys 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 129 of 206 © 2022 Renesas Electronics 

 

Figure 53: generated product_keys.xml file 

 

Note 19 User may need to refresh workspace (or hit F5) in order to make product_keys.xml file visible  

 

Note 20 By selecting “No” in Figure 52 the user must provide the private key manually by inserting a private 
key index and its value as shown in Figure 54 and Figure 55. 

 

Figure 54: inserting private key index or address 

 

 

Figure 55: inserting private key value 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 130 of 206 © 2022 Renesas Electronics 

6. In this step the user decides to create private key manually (by answering “NO”) or automatically 
(by answering “YES”) by choosing it from existed product_keys.xml file (Figure 56). 

 

Figure 56: window to select the use of private key  

7. User must select one public key index as shown in Fig. 11 which will be used during image 
signature validation (on the platform). Public keys should be stored in a proper order in the OTP 
memory. 

 

Figure 57: selecting private key from product_keys.xml file 

8. To each public key index a private key is assigned. This private key is then used during image 
signature generation. If product_keys.xml file already exists then the user is prompted to create a 
new product_keys.xml file with new keys and save old keys in product_keys.xml.old file (Figure 
58). 

 

Figure 58: move existing configuration to product_keys.xml.old file 

9. For SECP256R1, SECP224R1 or SECP192R1 types of curves hash method must be selected (Fig. 13). 

In case of EDWARDS25519 it is not needed because by default this curve uses SHA-512. It will be 

used during image signature generation. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 131 of 206 © 2022 Renesas Electronics 

 

Figure 59: selecting hash method for SECP256R1, SECP224R1 or SECP192R1 

10. In this optional step, shown in Figure 60, the user can enter public key index/indexes or 
address/addresses (Figure 61) which will be revoked after image validation on the platform. 
Allowed values are number of indexes of asymmetric keys (0 – 3 for DA1468x Platform) or 
addresses of symmetric keys (s0 – s7 for DA1468x Platform). 

 

Figure 60: add key revocations selection 

 

 

Figure 61: key revocations values window 

11. In this step the user can add minimal SW version on the platform (this is optional) as shown in 
Figure 62. This will be done after image validation on the platform. If the user doesn’t write any 
version in the window show in Figure 63, then SW version of the used image will be used as new 
minimal SW version. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 132 of 206 © 2022 Renesas Electronics 

 

Figure 62: adding minimal version of software version 

 

 

Figure 63: inserting minimal value of software 

12. Use secure_suota_initial_flash_jtag python script as shown in Figure 64. This script is 

used to save all generated keys and the secure bootloader in OTP memory and then flash the 
selected application in secure mode into DA1468x board.  

 

Note 21 Before launching the secure application (e.g. pxp_reporter) and ble_suota_loader must be first built 
with the following modes: 

○ ble_suota_loader in Release mode – DA14683-00-Release_OTP_Secure 

○ pxp_reporter in any kind of mode with SUOTA support e.g. – DA14683-00-
Debug_QSPI_SUOTA. 

 

Figure 64: secure_suota_initial_flash_jtag script 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 133 of 206 © 2022 Renesas Electronics 

11.5.3 Files 

When the configuration procedure (described in 11.5.2) of Secure Boot ends two xml files are 
created: product_keys.xml (Figure 66) file and secure_img_cfg.xml (Figure 67) as shown in Figure 
65. 

 

Figure 65: Secure Boot - generated files 

 

 

Figure 66: product_keys.xml file 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 134 of 206 © 2022 Renesas Electronics 

 

Figure 67: secure_img_cfg.xml file 

These files are used by other scripts (e.g. secure_suota_initial_flash_jtag and mkimage) as input 

files.  
 

Note 22 For more info about SUOTA please refer to section 9 of [3]. 

 

Note 23 initial_flash.py script performs writing to the One Time Programmable (OTP) memory. When this 

procedure is called with invalid configuration/firmware/bootloader files then the device may become 
unusable! 

Note 24 Scripts are using Python 3 

12 Drivers and Adapters 

12.1 Introduction 

The DA1468x family of devices supports several peripherals on different interfaces. To support them 
the SmartSnippetsTM  DA1468x SDK provides Low Level Drivers (LLD) and/or Adapters for each of 
the available hardware peripherals. 

A LLD provides a simple API to use the peripheral and abstract the complexities of using the 
peripheral registers directly. 

An Adapter provides a higher level service allowing different tasks to safely share the peripheral and 
also integrate with the CPM to manage power-down modes   

The rest of this Section will provide an overview of the available Drivers and Adapters. 

Note 25 All drivers and adapters in the SmartSnippetsTM DA1468x SDK are supplied in full source to aid 
debugging. However, modifying the drivers is not advised.  

12.2 Drivers 

This section will cover the LLDs for the peripherals of the DA1468x. The LLDs allow application 
software code to access and use the device peripherals without detailed knowledge of the hardware 
implementation, such as bits and their position within hardware registers.  

It is recommended to only use the LLD drivers to access the device peripherals as the LLDs are 
tested and verified. Direct access to hardware resources (e.g. registers or peripheral interfaces) 
might lead to conflicts with lower level FW functions accessing the same resources through LLDs 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 135 of 206 © 2022 Renesas Electronics 

and lead to system instabilities. For each hardware peripheral a dedicated header file describes the 
API functions of the peripheral, lists capabilities and defines control structures which are needed to 
interact with its particular LLD. The header files can be found under 
<sdk_root_directory>/sdk/bsp/peripherals/include. Table 46 lists all available LLDs. 

Table 46: LLD overview 

Filename Description 

hw_aes_hash.h Definition of API for the AES/HASH Engine Low Level Driver. 

hw_breath.h Definition of API for the Breath timer Low Level Driver. 

hw_cpm.h Clock and Power Manager header file. 

hw_crypto.h Interrupt handling for the crypto engines (AES/HASH, ECC) 

hw_dma.h Definition of API for the DMA Low Level Driver. 

hw_ecc.h Definition of API for the ECC Engine Low Level Driver. 

hw_ecc_curves.h ECC Engine curves parameters. 

hw_ecc_ucode.h ECC Engine microcode. 

hw_fem_sky66112-11.h FEM Driver for SKYWORKS SKY66112-11 Low Level Driver API. 

hw_gpadc.h Definition of API for the GPADC Low Level Driver. 

hw_gpio.h Definition of API for the GPIO Low Level Driver. 

hw_hard_fault.h Hard-Fault Handler. 

hw_i2c.h Definition of API for the I2C Low Level Driver. 

hw_irgen.h Definition of API for the IR generator Low Level Driver. 

hw_keyboard_scanner.h Definition of API for the Keyboard scanner Low Level Driver. 

hw_led.h Definition of API for the LED Low Level Driver. 

hw_otpc.h Definition of API for the OTP Controller driver. 

hw_qspi.h Definition of API for the QSPI Low Level Driver. 

hw_quad.h Definition of API for the QUAD Decoder Low Level Driver. 

hw_rf.h Radio module (RF) Low Level Driver API. 

hw_soc.h Definition of API for the SOC Low Level Driver. 

hw_spi.h Definition of API for the SPI Low Level Driver. 

hw_tempsens.h Implementation of the Hardware Temperature Sensor interface 

abstraction layer. 

hw_timer0.h Definition of API for the Timer0 Low Level Driver. 

hw_timer1.h Definition of API for the Timer1 Low Level Driver. 

hw_timer2.h Definition of API for the Timer2 Low Level Driver. 

hw_trng.h Definition of API for the True Random Number Generator Low Level 

Driver. 

hw_uart.h Definition of API for the UART Low Level Driver. 

hw_usb.h Header for low level DA1680 USB drive 

hw_usb_ch9.h Header file with USB configuration info for DA1680 USB driver. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 136 of 206 © 2022 Renesas Electronics 

Filename Description 

hw_usb_charger.h Definition of API for the USB Charger. 

hw_watchdog.h Definition of API for the Watchdog timer Low Level Driver. 

hw_wkup.h Definition of API for the Wakeup timer Low Level Driver. 

sys_tcs.h TCS Handler header file. 

In addition to the LLDs listed above, there is also a Low Level Pulse Density Modulation (PDM) Audio 
Interface driver. The PDM audio interface driver uses the Audio Processing Unit (APU) and the 
Sample Rate Converter (SRC) devices to implement a PDM interface with input and output support. 
The driver supports input and output directly from/to an application using the SRC I/O registers at 
various sample rates. It also supports both master and slave PDM mode. The Low Level Interface 
driver file can be found under <sdk_root_directory>/sdk/interfaces/audio/include/if_pdm.h 

12.2.1 LLD header Example 

The table included below shows the typedefs, the enumerations and the functions for the quadrature 
decoder hardware as an example.  

Note 26 All API calls starting with hw_xx indicate an LLD function. 

Table 47: LLD header file  

Typedefs 

typedef void(* hw_quad_handler_cb) (void)  
QUAD interrupt callback.  

Enumerations 

typedef enum { HW_QUAD_CHANNEL_NONE = 0,  

HW_QUAD_CHANNEL_X = (1 << 0),  

HW_QUAD_CHANNEL_Y = (1 << 1),  

HW_QUAD_CHANNEL_Z = (1 << 2),  

HW_QUAD_CHANNEL_XY = HW_QUAD_CHANNEL_X | HW_QUAD_CHANNEL_Y,  

HW_QUAD_CHANNEL_XZ = HW_QUAD_CHANNEL_X | HW_QUAD_CHANNEL_Z,  

HW_QUAD_CHANNEL_YZ = HW_QUAD_CHANNEL_Y | HW_QUAD_CHANNEL_Z,  

HW_QUAD_CHANNEL_XYZ = HW_QUAD_CHANNEL_X | HW_QUAD_CHANNEL_Y | 

HW_QUAD_CHANNEL_Z,  

HW_QUAD_CHANNEL_ALL = HW_QUAD_CHANNEL_XYZ 

} HW_QUAD_CHANNEL;  
Channels definitions. 

Functions 

static inline void hw_quad_init(uint16_t clk_div)  
Initialization of QUAD driver 

static inline void hw_quad_enable(void)  
Enable QUAD driver 

static inline void  hw_quad_disable(void)  
Disable QUAD driver.  

static inline void  hw_quad_set_channels(HW_QUAD_CHANNEL ch_mask)  
Set channels state 

static inline void  hw_quad_enable_channels(uint8_t ch_mask)  
Enable channels 

static inline void  hw_quad_disable_channels(uint8_t ch_mask)  
Disable channels 

static inline 

HW_QUAD_CHANNEL 

hw_quad_get_channels(void) 

 
Get channels state 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 137 of 206 © 2022 Renesas Electronics 

Typedefs 

Void hw_quad_register_interrupt(hw_quad_handler_cb handler, uint16_t 

tnum);  
Turn on QUAD interrupt 

static inline bool hw_quad_is_irq_gen(void)  
Check if interrupt has occurred 

Void hw_quad_unregister_interrupt (void)  
Turn off QUAD interrupt 

static inline int16_t hw_quad_get_x(void)  
Get the number of steps from X channel 

static inline int16_t hw_quad_get_y(void)  
Get the number of steps from Y channel 

static inline int16_t hw_quad_get_z(void)  
Get the number of steps from Z channel 

12.2.2 Documentation 

All LLD header files contain the description of the individual API methods, any types they define and  
their input and output parameter as well as their output types. The LLD header files were written to 
support the documentation generation tool Doxygen (http://www.doxygen.org). This approach allows 
the generation of an HTML-like description of each of the individual LLD header files including all 
possible typedefs and defines as well as an accurate description of all API calls and their 
parameters. Additionally, it gives a short summary of what each one of the API calls does.  

Please refer to [2] to find more details on how to generate an HTML description of a particular LLD. 
Figure 68 presents the main Doxygen page found at  

 <sdk_root_directory>/doc/html/index.html 

 

 

Figure 68: Html file generated by Doxygen 

12.3 Adapters 

Drivers may also contain a higher layer –the adapter- which allows more than one application thread 
to request access and get serviced by the driver. Please note that the same “adapter” scheme is 

http://www.doxygen.org/


 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 138 of 206 © 2022 Renesas Electronics 

used for data buffers, utilities and other system resources that could be utilized by an application as 
shown in Figure 69. 

 

 

Figure 69: Adapter overview 

The adapters as provided by the SmartSnippetsTM SDK enables requests for a specific driver or 
resource from different tasks to be managed to handle resource availability. 

The adapters use OS features such as semaphores or events and the resource management API in 
the osal layer to manage multiple simultaneous resource acquisition/release requests. The adapters 

not only provide access to the peripheral, but also make sure that other tasks which are currently 
accessing it, suspend their operation until the peripheral is once again released. They also interact 
with the CPM module so that device will only sleep if all peripherals are inactive. 

 

 

Figure 70: Adapter communication 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 139 of 206 © 2022 Renesas Electronics 

Note 27 Adapters are not implemented as separate tasks and should be considered as an additional layer 
between the application and the LLD. The Adapter executes in the context of the calling task. 

Note 28 The recommendation is to use the adapters to access the hardware peripherals where 
possible.  

The adapter header files can be found under <sdk_root_directory>/sdk/bsp/adapters/include. 

Table 48 lists all available adapters. 

Table 48: Adapter overview 

Filename Description 

ad_battery.h Battery adapter API. 

ad_crypto.h ECC and AES/HASH device access API 

ad_defs.h Common definitions for adapters. 

ad_flash.h Flash adapter. 

ad_gpadc.h GPADC adapter API. 

ad_i2c.h I2C device access API. 

ad_keyboard_scanner.h Keyboard Scanner Adapter API 

ad_spi.h SPI adapter API. 

ad_uart.h UART adapter API. 

ad_nvms.h Nonvolatile memory storage API. 

ad_nvparam.h NV Parameters adapter interface. 

ad_nvparam_defs.h Define NV Parameters adapter interface. 

ad_nvms_direct.h NVMS direct access driver. 

ad_nvms_ves.h NVMS VES driver. 

ad_rf.h Radio module access functions. 

ad_temp_sens.h Temperature Sensor adapter API. 

flash_partitions.h Default partition table. 

partition_def Partition table entry definition 

partition_table.h Partition table. 

platform_devices.h Configuration of devices connected to board. 

platform_nvparam.h Configuration of non-volatile parameters on platform. 

platform_nvparam_values.h Parameter value. 

The SDK includes a "Peripherals demo application" which provides an excellent example of how 
many of the adapters are used. Please refer to the related Doxygen documentation and source code. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 140 of 206 © 2022 Renesas Electronics 

 

12.3.1 The UART adapter example  

The UART adapter is an intermediate layer between the UART LLD and a user application. It allows 
the user to utilize the UART interface in a simpler way than using the pure LLD functions. 

Features: 

● Synchronous writing/reading operations block the calling task while the operation is performed 
using sempahores rather than relying on a polling loop approach. This means that while the 
hardware is busy transferring data, the Operating System (OS) scheduler may select another 
task for execution, thus utilizing processor time more efficiently. After the transfer finishes the 
calling task is released and resumes execution.  

● DMA channel resource management for shared usage among various peripherals (e.g. I2C, 
UART). Interconnected peripherals may use the same DMA channel if necessary. The adapter 
takes care of DMA channel resource management. 

● Ensuring that only one device can use the UART after acquiring it. 

● Putting code between ad_uart_bus_acquire(dev) and ad_uart_bus_release(dev) ensures that 
only this task can use the UART to communicate with device dev which was previously opened 
with ad_uart_open. During this period no other device or task can use the UART until the 
ad_uart_bus_release function is called by the owning task. 

● Unlike other serial adapters (I2C and SPI), the UART adapter additionally allows direction-
specific resource management. This allows two tasks to access the “read” and the “write” 
resource simultaneously. Use ad_uart_bus_acquire_ex and ad_uart_bus_release_ex to acquire 
and release a direction specific resource respectively.  

  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 141 of 206 © 2022 Renesas Electronics 

 

Using the UART Adapter 

 

 dg_configUART_ADAPTER and dg_configUSE_HW_UART definition 

To enable the UART adapter, both dg_configUART_ADAPTER and dg_configUSE_HW_UART macros 

must be defined and set to 1 in the project’s config/custom_config_qspi.h header file: 

#define dg_configUART_ADAPTER                (1) 

#define dg_configUSE_HW_UART                 (1) 

Code 21: Enabling UART Adapter 

From this point on, the overall adapter implementation with all its integrated functions becomes 
available. 

 The platform_devices.h header and UART_BUS macro(s) 

Before utilizing the UART adapter the necessary UART_BUS macro(s) must be created using the 
following definition pattern: 

UART_BUS(bus_id,        // valid values: UART1, UART2 

 name, // name of UART, e.g. COM1 

 baud_rate, // UART baud rate from enum                                                          
   HW_UART_BAUDRATE  

 data_bits, // value from enum HW_UART_DATABITS 

 parity, // value from enum HW_UART_PARITY 

 stop, // value from enum HW_UART_STOPBITS 

 auto_flow_control, // 1 if hardware flow control (CTS/RTS) is used, 
   0 otherwise 

 dma_channel) // DMA number for Rx channel, Tx will  
 have next number, 

                                    // pass -1 for no 

 

Code 22: Parameters of UART bus arguments 

Macro(s) should be placed in a platform_devices.h header file, which can be found and copied 

from <sdk_root_directory>/sdk/bsp/adapters/include to the user’s project /config directory. If a 

new platform_devices.h file is not included there, the application will inherit the default macro(s) 

definitions from the original platform_devices.h header file, located in the 

<sdk_root_directory>/sdk/bsp/adapters/include. 

These macro(s) describe the parameters of each UART bus and devices connected to it, as shown in   
Code 23: 

UART_BUS(UART1, SERIAL1, HW_UART_BAUDRATE_115200, HW_UART_DATABITS_8, HW_UART_PARITY_NONE, 

HW_UART_STOPBITS_1, 0, 0, HW_DMA_CHANNEL_1, HW_DMA_CHANNEL_0, 0, 0) 

Code 23: Parameters of the UART bus  

User code 

 Open the UART device 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 142 of 206 © 2022 Renesas Electronics 

The first step is to open the UART device, which was defined by the UART_BUS macro. Calling the 

function shown in Code 24 opens the device and returns a handle to the main flow for using it in 
other adapter functions as well. 

 
uart_device ad_uart_open(const uart_device_id dev_id); 

Code 24: Open UART 

The initial function call configures the UART block. Subsquent calls from other tasks simply return the 
already existing handle to the initialized UART, together with the parameters related for each device 
ID. The dev_id parameter is a second parameter of UART_BUS, for instance, SERIAL1. The returned 

uart_device handler will then be used in all other adapter functions from now on such as 

ad_uart_bus_acquire (handler_device) or ad_uart_write (handler_device). 

 Acquire access to the UART bus 

Before using the UART the application task must request access to it so that no other tasks can use 
it and potentially corrupt the data transmitted or received. The access is acquired by using the 
function presented in Code 25: 

 
void ad_uart_bus_acquire(uart_device dev); 

Code 25: Acquire access to UART 

This function waits for the UART bus to become available and when it is available locks it down and 
so reserves it for the current task. The function can be called several times. However, it is essential 
that the number of ad_uart_bus_release() function calls used for releasing the UART bus matches 

the number of ad_uart_bus_acquire() calls. When using the ad_uart_bus_acquire() function, only 

one task has access to the bus and another task is able to use it only after the 
ad_uart_bus_release() function has been successfully called. 

 Write/Read to/from the UART device 

Write and read functions can be divided into two methods: 

● Synchronous 

 

void ad_uart_write(uart_device dev, const char *wbuf, size_t wlen); 

Code 26: Write function 

The function shown in Code 26 is used for writing to the UART device in a synchronous manner. 

 
int ad_uart_read(uart_device dev, char *rbuf, size_t rlen, OS_TICK_TIME timeout); 

Code 27: Read function 

Similarly, the function presented in Code 27, is used for reading rlen bytes from the UART device, in 

a synchronous manner as well.  

These two functions block the UART bus, however they do not block the operating system. 
FreeRTOS initially waits for bus access, and then blocks the calling task until a transaction is 
completed. Once a Write/Read process is finished, the UART bus is free to make another 
Read/Write operation for the same device. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 143 of 206 © 2022 Renesas Electronics 

In synchronous mode the calling task is blocked for the duration of the read or write access but other 
tasks are not. 

● Asynchronous 

 

void ad_uart_write_async(uart_device dev, const char *wbuf, size_t wlen, 
ad_uart_user_cb cb, void *user_data); 

Code 28: Write function  

The function presented in Code 28, works in an asynchronous manner for writing wlen bytes to the 

UART device. Once the data is written to the UART the callback function cb is called. After that the 

ad_uart_bus_release() function is called. It is essential that until the callback is received, the caller 

does not release the wbuf memory buffer. 

void ad_uart_read_async(uart_device dev, char *rbuf, size_t rlen, ad_uart_user_cb 
cb, void *user_data); 

Code 29: Read function 

The function presented in Code 29, is used for reading rlen bytes from the UART device. The 

function does not necessary wait for the read operation to finish and starts from gaining access to the 
UART bus by calling the ad_uart_bus_acquire()function. Once the read operation begins, the user 

must not release the rbuf memory buffer. After all data is received the ad_uart_bus_release() 

function is called just before the callback function cb is called. To abort an already initiated read 

operation it is necessary to call the ad_uart_abort_read_async() function. 

 

In the asynchronous case the calling task is not blocked by the read or write operation. It can 
continue with other operations while waiting for callback function to signal the completion of the read 
or write. Only at this point can rbuf be read or wbuf be refilled.  

 

 Release the UART bus. 

The function presented in Code 30 should be used for releasing the UART bus: 

void ad_uart_bus_release(uart_device dev); 

Code 30: Release UART 

The function decrements an already acquired counter for a specific dev device and as soon as an 
internal countdown reaches zero, the UART bus is released and can be used by other tasks. 

 

 Closing the UART device. 

After all user operations are done and the device is not needed anymore for additional tasks, it 
should be closed by using the function presented in   Code 31. 

void ad_uart_close(uart_device device); 

  Code 31: Close UART device 

Example of Synchronous access: 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 144 of 206 © 2022 Renesas Electronics 

uart_device dev; 

static char wbuf[5] = „Test”; 

char rbuf[5]; 

 

dev = ad_uart_open(SERIAL1);         /* Open selected device */ 

ad_uart_bus_acquire(dev);          /* Acquire access to bus */ 

ad_uart_write(dev, wbuf, sizeof(wbuf));      /* Write synchronously some data   to 

UART device */ 

ad_uart_read(dev, rbuf, sizeof(rbuf), 100);   /* Read synchronously the data        

from UART device */ 

ad_uart_bus_release(dev);  /*Release the UART 

ad_uart_close(dev);           /* Close selected device */ 

Code 32: Example of UART adapter usage 

12.4 The NVMS Adapter 

12.4.1 Overview 

The SmartSnippetsTM DA1468x SDK includes a Non-Volatile Memory Storage (NVMS) Adapter 
providing non-volatile memory storage access capabilities to the application (including cached 
mode). The Adapter provides two main functions: 

● Non-Volatile Memory Storage to external Flash devices over standard SPI and Quad SPI 
performing Write / Read / Erase operations 

● Virtual EEPROM (VES) emulation with the following functionalities 

○ Wear-levelling 

○ Garbage Collection  

○ Power failure protection 

The VES partition should be used for data that is frequently written to flash. The wear levelling and 
garbage collection allow the driver to maximize the number of write cycles from software given the 
limitations of the number of erase & write cycles of the actual flash device.  

An overview of NVMS Adapter is shown in Figure 71. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 145 of 206 © 2022 Renesas Electronics 

 

Figure 71: NVMS Overview 

In theory NVMS is interface agnostic, as it is independent from the interface type being used 
(Standard SPI, I2C or QuadSPI) for data storage. However, the QSPI interface is a special interface 
from the NVMS perspective. As well as performing eXecution in Place (XiP), the QSPI Controller 
hardware block is also handling specific Flash-aware actions when Flash devices Read/Write/Erase 
operations are executed. As shown in Figure 73 when DA1468x is in cached mode, special 
mechanisms from the QSPI block are invoked.  

The main consequence of this approach is that all Flash memory models used when utilizing NVMS 
over QSPI in cached mode must support Erase suspend/resume. 

The rest of this section gives an overview on:  

● Common NVMS interface for all usage scenarios  

● Mechanisms implemented specifically for NVMS over QSPI in cached mode usage scenario 

● Virtual EEPROM (VES) emulation 

● Flash Memory Map in various usage scenarios. 

12.4.2 Interface 

NVMS Adapter exposes functions: ad_nvms_init(), ad_nvms_open(), ad_nvms_write() and 

ad_nvms_read(), ad_nvms_erase(). Function ad_nvms_init() must be called once at platform start 

to perform all necessary initialization routines, including discovering underlying storage partitions. 
The Application must open one of the partitions before any read or write activity can be performed. If 
several partitions are stored on one physical device (i.e. SPI Flash), opening one partition will limit 
read and writes to this partition only, making all addressing relative to beginning of that partition and 
not the whole flash. After opening, each partition is accessed in same way, but the exact way that 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 146 of 206 © 2022 Renesas Electronics 

data is stored depends on partition type. Only in the Virtual EEPROM (VES) partition do all reads and 
writes use virtual addresses that are independent of actual flash location. 

nvms_t ad_nvms_open(nvms_partition_id_t id); 

… 

for (;;) { 

 /* addr is any address in partition address space 

       * buf can be any address in memory including QSPI mapped flash */ 

 ad_nvms_read(part, addr, buf, sizeof(buf)); 

 

 ad_nvms_write(part, addr, buf, sizeof(buf)); 

Code 33: Usage of NVMS 

Function ad_nvms_open() can be called many times since it does not allocate any resources. 

Function ad_nvms_read() can be called with any address within the partition. If address is outside 

the partition boundaries ad_nvms_read() will return 0. If the address is inside the partition but the 

size would exceed the partition boundary only the data from within the partition will be accessed. 

Function ad_nvms_write() can be called with any address inside partition address space. 

How read or write actually work depends on the accessing method. In the current version of the 
platform, two accessing methods are supported: (a) Direct Access and (b) VES.  

a. Direct Access 

Direct access driver uses the relative address from the beginning of the partition but apart from this 
there is no address translation. Writes are performed exactly at requested addresses. If write would 
not change data (same data written) it will not be performed at all. If write can be performed without 
erasing it will be executed. If write can’t be performed without an erase, then the erase is also 
initiated. Currently the direct driver does not support caching so writing small pieces of data on an 
already used sector will trigger many erase operations. If a small write is required for some reason, 
then ad_nvms_erase() should be called explicitly before each write for efficiency reasons. Power 

failure during write or erase will result in data loss including data that was not touched by the last 
write. For power fail safe operation the VES partition should be used. 

b. VES 

For an application to use VES there are two prerequisites: 

● The Partition ID should only be NVMS_GENERIC_PART. 

● dg_configNVMS_VES variable should be defined. 

VES driver provides access to the partition with power failure protection. It uses virtual addressing. 
The address space available for the user application is smaller than physical flash space occupied by 
the partition, but user can read and write to this address space without worrying that data will be lost. 
If power fails during a write, the specific data being written can be lost but other data will not be 
affected. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 147 of 206 © 2022 Renesas Electronics 

 

Figure 72: Virtual/Physical Addressing with and without VES 

When VES is used: 

● The application configures NVMS with the VES section information. The VES section is 
represented by a virtual address range that is mapped to a physical address range.  

● NVMS prevents the application from performing “raw” writes to the allocated VES section 

12.4.3 NVMS partition table  

Code 34 shows the full list of the NVMS IDs and it can be found in 
<sdk_root_directory>/sdk/bsp/adapters/include/partition_def.h  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 148 of 206 © 2022 Renesas Electronics 

/** 

 * \brief NVMS Partition IDs 

 */ 

typedef enum { 

        NVMS_FIRMWARE_PART              = 1, 

        NVMS_PARAM_PART                 = 2, 

        NVMS_BIN_PART                   = 3, 

        NVMS_LOG_PART                   = 4, 

        NVMS_GENERIC_PART               = 5, 

        NVMS_PLATFORM_PARAMS_PART       = 15, 

        NVMS_PARTITION_TABLE            = 16, 

        NVMS_FW_EXEC_PART               = 17, 

        NVMS_FW_UPDATE_PART             = 18, 

        NVMS_PRODUCT_HEADER_PART        = 19, 

        NVMS_IMAGE_HEADER_PART          = 20, 

} nvms_partition_id_t; 

 

Code 34: NVMS Partition IDs 

Code 35 shows the format for the data of the NVMS.  

/** 

 * \brief Partition entry. 

 */ 

typedef struct partition_entry_t { 

        uint8_t magic;          /**< Partition magic number 0xEA */ 

        uint8_t type;           /**< Partition ID */ 

        uint8_t valid;          /**< Valid marker 0xFF */ 

        uint8_t flags;          /**< */ 

        uint16_t start_sector;  /**< Partition start sector */ 

        uint16_t sector_count;  /**< Number of sectors in partition */ 

        uint8_t reserved2[8];   /**< Reserved for future use */ 

} partition_entry_t; 

Code 35: Partition entry  

 

Table 49 describes each entry value. 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 149 of 206 © 2022 Renesas Electronics 

Table 49: Description of Partition entry  

Magic 

code  

(1 

byte) 

Partition 

ID 

(1 byte) 

Valid 

flag 

(1 

byte) 

Flags 

(1 byte)  

Start 
sector of 

partition  

(2 bytes) 

Sector 
count of 

partition  

(2 bytes) 

Reserve  

(8 bytes) 

0xEA. From 
nvm_partit

ion_id_t, 

0xFF 

means it’s 
an invalid 
partition 

entry. 

0xFF 

mean
s it’s 
a 
valid 
partiti
on 

entry. 

#define 

PARTITION_FLAG_READ_ONLY   1 

#define 

RTITION_FLAG_VES           2 

0 means it’s a normal 
writable/readable direct partition. 
1 means it’s read only partition 

2 means it’s a VES partition 

Start 
sector in 
flash of 
this 

partition. 

Sector 
count of 
this 

partition. 

For future 

use. 

12.4.4 NVMS over QSPI in cached mode 

Application

NVMS VES

Flash Adapter

SW Upgrade
Logs

Flash device

R
T
O
S

QSPI Controller
CACHE 

Controller

Application data 
Storage (i.e. security 

keys, etc.)

XiP

Cache 
Misses

Read

Write / Read / Erase

Direct Access

NVMS Adapter

 

Figure 73: NVMS Adapter NVMS over QSPI and Virtual EEPROM emulation in Cached mode 

When executing in place (XiP) from Flash in cached mode, the Flash device is used to store both 
firmware images and data. 

Preemptive RTOS scheduling remains operational while programming the Flash. 

PROGRAM and ERASE are the 2 critical Flash operations triggered by NVMS that need to be 
considered, as they can’t be performed at the same time as the READ operations triggered by the 
cache controller when it fetches cache lines from the FLASH to the cache RAM. To handle this 
conflict a specific mechanism is needed.  

This mechanism is disabled when DA1468x is not in cached mode. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 150 of 206 © 2022 Renesas Electronics 

12.4.4.1 Slice PROGRAM operation 

When writing a buffer to the Flash, the NVMS Adapter will slice the buffer into several smaller buffers 
and will issue several uninterruptible PROGRAM QSPI requests. Note that one parameter 
determining the size of the slice in bytes is stored in the flash itself. This parameter is determined by: 

 The interrupt latency time in microseconds that the application authorizes. 

 The flash model and the time taken to perform a program.  

In general, the first byte to be programmed takes longer than the subsequent bytes so a trade-off is 
possible and the exact value is left to the application developer. However, a default value of 16 bytes 
is currently used. 

12.4.4.2 Suspend/Resume ERASE Operation 

Instead of slicing ERASE, the SmartSnippets™ DA1468x SDK leverages from Smartbond™ QSPI 
Controller SUSPEND/ERASE in auto-mode capability. It is assumed here that all selected Flash 
models support suspending ERASE. 

 

Figure 74: Suspend/Resume ERASE Operation 

When requested to erase a sector by NVMS Adapter (staying in auto-mode), the QSPIC will 
automatically suspend the Erasing operation when a “read” from the Cache controller is triggered 
due to a miss hit. 2 parameters to be stored in the flash itself are SW configurable: 

● ERASE/RESUME Hold: Refer to QSPIC_ERASECMDB_REG[QSPIC_ERSRES_HLD] 

● RESUME/SUSPEND delay: Refer to QSPIC_ERASECMDB_REG[QSPIC_RESSUS_DLY] 

As QSPIC is not firing any interrupt on Erase completion, NVMS adapter must poll 
QSPIC_ERASECTRL_CMD. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 151 of 206 © 2022 Renesas Electronics 

A detailed analysis of the Suspend/Resume ERASE Operation is shown in Figure 74. The overall 
process begins when the Application/OS issues an “Erase Command” Request. The NVMS Adapter 
receives the Request and issues an “Erase Sector” Request to the QSPIC (Set 
QSPIC_ERASECTRL_REC [QSPIC_ERASE_EN]). This request changes the QSPIC state (Figure 74, 

Reference Point 1), which checks whether the Flash Memory is idle for a certain number of Clock 
Cycles before initiating the ERASE process (QSPIC_ERASECMDB_REC [QSPIC_ERSRES_HLD]). 

Provided that the process can be initiated, QSPIC issues an “Erase Sector” Request to the Flash 
Memory and erasing begins. In the meantime, NVMS adapter also switches state, by writing 
CHECK_ERASE_REG and ERASECTRL_REQ bits (Figure 74, Reference Point 2). The Erase process taking 

place in the Flash Memory is able to be suspended by the QSPIC via an “Erase Suspend” Request in 
two cases  

(i) if a Cache Miss Notification arrives in the Cache control, leading to a “Fetch cache – 
Read” Request towards the QSPIC, and  

(ii) if a Read Request is issued by the Application/OS directly to the QSPIC.  

The consequent “Erase Suspend” Request initiates the READ process shown in Figure 74, 
where QSPIC reads data from the Flash Memory and issues a “Read Done” Response to (i) 
Cache Control or (ii) Application/OS respectively. Then, the QSPIC state switches again, 
intending to resume Flash erase if memory is idle for a certain number of Clock Cycles 
(QSPIC_ERASECMDB_REG [QSPIC_ERSRES_HLD]) as shown in Figure 74, Reference Point 3. 

Provided that the Flash erase can be resumed, QSPIC issues an “Erase Resume” Request 
towards the Flash Memory and changes state once more. In its current state (Figure 74, 
Reference Point 4) QPSIC is programmed to delay any new suspension of the newly-resumed 
Erase for a pre-defined number of Clock Cycles (QSPIC_ERASECMDB_REG [QSPIC_RESSUS_DLY]). 

In the meantime, Flash Memory concludes the erasing process and notifies the QSPIC with an 
“Erase Complete” Response. QSPIC then issues an “Erase Complete” Response to the NVMS 
adapter, changing its state thus clearing CHECK_ERASE_REG and ERASECTRL_REQ bits (Figure 74, 

Reference Point 5). Finally, NVMS Adapter issues the conclusive “Erase Complete” Response to 
the Application/OS.       

 

 

  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 152 of 206 © 2022 Renesas Electronics 

12.5 Logging 

In the SDK the supported method of logging is to use the standard C API printf() in the application 

code. There are four mutually exclusive configuration options that will over-ride printf() in the file 

sdk/bsp/startup/config.c. These config options need to be set in config/custom_config_qspi.h 

 

Note 29 As printf takes a variable length list of arguments and supports many formatting options the 
execution time and memory usage are unbounded. This can easily break an embedded system. 

The recommendation is to be very careful in using printf()  

Ideally use printf() in application tasks as they are lowest priority and tend to have larger 
stacks. 

If it needs to log inside a high priority RTOS task such as a timer callback then do not pass any 
variables to be parsed. Just print a short string with no formatting to avoid blowing the small 
100 byte stack for the timer task and corrupting other variables. 

 

The possible configuration options are 

1. CONFIG_RETARGET 

In this mode the logging data is redirected to a UART with an over-ridden version of the low level API 
_write(). The UART used is set using the further configuration option 

#define CONFIG_RETARGET_UART UART2 

In this case the function periph_init() must enable the UART2 pins in the pin mux. 

hw_gpio_set_pin_function(HW_GPIO_PORT_1, HW_GPIO_PIN_3, HW_GPIO_MODE_OUTPUT, 

                                                 HW_GPIO_FUNC_UART2_TX);  

hw_gpio_set_pin_function(HW_GPIO_PORT_2, HW_GPIO_PIN_3, HW_GPIO_MODE_INPUT, 

                                                 HW_GPIO_FUNC_UART2_RX);  

With this configuration the printf() statements appear on the host PC on the lower numbered COM 

port that is enumerated for the USB cable (COMx on Windows (both Pro DK and Basic DK) 

/dev/ttyUSB0 for Pro DK and /dev/ttyACM0 for Basic DK on Linux).  

 

2. dg_configSYSTEMVIEW 

In this mode the logging data is redirected to SEGGER’s SystemView tool running on the Host PC. 
See Appendix D for instructions on setting up SystemView. Note that SystemView only supports 
integer arguments (ie %d) 

 

3. CONFIG_RTT 

In this mode the logging data is redirected to a Segger Real Time Transfer (RTT) link which uses 
JTAG to communicate the data to the Segger RTT tools running on the Host PC. 

 

4. CONFIG_NO_PRINT 

In this mode nothing is logged and in fact the printf() function is overridden by an empty stub 

function.  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 153 of 206 © 2022 Renesas Electronics 

13 Optimizations 

13.1 Optimize BLE framework footprint 

This section describes macros that can be used to reduce the application image size. Usually an 
application implements only one of the supported Bluetooth low energy roles (for example it is only 
central or peripheral), so code relevant to unused Bluetooth low energy roles can be excluded from 
the final build. Additionally, most of the time a Bluetooth low energy application would be a GATT 
server or a GATT client, and therefore extra functionality can be removed. Table 50 shows the 
available preprocessor macros that could be used to reduce the footprint of the user application. 

Table 50: Available Macros for the optimization of BLE framework footprint 

Macro Default Description 

dg_configBLE_PERIPHERAL  1 Set to 0 if the application is not using BLE-

peripheral related code. 

dg_configBLE_CENTRAL 1 Set to 0 if the application is not using BLE- 

central related code. 

dg_configBLE_OBSERVER 1 Set to 0 if the application is not using BLE-

observer related code. 

dg_configBLE_BROADCASTER 1 Set to 0 if the application is not using BLE-

broadcaster related code. 

dg_configBLE_GATT_CLIENT 1 Set to 0 if the application is not using GATT 

client related code. 

dg_configBLE_GATT_SERVER 1 Set to 0 if the application is not using GATT 

server related code. 

dg_configBLE_L2CAP_COC 1 Set to 0 if the application is not using L2CAP 

connection oriented channels related code. 

 

Note 30 All macros are defined as 1 (enabled) by default. To disable a macro define it as 0 in the project 
custom configuration file config/custom_config_qspi.h so that it will override the default setting.   

As an example Code 36 shows the Macros that are defined as 0 to optimize the BLE framework 
footprint in the pxp_reporter demo application as it only needs to be a peripheral and run a GATT 

server. 

* BLE device config 
 */ 
#define dg_configBLE_CENTRAL                    (0) 
#define dg_configBLE_GATT_CLIENT                (0) 
#define dg_configBLE_OBSERVER                   (0) 
#define dg_configBLE_BROADCASTER                (0) 

#define dg_configBLE_L2CAP_COC                  (0) 

Code 36: BLE framework preprocessor Macros 

13.2 Optimizing FreeRTOS heap usage 

This section discusses optimizing the FreeRTOS heap. The OS heap is a RAM buffer reserved for all 
dynamically allocated objects. This section focuses on how to profile FreeRTOS heap usage so that 
the configured heap size is optimal. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 154 of 206 © 2022 Renesas Electronics 

13.2.1 FreeRTOS Memory Management 

Every application based on FreeRTOS must select and use the FreeRTOS memory management 
module. This memory management module enables objects to be dynamically allocated (by calling 
FreeRTOS pvPortMalloc() function) and eventually freed (by calling pvPortFree() function). 

The FreeRTOS distribution provides four memory management implementations with different 
features and trade-offs: heap_1, heap_2, heap_3 and heap_4. 

The SDK uses heap_4. This scheme permits memory to be freed, implements a simple first-fit 
algorithm with a coalescence algorithm that combines adjacent freed blocks into a single large block. 
More information about the various FreeRTOS heap_x modules can be found on www.freertos.org.   

All dynamically allocated objects (allocated using pvPortMalloc() function) are taken from a fixed 

size buffer. This buffer is the FreeRTOS Heap. 

The OS Heap size is defined statically in each application configuration file. Heap size is application 
dependent; hence each application requires a different size for the OS Heap. On one hand, the OS 
Heap must be big enough to support dynamic allocated memory requirements. On the other hand, 
the Retention Memory budget impacts Power Consumption while sleeping, so heap needs to be 
minimized. The goal is to have just enough heap memory allocated for the application. 

FreeRTOS Heap contains the OS execution contexts of the application tasks so it needs to be 
retained. A look at the map file (*.map) generated during build, shows the amount of data retained by 

heap_4.o module (the SDK redefines privileged_data to mean data that needs to be in retained 

RAM section 6.1.3). The application privileged_data is the major part of the retained memory 

budget, with the remainder being retained static variables from other modules like tasks, queues and 
timers. 

 

Figure 75: Amount of data retained by the heap_4.o module 

file:///C:/Users/kskaltsa/Desktop/Dialog/680/1.0.12/docs/Soft_Plat_Ref/www.freertos.org


 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 155 of 206 © 2022 Renesas Electronics 

Table 51: Amount of data retained by the FreeRTOS for this specific example 

FreeRTOS Retention 

Code Data 

heap_4.o 0 13336 

queue.o 0 64 

tasks.o 0 252 

timers 0 56 

ad_nvms_ves.o 0 4 

Total 0 13712 

13.2.2 OS Heap & Tasks Stack size 

OS Heap Size is application dependent. In FreeRTOS whenever a heap allocation cannot be 
serviced, the hook vApplicationMallocFailedHook() is called to handle the error. 

In addition to the heap, each Task created by the application requires its own stack. The stack is 
allocated form the heap and its size should be: 

● Big enough so that its stack pointer remains in the stack. FreeRTOS checks on every context 
switch whether the stack has overflowed and calls vApplicationStackOverflowHook()when an 

overflow is detected.  

● As small as possible, so that Power Consumption while sleeping is limited (section 13.3). 

The size of the required stack varies according to the number of nested function calls, the number of 
parameters that are passed in function calls and the number and the type of local variables in 
functions.   

If the “worst case” execution path is known, it might be easy to calculate the optimal stack size for a 
task. However, knowing this “worst-case” execution path is not always simple, so a more practical 
method is proposed in the next paragraph. 

13.2.3 Optimizing FreeRTOS Heap 

The following steps describe a practical and empirical approach to the optimization of the FreeRTOS 
Heap memory. 

Step 1: 

For every task, the application developer should continuously monitor and optimize stack size. This 
should be done as early as possible during the development phase and eventually during testing as 
well. FreeRTOS provides the uxTaskGetStackHighWaterMark() function that helps measuring Stack 

utilization. All applications tasks need to be monitored. SDK middleware tasks such as BLE Adapter, 
BLE Manager and USB charger should also be tracked. 

Step 2: 

Continuously Monitor and adjust OS Heap utilization. This assumes that every task stack is being 
continuously monitored and optimized. FreeRTOS provides a xPortGetMinimumEverFreeHeapSize() 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 156 of 206 © 2022 Renesas Electronics 

function that helps measuring Total heap utilization. To minimize the impact on the application Task 
Stack and total Heap monitoring should: 

● Be done when the application is Idle. Therefore the preferred place in the context of FreeRTOS is 
in vApplicationIdleHook(). 

● Not require a bigger Idle stack size. 

SmartSnippetsTM DA1468x SDK provides a development configuration that activates OS Heap 
monitoring. The project <sdk_root_directory>\projects\dk_apps\demos\ble_adv contains code to 

monitor FreeRTOS Heap usage. To enable this, the user needs to enable dg_configTRACK_OS_HEAP 

macro inside the config/custom_config_qspi.h file as shown in Code 37.  

// 

// Enable the settings below to track OS heap usage, for profiling 

// 

//#if (dg_configIMAGE_SETUP == DEVELOPMENT_MODE) 

//#define dg_configTRACK_OS_HEAP                  1 

//#else 

//#define dg_configTRACK_OS_HEAP                  0 

//#endif 

Code 37: Enabling FreeRTOS Heap Tracking                    

13.3 Retention RAM optimization and configuration 

Note 31 By default, retention RAM optimization is disabled. 

This section describes the different retention RAM configurations that can be used to achieve the 
lowest possible power consumption for a specific application. As described in [1], the memory 
controller of the DA1468x chip provides a unified memory space for the RAM while allowing the 
reshuffling of the first 3 RAM cells. This way, it is possible for the application to retain only the 
absolutely required amount of RAM, thus saving power. 

There are five different RAM cells in total, as shown in Figure 76. Each one can be selected to be 
retained or not. The 5th RAM cell must always be retained because BLE ROM variables are stored in 
it. The memory region [0x7fc0000 - 0x7fc0200] must also be retained because the Interrupt Vector 

Table (IVT) is stored in it.  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 157 of 206 © 2022 Renesas Electronics 

 

Figure 76: Memory blocks 

The Sequence Configuration block controls the ordering of the first 3 memory cells according to the 
REMAP_RAMS value. Shuffling the memory cells allows the minimum number of RAM blocks to be 

retained to get the lowest power-down current consumption. The configuration setting 
dg_configSHUFFLING_MODE encodes the ordering of the first 3 RAM cells (RAM1, RAM2 and RAM3). 

The possible configurations are listed in Table 52. 

Table 52: DataRAM cells sequence 

Value Cell  Address  Size (kB) 

0x0 DataRAM1 0x7FC0000 8 

DataRAM2 0x7FC2000 24 

DataRAM3 0x7FC8000 32 

0x1 DataRAM2 0x7FC0000 24 

DataRAM1 0x7FC6000 8 

DataRAM3 0x7FC8000 32 

0x2 DataRAM3 0x7FC0000 32 

DataRAM1 0x7FC8000 8 

DataRAM2 0x7FCA000 24 

0x3 DataRAM3 0x7FC0000 32 

DataRAM2 0x7FC8000 24 

DataRAM1 0x7FCE000 8 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 158 of 206 © 2022 Renesas Electronics 

For example, if 50 KB of RAM needs to be retained then the optimal dg_configSHUFFLING_MODE 

value is 0x1. In this way, RAM5 cell (mandatory, 32 KB) and RAM2 cell (mapped at 0x7fc0000 after 

shuffling, 24 KB) may be retained by setting the configuration macro dg_configMEM_RETENTION_MODE 

to 0x1D, resulting in 56 KB of total retained RAM. 

For the DA1680/1-01, there are three different memory layouts depending on the build configuration. 
The following sections describe these memory layouts in detail. 

In the linker scripts of the applications distributed with the SDK, there are typically two retained 
memory sections defined. The first section, RetRAM0, contains the BLE ROM variables and the 
exchange table used for the communication with the BLE core, any code that must be retained and 
the zero initialized and RW variables retained by the application.  The other section, RetRAM1, may 
contain, apart from the IVT, large blocks of zero-initialized retained data, like OS or BLE heaps. 
Other allocations of which type of data is placed in each section are possible by modifying the linker 
script accordingly. 

Note 32 Linker scripts are centralized and so there is not a dedicated linker script per project. Centralized linker 
scripts are backwards compatible and can be overridden by a custom linker script if needed so. There 
are two flavors of linker scripts one for BLE and one for non-BLE projects. Centralized linker scripts 
are found in <sdk_root_folder>/sdk/bsp/ldscripts/. 

13.3.1 Memory setups for QSPI Cached execution mode 

The following sections describe various memory configurations for executing the application code 
from the QSPI flash memory. In these memory setups, the application code located in the QSPI 
Flash memory is executed in place and the Cache memory is enabled. 

The presented projects are BLE and non-BLE and they are split into two categories:  

● non-optimized (all RAM cells are retained) 

● optimized for low power consumption (some RAM cells are retained)  

 

13.3.1.1 DA14680/681 – QSPI Cached BLE non-optimized project (all RAM cells are 

retained) 

In Figure 77, an example memory layout is given. Here the non-optimized BLE project is executed in 
QSPI cached mode. In this example, RetRAM0 uses RAM cells 4 (32 KB) and 5 (32 KB). In this 
setup, the overall retained memory is 128 KB (all RAM cells are retained). 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 159 of 206 © 2022 Renesas Electronics 

 

Figure 77: DA14680/681 – QSPI Cached BLE non-optimized project 

 

Note 33 The BLE ROM variables start at 0x07FDC000 address. 

13.3.1.2 DA14680/681 – QSPI Cached BLE optimized project (RAM1, RAM2, RAM4, 

RAM5 cells are retained) 

In Figure 78, an example memory layout is given. Here the optimized BLE project is executed in 
QSPI cached mode. In this example, RetRAM0 uses RAM4 and RAM5 cells (64 KB) while RetRAM1 
uses RAM1 and RAM2 cells (32 KB). In this setup, the overall retained memory is 96 KB. 

 

 

Figure 78: DA14680/681 – QSPI Cached BLE optimized project 

 

Retention RAM optimization settings  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 160 of 206 © 2022 Renesas Electronics 

The following defines must be added in the config/custom_config_qspi.h file of the application to 

enable RAM optimization. 

 

#define dg_configOPTIMAL_RETRAM                 (1) 

#define dg_configMEM_RETENTION_MODE             (0x1B) 

#define dg_configSHUFFLING_MODE                 (0x0) 

 

An example taken from pxp_reporter demo application is shown in Code 38. 

#define dg_configOPTIMAL_RETRAM                 (1) 
 
#if (dg_configOPTIMAL_RETRAM == 1) 
        #if (dg_configBLACK_ORCA_IC_REV == BLACK_ORCA_IC_REV_A) 
                #define dg_configMEM_RETENTION_MODE             (0x1B) 
                #define dg_configSHUFFLING_MODE                 (0x0) 
        #else 
                #define dg_configMEM_RETENTION_MODE             (0x07) 
                #define dg_configSHUFFLING_MODE                 (0x0) 
        #endif 
#endif 
 

Code 38: RAM optimization settings 

 

Note 34 BLE ROM variables start at 0x07FDC000 address. 

13.3.1.3 DA14680/681 – QSPI non-BLE non-optimized project (all RAM cells are 

retained) 

In Figure 79, an example memory layout is given. Here the non-optimized non-BLE project is 
executed in QSPI cached mode. In this example, RetRAM0 uses RAM cells 4 (32 KB) and 5 (32 KB). 
In this setup, the overall retained memory is 128 KB (all RAM cells are retained). 

 

Figure 79: DA14680/681 – QSPI non-BLE non-optimized project 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 161 of 206 © 2022 Renesas Electronics 

13.3.1.4 DA14680/681 – QSPI non-BLE optimized project (RAM2 cell is retained) 

In Figure 80, an example memory layout is given. Here the optimized non-BLE project is executed in 
QSPI cached mode. In this example, RetRAM0 uses only RAM cell 2 (24 KB). In this setup, the 
overall retained memory is 24 KB. 

 

 

Figure 80: DA14680/681 – QSPI non-BLE optimized project 

 

 

 

Retention RAM optimization settings  

The following defines must be added in the custom_config_qspi.h file of the application to enable 

RAM optimization. 

#define dg_configOPTIMAL_RETRAM                 (1) 

#define dg_configMEM_RETENTION_MODE             (0x02) 

#define dg_configSHUFFLING_MODE                 (0x1) 

 

13.3.1.5 DA14682/683, DA15100/1  – QSPI Cached BLE non-optimized project (all 

RAM cells are retained) 

In Figure 81, an example memory layout is given. Here the non-optimized BLE project is executed in 
QSPI cached mode. In this example, RetRAM0 uses RAM cells 3 (32 KB), 2 (24 KB) and 1 (8 KB). In 
this setup, the overall retained memory is 128 KB. 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 162 of 206 © 2022 Renesas Electronics 

 

Figure 81: DA14682/683, DA15100/1  – QSPI Cached BLE non-optimized project 

 

Note 35 BLE ROM variables start at 0x07FC0200 address. 

13.3.1.6 DA14682/683, DA15100/1  – QSPI Cached BLE optimized project (RAM1, 

RAM2, RAM3 cells are retained) 

In Figure 82, an example memory layout is given. Here the optimized BLE project is executed in 
QSPI cached mode. In this example, RetRAM0 uses RAM cells 1 (8 KB), 2 (24 KB) and 3 (32 KB). In 
this setup, the overall retained memory is 64 KB. 

 

 

Figure 82: DA14682/683, DA15100/1  – QSPI Cached BLE optimized project 

 

Retention RAM optimization settings  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 163 of 206 © 2022 Renesas Electronics 

The following defines must be added in the config/custom_config_qspi.h file of the application to 

enable RAM optimization. 

 

#define dg_configOPTIMAL_RETRAM                 (1) 

#define dg_configMEM_RETENTION_MODE             (0x07) 

#define dg_configSHUFFLING_MODE                 (0x0) 

Note 36 BLE ROM variables start at 0x07FC0200 address. 

13.3.1.7 DA14682/683, DA15100/1  – QSPI Cached non-BLE non-optimized project 

(all RAM cells are retained) 

In Figure 83, an example memory layout is given. Here the non-optimized non-BLE project is 
executed in QSPI cached mode. In this example, RetRAM0 uses RAM cells 1 (8 KB), 2 (24 KB) and 
3 (32 KB). In this setup, the overall retained memory is 128 KB (all RAM cells are retained). 

 

Figure 83: DA14682/683, DA15100/1  – QSPI non-BLE optimized project 

13.3.1.8 DA14682/683, DA15100/1  – QSPI non-BLE optimized project (RAM2 cell is 

retained) 

In Figure 84, an example memory layout is given. Here the optimized non-BLE project is executed in 
QSPI cached mode. In this example, RetRAM0 uses only RAM cell 2 (24 KB). In this setup, the 
overall retained memory is 24 KB (all RAM cells are retained). 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 164 of 206 © 2022 Renesas Electronics 

 

Figure 84: DA14682/683, DA15100/1  – QSPI non-BLE optimized project 

 

 

Retention RAM optimization settings  

The following defines must be added in the config/custom_config_qspi.h file of the application to 

enable RAM optimization. 

#define dg_configOPTIMAL_RETRAM                 (1) 

#define dg_configMEM_RETENTION_MODE             (0x02) 

#define dg_configSHUFFLING_MODE                 (0x1) 

13.3.2 Memory setups for RAM execution mode 

This section describes several configurations that allow executing the application code from RAM 
memory (although defined as ROM in linker). In these memory configurations the application code 
located in the defined as ROM retained RAM memory cells, is executed in place. The Cache memory 
is enabled. 

The presented projects are BLE and non-BLE and they are split into two categories:  

● non-optimized (all RAM cells are retained) 

● optimized for low power consumption (some RAM cells are retained)  

13.3.2.1 DA14680/681  – RAM BLE non-optimized project (all RAM cells are retained) 

In Figure 85, an example memory layout is given. Here the non-optimized BLE project is executed in 
RAM execution mode. In this example the ROM memory has 64 KB size and uses RAM cells 1 (8 
KB), 2 (24 KB) and 3 (32 KB). RetRAM0 uses RAM cell 4 (32 KB) and 5 (32 KB). In this setup, the 
overall retained memory is 128 KB (all RAM cells are retained). 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 165 of 206 © 2022 Renesas Electronics 

 

Figure 85: DA14680/681  – RAM BLE non-optimized project 

 

Note 37 BLE ROM variables start at 0x07FDC000 address. 

13.3.2.2 DA14680/681  – RAM non-BLE non-optimized project (all RAM cells are 

retained) 

In Figure 86, an example memory layout is given. Here the non-optimized non-BLE project is 
executed in RAM execution mode. In this example the ROM memory has 64 KB size and uses RAM 
cells 1 (8 KB), 2 (24 KB) and 3 (32 KB). RetRAM0 uses RAM cell 4 (32 KB) and 5 (32 KB). In this 
setup, the overall retained memory is 128 KB (all RAM cells are retained). 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 166 of 206 © 2022 Renesas Electronics 

 

Figure 86: DA14680/681  – RAM non-BLE non-optimized project 

13.3.2.3 DA14682/683, DA15100/1   – RAM BLE non-optimized project (all RAM cells 

are retained) 

In Figure 87, an example memory layout is given. Here the non-optimized BLE project is executed in 
RAM execution mode. In this example the ROM memory has 128 KB size. RetRAM0 uses RAM cell 
3 (32 KB. In this setup, the overall retained memory is 128 KB (all RAM cells are retained). 

 

 

Figure 87: DA14682/683, DA15100/1   – RAM BLE non-optimized project 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 167 of 206 © 2022 Renesas Electronics 

Note 38 BLE ROM variables start at 0x07FC0200 address. 

13.3.2.4 DA14682/683, DA15100/1   – RAM non-BLE non-optimized project (all RAM 

cells are retained) 

In Figure 88, an example memory layout is given. Here the non-optimized BLE project is executed in 
RAM execution mode. In this example the ROM memory has 128 KB size. RetRAM0 uses RAM cell 
3 (32 KB. In this setup, the overall retained memory is 128 KB (all RAM cells are retained). 

 

Figure 88: DA14682/683, DA15100/1   – RAM non-BLE non-optimized project 

13.3.3 Memory setup for the OTP Cached execution mode (DA14680/1-01) 

The only difference with the QSPI cached mode is that the code resides in the OTP instead of the 
QSPI Flash. Due to the limited size of the OTP, the maximum size of the application image is 58 KB. 
Figure 89 depicts the memory setup for an OTP cached application with image size 58 KB, retaining 
64 KB of RAM during sleep (cells 1, 2 and 5). 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 168 of 206 © 2022 Renesas Electronics 

 

Figure 89: Memory setup for the OTP Cached execution mode (DA14680/1-01) 

13.3.4 Memory setup for the OTP Mirrored execution mode (DA14680/1-01) 

Note 39 The SDK has been developed to support only cached mode from Flash. This section is 
provided only as reference. 

In mirrored mode, the application code is copied into RAM before it is executed. There are two 
available memory setups for the OTP Mirrored execution mode. The main difference is whether 1 or 
2 sections will be used for non-retained data. In both configurations Cache memory is off and so may 
be used by the application. There is no RetRAM1 section since all memory is retained in this mode. 
The application code has to be retained during sleep as there is no mechanism to restore it at wake-
up. Due to this requirement, RAM cell shuffling is irrelevant while the value of the 
dg_configMEM_RETENTION_MODE  must be 0x1F. 

In the first configuration, the RAM section of the linker script (normally non-retained data) is placed in 
the RAM cell of Cache. The ECC buffer cannot be placed in this region. This setup is shown in 
Figure 32. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 169 of 206 © 2022 Renesas Electronics 

 

Figure 90: Setup 1 for the OTP Mirrored execution mode (DA14680/1-01) 

In the second configuration, the linker script has two RAM sections. The first one (RAM1) is placed in 
the RAM cell of the Cache as in the first configuration. Here there is also space after the end of the 
application image in RAM and the beginning of RetRAM0 section which can also be used for data 
(RAM2). Note that the ECC buffer can be placed in RAM2. This configuration is shown in Figure 91.  

 

Figure 91: Setup 2 for the OTP Mirrored execution mode (DA14680/1-01) 

  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 170 of 206 © 2022 Renesas Electronics 

Appendix A SmartSnippets DA1468x SDK structure 

A.1 Directory structure 

This section describes the structure of the directories of the SmartSnippetsTM DA1468x SDK. The 
root directory contains the subfolders shown below. Each subdirectory is described in the following 
sections.  

Table 53: SmartSnippetsTM root directory structure 

Directory Subdirectory Description 

DA1468x_SDK_BTLE_v_1.0.10.xxx binaries Executables. 

config Configuration files for the SmartSnippets DA168x 

SDK. 

doc Documentation. 

projects Project examples. 

sdk Software development kit. 

utilities Utilities (image creation, programming etc.). 

A.2 Binaries directory 

The Binaries directory contains the executable binaries of the Windows and Linux applications which 
are needed to generate the final image file and to interact with the Pro and Basic DK boards. 
Currently these binaries are in the binaries folder of the SmartSnippetsTM DA1468x SDK: 

Table 54 binary files inside SmartSnippetsTM DA1468x SDK 

Filename Notes 

bin2image Utility for creating a bootable image from an executable raw 

binary (for Linux). 

bin2image.exe Utility for creating a bootable image from an executable raw 

binary (for Windows). 

cli_programmer Utility to download image file to ProDK development board (for 

Linux). 

cli_programmer.exe Utility to download image file to ProDK development board (for 

Windows). 

Libprogrammer.dll Utility which supports download/programming of image files to 

ProDK board (for Windows). 

Libprogrammer.so Utility which supports download/programming of image files to 

ProDK board (for Linux). 

Mkimage Utility for creating a firmware image for SmartSnippets DA1468x 

SDK (for Linux). 

mkimage.exe Utility for creating a firmware image for SmartSnippets DA1468x 

SDK (for Windows). 

A.3 Config directory  

The Config directory contains configuration files for the SmartSnippetsTM  DA1468x SDK.  

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 171 of 206 © 2022 Renesas Electronics 

Table 55: Config folder 

Documents  Description  

Embsys DA1468x register definitions 

DA1468x_1.0.10_SDK_config Configuration file for the SmartSnippets DA1468x SDK. 

ATTACH.launch Global debug configuration launcher  

QSPI.launch Global debug configuration launcher 

RAM.launch Global debug configuration launcher 

studio_config SmartSnippets Studio configuration 

A.4 Doc directory 

The Doc directory shall contain all relevant documentation which makes sure the reader understands 
the set-up and can use the SmartSnippetsTM  DA1468x SDK version 1.0.10. At present the folder 
contains the following documents: 

Table 56: Doc folder  

Documents  Description  

Html folder, Doxygen SmartSnippets DA1468x SDK Documentation generated by 

Doxygen. 

  

Installation_and_debugging_procedure The file presents steps which should be done by a user to 

properly run example demos from SDK. 

Licensing License Agreement for the software. 

sdk_eclipse_formatter.xml Coding style formatter description for Eclipse. 

VERSION Version of the SmartSnippets DA1468x SDK. 

A.5 Projects directory 

A.5.1 dk_apps directory 

The dk_apps directory contains a collection of sample projects which can run on the DA1468x family 
of devices. These projects all use the board support package which consists of all peripherals 
drivers, the RTOS, the BLE stack if applicable, etc. This will be described in more detail in a later 
section of this document. The following subfolders are present in the dk_apps directory. 

Table 57: dk_apps directory structure 

Directory Subdirectory Description 

dk_apps ble_profiles Sample projects implementing BLE available profiles. 

demos Sample projects, such as standalone peripheral tests. 

features Contains projects that exhibit some basic features of the 

SmartSnippets DA1468x SDK. 

reference_designs Contains all reference design projects, which are out of scope of 
the SmartSnippets DA1468x SDK. As an exception, we include 

plt_fw in a form of a “reference design”. 

templates Several projects which offer templates for different device 
configurations such as support of a real-time terminal for easier 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 172 of 206 © 2022 Renesas Electronics 

Directory Subdirectory Description 

debugging. 

A.5.2 Host_apps directory 

Table 58: Host App directory  

Directory Subdirectory Description 

host_apps Examples Includes usb_cdc_echo_test 

A.5.3 SDK directory 

The SDK directory is the central part of the complete SmartSnippetsTM  DA1468x SDK and contains 
the code and header files for BLE framework support, middleware components (such as e.g. audio, 
firmware upgrade and security toolboxes) as well as low-level drivers and adapter implementations. 
The directories are structured as shown in the tables below. 

Table 59: SDK directory structure 

Directory Subdirectory Description 

sdk bsp Includes header and source files for board support package. 

Interfaces Includes header and source files for supported interfaces such as 

e.g. audio/crypto toolbox, BLE adapter, etc. 

Middleware Includes header and source files for supported middleware and 

services such as e.g. fw_upgrade and logging support. 

Table 60: bsp directory structure 

Directory Subdirectory Description 

bsp  adapters Contains projects for all supported adapters such as e.g. SPI, I2C 

and UART adapter. 

config Configuration header files. 

free_rtos Contains projects for FreeRTOS implementation. 

Include HW specific 14680 macros, structure and register definitions, 

interrupt priority definitions and low level API calls. 

ldscripts linker scripts for Bluetooth low energy projects and non-Bluetooth 

projects 

memory Contains code for access QSPI flash when running in auto mode. 

misc Contains ROM symbol table. 

osal OS abstraction layer implementation, customized queue and 

resource management implementation. 

peripherals Low level drivers for all supported peripherals. 

startup Contains code for the initialization of the ARM processor. 

system Contains power/clock manager code and header files. 

 arm_license License agreement 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 173 of 206 © 2022 Renesas Electronics 

Table 61: interfaces directory structure 

Directory Subdirectory Description 

interfaces audio Contains the PDM audio interface driver. 

ble Contains the implementation of the BLE framework. 

ble_services Contains sample implementations of the BLE services. 

ble_stack Contains a lower level BLE stack implementation library. 

ble_clients Contains sample BLE client implementations. 

crypto Empty. 

ftdf FTDF PHY test  

usb Contains the USB low level driver. 

Table 62: middleware directory structure 

Directory Subdirectory Description 

middleware audio Empty. 

ble_net Empty. 

cli CLI service for the Dialog SmartSnippets DA1468x SDK. 

console  Serial console service for the Dialog SmartSnippets DA1468x SDK. 

dgtl DGTL framework 

fw_upgrade Empty. 

ip_net Empty. 

logging Implementation of a thread safe, UART based logging module. 

mcif Monitor and Control I/F API. 

Monitoring FreeRTOS task monitoring tools 

rf_tools Contains project for the RF_tools. 

segger_tools Modules used to support SEGGER’s RTT and SystemView  

security Empty. 

A.5.4 Utilities directory 

The Utilities directory contains a collection of useful tools in source format – mostly to interact with 
the Pro and Basic DK boards. Table 63 below shows the content of this directory. 

Table 63: Utilities directory structure 

Directory Subdirectory Description 

Utilities bin2image Utility for creating a bootable image from an executable raw binary. 

cli_programmer Command line interface programmer source code. For details 

please refer to Appendix A. 

mkimage  Utility for creating a firmware image for SmartSnippets DA1468x 

SDK. 

Scripts Scripts for Windows and Linux for QSPI flash programming, 

Debugging with GDB, OTP patching, etc. 

nvparam Creates an image of NV Parameters which can be then written 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 174 of 206 © 2022 Renesas Electronics 

Directory Subdirectory Description 

directly to proper partition on flash. 

Appendix B Command Line Interface (CLI) Programmer 

B.1 CLI Programmer – Overview 

cli_programmer is a command line tool for reading & writing to FLASH/OTP/RAM. It also provides 

some extra functions like loading & executing an image from RAM. The tool communicates with the 
target device over uart port or swd/jtag interface. It executes on Windows and Linux platforms. 

Note 40 Writing an image to flash requires adding a header to the image. This process is handled by the 
bin2image tool, or the cli_programmer write_qspi_exec command. 

B.2 Application command description 

Open a terminal and navigate to the folder <sdk_root_directory>/binaries/ To run 

cli_programmer the interface (GDB server or serial port) and the requested command must be 

supplied. 

> cli_programmer [<options>] <interface> <command> [<args>] 

 

For the interface name the user must use the name presented by the operating system. For the serial 
port the file name is e.g. COM5 (Windows) or /dev/ttyUSB0 (Linux) and for the SWD interface (J-Link 

debugger with the GDB server) is ‘gdbserver’.  

Table 64: Commands and arguments 

Option  Description  

write_qspi <address> <file> [<size>] Writes up to `size` bytes of `file` into the FLASH at 

`address`. If `size` is omitted, a complete file is written. 

write_qspi_bytes <address> <data1> [<data2> 

[...]] 

Writes bytes specified on command line into the FLASH at 
`address`. 

write_qspi_exec <image_file> Writes binary file (.bin) to flash at address 0, after adding 

header for execution in place (cached mode). 

write_suota_image <image_file> <version> Writes SUOTA enabled `image_file` to executable 

partition. The user supplied `version` string goes to image 

header. 

read_qspi <address> <file> <size> Reads `size` bytes from the FLASH memory, starting at 

`address` into `file`. If `file` is specified as either '-' or 

'--', data is output to stdout as hexdump. The hexdump 

is either 16-bytes (-) or 32-bytes (--) wide. 

erase_qspi <address> <size> Erases `size` bytes of the FLASH, starting at `address`. 

Note: an actual erased area may be different due to the 

size of an erase block. 

chip_erase_qspi Erases the whole FLASH. 

copy_qspi <address_ram> <address_qspi> 

<size> 

Copies `size` bytes from the RAM memory, starting at 

`address_ram` to FLASH at `address_flash`. This is an 

advanced command and is not needed by end user.  

is_empty_qspi [start_address size] Checks that FLASH contains only 0xFF values. If no 

arguments are specified starting address is 0 and size is 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 175 of 206 © 2022 Renesas Electronics 

Option  Description  

1M. Command prints whether flash is empty and if offset of 

first non-empty byte. 

read_partition_table Reads the partition table (if any exists) and prints its 

contents. 

write <address> <file> [<size>] Writes up to `size` bytes of `file` into the RAM memory at 

`address`. If `size` is omitted, a complete `file` is written. 

read <address> <file> <size> Reads `size` bytes from the RAM memory, starting at 

`address` into `file`. If `file` is specified as either '-' or 

'--', data is output to stdout as hexdump. The hexdump is 

either 16-bytes (-) or 32-bytes (--) wide. 

write_otp <address> <length> [<data> 

[<data> [...]]] 

Writes `length` words to the OTP at `address̀ . `data` are 

32-bit words to be written, if less than 

`length` words are specified, remaining words are 

assumed to be 0x00. 

read_otp <address> <length> Reads `length` 32-bit words from the OTP address 

`address`. 

write_otp_file <file> Writes data to the OTP as defined in `file` (default 

specified values are written). 

read_otp_file <file> Reads data from the OTP as defined in `file` (cells with 
default value provided are read) contents of each cell is 

printed to stdout. 

write_tcs <length> [<reg_addr> <reg_data> 

[<reg_addr> <reg_data>  [...]]] 

Writes `length̀  64-bit words to the OTP TCS section at 

first available (filled with 0) section of 

size `length`. `reg_addr`: the register address. It will be 

written as a 64-bit word [`reg_addr̀ , ~̀reg_addr ]̀. 

`reg_data`: the register data. It will be written as a 64-bit 

word [`reg_data`, `~reg_data`]. 

Boot Boots the 2nd stage bootloader or the application binary 
(defined with -b) and exits. 

read_chip_info Reads chip information from chip revision registers and 

OTP header. 

Table 65: General options 

Option  Description 

-h Prints help screen and exits. 

--save-ini Saves CLI programmer configuration to the 
`cli_programmer.ini` file and exits. 

-b file Filename of 2nd stage bootloader or an application binary. 

Table 66: GDB server specific options 

Option Description 

-p <port_num> TCP port number that GDB server listens to. The Default 

value is 2331. 

-r <host> GNU server host. The default is `localhost`. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 176 of 206 © 2022 Renesas Electronics 

Option Description 

--no-kill Don't stop already running GDB server instance. 

--gdb-cmd <cmd> GDB server command used for executing and passing the 

right parameters to GDB server. 

 

Without this parameter no GDB server instance will be started or stopped. As GDB server command 
line can be quite long, to avoid typing it every time the tool is executed and the best way to store this 
command line in cli_programmer.ini file is by using the ‘--save-ini’ command line option. 

Table 67: Serial port specific options 

Option Description 

-s <baudrate> Baud rate used for UART by uartboot. The parameter is 

patched to the uploaded uartboot binary (in that way 
passed as a parameter). This can be 9600, 19200, 57600 
(default), 115200, 230400, 500000, 1000000. 

-i <baudrate> Initial baud rate used for uploading the `uartboot` or a 

user supplied binary. This depends on the rate used by the 
bootloader of the device. The default behavior is to use the 
value passed by '-s' or its default, if the parameter is not 

given. The argument is ignored by the `boot̀  command. '-

s' option should be used in this case. 

--tx-port <port_num> GPIO port used for UART Tx by the `uartboot`. This 

parameter is patched to the uploaded uartboot binary (in 
that way passed as a parameter). The default value is 1. 
This argument is ignored when the `boot` command is 

given. 

--tx-pin <pin_num> GPIO pin used for UART Tx by uartboot. This parameter 

is patched to the uploaded uartboot binary (in that way 

passed as a parameter). The default value is 3. The 

argument is ignored when the `boot` command is givern. 

--rx-port <port_num> GPIO port used for UART Rx by uartboot. This parameter 

is patched to the uploaded uartboot binary (in that way 

passed as a parameter). The default value is 2. The 

argument is ignored when the `boot  ̀command is given. 

--rx-pin <pin_num> GPIO pin used for UART Rx by uartboot. This parameter is 

patched to the uploaded uartboot binary (in that way 

passed as a parameter). The default value is 3. The 

argument is ignored when the `boot` command is given. 

-w timeout Serial port communication timeout is used only during 
download of uartboot binary, if during this time board will 

not respond cli_programmer exits with timeout error. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 177 of 206 © 2022 Renesas Electronics 

 

Table 68: bin2image options 

Option Description  

--prod-id DA14681-01 DA14680-01, DA14681-01. Selects the chip product ID. 
This option applies only when write_qspi_exec cmd is 

used. 

It instructs cli_programmer to set the flash header which 

corresponds to the selected chip revision. 

When cli_programmer is executed it tries to read the cli_programmer.ini file which may contain 

various cli_programmer options. Instead of creating this file manually, the user should use the ‘--

save-ini’ command line option. The format of the cli_programmer.ini adheres to standard 

Windows ini file syntax. The cli_programmer looks for ini file in the following locations: 

● current directory 

● home directory 

● cli_programmer executable directory 

B.3 Command examples 

Example 1 

Upload binary data to FLASH. 

 

Windows: 

>    cli_programmer COM40 write_qspi 0x0 data_i  

Linux: 

>   cli_programmer /dev/ttyUSB0 write_qspi 0x0 data_i 

 

Example 2 

Upload binary data to FLASH using maximum serial port baudrate. 

>    cli_programmer -s 1000000 -i 57600 COM40 write_qspi 0x0 data_i 

 

Example 3 

Read data from FLASH to local file. 

>    cli_programmer COM40 read_qspi 0x0 data_o 0x100 

 

Example 4 

Upload custom binary `test_api.bin` to RAM and execute it, using UART Tx/Rx P1_0/P1_5 (uses 

boot rom booter baud rate at 57600) 

>    cli_programmer -b test_api.bin COM40 boot 

 

Example 5 

Upload custom binary `test_api.bin` to RAM and execute it, using UART Tx/Rx P1_3/P2_3 (uses 

boot rom booter baud rate ata 9600) 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 178 of 206 © 2022 Renesas Electronics 

>    cli_programmer –s 9600 -b test_api.bin COM40 boot 

 

Example 6 

Modify FLASH at specified location with arguments passed in command line. 

>    cli_programmer COM40 write_qspi_bytes 0x80000 0x11 0x22 0x33 

 

Example 7 

Run a few commands with uartboot, using UART Tx/Rx P1_0/P1_5 at baud rate 115200 

(initial rate for uartboot uploading must be 57600 ). 

>    cli_programmer -i 57600 -s 115200 COM40 write_qspi 0x0 data_i 

 

>    cli_programmer -i 57600 -s 115200 COM40 read_qspi 0x0 data_o 0x100 

 

 

Example 8 

Run a few commands with uartboot, using UART Tx/Rx P1_3/P2_3 at baud rate 115200 

(initial rate for uartboot uploading is 9600). 

>    cli_programmer -i 9600 -s 115200 --tx-port 1 --tx-pin 3 --rx-port 2 --rx-pin 3 

COM40 write_qspi 0x0 data_i 

 

>    cli_programmer -i 9600 -s 115200 --tx-port 1 --tx-pin 3 --rx-port 2 --rx-pin 3 

COM40 read_qspi 0x0 data_o 0x100 

 

Example 9 

Read FLASH contents (10 bytes at address 0x0). 

Start gdbserver manually! 

>    cli_programmer gdbserver read_qspi 0 -- 10 

 

Example 10 

Write register 0x50003000 with value 0x00FF and register 0x50003002 with value 0x00AA. 

>    cli_programmer gdbserver write_tcs 4 0x50003000 0x00FF 0x50003002 0x00AA 

 

Example 11 

Write settings to the cli_programmer.ini file. Long bootloader path is passed with -b option and 

command line to start GDB server is passed with ‘--gdb-cmd’. In this example GDB server command 
line contains arguments and path to executable has space so whole command line is put in quotes 
and quotes required by Windows path are additionally escaped. 

>    cli_programmer –b 
c:\users\jon\<sdk_root_directory>/bsp\system\loaders\uartboot\Release\uartboot.bin --

save-ini --gdb-cmd "\"C:\Program Files\SEGGER\JLink_V510d\JLinkGDBServerCL.exe\" -if 

SWD -device Cortex-M0 -singlerun -silent -speed auto" 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 179 of 206 © 2022 Renesas Electronics 

Example 12 

Program a DA14681-01 chip with an executable flash image.  

>       cli_programmer --prod-id DA14681-01 gdbserver write_qspi_exec 

../../../../projects/dk_apps/features/tickless/DA14681-01-Debug_QSPI/tickless.bin 

 

Example 13 

Write 6 bytes specified in command line to flash at address 0x80000.  

>       cli_programmer gdbserver write_qspi_bytes 0x80000 0x11 0x22 0x33 0x44 0x55 0x66 

 
 

Example 14 

Write SUOTA enable application to proper location in flash.  

>   cli_programmer gdbserver write_suota_image pxp_reporter.bin “1.1.0.1 a” 

 

Example 15 

Write OTP address 0x07f80128 with the following contents: B0:0x00, B1:0x01, B2:0x02, B3:0x03, 
B4:0x04, B5:0x05, B6:0x06, B7:0x07 

>    cli_programmer gdbserver write_otp 0x07f80128 2 0x03020100 0x07060504 

 

Read OTP address 0x07f80128. 

>    cli_programmer gdbserver read_otp 0x07f80128 2 

 

If written with the contents from above write example, it should return: 

     0025   00 01 02 03 04 05 06 07    

B.3.1 Installation and debugging procedure  

The cli_programmer make use of the libprogrammer library which implements the underlying 

functionality on the host side. The cli_programmer can be linked either statically or dynamically with 

libprogrammer. 

The cli_programmer uses uartboot application which acts as a secondary bootloader which 

cli_programmer downloads to the target for performing the read/write operations. 

The project is found in <sdk_root_directory>/utilities/cli_programmer/cli. 

Table 69:  Build configurations 

Configuration  Description  

Debug Debug version for Linux. 

Debug_static Debug version linked with a static version of the libprogrammer 

and it’s recommended for Linux. It also builds uartboot project 

and includes it in cli_programmer executable. 

Debug_static_win32 Debug version for Windows linked with a static version of 
libprogrammer. 

Release Release version for Linux. 

Release_static Release version linked with a static version of libprogrammer and 

it’s recommended for Linux. It also builds uartboot project and 
includes it in cli_programmer executable.  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 180 of 206 © 2022 Renesas Electronics 

Configuration  Description  

Release_static_win32 Release version for Windows linked with a static version of 
libprogrammer. 

B.3.2 Build instructions 

Build instructions: 

● Import libprogrammer, cli_programmer and uartboot into SmartSnippetsTM Studio 

● Build libprogrammer , cli_programmer and uartboot in Release_static configuration 

(recommended) 

● Run cli_programmer with proper parameters as described in Appendix B.2 and B.3.  

 

Note 41 A prebuilt version of cli_programmer can be found under SmartSnippetsTM  DA1468x SDK's binaries 

folder.  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 181 of 206 © 2022 Renesas Electronics 

Appendix C QSPI programming guide 

C.1 General 

This guide describes the methods and tools used for: 

● Programming QSPI flash 

● Debugging programs which execute from QSPI flash 

After programming the QSPI, the image will execute by resetting or power cycling the board. 

C.2 Prerequisites 

Compile the following tools (sources and projects available on SmartSnippetsTM  DA1468x SDK): 

cli_programmer: 

Compile <sdk_root_directory>/utilities/cli_programmer project.  

Linux: Use Debug_static build configuration in  SmartSnippetsTM Studio 

Windows: Compile cli_programmer.sln using Visual studio OR use the binaries from 

SmartSnippetsTM  DA1468x SDK's binaries folder 

 (cli_programmer.exe, libprogrammer.dll) 

bin2image: 

Compile <sdk_root_directory>/utilities/bin2image project. 

Linux: Run make from project's folder 

Windows: Check README.win32 in project's folder OR use the binary from SmartSnippetsTM  

DA1468x SDK's binaries folder (bin2image.exe)  

uartboot.bin: 

This is the intermediate bootloader that cli_programmer uses for communicating with the 

target. 

The uartboot firmware will automatically detect the device variant. This means that the 

provided uartboot binary file does not have to be rebuilt if a different device variant of the 

DA1468x family is used. 

Compile ./sdk/bsp/system/loaders/uartboot/ in SmartSnippetsTM Studio using the 

release configuration 

Note 42 cli_programmer uses uartboot.bin for communicating with the target.  

Copying uartboot.bin to the folder of the cli_programmer binary will allow cli_programmer 

to automatically detect & use uartboot.bin. 

Alternatively, the path to uartboot.bin can be provided to cli_programmer using -b 

commandline option. 

Import scripts project into the current SmartSnippetsTM Studio workspace. 

This is needed to starts the cli_programmer from within SmartSnippetsTM Studio IDE 

C.3 Compiling for execution from flash 

SmartSnippetsTM  DA1468x SDK projects come with SmartSnippetsTM Studio build configurations 
which compile for execution for FLASH (cached) or RAM. 

Configuring a project for execution from FLASH/RAM breaks down to the following steps: 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 182 of 206 © 2022 Renesas Electronics 

 Configure the memory mapping in linker script. 

 Using  SmartSnippetsTM Studio: 

a. Edit ldscripts/mem.ld.h in project's folder (instructions can be found in file's header 

comments). 

b. During project build the mem.ld file will be automatically updated. 

 Not using SmartSnippetsTM Studio: 

a. Edit project's ldscripts/mem.ld file. 

 Configure project to compile for execution from FLASH. 

 In <sdk_root_folder>/sdk/bsp/custom_config_xxx.h header file, set the macros described 

below as follows and compile normally: 

a. For execution from FLASH (cached): 

#define dg_configEXEC_MODE                      MODE_IS_CACHED 

#define dg_configCODE_LOCATION              NON_VOLATILE_IS_FLASH 

Code 39: Execution from Flash (cached) 

b. For execution from FLASH (mirrored): 

#define dg_configEXEC_MODE                      MODE_IS_MIRRORED 

#define dg_configCODE_LOCATION              NON_VOLATILE_IS_FLASH 

Code 40: Execution from Flash (mirrored) 

c. For execution from RAM: 

#define dg_configCODE_LOCATION              NON_VOLATILE_IS_NONE 

Code 41: Execution from RAM 

Note 43 The BINARY output (<project_name>.bin, NOT the <project_name>.elf) will be used in the next 

steps. 

C.4 Flashing an QSPI image 

Using SmartSnippetsTM Studio: 

Select the folder which includes <project_name>.bin (e.g. the project's Debug folder) and execute 

one of the following scripts from SmartSnippetsTM Studio external tools menu button. 

Table 70: QSPI programming scripts on Windows Host 

Script name Notes 

Program_qspi_serial_win 

(Note 1) 

Use this script in case you want to program the selected binary to 
external QSPI memory using a serial interface. Please follow 

instructions given on the SmartSnippets Studio console window. 

Program_qspi_jtag_win 

(Note 1) 

Use this script in case you want to program the selected binary to 

external QSPI memory using the JTAG interface. 

 

Note 44 When calling one of these scripts for the first time you will be prompted to enter configuration options. 
You may change the selected configuration any time using the program_qspi_config_win script.  

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 183 of 206 © 2022 Renesas Electronics 

Table 71: QSPI programming scripts on Linux Host 

Script name Notes 

Program_qspi_serial_linux 

(Note 1) 

Use this script in case you want to program the selected binary to 
external QSPI memory using a serial interface. Please follow 

instructions given on the SmartSnippets Studio console window. 

Program_qspi_jtag_linux 

(Note 1) 

Use this script in case you want to program the selected binary to 

external QSPI memory using the JTAG interface. 

 

Note 45 When calling one of these scripts for the first time you will be prompted to enter configuration options. 
You may change the selected configuration any time using the program_qspi_config_linux script.  

C.5 Debugging from QSPI 

C.5.1 General 

The user may use J-Link SWD interface to attach to the running target & debug, OR reset board & 
debug as follows: 

Using SmartSnippetsTM Studio : 

The SmartSnippetsTM  DA1468x SDK includes SmartSnippetsTM Studio  launch configurations 
provided with the SmartSnippetsTM  DA1468x SDK projects (ATTACH for attaching to running target 

and *_qspi.launch for resetting & attaching to QSPI, RAM for debugging from RAM (where 

applicable)). 

Outside SmartSnippetsTM Studio : 

The SmartSnippetsTM  DA1468x SDK includes sample scripts & gdb commands in 
utilities/scripts/qspi folder: 

• boot_qspi_dbg* scripts reset board and put a breakpoint in main(). The scripts invoke J-Link 

gdb server and issue gdb commands 

• gdb_cmd_qspi_* files are the gdb command files used by the above scripts 

Instructions on using these scripts are provided in the next paragraph. 

C.5.2 Debugging with gdb scripts 

1. The scripts include references to the executables: 

• JLinkGDBServerCL 

• arm-none-eabi-gdb  

and can be found in the following SmartSnippetsTM  DA1468x SDK path: 

<sdk_root_directory>/utilities/scripts/qspi 

2. Make sure that you have the paths to these executables included in your platform's system path. 
If not, edit script files and add the absolute paths to these executables, for instance in 
boot_qspi_dbg.bat: replace JLinkGDBServerCL.exe with: C:/Program 
Files/SEGGER/JLink_V512h/JLinkGDBServerCL.exe 

3. Edit the Debug scripts (boot_qspi_dbg.*) and replace PUT_YOUR_APP_ELF_HERE.elf with the 

name of the .elf file you want to debug. This should be the .elf file of the binary image flashed 

in the QSPI. 

4. Execute the boot_qspi_dbg.* script.  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 184 of 206 © 2022 Renesas Electronics 

5. The J-Link gdb server running must be operational, connected to target, downloading & running 
the boot loader and CPU halting at main() breakpoint. After this point a "continue" command can 

be issued and debug process may proceed, using the same gdb server instance. 

6. Alternatively, it is possible to invoke a second instance of J-Link gdb server and attach it to the 
target. 

Note 46 Since hardware breakpoints are used, only 4 breakpoints are available. 

  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 185 of 206 © 2022 Renesas Electronics 

Appendix D SEGGER SystemView integration instructions  

SEGGER SystemView is a real-time recording and visualization tool that reveals the true runtime 
behavior of an application. To enable SystemView, follow the instructions below. 

Configuring SmartSnippetsTM Studio projects to support SystemView: 

To enable SystemView for a specific build configuration of any SmartSnippetsTM Studio project, 
configure the project to build SystemView’s source files and include header file directories: 

 Select a project which has the "OS_FREERTOS" definition enabled. Bare metal projects are 
currently not supported. 

 Right click project's "sdk" subfolder and select New > Folder  

 

Figure 92: Create a new folder  

 In the pop-up window select: Advanced > "Link to alternate location" > Browse… and select 

the <sdk_root_directory>\sdk\middleware\segger_tools folder as shown in Figure 93. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 186 of 206 © 2022 Renesas Electronics 

 

Figure 93: Select the Linker Folder 

 Right click project's name and go to Properties > C/C++ Build > Settings > Tool Settings > 
Cross ARM C Compiler > Includes > Include Paths (see Figure 94), add the following 
Workspace folders and click apply: 

            ${workspace_loc:/${ProjName}/sdk/segger_tools/Config} 

            ${workspace_loc:/${ProjName}/sdk/segger_tools/OS} 

            ${workspace_loc:/${ProjName}/sdk/segger_tools/SEGGER} 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 187 of 206 © 2022 Renesas Electronics 

 

Figure 94: Include folder paths 

 Open the project's config/custom_config_*.h file and add Code 42 to add and enable the 

System View configuration: 

#define dg_configSYSTEMVIEW                   (1) 

Code 42: Enable System View configuration 

● Note that configTOTAL_HEAP_SIZE should be increased by 

dg_configSYSTEMVIEW_STACK_OVERHEAD bytes for each system task. For example, if there are 8 

system tasks, configTOTAL_HEAP_SIZE should be increased by: 

● (8 * dg_configSYSTEMVIEW_STACK_OVERHEAD) bytes. 

 

 To call SEGGER_SYSVIEW_Conf() from application add Code 43. A good place to do this is inside 

system_init() after the configuration of system clocks: 

#if dg_configSYSTEMVIEW 

SEGGER_SYSVIEW_Conf(); 

#endif 

Code 43: Call System View  

                         



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 188 of 206 © 2022 Renesas Electronics 

 Build and download the application image to DA1468x. Then run the application either by 
pressing the Reset Button (Release Build) or by start debugging the application. 

 To disable SystemView, set dg_configSYSTEMVIEW to 0 and rebuild the application. 

 

Running SystemView on the Host: 

 Start the Segger System View application from SmartSnippetsTM Studio. 

 

Figure 95: System Viewer application  

 Configure the SEGGER System View as shown in Figure 96. 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 189 of 206 © 2022 Renesas Electronics 

Figure 96: Configuring the SEGGER System Viewer 

Note 47 The address for the RTT Control Block Detection is located in application’s .map file. For example, for 
PXP reporter the .map file is located at pxp_reporter\DA14681-01-Release_QSPI. Press Ctrl+F and 

search the address of the _SEGGER_RTT variable. 

 On the main SystemView window, press the upper right "Start Recording Button" button. 

 

Figure 97: Start Recording  

 

 One can Stop and Restart the recording at any time using the buttons from SystemView PC 
Application. 

Additional information: 

 The processing overhead of SystemView is not negligible and can potentially affect system 
dynamics or cause assertions due to the delays inserted from ISR monitoring. To minimize the 
impact on time critical ISRs there are some configuration options that allow the user to 
enable/disable the monitoring of certain aspects of the system, as shown below: 

 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 190 of 206 © 2022 Renesas Electronics 

/* 

 * Enable/Disable SystemView monitoring for BLE related ISRs (BLE_GEN_Handler / 

BLE_WAKEUP_LP_Handler). 

 * */ 

#ifndef dg_configSYSTEMVIEW_MONITOR_BLE_ISR 

#define dg_configSYSTEMVIEW_MONITOR_BLE_ISR     (1) 

#endif 

 

/* 

 * Enable/Disable SystemView monitoring for CPM related ISRs (SWTIM1_Handler / 

WKUP_GPIO_Handler). 

 * */ 

#ifndef dg_configSYSTEMVIEW_MONITOR_CPM_ISR 

#define dg_configSYSTEMVIEW_MONITOR_CPM_ISR     (1) 

#endif 

 

/* 

 * Enable/Disable SystemView monitoring for USB related ISRs (USB_Handler / 

VBUS_Handler). 

 * */ 

#ifndef dg_configSYSTEMVIEW_MONITOR_USB_ISR 

#define dg_configSYSTEMVIEW_MONITOR_USB_ISR     (1) 

#endif 

Code 44: Enable/disable the monitoring  

 In applications with heavy IRQ usage it is possible that the currently used 2kb RTT buffer cannot 
hold all the monitored events and this may cause RTT overflows which simple means that some 
events are lost. The number of lost events is visible in the System View GUI RTT overflows 
property. 

To avoid this SEGGER suggest: 

● Minimize the interactions of the debugger with J-Link while the target is running. (i.e. disable live 
watches) 

● Select a higher interface speed in all instances connected to J-Link. (i.e. The debugger and 
System Viewer) 

● Choose a larger buffer for System View. (1 - 4 kByte) 

● Run System Viewer stand-alone without a debugger. 

 System View uses sdk's RTC, which is clocked by one of the LP clocks. For example, if the LP 
clock is XTAL32K each timer tic corresponds to ~31us. Events that last less than 30us will be 
visualized as events that last 31us. 

 Application/Device name can be set in SEGGER_SYSVIEW_Config_FreeRTOS.c 

SYSVIEW_APP_NAME/SYSVIEW_DEVICE_NAME definitions. At the same file function 

_cbSendSystemDesc() is located which sends comma separated IRQ names to the Host PC. 

Because the internal used buffer is only 128 bytes, not all IRQs are named there. One could use 
multiple SEGGER_SYSVIEW_SendSysDesc() calls to name all IRQs but this means more processing 

requirements. It is recommended to leave just one packet there. 

 Memory overhead is 2Kb RAM for RTT buffers, 256 bytes heap for every thread, 256 bytes stack 
for the shared IRQ stack and ~5Kb rom. 

 It is possible to redirect printf messages on SystemView’s host window: 

• if CONFIG_RETARGET is defined, messages go to UART 

• if CONFIG_RTT is defined, messages go to RTT 

• if CONFIG_NO_PRINT is defined, messages are discarded 

• If nothing of the above is defined, but the dg_configSYSTEMVIEW is enabled, messages go to 

System View's GUI terminal. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 191 of 206 © 2022 Renesas Electronics 

Currently System View supports only integer variables, so %s strings are not printed properly. printf 

using SystemView inserts delays (because of the temporary disabled IRQs) that may trigger 
assertions so it is not recommended to be used. 

Appendix E System Clocks 

Table 72: System Clocks 

Clocks Description 

XTAL16M Crystal oscillator for the system clock (16MHz or 32MHz). Crystal Constraint should be up to 

+/-40ppm. 

XTAL32K Crystal oscillator for the low power clock. Crystal Constraint should be up to +/-500ppm.  

RCX XTAL_LP replacement (10.5 KHz). 

RC16 RC oscillator (~15.5MHz) for the initial CPU clocking until the XTAL is settled. 

RC32K RC oscillator (32KHz) for clocking the HW-FSM at power up.  

PLL96 A PLL which will increase the system clock to 96MHz. 

 

  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 192 of 206 © 2022 Renesas Electronics 

Appendix F Batteries  

Table 73: Battery types 

Battery types  Description 

BATTERY_TYPE_LICOO2 Lithium cobalt oxide (LiCoO2). 

BATTERY_TYPE_LIMN2O4,  Lithium ion manganese oxide battery. 

BATTERY_TYPE_LIFEPO4 Lithium iron phosphate. 

BATTERY_TYPE_LINICOAIO2 Lithium Nickel Cobalt Aluminum Oxide. 

 

  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 193 of 206 © 2022 Renesas Electronics 

Appendix G Power  

Table 74: Power Definitions 

Power  Definition 

LDO_ret This low drop out (LDO) provides power to internal registers that need to retain 

their content when the system is sleeping. 

LDO_IO_RET/ 

LDO_IO_RET2 

These LDOs provide power to input/output blocks that need to retain their 

configuration. 

DCDC Direct Current – to – Direct Current. 

LDO_VBAT_RET This LDO makes sure that only the current needed for retention is drown form the 

battery. 

CC Constant Current. 

CV Constant Voltage. 

VBAT Battery supply voltage. 

 

  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 194 of 206 © 2022 Renesas Electronics 

Appendix H Trim and Calibration  

The following table presents a list of the registers which are included in the TCS. Not all of them are 
required but no other than those in the Table 75 can be included.  

Table 75: Trim and Calibration Section expected values per chip version  

TRIM & CALIBRATION SECTION       Chip Revision    

# Register What Who  DA14680/1-01 

1 CLK_32K_REG Program RC32K_TRIM Dialog at 

Production Testing 
Used 

2 CLK_RCX20K_REG Program RCX20K_TRIM Dialog at 

Production Testing 
Used 

3 CLK_16M_REG RC16M_TRIM Dialog at 

Production Testing 
Used 

4 CLK_FREQ_TRIM_REG Crystal Dependent Customer at 
Product Line 

Testing 

Used 

5 XTALRDY_CTRL_REG Crystal Dependent Customer at 
Product Line 

Testing 

Used 

6 BANDGAP_REG  Dialog at 

Production Testing 
Used 

7 CHARGER_CTRL2_REG  Dialog at 

Production Testing 
Used 

8 RF_BIAS_CTRL1_BLE_RE

G 
 Dialog at 

Production Testing 
Used 

9 RF_LNA_CTRL1_REG  Dialog at 

Production Testing 
Used 

10 RF_LNA_CTRL2_REG  Dialog at 

Production Testing 
Used 

11 RF_VCOCAL_CTRL_REG  Dialog at 

Production Testing 
Used 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 195 of 206 © 2022 Renesas Electronics 

TRIM & CALIBRATION SECTION       Chip Revision    

12 RF_MIXER_CTRL1_BLE_R

EG 
 Dialog at 

Production Testing 
Used 

13 RF_VCO_CTRL_REG  Dialog at 

Production Testing 
Used 

14 RF_SPARE1_BLE_REG  Dialog at 

Production Testing 
Used 

15 RF_DIV_IQ_RX_REG  Dialog at 

Production Testing 
Not Used 

16 RF_DIV_IQ_TX_REG  Dialog at 

Production Testing 
Not Used 

17 BOD_CTRL2_REG Which rail to BOD protect Customer at 
Product Line 

Testing 

Used 

18 RF_BIAS_CTRL1_FTDF_R

EG 
 Dialog at 

Production Testing 
Used 

19 RF_MIXER_CTRL1_FTDF_

REG 
 Dialog at 

Production Testing 
Used 

20 LED_CONTROL_REG  Dialog at 

Production Testing 
Not Used 

21 Free    

22 Free    

23 Free    

24 Free     

 

Note 48 TCS value of XTALRDY_CTRL_REG is in clock cycles for 32000/32768. In the case of RCX, it will not be 

applied. Instead, the hard-coded value of the SmartSnippetsTM  DA1468x SDK will be applied.    



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 196 of 206 © 2022 Renesas Electronics 

Appendix I Configuration parameters 

Table 76 is a list of configuration parameters. For more up-to-date information please refer to 
Doxygen files. 

Table 76: List of configuration parameters 

Macro Documented 

In 
Description 

dg_configUSE_LP_CLK    
 Low Power clock used  

(LP_CLK_32000, LP_CLK_32768, 

LP_CLK_RCX, LP_CLK_ANY). 

dg_configEXEC_MODE 
C.3 Configuration of a project for cached 

or mirrored execution from FLASH. 

dg_configCODE_LOCATION   
C.3 Configuration of a project for 

execution from RAM. 

dg_configEXT_CRYSTAL_FREQ   
 Frequency of the crystal connected to 

the XTAL Oscillator: 16MHz or 

32MHz. 

dg_configIMAGE_FLASH_OFFSET 
 Offset of the image if not placed at 

the beginning of QSPI Flash. 

dg_configUSER_CAN_USE_TIMER1 
 Timer 1 usage. When set to 0, 

Timer1 is reserved for the OS tick. 

dg_configMEM_RETENTION_MODE 
 Retention memory configuration. 5 

bits field; each bit controls whether 
the relevant memory block will be 

retained (1) or not (0). 

dg_configSHUFFLING_MODE 
 Memory Shuffling mode. See 

SYS_CTRL_REG:REMAP_RAMS field. 

dg_configUSE_WDOG   
 Watchdog Service.  

1: enabled 

0: disabled 

dg_configFLASH_POWER_DOWN 
Table 29 Puts QSPI Flash to “Power Down” for 

the duration of the sleep period. 

dg_configPOWER_1V8_ACTIVE 
 The rail from which the Flash is 

powered, if a Flash is used.  

FLASH_IS_NOT_CONNECTED 

FLASH_CONNECTED_TO_1V8 

FLASH_CONNECTED_TO_1V8P 

When set to 1, the 1V8 rail is 
powered, when the system is in 

active state. 

dg_configPOWER_1V8_SLEEP 
 When set to 1, the 1V8 is powered 

during sleep. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 197 of 206 © 2022 Renesas Electronics 

Macro Documented 

In 
Description 

dg_configPOWER_1V8P    
 When set to 1, the 1V8P rail is 

powered. 

dg_configBATTERY_TYPE 
Table 31 Defines the battery type that is used 

in the system. 

dg_configBATTERY_CHARGE_VOLTAGE 
Table 31 Defines the charging voltage setting 

for the charger hardware. 

dg_configBATTERY_TYPE_CUSTOM_ADC_VOLTAGE 
Table 31 In case of a custom battery, this 

parameter must be defined to provide 
the charging voltage level of the 

battery (in ADC measurement units). 

dg_configBATTERY_LOW_LEVEL 
Table 31 If not zero, this is the lowest allowed 

limit of the battery voltage. 

dg_configPRECHARGING_THRESHOLD 
Table 31 The threshold below which pre-

charging starts 

dg_configCHARGING_THRESHOLD 
Table 31 The threshold that, when met, pre-

charging stops and charging starts. 

dg_configBATTERY_CHARGE_CURRENT 
Table 31 This is the charging current setting for 

the charger hardware. 

dg_configBATTERY_PRECHARGE_CURRENT 
Table 31 This is the pre-charging current 

setting for the charger hardware. 

dg_configBATTERY_CHARGE_NTC 
Table 31 It controls whether the thermal 

protection will be enabled or not. 

dg_configPRECHARGING_TIMEOUT 
Table 31 The maximum time that pre-charging 

will last. 

dg_configUSE_SOC 
 When set to 1, State of Charge 

function is enabled. 

dg_configUSE_USB 
 When set to 1, the USB interface is 

used 

dg_configUSE_USB_CHARGER   
Table 31 It enables / disables the use of the 

Charger from the application. 

• 0 : disables the charger (must be 
used when no battery is 

attached) 

• 1 : enables the charger 

dg_configUSE_USB_ENUMERATION 
Table 31 It controls whether enumeration with 

the USB 

dg_configALLOW_CHARGING_NOT_ENUM 
Table 31 It controls whether the Charger will 

start charging using charge current 
up to 100mA until the enumeration 

completes. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 198 of 206 © 2022 Renesas Electronics 

Macro Documented 

In 
Description 

dg_configUSE_NOT_ENUM_CHARGING_TIMEOUT 
Table 31 According to the USB Specification, 

there is a time limit that a device, 
which is connected to the USB bus 
but not enumerated, can draw power. 
This configuration setting controls 
whether the Charger will respect this 

time limit or not. 

dg_configPRECHARGING_INITIAL_MEASURE_DELAY 
Table 31 This is the time to wait before doing 

the first voltage measurement after 

starting pre-charging. 

dg_configCHARGING_CC_TIMEOUT 
Table 31 The maximum time that the charging 

hardware will stay in the CC phase. 

dg_configCHARGING_CV_TIMEOUT 
Table 31 The maximum time that the charging 

hardware will stay in the CV phase. 

dg_configUSB_CHARGER_POLLING_INTERVAL 
Table 31 While being attached to a USB cable 

and the battery has been charged, 
this is the interval that the VBAT is 
polled to decide whether a new 

charge cycle will be started. 

dg_configBATTERY_CHARGE_GAP 
Table 31 This is the safety limit used to check 

for battery overcharging. 

dg_configBATTERY_REPLENISH_GAP 
Table 31 This is the threshold below the 

maximum voltage level of the battery 
where charging will be restarted in 

order to recharge the battery. 

dg_configUSE_ProDK 
 When set to 1, the ProDK is used 

(controls specific settings for this 

board). 

dg_configUSE_SW_CURSOR 
 Use SW cursor. 

dg_configCACHEABLE_QSPI_AREA_LEN 
 Set the size (in bytes) of the QSPI 

flash cacheable area.  All reads from 
offset 0 up to (not including) offset 
dg_configCACHEABLE_QSPI_AREA_LEN 

will be cached. In addition, any writes 
to this area will trigger cache flushing, 
to avoid any cache incoherence. The 
size must be 64KB-aligned, due to 
the granularity of 
CACHE_CTRL2_REG[CACHE_LEN].  

• 0 : Turn off cache. 

• -1 : Don't configure 
cacheable area size (i.e. 

leave as set by booter). 

dg_configFLASH_ADAPTER 
 When enabled the FLASH adapter is 

included in the compilation of the 

SDK. 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 199 of 206 © 2022 Renesas Electronics 

Macro Documented 

In 
Description 

• 0 : Disabled 

• 1 : Enabled 

dg_configNVMS_ADAPTER 
 When enabled the NVMS (Non 

Volatile Memory Storage) adapter is 
included in the compilation of the 

SDK. 

• 0 : Disabled 

• 1 : Enabled 

dg_configNVMS_VES 
12.4.2 Must be defined in order to use VES 

(Virtual EEPROM). 

dg_configNVPARAM_ADAPTER 
 When enabled the NVPARAM 

(Analog to Digital Converter) adapter 
is included in the compilation of the 

SDK. 

• 0 : Disabled 

• 1 : Enabled 

dg_configGPADC_ADAPTER 
 When enabled the GPADC (Non 

Volatile Parameters) adapter is 
included in the compilation of the 

SDK. 

• 0 : Disabled 

• 1 : Enabled 

dg_configBLE_PERIPHERAL  
Table 50 Set to 0 if the application is not using 

BLE-peripheral related code. 

dg_configBLE_CENTRAL 
Table 50 Set to 0 if the application is not using 

BLE- central related code. 

dg_configBLE_OBSERVER 
Table 50 Set to 0 if the application is not using 

BLE-observer related code. 

dg_configBLE_BROADCASTER 
Table 50 Set to 0 if the application is not using 

BLE-broadcaster related code. 

dg_configBLE_GATT_CLIENT 
Table 50 Set to 0 if the application is not using 

GATT client related code. 

dg_configBLE_GATT_SERVER 
Table 50 Set to 0 if the application is not using 

GATT client related code. 

dg_configBLE_L2CAP_COC 
Table 50 Set to 0 if the application is not using 

L2CAP connection oriented channels 

related code. 

dg_configBLE_EVENT_COUNTER_ENABLE 
 Enable Event Counters in BLE ISR. If 

the application has not defined 
dg_configBLE_EVENT_COUNTER_ENABL

E in its custom_config file, this is 

defined to the default value of 0 to 

file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___b_l_e___c_o_n_f_i_g.html%23ga10e29ffa0f672e6c916a08a294590245
file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___b_l_e___c_o_n_f_i_g.html%23ga10e29ffa0f672e6c916a08a294590245


 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 200 of 206 © 2022 Renesas Electronics 

Macro Documented 

In 
Description 

disable the Event Counters in BLE 

stack ISR. 

dg_configBLE_ADV_STOP_DELAY_ENABLE 
 Enable ADV_UNDERRUN 

workaround. If the application has not 
defined 
dg_configBLE_ADV_STOP_DELAY_ENAB

LE in its custom_config file, this is 

defined to the default value of 0 to 
disable the ADV_UNDERRUN workaround 

in the BLE adapter. 

dg_configBLE_SKIP_LATENCY_API 
 Enable Secure Connections.  

If the application has not defined 
dg_configBLE_SECURE_CONNECTIONS 

in its custom configuration file, this is 
defined by default to 1 to enable LE 

Secure Connections. 

dg_configBLE_CONN_EVENT_LENGTH_MIN 
 Minimum Connection Event Length. 

Minimum length for Connection Event 
in steps of 0.625ms. This is used in 
outgoing connection requests, 
connection parameter requests and 

connection updates. 

dg_configBLE_CONN_EVENT_LENGTH_MAX 
 Maximum Connection Event Length. 

Maximum length for Connection 
Event in steps of 0.625ms. This is 
used in outgoing connection 
requests, connection parameter 

requests and connection updates. 

dg_configBLE_DATA_LENGTH_RX_MAX 
 Maximum Receive Data Channel 

PDU Payload Length. If the 
application has not defined 
dg_configBLE_DATA_LENGTH_RX_MAX 

in its custom_config file, this is 
defined to the maximum value 
allowed by Bluetooth Core v_4.2, 

which is 251 octets. 

dg_configBLE_DATA_LENGTH_TX_MAX 
 Maximum Transmit Data Channel 

PDU Payload Length. If the 
application has not defined 
dg_configBLE_DATA_LENGTH_TX_MAX 

in its custom_config file, this is 
defined to the maximum value 
allowed by Bluetooth Core v_4.2, 

which is 251 octets. 

dg_configBLE_DUPLICATE_FILTER_MAX 
 Duplicate Filtering List Maximum 

size. This defines the size of the list 
used for duplicate filtering. When the 
duplicate filtering list is full, additional 
advertising reports or scan responses 

will be dropped. 

file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___b_l_e___c_o_n_f_i_g.html%23ga182ec698bd26b6dd0b50ce065833a7ca
file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___b_l_e___c_o_n_f_i_g.html%23ga182ec698bd26b6dd0b50ce065833a7ca
file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___b_l_e___c_o_n_f_i_g.html%23gaf2c2b5aaecfa0833f08527e2d8765c8b
file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___b_l_e___c_o_n_f_i_g.html%23ga4743020d3280d02ef2630058c82315d8
file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___b_l_e___c_o_n_f_i_g.html%23ga844b5cedf9aa19796f0dd52bdf2c8c45


 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 201 of 206 © 2022 Renesas Electronics 

Macro Documented 

In 
Description 

dg_configBLE_PAIR_INIT_KEY_DIST 
Table 17 Security keys to be distributed by the 

pairing initiator. This defines which 
security keys will be requested to be 
distributed by the pairing initiator 
during a pairing feature exchange 

procedure. 

dg_configBLE_PAIR_RESP_KEY_DIST 
Table 17 Security keys to be distributed by the 

pairing responder. This defines which 
security keys will be requested to be 
distributed by the pairing responder 
during a pairing feature exchange 

procedure. 

dg_configBLE_SECURE_CONNECTIONS 
Table 17 Enable Secure Connections. If the 

application has not defined 
dg_configBLE_SECURE_CONNECTIONS 

in its custom configuration file, this is 
defined by default to 1 to enable LE 

Secure Connections. 

dg_configTRACK_OS_HEAP   
13.2.3 Activation of OS Heap tracking. 

dg_configUSE_DGTL     
 Enable DGTL interface. When this 

macro is enabled, the DGTL 
framework is available for use. The 
framework must furthermore be 
initialized in the application using 
dgtl_init(). Additionally, the UART 

adapter must be initialized 
accordingly. Please see 
sdk/middleware/dgtl/include/ for 

further DGTL configuration (in 

dgtl_config.h) and API. 

dg_configI2C_ADAPTER 
 When enabled the I2C (Inter-

Integrated Circuit) adapter is included 

in the compilation of the SDK. 

• 0 : Disabled 

• 1 : Enabled 

dg_configUSE_HW_I2C 
 When enabled the Inter-Integrated 

Circuit low level driver is included in 

the compilation of the SDK. 

• 0 : Disabled 

• 1 : Enabled 

dg_configSPI_ADAPTER 
 When enabled the SPI (Serial 

Peripheral Interface) adapter is 
included in the compilation of the 

SDK. 

• 0 : Disabled 

• 1 : Enabled 

file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___b_l_e___c_o_n_f_i_g.html%23gaf2c2b5aaecfa0833f08527e2d8765c8b
file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/group___d_g_t_l.html%23ga2b2ec4dc2c0502cc2f80a08bbf07dcf1
file:///C:/Users/kskaltsa/Downloads/DA1468x_SDK_BTLE_v_1.0.8_rc6.1050/doc/html/dgtl__config_8h.html


 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 202 of 206 © 2022 Renesas Electronics 

Macro Documented 

In 
Description 

dg_configUSE_HW_SPI   
 When enabled the Serial Peripheral 

Interface low level driver is included 

in the compilation of the SDK. 

• 0 : Disabled 

• 1 : Enabled 

dg_configUART_ADAPTER 
12.3.1 Must be defined and set to 1, in a 

project, in order to enable the UART 

adapter 

dg_configUSE_HW_UART 
12.3.1 Must be defined and set to 1, in a 

project, in order to enable the UART 

adapter 

dg_configTESTMODE_MEASURE_SLEEP_CURRENT 
 When set to 1, the system will go to 

sleep and never exit allowing for the 

sleep current to be measured. 

dg_configTEMPSENS_ADAPTER   
 When enabled the TEMPSENS 

(Temperature Sensor) adapter is 
included in the compilation of the 

SDK. 

• 0 : Disabled 

• 1 : Enabled 

dg_configUSE_HW_IRGEN 
 When enabled the Infra-Red 

Generator low level driver is included 

in the compilation of the SDK. 

• 0 : Disabled 

• 1 : Enabled 

dg_configUSE_HW_QUAD 
 When enabled the Quadrature 

decoder low level driver is included in 

the compilation of the SDK. 

• 0 : Disabled 

• 1 : Enabled 

dg_configRF_ADAPTER   
 When enabled the Radio adapter is 

included in the compilation of the 

SDK. 

• 0 : Disabled 

• 1 : Enabled 

dg_configUSE_HW_RF 
 When enabled the Radio module low 

level driver is included in the 

compilation of the SDK. 

• 0 : Disabled 

• 1 : Enabled 

dg_configUSE_HW_TIMER0 
 When enabled the Timer 0 low level 

driver is included in the compilation of 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 203 of 206 © 2022 Renesas Electronics 

Macro Documented 

In 
Description 

the SDK. 

• 0 : Disabled 

• 1 : Enabled 

dg_configUSE_HW_TIMER1 
 When enabled the Timer 1 low level 

driver is included in the compilation of 

the SDK. 

• 0 : Disabled 

• 1 : Enabled 

dg_configUSE_HW_TIMER2 
 When enabled the Timer 2 low level 

driver is included in the compilation of 

the SDK. 

0 : Disabled 

1 : Enabled 

dg_configPM_MAX_ADAPTERS_CNT   
 Maximum adapters count. Should be 

equal to the number of Adapters used 
by the Application. It can be larger 
(up to 254) than needed, at the 
expense of increased Retention 

Memory requirements. It cannot be 0. 

dg_configUSE_CLI    
 Enable Command Line Interface 

module. 

dg_configUSE_CONSOLE 
 Enable serial console module. 

dg_configUSE_CLI_STUBS 
 Enable Command Line Interface 

stubbed API. 

dg_configUSE_CONSOLE_STUBS 
 Enable serial console stubbed API. 

dg_configUSE_BOD   
 brief Brown-out Detection 

• 1: used 

• 0: not used 

dg_configUSE_DCDC 
 When set to 1, the DCDC is used. 

dg_configDISABLE_BACKGROUND_FLASH_OPS 
 Disable background operations. 

When enabled, outstanding QSPI 
operations will take place during 

sleep time increasing the efficiency. 

• 1 : Disabled 

• 0 : Enabled 

dg_configCRYPTO_ADAPTER   
 The adapter for the cryptographic 

engines (AES/HASH and ECC). 

dg_configUSE_HW_WKUP   
 When enabled the Wakeup Timer low 

level driver is included in the 



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 204 of 206 © 2022 Renesas Electronics 

Macro Documented 

In 
Description 

compilation of the SDK. 

• 0 : Disabled 

• 1 : Enabled 

 

  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 205 of 206 © 2022 Renesas Electronics 

Revision history 

Revision Date Description 

1.0 19-Nov-2015 First released version 

2.0  22-Apr-2016 Update for SmartSnippets DA1468x SDK Release 1.0.4.812 

2.1 17-Jun-2016 Update for SmartSnippets DA1468x SDK Engineering Release 

1.0.5.885 

3.0 26-Jul-2016 Update for SmartSnippets DA1468x SDK Release 1.0.6.968 

4.0 07-Dec-2016 Update for SmartSnippets DA1468x SDK Release 1.0.8 

5.0 21-Jul-2017 Update for SmartSnippets DA1468x SDK Release 1.0.10 

5.0.1 9-Nov-2017 Update for SmartSnippets DA1468x SDK Release 1.0.10 

5.0.2 27-Nov-2017 Update for SmartSnippets DA1468x SDK Release 1.0.10 

6.0 08-Dec-2017 Update for SmartSnippets DA1468x SDK Release 1.0.12 

6.1 19-Jan-2022 Updated logo, disclaimer, copyright. 

 

  



 

 
 
 

UM-B-044  

DA1468x Software Platform Reference   

User Manual Version 6.1 19-Jan-2022 

CFR0012 206 of 206 © 2022 Renesas Electronics 

Status definitions 

Status Definition 

DRAFT The content of this document is under review and subject to formal approval, which may result in modifications or 

additions.  

APPROVED 

or unmarked 

The content of this document has been approved for publication.  

RoHS Compliance 

Dialog Semiconductor’s suppliers certify that its products are in compliance with the requirements of Directive 2011/65/EU of the European 
Parliament on the restriction of the use of certain hazardous substances in electrical and electronic equipment. RoHS certificates from our 
suppliers are available on request. 

 


	Abstract
	Contents
	Figures
	Tables
	Codes
	1 Terms and definitions
	2 References
	3 Prerequisites
	4 An Overview of Bluetooth® low energy Platform
	4.1 Devices Mode
	4.1.1 Single Mode Devices
	4.1.2 Dual Mode Devices

	4.2 Main Building Blocks
	4.3 Hardware configurations
	4.3.1 Integrated Processor
	4.3.2 External Processor

	4.4 Network Modes
	4.4.1 Broadcasting
	4.4.2 Connecting

	4.5 Profiles
	4.5.1 Generic Profiles
	4.5.2 Use-Case-Specific Profiles
	4.5.2.1 SIG-defined GATT-based profiles
	4.5.2.2 Vendor-Specific Profiles

	4.5.3 Generic Access Profile Layer
	4.5.4 Generic Attribute Profile Layer

	4.6 Protocol Stack
	4.7 Controller
	4.7.1 Physical Layer (PHY)
	4.7.2 Link Layer (LL)
	4.7.2.1 Bluetooth Device Address
	4.7.2.2 Advertising and Scanning

	4.7.3 Host Controller Interface – Controller side

	4.8 Host
	4.8.1 Host Controller Interface – Host Side
	4.8.2 Logical Link Control and Adaptation Protocol
	4.8.3 Attribute Protocol
	4.8.4 Security Manager


	5 The DA1468x Software Platform Overview
	5.1 Board Support Package Overview
	5.1.1 Low-level Drivers
	5.1.2 RTOS
	5.1.3 System Manager
	5.1.4 Adapters
	5.1.5 The BLE Framework

	5.2 Middleware Services
	5.2.1 SUOTA
	5.2.2 Security Toolbox


	6 Using the Operating System
	6.1 FreeRTOS
	6.1.1 FreeRTOS Source Files
	6.1.2 FreeRTOS Configuration
	6.1.3 Platform-specific Definitions
	6.1.4 FreeRTOS Task Priorities
	6.1.5 Delaying the execution of a FreeRTOS Task
	6.1.6 Scope
	6.1.7 RTOS-agnostic API
	6.1.8 Resource Management API
	6.1.9 Message Queues API


	7 The BLE Framework
	7.1 Developing BLE Applications
	7.2 The BLE API header files
	7.2.1 Dialog BLE API
	7.2.2 Dialog BLE service API
	7.2.2.1 Connection Orientated Events
	7.2.2.2 Attribute Orientated Events

	7.2.3 Configuring the project
	7.2.4 BLE application structure

	7.3 Bluetooth low energy Security
	7.3.1 Functions
	7.3.2 Events
	7.3.3 Macros
	7.3.4 Message Sequence Charts (MSCs)
	7.3.4.1 Central
	7.3.4.2 Peripheral

	7.3.5 BLE Storage
	7.3.6 LE Secure Connections

	7.4 Logical Link Control and Adaptation Layer Protocol
	7.4.1 Credit-Based Flow Control
	7.4.2 Functions
	7.4.3 Events

	7.5 LE Data Packet Length Extension
	7.5.1 Functions
	7.5.2 Macros
	7.5.3 Events

	7.6 NVPARAM fields
	7.7 BLE Interrupt Generation
	7.8 Considerations on BLE Task Priorities
	7.9 BLE tasks timing requirements
	7.10 Attribute operations
	7.11 Bluetooth low energy Application Examples
	7.11.1 Advertising Application
	7.11.2 Peripheral Application
	7.11.3 Central Application
	7.11.4 Multi-Link Application
	7.11.5 External Host Application

	7.12 BLE profile projects
	7.13 Using adopted Bluetooth low energy services
	7.14 Adding a custom service
	7.15 Extending Bluetooth low energy functionality

	8  The Security Framework
	8.1 LLDs of the security framework
	8.1.1 TRNG Engine LLD
	8.1.2 AES/HASH Engine LLD
	8.1.3 ECC Engine LLD
	8.1.4 Crypto engines LLD

	8.2 TRNG service
	8.3 Crypto adapter
	8.4 Cryptographic algorithms
	8.4.1 Hash-based Message Authentication Code (HMAC)
	8.4.2 Elliptic Curve Diffie-Hellman (ECDH)


	9 System Management
	9.1 Power Modes
	9.2 Wake-up Process
	9.2.1 Wake-up modes
	9.2.2 Wake-up events

	9.3 Sleep architecture
	9.3.1 BLE Wake-up

	9.4 Power configuration
	9.4.1 Recommended Power-Down Power Configuration
	9.4.2 System Clock
	9.4.2.1 XTAL32M support


	9.5 Charger configuration
	9.5.1 No Charging
	9.5.2 Default Charging
	9.5.3 Custom Charging parameters
	9.5.4 Charger configuration process
	9.5.5 Issues for non-rechargeable batteries
	9.5.6 Charger related callback functions

	9.6 Watchdog Service
	9.6.1 Description
	9.6.2 Concept
	9.6.3 Examples
	9.6.4 API


	10 System Memory
	10.1 Random Access Memory
	10.1.1 Code Location
	10.1.1.1 Execution Modes

	10.1.2 Data Heaps
	10.1.2.1 Application Heap
	10.1.2.2 BLE Stack Heap

	10.1.3 Optimal Memory Size

	10.2 Non-Volatile Memory Storage
	10.2.1 QSPI Flash Support
	10.2.1.1 Modes of operation and configuration
	10.2.1.2 Autodetect Mode
	10.2.1.3 Manual Mode
	10.2.1.4 Flash Configuration
	10.2.1.5 Code Structure
	10.2.1.6 The flash configuration structure qspi_flash_config_t
	10.2.1.7 Adding support for a new flash device
	10.2.1.8 Working with a new flash device



	11 Operation modes and startup procedure
	11.1 Generated ELF file
	11.2 Program loading
	11.2.1 RAM mode
	11.2.2 Flash cached mode

	11.3 BLE ROM patches
	11.4 Startup procedure
	11.5 Secure Boot
	11.5.1 Features
	11.5.2 Configuration
	11.5.2 Configuration
	11.5.3 Files


	12 Drivers and Adapters
	12.1 Introduction
	12.2 Drivers
	12.2.1 LLD header Example
	12.2.2 Documentation

	12.3 Adapters
	12.3.1 The UART adapter example

	12.4 The NVMS Adapter
	12.4.1 Overview
	12.4.2 Interface
	12.4.3 NVMS partition table
	12.4.4 NVMS over QSPI in cached mode
	12.4.4.1 Slice PROGRAM operation
	12.4.4.2 Suspend/Resume ERASE Operation


	12.5 Logging

	13 Optimizations
	13.1 Optimize BLE framework footprint
	13.2 Optimizing FreeRTOS heap usage
	13.2.1 FreeRTOS Memory Management
	13.2.2 OS Heap & Tasks Stack size
	13.2.3 Optimizing FreeRTOS Heap

	13.3 Retention RAM optimization and configuration
	13.3.1 Memory setups for QSPI Cached execution mode
	13.3.1.1 DA14680/681 – QSPI Cached BLE non-optimized project (all RAM cells are retained)
	13.3.1.2 DA14680/681 – QSPI Cached BLE optimized project (RAM1, RAM2, RAM4, RAM5 cells are retained)
	13.3.1.3 DA14680/681 – QSPI non-BLE non-optimized project (all RAM cells are retained)
	13.3.1.4 DA14680/681 – QSPI non-BLE optimized project (RAM2 cell is retained)
	13.3.1.5 DA14682/683, DA15100/1  – QSPI Cached BLE non-optimized project (all RAM cells are retained)
	13.3.1.6 DA14682/683, DA15100/1  – QSPI Cached BLE optimized project (RAM1, RAM2, RAM3 cells are retained)
	13.3.1.7 DA14682/683, DA15100/1  – QSPI Cached non-BLE non-optimized project (all RAM cells are retained)
	13.3.1.8 DA14682/683, DA15100/1  – QSPI non-BLE optimized project (RAM2 cell is retained)

	13.3.2 Memory setups for RAM execution mode
	13.3.2.1 DA14680/681  – RAM BLE non-optimized project (all RAM cells are retained)
	13.3.2.2 DA14680/681  – RAM non-BLE non-optimized project (all RAM cells are retained)
	13.3.2.3 DA14682/683, DA15100/1   – RAM BLE non-optimized project (all RAM cells are retained)
	13.3.2.4 DA14682/683, DA15100/1   – RAM non-BLE non-optimized project (all RAM cells are retained)

	13.3.3 Memory setup for the OTP Cached execution mode (DA14680/1-01)
	13.3.4 Memory setup for the OTP Mirrored execution mode (DA14680/1-01)


	Appendix A SmartSnippets DA1468x SDK structure
	A.1 Directory structure
	A.2 Binaries directory
	A.3 Config directory
	A.4 Doc directory
	A.5 Projects directory
	A.5.1 dk_apps directory
	A.5.2 Host_apps directory
	A.5.3 SDK directory
	A.5.4 Utilities directory


	Appendix B Command Line Interface (CLI) Programmer
	B.1 CLI Programmer – Overview
	B.2 Application command description
	B.3 Command examples
	B.3.1 Installation and debugging procedure
	B.3.2 Build instructions


	Appendix C QSPI programming guide
	C.1 General
	C.2 Prerequisites
	C.3 Compiling for execution from flash
	C.4 Flashing an QSPI image
	C.5 Debugging from QSPI
	C.5.1 General
	C.5.2 Debugging with gdb scripts


	Appendix D SEGGER SystemView integration instructions
	Appendix E System Clocks
	Appendix F Batteries
	Appendix G Power
	Appendix H Trim and Calibration
	Appendix I Configuration parameters
	Revision history

