RENESAS

-
»
@
ﬁ\.
»
<
)
S
-
O

Renesas Flexible Software Package
(FSP) v0.8.0

User’'s Manual

Renesas RA Family

All information contained in these materials, including products and
product specifications, represents information on the product at the
time of publication and is subject to change by Renesas Electronics
Corp. without notice. Please review the latest information published
by Renesas Electronics Corp. through various means, including the

Renesas Electronics Corp. website (http://www.renesas.com).

Renesas Electronics Revision 0.81 Nov.08.19
WWWw.renesas.com

Table of Contents

Chapter 1 Introductiono 6
L OVEIVIEW .« . .ttt e e e e e e 6
1.2 Howto Read this Manual e e e e 6
1.3 Documentation Standard e 6

Chapter 2 Starting DeVelopMeNt 8
2.1 Starting Development INtrodUCHION oot e 8

2.1.1 Getting Started with the 2 studio ISDE and FSP | . | ittt e e 8
2.2e2studio ISDE USer GUIAE oo e e e e e e e e s 9
221 Whatis €2 Studio ISDE? | | | e e e e 9
2.2.2e2studio ISDE PrereqUISIteS | L e e e 11
22210btainingan RAMCU KIt e e 11
2222PCReqUIreMeNtS | e e e 11
2.2.2.3 Installing e2 studio, platform installer and the FSP package | | | 11
2224 ChoosingaToolchain 11
2.2 2B LICeNSINg L e 12
2.2 3 Whatis @ PrOJeCt? | | e 12
2,24 Creating @ PrOBCt | L L . L. e e e 13
2241 Creatinga New Project e e e e 14
2.24.2 Selecting a Board and Toolchain 15
2243 Selecting a Project Template e 16
2.2.5Configuring @ ProjeCt | e e 17
2251 Configuring the BSP with the ISDE | e 18
2252 Configuring Clocks e e e 19
2253 Configuring Pins e e 19
2254 Configuring INITUPES L e 22
2255 Viewing BventLinks e 23
2.2.6 Adding Threads and Drivers | | e e e 24
2.2.6.1 Adding and Configuring HAL DIIVETs e e 25
2.2.6.2 Adding Drivers to a Thread and Configuring the Drivers 26
22283 Configuring Threads e e e e 29
2.2.7 Reviewing and Adding COMPONENES | |, ittt ittt et et e e e e 30
2.2.8 Writing the Application | . . . L . . . L 30
2281 Coding Features e e e e 30
2.2.82 RTOS-independent Applications e 36
2283RTOS Applications e e 37
2.2.9 Debugging the Project e e 38
2.2.10 Modifying Toolchain SEtiings i e 39
2.2.11 Importing an Existing Project into €2 studio ISDE |, | | i e e 40
2.3 Tutorial: Your First RA MCU Project - BlinKy e e e e e e e 44
2.3 L TUtonal BINKY |, L e e e 44
2.3.2What Does BIINKY DO | . L . L e e 44
2.3 3 PIBIBgUISIEES | . L . e e e e 44
2.3.4 Create a New Project for BIiNKy | . ., e e e 44
2.3.4.1 Details about the Blinky Configuration e 47
2.3.4.2 Configuring the Blinky Clocks | e e e 47
2.3.4.3 Configuring the Blinky PIns e 47
2.3.4.4 Configuring the Parameters for Blinky COMpPONents . 47
2345 Whereis main()? e e e 47
23.4.6Blinky Example Code | e 47
2.3.5Build the Blinky Project e 48

2.3.6 Debug the BIINKy ProjeCt | | e e 48

2.3.8.1Debug prerequIsites e e e e e e e 49
23,82 DebUg SteDS | L e e e 49
2.3.6.3 Details about the Debug Process | e e 50
2.3.7Runthe BIINKY PrOjeCt | . L . L . . . 51
2.4 Tutorial: Using HAL Drivers - Programming the WDTttt e e e i e e 51
2.4, L ApPIICatioN WD T | L e e e e 51
2.4.2 Creating a WDT Application Using the RAMCU FSP and ISDE |\ ot s, 51
2421 Using the FSP and the e2 studio ISDE L 51
2.422The WDT Application e 51
24.23WDT Application flow e e 52

2.4.3 Creating the Project with the ISDE | | e 52
2.4.4 Configuring the Project with the ISDE | | | e e e e e 55
24 L B P TaD e e 56
2442 Clocks Tab L e e e e 56
24 B PINS Tab e e 57
2444 Stacks Tab e e 57
2445 Components Tab e e e 59
2.45WDT Generated Project Files | e e 60
245 1WDT hal_datah 61
245 2WDT hal_data.c e 62
245 3WDT MaiNC L e e 63
245 4WDT hal_entry.c e e e 64

2.4.6 Building and Testing the Project 66
Chapter 3 FSP ArChiteCtUIe . . .ttt 69
3.1 FSP ArchiteCture OVEIVIEW . . . o ot i i e e e et e e e e e e e e 69
B L L CO0 LS | L L e e e 69

B L 2 DOXY BN | L L L e e e e e e e e 69

3. L3 Weak SymboIS | | . L e e e e 69
3.L4Memory AlIOCALION | L L L L e e e 69

B L S RSP TOIMS | L e 69
B.2FSP MOUIES o e e 71
BB FSP StaCKS . . .t e 72
BAFSP INtEIfaCeS o o e 72
3.4.1 FSP Interface ENUMErations | | i e e e e 73
3.4.2 FSP Interface Callback FUNCHONS | | e 73
3.4.3 FSP Interface Data SIUCIUIES | | | et e e e e e 75
3.4.3.1 FSP Interface Configuration Structure e 75
3.43.2FSPInterface APISITUCIUIE e e 76
3.43.3 FSP Interface Instance Structure e e e e 79

B O RSP INStANCES i it e e e e e e 79
3.5.1 FSP Instance Control SUCIUIE | o e e e e e 80
3.5.2FSP Interface EXtENSIONS | e 80
3.5.2.1 FSP Extended Configuration Structure e e e 80

3. 5. 3 FSP INstance APl | | L e e 81
B.6FSP APIStandards e 81
3.6.1FSP FUNCHON NamMES | | . e e e e 81
3.6.2 Use of constin APL parameters | ,ttt ettt e e 81
3.6.3 FSP Version Information | | e e e 81
3.7 FSP Build Time Configurations i e e e e e e e e 82
BB FSP File StrUCIUNE o e e e e e 83
3.9FSP Architecture in PractiCe i 83
3.9.1FSP Connecting Layers | 83
3.9.2 Using FSP Modules inan Application e 84
3.9.2.1 Create a Module Instance in the RA Configuration ToOl . 84

3.9.2.2 Use the Instance APl in the Application | 84

= 1 90
4.1.1CommON Ermor COUBS |, ittt it e e e e e e e 90
4.1.2 MCU Board SUPPOrt PACKAGE ., it it i et et e e e e e e 101

AL 2 L RAZAL e e 108
AL 22 RAAM L e 111
AL 23 RABM L e 114
AL 2 A RABMZ e 117
AL 25 RABME 120
AL3BSP IO @CCESS | i ittt e e e 123

A 2 MOAUIBS . . o o 134
4.2.1 High-Speed Analog Comparator (_acmphs) ., it e e 139
4.2.2 Low-Power Analog Comparator (r_acmplp) e e e e 140
4.2.3 Analog to Digital Converter (r_adC)ttt e e e e e e 142
4.2.4 Asynchronous General Purpose TImer (1_agt)ttt it it et e e e 143
4.2.5 Clock Frequency Accuracy Measurement CIircuit (f_CaC)t it it it it et et et e e 145
4.2.6 Clock Generation CIrcUIt (T_CC) vt it i e et e e e e et e e e e e e 146
4.2.7 Cyclic Redundancy Check (CRC) Calculator (T_CIC)\ttt it et et et et e e 148
4.2.8 Capacitive Touch Sensing Unit (T_CISU)t it et et e e e e e e 150

4.2.9 Digital to Analog Converter (I_AaC)ttt it i e e 151

4.2.10 Direct Memory Access Controller (r_dmac) it 152
4.2.11 Data Operation CircUit (T_dOC)\ttt e e e e e e e 155
4.2.12 DIAVE 2D PortInterface (1_drw) e e 156
4.2.13 Data Transfer Controller (r_atC) ittt e 157
4.2.14 Event Link Controller (1_elC) e e e e 162
4.2 0 Ethermet (1 ether) | . e e 164
4.2.16 Ethernet PHY (r_ether_phy) | . . . e e 167
4.2.17 High-Performance Flash Driver (r_flash_hp) i e e 170
4.2.18 Low-Power Flash Driver (r_flash_Ip) e 172
4.2.19 Graphics LCD Controller (r_glcdC) i e 174

4.2.20 General PWM TIMET (1_gPt) ot e e e e 176

4.2.21 Interrupt Controller Unit (r_iCU) e 178
4.2.2212C Master on lIC (r_iic_master) e e 179
4.2.2312C Slave on IC (r_iiC_SIave) e 181

4.2.241/0 Ports (1_I0POM) . . L L L e e e e 182

4.2.25 Independent Watchdog Timer (r_iwdt) |, e 184
4.2.26 JPEG COUEC (I_JPBU) . . v . v v ot it e e e e e e e e e e e e 185
4,227 Key INtermupt (1_KiNt) L e e e 188
4.2.28 Low Power Modes (1_Ipm) | e e 189
4.2.29 Low Voltage Detection (1_IVd) e e e e 190
4.2.30 Realtime Clock (1_rC) . . L . . e e e e e 191
4.2.31 Serial Communications Interface (SCI) 12C (r_SCi_i2C) it e i e e 193
4.2.32 Serial Communications Interface (SCI) SPI (r_sci_spi) et e 195
4.2.33 Serial Communications Interface (SCI) UART (r_SCi_Uart)\ ot e e e e s, 196
4.2.34 SD/IMMC Host Interface (r_sdhi) e e 198

4.2.35 Serial Peripheral Interface (1_Spi) 199

4.2.36 Serial Sound Interface (F_SSi)ttt e e 201
4.2.37 Universal Serial Bus (r_usb_basiC) 202
4.2.38 Host Mass Storage Class Driver (r_usb_hmsc) e 208

4.2.39 Universal Serial Bus Peripheral Communication Device Class (r_usb_pcdc) @ v it 213
4.2.40 Watchdog Timer (r_wdt)
4.2.41 SEGGER emWin Port (rm_emwin_port)
4.2.42 FreeRTOS Plus FAT (rm_freertos_plus_fat) i e e e 222
4.2.43 Amazon FreeRTOS Port (rm_freertos_port) 224

4.2.44 Crypto Middleware (rm_psa_cCrypto) ittt sttt e ettt e e e e e e 243

4.2.45 Capacitive Touch Middleware (rm_touch) i e e e e e 258
A 3 NI ACES e 259
4.3. 1 ADC INterface | | e e e e 262
432 CAC INtEIfaCE | | L . . e e e 281
433 CGCINterface | | . . e e 290
4.3.4 Comparator Interface | e e e 303
435 CRCINerfaCe | | . . . e e 312
436 CTSUINterface e e 317
437 DACINtEIfaCE | | L . L e 330
4.3.8Display Interface | | e e e 335
43.9DOC INtErfaCe | | e 353
4.3 10 ELC INterface | e e e e e 358
4.3 1L Ethernet INterface | | e e e 363
4.3.12 Ethernet PHY INterface . | e e 372
4313 External IRQ Interface . |, e e e 378
4314 Flash Interface | e e e e 384
43.1512C Master Interface L e e e 400
4316 12C Slave Interface e e 408
4307 128 Interface L e e 415
431810 PortInterface | e e 427
43.19JPEG Codec Interface . ., e e 441
4.3.20 Key Matrix Interface e e e e 453
4.3.21 Low Power Modes Interface | e 459
4.3.22 Low Voltage Detection Interface e e e e 473
4.3 23 RTC INBITACE | i e e e e e e e e 483
4.3.24 SDIMMC INterfaCe | | . L . . i e e e e 494
4.3.25 SPIINterface | | e e e e 510
4.3.26 Timer Interface |, e e e e e 521
4.3.27 Transfer Interface | e e 533
43.2BUART INterface | e e 545
4320 USB INterface | e 555
4330 USBHMSC Interface e e 580
43.3LUSBPCDCINterface ., e 584
4332 WDT INterface | e e e 585

Flexible Software Package User’s Manual

Introduction

Chapter 1 Introduction

1.1 Overview

This manual describes how to use the Renesas Flexible Software Package (FSP) for writing
applications for the RA microcontroller series.

1.2 How to Read this Manual

For help getting started with the FSP, see:
e Starting Development
To learn about the FSP architecture and about board and chip-level support included in the FSP, see:

e FSP Architecture
e MCU Board Support Package

For user guides describing the FSP modules, see:
e Modules
For shared interface APl documentation, see:

e |nterfaces

1.3 Documentation Standard

Each module user guide outlines the following:

e Features: A bullet list of high level features provided by the module.

e Configuration: A description of module specific configurations available in the configuration
tool.

e Usage Notes: Module specific documentation and limitations.

e Examples: Example code provided to help the user get started.

¢ APl Reference: Usage notes for each APl in the module, including the function prototype and
hyperlinks to the interface documentation for parameter definitions.

Interface documentation includes typed enumerations and structures-including a structure of
function pointers that defines the API-that are shared by all modules that implement the interface.

Introduction to FSP

Purpose

The Renesas Flexible Software Package (FSP) is an optimized software package designed to provide
easy to use, scalable, high quality software for embedded system design. The primary goal is to

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 6 / 601
Nov.08.19

Flexible Software Package User’s Manual

Introduction > Documentation Standard

provide lightweight, efficient drivers that meet common use cases in embedded systems.
Quality

FSP code quality is enforced by peer reviews, automated requirements-based testing, and
automated static analysis.

Ease of Use

The FSP provides uniform and intuitive APIs that are well documented. Each module is supported
with detailed user documentation including example code.

Scalability

FSP modules can be used on any MCU in the RA family, provided the MCU has any peripherals
required by the module.

FSP modules also have build time configurations that can be used to optimize the size of the module
for the feature set required by the application.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 7 /601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development

Chapter 2 Starting Development

2.1 Starting Development Introduction

The Renesas Flexible Software Package (FSP) provides a host of efficiency enhancing tools for
developing projects targeting the Renesas RA series of MCU devices. The e studio Integrated
System Development Environment (ISDE) provides a familiar development cockpit from which the
key steps of project creation, module selection and configuration, code development, code
generation, and debugging are all managed. FSP runs within e? studio and enables the module
selection, configuration, and code generation steps. FSP uses a Graphical User Interface (GUI) to
simplify the selection, configuration, code generation and code development of high level modules
and their associated Application Program Interfaces (APIs) to dramatically accelerate the
development process.

The wealth of resources available to learn about and use e? studio and FSP can be overwhelming on
first inspection, so the following section provides a Getting Started Guide with a list of the most
important first steps. Following these highly recommended first 10 steps will bring you up to speed
on the development environment in record time. Even experienced developers can benefit from the
use of this guide, to learn the terminology that might be unfamiliar or different from previous
environments.

2.1.1 Getting Started with the e2 studio ISDE and FSP

This section describes how to use the Renesas e? Integrated Solutions Development Environment
(ISDE) to develop applications with the Renesas Flexible Software Package (FSP). Here is the
recommended sequence for quickly Getting Started with using e?> when developing with the RA MCU
Family:

1. Read over the section What is e2 studio ISDE?, up to but not including e2 studio ISDE
Prerequisites. This will provide a description of the various windows and views to use e? to
create a project, add modules and threads, configure module properties, add code, and
debug a project. It also describes how to use key coding 'accelerators' like Developer Assist
(to drag and drop parameter populated API function calls right into your code), a context
aware Autocomplete (to easily find and select from suggested enumerations, functions,
types, and many other coding elements), and many other similar productivity enhancers.

2. Read over the FSP Architecture sections FSP Architecture, FSP Modules and FSP Stacks.
These provide the basic background on how FSP modules and stacks are used to construct
your application. Understanding their definitions and the theory behind how they combine
will make it easier to develop with FSP.

3. Read over a few "Module User Guide" sections to see how to use API function calls,
structures, enumerations, types and callbacks. These user guides provide the information
you will use to implement your project code. (Much of the details are provided with
Developer Assistance, covered in step 5, below.

4. If you don't have a kit. you can order one using the link included in the e2 studio ISDE
Prerequisites section. Then, if you haven't yet downloaded and installed e? studio and FSP,
use the link included in the e2 studio ISDE Prerequisites section to download the tools. Then
you can build and debug a simple project to prove out you installation, tool flow, and the
kit. The simple "Blinky" project, that blinks an LED on and off, is located in the Tutorial: Your
First RA MCU Project - Blinky section. Follow the instructions for importing and running this

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 8 /601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Starting Development Introduction > Getting Started with the e2 studio ISDE and FSP

project. It will use some of the key steps for managing projects within e? and is a good way
to learn the basics.

5. Once you have successfully run Blinky you have a good starting point for using FSP for more
complex projects. The Watchdog Timer hands-on lab, available in the Tutorial: Using HAL
Drivers - Programming the WDT section, shows how to create a project from scratch and
use FSP API functions, and demonstrates the use of some of the coding efficiency tools like
Developer Assistance and Autocomplete. Run through this lab to establish a good starting
point for developing custom projects.

6. The balance of the FSP Architecture sections, those not called out in step 2 above, contain
additional reference material that may be helpful in the future. Scan them over so you know
what they contain, in case you need them.

7. The balance of the e? ISDE User Guide, starting with the What is a Project? section up to
Writing the Application section, provides a detailed description of each of the key steps,
windows, and entries used to create, manage, configure, build and debug a project. Most of
this will be familiar after doing the Blinky and WDT exercises from steps 4 and 5 above.
Skim over these references so you know to come back to them when questions come up.
Make sure you have a good grasp of what each of the configuration tabs are used for since
that is where the bulk of the project preparation work takes place prior to writing code.

8. Read over the Writing the Application section to get a short introduction to the steps used
when creating application code with FSP. It covers both RTOS-independent and RTOS-
dependent applications. The Tutorial: Using HAL Drivers - Programming the WDT section is
a good introduction to the key steps for an RTOS-independent application. Make sure you
have run through it at least once before doing a custom project.

9. Scan the Debugging the Project section to see the steps required to download and start a
debug session.

10. Explore the additional material available on the following web pages and bookmark the
resources that look most valuable to you:
a. RA Landing Page: https://www.renesas.com/ra
b. FSP Landing Page: https://www.renesas.com/fsp

2.2 e2 studio ISDE User Guide

2.2.1 What is e2 studio ISDE?

The Renesas e’ studio ISDE, or Integrated Solution Development Environment, is a development tool
encompassing code development, build, and debug. The ISDE is based on the open-source Eclipse
IDE and the associated C/C++ Development Tooling (CDT).

When developing for RA MCUs, the ISDE hosts the Renesas Flexible Software Package (FSP). FSP
provides a wide range of time saving tools to simplify the selection, configuration, and management
of modules and threads, to easily implement complex applications. The time saving tools available in
e? studio and FSP include the following:

e A Graphical User Interface (GUI) (see Adding Threads and Drivers) with numerous wizards
for configuring and auto-generating code

¢ A context sensitive Autocomplete (see Tutorial: Using HAL Drivers - Programming the WDT)
feature that provides intelligent options for completing a programming element

e A Developer Assistance) tool for selection of and drag and drop placement of API functions

directly in application code

A Smart Manual provides driver and device documentation in the form of tooltips right in

the code

An Edit Hover feature to show detailed descriptions of code elements while editing

* A Welcome Window with links to example projects, application notes and a variety of other
self-help support resources

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 9/ 601
Nov.08.19

https://www.renesas.com/ra
https://www.renesas.com/fsp

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > What is e2 studio ISDE?

¢ An Information Icon, from each module, is provided in the graphic configuration viewer that
links to specific design resources, including code 'cheat sheets' that provide useful starting
points for common application implementations.

e’ studio

v7.6.0

ph.setup.ui (BUILT.ON

|
Figure 1: e2 studio Splash Screen

The e? studio ISDE organizes project work based on Perspectives, Views, Windows, Panes, and Pages
(sometimes called Tabs). Windows are a section of the ISDE GUI that presents information on a key
topic. Windows often use tabs to select sub-topics. For example, an editor window might have a tab
available for each open file, so it is easy to switch back and forth between them. A window Pane is a
section of a window. Within a window, multiple Panes can be opened and viewed simultaneously, as
opposed to a tabbed window, where only individual content is displayed. A memory-display Window,
for example, might have multiple Panes that allow the data to be displayed in different formats,
simultaneously. A Perspective is a collection of Views and Windows typical for a specific stage of
development. The default perspectives are a C/C++ Perspective, an FSP Configuration Perspective
and a Debug Perspective. These provide specific Views, Windows, Tabs, and Panes tailored for the
common tasks needed during the specific development stage. These three default perspectives are
each illustrated in the below screen shots, along with graphic indicators helpful in identifying
example Views, Windows, Tabs and Panes.

File Edit Navigste Search Project RenesasViews Run Window Help

o |®-& -5 [S][%] 8][4 pebug ~ || 0 Blinky Debug (1) vir| A S A e

s ECKH— <Synergy Configuration> | {%% RA Configuration Quick Access
=9 ﬁé“: [Blinkyl RA Configuration 53 = 2 (& paciose 12 S ee|m - - o)

4 Project Explorer 52
&
BlEle - Summary ‘ :
v 722 Blinky Generate Project Content| | 7 1 1 0 o e o |+
[Includes 7
Bra Project Summary Ao [P e e s | e | e | s rssgpsmon| o | o
(2 ra_gen Renesas < |pucz | ot [Fes0 | rags [o7 | paco || | rogz | s [pesz | <
(5 sre Board: Custom User Board (Any Device)
(= racfg Device: R7FASM1AD2CLY ol il sl Bl
& script Toolchain: GCC ARM Embeddad & |vec | peo | poos | puss [Puss (| poco [pree | pocs | paas [resz |2
El Blinky Debug (1).launch Toolchain Version: 8.3.1.20190703 Project Configuration
i configurationaml ' Ve ! vet | vss | pece | pect [eco | pacz [| prce |[xcm ficou
v FSP Version: 0.8.0 Editor
2 R7TFABMIAD2CL.pincfg & [pues | pecs | pio7 || pss [oo || pece | poce | e |marvete
Developer Assistance
@ P Selected software components o | paos { pans | pacs | eaoo 45 s ooy | eoas | esos | oo |
Custom Board Support Files v0.8.0 7 |z | s | vss | poas flvmee |7 oce | oo | et eso
0 Port v0.8.0 o ey ey o o -
. Board Support Package Common Files v0.8.0 PERR— = "
Project Arm CMSIS Version 5 - Core (M) v5.5.1)
Explorer Board support package for RTFASM1AD2CLY v08.0 N RIFABM1/00d) - T00LGA (Top View)
View Connaction status:
o= [J¥éarring
ok
Youl[l3 % ﬁ - Package
Support I\ = View
Summary| BSP | Clocks| Pins| Interrupts | Event Links | Stacks| Compenents

Figure 2: Default Perspective

R11UMO0137EU0081 Revision 0.81 RENESANS Page 10/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > What is e2 studio ISDE?

In addition to managing project development, selecting modules, configuring them and simplifying
code development, e? studio also hosts the engine for automatically generating code based on
module selections and configurations. The engine continually checks for dependencies and
automatically adds any needed lower level modules to the module stack. It also identifies any lower
level modules that require configuration (for example, an interrupt that needs to have a priority
assigned). It also provides a guide for selecting between multiple choices or options to make it easy
to complete a fully functional module stack.

The Generate Project Content function takes the selected and configured modules and automatically
generates the complete and correct configuration code. The code is added to the folders visible in
the Project Explorer window in e? studio. The configuration.xml file in the project folder holds all
the configuration settings generated by the ISDE. This file can be opened in the GUI-based
configuration editor to make further edits and changes. Once a project has been generated, you can
go back and reconfigure any of the modules and settings if required using this editor.

]

& -

=

15 Project Explorer 23
~ 1% MyProject [Debug]
3 Binaries
5l Includes
= ra
2 ra_gen
8 src
= Debug
= ra_cfg

= script
4k configurationaml

=| MyProject Debug,jlink
= R7FAGM3AH3CFC.pincfg
=/ ra_cfgixt

= RABM3-EK.pincfg

(7) Developer Assistance

Figure 3: Project Explorer Window showing generated folders and configuration.xml file

2.2.2 e2 studio ISDE Prerequisites
2.2.2.1 Obtaining an RA MCU Kit

To develop applications with FSP, start with one of the Renesas RA MCU Evaluation Kits. The Renesas
RA MCU Evaluation Kits are designed to seamlessly integrate with the e? studio ISDE.

Ordering information, Quick Start Guides, User Manuals, and other related documents for all RA MCU
Evaluation Kits are available at https://www.renesas.com/ra.

2.2.2.2 PC Requirements
The following are the minimum PC requirements to use the e? studio ISDE:

e Windows 10 with Intel i5 or i7, or AMD A10-7850K or FX

e Memory: 8-GB DDR3 or DDR4 DRAM (16-GB DDR4/2400-MHz RAM is preferred)

e Minimum 250-GB hard disk
2.2.2.3 Installing e2 studio, platform installer and the FSP package
Detailed installation instructions for the e? studio ISDE and the FSP are available on the Renesas
website https://www.renesas.com/fsp. Review the release notes for e? studio to ensure that the e?
studio version supports the selected FSP version. The starting version of the installer includes all

features of the RA MCUs.

2.2.2.4 Choosing a Toolchain

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 11 /601
Nov.08.19

https://www.renesas.com/ra
https://www.renesas.com/fsp

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > e2 studio ISDE Prerequisites > Choosing a Toolchain

The e? studio ISDE can work with several toolchains and toolchain versions such as the GNU ARM
compiler, AC6. A version of the GNU ARM compiler is included in the e? studio installer and has been
verified to run with the FSP version.

2.2.2.5 Licensing

FSP licensing includes full source code, limited to Renesas hardware only.

2.2.3 What is a Project?

In e? studio, all FSP applications are organized in RA MCU projects. Setting up an RA MCU project
involves:

1. Creating a Project
2. Configuring a Project

These steps are described in detail in the next two sections. When you have existing projects
already, after you launch e® studio and select a workspace, all projects previously saved in the
selected workspace are loaded and displayed in the Project Explorer window. Each project has an
associated configuration file named configuration.xml, which is located in the project's root directory.

15 Project Explorer £3]

& -

=S
~ 1% MyProject [Debug]

3 Binaries

5l Includes

= ra

2 ra_gen

8 src

= Debug

= ra_cfg

= script
507 configuration.xml

= MyProject Debug,jlink

=/ R7FABM3AH3CFC pincfg
=/ ra_cfgixt

= RABM3-EK.pincfg

(7) Developer Assistance

Figure 4: e2 studio Project Configuration file

Double-click on the configuration.xml file to open the RA MCU Project Editor. To edit the project
configuration, make sure that the RA Configuration perspective is selected in the upper right hand
corner of the e? studio window. Once selected, you can use the editor to view or modify the
configuration settings associated with this project.

£ | B8 C/C++ {5 RA Configuration

Figure 5: e2 studio RA Configuration Perspective

Note
Whenever the RA project configuration (that is, the configuration.xml file) is saved, a verbose RA Project Report
file (ra_cfg.txt) with all the project settings is generated. The format allows differencesto be easily viewed using a
text comparison tool. The generated file is located in the project root directory.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 12/ 601

Nov.08.19

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > What is a Project?

User’s Manual

[Project Explorer 33

= (a5

BG|le -

w =5 MyProject [Debug]

g;b Binaries
[Includes
@ ra
(2 ra_gen
(B src
(= Debug
(= ra_cfg
= script
{5 configurationxml
= MyProject Debug.jlink
TFABMIAH3CFC.pincfg

o] ==

|=| RAGM3-EK.pincfg
(?) Developer Assistance

=| ra_cfg.txt B2

B

6

RA Configuration

<

Board "EK-RAGM3™
R7FAGM3AHICFC

part_number: R7FAGM3AH3CFC
rom_size bytes: 2897152

ram_size bytes: 65536@

data_flash_size_bytes:
package_style: LQFP
package_pins: 176

RABM3
series: g

RAGM3 Family

OFS@ register settings:
OFS@ register settings:
OFS@ register settings:
OFS@ register settings:
OFS@ register settings:
OF5@ register settings:
OF5@ register settings:
OF5@ register settings:
OFS@ register settings:
OFS@ register settings:
OF5@ register settings:

65536

Independent WDT:
Independent WDT:
Independent WDT:
Independent WDT:
Independent WDT:
Independent WDT:
Independent WDT:

Start Mod
Timeout P
Dedicated
Window En
Window 5t
Reset Int
Stop Cont

WDT: Start Mode Select: St

DT: Timeout Period: 16334
DT: Clock Frequency Divis

WDT: Window End Position:

Figure 6: RA Project Report

The RA Project Editor has a number of tabs. The configuration steps and options for individual tabs
are discussed in the following sections.

Note

Which tabs are available with the RA Project Editor depends on the e” studio version.

{8k [MyProject] RA Configuration 52

Summary

Project Summary

Board: EK-RABGM3

Device: R7FABM3AH3ICFC
Toolchain: GCC ARM Embedded
Toolchain Version: = -2 &=Z%

FSP Version: LI |

Selected software components

RAGM3-EK Board Support Files
Simple application that blinks an LED. No RTOS included
Arm CMSIS Version 5 - Core (M)
/O Port

Board Support Package Common Files

Board support package for RTFAGM3AH3ICFC

LR i

LI} S

ool

1Summary BSP | Clocks | Pins | Interrupts | Event Links Staclcs'ComponentsI

= |

Generate Project Content

RENESAS

Figure 7: RA Project Summary tabs

A

e Click on the YouTube icon to visit the Renesas FSP playlist on YouTube
e Click on the Support icon to visit RA support pages at Renesas.com
¢ Click on the user manual (owl) icon to open the RA software package User's Manual

2.2.4 Creating a Project

During project creation, you specify the type of project, give it a project name and location, and
configure the project settings for version, target board, whether an RTOS is included, the toolchain
version, and the beginning template. This section includes easy-to-follow step-by-step instructions
for all of the project creation tasks. Once you have created the project, you can move to configuring
the project hardware (clocks, pins, interrupts) and the parameters of all the modules that are part of

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 13/601

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Creating a Project

your application.
2.2.4.1 Creating a New Project
For RA MCU applications, generate a new project using the following steps:

1. Click on File > New > RA C/C++ Project.

B Workspace - &¥ studio
File Edit Mavigate Search Project RenesasVWiews Run Window Help

New Alt+Shift+N > = RA C/C++ Project

Open File... % Project...
() Open Projects from File System... % Eample.
Close Ctrl+W % Other.. Ctri+N

Figure 8: New RA MCU Project

Then click on the type of template for the type of project you are creating.

Mew RA C/C++ Project ul X

Templates for New RA C/C++ Project

Renesas RA C Executable Project
C/C++ == A C Brecutable Project for Renesas RA.

Renesas RA C Library Project
=== A C Library Project for Renesas RA.

Renesas RA C Project Using RA Librar
) 9 ¥
F== Creates o C application project which uses an existing RA library project

Renesas RA C++ Executable Project
FE A C++ Executable Project for Renesas RA.

enesas ++ LiDrar roj
R RA C++ Library Project
== A C++ Library Project for Renesas RA.

Renesas RA C++ Project Using RA Librar
] 9 Y
FSZ Creates o C++ applicatior. project which uses an existing RA library project

@' < Back Mext > Einish Cancel

Figure 9: New Project Templates

2. Select a project name and location.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 14/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Creating a Project > Creating a New Project

ﬁ e stucio - Project Configuratior (RA C Executable Project) [m] *
e2 studio - Project Configuration (RA C Executable Project) —
Specify the new project details.
Praject Toolchains
Projectname | MyProject GCC ARM Embedded
Use default location
D:\FSPAFSP_Workspace\MyProject Browse.
default
@ < Back Next » Finish Cancel

Figure 10: RA MCU Project Generator (Screen 1)

3. Click Next.
2.2.4.2 Selecting a Board and Toolchain
In the Project Configuration window select the hardware and software environment:

1. Select the FSP version.
2. Select the Board for your application. You can select an existing RA MCU Evaluation Kit or
select Custom User Board for any of the RA MCU devices with your own BSP definition.

3. Select the Device. The Device is automatically populated based on the Board selection.
Only change the Device when using the Custom User Board (Any Device) board
selection.

. To add threads, select RTOS, or No RTOS if an RTOS is not being used.

. The Toolchain selection defaults to GCC ARM Embedded.

. Select the Toolchain version. This should default to the installed toolchain version.

. Select the Debugger. The J-Link ARM Debugger is preselected.

<o u b

8. Click Next.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 15/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Creating a Project > Selecting a Board and Toolchain

B8 <2 studio - Praject Configuration (RA € Executable Project) m] X

e2 studio - Project Configuration (RA C Executable Project)
Select the board support that you require,

Device Selection

FSP version: | 0.8.0-rc.0 Eoard Dctalty

et TR

Device: R7FABM3IAH3ICFC

RTOS: No RTOS &0
Select Tools Available Tools
Toolchain: GCC ARM Embedded ~ GCC ARM Embedded
Toolchain version: | 8.3.1.20190703 ~ 831 2019070

7.3.1.20180622

Debugger: J-Link ARM s 7.2.1.20170904
4.9.3.20150529

w Debuggers
J-Link ARM

w Smart Manual
10 Registers Supported
Software Manual Supported

@ Help < Back MNext > Finish Cancel

Figure 11: RA MCU Project Generator (Screen 2)

Click on the Help icon (?) for user guides, RA contents, and other documents.

2.2.4.3 Selecting a Project Template

In the next window, select a project template from the list of available templates. By default, this
screen shows the templates that are included in your current RA MCU pack. Once you have selected
the appropriate template, click Finish.

Note
If you want to devel op your own application, select the basic template for your board, Bare Metal - Minimal.

e studio - Project Configuration (RA C Executable Project) O X

e2 studio - Project Configuration (RA C Executable Project)
Select the type of project you wish to create.

Project Template Selection

O] 4. Bare Metal - Blinky

Bare metal FSP project that includes BSP and will blink LEDs if available. This project will
initialize clocks, pins, stacks, and the C runtime environment.

[Renesas.RA0.8.0-rc.0.pack]
® (} Bare Metal - Minimal

Bare metal FSP project that includes BSP. This project will initialize clocks, pins, stacks, and
the C runtime environment.

[Renesas.RA.0.8.0-rc.0.pack]

Code Generation Settings
Use RA Code Formatter

':?’\,‘ MNext > Finish Cancel
Figure 12: RA MCU Project Generator (Screen 3)

When the project is created, the ISDE displays a summary of the current project configuration in the

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 16 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Creating a Project > Selecting a Project Template

RA MCU Project Editor.

{8 [MyProject] RA Configuration 33)

Summar
y Generate Project Content

Project Summary

RENESAS ~
Board: EK-RAGM3
Device: R7FABM3AH3CFC
Toolchain: GCC ARM Embedded
Toolchain Version: = -0 &=%
FSP Version: =1

Selected software components

RABM3-EK Board Support Files Tt 1

Simple application that blinks an LED. No RTOS included. =Huaz

Arm CMSIS Version 5 - Core (M) .

/O Port LI) S

Board Support Package Common Files Pl " s o
Board support package for RTFABM3AH3CFC ol

lSummary BSP | Clocks Pins | Interrupts | Event Links | Stacks Cumpunentsl

Figure 13: RA MCU Project Editor and available editor tabs

On the bottom of the RA MCU Project Editor view, you can find the tabs for configuring multiple
aspects of your project:

e With the BSP tab, you can change board specific parameters from the initial project
selection.

e With the Clocks tab, you can configure the MCU clock settings for your project.

e With the Pins tab, you can configure the electrical characteristics and functions of each
port pin.

e With the Stacks tab, you can add FSP modules for non-RTOS applications and configure the
modules. For each module selected in this tab, the Properties window provides access to
the configuration parameters, interrupt priorities, and pin selections.

* With the Interrupt tab, you can add new user events/interrupts.

e With the Event Links tab, you can configure events used by the Event Link Controller.

e The Components tab provides an overview of the selected modules. You can also add
drivers for specific FSP releases and application sample code here.

The functions and use of each of these tabs is explained in detail in the next section.
2.2.5 Configuring a Project

Each of the configurable elements in an FSP project can be edited using the appropriate tab in the
configuration editor window. Importantly, the initial configuration of the MCU after reset and before
any user code is executed is set by the configuration settings in the BSP, Clocks and Pins tabs.
When you select a project template during project creation, the ISDE configures default values that
are appropriate for the associated board. You can change those default values as needed. The
following sections detail the process of configuring each of the project elements for each of the
associated tabs.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 17 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Configuring a Project

18} [MyProject] RA Configuration 53 !

Summar
y Generate Project Content

Project Summary
RENESAS ~
Board: EK-RAGM3
Device: R7FABM3AH3CFC
Toolchain: GCC ARM Embedded
Toolchain Version: = -0 &=%
FSP Version: =1

Selected software components

RABM3-EK Board Support Files Tt 1
Simple application that blinks an LED. No RTOS included. =Huaz
Arm CMSIS Version 5 - Core (M) .

/O Port LI) S
Board Support Package Common Files Pl " s
Board support package for RTFABM3AH3CFC ol

1Summary BSP | Clocks Pins | Interrupts | Event Links | Stacks Compunentsl

Figure 14: RA MCU Project Editor and available editor tabs

2.2.5.1 Configuring the BSP with the ISDE

The BSP tab shows the currently selected board (if any) and device. The Properties view is located in
the lower left of the Project Configurations view as shown below.

Note
If the Properties view is not visible, click Window > Show View > Properties in the top menu bar.

EK-RAGM3
Settings Property Value
~ R7FAGM3AH3CFC
part_number RTFABM3IAH3ICFC
rom_size_bytes 2097152
ram_size_bytes 655360
data_flash_size_bytes 65336
package_style LOFP
package_pins 176
~ RAEM3
series 6

~ RABM3 Family
OFS0 register settings
OF51 register settings

MPU
~ RA Common
Main stack size (bytes) 0400
Heap size (bytes) - A minimum of 4K 0
MCU Vee (mV) 3300
Parameter checking Disabled
Assert Failures Return FSP_ERR_ASSERTION
Error Log Mo Error Log
ID Code Mode Unlocked (Ignore ID}
ID Code (32 Hex Characters) ~ FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF
Soft Reset Disabled
PFS Protect Enabled
Main Oscillator Wait Time 32768 us
Main Oscillator Clock Source Crystal or Resonator
Subclock Populated Populated

Figure 15: ISDE BSP tab

The Properties view shows the configurable options available for the BSP. These can be changed
as required. The BSP is the FSP layer above the MCU hardware. The ISDE checks the entry fields to
flag invalid entries. For example, only valid numeric values can be entered for the stack size.

When you click the Generate Project Content button, the BSP configuration contents are written
to ra_cfg/fsp_cfg/bsp/bsp_cfg.h

R11UMO0137EU0081 Revision 0.81 RENESANS Page 18/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring the BSP with the ISDE

This file is created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
clicked.

2.2.5.2 Configuring Clocks

The Clocks tab presents a graphical view of the MCU's clock tree, allowing the various clock dividers
and sources to be modified. If a clock setting is invalid, the offending clock value is highlighted in
red. It is still possible to generate code with this setting, but correct operation cannot be guaranteed.
In the figure below, the USB clock HOCO has been changed so the resulting clock frequency is 24
MHz instead of the required 48 MHz. This parameter is colored red.

{5 *IMyProject] RA Configuration 53

Clocks Configuration

PLL Sre: XTAL v > pCLKA Div /2 < —{ pcLia 120mH:z

PLL Div /2 t - > PCLKE Div /4 w —{pcLi somtz

PLL Mul xZO.i(’) v > pCLIC Div /4 N
[USBMCLK 24MHz | | [P 240MH;L ! Clock Sre: PLL « <= PCLKD Div /2 v—s{pakp oM
HOCO 20MHz v SDCLKout On —{ spcLkout 120MHz

"= FCLK Div /4 ~ —)| FCLK 60MHz
CLKOUT Disabled ~ —= CLKOUT Div /1 ~ —)| CLKOUT 0Hz

Summary | BSP Pins | Interrupts | Event Links Stacks Components

Figure 16: ISDE Clocks tab

When you click the Generate Project Content button, the clock configuration contents are written
to: ra_gen/bsp_clock _cfg.h

This file will be created if it does not already exist.

Warning
Do not edit this file as it is overwritten whenever the Generate Project Content button is
clicked.

2.2.5.3 Configuring Pins

The Pins tab provides flexible configuration of the MCU's pins. As many pins are able to provide
multiple functions, they can be configured on a peripheral basis. For example, selecting a serial
channel via the SCI peripheral offers multiple options for the location of the receive and transmit pins
for that module and channel. Once a pin is configured, it is shown as green in the Package view.

Note
If the Package view window is not open in the ISDE, select Window > Show View > Pin Configurator > Package
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 19/ 601

Nov.08.19

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Pins

User’s Manual

from the top menu bar to open it.

The Pins tab simplifies the configuration of large packages with highly multiplexed pins by
highlighting errors and presenting the options for each pin or for each peripheral. If you selected a
project template for a specific board such as the RA6M3, some peripherals connected on the board

are preselected.

8% *[MyProject] RA Configuration 2

Pins Configuration

Select pin configuration

RAGM3-EK.pincfg

Pin Selection
Hpeﬁ\tertaxt & | B

v« Connectivity:5Cl A
sCio
sCi
sCI2

v SCI3
5Cl4
SCIs
SCIE

v SCI7
sCia
sCIg

i CannactnineSl Y

<

Summary | BSP | & Clocks Interrupts | Event Links | Stacks | Compeonents

<

Generate data:

Pin Configuration

Module name:

Usage:
Pin Group Selection:
Operation Mode:

Input/Qutput

£

=

g_bsp_pin_cfg

scI7

When using Simple 12C mode, ensure port ¢
open drain.

When switching between 12C and other mo
_Conly ~

Asynchronous UART ~

v 613

v (PRl

- |[%; Pin Conflicts 52

Figure 17: Pins Configuration

&1 Package 32

The pin configurator includes a built-in conflict checker, so if the same pin is allocated to another
peripheral or I/O function the pin will be shown as red in the package view and also with white cross
in a red square in the Pin Selection pane and Pin Configuration pane in the main Pins tab. The
Pin Conflicts view provides a list of conflicts, so conflicts can be quickly identified and fixed.

In the example shown below, port P611 is already used by the CAC, and the attempt to connect this
port to the Serial Communications Interface (SCI) results in a dangling connection error. To fix this

error, select another port from the pin drop-down list or disable the CAC in the Pin Selection pane
on the left side of the tab.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 20/ 601

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Pins

{8} *[MyProject] RA Configuration 52 -

Pins Configuration
g Generate Project Content

Select pin configuration Pins Tutorial & ~ &),

RABM3-EK.pincfg » Generate data: | g_bsp_pin_cfg
Pin Selection Pin Configuration
type filker text i | H
~ B Connectivity:5CI ~ Operation Mode: Simple 5P| v &
5CI0
scn Input/Qutput
5CI2
R TXD_MOSE: ¥ | P613 > C“>:
SCI4 RAD_MISO: v |P614 ¥ =
5CI5 |
s SCK: v |PB12 > =d
B scr €S TS 55 mERel T ed
5CI8 i .
scio L None
v Connectivity:SPI MNone V’
Connecti
v <

e sl

Summary |BSP | & Clocks | @ Pins| Interrupts | Event Links | Stacks | Components |

Figure 18: ISDE Pin configurator

The pin configurator also shows a package view and the selected electrical or functional
characteristics of each pin.

&1 Package 3 ‘._ﬂvlﬁv@vl:'ﬁl
Connection Status
Drive Capacity

§HEEEEE
v
0aag q Mode

Output Type
Pull Up

RIFAGM3AwaFC
176LOFP

[Top View)

Figure 19: ISDE Pin configurator package view

When you click the Generate Project Content button, the pin configuration contents are written
to: ra_gen\bsp_pin_cfg.h

This file will be created if it does not already exist.

Warning

Do not edit this file as it is overwritten whenever the Generate Project Content button is
clicked.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 21/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Pins

To make it easy to share pinning information for your project, the ISDE exports your pin
configuration settings to a csv format and copies the csv file to ra_gen/<MCU package>.csv.

2.2.5.4 Configuring Interrupts

You can use the Properties view in the Stacks tab to enable interrupts by setting the interrupt
priority. Select the driver in the Stacks pane to view and edit its properties.

{é} *[MyProject] RA Configuration &3 =0

Stacks Configuration
g Generate Project Content

Threads 4| Mew Thread] HAL/Common Stacks 4] Mew Stack > | Remove
v ¢ HAL/Common = = ’ ~
4 g_ioport /0 Port Driver on r_ioport & g_lupurt (o] Fur:t 42 g_ellc ELC Driver on 4 g_uart) UART Driver on r_sci_uart
river on r_icpo r_elc
4 g_elc ELC Driver on r_elc A e
4 g_uart0 UART Driver on r_sci_uart @ @ @
ry
I I
4 g_transferl Transfer 4 g_transfer! Transfer
Objects &) New Object » Driver on r_dtc 1 Driver on r_dtc 0
@ @
v
Summary | BSP | Clocks | Pins | Interrupts | Stacks| Components
% Pin Conflicts 4 MCU Package [Console | [Properties 52 P |

g_uart0 UART Driver on r_sci_uart

Mag

B e BlE0 Tignerl eyl

Settings
Receive Interrupt Priority Priority 2
Transmit Data Empty Interrupt Priority Priority 2
Transmit End Interrupt Priority Priority 2
Error Interrupt Priority Priority 2
Figure 20: Configuring Interrupt on the Stacks tab
Interrupts

In the Interrupt tab, the user can bypass a peripheral interrupt and have user-defined ISRs for the
peripheral interrupt. This can be done by adding a new event with the user define tab (New User
Event).

8 *[MyProject] RA Configuration % ==

Interrupts Configuration
P g Generate Project Content

User Events 4| New User Event > |5
Event ISR
Allocations
Interrupt Event ISR
(1] SCI0 RXI (Receive data full) sci_uart_rxi_isr
1 SCI0 TXI (Transmit data empty) sci_uart_t_isr
2. SCID TEI (Transmit end) sci_uart_tei_isr
3 SCI0 ERI (Receive error) sci_uart_eri_isr

Summary:BSP:C\ucks PmsStacks Cumponents:
Figure 21: Configuring interrupt in Interrupt Tab

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 22 /601

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Configuring Interrupts

User’s Manual

& *[MyProject] RA Configuration 33 brc > |Package 33
. . EDMAC >
Interrupts Configuration Genel Iore g
EPTPC >
User Events 1.| 4] New User Eve | Fcu »
Event ISR CLEDE ?
GPT >
ICU >
l[e >
IOPORT >
IWDT >
Allocations JPEG >
Interrupt Boert N SCI0 RX| (Receive data full) 3. sCi0
0 SCI0 X (Receive data full) SCID TXI (Transmit data empty) sci
1 SCID TXI (Transmit data empty) SCI0 TEI (Transmit end) SCI2
2 SCID TEI (Transmit end) SCID ERI (Receive error) SCI3
3 SCID ERI (Receive error) SCI0 AM (Address match event) sCl4
SCI0 RX| OR ERI (Receive data full/Receive) SCI5
Sﬁmmary ES‘P C“Io(‘k;‘f‘liins'Intarrupts.Staéks.;“Componentif. QsPI > sCle
) RTC > scr
= SCE > scie
2. 5Cl By sCig
SDHIMMC >

Figure 22

Enter the name of ISR for new user event.

B New User Event

Enter the name of the ISR for the new user event:

1] -

: Adding user-defined event

| user_defined__sci_uart_pa_i srl

Figure 23: User-defined event ISR

48k *[MyProject] RA Configuration 53

Interrupts Configuration

User Events

=

Generate Project Content

4] Mew User Event > 5

Event

SCI0 RXI (Receive data full)

ISR

user_defined_sci_uart_rxi_isr

Allocations
Interrupt Event ISR
D SCID RXl (Receive data full) user_defined_sci_uart_nxi_isr I
1 SCI0 TXI (Transmit data empty) sci_uart_txi_isr
2 SCID TEI (Transmit end) sci_uart_tei_isr
3 SCID ERI (Receive error) sci_uart_eri_isr

:‘:ummary;éS’P ;C\oéls jli\ns Interrupts | Stacks| tbmponer;ts'

Figure 24: Using a user-defined event

2.2.5.5 Viewing Event Links

The Event Links tab can be used to view the Event Link Controller events. The events are sorted by

peripheral to make it easy to find and verify them.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 23 /601

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Configuring a Project > Viewing Event Links

9% [Blinky] RA Configuration §3 = 0
0

Event Links Configuration ;
Generate Project Content

Allocations

Peripheral Function Event

i A)} No allocation
GPT (B) No allocation

GPT (C) Mo allocation
GPT (D) No allocation
GPT (E) No allocation
GPT (F) No allocation
GPT (G) No allocation
GPT (H) No allocation
ADC12A0 No allocation
ADC12B0 No allocation
ADC12A1 No allocation

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

Figure 25: Viewing Event Links

2.2.6 Adding Threads and Drivers

Every FreeRTOS-based RA Project includes at least one RTOS Thread and a stack of FSP modules
running in that thread. The Stacks tab is a graphical user interface which helps you to add the right
modules to a thread and configure the properties of both the threads and the modules associated
with each thread. Once you have configured the thread, the ISDE automatically generates the code
reflecting your configuration choices.

For any driver, or, more generally, any module that you add to a thread, the ISDE automatically
resolves all dependencies with other modules and creates the appropriate stack. This stack is
displayed in the Stacks pane, which the ISDE populates with the selected modules and module
options for the selected thread.

The default view of the Stacks tab includes a Common Thread called HAL/Common. This thread
includes the driver for 1/O control (IOPORT). The default stack is shown in the HAL/Common Stacks
pane. The default modules added to the HAL/Common driver are special in that the FSP only requires
a single instance of each, which the ISDE then includes in every user-defined thread by default.

In applications that do not use an RTOS or run outside of the RTOS, the HAL/Common thread
becomes the default location where you can add additional drivers to your application.

For a detailed description on how to add and configure modules and stacks, see the following
sections:

e Adding and Configuring HAL Drivers
e Adding Drivers to a Thread and Configuring the Drivers

Once you have added a module either to HAL/Common or to a new thread, you can access the
driver's configuration options in the Properties view. If you added thread objects, you can access
the objects configuration options in the Properties view in the same way.

You can find details about how to configure threads here: Configuring Threads

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 24 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers

Note
Driver and module selections and configuration options are defined in the FSP pack and can therefore change
when the FSP version changes.

2.2.6.1 Adding and Configuring HAL Drivers

For applications that run outside or without the RTOS, you can add additional HAL drivers to your
application using the HAL/Common thread. To add drivers, follow these steps:

1. Click on the HAL/Common icon in the Stacks pane. The Modules pane changes to
HAL/Common Stacks.

{E} *[MyProject] RA Configuration 1 s
Click here to add P>
Stacks Configuration new module

Generate Project Content

Threads d) Re = |HAL/Common Stacks B NewStack> & Exten e

v g HAL/Common
47 g ioport /0 Port Driver on r_joport
1 g_widt) Watchdog Driver on r_wdt
4% g cge0d CGC Driver onr_cge

47 g ioport /0 Port & g wdtD Watchdog 4% g cge0 CGC Driver on
Driver on r_ioport Driver on r_wdt r_cge

Objects

Summary.BSP Clocks | Pins | Interrupts EventLinksComponents_

Figure 26: ISDE Project configurator - Adding drivers

2. Click New Stack to see a drop-down list of HAL level drivers available in the FSP.

3. Select a driver from the menu New Stack > Driver.

{8 *[MyProject] RA Configuration 53 = O ff]Package 2

Stacks Configuration
9 Generate Project Content

Threads [HAL/Common Stacks 4] New Stack >
Amazon FreeRTOS

~ g HAL/Common

4o P
42 g_ioport |/0 Port Driver on r_ioport # g_ioport /0 Port Arm
Driver on r_ioport

-

v v s e v

Driver Analog >
Middleware CapTouch »
SEGGER Connectivity iy
& Search... Graphics >
Input >
Monitoring »
Network »
Power ?
Storage »
Objects System >
& RTC Driver on r_rtc Tirmers »
@ Timer Driver on r_agt Transfer 3
& Timer Driver on r_gpt B
Summary |BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components
Figure 27: Select a driver
R11UM0137EU0081 Revision 0.81 RENESAS Page 25 / 601

Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding and Configuring HAL Drivers

4. Select the driver module in the HAL/Common Modules pane and configure the driver
properties in the Properties view.

The ISDE adds the following files when you click the Generate Project Content button:
e The selected driver module and its files to the ra/fsp directory

e The main() function and configuration structures and header files for your application as
shown in the table below.

File Contents Overwritten by Generate
Project Content?

ra_gen/main.c Contains main() calling Yes
generated and user code. When
called, the BSP already has
Initialized the MCU.

ra_gen/hal_data.c Configuration structures for HAL | Yes
Driver only modules.

ra_gen/hal_data.h Header file for HAL driver only | Yes
modules.

src/hal_entry.c User entry point for HAL Driver |No

only code. Add your code here.

The configuration header files for all included modules are created or overwritten in this folder:
ra_cfg/fsp_cfg

2.2.6.2 Adding Drivers to a Thread and Configuring the Drivers
For an application that uses the RTOS, you can add one or more threads, and for each thread at least
one module that runs in the thread. You can select modules from the Driver dropdown menu. To add

modules to a thread, follow these steps:

1. In the Threads pane, click New Thread to add a Thread.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 26 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

48 *[Blinky] RA Configuration £3 al e -0

Stacks Configuration

Threads | & Mew Thread | 3] Remove [=] Mew Thread Stacks 4] New Stack> =

v g‘si‘ HAL/Common f @k Add RA stacks to the selected thread by using the 'Mew Stack »' toolbar button (above), or

42 g ioport 1O Port Driver on r_ioport /
2 Mew Thread

Generate Project Content

¥' by pasting here from the clipboard.

Objects 4| New Object >

Summary | BSP | Clocks | Pins | Interrupts | Stacks| Components

I#] Problems =) Tasks [E) Console | [T Properties 2% |3 Call Hierarchy @ Smart Browser Memory Usage

New Thread
- Property Value
Scting: » Common
w Thread

Symbol new threadd Enter the name of your thread
MName [New Thread | here example: My Thread
Stack size (bytes) 1024
Priority 1

<

Figure 28: Adding a new RTOS Thread on the Stacks tab

2. In the Properties view, click on the Name and Symbol entries and enter a distinctive
name and symbol for the new thread.

Note
The ISDE updates the name of the thread stacks pane to My Thread Stacks.

3. In the My Thread Stacks pane, click on New Stack to see a list of modules and drivers.
HAL-level drivers can be added here.

8% *[MyProject] RA Configuration 2 = O §&lPackage 2

Stacks Configuration
g Generate Project Content

Threads 42 New Thread #| Remove [] Mew Thread Stacks 4] New Stack
Amazon FreeRTOS >
v & ;F{';L*’Cummorn i "‘-‘ Adbd RA s:ackshto tI;a sel:;tadl.thbreaddby using the 'T Arm >) —
" I‘\Jejjr\;f:a:h(] Port Driver on r_ioport LW or by pasting here from the clipboard. Drees 5 e 3
M CapTouch »
& 12C Master Driver on r_iic_master Connectivity »
@ 12C Slave Driver on r_iic_slave Graphics ¥
& 125 Driver on r_ssi Input »
“ SP| Driver on r_spi Monitoring »
Objects ‘a Mew Object » @ UART Driver on r_sci_uart Power »
Storage >
System »
Timers »
Transfer >

Summary | BSP | Clocks | Pins | Interrupts | Stacks| Components

Figure 29: Adding Modules and Drivers to a thread

4. Select a module or driver from the list.

5. Click on the added driver and configure the driver as required by the application by
updating the configuration parameters in the Properties view. To see the selected module
or driver and be able to edit its properties, make sure the Thread containing the driver is

R11UMO0137EU0081 Revision 0.81 RENESANS Page 27 / 601
Nov.08.19

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

User’s Manual

highlighted in the Threads pane.

48 [MyProject] RA Configuration I3

Stacks Configuration

Threads &) NewThread 4] Remove [5] 9.wdt0 Watchdog Driver on r_wdt Stacks) New Stack >

v & HAL/Common

47 g_ioport /O Port Driver on r_ioport
w i New Thread

4 g_wdt) Watchdog Driver on r_wdt @

4 g wdtD Watchdog
Driver on r_wdt

Objects 4| Mew Object > :
i]

Summary | BSP | Clocks | Pins Interrupts | Stacks| Components

["’m Pin Conflicts & Console | [T Properties 3

g_wdt0 Watchdog Driver on r_wdt

Settings Property Yalue
Common
v Module g_wdt) Watchdog Driv
MName g_wdt0
Timeout 16,384 Cycles
Clock Division Ratio PCLK/8192
‘Window Start Position 100% (Window Position Not Specified)
‘Window End Position 0% (Window Position Not Specified)
Reset Control Reset Qutput
Stop Control WDT Count Disabled in Low Power Mode
MMI Callhack NI

=]

Generate Project Content

i Remove

Figure 30: Configuring Module or Driver properties

6. If needed, add another thread by clicking New Thread in the Threads pane.

When you press the Generate Project Content button for the example above, the ISDE creates the

files as shown in the following table:

File Contents Overwritten by Generate

Project Content?

ra_gen/main.c Contains main() calling Yes
generated and user code. When
called the BSP will have
initialized the MCU.

ra_gen/my_thread.c Generated thread "my_thread" |Yes
and configuration structures for
modules added to this thread.

ra_gen/my_thread.h Header file for thread Yes
"my_thread"

ra_gen/hal _data.c Configuration structures for HAL | Yes
Driver only modules.

ra_gen/hal_data.h Header file for HAL Driver only |Yes
modules.

src/hal_entry.c User entry point for HAL Driver | No
only code. Add your code here.

src/my_thread_entry.c User entry point for thread No
"my_thread". Add your code
here.

R11UMO0137EU0081 Revision 0.81 RLENESAS Page 28 / 601

Nov.08.19

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Adding Drivers to a Thread and Configuring the Drivers

User’s Manual

The configuration header files for all included modules and drivers are created or overwritten in the

following folders: ra_cfg/fsp_cfg/<header files>

2.2.6.3 Configuring Threads

If the application uses the FreeRTOS, the Stacks tab can be used to simplify the creation of

FreeRTOS threads, semaphores, mutexes, and event flags.

The components of each thread can be configured from the Properties view as shown below.

New Thread

Settings Property Value
v Common
General
Hooks
Stats
Memory Allocation
Co-routines
Timers
Optienal Functions

v Thread
Symbol new_thread
Mame Mew Thread
Stack size (bytes) 1024
Priority L

Figure 31: New Thread Properties

The Properties view contains settings common for all Threads (Common) and settings for this

particular thread (Thread).

For this thread instance, the thread's name and properties (such as priority level or stack size) can
be easily configured. The ISDE checks that the entries in the property field are valid. For example,
the ISDE ensures that the field Priority, which requires an integer value, only contains numeric

values between 0 and 9.

To add FreeRTOS resources to a Thread, select a thread and click on New Object in the Thread
Objects pane. The pane takes on the name of the selected thread, in this case My Thread Objects.

48% *[Blinky] RA Configuration &2 | [£] hal_entry.c

Stacks Configuration

Threads & New Thread | Remove [5] Mew Thread Stacks 4] New Stack >

v & HAL/Common

4% g_ioport /0 Port Driver on r_iopol
v i New Thread

45 g_timerD Timer Driver on r_gpt @

4 g_timerD Timer Driver
onr_gpt

Click to add new Thread

o 5 Objects to New Thread

Objects s
T i tiew Dbicel @ Event Groups

@ g_new_event flagsOEve @& Mutex |
@ g new_queued Queve! @ Queue |

— | @ Semaphore I
Summary | BSP | Clacks | Pins Iﬁmﬁ's{ai‘k‘s‘”wrments
[Properties £
g_new_queue0 Queue
Settings Property Yalue
Name MNew Queue I
Symbol g_new_queued
Item Size (Bytes) 4
Queue Length (items) 20

Figure 32: Configuring Thread Object Properties

=

Generate Project Content

%] Remove

R11UMO0137EU0081 Revision 0.81 RENESAS
Nov.08.19

Page 29/ 601

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > Adding Threads and Drivers > Configuring Threads

User’s Manual

Make sure to give each thread object a unique name and symbol by updating the Name and
Symbol entries in the Properties view.

2.2.7 Reviewing and Adding Components

The Components tab enables the individual modules required by the application to be included or
excluded. Modules common to all RA MCU projects are preselected (for example: BSP > BSP >
Board-specific BSP and HAL Drivers > all > r_cgc). All modules that are necessary for the
modules selected in the Stacks tab are included automatically. You can include or exclude

additional modules by ticking the box next to the required component.

{8 [MyProject] RA Configuration 33

Components Configuration

Component

w rabm2

w @ rabm3
[¥] device
[@] device
7| device
] device
| device
device

device
] device
[F] device
| device
7| device
¥ fsp
~ @ty CMSIS
v @ CMSISS
[¥] CoreM
v ¥ Common
v @ all
¥| fsp_commen
v gty HAL Drivers
w @ all
[r_acmplp

Summary |BSP | Clocks Pins.\nterrupts Sta{k

Version

0.6.0
0.6.0
0.6.0
0.6.0
0.6.0
0.6.0
0.6.0
0.6.0
0.6.0
0.6.0
0.6.0
0.6.0

0.6.0

0.6.0

0.6.0

Description

Board support package for RTFAGM3IAHICFC
Board support package for RAGM3

Board support package for RTFAGM3IAF2CBG
Board support package for RFTFAGM3IAFZCLK
Board support package for RTFAGM3IAFICFB

Board support package for RFFAGM3IAF3CFC
Board support package for RTFAGM3IAFICFP

Board support package for RTFABM3AH2CBG
Board support package for RTFAGM3IAH2ZCLK
Board support package for RFTFAGM3IAHICFB
Board support package for RTFAGM3IAH3CFP
Board support package for RAGM3

Arm CMSIS Version 5 - Core (M)

Board Support Package Common Files

Low Power Analog Comparator

Figure 33: Components Tab

Variant

R7FAGM3AH3CFC

R7FAEM3AFZCBG
R7FAGM3AFZCLK
R7FAGM3AF3CFB
R7FAGM3AF3CFC
R7FAGM3AF3CFP
R7FA6M3AHZCBG
R7FAEM3AHZCLK
R7FAGM3AH3CFB
R7FAGM3AHICFP

While the components tab selects modules for a project, you must configure the modules
themselves in the other tabs. clicking the Generate Project Content button copies the .c and .h
files for each component for a Pack file into the following folders:

* ra/fsp/inc/api
 ra/fsp/inc/instances

e ra/fsp/src/bsp

» ra/fsp/src/<Driver_ Name>

The ISDE also creates configuration files in the ra_cfg/fsp_cfg folder with configuration options
included from the remaining Stacks tabs.

2.2.8 Writing the Application

Once you have added Modules and drivers and set their configuration parameters in the Stacks tab,
you can add the application code that calls the Modules and drivers.

Note

To check your configuration, build the project once without errors before adding any of your own application code.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 30/601

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

User’s Manual

2.2.8.1 Coding Features

The ISDE provides several efficiency improving features that help write code. Review these features
prior to digging into the code development step-by-step sections that follow.

Edit Hover

e? studio supports hovers in the textual editor. This function can be enabled or disabled via Window
> Preferences > C/C++ > Editor > Hovers.

BH Preferences

type filter text

Code Style

Core Build Toolchains

Debug

v Editor

Content Assist
Encrypted Files
Folding
Hovers
Mark Occurrences
Save Actions
Scalability
Syntax Coloring
Templates
Typing

File Types

Indexer

Language Mappings

New C/C++ Project Wizard

Property Pages Settings

Renesas

Task Tags

Template Default Values

@ @

Hovers

Expand vertical ruler icons upon hovering [does not affect open editors)
Text Hover key modifier preferences:
Pressed Key Modifier While Hoverin:

Text Hover Name
[/] combined Hover

J Debugger

:l Renesas |O Register Help

:l RenesasCDocHover

|| Problem Description

J Documentation

j Macro Expansion

(V] Source Shift
:l Annotation Description

Pressed key modifier while hovering:‘
Description:

Tries the hovers in the sequence listed below and uses the one which fits best
for the selected element and the current context.

Restore Defaults Apply

Apply and Close

Cancel

Figure 34: Hover preference

To enable hover, check Combined Hover box. To disable it, uncheck this box. By default, it is
enabled. The Hover function allows a user to view detailed information about any identifiers in the
source code by hovering the mouse over an identifier and checking the pop-up.

bsp_leds_t leds;

R_BSP LedsGet(&leds);

/* LED state variable */
ioport_level_t level = IOPORT_LEVEL_HIGH;

A SELR- B AR
4 hal_data.h
& hal_entry(void)

[* Get LED information for this board */

Name: R_BSP_LedsGet

Description:

Prototype: ssp err tR BSP LedsGet (bsp leds t *p leds)

Return information about the LEDs on the current board.

Structure with LED information. p_leds Pointer to structure where LED info is stored.

| 28
fls2 ~—e
63 {

}

level = IOPORT_LEVEL_LOW;

Figure 35: Hover Example

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS Page 31/ 601

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

Welcome Window

The e? studio Welcome window displays useful information and common links to assist in
development. Check out these resources to see what is available. They are updated with each
release, so check back to see what has been added after a new release.

RA_Workspace - Blinky/src/hal_entry.c - € studio - O X
File Edit Source Refactor MNavigate Search Project RenesasViews Run Window Help
5' (@) Welcome 31] fafEH=-~
s
il RENESAS Welcome to e2 studio >
Workbench
Create a new e2 studio C/C++ project Get an overview of the features
Import existing e studio projects from the Go through tutorials

filesystem or archive

Try out the samples
Review the IDE's most fiercely contested ¥ B

preferences

Find out what is new
Open a file from the filesystem

M1 aiways show Welcome at start up

B

Figure 36: Welcome window

Cheat Sheets

Cheat sheets are macro driven illustrations of some common tasks. They show, step-by-step, what
commands and menus are used. These will be populated with more examples on each release.
Cheat Sheets are available from the Help menu.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 32/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

RA_Workspace - Blinky/src/hal_entry.c - € studio - m} X
File Edit Source Refactor Navigate Search Project RenesasViews Run Window Help
Q%] 45 Debug v || £ Blinky Debug v) Welcome
O~ ME DS B L Q@™ 4 i 48 ~ &5l v @ HelpContents
%’ Search
- Show Contextual Help
[Project Explorer 53 = G| & Y = B {8 [Blinky] RA Configuration
e o) .] Show Active Keybindings... Ctrl+Shift
v [Blinky [Debug] A 1 #include))
w1l Includes [2 #include ' Tips and Tricks...
@ ra #include ' & Report Bug or Ephgncement...
(£ ra_gen — 5 void R BSI Cheat Sheets...
v G src 5 -
| hal_entry.c @ * The RA RA Helpdesk
= ra_cfg void _hﬂ_‘ R RenesasRulz Community Forum
(= script

47 Add Renesas Toclchains

B Blinky Debug.launch w Perform Setup Tasks...

48 configurationxml }
-| RVFA6M3AH3CFC.pincfg % Check for Updates
5 ra_cfg.bt v - i _T,h'_l, Spf: (g Install New Software...
< > < Renesas e2 studio feedback
[T] Properties 52 : > : > = B8 [:Q Pin Conflic' §& |AR Embedded Workbench plugin manager...
B 3 B v |Qitems B About e studio
Property Value Descrip!ion o L L}

Figure 37: Cheat Sheets

Developer Assistance

FSP Developer Assistance provides developers with module and Application Programming Interface

(API) reference documentation in e? studio. After configuring the threads and software stacks for an
FSP project with the Configuration Editor, Developer Assistance quickly helps you get started writing
C/C++ application code for the project using the configured stack modules.

1. Expand the project explorer to view Developer Assistance

R11UMO0137EU0081 Revision 0.81 RENESANS Page 33 /601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

[Project Explorer &3 S

v 15 Blinky
m) Includes
& ra

JL
d
q
0
(I

(2 ra_gen
(2 src
= ra_cfg
(= script
2| Blinky Debug.launch
&% configuration.xml
=] R7TFABM3AH3CFC.pincfg
= ra_cfg.bd
) RASM3-EK pincig

v (2) Developer Assistance
v % HAL/Common
& g_ioport /O Port Driver on r_ioport
47 g_elc ELC Driver onr_elc
4 g_adc0 ADC Driver on r_adc

Figure 38: Developer Assistance

2. Expand a stack module to show its APIs

w () Developer Assistance
v gt HAL/Common
42 g_joport |70 Port Driver on r_ioport
47 g_elc ELC Driver on r_elc
w & g_adch ADC Driver on r_adc

~ @ fsp_err t R_ADC_Open(adc_ctrl_t *p_ctrl, ade_cfg_t const *const p_cfg)
| Call R_ADC_Open()

v @ fsp_err t R_ADC ScanCfg(ade_ctrl_t *p_ctrl, adc_channel_cfg_t const *const p_channel_cfg)
|2 Call R_ADC ScanCfg()

v @ fsp_err t R_ADC InfoGet(adc_ctrl_t *p_ctrl, adc_info_t *p_adc_info)
[t Call R_ADC InfoGet()

v @ fsp_err_t R_ADC ScanStart(adc_ctrl_t *p_ctrl)
|23 Call R_ADC ScanStart()

v @ fsp_err_t R_ADC_ScanStop(adc_ctrl_t *p_ctrl}
|23 Call R_ADC_ScanStop()

v @ fsp_err t R_ADC StatusGet{adc_ctrl_t *p_ctrl, ade_status_t *p_status)
|24 Call R_ADC_StatusGet()

~ @ fsp_err t R_ADC_Read(adc_ctrl_t *p_ctrl, adc_channel_t const reg_id, uint16_t *const p_data)
[t3 Call R_ADC_Read()

w @ fon err tRADC Read?2(ade ctrl t*n ctrl ade channel t const rea id uint3? t*const n datal ¥

>

Figure 39: Developer Assistance APIs

3. Dragging and dropping an API from Develop Assistance to a source file helps to write source
code quickly.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 34/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

~ [(7) Developer Assistance
v g HAL/Common
4 g_iopert I/0 Port Driver on r_ioport
48 g_elc ELC Driver on r_elc
v & g_adc0 ADC Driver on r_adc

v @ fsp_em_t R_ADC_Open(adc_ctrl_t *p_ctrl, adc_cfg_t const "const p_cfg)
b= Call R_ADC_Openi)

v @ fsp_em_t R_ADC_ ScanCfg(adc_ctrl_t *p_ctr, adc_channel_cfg_t const *const p_channel_cfg)
b= Call R_ADC_ScanCfg()

v @ fsp_em_t R_ADC InfoGet(adc_ctrl_t *p_ctrl, adc_info_t *p_adc_info)
= Call R_ADC InfoGet()

v @ fsp_em_t R_ADC_ ScanStart(adc_ctrl_t "p_ctrl)
[z Call R_ADC_ScanStart()

v @ fsp_em_t R_ADC_ ScanStop(adc_ctrl_t "p_ctrl)
bz Call R_ADC_ScanStop()

v @ fsp_em_t R_ADC StatusGet(adc_ctrl_t *p_ctrl, adc_status_t *p_status)
= Call R_ADC_StatusGet()

v @ fsp_em_t R_ADC_Read(adc_ctrl_t *p_ctrl, adc_channel_t const reg_id, uint16_t “const p_data)
= Call R_ADC_Read()

~ @ fan err t R ANC Read3?fade ctrl + *n ctrl ade channel t conct rea id uint3? t “conet o datal a2

<

Figure 40: Dragging and Dropping an API in Developer Assistance

Information Icon

Information icons are available on each module in the thread stack. Clicking on these icons opens a
module folder on GitHub that contains additional information on the module. An example information
Icon is shown below:

47 g_ioport 1/0 Port

\ Driver on r_ioport
D

Figure 41: Information icon

Smart Manual

Smart Manual is the view that displays information (register information/search results by keyword)
extracted from the hardware user's manual. Smart Manual provides search capability of hardware
manual information (register information search and keyword search result) and provides a view
displaying result.

You can open Smart Manual view by selecting the menu: Renesas Views > Solution Toolkit >
Smart Manual. Register search and Keyword search are both available by selecting the appropriate
tab.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 35/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Writing the Application > Coding Features

(%3 Pin Conflicts I} Smart Manual i3 S @ v = 8

Register Search Keyword Search

port v|I Go]Device:RA6M

No search results available.

<

Figure 42: Smart Manual

2.2.8.2 RTOS-independent Applications

To write application code:

1. Add all drivers and modules in the Stacks tab and resolve all dependencies flagged by the
ISDE such as missing interrupts or drivers.

2. Configure the drivers in the Properties view.

3. In the Project Configuration view, click the Generate Project Content button.

4. In the Project Explorer view, double-click on the src/hal_entry.c file to edit the source file.

]
£

[y Project Explorer 3 = =
-
~

125 Blinky
T FSP_project
w 15 MyProject [Debug]

#éb.

[Includes
Era
(= ra_gen
v B src
[€ hal_entry.c
(= Debug
(= ra_cfg
(= script
=| A2A1-TBB.pincfg

Binaries

Note

All configuration structures necessary for the driver to be called in the application are initialized in
ra_gen/hal_data.c.
Warning

Do not modify the files in the directory ra_gen. These files are overwritten every
time you push the Generate Project Content button.

5. Add your application code here:

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 36 / 601
Nov.08.19

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > Writing the Application > RTOS-independent Applications

User’s Manual

6. Build the project without errors by clicking on Project > Build Project.

[€] hal_entry.c 52 | §5% [MyProject] RA Configuration

B

R S I ST

Figure 43: Adding user code to hal_entry.c

#include "hal Hata.h”
#include "bsp_pin_cfg.h"
#include "r_ioport.h"

void R_BSP_WarmStart(bsp warm start ever
@ * The RA Configuration tool generates n

wvoid hal_entry({void)
{

£¥ : add your own code here */
} \

Add your own code here

The following tutorial shows how execute the steps above and add application code: Tutorial: Using
HAL Drivers - Programming the WDT.

The WDT example is a HAL level application which does not use an RTOS. The user guides for each

module also include basic application code that you can add to hal_entry.c.

2.2.8.3 RTOS Applications

To write RTOS-aware application code using FreeRTOS, follow these steps:

1. Add a thread using the Stacks tab.

w N

. Provide a unique name for the thread in the Properties view for this thread.
. Configure all drivers and resources for this thread and resolve all dependencies flagged by

the ISDE such as missing interrupts or drivers.

~N o Ul b~

. Configure the thread objects.
. Provide unique names for each thread object in the Properties view for each object.
. Add more threads if needed and repeat steps 1 to 5.
. In the RA Project Editor, click the Generate Project Content button.

8. In the Project Explorer view, double-click on the src/my_thread_1_entry.c file to edit the

source file.

[Project Explorer 532

= 8

E S ¥
=

v 1:5 RA_RTOS_Application [Debug] A

<

Figure 44: ISDE generated files for an RTOS application

[Includes
Era
v 8 ra_gen
[.g] blinky_thread.c
blinky_thread.h
bsp_clock_cfg.h
bsp_pin_cfg.h
[€] common_data.c
comrmon_data.h
lg] hal_data.c
hal_data.h
] main.c
1€ my_thread_1.c
rmy_thread_1.h
€] pin_data.c
|.g] vector_data.c
vector_data.h
2] ABM3-PK.csv
v B src

lg] blinky_thread_entry.c
lg] hal_entry.c
l.g] my_thread_1_entry.c

(= ra_cfg

(= script

= ABM3-PK.pincfg

& configurationxml

=| RTFABM3AH3CFC.pincfg

>

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 37 /601

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Writing the Application > RTOS Applications

Note
All configuration structures necessary for the driver to be called in the application are initialized in

ra_gen/my thread_1.c and my thread 2.c

Warning
Do not modify the files in the directory ra_gen. These files are overwritten every

time you push the Generate Project Content button.

9. Add your application code here:

ﬁh [RA_RTOS_Application] RA Configuration S(s’l \€] my_thread_1_entry.c 3% |

R N f{"‘,‘i“?:’;Z‘git[P.A_RTOs_i\pp|icatwf‘n_-'ccnﬁguratim.xnﬂ |
4 void my_thread_1_entry{void *pvParameters)

{
s);

/ : add your own code here */
while (1)

wTaskDelay (1);
]

[

Figure 45: Adding user code to my_thread_1.entry

10. Repeat steps 1 to 9 for the next thread.
11. Build your project without errors by clicking on Project > Build Project.

2.2.9 Debugging the Project

Once your project builds without errors, you can use the Debugger to download your application to
the board and execute it.

To debug an application follow these steps:

1. On the drop-down list next to the debug icon, select Debug Configurations.

R MY =

[E7] 1 FSP_project Debug
Debug As >
Debug Configurations...

Organize Favorites...

2. In the Debug Configurations view, click on your project listed as MyProject Debug.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 38 /601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Debugging the Project

Debug Configurations X
Create, manage, and run configurations ﬁ\.
X[E - MName: [MyProject Debug |
type filter text [£] Main . %5 Debugger| B» Startup| (] Common 1/ Source

[] C/C++ Application

[] C/C++ Remote Applicatic
EASE Script | MyProject Browse...

[] GDB Hardware Debuggin: || ¢/C++ Application:

[] GDB OpenOCD Debuggin

GDE Simulator Debuggin
Java Applet Variables... Search Project... Browse...
Java Application

R Launch Group

= Launch Group (Deprecate Build Configuration: | Use Active A
Remote Java Application

Project:

[Debug/MyProject.clf

Build (if required) before launching

v [7] Renesas GDB Hardware D (O Enable aute build () Disable aute build
[£¥] MyProject Debug (®) Use workspace settings Configure Workspace Settings...
Renesas Simulater Debug
< >
Revert Appl,
Filter matched 14 of 16 items B2 s
@ Close

3. Connect the board to your PC via either a standalone Segger J-Link debugger or a Segger J-
Link On-Board (included on all RA EKs) and click Debug.

Note
For details on using J-Link and connecting the board to the PC, see the Quick Start Guide included in the RA MCU
Kit.

2.2.10 Modifying Toolchain Settings

There are instances where it may be necessary to make changes to the toolchain being used (for
example, to change optimization level of the compiler or add a library to the linker). Such
modifications can be made from within the ISDE through the menu Project > Properties >
Settings when the project is selected. The following screenshot shows the settings dialog for the
GNU ARM toolchain. This dialog will look slightly different depending upon the toolchain being used.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 39/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Modifying Toolchain Settings

Properties for Blinky m] X
| Settings R =
Resource
A
Builders
~ C/C++ Build Configuration: | Debug [Active] ~ | | Manage Configurations...

Build Variables
Environment
Logging i Tool Settings i3 Toolchain # Build Steps Build Artifact [m Binary Parsers @3 Error Parsers
Settings
Tool Chain Editer @ Target Processor ARM family cortex-m4d ~
C/C++ General (2 Optimization
MCu (B Warnings
Project References (2 Debugging Instruction set Thumb (-mthumb) o
Renesas QF w83 GNUARM Cross Assembler
Run/Debug Settings (£2 Preprocessor
Task Repository (22 Includes Endianness Toolchain default ~
Task Tags (2 Warnings
Validation (£ Miscellaneous
~ 83 GNUARM Cross C Compiler FPU Type fpvd-sp-d16 2
(£2 Preprocessor
(22 Includes
(£ Optimization Generic (-mepu=generic)
2 Warnings
g MiscaHagneous Toolchain default
w83 GNUARM Cross C Linker
(2 General
(% Libraries Toolchain default

Architecture Toolchain default &

[Thumb interwork (-mthumb-interwork)

Float ABI FP instructions (hard) ~

Unaligned access | Toolchain default ~

Toolchain default

(£ Miscellaneous
w83 GNUARM Cross Create Flash Image

(2 General Small (-mcmodel=small)
.. KT\ CAILADRA e Nuis Cinn . A

Enabled {+simd)

@
Figure 46: ISDE Project toolchain settings

The scope for the settings is project scope which means that the settings are valid only for the
project being modified.

The settings for the linker which control the location of the various memory sections are contained in
a script file specific for the device being used. This script file is included in the project when it is
created and is found in the script folder (for example, /script/aém3.Id).

2.2.11 Importing an Existing Project into e2 studio ISDE

1. Start by opening e? studio.
2. Open an existing Workspace to import the project and skip to step d. If the workspace
doesn't exist, proceed with the following steps:

a. At the end of e? studio startup, you will see the Workspace Launcher Dialog box as
shown in the following figure.

B8 Eclipse Launcher *

Select a directory as workspace

& studio uses the workspace directory to store its preferences and development artifacts.

WLt -\ Users\ < user_name\e2studio\workspace] ~ Browse...

[] Use this as the default and do not ask again

» Recent Workspaces

Figure 47: Workspace Launcher dialog

R11UMO0137EU0081 Revision 0.81 RENESANS Page 40 / 601
Nov.08.19

Flexible Software Package

User’s Manual
Starting Development > e2 studio ISDE User Guide > Importing an Existing Project into e2 studio ISDE

b. Enter a new workspace name in the Workspace Launcher Dialog as shown in the
following figure. e? studio creates a new workspace with this name.

E Eclipse Launcher

*
Select a directory as workspace

& studio uses the workspace directory to store its preferences and development artifacts,

IR ET N Users\ <username > \e2studiol\new workspace] Browse...

[] Use this as the default and de not ask again

b Recent Workspaces

Cancel
Figure 48: Workspace Launcher dialog - Select Workspace

c. Click Launch.

d. When the workspace is opened, you may see the Welcome Window. Click on the

Workbench arrow button to proceed past the Welcome Screen as seen in the
following figure.

RENESAS Welcome to e2 studio (=)

Workbench

Figure 49: Workbench arrow button

3. You are now in the workspace that you want to import the project into. Click the File menu
in the menu bar, as shown in the following figure.

File Edit Source Refactdr Mavigate ° e Menu Bar
@J @ .,E. e Tool Bar

G- @@ it G

Figure 50: Menu and tool bar

4. Click Import on the File menu or in the menu bar, as shown in the following figure.

R11UMO0137EUO0081 Revision 0.81

RLENESAS Page 41/ 601
Nov.08.19

Flexible Software Package

Starting Development > e2 studio ISDE User Guide > Importing an Existing Project into e2 studio ISDE

User’s Manual

File Edit Source Refactor Navigate

New
Open File...

(3 Open Projects from File System...

Close
Close All

Save
Save As...
Save All
Revert
Move...
Rename...
Refresh

Convert Line Delimiters To

Print...

B

7 Import.
Export...

Properties

Search Project Renesa

1 Web Browser [tool-support.renesas.c...]

Switch Workspace
Restart
Exit

Alt+Shift+N »

Ctrl+W

Ctrl+ Shift+ W

Ctrl+5

Ctrl+Shift+5

Ctrl+P

Alt+Enter

Figure 51: File drop-down menu

5. In the Import dialog box, as shown in the following figure, choose the General option, then
Existing Projects into Workspace, to import the project into the current workspace.

Existing Projects into Workspace" option selected"

6. Click Next.

7. To import the project, use either Select archive file or Select root directory.

a. Click Select archive file as shown in the following figure.

ﬁ Import

Select

Create new projects from an archive file or directory.

Select an import wizard:

type filter text

v = General

I Archive File
&) CMSIS Pack
&) CMSIS Pack
- Existing Projects into Workspace
(= File System
[T Preferences
() Projects from Folder or Archive

=% Rename & Import Existing C/C++ Project into Workspace

oy

< Back Next >

E

Cancel

Figure 52: Project Import dialog with

R11UMO0137EUO0081 Revision 0.81

Nov.08.19

RLENESAS

Page 42 /601

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Importing an Existing Project into e2 studio ISDE

B import O x
Import Projects o
Select a directory to search for existing Eclipse projects, / A,'
(0 Select root directo ny Browse..
I@ Select archive file: I | | ~ |I Browse... I
Projects:
Select All
Deselect All
Refresh
Options

Search for nested projects
Copy projects into workspace

[[] Hide projects that already exist in the workspace

Working sets

[JAdd project to working sets Mew...
Sele

=

@ < Back et Finish Cance)

Figure 53: Import Existing Project dialog 1 - Select archive file

b. Click Select root directory as shown in the following figure.

B8 import m] X
Import Projects ¥ *\
Select a directory to search for existing Eclipse projects. / ‘
I@ Select root directory: I‘ ‘ ~ |I Browse... |
() Select archive file: Browse...
Projects:
Select All
Deselect All
Refresh
Options

[[15earch for nested projects
Copy projects into workspace
[[IHide projects that already exist in the workspace

Working sets

[[] Add project to working sets New...
Selec

@ < Back Mo > e T

Figure 54: Import Existing Project dialog 1 - Select root directory

. Click Browse.

. For Select archive file, browse to the folder where the zip file for the project you want to
import is located. For Select root directory, browse to the project folder that you want to
import.

10. Select the file for import. In our example, it is CAN_HAL MG_AP.zip or CAN_HAL MG _AP.

O 00

R11UMO0137EU0081 Revision 0.81 RENESANS Page 43 /601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > e2 studio ISDE User Guide > Importing an Existing Project into e2 studio ISDE

11. Click Open.

12. Select the project to import from the list of Projects, as shown in the following figure.

Projects:

CAN_HAL_MG_AP (CAN_HAL_MG_AP/)
Figure 55: Import Existing Project dialog 2

13. Click Finish to import the project.

2.3 Tutorial: Your First RA MCU Project - Blinky

2.3.1 Tutorial Blinky

The goal of this tutorial is to quickly get acquainted with the Flexible Platform by moving through the
steps of creating a simple application using e studio and running that application on an RA MCU
board.

2.3.2 What Does Blinky Do?

The application used in this tutorial is Blinky, traditionally the first program run in a new embedded
development environment.

Blinky is the "Hello World" of microcontrollers. If the LED blinks you know that:

e The toolchain is setup correctly and builds a working executable image for your chip.

e The debugger has installed with working drivers and is properly connected to the board.
e The board is powered up and its jumper and switch settings are probably correct.

e The microcontroller is alive, the clocks are running, and the memory is initialized.

The Blinky example application used in this tutorial is designed to run the same way on all boards
offered by Renesas that hold the RA microcontroller. The code in Blinky is completely board
independent. It does the work by calling into the BSP (board support package) for the particular
board it is running on. This works because:

e Every board has at least one LED connected to a GPIO pin.

e That one LED is always labeled LED1 on the silk screen.

e Every BSP supports an API that returns a list of LEDs on a board, and their port and pin
assignments.

2.3.3 Prerequisites

To follow this tutorial, you need:
e Windows based PC
 e? studio

e Flexible Software Package
e An RA MCU board kit

2.3.4 Create a New Project for Blinky

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 44 / 601
Nov.08.19

Flexible Software Package

Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky

User’s Manual

The creation and configuration of an RA MCU project is the first step in the creation of an application.
The base RA MCU pack includes a pre-written Blinky example application that is simple and works on

all Renesas RA MCU boards.

Follow these steps to create an RA MCU project:

1. In e? studio ISDE, click File > New > RA Project and select Renesas RA C Executable

Project.

2. Assign a name to this new project. Blinky is a good name to use for this tutorial.

3. Click Next. The Project Configuration window shows your selection.

H 2 studio - Project Configuration (RA C Executable Project) m]

e2 studio - Project Configuration (RA C Executable Project)
Specify the new project details.

Project Toolchains

Project name | Blinky GCC ARM Embedded

Use default location

D:\FSPAFSP_Workspace\Blinky

=
=]
i

default

':?)' <Back | Mext > Finish Cancel

Figure 56: e2 studio ISDE Project Configuration window (part 1)

4. Select the board support package by selecting the name of your board from the Device

Selection drop-down list and click Next.

R11UMO0137EU0081 Revision 0.81 RENESAS
Nov.08.19

Page 45/ 601

Flexible Software Package

Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky

User’s Manual

e studio - Project Configuration (RA C Executable Project) O X

e2 studio - Project Configuration (RA C Executable Project) p—
Select the board support that you require.

Device Selection

FSP version: |0.8.0-rc.0 Fosid Detalk

Board: ~

Device: RYFABM3IAHICFC

RTOS: No RTOS ~
Select Tools Available Tools
Toolchain: GCC ARM Embedded ~ GCC ARM Embedded
Toolchain version: | 8.3.1.20190703 ~ ol

7.3.1.20180622

Debugger: J-Link ARM ~ 7.2.1.20170904
4.9.3.20150529

v Debuggers
J-Link ARM

~ Smart Manual
10 Registers Supported
Software Manual Supported

(?) < Back Next > Finish Cancel

Figure 57: e2 studio ISDE Project Configuration window (part 2)

5. Select the Blinky template for your board and click Finish.

E e2 studio - Project Configuration (RA C Executable Project] m] X

22 studio - Project Configuration (RA C Executable Project) —
Select the type of project you wish to create.

Project Template Selection

@ .. Bare Metal - Blinky

Bare metal FSP project that includes BSP and will blink LEDs if available. This project will
initialize clocks, pins, stacks, and the C runtime environment.

[Renesas.RA.0.8.0-re.0.pack]

O (;} Bare Metal - Minimal

Bare metal FSP project that includes BSP. This project will initialize clocks, pins, stacks,
and the C runtime environment.

[Renesas.RA0.8.0-rc.0.pack]

Code Generation Settings
Use RA Code Formatter

@ < Back Next> Cancel
Figure 58: e2 studio ISDE Project Configuration window (part 3)

Once the project has been created, the name of the project will show up in the Project
Explorer window of the ISDE. Now click the Generate Project Content button in the top
right corner of the Project Configuration window to generate your board specific files.

R11UMO0137EU0081 Revision 0.81 RENESAS

Nov.08.19

Page 46 / 601

Flexible Software Package User’s Manual

Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky

{8% [Blinky] RA Configuration 52 S =
SUmmary Generate Project Content

Project Summary) A

RENESAS

Board: EK-RAGM3

Device: R7FABM3AH3CFC

Toolchain: GCC ARM Embedded

Toolchain Version: 8.3.1.20190703

FSP Version: 0.8.0-rc.0

Selected software components L¥

Figure 59: e2 studio ISDE Project Configuration tab

Your new project is now created, configured, and ready to build.

2.3.4.1 Details about the Blinky Configuration

The Generate Project Content button creates configuration header files, copies source files from
templates, and generally configures the project based on the state of the Project Configuration
screen.

For example, if you check a box next to a module in the Components tab and click the Generate
Project Content button, all the files necessary for the inclusion of that module into the project will
be copied or created. If that same check box is then unchecked those files will be deleted.

2.3.4.2 Configuring the Blinky Clocks

By selecting the Blinky template, the clocks are configured by the ISDE for the Blinky application.
The ISDE clock configuration tab (see Configuring Clocks) shows the Blinky clock configuration. The
Blinky clock configuration is stored in the BSP clock configuration file (see BSP Clock Configuration).
2.3.4.3 Configuring the Blinky Pins

By selecting the Blinky template, the GPIO pins used to toggle the LED1 are configured by the ISDE
for the Blinky application. The ISDE pin configuration tab shows the pin configuration for the Blinky
application (see Configuring Pins). The Blinky pin configuration is stored in the BSP configuration file
(see BSP Pin Configuration).

2.3.4.4 Configuring the Parameters for Blinky Components

The Blinky project automatically selects the following HAL components in the ISDE Component:

e r_ioport

To see the configuration parameters for any of the components, check the Properties tab in the
HAL window for the respective driver (see Adding and Configuring HAL Drivers).

2.3.4.5 Where is main()?
The main function is located in < project >/ra_gen/main.c. It is one of the files that are generated
during the project creation stage and only contains a call to hal_entry(). For more information on

generated files, see Adding and Configuring HAL Drivers.

2.3.4.6 Blinky Example Code

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 47 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Your First RA MCU Project - Blinky > Create a New Project for Blinky > Blinky Example Code

The blinky application is stored in the hal_entry.c file. This file is generated by the ISDE when you
select the Blinky Project template and is located in the project's src/ folder.

The application performs the following steps:
1. Get the LED information for the selected board by bsp_leds_t structure.
2. Define the output level HIGH for the GPIO pins controlling the LEDs for the selected board.
3. Get the selected system clock speed and scale down the clock, so the LED toggling can be
observed.
4. Toggle the LED by writing to the GPIO pin with R_BSP_PinWrite((bsp_io_port_pin_t) pin,
pin_level);
2.3.5 Build the Blinky Project
Highlight the new project in the Project Explorer window by clicking on it and build it.
There are three ways to build a project:
a. Click on Project in the menu bar and select Build Project.

b. Click on the hammer icon.

c. Right-click on the project and select Build Project.

R s Views Run Window

B workspace - & studio

File Edit Navigate Searc

a. Project->Build Project

b. Click hammer icon

¢. Right click->Build Project

Figure 60: e2 studio ISDE Project Explorer window

Once the build is complete a message is displayed in the build Console window that displays the
final image file name and section sizes in that image.

2 = [Console &2
COT Build Console [Blinky]

"Finished building: ../ra/board/raém3_ek/board_leds.c’
"Finished building: ../ra/board/raém3_ek/board_init.c’

*Finished building: ../ra/board/raém3_ek/board_gspi.c’

'Building target: Blinky.elf'
"Invoking: GNU ARM Cross C Linker'
arm-none-eabi-gcc @"Blinky.elf.in"
"Finished building target: Blinky.elf'

"Invoking: GNU ARM Cross Create Flash Image'
arm-none-eabi-objcopy -0 srec "Blinky.elf™ "Blinky.srec™
"Invoking: GNU ARM Cross Print Size'
arm-none-eabi-size --format=berkeley "Blinky.elf"

text data bss dec hex filename

4248 8 1152 5488 1518 Blinky.elf
"Finished building: Blinky.srec'
"Finished building: Blinky.siz'

11:5@:45 Build Finished. @ errors, @ warnings. (took 19s.268ms)

Figure 61: e2 studio ISDE Project Build console

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 48 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Your First RA MCU Project - Blinky > Debug the Blinky Project

2.3.6 Debug the Blinky Project

2.3.6.1 Debug prerequisites
To debug the project on a board, you need

e The board to be connected to the ISDE
e The debugger to be configured to talk to the board
e The application to be programmed to the microcontroller

Applications run from the internal flash of your microcontroller. To run or debug the application, the
application must first be programmed to the microcontroller's flash. There are two ways to do this:

e |JTAG debugger
¢ Built-in boot-loader via UART or USB

Some boards have an on-board JTAG debugger and others require an external JTAG debugger
connected to a header on the board.

Refer to your board's user manual to learn how to connect the JTAG debugger to your ISDE.
2.3.6.2 Debug steps
To debug the Blinky application, follow these steps:

1. Configure the debugger for your project by clicking Run > Debugger Configurations ...

Run | Window Help

B Tracex >

B Tracealyzer >

@, Run Ctrl+F11

&, Debug F11
Run History >
Run As >
Run Configurations...
Debug History >
Debug As >
Debug Cenfigurations... I

Q, External Tools >

Figure 62: e2 studio ISDE Debug icon

or by selecting the drop-down menu next to the bug icon and selecting Debugger
Configurations ...

e Qi

Debug As >
Debug Configurations...

Organize Favorites.

Figure 63: e2 studio ISDE Debugger Configurations selection option

2. Select your debugger configuration in the window. If it is not visible then it must be created

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 49 / 601
Nov.08.19

Flexible Software Package

Starting Development > Tutorial: Your First RA MCU Project - Blinky > Debug the Blinky Project > Debug steps

User’s Manual

by clicking the New icon in the top left corner of the window. Once selected, the Debug

Configuration window displays the Debug configuration for your Blinky project.

E Debug Cenfigurations X

Create, manage, and run configurations

S XR|[B 3~ | Name: [Blinky Debug |

type filter text B Main ﬁDahugge? i Startup | B Source| [} Common

[T] C/C++ Application

[E] C/C++ Remote Applicz

= EASE Script | Blinky Browse...

[€] GDB Hardware Debugg || | ¢/ Application:

c | GDB OpenOCD Debuge =

g GDB S\:’w\ator Debuggg- | DEDug/Blinky:clt
Java Applet Variables... Search Project... Browse...
Java Application

 Launch Group

@ Launch Group (Deprec: Build Configuration: | Use Active bl
Remote Java Applicatio

Project:

Build (if required) before launching

« [E¥ Renesas GDB Hardware () Enable auto build () Disable auto build
Blinky Debug (®) Use workspace settings Configure Workspace Settings...
[c7] Renesas Simulator Debt
< >
Revert Appl
Filter matched 14 of 16 items < PEN
@ Close

Figure 64: e2 studio ISDE Debugger Configurations window with Blinky project

3. Click Debug to begin debugging the application.

4. Extracting RA Debug.

Progress Information m] X

Configuring GDB

2.3.6.3 Details about the Debug Process

In debug mode, the ISDE executes the following tasks:

1. Downloading the application image to the microcontroller and programming the image to

the internal flash memory.
. Setting a breakpoint at main().
. Setting the stack pointer register to the stack.
. Loading the program counter register with the address of the reset vector.
. Displaying the startup code where the program counter points to.

b wWwN

R11UMO0137EU0081 Revision 0.81 RENESANS Page 50 / 601

Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Your First RA MCU Project - Blinky > Debug the Blinky Project > Details about the Debug Process

Program Counter

{8% [Blinky] RA Configgfation L€l hal_entry.c Lg startup.c 2

@ * MCU starts executing here out of re
void Reset Handler (void)

20800al3 |]

/* Initialize system using BSP. */
@Bdala SystemInit();

/* Call user application. */
6 BeBBBale main();

while (1)
1

Figure 65: e2 studio ISDE Debugger memory window

2.3.7 Run the Blinky Project

While in Debug mode, click Run > Resume or click on the Play icon twice.

L U

Figure 66: e2 studio ISDE Debugger Play icon

The LEDs on the board marked LED1, LED2, and LED3 should now be blinking.

2.4 Tutorial: Using HAL Drivers - Programming the WDT

2.4.1 Application WDT

This application uses the WDT Interface implemented by the WDT HAL Driver WDT. This document
describes how to use the ISDE and FSP to create an application for the RA MCU Watchdog Timer
(WDT) peripheral. This application makes use of the following FSP modules:

e MCU Board Support Package
e Watchdog Timer (r_wdt)
e |/O Ports (r_ioport)

2.4.2 Creating a WDT Application Using the RA MCU FSP and ISDE

2.4.2.1 Using the FSP and the e2 studio ISDE

The Flexible Software Package (FSP) from Renesas provides a complete driver library for developing
RA MCU applications. The FSP provides Hardware Abstraction Layer (HAL) drivers, Board Support
Package (BSP) drivers for the developer to use to create applications. The FSP is integrated into the

Renesas e? studio Integrated Solution Development Environment (ISDE) based on eclipse providing
build (editor, compiler and linker) and debug phases with an extended GNU Debug (GDB) interface.

2.4.2.2 The WDT Application

The flowchart for the WDT application is shown below.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 51/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating a WDT Application Using the RA MCU FSP and ISDE > The WDT Application

BSP initialises
docks, pins etc

2 Initialise WDT

Loop Count =30

4 Turnonred LED and delay Lot

Turn off red LED and delay

Tickle WDT

Turn ongreenLEDamtdelay P

Il

Turn off green LED and delay

Figure 67: WDT Application flow diagram

2.4.2.3 WDT Application flow
These are the main parts of the WDT application:

1. main() calls hal_entry(). The function hal_entry() is created by the FSP with a placeholder for
user code. The code for the WDT will be added to this function.

2. Initialize the WDT, but do not start it.

3. Start the WDT by refreshing it.

4. The red LED is flashed 30 times and refreshes the watchdog each time the LED state is
changed.

5. Flash the green LED but DO NOT refresh the watchdog. After the timeout period of the
watchdog the device will reset which can be observed by the flashing red LED again as the
sequence repeats.

2.4.3 Creating the Project with the ISDE

R11UMO0137EUO0081 Revision 0.81 .QEN ESANANAS Page 52/ 601
Nov.08.19

Flexible Software Package

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with the ISDE

User’s Manual

Start the ISDE and choose a workspace folder in the Workspace Launcher. Configure a new RA MCU

project as follows.

1. Select File > New > RA C/C++ Project. Then select the template for the project.

FSP_workspace 1 - & studio

Eile Edit MNavigate Search Project RenesasViews Run Window Help

Alt+Shift+N » | = RA C/C++ Project

New
Open File... ™ Project...
() Open Projects from File System... % Eample..
Close Chrl+W 9 Other..
E MNew RA C/C++ Project

Templates for New RA C/C++ Project

C—

C/C++

Ctrl+N

Renesas RA C Executable Project
FEEN A C Executable Project for Renesas RA.

Renesas RA C Library Project
y Proj
FEEZ= A C Library Project for Renesos RA.

Renesas RA C Project Using RA Library
FE= Creates a C application project which uses an
existing RA library project

Renesas RA C++ Executable Project
FEEN A C++ Executable Project for Renesas RA.

Renesas RA C+ -+ Library Project
y Proj
FEZ= A C++ Library Project for Renesas RA.

<

ey
@

< Back Mext > Einish

Cancel

Figure 68: Creating a new project

2. In the ISDE Project Configuration (RA Project) window enter a project name, for
example, WDT_Application. In addition select the toolchain. If you want to choose new
locations for the project unselect Use default location. Click Next.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 53 /601

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with the ISDE

e studic - Project Configuration (RA C Executable Project) O *

e2 studio - Project Configuration (RA C Executable Project)
Specify the new project details,

Project Toolchains

Project name | WDT_Application| GCC ARM Embedded

Use default location
DAFSPAFSP_Warkspace\WOT_Application Browse

default

< Back Next » Einish Cancel

Figure 69: Project configuration (part 1)

3. This application runs on the RA6M3 board. So, for the Board select EK-RA6M3.

This will automatically populate the Device drop-down with the correct device used on this

board. Select the Toolchain version. Select J-Link ARM as the Debugger. Click Next to
configure the project.

22 studio - Project Configuration (RA C Executable Project)
Select the board support that you require.

Device Selection

FSP version: |0.8.0-rc.0 FomdDetat
Board: EK-RAGM3 ~
Device: RYFABM3IAHICFC
RTOS: No RTOS ~
Select Tools Available Tools
Toolchain: GCC ARM Embedded ~ GCCARM Embedded
7
Toolchain version: | 8.3.1.20190703 S PO
7.3.1.20180622
Debugger: J-Link ARM ~ 7.2.1.20170904
4.9.3.20150529
w Debuggers
J-Link ARM
~ Smart Manual
10 Registers Supported
Software Manual Supported
pr
@ < Back Dext > Finish Cancel

Figure 70: Project configuration (part 2)

R11UMO0137EU0081 Revision 0.81 RENESANS Page 54 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Creating the Project with the ISDE

The project template is now selected. As no RTOS is required select Bare Metal - Blinky.

ﬁ e studio - Project Configuration (RA C Executable Project) m] X

e2 studio - Project Configuration (RA C Executable Project) —
Select the type of project you wish to create.

Project Template Selection

O] .. Bare Metal - Blinky

f-} Bare metal FSP project that includes BSP and will blink LEDs if available. This
project will initialize clocks, pins, stacks, and the C runtime environment.

[Renesas.RA0.8.0-rc.0.pack]

®[.. Bare Metal - Minimal

©
) Bare metal FSP project that includes B5P. This project will initialize clocks, pins,
stacks, and the C runtime environment.

[Renesas.RA.0.8.0-rc.0.pack]

Code Generation Settings
Use RA Code Formatter

@ < Back

Next > T
Figure 71: Project configuration (part 3)

4. Click Finish.

The ISDE creates the project and opens the Project Explorer and Project Configuration
Settings views with the Summary page showing a summary of the project configuration.

2.4.4 Configuring the Project with the ISDE

The e? studio ISDE simplifies and accelerates the project configuration process by providing a GUI
interface for selecting the options to configure the project.

The ISDE offers a selection of perspectives presenting different windows to the user depending on
the operation in progress. The default perspectives are C/C++, RA Configuration and Debug. The
perspective can be changed by selecting a new one from the buttons at the top right of the ISDE.

‘ R C/Ce+ 4% RA Configuration 1 -

Figure 72: Selecting a perspective

The C/C++ perspective provides a layout selected for code editing. The RA Configuration
perspective provides elements for configuring a RA MCU project, and the Debug perspective
provides a view suited for debugging.

1. In order to configure the project settings ensure the RA Configuration perspective is
selected.

2. Ensure the Project Configuration [WDT Application] is open. It is already open if the
Summary information is visible. To open the Project Configuration now or at any time make
sure the RA Configuration perspective is selected and double-click on the
configuration.xml file in the Project Explorer pane on the right side of the ISDE.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 55/ 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE

[Project Explorer 332 =
BE|e ~
v =% WDT_Application [Debug]
[Includes
v @ ra
2= arm
= board
= fsp
(2 ra_gen
(# src
(= ra_cfg
L cript
TFABMIAH3CFC.pincfg
=| RAGM3-EK.pincfg
= WDT_Application Debug.launch
(7) Developer Assistance

Figure 73: RA MCU Project Configuration Settings

At the base of the Project Configuration view there are several tabs for configuring the project. A
project may require changes to some or all of these tabs. The tabs are shown below.

485 [WDT_Application] RA Configuration 52 =
Sumimany Generate Project Content

Project Summary i A

RENESAS

Board: EK-RABM3

Device: R7FAGM3AH3CFC

Toolchain: GCC ARM Embedded

Toolchain Version; =7 °"1°0V "I+

FSP Version: HL R |

Selected software components

RAGM3-EK Board Support Files CRET S |
Arm CMSIS Version 5 - Core (M) (L |

110 Port .

Board Support Package Common Files .-

Board support package for RTFAGM3AH3CFC & i _H

Youl[T®

Summary | BSP | Clocks| Pins Interrupts| Event Links| Stacks | Components

Figure 74: Project Configuration Tabs

2.4.4.1 BSP Tab

The BSP tab allows the Board Support Package (BSP) options to be modified from their defaults. For
this particular WDT project no changes are required. However, if you want to use the WDT in auto-
start mode, you can configure the settings of the OFS0 (Option Function Select Register 0) register in
the BSP tab. See the RA Hardware User's Manual for details on the WDT autostart mode.

2.4.4.2 Clocks Tab
The Clocks tab presents a graphical view of the clock tree of the device. The drop-down boxes in the

GUI enables configuration of the various clocks. The WDT uses PCLCKB. The default output frequency
for this clock is 60 MHz. Ensure this clock is outputting this value.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 56 / 601
Nov.08.19

Flexible Software Package

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Clocks Tab

User’s Manual

2.4.4.3 Pins Tab

£8% [WDT_Application] RA Configuration] &2

Clocks Configuration

XTAL 24MHz |-
PLL Src: XTAL ~
PLL Div /2 t v
PLL Mul x20.0 v
[usBMCLE 240z | | [P ZADMH;L |/ Clock Src: PLL
HOCO 20MHz v

LOCO 32768Hz
MOCO 8MHz
SUBCLK 32768Hz

CLKOUT Disabled

Summary | BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components

 ICLK Div /2 v
[PCLKA Div /2 - @

fl» PCLKE Div /4 v |
| PCLKC Div /4 v
4= PCLKD Div /2 -
SDCLKout On v
b+l BCLK Div sz v
s
1 UCLK Div /5 v
\s! FCLK Div /4 v
 —/ CLKOUT Div /1 v @

Figure 75: Clock configuration

The Pins tab provides a graphical tool for configuring the functionality of the pins of the device. For
the WDT project no pin configuration is required. Although the project uses two LEDs connected to
pins on the device, these pins are pre-configured as output GPIO pins by the BSP.

2.4.4.4 Stacks Tab

You can add any driver to the project using the Stacks tab. The HAL driver IO port pins are added
automatically by the ISDE when the project is configured. The WDT application uses no RTOS
Resources, so you only need to add the HAL WDT driver.

{8} (WDT_Application] RA Configuration 53

Stacks Configuration

Threads = HAL/Common Stacks

v g HAL/Common

4a o
& g_iopert |/O Port Driver on r_icport € g_ieport /O Port

Driver on r_ioport

Objects

.Summary BSP Clncks.Pins.\nterrupts Event Links | Stacks Cnmpﬂner}ts.

0
0

Generate Project Content

&) New Stack »

Figure 76: Stacks tab

1. Click on the HAL/Common Panel in the Threads Window as indicated in the figure above.

R11UMO0137EUO0081 Revision
Nov.08.19

0.81 RLENESAS

Page 57 /601

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Stacks Tab

The Stacks Panel becomes a HAL/Common Stacks panel and is populated with the
modules preselected by the ISDE.

2. Click on New Stack to find a pop-up window with the available HAL level drivers.
3. Select WATCHDOG Driver on r_wdt.

{8} [WDT_Application] RA Configuration 53 = (= &1 Package &2

Stacks Configuration
9 Generate Project Content

Threads = HAL/Common Stacks =
ST Amazon FreeRTOS

~ g HAL/Commen Arm

>
& g mport /O Part Biiver.onopor i g}:szro:nlif;oor:t Driver z Analog r>_
Middleware > CapTouch >
SEGGER > Connectivity >
&7 Search.. Graphics >
Input >
@ CRC Driveronr_crc Monitoring >
3 Clock Accuracy Circuit Driver on r_cac Metwork ¥
& Data Operation Circuit Driver on r_doc Power >
@ Watchdog Driver on r_iwdt Storage >
LLERE o+ Watchdog Driver on r_wdt System 3
Timers >
Transfer >
Summary |BSP | Clocks | Pins | Interrupts | Event Links | Stacks | Components <

Figure 77: Module Selection

The selected HAL WDT driver is added to the HAL/Common Stacks Panel and the Property
Window shows all configuration options for the selected module. The Property tab for the WDT
should be visible at the bottom left of the screen. If it is not visible, check that the RA
Configuration perspective is selected.

533 [WDT_Application] RA Configuration 3 = H

Stacks Configuration
9 Generate Project Content

Threads I i 52 Rernove [HAL/Common Stacks 4] New Stack > == E < » 1] Remove

v g HAL/Common
42 g_ioport 10 Port Driver on r_ioport
& g_wdtD Watchdog Driver on r_wdt

48 g_ioport /0 Port 4 g wdt) Watchdog
Driver on r_ioport Driver on r_wdt

Objects Thijec &
‘ |
Summary ESb:Clﬂ{ki:l.’iﬁs.Int-arrupt-s.Evant Links | Stacks Cumpnnents:

B{J Pin Conflicts % MCU Package El Console

g_wdt0 Watchdog Driver on r_wdt

2 Se&ings Property Value
Biinag Common
Parameter Checking Default (BSP)
Register Start NMI Support Disabled
~ Module g_wdt) Watchdog Driver on r_wdt
Name g_wdtD
Timeout 16,384 Cycles
Clock Division Ratio PCLK/8192
‘Window Start Position 100% (Window Position Not Specified)
Window End Position 0% (Window Position Not Specified)
Reset Control Reset Output
Stop Control WOT Count Disabled in Low Power Mode

Figure 78: Module Properties

All parameters can be left with their default values.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 58 / 601
Nov.08.19

Flexible Software Package

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Stacks Tab

User’s Manual

[34 Pin Conflicts =# MCU Package [Z) Console | [T Properties 7 | 4% Debug

g wdt0 Watchdog Driver on r wdt

Settings Property Value

w Common
Parameter Checking Default (BSP)
Register Start NM| Support Disabled

v Module g_wdtd Watchdog Driver on r_wdt
Mame g_wdth
Timeout 16,384 Cycles
Clock Division Ratio PCLK/81532
Window Start Position 100% (Window Position Mot Specified)
Window End Position 0% [(Window Position Not Specified)
Reset Control Reset Qutput
Stop Control 'WOT Count Disabled in Low Power Mode
NMI Callback NULL

Figure 79: g wdt WATCHDOG Driver on WDT properties

With PCLKB running at 60 MHz the WDT will reset the device 2.23 seconds after the last refresh.

WDT clock

Cycle time

60 MHz / 8192 = 7.32 kHz

1/7.324 kHz = 136.53 us

Timeout = 136.53 us x 16384 = 2.23 seconds

Save the Project Configuration file and click the Generate Project Content button in the top
right corner of the Project Configuration pane.

o

Generate Project Content

Figure 80: Generate Project Content button

The ISDE generates the project files.

2.4.4.5 Components Tab

The components tab is included for reference to see which modules are included in the project.
Modules are selected automatically in the Components view after they are added in the Stacks Tab.

For the WDT project ensure that the following modules are selected:

1. HAL_Drivers -> r_ioport
2. HAL Drivers -> r_wdt

R11UMO0137EUO0081 Revision 0.81

Nov.08.19

RLENESAS

Page 59/ 601

Flexible Software Package

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Configuring the Project with the ISDE > Components Tab

User’s Manual

Components Configuration

Component

| riic_master

r_iic_slave

r_sci_uart
r_sdhi

r_spi

r_ssi
r_usb_basic
r_usb_pcde
rowdt

| rm_freertos_plus_tcp

[[] rm_psa_crypto

Version
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
0.8.0-rc.0
080
0.8.0-rc.0

Description

12C Master Interface

12C Slave Interface

1/0 Port

Independent Watchdog Timer

JPEG Codec

Key Input

Low Power Modes

Low Yoltage Detection

Real Time Clock

Secure Cryptography Engine on RAZ
Secure Cryptography Engine on RA4
Secure Cryptography Engine on RAG
SCII12C Master Interface

Serial Peripheral Interface on Serial Communic..
SCI UART

SD/MMC Host Interface

Serial Peripheral Interface

Serial Sound Interface

Universal Serial Bus Basic

Universal Serial Bus Peripheral Communication...
Watchdog Timer

r_ether to FreeRTOS Plus TCP IP Wrapper
PSA mbedCrypto

Summary | BSP Clu:ks.Pms.lnterrupts.Event Links | Stacks Compenents

Figure 81: Component Selection

Note

Variant

The list of modules displayed in the Components tab depends on the installed FSP version.

2.4.5 WDT Generated Project Files

Clicking the Generate Project Content button performs the following tasks.

e r_wdt folder and WDT driver contents created at:

ra/fsp/src

e r_wdt_api.h created in:
ra/fsp/inc/api

e r_wdt.h created in:

ra/fsp/inc/instance

The above files are the standard files for the WDT HAL module. They contain no specific project
contents. They are the driver files for the WDT. Further information on the contents of these files can
be found in the documentation for the WDT HAL module.

Configuration information for the WDT HAL module in the WDT project is found in:

ra_cfg/fsp_cfg/r_wdt_cfg.h

The above file's contents are based upon the Common settings in the g_wdt WATCHDOG Driver

on WDT Properties pane.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 60 /601

Flexible Software Package

User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files

[%3 Pin Conflicts =# MCU Package (=) Console | [T Properties 37 | 4 Debug
g_wdt0 Watchdog Driver on r_wdt

Property
~ Common

Settings

Parameter Checking
Register Start NMI Support
~ Madule g_wdtd Watchdog Driver on r_wdt
Name
Timeout
Clock Division Ratio
Window Start Position
Window End Positicn
Reset Control
Stop Control
MMI Callback

Warning

e 483 [WDT_Application] RA Configuration | [B] r.wdt.cfgh 32

" il | generated configuration header file - do not edit */
Default (85P) 2 #ifndef R_WDT_CFG_H_
Disabled 3 #define R_WDT_CFG_H_

4 #define WDT_CFG_PARAM_CHECKING_ENABLE (BSP_CFG_PARAM CHECKING_ENABLE)

g wdtd 5 #define WDT_CFG_REGISTER_START_NMI_SUPPORTED ((0))
= 6 #endif /* R_WDT_CFG_H_ */
16,384 Cycles g _WDT_CFG_H_
PCLK/8192

100% (Window Position Not Specified)
0% (Window Position Not Specified)
Reset Qutput

WDT Count Disabled in Low Power Mode
MULL

Figure 82: r_wdt_cfg.h contents

Do not edit any of these files as they are recreated every time the Generate Project Content
button is clicked and so any changes will be overwritten.

The r_ioport folder is not created at ra/fsp/src as this module is required by the BSP and so already
exists. It is included in the WDT project in order to include the correct header file in
ra_gen/hal_data.c-see later in this document for further details. For the same reason the other
IOPORT header files- ra/fsp/inc/api/r_ioport_api.handra/fsp/inc/instances/r_ioport.h-are not created as

they already exist.

In addition to generating the HAL driver files for the WDT and IOPORT files the ISDE also generates
files containing configuration data for the WDT and a file where user code can safely be added.

These files are shown below.

2.4.5.1 WDT hal_data.h

5 Project Explorer 13
~ 1% WDT_Application [Debug]
3 Binaries
5l Includes
= ra
w [ra_gen
[B] bsp_clock_cfg.h
[B] bsp_pin_cfg.h
i_éj common_data.c
|£] commen_data.h
Ej hal_data.c
[H] hal_data.h
] main.c
[pin_data.c
Ej vector_data.c
m vector_data.h
E24) RABM3-EK.csv
28 src
= Debug
= ra_cfg
= script
4k configuration.xml
=| R7TFABM3AH3CFC.pincfg
=/ ra_cfg.txt
= RABM3-EK.pincfg
= WDT_Application Debug.launch
(7) Developer Assistance

Figure 83: WDT project files

The contents of hal_data.h are shown below.

/* generated HAL header file -
#i fndef HAL_DATA H_

do not edit */

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS Page 61/ 601

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_data.h

hal _data.h contains the header files required by the ISDE generated project. In addition this file
includes external references to the g_wdt instance structure which contains pointers to the
configuration, control, api structures used for WDT HAL driver.

Warning
This file is regenerated each time Generate Project Content is clicked and must not be
edited.

2.4.5.2 WDT hal_data.c

The contents of hal_data.c are shown below.

R11UMO0137EU0081 Revision 0.81 Page 62 /601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_data.c

const wdt_cfg_t g wdtO_cfg =

{
.ti nmeout = WDT_TI MEOUT 16384,
.clock division = WDT_CLOCK DI VI SI ON 8192,
. Wi ndow st art = WDT_W NDOW START 100,
. Wi ndow_end = WDT_W NDOW END_0,
.reset _control = WDT_RESET CONTROL_RESET,
.stop_control = WDT_STOP_CONTROL_ENABLE,
. p_cal | back = NULL,

}i

[* Instance structure to use this nodule. */

const wdt _instance t g wdtO =

{.p_ctrl = & wdtO ctrl, .p_cfg = & wdtO _cfg, .p_api = &_wdt_on_wdt};
void g _hal _init (void)

{

g_common_init();

hal_data.c contains g_wdt ctrl which is the control structure for this instance of the WDT HAL driver.
This structure should not be initialized as this is done by the driver when it is opened.

The contents of g wdt _cfg are populated in this file using the g_ wdt WATCHDOG Driver on WDT
Properties pane in the ISDE Project Configuration HAL tab. If the contents of this structure do
not reflect the settings made in the ISDE, ensure the Project Configuration settings are saved in
the ISDE before clicking the Generate Project Content button.

Warning
This file is regenerated each time Generate Project Content is clicked and so should not be
edited.

2.4.5.3 WDT main.c

Contains main() called by the BSP start-up code. main() calls hal_entry() which contains user
developed code (see next file). Here are the contents of main.c.
/* generated main source file - do not edit*/
#i ncl ude "hal data. h"
int main (void)
{
hal _entry();

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 63 /601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT main.c

return O;

Warning
This file is regenerated each time Generate Project Content is clicked and so should not be
edited.

2.4.5.4 WDT hal_entry.c

This file contains the function hal_entry() called from main(). User developed code should be placed
in this file and function.

For the WDT project edit the contents of this file to contain the code below. This code implements
the flowchart in overview section of this document.

#i ncl ude "hal _data.h"

#i ncl ude "bsp_pin_cfg.h"

#i nclude "r _ioport.h"

#defi ne RED LED NO OF FLASHES 30

#define RED LED PIN BSP_| O PORT_01_PI N 00

#def i ne GREEN_LED _PI N BSP_| O PORT_04_PI N 00

#defi ne RED_LED DELAY_COUNT 1500000

#define GRN_LED DELAY_ COUNT 1200000

volatile uint32 t delay counter;

volatile uintl16_t | oop_counter;

void R BSP WarnfStart (bsp_warm start _event t event);
/* gl obal variable to access board LEDs */

extern bsp leds t g bsp_ | eds;

/**

*******************************/

voi d hal _entry (void) ({

/* Open the WDT */

R WDT_Open(&g_wdtO0_ctrl, & wdtO cfg);

[* Start the WDT by refreshing it */

R WDOT Refresh(&g wdtO _ctrl);

/* Flash the red LED and tickle the WDT for a few seconds */

for (loop_counter = 0; |oop_counter < RED LED NO OF FLASHES; | oop_counter ++)
{

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 64 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_entry.c

R11UMO0137EU0081 Revision 0.81 Page 65/601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > WDT Generated Project Files > WDT hal_entry.c

/* Do nothing. */
}

}

[Rk ko Kk kK ko ko Kk kK ko Kok Kok kK ko Kok Kok kK ko Kok Kok R ko ko Kok kR ko Kok kR ko Kok Kk kK ko Kk Kk
Kk ko Kk kK kK K kK K kK Kk Kk Kk Kk Kk K
void R BSP_WarnStart (bsp_warm start_event _t event)
{
i f (BSP_WARM START_POST_C == event)
{
/* Cruntime environnent and system cl ocks are setup. */
/* Configure pins. */
R | OPORT_Open(&g_ioport_ctrl, &y bsp pin_cfg);
}

The WDT HAL driver is called through the interface g wdt_on_wdt defined in r wdt.h. The WDT
HAL driver is opened through the open API call using the instance defined in r_wdt_api.h:

/* Open the WDT */
R WDOT_Open(&g_wdtO_ctrl, & wdtO _cfg);

The first passed parameter is the pointer to the control structure g_wdt_ctrl instantiated
inhal_data.c. The second parameter is the pointer to the configuration data g_wdt_cfg instantiated in
the same hal_data.c file.

The WDT is started and refreshed through the API call:

[* Start the WDT by refreshing it */
R WDOT Refresh(&g wdtO ctrl);

Again the first (and only in this case) parameter passed to this API is the pointer to the control
structure of this instance of the driver.

2.4.6 Building and Testing the Project

Build the project in the ISDE Build > Build Project. The project should build without errors.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 66 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Building and Testing the Project

To debug the project

1. Connect the JLink debugger between the target board and host PC. Apply power to the
board.

2. In the Project Explorer pane on the right side of the ISDE right-click on the WDT project
WDT_Application and select Debug As > Debug Configurations.

3. Under Renesas GDB Hardware Debugging select WDT_Application Debug as shown

below.
Create, manage, and run configurations ﬁv
o =
S R|[B - Mame: |WDT_Apphcat|Un Debug |
type filter text El Main 35 Debugger‘ = Startup| s Source| [] Common
@ C/C++ Application) Piaieer
[c] C/C++ Remote Application
=’ EASE Script ‘ WOT_Application Browse...
[c] GDB Hardware Debugging C/C++ Application:
[£] GDB Open0OCD Debugging "
= Debug\WDT_Application.elf
[GDB Simulator Debugging (RHBS0) | DebughWET_Applicstion.«
Java Applet Variables... Search Project... Browse...
Java Application Build {if required) before launching
g Launch Group
= Launch Group (Deprecated) Build Configuration: | Select Automatically ¥
Remote Java Application i .
« [Renesas GDB Hardware Debugging () Enable auto build () Disable auto build
f * WOT_Application Debug [local] (®) Use workspace settings Configure Workspace Settings...

[£7 Renesas Simulator Debugging (RX, RLTS)

Filter matched 14 of 16 items

5
(‘3/.

Figure 84: Debug configuration

4. Click the Debug button. Click Yes to the debug perspective if asked.

Progress Information m] X

‘."_0I Extracting RA Debug
o

|
Configuring GDB

5. The code should run the Reset Handler() function.

6. Resume execution via Run > Resume. Execution will stop in main() at the call to
hal_entry().

7. Resume execution again.

The red LED should start flashing. After 30 flashes the green LED will start flashing and the red LED
will stop flashing.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 67 / 601
Nov.08.19

Flexible Software Package User’s Manual

Starting Development > Tutorial: Using HAL Drivers - Programming the WDT > Building and Testing the Project

While the green LED is flashing the WDT will underflow and reset the device resulting in the red LED
to flash again as the sequence repeats. However, this sequence does not occur when using the
debugger because the WDT does not run when connected to the debugger.

1. Stop the debugger in the ISDE via Run > Terminate.
2. Click the reset button on the target board. The LEDs begin flashing.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 68 / 601
Nov.08.19

Flexible Software Package

FSP Architecture

User’s Manual

Chapter 3 FSP Architecture

3.1 FSP Architecture Overview

This guide describes the Renesas Flexible Software Package (FSP) architecture and how to use the
FSP Application Programming Interface (API).

3.1.1 C99 Use

The FSP uses the ISO/IEC 9899:1999 (C99) C programming language standard. Specific features
introduced in C99 that are used include standard integer types (stdint.h), booleans (stdbool.h),
designated initializers, and the ability to intermingle declarations and code.

3.1.2 Doxygen

Doxygen is the default documentation tool used by FSP. You can find Doxygen comments throughout

the FSP source.

3.1.3 Weak Symbols

Weak symbols are used occasionally in the FSP. They are used to ensure that a project builds even
when the user has not defined an optional function.

3.1.4 Memory Allocation

Dynamic memory allocation through use of the malloc() and free() functions are not used in FSP
modules; all memory required by FSP modules is allocated in the application and passed to the
module in a pointer. Exceptions are considered only for ports of 3rd party code that require dynamic

memory.

3.1.5 FSP Terms

Term

Description

Reference

BSP

Short for Board Support
Package. In the FSP the BSP
provides just enough
foundation to allow other FSP
modules to work together
without issue.

MCU Board Support Package

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 69 /601

Flexible Software Package

FSP Architecture > FSP Architecture Overview > FSP Terms

User’s Manual

Module

Modules can be peripheral
drivers, purely software, or
anything in between. Each
module consists of a folder with
source code, documentation,
and anything else that the
customer needs to use the code
effectively. Modules are
independent units, but they
may depend on other modules.
Applications can be built by
combining multiple modules to
provide the user with the
features they need.

FSP Modules

Driver

A driver is a specific kind of
module that directly modifies
registers on the MCU.

Interface

An interface contains API
definitions that can be shared
by modules with similar
features. Interfaces are
definitions only and do not add
to code size.

FSP Interfaces

Stacks

The FSP architecture is
designed such that modules
work together to form a stack.
A stack consists of a top level
module and all its
dependencies.

FSP Stacks

Module Instance

Single and independent
instantiation of a module. An
application may require two
GPT timers. Each of these
timers is a module instance of
the r_gpt module.

Application

Code that is owned and
maintained by the user.
Application code may be based
on sample application code
provided by Renesas, but it is
the responsibility of the user to
maintain as necessary.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 70/ 601

Flexible Software Package User’s Manual

FSP Architecture > FSP Architecture Overview > FSP Terms

Callback Function This term refers to a function -
that is called when an event
occurs. As an example, suppose
the user would like to be
notified every second based on
the RTC. As part of the RTC
configuration, a callback
function can be supplied that
will be jumped to during each
RTC interrupt. When a single
callback services multiple
events, the arguments contain
the triggering event. Callback
functions for interrupts should
be kept short and handled
carefully because when they
are called the MCU is still inside
of an interrupt, delaying any
pending interrupts.

3.2 FSP Modules

Modules are the core building block of FSP. Modules can do many different things, but all modules
share the basic concept of providing functionality upwards and requiring functionality from below.

[Not supported by viewer]

[Not supported by viewer]

Figure 85: Modules

The amount of functionality provided by a module is determined based on functional use cases.
Common functionality required by multiple modules is often placed into a self-contained submodule
so it can be reused. Code size, speed and complexity are also considered when defining a module.

The simplest FSP application consists of one module with the Board Support Package (BSP) and the
user application on top.

[Not supported by viewer]

Figure 86: Module with application

R11UMO0137EU0081 Revision 0.81 RENESANS Page 71 /601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Modules

The Board Support Package (BSP) is the foundation for FSP modules, providing functionality to
determine the MCU used as well as configuring clocks, interrupts and pins. For the sake of clarity,
the BSP will be omitted from further diagrams.

3.3 FSP Stacks

When modules are layered atop one another, an FSP stack is formed. The stacking process is
performed by matching what one module provides with what another module requires. For example,
the SPI module (Serial Peripheral Interface (r_spi)) requires a module that provides the transfer
interface (Transfer Interface) to send or receive data without a CPU interrupt. The transfer interface
requirement can be fulfilled by the DTC driver module (Data Transfer Controller (r_dtc)).

Through this methodology the same code can be shared by several modules simultaneously. The

example below illustrates how the same DTC module can be used with SPI (Serial Peripheral
Interface (r_spi)), UART (Serial Communications Interface (SCI) UART (r_sci_uart)) and SDHI (SD/MMC

Host Interface (r_sdhi)).

[Not supported by viewer] [Not supported by viewer] [Met supported by viewer]
[Net supported by viewer] [Not supportgd by viewer] [Not supported by viewer

[Not supportef by viewer]

Figure 87: Stacks -- Shared DTC Module

The ability to stack modules ensures the flexibility of the architecture as a whole. If multiple
modules include the same functionality issues arise when application features must work across
different user designs. To ensure that modules are reusable, any dependent modules must be
capable of being swapped out for other modules that provide the same features. The FSP
architecture provides this flexibility to swap modules in and out through the use of FSP interfaces.

3.4 FSP Interfaces

At the architecture level, interfaces are the way that modules provide common features. This
commonality allows modules that adhere to the same interface to be used interchangeably.
Interfaces can be thought of as a contract between two modules - the modules agree to work
together using the information that was established in the contract.

On RA hardware there is occasionally an overlap of features between different peripherals. For
example, 12C communications can be achieved through use of the IIC peripheral or the SCI
peripheral. However, there is a difference in the level of features provided by both peripherals; in 12C
mode the SCI peripheral will only support a subset of the capabilities of the fully-featured IIC.

Interfaces aim to provide support for the common features that most users would expect. This
means that some of the advanced features of a peripheral (such as 1IC) might not be available in the
interface. In most cases these features are still available through interface extensions.

R11UMO0137EUO0081 Revision 0.81 .IENESAS Page 72/ 601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Interfaces

In FSP design, interfaces are defined in header files. All interface header files are located in the folder
ra/fsp/inc/api and end with *_api.h. Interface extensions are defined in header files in the folder
ra/fsp/inc/instances. The following sections detail what makes up an interface.

3.4.1 FSP Interface Enumerations

Whenever possible, interfaces use typed enumerations for function parameters and structure
members.

typedef enum e_i 2c_nmst er _addr _node

{
| 2C_MASTER ADDR MODE_7BIT = 1, /11< Use 7-bit addressing node

| 2C_MASTER _ADDR_MODE_10BI T = 2, /1] < Use 10-bit addressi ng node

} i2c_naster_addr_node t;

Enumerations remove uncertainty when deciding what values are available for a parameter. FSP
enumeration options follow a strict naming convention where the name of the type is prefixed on the
available options. Combining the naming convention with the autocomplete feature available in e?
studio (Ctrl + Space) provides the benefits of rapid coding while maintaining high readability.

3.4.2 FSP Interface Callback Functions

Callback functions allow modules to asynchronously alert the user application when an event has
occurred, such as when a byte has been received over a UART channel or an IRQ pin is toggled. FSP
driver modules define and handle the interrupt service routines for RA MCU peripherals to ensure
any required hardware procedures are implemented. The interrupt service routines in FSP modules
then call the user-defined callbacks to allow the application to respond.

Callback functions must be defined in the user application. They always return void and take a
structure for their one parameter. The structure is defined in the interface for the module and is
named <interface>_callback_args_t. The contents of the structure may vary depending on the
interface, but two members are common: event and p_context.

The event member is an enumeration defined in the interface used by the application to determine
why the callback was called. Using the UART example, the callback could be triggered for many
different reasons, including when a byte is received, all bytes have been transmitted, or a framing
error has occurred. The event member allows the application to determine which of these three
events has occurred and handle it appropriately.

The p_context member is used for providing user-specified data to the callback function. In many
cases a callback function is shared between multiple channels or module instances; when the
callback occurs, the code handling the callback needs context information so that it can determine
which module instance the callback is for. For example, if the callback wanted to make a FSP API call
in the callback, then at a minimum the callback will need a reference to the relevant control
structure. To make this easy, the user can provide a pointer to the control structure as the
p_context. When the callback occurs, the control structure is passed in the p_context element of the
callback structure.

Callback functions are called from within an interrupt service routine. For this reason callback
functions should be kept as short as possible so they do not affect the real time performance of the

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 73 /601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Interfaces > FSP Interface Callback Functions

user's system. An example skeleton function for the flash interface callback is shown below.

R11UMO0137EU0081 Revision 0.81 Page 74/ 601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Interfaces > FSP Interface Callback Functions

br eak;
}
case FLASH EVENT ERR CMD LOCKED:
{
/* Handl e error. */
br eak;
}
case FLASH EVENT ERR FAI LURE:
{
/* Handl e error. */
br eak;
}
case FLASH EVENT ERR ONE BIT:
{
/* Handl e error. */
br eak;
}
}
¥

When a module is not directly used in the user application (that is, it is not the top layer of the
stack), its callback function will be handled by the module above. For example, if a module requires
a UART interface module the upper layer module will control and use the UART's callback function. In
this case the user would not need to create a callback function for the UART module in their
application code.

3.4.3 FSP Interface Data Structures

At a minimum, all FSP interfaces include three data structures: a configuration structure, an API
structure, and an instance structure.

3.4.3.1 FSP Interface Configuration Structure

The configuration structure is used for the initial configuration of a module during the
<MODULE>_Open() call. The structure consists of members such as channel number, bitrate, and
operating mode.

The configuration structure is used purely as an input into the module. It may be stored and
referenced by the module, so the configuration structure and anything it references must persist as
long as the module is open.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 75/ 601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface Configuration Structure

The configuration structure is allocated for each module instance in files generated by the RA
configuration tool.

When FSP stacks are used, it is also important to understand that configuration structures only have
members that apply to the current interface. If multiple layers in the same stack define the same
configuration parameters then it becomes difficult to know where to modify the option. For example,
the baud rate for a UART is only defined in the UART module instance. Any modules that use the
UART interface rely on the baud rate being provided in the UART module instance and do not offer it
in their own configuration structures.

3.4.3.2 FSP Interface API Structure

All interfaces include an API structure which contains function pointers for all the supported interface
functions. An example structure for the Digital to Analog Converter (r_dac) is shown below.

typedef struct st _dac_api

{

/[** Initial configuration.

* @ar |nplenmented as

* - R_DAC_Open()

* - R_DAC8_Open()

>

* @aranfin] p_ctrl Pointer to control block. Mist be declared by user. Elenents
set here.

* @araniin] p_cfg Pointer to configuration structure. Al elenents of this
structure nust be set by user.

*/

fsp err t (* open)(dac ctrl t * p ctrl, dac_cfg t const * const p cfqg);

/[** Close the D/ A Converter.

* @ar |nplenmented as

* - R DAC d ose()

* - R_DAC8_C ose()

*

* @araniin] p_ctrl Control block set in dac_api t::open call for this tiner.

*/

fsp_err_t (* close)(dac_ctrl_t * p_ctrl);

/** Wite sanple value to the D/ A Converter.

* @ar |nplenented as

* . R DAC Wite()

* . R DACB_Wite()

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 76 / 601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface API Structure

R11UMO0137EU0081 Revision 0.81 Page 77 /601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface API Structure

* @aranfout] p_info Collection of information for this DAC
*/
fsp_err_t (* infoGet)(dac_info_ t * const p_info);

} dac_api t;

The API structure is what allows for modules to easily be swapped in and out for other modules that

are instances of the same interface. Let's look at an example application using the DAC interface
above.

RA MCUs have an internal DAC peripheral. If the DAC API structure in the DAC interface is not used
the application can make calls directly into the module. In the example below the application is
making calls to the R_DAC_Write() function which is provided in the r_dac module.

Figure 88: DAC Write example

Now let's assume that the user needs more DAC channels than are available on the MCU and
decides to add an external DAC module named dac_external using I12C for communications. The
application must now distinguish between the two modules, adding complexity and further
dependencies to the application.

[Not suppgried by viewer]

Figure 89: DAC Write with two write modules

The use of interfaces and the API structure allows for the use of an abstracted DAC. This means that
no extra logic is needed if the user's dac_external module implements the FSP DAC interface, so the
application no longer depends upon hard-coded module function names. Instead the application now
depends on the DAC interface APl which can be implemented by any number of modules.

R11UMO0137EUO0081 Revision 0.81 .IEN ESANANAS Page 78 /601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Interfaces > FSP Interface Data Structures > FSP Interface API Structure

[Not supported by viewer]

Figure 90: DAC Interface

3.4.3.3 FSP Interface Instance Structure

Every FSP interface also has an instance structure. The instance structure encapsulates everything
required to use the module:

* A pointer to the instance API structure (FSP Instance API)
* A pointer to the configuration structure
* A pointer to the control structure

The instance structure is not required at the application layer. It is used to connect modules to their
dependencies (other than the BSP).

Instance structures have a standardized name of <interface>_instance_t. An example from the
Transfer Interface is shown below.

typedef struct st_transfer_instance

{
transfer_ctrl t * p ctrl; ///< Pointer to the control structure for this
i nst ance
transfer_cfg_t const * p_cfg; /1] < Pointer to the configuration structure

for this instance
transfer_api _t const * p_api; /1< Pointer to the APl structure for this
i nstance

} transfer_instance t;

Note that when an instance structure variable is declared, the API is the only thing that is instance
specific, not module instance specific. This is because all module instances of the same module
share the same underlying module source code. If SPI is being used on SCI channels 0 and 2 then
both module instances use the same APl while the configuration and control structures are typically
different.

3.5 FSP Instances

While interfaces dictate the features that are provided, instances actually implement those features.
Each instance is tied to a specific interface. Instances use the enumerations, data structures, and API

R11UMO0137EU0081 Revision 0.81 RENESANS Page 79 / 601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Instances

prototypes from the interface. This allows an application that uses an interface to swap out the
instance when needed.

On RA MCUs some peripherals are used to implement multiple interfaces. In the example below the
IIC and SPI peripherals map to only one interface each while the SCI peripheral implements three
interfaces.

Figure 91: Instances

In FSP design, instances consist of the interface extension and API defined in the instance header
file located in the folder ra/fsp/inc/instances and the module source ra/fsp/src/<module>.

3.5.1 FSP Instance Control Structure

The control structure is used as a unique identifier for the module instance and contains memory
required by the module. Elements in the control structure are owned by the module and must not be
modified by the application. The user allocates storage for a control structure, often as a global
variable, then sends a pointer to it into the <MODULE>_Open() call for a module. At this point, the
module initializes the structure as needed. The user must then send in a pointer to the control
structure for all subsequent module calls.

3.5.2 FSP Interface Extensions

In some cases, instances require more information than is provided in the interface. This situation
can occur in the following cases:

* An instance offers extra features that are not common to most instances of the interface.
An example of this is the start source selection of the GPT (General PWM Timer (r_gpt)). The
GPT can be configured to start based on hardware events such as a falling edge on a trigger
pin. This feature is not common to all timers, so it is included in the GPT instance.

e An interface must be very generic out of necessity. As an interface becomes more generic,
the number of possible instances increases. An example of an interface that must be
generic is a block media interface that abstracts functions required by a file system.
Possible instances include SD card, SPI Flash, SDRAM, USB, and many more.

The p_extend member provides this extension function.

Use of interface extensions is not always necessary. Some instances do not offer an extension since
all functionality is provided in the interface. In these cases the p_extend member can be set to NULL.
The documentation for each instance indicates whether an interface extension is available and
whether it is mandatory or optional.

3.5.2.1 FSP Extended Configuration Structure

When extended configuration is required it can be supplied through the p_extend parameter of the
interface configuration structure.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 80/ 601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Instances > FSP Interface Extensions > FSP Extended Configuration Structure

The extended configuration structure is part of the instance, but it is also still considered to be part
of the configuration structure. All usage notes about the configuration structure described in FSP
Interface Configuration Structure apply to the extended configuration structure as well.

The extended configuration structure and all typed structures and enumerations required to define it
make up the interface extension.

3.5.3 FSP Instance API

Each instance includes a constant global variable tying the interface API functions to the functions
provided by the module. The name of this structure is standardized as
g_<interface>_on_<instance>. Examples include g_spi_on_spi, g_transfer_on_dtc, and
g_adc_on_adc. This structure is available to be used through an extern in the instance header file
(r_spi.h, r_dtc.h, and r_adc.h respectively).

3.6 FSP API Standards

3.6.1 FSP Function Names

FSP functions start with the uppercase module name (<MODULE>). All modules have
<MODULE=>_Open() and <MODULE>_Close() functions. The <MODULE>_Open() function must be
called before any of the other functions. The only exception is the <MODULE>_VersionGet() function
which is not dependent upon any user provided information.

Other functions that will commonly be found are <MODULE>_Read(), <MODULE>_Write(),
<MODULE>_InfoGet(), and <MODULE>_StatusGet(). The <MODULE>_StatusGet() function provides
a status that could change asynchronously, while <MODULE>_InfoGet() provides information that
cannot change after open or can only be updated by API calls. Example function names include:

e R SPI_Read(), R_SPI_Write(), R_SPI_WriteRead()
SDHI_StatusGet()
RTC_CalendarAlarmSet(), R_RTC_CalendarAlarmGet()
FLASH_HP_AccessWindowSet(), R_FLASH HP_AccessWindowClear()

R_
R_
R_
° R_

3.6.2 Use of const in APl parameters

The const qualifier is used with APl parameters whenever possible. An example case is shown below.

fsp err t R FLASH HP Open(flash ctrl _t * const p_api_ctrl, flash cfg t const * const

p_cfg);

In this example, flash_cfg_t is a structure of configuration parameters for the r_flash_hp module. The
parameter p_cfg is a pointer to this structure. The first const qualifier on p_cfg ensures the
flash_cfg_t structure cannot be modified by R_ FLASH HP_Open(). This allows the structure to be
allocated as a const variable and stored in ROM instead of RAM.

The const qualifier after the pointer star for both p_ctrl and p_cfg ensures the FSP function does not
modify the input pointer addresses. While not fool-proof by any means this does provide some extra
checking inside the FSP code to ensure that arguments that should not be altered are treated as
such.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 81 /601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP API Standards > FSP Version Information

3.6.3 FSP Version Information

All instances supply a <MODULE>_VersionGet() function which fills in a structure of type
fsp_version_t. This structure is made up of two version numbers: one for the interface (the API) and
one for the underlying instance that is currently being used.

typedef union st_fsp_version
{
[** Version id */
uint32 t version_id,

/** Code version paraneters */

struct

{
uint8 t code version_m nor; /1< Code m nor version
uint8 t code version_ngjor; /1l < Code maj or version
uint8 t api_version_m nor; /1/< APl m nor version
uint8 t api _version_nmjor; /1/< APl major version

I

} fsp_version_t;

The API version ideally never changes, and only rarely if it does. A change to the APl may require
users to go back and modify their code. The code version (the version of the current instance) may
be updated more frequently due to bug fixes, enhancements, and additional features. Changes to
the code version typically do not require changes to user code.

3.7 FSP Build Time Configurations

All modules have a build-time configuration header file. Most configuration options are supplied at
run time, though options that are rarely used or apply to all instances of a module may be moved to
build time. The advantage of using a build-time configuration option is to potentially reduce code
size reduction by removing an unused feature.

All modules have a build time option to enable or disable parameter checking for the module. FSP
modules check function arguments for validity when possible, though this feature is disabled by
default to reduce code size. Enabling it can help catch parameter errors during development and
debugging. By default, each module's parameter checking configuration inherits the BSP parameter
checking setting (set on the BSP tab of the RA configuration tool). Leaving each module's parameter
checking configuration set to Default (BSP) allows parameter checking to be enabled or disabled
globally in all FSP code through the parameter checking setting on the BSP tab.

If an error condition can reasonably be avoided it is only checked in a section of code that can be
disabled by disabling parameter checking. Most Flex APIs can only return FSP_SUCCESS if parameter
checking is disabled. An example of an error that cannot be reasonably avoided is the "bus busy"
error that occurs when another master is using an 12C bus. This type of error can be returned even if

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 82/ 601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Build Time Configurations

parameter checking is disabled.

3.8 FSP File Structure

The high-level file structure of an FSP project is shown below.

ra_gen
ra
+---fsp
+---inc
| +---api
| \---instances
\---src
+- - - bsp
\---r_nodul e
ra_cfg
+---fsp cfg
+---bsp

+---driver

Directly underneath the base ra folder the folders are split into the source and include folders.
Include folders are kept separate from the source for easy browsing and easy setup of include paths.

The ra_gen folder contains code generated by the RA configuration tool. This includes global
variables for the control structure and configuration structure for each module.

The ra_cfg folder is where configuration header files are stored for each module. See FSP Build Time
Configurations for information on what is provided in these header files.

3.9 FSP Architecture in Practice

3.9.1 FSP Connecting Layers

FSP modules are meant to be both reusable and stackable. It is important to remember that modules
are not dependent upon other modules, but upon other interfaces. The user is then free to fulfill the
interface using the instance that best fits their needs.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 83 /601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Architecture in Practice > FSP Connecting Layers

Figure 92: Connecting layers

In the image above interface Y is a dependency of interface X and has its own dependency on
interface Z. Interface X only has a dependency on interface Y. Interface X has no knowledge of
interface Z. This is a requirement for ensuring that layers can easily be swapped out.

3.9.2 Using FSP Modules in an Application

The typical use of an FSP module involves generating required module data then using the APl in the
application.

3.9.2.1 Create a Module Instance in the RA Configuration Tool

The RA configuration tool in the Renesas e? studio IDE provides a graphical user interface for setting
the parameters of the interface and instance configuration structures. e? studio also automatically
includes those structures (once they are configured in the GUI) in application-specific header files
that can be included in application code.

The RA configuration tool allocates storage for the control structures, all required configuration
structures, and the instance structure in generated files in the ra_gen folder. Use the e? studio
Properties view to set the values for the members of the configuration structures as needed. Refer
to the Configuration section of the module usage notes for documentation about the configuration
options.

If the interface has a callback function option then the application must declare and define the
function. The return value is always of type void and the parameter to the function is a typed
structure of name <interface>_callback args t. Once the function has been defined, assign its name
to the p_callback member of the configuration structure. Callback function names can be assigned
through the e? studio Properties window for the selected module.

3.9.2.2 Use the Instance API in the Application
Call the module's <MODULE>_Open() function. Pass pointers to the generated control structure and
configuration structure. The names of these structures are based on the 'Name' field provided in the

RA configuration tool. The control structure is <Name>_ctrl and the configuration structure is
<Name>_cfg. An example <MODULE>_Open() call for an r_rtc module instance named g_clock is:

R RTC Open(&g _clock ctrl, &g _clock cfg);

Note
Each layer in the FSP Sack is responsible for calling the API functions of its dependencies. This meansthat users

R11UMO0137EU0081 Revision 0.81 RENESANS Page 84/ 601
Nov.08.19

Flexible Software Package User’s Manual

FSP Architecture > FSP Architecture in Practice > Using FSP Modules in an Application > Use the Instance API in the Application

are only responsible for calling the API functions at the layer at which they are interfacing. Using the example
above of a SPI module with a DTC dependency, the application uses only SPI APIs. The application starts by
calling R_SPI_Open(). Internally, the SPI module opensthe DTC. It locates R_DTC_Open() by accessing the
dependent transfer interface function pointers from the pointers DTC instances (spi_cfg_t::p_transfer_tx and
spi_cfg_t::p_transfer_rx) to open the DTC.

Refer to the module usage notes for example code to help get started with any particular module.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 85/ 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference

Chapter 4 APl Reference

This section includes the FSP APl Reference for the Module and Interface level functions.

VBSP Common code shared by FSP drivers
Common Error Codes

V¥YMCU Board Support Package The BSP is responsible for getting the MCU from
reset to the user's application. Before reaching
the user's application, the BSP sets up the
stacks, heap, clocks, interrupts, C runtime
environment, and stack monitor

RA2A1

RA4M1

RA6M1

RA6M?2

RA6M3

BSP 1/O access This module provides basic read/write access to
port pins

V¥Modules Modules are the smallest unit of software
available in the FSP. Each module implements
one interface

High-Speed Analog Comparator (r_acmphs) This module implements the Comparator
Interface using the high-speed analog
comparator

Low-Power Analog Comparator (r_acmplp) Driver for the ACMPLP peripheral on RA MCUs.
This module implements the Comparator
Interface

Analog to Digital Converter (r_adc) Driver for the ADC12, ADC14, and ADC16
peripherals on RA MCUs. This module
implements the ADC Interface

Asynchronous General Purpose Timer (r_agt) Driver for the AGT peripheral on RA MCUs. This

module implements the Timer Interface

Clock Frequency Accuracy Measurement Circuit Driver for the CAC peripheral on RA MCUs. This

(r_cac) module implements the CAC Interface

Clock Generation Circuit (r_cgc) Driver for the CGC peripheral on RA MCUs. This
module implements the CGC Interface

Cyclic Redundancy Check (CRC) Calculator Driver for the CRC peripheral on RA MCUs. This

(r_crc) module implements the CRC Interface

Capacitive Touch Sensing Unit (r_ctsu) This HAL driver supports the Capacitive Touch

Sensing Unit (CTSU). It implements the CTSU

R11UMO0137EU0081 Revision 0.81 RENESANS Page 86 / 601
Nov.08.19

Flexible Software Package

API Reference

User’s Manual

Digital to Analog Converter (r_dac)

Direct Memory Access Controller (r_dmac)

Data Operation Circuit (r_doc)

D/AVE 2D Port Interface (r_drw)

Data Transfer Controller (r_dtc)

Event Link Controller (r_elc)

Ethernet (r_ether)

Ethernet PHY (r_ether_phy)

High-Performance Flash Driver (r_flash_hp)

Low-Power Flash Driver (r_flash_Ip)

Graphics LCD Controller (r_glcdc)

General PWM Timer (r_gpt)

Interrupt Controller Unit (r_icu)

I2C Master on IIC (r_iic_master)

I12C Slave on IIC (r_iic_slave)

I/O Ports (r_ioport)

Independent Watchdog Timer (r_iwdt)

JPEG Codec (r_jpeg)

Interface

Driver for the DAC12 peripheral on RA MCUs.
This module implements the DAC Interface

Driver for the DMAC peripheral on RA MCUs. This
module implements the Transfer Interface

Driver for the DOC peripheral on RA MCUs. This
module implements the DOC Interface

Driver for the DRW peripheral on RA MCUs. This
module is a port of D/AVE 2D

Driver for the DTC peripheral on RA MCUs. This
module implements the Transfer Interface

Driver for the ELC peripheral on RA MCUs. This
module implements the ELC Interface

Driver for the Ethernet peripheral on RA MCUs.
This module implements the Ethernet Interface

The Ethernet PHY module (r_ether_phy) provides
an API for standard Ethernet PHY
communications applications and uses the
ETHERC peripherals. It implements the Ethernet
PHY Interface

Driver for the flash memory on RA high-
performance MCUs. This module implements the
Flash Interface

Driver for the flash memory on RA low-power
MCUs. This module implements the Flash
Interface

Driver for the GLCDC peripheral on RA MCUs.
This module implements the Display Interface

Driver for the GPT32 and GPT16 peripherals on
RA MCUs. This module implements the Timer
Interface

Driver for the ICU peripheral on RA MCUs. This
module implements the External IRQ Interface

Driver for the IIC peripheral on RA MCUs. This
module implements the 12C Master Interface

Driver for the IIC peripheral on RA MCUs. This
module implements the I12C Slave Interface

Driver for the I/O Ports peripheral on RA MCUs.
This module implements the I/O Port Interface

Driver for the IWDT peripheral on RA MCUs. This
module implements the WDT Interface

Driver for the JPEG peripheral on RA MCUs. This
module implements the JPEG Codec Interface

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 87 /601

Flexible Software Package

API Reference

User’s Manual

Key Interrupt (r_kint)

Low Power Modes (r_Ipm)

Low Voltage Detection (r_Ivd)

Realtime Clock (r_rtc)

Serial Communications Interface (SCI) 12C
(r_sci i2c)

Serial Communications Interface (SCI) SPI
(r_sci_spi)

Serial Communications Interface (SCI) UART
(r_sci_uart)

SD/MMC Host Interface (r_sdhi)

Serial Peripheral Interface (r_spi)

Serial Sound Interface (r_ssi)

Universal Serial Bus (r_usb_basic)

Host Mass Storage Class Driver (r_usb_hmsc)

Universal Serial Bus Peripheral Communication

Device Class (r_usb_pcdc)

Watchdog Timer (r_wdt)

SEGGER emWin Port (rm_emwin_port)
FreeRTOS Plus FAT (rm_freertos_plus_fat)

Amazon FreeRTOS Port (rm_freertos_port)

Crypto Middleware (rm_psa_crypto)

Capacitive Touch Middleware (rm_touch)

Driver for the KINT peripheral on RA MCUs. This
module implements the Key Matrix Interface

Driver for the LPM peripheral on RA MCUs. This
module implements the Low Power Modes
Interface

Driver for the LVD peripheral on RA MCUs. This
module implements the Low Voltage Detection
Interface

Driver for the RTC peripheral on RA MCUs. This
module implements the RTC Interface

Driver for the SCI peripheral on RA MCUs. This
module implements the 12C Master Interface

Driver for the SCI peripheral on RA MCUs. This
module implements the SPI Interface

Driver for the SCI peripheral on RA MCUs. This
module implements the UART Interface

Driver for the SD/MMC Host Interface (SDHI)
peripheral on RA MCUs. This module implements
the SD/MMC Interface

Driver for the SPI peripheral on RA MCUs. This
module implements the SPI Interface

Driver for the SSIE peripheral on RA MCUs. This
module implements the 12S Interface

The USB module (r_usb_basic) provides an API to
perform H / W control of USB communication. It
implements the USB Interface

The USB module (r_usb_hmsc) provides an API to
perform hardware control of USB
communications. It implements the USB
Interface

This module is USB Peripheral Communication
Device Class Driver (PCDC).

This module works in combination with
(r_usb_basic module)

Driver for the WDT peripheral on RA MCUs. This
module implements the WDT Interface

SEGGER emWin port for RA MCUs

Middleware for the Fat File System control on RA
MCUs

Amazon FreeRTOS port for RA MCUs

Hardware acceleration for the mbedCrypto
implementation of the ARM PSA Crypto API

This module supports the Capacitive Touch
Sensing Unit (CTSU). It implements the Touch

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 88 /601

Flexible Software Package

API Reference

User’s Manual

Vinterfaces

ADC Interface
CAC Interface

CGC Interface
Comparator Interface
CRC Interface

CTSU Interface

DAC Interface

Display Interface
DOC Interface

ELC Interface
Ethernet Interface
Ethernet PHY Interface
External IRQ Interface
Flash Interface

I2C Master Interface
I12C Slave Interface
12S Interface

I/O Port Interface

JPEG Codec Interface

Key Matrix Interface

Low Power Modes Interface

Low Voltage Detection Interface
RTC Interface

SD/MMC Interface

SPI Interface
Timer Interface

Transfer Interface

Middleware Interface

The FSP interfaces provide APIs for common

functionality. They can be implemented by one

or more modules. Modules can use other
modules as dependencies using this interface
layer

Interface for A/D Converters

Interface for clock frequency accuracy
measurements

Interface for clock generation
Interface for comparators
Interface for cyclic redundancy checking

Interface for Capacitive Touch Sensing Unit
(CTSU) functions

Interface for D/A converters

Interface for LCD panel displays

Interface for the Data Operation Circuit
Interface for the Event Link Controller
Interface for Ethernet functions

Interface for Ethernet phy functions
Interface for detecting external interrupts
Interface for the Flash Memory

Interface for 12C master communication
Interface for I12C slave communication

Interface for 12S audio communication

Interface for accessing 1/O ports and configuring

I/0 functionality

Interface for JPEG functions

Interface for key matrix functions
Interface for accessing low power modes
Interface for Low Voltage Detection
Interface for accessing the Realtime Clock

Interface for accessing SD, eMMC, and SDIO
devices

Interface for SPI communications
Interface for timer functions

Interface for data transfer functions

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 89/601

Flexible Software Package User’s Manual

API Reference

UART Interface Interface for UART communications

USB Interface Interface for USB functions

USB HMSC Interface Interface for USB HMSC functions

USB PCDC Interface Interface for USB PCDC functions

WDT Interface Interface for watch dog timer functions

Touch Middleware Interface Interface for Touch Middleware functions
4.1 BSP

Detailed Description
Common code shared by FSP drivers.

Modules

Common Error Codes

MCU Board Support Package

The BSP is responsible for getting the MCU from reset to the user's
application. Before reaching the user's application, the BSP sets up
the stacks, heap, clocks, interrupts, C runtime environment, and
stack monitor.

BSP I/O access

This module provides basic read/write access to port pins.

4.1.1 Common Error Codes
BSP

Detailed Description

All FSP modules share these common error codes.

Data Structures

union fsp_version_t

struct fsp _version_t. unnamed _

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 90 / 601
Nov.08.19

Flexible Software Package

API Reference > BSP > Common Error Codes

User’s Manual

Macros

#define FSP_PARAMETER_NOT_USED(p)

#define FSP_CPP_HEADER
#define FSP_HEADER

Enumerations

enum fsp_err_t

Data Structure Documentation

¢ fsp_version_t

union fsp_version_t
Common version structure

Data Fields
uint32_t version_id Version id
struct fsp_version_t __unnamed__ Code version parameters
¢ fsp_version_t. _unnamed__
struct fsp_version_t. _unnamed__
Code version parameters

Data Fields
uint8 t code_version_minor Code minor version.
uint8_t code_version_major Code major version.
uint8_t api_version_minor APl minor version.
uint8 t api_version_major APl major version.

Macro Definition Documentation

& FSP_PARAMETER_NOT_USED

#define FSP_PARAMETER_NOT _USED (p)

This macro is used to suppress compiler messages about a parameter not being used in a function.
The nice thing about using this implementation is that it does not take any extra RAM or ROM.

R11UMO0137EU0081 Revision 0.81 RENESAS

Nov.08.19

Page 91/601

Flexible Software Package

API Reference > BSP > Common Error Codes

User’s Manual

¢ FSP_CPP_HEADER

#define FSP_CPP_HEADER

Determine if a C++ compiler is being used. If so, ensure that standard C is used to process the API

information.

¢ FSP_HEADER

#define FSP_HEADER

FSP Header and Footer definitions

Enumeration Type Documentation

¢ fsp_err_t

enum fsp_err_t

Common error codes

Enumerator

FSP_ERR_ASSERTION

A critical assertion has failed.

FSP_ERR_INVALID_POINTER

Pointer points to invalid memory location.

FSP_ERR_INVALID_ARGUMENT

Invalid input parameter.

FSP_ERR_INVALID_CHANNEL

Selected channel does not exist.

FSP_ERR_INVALID_MODE

Unsupported or incorrect mode.

FSP_ERR_UNSUPPORTED

Selected mode not supported by this API.

FSP_ERR_NOT OPEN

Requested channel is not configured or API not
open.

FSP_ERR_IN_USE

Channel/peripheral is running/busy.

FSP_ERR_OUT_OF_MEMORY

Allocate more memory in the driver's cfg.h.

FSP_ERR_HW_LOCKED

Hardware is locked.

FSP_ERR_IRQ_BSP_DISABLED

IRQ not enabled in BSP.

FSP_ERR_OVERFLOW

Hardware overflow.

FSP_ERR_UNDERFLOW

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS Page 92 / 601

Flexible Software Package

API Reference > BSP > Common Error Codes

User’s Manual

Hardware underflow.

FSP_ERR_ALREADY OPEN

Requested channel is already open in a
different configuration.

FSP_ERR_APPROXIMATION

Could not set value to exact result.

FSP_ERR_CLAMPED

Value had to be limited for some reason.

FSP_ERR_INVALID_RATE

Selected rate could not be met.

FSP_ERR_ABORTED An operation was aborted.

FSP_ERR_NOT_ENABLED Requested operation is not enabled.

FSP_ERR_TIMEOUT Timeout error.

FSP_ERR_INVALID_BLOCKS Invalid number of blocks supplied.

FSP_ERR_INVALID_ADDRESS Invalid address supplied.

FSP_ERR_INVALID_SIZE Invalid size/length supplied for operation.

FSP_ERR_WRITE_FAILED Write operation failed.

FSP_ERR_ERASE_FAILED Erase operation failed.

FSP_ERR_INVALID_CALL Invalid function call is made.

FSP_ERR_INVALID_HW_CONDITION Detected hardware is in invalid condition.

FSP_ERR_INVALID_FACTORY_FLASH Factory flash is not available on this MCU.

FSP_ERR_INVALID_STATE API or command not valid in the current state.

FSP_ERR_NOT_ERASED Erase verification failed.

FSP_ERR_SECTOR_RELEASE_FAILED Sector release failed.

FSP_ERR_INTERNAL Internal error.

Start of RTOS only error codes

FSP_ERR_WAIT_ABORTED Wait.

FSP_ERR_FRAMING Framing error occurs.

Start of UART specific

FSP_ERR_BREAK_DETECT

Break signal detects.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 93 /601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > BSP > Common Error Codes

FSP_ERR_PARITY Parity error occurs.

FSP_ERR_RXBUF_OVERFLOW Receive queue overflow.

FSP_ERR_QUEUE_UNAVAILABLE Can't open s/w queue.

FSP_ERR_INSUFFICIENT_SPACE Not enough space in transmission circular

buffer.

FSP_ERR_INSUFFICIENT_DATA Not enough data in receive circular buffer.

FSP_ERR_TRANSFER_ABORTED The data transfer was aborted.

Start of SPI specific

FSP_ERR_MODE_FAULT Mode fault error.

FSP_ERR_READ_OVERFLOW Read overflow.

FSP_ERR_SPI_PARITY Parity error.

FSP_ERR_OVERRUN Overrun error.

FSP_ERR_CLOCK_INACTIVE Inactive clock specified as system clock.

Start of CGC Specific

FSP_ERR_CLOCK_ACTIVE Active clock source cannot be modified without
stopping first.

FSP_ERR_NOT_STABILIZED Clock has not stabilized after its been turned
on/off.

FSP_ERR_PLL_SRC_INACTIVE PLL initialization attempted when PLL source is
turned off.

FSP_ERR_OSC_STOP_DET_ENABLED lllegal attempt to stop LOCO when Oscillation
stop is enabled.

FSP_ERR_OSC_STOP_DETECTED The Oscillation stop detection status flag is
set.

FSP_ERR_OSC_STOP_CLOCK_ACTIVE Attempt to clear Oscillation Stop Detect Status

with PLL/MAIN_OSC active.

FSP_ERR_CLKOUT_EXCEEDED Output on target output clock pin exceeds
maximum supported limit.
FSP_ERR_USB_MODULE_ENABLED USB clock configure request with USB Module
enabled.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 94 / 601

Nov.08.19

Flexible Software Package

API Reference > BSP > Common Error Codes

User’s Manual

FSP_ERR_HARDWARE_TIMEOUT

A register read or write timed out.

FSP_ERR_LOW_VOLTAGE_MODE

Invalid clock setting attempted in low voltage
mode.

FSP_ERR_PE_FAILURE

Unable to enter Programming mode.

Start of FLASH Specific

FSP_ERR_CMD_LOCKED

Peripheral in command locked state.

FSP_ERR_FCLK

FCLK must be >= 4 MHz.

FSP_ERR_INVALID_LINKED ADDRESS

Function or data are linked at an invalid region
of memory.

FSP_ERR_BLANK_CHECK_FAILED

Blank check operation failed.

FSP_ERR_INVALID_CAC_REF_CLOCK

Measured clock rate < reference clock rate.

Start of CAC Specific

FSP_ERR_CLOCK_GENERATION

Clock cannot be specified as system clock.

Start of GLCD Specific

FSP_ERR_INVALID_TIMING_SETTING

Invalid timing parameter.

FSP_ERR_INVALID_LAYER SETTING

Invalid layer parameter.

FSP_ERR_INVALID_ALIGNMENT

Invalid memory alignment found.

FSP_ERR_INVALID_GAMMA_SETTING

Invalid gamma correction parameter.

FSP_ERR_INVALID_LAYER_FORMAT

Invalid color format in layer.

FSP_ERR_INVALID_UPDATE_TIMING

Invalid timing for register update.

FSP_ERR_INVALID_CLUT ACCESS

Invalid access to CLUT entry.

FSP_ERR_INVALID_FADE_SETTING

Invalid fade-in/fade-out setting.

FSP_ERR_INVALID_BRIGHTNESS_SETTING

Invalid gamma correction parameter.

FSP_ERR JPEG_ERR

JPEG error.
Start of JPEG Specific

FSP_ERR _JPEG_SOI_NOT_DETECTED

SOl not detected until EOl detected.

FSP_ERR_JPEG_SOF1_TO_SOFF _DETECTED

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 95/ 601

Flexible Software Package User’s Manual

API Reference > BSP > Common Error Codes

SOF1 to SOFF detected.

FSP_ERR_JPEG_UNSUPPORTED_PIXEL_FORMAT Unprovided pixel format detected.

FSP_ERR_JPEG_SOF_ACCURACY_ERROR SOF accuracy error: other than 8 detected.

FSP_ERR_JPEG_DQT_ACCURACY_ERROR DQT accuracy error: other than 0 detected.

FSP_ERR_JPEG_COMPONENT_ERROR1 Component errorl: the number of SOFO header

components detected is other than 1,3,or 4.

FSP_ERR_JPEG_COMPONENT_ERROR2 Component error2: the number of components

differs between SOFO header and SOS.

FSP_ERR_JPEG_SOF0_DQT_DHT_NOT_DETECTED | soFg, DQT, and DHT not detected when SOS

detected.
FSP_ERR_JPEG_SOS_NOT_DETECTED SOS not detected: SOS not detected until EOI
detected.
FSP_ERR _JPEG _EOI_NOT DETECTED EOI not detected (default)

FSP_ERR JPEG_RESTART INTERVAL_DATA_NUMB
ER_ERROR

FSP_ERR _JPEG_IMAGE_SIZE_ERROR

Restart interval data number error detected.

Image size error detected.

FSP_ERR JPEG_LAST_MCU_DATA_NUMBER_ERRO
R

Last MCU data number error detected.

FSP_ERR_JPEG_BLOCK_DATA NUMBER_ERROR Block data number error detected.

FSP_ERR_JPEG_BUFFERSIZE_NOT_ENOUGH User provided buffer size not enough.

FSP_ERR_JPEG_UNSUPPORTED_IMAGE_SIZE JPEG Image size is not aligned with MCU.

FSP_ERR_CALIBRATE_FAILED Calibration failed.

Start of touch panel framework specific

FSP_ERR_IP_HARDWARE_NOT_PRESENT Requested IP does not exist on this device.

Start of IP specific

FSP_ERR_IP_UNIT_NOT_PRESENT Requested unit does not exist on this device.

FSP_ERR_IP_CHANNEL_NOT_PRESENT Requested channel does not exist on this

device.
FSP_ERR_USB_FAILED Start of USB specific
FSP_ERR_NO_MORE_BUFFER
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 96 / 601

Nov.08.19

Flexible Software Package User’s Manual

API Reference > BSP > Common Error Codes

No more buffer found in the memory block
pool.

Start of Message framework specific

FSP_ERR_ILLEGAL _BUFFER_ADDRESS Buffer address is out of block memory pool.

FSP_ERR_INVALID_WORKBUFFER_SIZE Work buffer size is invalid.

FSP_ERR_INVALID_MSG_BUFFER_SIZE Message buffer size is invalid.

FSP_ERR_TOO_MANY_BUFFERS Number of buffer is too many.

FSP_ERR_NO_SUBSCRIBER_FOUND No message subscriber found.

FSP_ERR_MESSAGE_QUEUE_EMPTY No message found in the message queue.

FSP_ERR_MESSAGE_QUEUE_FULL No room for new message in the message

queue.

FSP_ERR_ILLEGAL_SUBSCRIBER_LISTS Message subscriber lists is illegal.

FSP_ERR_BUFFER_RELEASED Buffer has been released.

FSP_ERR_D2D_ERROR_INIT Dave/2d has an error in the initialization.

Start of 2DG Driver specific

FSP_ERR_D2D_ERROR_DEINIT Dave/2d has an error in the initialization.

FSP_ERR_D2D_ERROR_RENDERING Dave/2d has an error in the rendering.

FSP_ERR_D2D_ERROR_SIZE Dave/2d has an error in the rendering.

FSP_ERR_ETHER_ERROR_NO_DATA No Data in Receive buffer.

Start of ETHER Driver specific

FSP_ERR_ETHER_ERROR_LINK ETHERC/EDMAC has an error in the Auto-
negotiation.

FSP_ERR_ETHER_ERROR_MAGIC_PACKTE_MODE As a Magic Packet is being detected, and

transmission/reception is not enabled.

FSP_ERR_ETHER_ERROR_TRANSMIT_BUFFER_FUL

L Transmit buffer is not empty.

FSP_ERR_ETHER_ERROR_FILTERING Detect multicast frame when multicast frame

filtering enable.

FSP_ERR_ETHER_ERROR_PHY_COMMUNICATION ETHERC/EDMAC has an error in the phy

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 97 / 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > BSP > Common Error Codes

communication.

FSP_ERR_ETHER_PHY ERROR_LINK

PHY is not link up.
Start of ETHER _PHY Driver specific

FSP_ERR_ETHER_PHY NOT READY

PHY has an error in the Auto-negotiation.

FSP_ERR_QUEUE_FULL

Queue is full, cannot queue another data.

Start of BYTEQ library specific

FSP_ERR_QUEUE_EMPTY

Queue is empty, no data to dequeue.

FSP_ERR_CTSU_SC_OVERFLOW

Sensor count overflowed when performing
CTSU scan.

Note
User must clear the CTSUSCOVF bit manually.

FSP_ERR_CTSU_RC_OVERFLOW

Reference count overflowed when performing
CTSU scan.

Note
User must clear the CTSURCOVF bit manually.

FSP_ERR_CTSU_ICOMP

Abnormal TSCAP voltage.

Note
User must clear the CTSUICOMP bit manually.

FSP_ERR_CTSU_OFFSET ADJUSTMENT FAILED

Auto tuning algorithm failed.

FSP_ERR_CTSU_SAFETY_CHECK_FAILED

Safety check failed

FSP_ERR_CARD_INIT_FAILED

SD card or eMMC device failed to initialize.

Start of SDMMC specific

FSP_ERR_CARD_NOT_INSERTED

SD card not installed.

FSP_ERR_DEVICE_BUSY

Device is holding DATO low or another
operation is ongoing.

FSP_ERR_CARD_NOT _INITIALIZED

SD card was removed.

FSP_ERR_CARD_WRITE_PROTECTED

Media is write protected.

FSP_ERR_TRANSFER_BUSY

Transfer in progress.

FSP_ERR_RESPONSE

Card did not respond or responded with an
error.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS Page 98 / 601

Flexible Software Package

API Reference > BSP > Common Error Codes

User’s Manual

FSP_ERR_MEDIA_FORMAT_FAILED

Media format failed.

Start of FX_10 specific

FSP_ERR_MEDIA_OPEN_FAILED

Media open failed.

FSP_ERR_CAN_DATA_UNAVAILABLE

No data available.

Start of CAN specific

FSP_ERR_CAN_MODE_SWITCH_FAILED

Switching operation modes failed.

FSP_ERR_CAN_INIT_FAILED

Hardware initialization failed.

FSP_ERR_CAN_TRANSMIT_NOT_READY

Transmit in progress.

FSP_ERR_CAN_RECEIVE_MAILBOX

Mailbox is setup as a receive mailbox.

FSP_ERR_CAN_TRANSMIT_MAILBOX

Mailbox is setup as a transmit mailbox.

FSP_ERR_CAN_MESSAGE_LOST

Receive message has been overwritten or
overrun.

FSP_ERR_WIFI_CONFIG_FAILED

WiFi module Configuration failed.

Start of SF_WIFI Specific

FSP_ERR_WIFI_INIT_FAILED

WiFi module initialization failed.

FSP_ERR_WIFI_TRANSMIT_FAILED

Transmission failed.

FSP_ERR_WIFI_INVALID_MODE

API called when provisioned in client mode.

FSP_ERR_WIFI_FAILED

WiFi Failed.

FSP_ERR_CELLULAR_CONFIG_FAILED

Cellular module Configuration failed.

Start of SF_CELLULAR Specific

FSP_ERR_CELLULAR_INIT_FAILED

Cellular module initialization failed.

FSP_ERR_CELLULAR_TRANSMIT_FAILED

Transmission failed.

FSP_ERR_CELLULAR_FW _UPTODATE

Firmware is uptodate.

FSP_ERR_CELLULAR_FW_UPGRADE_FAILED

Firmware upgrade failed.

FSP_ERR_CELLULAR_FAILED

Cellular Failed.

FSP_ERR_CELLULAR_INVALID STATE

API Called in invalid state.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 99/ 601

Flexible Software Package User’s Manual

API Reference > BSP > Common Error Codes

FSP_ERR_CELLULAR_REGISTRATION_FAILED

Cellular Network registration failed.

FSP_ERR BLE_FAILED

BLE operation failed.
Start of SF_BLE specific

FSP_ERR_BLE_INIT_FAILED

BLE device initialization failed.

FSP_ERR_BLE_CONFIG_FAILED

BLE device configuration failed.

FSP_ERR_BLE_PRF_ALREADY ENABLED

BLE device Profile already enabled.

FSP_ERR_BLE_PRF_NOT_ENABLED

BLE device not enabled.

FSP_ERR_CRYPTO_CONTINUE

Continue executing function.

Start of Crypto specific (0x10000)

Note
Refer to sf_cryoto_err.h for Crypto error code.

FSP_ERR_CRYPTO_SCE_RESOURCE_CONFLICT

Hardware resource busy.

FSP_ERR_CRYPTO_SCE_FAIL

Internal I/O buffer is not empty.

FSP_ERR_CRYPTO_SCE_HRK_INVALID_INDEX

Invalid index.

FSP_ERR_CRYPTO_SCE_RETRY

Retry.

FSP_ERR_CRYPTO_SCE_VERIFY_FAIL

Verify is failed.

FSP_ERR_CRYPTO_SCE_ALREADY_OPEN

HW SCE module is already opened.

FSP_ERR_CRYPTO_NOT_OPEN

Hardware module is not initialized.

FSP_ERR_CRYPTO_UNKNOWN

Some unknown error occurred.

FSP_ERR_CRYPTO_NULL_POINTER

Null pointer input as a parameter.

FSP_ERR_CRYPTO_NOT_IMPLEMENTED

Algorithm/size not implemented.

FSP_ERR_CRYPTO_RNG_INVALID_PARAM

An invalid parameter is specified.

FSP_ERR_CRYPTO RNG_FATAL ERROR

A fatal error occurred.

FSP_ERR_CRYPTO_INVALID_SIZE

Size specified is invalid.

FSP_ERR_CRYPTO_INVALID_STATE

Function used in an valid state.

FSP_ERR_CRYPTO_ALREADY_OPEN

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS Page 100 / 601

Flexible Software Package

API Reference > BSP > Common Error Codes

User’s Manual

control block is already opened

FSP_ERR_CRYPTO_INSTALL_KEY FAILED

Specified input key is invalid.

FSP_ERR_CRYPTO_AUTHENTICATION_FAILED

Authentication failed.

FSP_ERR_CRYPTO_COMMON_NOT_OPENED

Crypto Framework Common is not opened.

Start of SF_CRYPTO specific

FSP_ERR_CRYPTO_HAL_ERROR

Cryoto HAL module returned an error.

FSP_ERR_CRYPTO_KEY BUF_NOT_ENOUGH

Key buffer size is not enough to generate a
key.

FSP_ERR_CRYPTO_BUF_OVERFLOW

Attempt to write data larger than what the
buffer can hold.

FSP_ERR_CRYPTO_INVALID_OPERATION_MODE

Invalid operation mode.

FSP_ERR_MESSAGE_TOO_LONG

Message for RSA encryption is too long.

FSP_ERR_RSA DECRYPTION_ERROR

RSA Decryption error.

4.1.2 MCU Board Support Package
BSP

Functions

fsp_err t R_FSP_VersionGet (fsp_pack version_t *const p_version)

void Reset Handler (void)

void Default_Handler (void)

void Systemlnit (void)

void R _BSP_WarmStart (bsp_warm_start_event_t event)

fsp_err t R_BSP VersionGet (fsp_version_t *p_version)

void R_BSP_SoftwareDelay (uint32_t delay, bsp_delay_units_t units)

fsp_err t R _BSP_GrouplrqWrite (bsp_grp_irq_tirq,
void(*p_callback)(bsp_grp_irq_t irq))

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 101/ 601

Flexible Software Package User’s Manual

API| Reference > BSP > MCU Board Support Package

void NMI_Handler (void)
void R _BSP_RegisterProtectEnable (bsp _reg_protect t regs to protect)

void R_BSP_RegisterProtectDisable (bsp_reg protect t regs_to_unprotect)

Detailed Description

The BSP is responsible for getting the MCU from reset to the user's application. Before reaching the
user's application, the BSP sets up the stacks, heap, clocks, interrupts, C runtime environment, and
stack monitor.

BSP Features

BSP Clock Configuration
System Interrupts
Group Interrupts
External and Peripheral Interrupts
e Error Logging

e BSP Weak Symbols

e Warm Start Callbacks
Register Protection

ID Codes

Software Delay

Board Specific Features
Configuration

Overview

BSP Features
BSP Clock Configuration

All system clocks are set up during BSP initialization based on the settings in bsp_clock cfg.h. These
settings are derived from clock configuration information provided from the ISDE Clocks tab setting.

e Clock configuration is performed prior to initializing the C runtime environment to speed up
the startup process, as it is possible to start up on a relatively slow (that is, 32 kHz) clock.

e The BSP implements the required delays to allow the selected clock to stabilize.

e The BSP will configure the CMSIS SystemCoreClock variable after clock initialization with the
current system clock frequency.

System Interrupts

As RA MCUs are based on the Cortex-M ARM architecture, the NVIC Nested Vectored Interrupt
Controller (NVIC) handles exceptions and interrupt configuration, prioritization and interrupt
masking. In the ARM architecture, the NVIC handles exceptions. Some exceptions are known as
System Exceptions. System exceptions are statically located at the "top" of the vector table and
occupy vector numbers 1 to 15. Vector zero is reserved for the MSP Main Stack Pointer (MSP). The
remaining 15 system exceptions are shown below:

e Reset
e NMI
R11UMO0137EU0081 Revision 0.81 RENESAS Page 102 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > BSP > MCU Board Support Package

Cortex-M4 Hard Fault Handler
Cortex-M4 MPU Fault Handler
Cortex-M4 Bus Fault Handler
Cortex-M4 Usage Fault Handler
Reserved

Reserved

Reserved

Reserved

Cortex-M4 SVCall Handler
Cortex-M4 Debug Monitor Handler
Reserved

Cortex-M4 PendSV Handler
Cortex-M4 SysTick Handler

NMI and Hard Fault exceptions are enabled out of reset and have fixed priorities. Other exceptions
have configurable priorities and some can be disabled.

Group Interrupts

Group interrupt is the term used to describe the 12 sources that can trigger the Non-Maskable
Interrupt (NMI). When an NMI occurs the NMI Handler examines the NMISR (status register) to
determine the source of the interrupt. NMI interrupts take precedence over all interrupts, are usable
only as CPU interrupts, and cannot activate the RA peripherals Data Transfer Controller (DTC) or
Direct Memory Access Controller (DMAC).

Possible group interrupt sources include:

IWDT Underflow/Refresh Error
WDT Underflow/Refresh Error
Voltage-Monitoring 1 Interrupt
Voltage-Monitoring 2 Interrupt
VBATT monitor Interrupt
Oscillation Stop is detected
NMI pin

RAM Parity Error

RAM ECC Error

MPU Bus Slave Error

MPU Bus Master Error

MPU Stack Error

A user may enable notification for one or more group interrupts by registering a callback using the
BSP API function R_BSP_GrouplrgWrite(). When an NMI interrupt occurs, the NMI handler checks to
see if there is a callback registered for the cause of the interrupt and if so calls the registered
callback function.

External and Peripheral Interrupts

User configurable interrupts begin with slot 16. These may be external, or peripheral generated
interrupts.

Although the number of available slots for the NVIC interrupt vector table may seem small, the BSP
defines up to 512 events that are capable of generating an interrupt. By using Event Mapping, the
BSP maps user-enabled events to NVIC interrupts. For an RA6M3 MCU, only 96 of these events may
be active at any one time, but the user has flexibility by choosing which events generate the active
event.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 103/ 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > BSP > MCU Board Support Package

By allowing the user to select only the events they are interested in as interrupt sources, we are able
to provide an interrupt service routine that is fast and event specific.

For example, on other microcontrollers a standard NVIC interrupt vector table might contain a single
vector entry for the SCIO (Serial Communications Interface) peripheral. The interrupt service routine
for this would have to check a status register for the 'real' source of the interrupt. In the RA
implementation there is a vector entry for each of the SCIO events that we are interested in.

BSP Weak Symbols

You might wonder how the BSP is able to place ISR addresses in the NVIC table without the user
having explicitly defined one. All that is required by the BSP is that the interrupt event be given a
priority.

This is accomplished through the use of the 'weak' attribute. The weak attribute causes the
declaration to be emitted as a weak symbol rather than a global. A weak symbol is one that can be
overridden by an accompanying strong reference with the same name. When the BSP declares a
function as weak, user code can define the same function and it will be used in place of the BSP
function. By defining all possible interrupt sources as weak, the vector table can be built at compile
time and any user declarations (strong references) will be used at runtime.

Weak symbols are supported for ELF targets and also for a.out targets when using the GNU
assembler and linker.

Note that in CMSIS system.c, there is also a weak definition (and a function body) for the Warm Start
callback function R_BSP_WarmStart(). Because this function is defined in the same file as the weak
declaration, it will be called as the 'default' implementation. The function may be overridden by the
user by copying the body into their user application and modifying it as necessary. The linker
identifies this as the 'strong' reference and uses it.

Warm Start Callbacks

As the BSP is in the process of bringing up the board out of reset, there are three points where the
user can request a callback. These are defined as the 'Pre Clock Init', 'Post Clock Init' and 'Post C'
warm start callbacks.

As described above, this function is already weakly defined as R_BSP_WarmStart(), so it is a simple
matter of redefining the function or copying the existing body from CMSIS system.c into the
application code to get a callback. R_ BSP_WarmStart() takes an event parameter of type

bsp warm_start_event t which describes the type of warm start callback being made.

This function is not enabled/disabled and is always called for both events as part of the BSP startup.
Therefore it needs a function body, which will not be called if the user is overriding it. The function
body is located in system. To use this function just copy this function into your own code and modify
it to meet your needs.

Error Logging

When error logging is enabled, the error logging function can be redefined on the command line by
defining FSP_ERROR_LOG(err) to the desired function call. The default function implementation is
FSP_ERROR_LOG(err)=fsp_error_log(err, FILE, LINE). This implementation uses the predefined
macros FILE and LINE to help identify the location where the error occurred. Removing the line from
the function call can reduce code size when error logging is enabled. Some compilers may support
other predefined macros like FUNCTION, which could be helpful for customizing the error logger.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 104 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > BSP > MCU Board Support Package

Register Protection

The BSP register protection functions utilize reference counters to ensure that an application which
has specified a certain register and subsequently calls another function doesn't have its register
protection settings inadvertently modified.

Each time RegisterProtectDisable() is called, the respective reference counter is incremented.
Each time RegisterProtectEnable() is called, the respective reference counter is decremented.

Both functions will only modify the protection state if their reference counter is zero.

/* Enable witing to protected CGC registers */

R BSP_Regi st er Pr ot ect Di sabl e(BSP_REG PROTECT CCC) ;
/* Insert code to nodify protected CGC registers. */
/* Disable witing to protected CGC registers */

R BSP_Regi st er Pr ot ect Enabl e(BSP_REG PROTECT CCC) ;

ID Codes

The ID code is 16 byte value that can be used to protect the MCU from being connected to a
debugger or from connecting in Serial Boot Mode. There are different settings that can be set for the
ID code; please refer to the hardware manual for your device for available options.

Software Delay

Implements a blocking software delay. A delay can be specified in microseconds, milliseconds or
seconds. The delay is implemented based on the system clock rate.
/* Delay at |least 1 second. Depending on the nunber of wait states required for the
regi on of nenory
* that the software_delay | oop has been linked in this could take | onger. The
default is 4 cycles per |oop.
* This can be nodified by redefining DELAY LOOP_CYCLES. BSP_DELAY UN TS SECONDS,
BSP_DELAY_UNI TS M LLI SECONDS,
* and BSP_DELAY UNI TS M CROSECONDS can all be used with R BSP_Sof t wareDel ay. */
R BSP_Sof t war eDel ay(1, BSP_DELAY UNI TS SECONDS) ;

Critical Section Macors

Implements a critical section. Some MCUs (MCUs with the BASEPRI register) support allowing high
priority interrupts to execute during critical sections. On these MCUs, interrupts with priority less
than or equal to BSP_CFG_IRQ_MASK LEVEL FOR_CRITICAL_SECTION are not serviced in critical
sections. Interrupts with higher priority than BSP_CFG_IRQ_MASK LEVEL_FOR_CRITICAL_SECTION still

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 105 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > BSP > MCU Board Support Package

execute in critical sections.

FSP_CRI Tl CAL_SECTI ON_DEFI NE;

/* Store the current interrupt posture. */

FSP_CRI Tl CAL_SECTI ON_ENTER;

/* Interrupts cannot run in this section unless their priority is |less than
BSP_CFG | RQ MASK_LEVEL_FOR CRI TI CAL_SECTI ON. */

/* Restore saved interrupt posture. */

FSP_CRI Tl CAL_SECTI ON_EXI T;

Board Specific Features

The BSP will call the board's initialization function (bsp_init) which can initialize board specific
features. Possible board features are listed below.

Board Feature Description
SDRAM Support The BSP will initialize SDRAM if the board
supports it
QSPI Support The BSP will initialize QSPI if the board supports

it and put it into ROM mode. Use the R_QSPI
module to write and erase the QSPI chip.

Configuration

The BSP is heavily data driven with most features and functionality being configured based on the
content from configuration files. Configuration files represent the settings specified by the user and
are generated by the ISDE when the Generate Project Content button is clicked.

Build Time Configurations for fsp_common

The following build time configurations are defined in fsp_cfg/bsp/bsp_cfg.h:

Configuration Options Description

Main stack size (bytes) Value must be an integer
multiple of 8 and between 8
and OxFFFFFFFF

Heap size (bytes) - A minimum Value must be 0 or an integer

of 4K (0x1000) is required if multiple of 8 between 8 and
standard library functions are to OxFFFFFFFF. A minimum of 4K
be used. (0x1000) is required if standard
library functions are to be used.
MCU Vcc (mV) Value must between 0 and
4600 (4.6V)
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 106 / 601

Nov.08.19

Flexible Software Package

API| Reference > BSP > MCU Board Support Package

User’s Manual

Parameter checking

Assert Failures

Error Log

ID Code Mode

ID Code (32 Hex Characters)

Soft Reset

PFS Protect

Main Oscillator Wait Time

Main Oscillator Clock Source

Subclock Populated

Subclock Drive

Enabled
Disabled

Return
FSP_ERR_ASSERTION
Call fsp_error_log then
Return
FSP_ERR_ASSERTION
Use assert() to Halt
Execution

Disable checks that
would return
FSP_ERR_ASSERTION

No Error Log
Errors Logged in
fsp_error_log

Unlocked (Ignore ID)
Locked with All Erase
support
Locked

Value must be a 32 character
long hex string

Disabled
Enabled

Disabled
Enabled

0.25 us
128 us
256 us
512 us
1024 us
2048 us
4096 us
8192 us
16384 us
32768 us

External Oscillator
Crystal or Resonator

Populated
Not Populated

Middle (4.4pf)
Standard (12.5pf)

Support for soft reset. If
disabled, registers are assumed
to be set to their default value
during startup.

Keep the PFS registers locked
when they are not being
modified. If disabled they will
be unlocked during startup.

Number of cycles to wait for the
main oscillator clock to
stabilize. This setting can be
overridden in board_cfg.h

Select the main oscillator clock
source. This setting can be
overridden in board cfg.h

Select whether or not there is a
subclock on the board. This
setting can be overridden in
board_cfg.h.

Select the subclock oscillator
drive capacitance. This setting
can be overridden in

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 107 / 601

Flexible Software Package

API| Reference > BSP > MCU Board Support Package

User’s Manual

Subclock Stabilization Time
(ms)

4.1.2.1 RA2Al1

Value must between 0 and

10000

BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra2al_fsp

board _cfg.h

Select the subclock oscillator
stabilization time. This is only
used in the startup code if the
subclock is selected as the
system clock on the Clocks tab.
This setting can be overridden
in board_cfg.h

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration

Options

Description

OFSO0 register
settings|Independent WDT|Start
Mode

OFSO register
settings|Independent
WDT|Timeout Period

OFSO register
settings|Independent
WDT|Dedicated Clock
Frequency Divisor

OFSO register
settings|Independent
WDT|Window End Position

OFSO0 register
settings|Independent
WDT|Window Start Position

OFSO register
settings|Independent

IWDT is Disabled
IWDT is automatically
activated after a reset
(Autostart mode)

128 cycles
512 cycles
1024 cycles
2048 cycles

1
16
32
64
128
256

75%

50%

25%

0% (no window end
position)

25%

50%

75%

100% (no window start
position)

NMI request or interrupt
request is enabled

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 108 / 601

Flexible Software Package

API| Reference > BSP > MCU Board Support Package > RA2A1

User’s Manual

WDT|Reset Interrupt Request
Select

OFSO0 register
settings|Independent WDT|Stop
Control

OFSO register
settings|WDT|Start Mode Select

OFSO register
settings|WDT|Timeout Period

OFSO0 register
settings|WDT|Clock Frequency
Division Ratio

OFSO register
settings|WDT|Window End
Position

OFSO register
settings|WDT|Window Start
Position

OFSO register
settings|WDT|Reset Interrupt
Request

OFSO register
settings|WDT|Stop Control

OFS1 register settings|Voltage
Detection 0 Circuit Start

OFS1 register settings|Voltage
Detection 0 Level

OFS1 register settings|HOCO
Oscillation Enable

e Reset is enabled

¢ Counting continues

e Stop counting when in
Sleep, Snooze mode, or
Software Standby

¢ Automatically activate
WDT after a reset (auto-
start mode)

e Stop WDT after a reset
(register-start mode)

1024 cycles
4096 cycles
8192 cycles
16384 cycles

4
64
128
512
2048
8192

75%

e 50%

e 25%

¢ 0% (no window end
position)

25%

50%

75%

100% (no window start
position)

e NMI
e Reset

¢ Counting continues
e Stop counting when
entering Sleep mode

¢ Voltage monitor 0 reset
is enabled after reset

¢ Voltage monitor O reset
is disabled after reset

3.84V
282V
251V
190V
1.70V

HOCO oscillation is enabled
after reset

HOCO must be enabled out of
reset because the MCU starts

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 109 / 601

Flexible Software Package User’s Manual

API| Reference > BSP > MCU Board Support Package > RA2A1

Use Low Voltage Mode

MPU|Enable or disable PC
Region 0

MPU|PCO Start

MPU|PCO End

MPU|Enable or disable PC
Region 1

MPU|PC1 Start

MPU|PC1 End

MPU|Enable or disable Memory
Region 0

MPU|Memory Region 0 Start

MPU|Memory Region 0 End

MPU|Enable or disable Memory
Region 1

MPU|Memory Region 1 Start

MPU|Memory Region 1 End

Enable
Disable

Enabled
Disabled

Value must be an integer
between 0 and 0xO000FFFFC
(ROM) or between 0x1FF00000
and 0x200FFFFC (RAM)

Value must be an integer
between 0x00000003 and
Ox000FFFFF (ROM) or between
0x1FFO00003 and 0x200FFFFF
(RAM)

e Enabled
e Disabled

Value must be an integer
between 0 and O0xO00FFFFC
(ROM) or between Ox1FFO0000
and 0x200FFFFC (RAM)

Value must be an integer
between 0x00000003 and
Ox000FFFFF (ROM) or between
0x1FFO00003 and 0x200FFFFF
(RAM)

e Enabled
e Disabled

Value must be an integer
between 0 and OxO00FFFFC

Value must be an integer
between 0x00000003 and
O0x000FFFFF

e Enabled
¢ Disabled

Value must be an integer
between 0x1FF00000 and
0x200FFFFC

Value must be an integer
between Ox1FF00003 and
0x200FFFFF

up in low voltage mode and the
HOCO must be operating in low
voltage mode.

Use the low voltage mode. This
limits the ICLK operating
frequency to 4 MHz and
requires all clock dividers to be
at least 4 when oscillation stop
detection is used.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 110/ 601

Flexible Software Package

API| Reference > BSP > MCU Board Support Package > RA2A1

User’s Manual

MPU|Enable or disable Memory
Region 2

MPU|Memory Region 2 Start

MPU|Memory Region 2 End

MPU|Enable or disable Memory
Region 3

MPU|Memory Region 3 Start

MPU|Memory Region 3 End

4.1.2.2 RA4AM1

e Enabled
¢ Disabled

Value must be an integer
between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

Value must be an integer
between 0x400C0003 and
O0x400DFFFF or between
0x40100003 and 0x407FFFFF

e Enabled
¢ Disabled

Value must be an integer
between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

Value must be an integer
between 0x400C0003 and
0x400DFFFF or between
0x40100003 and 0x407FFFFF

BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for radm1l_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration

Options

Description

OFSO register
settings|Independent WDT|Start
Mode

e |IWDT is Disabled
IWDT is automatically
activated after a reset
(Autostart mode)

OFSO0 register e 128 cycles
settings|Independent e 512 cycles
WDT|Timeout Period ¢ 1024 cycles

e 2048 cycles
OFSO register o1
settings|Independent e 16
WDT|Dedicated Clock e 32
Frequency Divisor e 64

e 128

e 256

R11UMO0137EU0081 Revision 0.81 RLENESAS Page 111 /601

Nov.08.19

Flexible Software Package

API| Reference > BSP > MCU Board Support Package > RA4M1

User’s Manual

OFSO0 register
settings|Independent
WDT|Window End Position

OFSO register
settings|Independent
WDT|Window Start Position

OFSO register
settings|Independent
WDT|Reset Interrupt Request
Select

OFSO0 register
settings|Independent WDT|Stop
Control

OFSO0 register
settings|WDT|Start Mode Select

OFSO register
settings|WDT|Timeout Period

OFSO register
settings|WDT|Clock Frequency
Division Ratio

OFSO0 register
settings|WDT|Window End
Position

OFSO0 register
settings|WDT|Window Start
Position

OFSO register
settings|WDT|Reset Interrupt
Request

OFSO0 register
settings|WDT|Stop Control

75%

50%

25%

0% (no window end
position)

25%

50%

75%

100% (no window start
position)

NMI request or interrupt
request is enabled
Reset is enabled

Counting continues
Stop counting when in
Sleep, Snooze mode, or
Software Standby

Automatically activate
WDT after a reset (auto-
start mode)

Stop WDT after a reset
(register-start mode)

1024 cycles
4096 cycles
8192 cycles
16384 cycles

4
64
128
512
2048
8192

75%

50%

25%

0% (no window end
position)

25%

50%

75%

100% (no window start
position)

NMI
Reset

Counting continues
Stop counting when

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 112 /601

Flexible Software Package User’s Manual

API| Reference > BSP > MCU Board Support Package > RA4M1

OFS1 register settings|Voltage
Detection 0 Circuit Start

OFS1 register settings|Voltage
Detection 0 Level

OFS1 register settings|HOCO
Oscillation Enable

Use Low Voltage Mode

MPU|Enable or disable PC
Region 0

MPU|PCO Start

MPU|PCO End

MPU|Enable or disable PC
Region 1

MPU|PC1 Start

MPU|PC1 End

MPU|Enable or disable Memory
Region 0

MPU|Memory Region 0 Start

MPU|Memory Region 0 End

entering Sleep mode

¢ Voltage monitor O reset
is enabled after reset
Voltage monitor 0 reset
is disabled after reset

3.84V
2.82V
251V
190V
1.70V

HOCO oscillation is enabled
after reset

e Enable
e Disable

e Enabled
e Disabled

Value must be an integer
between 0 and OXOOFFFFFC
(ROM) or between Ox1FFO0000
and 0x200FFFFC (RAM)

Value must be an integer
between 0x00000003 and
OxXOOFFFFFF (ROM) or between
0x1FFO00003 and 0x200FFFFF
(RAM)

e Enabled
e Disabled

Value must be an integer
between 0 and OxO0OFFFFFC
(ROM) or between Ox1FFO0000
and 0x200FFFFC (RAM)

Value must be an integer
between 0x00000003 and
OxXOOFFFFFF (ROM) or between
0x1FFO00003 and 0x200FFFFF
(RAM)

e Enabled
e Disabled

Value must be an integer
between 0 and OxOOFFFFFC

Value must be an integer

HOCO must be enabled out of
reset because the MCU starts
up in low voltage mode and the
HOCO must be operating in low
voltage mode.

Use the low voltage mode. This
limits the ICLK operating
frequency to 4 MHz and
requires all clock dividers to be
at least 4.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 113 /601

Flexible Software Package User’s Manual

API| Reference > BSP > MCU Board Support Package > RA4M1

between 0x00000003 and

OxOOFFFFFF

MPU|Enable or disable Memory e Enabled

Region 1 e Disabled

MPU|Memory Region 1 Start Value must be an integer
between 0x1FFO0000 and
0x200FFFFC

MPU|Memory Region 1 End Value must be an integer
between 0x1FF00003 and
O0x200FFFFF

MPU|Enable or disable Memory e Enabled

Region 2 ¢ Disabled

MPU|Memory Region 2 Start Value must be an integer

between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

MPU|Memory Region 2 End Value must be an integer
between 0x400C0003 and
0x400DFFFF or between
0x40100003 and 0x407FFFFF

MPU|Enable or disable Memory e Enabled
Region 3 ¢ Disabled
MPU|Memory Region 3 Start Value must be an integer

between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

MPU|Memory Region 3 End Value must be an integer
between 0x400C0003 and
O0x400DFFFF or between
0x40100003 and 0x407FFFFF

4.1.2.3 RA6M1
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for rabm1l_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family cfg.h:

Configuration Options Description
OFSO register ¢ IWDT is Disabled
settings|Independent WDT|Start ¢ IWDT is automatically
Mode activated after a reset
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 114 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > BSP > MCU Board Support Package > RA6M1

(Autostart mode)

OFSO register e 128 cycles
settings|Independent e 512 cycles
WDT|Timeout Period e 1024 cycles

e 2048 cycles
OFSO register o1
settings|Independent e 16
WDT|Dedicated Clock e 32
Frequency Divisor * 64

e 128

e 256
OFSO register e 75%
settings|Independent * 50%
WDT|Window End Position e 25%

* 0% (no window end

position)

OFSO0 register e 25%
settings|Independent e 50%
WDT|Window Start Position e 75%

¢ 100% (no window start

OFSO register
settings|Independent
WDT|Reset Interrupt Request
Select

OFSO register
settings|Independent WDT|Stop
Control

OFSO register
settings|WDT|Start Mode Select

position)

NMI request or interrupt
request is enabled
Reset is enabled

Counting continues
(Note: Device will not
enter Deep Standby
Mode when selected.
Device will enter
Software Standby Mode)
Stop counting when in
Sleep, Snooze mode, or
Software Standby

Automatically activate
WDT after a reset (auto-
start mode)

Stop WDT after a reset
(register-start mode)

Nov.08.19

OFSO0 register e 1024 cycles
settings|WDT|Timeout Period ¢ 4096 cycles
e 8192 cycles
e 16384 cycles
OFSO0 register o 4
settings|WDT|Clock Frequency * 64
Division Ratio e 128
e 512
e 2048
e 8192
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 115 / 601

Flexible Software Package

API| Reference > BSP > MCU Board Support Package > RA6M1

User’s Manual

OFSO register
settings|WDT|Window End
Position

OFSO0 register
settings|WDT|Window Start
Position

OFSO0 register
settings|WDT|Reset Interrupt
Request

OFSO register
settings|WDT|Stop Control

OFS1 register settings|Voltage
Detection 0 Circuit Start

OFS1 register settings|Voltage
Detection 0 Level

OFS1 register settings|HOCO
OScillation Enable

MPU|Enable or disable PC
Region 0

MPU|PCO Start

MPU|PCO End

MPU|Enable or disable PC
Region 1

MPU|PC1 Start

MPU|PC1 End

MPU|Enable or disable Memory
Region 0

MPU|Memory Region O Start

75%

50%

25%

0% (no window end
position)

25%

50%

75%

100% (no window start
position)

e NMI
e Reset

¢ Counting continues
¢ Stop counting when
entering Sleep mode

e Voltage monitor 0 reset
is enabled after reset

* Voltage monitor 0 reset
is disabled after reset

e 294V
e 287V
e 280V

¢ HOCO oscillation is
enabled after reset
e HOCO oscillation is
disabled after reset

e Enabled
e Disabled

Value must be an integer
between 0 and OXFFFFFFFC

Value must be an integer
between 0x00000003 and
OXFFFFFFFF

e Enabled
e Disabled

Value must be an integer
between 0 and OxFFFFFFFC

Value must be an integer
between 0x00000003 and
OXFFFFFFFF

e Enabled
¢ Disabled

Value must be an integer
between 0 and OxOOFFFFFC

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 116 / 601

Flexible Software Package

API| Reference > BSP > MCU Board Support Package > RA6M1

User’s Manual

MPU|Memory Region 0 End

MPU|Enable or disable Memory
Region 1

MPU|Memory Region 1 Start

MPU|Memory Region 1 End

MPU|Enable or disable Memory
Region 2

MPU|Memory Region 2 Start

MPU|Memory Region 2 End

MPU|Enable or disable Memory
Region 3

MPU|Memory Region 3 Start

Value must be an integer
between 0x00000003 and
OxOOFFFFFF

e Enabled
e Disabled

Value must be an integer
between 0x1FF00000 and
0x200FFFFC

Value must be an integer
between 0x1FF00003 and
0x200FFFFF

e Enabled
e Disabled

Value must be an integer
between 0x400C0000 and
0Ox400DFFFC or between
0x40100000 and 0x407FFFFC

Value must be an integer
between 0x400C0003 and
0x400DFFFF or between
0x40100003 and 0x407FFFFF

e Enabled
¢ Disabled

Value must be an integer

between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

MPU|Memory Region 3 End Value must be an integer

between 0x400C0003 and
0x400DFFFF or between
0x40100003 and 0x407FFFFF

4.1.2.4 RA6M2
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for rabm2_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family cfg.h:

Configuration Options Description

OFSO register
settings|Independent WDT|Start

e |WDT is Disabled
e [WDT is automatically

R11UMO0137EUO0081 Revision 0.81

LENESAS
Nov.08.19 -

Page 117/ 601

Flexible Software Package User’s Manual

API| Reference > BSP > MCU Board Support Package > RA6M2

Mode activated after a reset
(Autostart mode)

OFSO0 register e 128 cycles
settings|Independent e 512 cycles
WDT|Timeout Period e 1024 cycles

e 2048 cycles
OFSO register o1
settings|Independent e 16
WDT|Dedicated Clock e 32
Frequency Divisor * 64

e 128

e 256
OFSO register e 75%
settings|Independent * 50%
WDT|Window End Position e 25%

* 0% (no window end

position)

OFSO register e 25%
settings|Independent e 50%
WDT|Window Start Position e 75%

¢ 100% (no window start

OFSO0 register
settings|Independent
WDT|Reset Interrupt Request
Select

OFSO register
settings|Independent WDT|Stop
Control

OFSO register
settings|WDT|Start Mode Select

position)

NMI request or interrupt
request is enabled
Reset is enabled

Counting continues
(Note: Device will not
enter Deep Standby
Mode when selected.
Device will enter
Software Standby Mode)
Stop counting when in
Sleep, Snooze mode, or
Software Standby

Automatically activate
WDT after a reset (auto-
start mode)

Stop WDT after a reset
(register-start mode)

OFSO register e 1024 cycles
settings|WDT|Timeout Period e 4096 cycles
e 8192 cycles
e 16384 cycles
OFSO register o 4
settings|WDT|Clock Frequency * 64
Division Ratio e 128
e 512
e 2048
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 118 / 601

Nov.08.19

Flexible Software Package

API| Reference > BSP > MCU Board Support Package > RA6M2

User’s Manual

OFSO register
settings|WDT|Window End
Position

OFSO register
settings|WDT|Window Start
Position

OFSO register
settings|WDT|Reset Interrupt
Request

OFSO0 register
settings|WDT|Stop Control

OFS1 register settings|Voltage
Detection 0 Circuit Start

OFS1 register settings|Voltage
Detection 0 Level

OFS1 register settings|HOCO
OScillation Enable

MPU|Enable or disable PC
Region 0

MPU|PCO Start

MPU|PCO End

MPU|Enable or disable PC
Region 1

MPU|PC1 Start

MPU|PC1 End

MPU|Enable or disable Memory
Region 0

MPU|Memory Region 0 Start

e 8192

75%

50%

25%

0% (no window end
position)

25%

50%

75%

100% (no window start
position)

e NMI
e Reset

¢ Counting continues
e Stop counting when
entering Sleep mode

¢ Voltage monitor 0 reset
is enabled after reset

¢ Voltage monitor O reset
is disabled after reset

e 294V
e 287V
e 280V

e HOCO oscillation is
enabled after reset
e HOCO oscillation is
disabled after reset

e Enabled
¢ Disabled

Value must be an integer
between 0 and OxFFFFFFFC

Value must be an integer
between 0x00000003 and
OxXFFFFFFFF

e Enabled
e Disabled

Value must be an integer
between 0 and OxXFFFFFFFC

Value must be an integer
between 0x00000003 and
OXFFFFFFFF

e Enabled
e Disabled

Value must be an integer

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 119/ 601

Flexible Software Package User’s Manual

API| Reference > BSP > MCU Board Support Package > RA6M2

between 0 and OxOOFFFFFC

MPU|Memory Region 0 End Value must be an integer

between 0x00000003 and

OxOOFFFFFF
MPU|Enable or disable Memory e Enabled
Region 1 ¢ Disabled

MPU|Memory Region 1 Start Value must be an integer
between 0x1FFO0000 and

0x200FFFFC

MPU|Memory Region 1 End Value must be an integer

between Ox1FFO0003 and

0x200FFFFF
MPU|Enable or disable Memory e Enabled
Region 2 e Disabled

MPU|Memory Region 2 Start Value must be an integer
between 0x400C0000 and
0x400DFFFC or between

0x40100000 and 0x407FFFFC

MPU|Memory Region 2 End Value must be an integer
between 0x400C0003 and
O0x400DFFFF or between

0x40100003 and 0x407FFFFF

MPU|Enable or disable Memory
Region 3

MPU|Memory Region 3 Start

e Enabled
¢ Disabled

Value must be an integer

between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

MPU|Memory Region 3 End Value must be an integer

between 0x400C0003 and
0x400DFFFF or between
0x40100003 and 0x407FFFFF

4.1.2.5 RA6M3
BSP » MCU Board Support Package

Detailed Description

Build Time Configurations for ra6m3_fsp

The following build time configurations are defined in fsp_cfg/bsp/bsp_mcu_family_cfg.h:

Configuration Options Description

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS Page 120 / 601

Flexible Software Package User’s Manual

API| Reference > BSP > MCU Board Support Package > RA6M3

OFSO register
settings|Independent WDT|Start
Mode

IWDT is Disabled
IWDT is automatically
activated after a reset
(Autostart mode)

OFSO0 register e 128 cycles
settings|Independent e 512 cycles
WDT|Timeout Period e 1024 cycles

e 2048 cycles
OFSO register o1
settings|Independent * 16
WDT|Dedicated Clock e 32
Frequency Divisor * 64

e 128

e 256
OFSO register e 75%
settings|Independent * 50%
WDT|Window End Position e 25%

* 0% (no window end

position)

OFSO register e 25%
settings|Independent * 50%
WDT|Window Start Position e 75%

¢ 100% (no window start

OFSO0 register
settings|Independent
WDT|Reset Interrupt Request
Select

OFSO register
settings|Independent WDT|Stop
Control

OFSO register
settings|WDT|Start Mode Select

position)

NMI request or interrupt
request is enabled
Reset is enabled

Counting continues
(Note: Device will not
enter Deep Standby
Mode when selected.
Device will enter
Software Standby Mode)
Stop counting when in
Sleep, Snooze mode, or
Software Standby

Automatically activate
WDT after a reset (auto-
start mode)

Stop WDT after a reset
(register-start mode)

OFSO register e 1024 cycles
settings|WDT|Timeout Period e 4096 cycles
e 8192 cycles
e 16384 cycles
OFSO register o 4
settings|WDT|Clock Frequency * 64
Division Ratio e 128
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 121 / 601

Nov.08.19

Flexible Software Package

API| Reference > BSP > MCU Board Support Package > RA6M3

User’s Manual

OFSO register
settings|WDT|Window End
Position

OFSO register
settings|WDT|Window Start
Position

OFSO register
settings|WDT|Reset Interrupt
Request

OFSO0 register
settings|WDT|Stop Control

OFS1 register settings|Voltage
Detection 0 Circuit Start

OFS1 register settings|Voltage
Detection O Level

OFS1 register settings|HOCO
OScillation Enable

MPU|Enable or disable PC
Region 0

MPU|PCO Start

MPU|PCO End

MPU|Enable or disable PC
Region 1

MPU|PC1 Start

MPU|PC1 End

e 512
* 2048
8192

75%

50%

25%

0% (no window end
position)

25%

50%

75%

100% (no window start
position)

e NMI
¢ Reset

e Counting continues
e Stop counting when
entering Sleep mode

¢ Voltage monitor O reset
is enabled after reset

¢ Voltage monitor O reset
is disabled after reset

e 294V
e 287V
e 280V

e HOCO oscillation is
enabled after reset
e HOCO oscillation is
disabled after reset

e Enabled
e Disabled

Value must be an integer
between 0 and OxFFFFFFFC

Value must be an integer
between 0x00000003 and
OXFFFFFFFF

e Enabled
e Disabled

Value must be an integer
between 0 and OXFFFFFFFC

Value must be an integer
between 0x00000003 and
OXFFFFFFFF

MPU|Enable or disable Memory e Enabled
Region 0 e Disabled
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 122 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > BSP > MCU Board Support Package > RA6M3

MPU|Memory Region 0 Start Value must be an integer
between 0 and OxOOFFFFFC

MPU|Memory Region 0 End Value must be an integer
between 0x00000003 and
OxXOO0FFFFFF

MPU|Enable or disable Memory e Enabled

Region 1 ¢ Disabled

MPU|Memory Region 1 Start Value must be an integer
between 0x1FF00000 and
0x200FFFFC

MPU|Memory Region 1 End Value must be an integer
between 0x1FF00003 and
0x200FFFFF

MPU|Enable or disable Memory e Enabled

Region 2 e Disabled

MPU|Memory Region 2 Start Value must be an integer

between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

MPU|Memory Region 2 End Value must be an integer
between 0x400C0003 and
Ox400DFFFF or between
0x40100003 and 0x407FFFFF

MPU|Enable or disable Memory e Enabled
Region 3 e Disabled
MPU|Memory Region 3 Start Value must be an integer

between 0x400C0000 and
0x400DFFFC or between
0x40100000 and 0x407FFFFC

MPU|Memory Region 3 End Value must be an integer
between 0x400C0003 and
0x400DFFFF or between
0x40100003 and 0x407FFFFF

4.1.3 BSP 1/O access

BSP
Functions
__ STATIC_INLINE uint32_t R_BSP_PinRead (bsp_io_port_pin_t pin)
__ STATIC_INLINE void R _BSP_PinWrite (bsp_io_port_pin_t pin, bsp_io_level t level)
__STATIC_INLINE void R _BSP_PinAccessEnable (void)
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 123 / 601

Nov.08.19

Flexible Software Package User’s Manual

API Reference > BSP > BSP I/O access

__STATIC_INLINE void R_BSP_PinAccessDisable (void)

Detailed Description

This module provides basic read/write access to port pins.

Enumerations

enum bsp_io_level t
enum bsp_io_direction_t
enum bsp_io_port_t
enum bsp_io_port pin_t
Enumeration Type Documentation

¢ bsp_io_level t

enum bsp_io level t

Levels that can be set and read for individual pins

Enumerator
BSP_IO_LEVEL_LOW Low.
BSP_I0_LEVEL HIGH High.
¢ bsp_io_direction_t
enum bsp_io_direction_t
Direction of individual pins
Enumerator
BSP_IO_DIRECTION_INPUT Input.
BSP_IO_DIRECTION_OUTPUT Output.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 124 / 601

Nov.08.19

Flexible Software Package

API Reference > BSP > BSP I/O access

User’s Manual

¢ bsp_io_port_t

enum bsp_io_port t

Superset list of all possible 10 ports.

Nov.08.19

Enumerator
BSP_I0_PORT_00 10 port 0.
BSP_10_PORT 01 10 port 1.
BSP_IO_PORT 02 10 port 2.
BSP_|O_PORT_03 10 port 3.
BSP_IO_PORT_04 10 port 4.
BSP_IO_PORT_05 10 port 5.
BSP_10_PORT_06 IO port 6.
BSP_I0_PORT_07 10 port 7.
BSP_I0_PORT_08 10 port 8.
BSP_10_PORT_09 IO port 9.
BSP_IO_PORT 10 10 port 10.
BSP_|0_PORT_11 10 port 11.
¢ bsp_io_port_pin_t
enum bsp_io_port _pin_t
Superset list of all possible 10 port pins.
Enumerator
BSP_I0_PORT_00_PIN_00 10 port 0 pin 0.
BSP_|O_PORT_00_PIN_01 |0 port 0 pin 1.
BSP_I0_PORT_00 PIN 02 10 port 0 pin 2.
BSP_I0_PORT 00 PIN_03 10 port 0 pin 3.
BSP_I0_PORT _00 PIN_04 10 port 0 pin 4.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 125/ 601

Flexible Software Package

API Reference > BSP > BSP I/O access

User’s Manual

BSP_IO_PORT 00 _PIN_05

IO port 0 pin 5.
BSP_IO_PORT_00 _PIN_06 |0 port 0 pin 6.
BSP_IO_PORT_00_PIN_07 IO port 0 pin 7.
BSP_I0_PORT 00 PIN_08 10 port 0 pin 8.
BSP_I0_PORT 00 PIN_09 10 port 0 pin 9.

BSP_IO_PORT 00 _PIN_10

IO port 0 pin 10.

BSP_10_PORT 00 PIN_11

IO port 0 pin 11.

BSP_IO_PORT_00 PIN_12

IO port 0 pin 12.

BSP_|O_PORT 00 PIN 13

IO port 0 pin 13.

BSP_IO_PORT 00 PIN_14

IO port O pin 14.

BSP_I0_PORT 00 PIN_15

IO port 0 pin 15.

BSP_IO_PORT 01 _PIN_00

10 port 1 pin 0.
BSP_I0_PORT 01 PIN 01 10 port 1 pin 1.
BSP_IO_PORT_01_PIN_02 10 port 1 pin 2.
BSP_IO_PORT_01_PIN_03 10 port 1 pin 3.
BSP_I0_PORT 01 PIN_04 10 port 1 pin 4.
BSP_I0_PORT 01 PIN_05 10 port 1 pin 5.
BSP_IO_PORT_01_PIN_06 |0 port 1 pin 6.
BSP_IO_PORT_01_PIN_07 10 port 1 pin 7.
BSP_I0_PORT 01 PIN_08 10 port 1 pin 8.
BSP_10_PORT 01 PIN_09 10 port 1 pin 9.

BSP_IO_PORT 01 _PIN_10

IO port 1 pin 10.

BSP_10_PORT 01 PIN_11

IO port 1 pin 11.

BSP_IO_PORT_01_PIN_12

IO port 1 pin 12.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 126 / 601

Flexible Software Package

API Reference > BSP > BSP I/O access

User’s Manual

BSP_IO_PORT 01 PIN 13

IO port 1 pin 13.

BSP_|O_PORT 01 PIN_14

IO port 1 pin 14.

BSP_I0_PORT 01 PIN_15

IO port 1 pin 15.

BSP_IO_PORT_02_PIN_00

10 port 2 pin 0.
BSP_I0_PORT 02 PIN 01 10 port 2 pin 1.
BSP_IO_PORT_02_PIN_02 |0 port 2 pin 2.
BSP_IO_PORT_02_PIN_03 |0 port 2 pin 3.
BSP_I0_PORT 02 PIN_04 10 port 2 pin 4.
BSP_I0_PORT 02 _PIN_05 10 port 2 pin 5.
BSP_IO_PORT_02_PIN_06 |0 port 2 pin 6.
BSP_IO_PORT_02_PIN_07 1O port 2 pin 7.
BSP_10_PORT 02 PIN_08 10 port 2 pin 8.
BSP_10_PORT 02 _PIN_09 10 port 2 pin 9.

BSP_IO_PORT 02_PIN_10

IO port 2 pin 10.

BSP_10_PORT 02 PIN_11

IO port 2 pin 11.

BSP_IO_PORT_02_PIN_12

IO port 2 pin 12.

BSP_IO_PORT_02_PIN 13

IO port 2 pin 13.

BSP_IO_PORT 02_PIN_14

IO port 2 pin 14.

BSP_I0_PORT 02_PIN_15

IO port 2 pin 15.

BSP_IO_PORT _03_PIN_00

Nov.08.19

IO port 3 pin 0.

BSP_I0_PORT 03 PIN 01 10 port 3 pin 1.

BSP_IO_PORT_03_PIN_02 10 port 3 pin 2.

BSP_IO_PORT_03_PIN_03 |0 port 3 pin 3.

BSP_I0_PORT 03 PIN_04 10 port 3 pin 4.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 127 / 601

Flexible Software Package

API Reference > BSP > BSP I/O access

User’s Manual

BSP_IO_PORT 03_PIN_05

IO port 3 pin 5.
BSP_IO_PORT_03_PIN_06 |0 port 3 pin 6.
BSP_IO_PORT_03_PIN_07 IO port 3 pin 7.
BSP_I0_PORT_03_PIN_08 10 port 3 pin 8.
BSP_10_PORT_03_PIN_09 10 port 3 pin 9.

BSP_IO_PORT 03_PIN_10

IO port 3 pin 10.

BSP_10_PORT 03_PIN_11

IO port 3 pin 11.

BSP_IO_PORT_03_PIN_12

IO port 3 pin 12.

BSP_|O_PORT 03 _PIN 13

IO port 3 pin 13.

BSP_IO_PORT 03_PIN_14

IO port 3 pin 14.

BSP_I0_PORT 03_PIN_15

IO port 3 pin 15.

BSP_IO_PORT 04 _PIN_00

10 port 4 pin 0.
BSP_I0_PORT 04 PIN 01 10 port 4 pin 1.
BSP_IO_PORT_04_PIN_02 |0 port 4 pin 2.
BSP_IO_PORT_04_PIN_03 |0 port 4 pin 3.
BSP_I0_PORT 04 PIN_04 10 port 4 pin 4.
BSP_I0_PORT 04 PIN_05 10 port 4 pin 5.
BSP_IO_PORT_04_PIN_06 |0 port 4 pin 6.
BSP_IO_PORT_04_PIN_07 1O port 4 pin 7.
BSP_I0_PORT 04 PIN_08 10 port 4 pin 8.
BSP_10_PORT 04 PIN_09 10 port 4 pin 9.

BSP_IO_PORT 04 _PIN_10

IO port 4 pin 10.

BSP_10_PORT 04 PIN_11

IO port 4 pin 11.

BSP_IO_PORT_04 PIN_12

IO port 4 pin 12.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 128/ 601

Flexible Software Package

API Reference > BSP > BSP I/O access

User’s Manual

BSP_|O_PORT 04 PIN 13

IO port 4 pin 13.

BSP_IO_PORT 04 PIN_14

IO port 4 pin 14.

BSP_I0_PORT 04 PIN_15

IO port 4 pin 15.

BSP_IO_PORT_05_PIN_00

IO port 5 pin 0.
BSP_I0_PORT 05 PIN 01 10 port 5 pin 1.
BSP_IO_PORT_05_PIN_02 10 port 5 pin 2.
BSP_IO_PORT_05_PIN_03 |0 port 5 pin 3.
BSP_I0_PORT 05 PIN_04 10 port 5 pin 4.
BSP_IO_PORT_05_PIN_05 10 port 5 pin 5.
BSP_IO_PORT_05_PIN_06 |0 port 5 pin 6.
BSP_IO_PORT_05_PIN_07 10 port 5 pin 7.
BSP_IO_PORT_05_PIN_08 |0 port 5 pin 8.
BSP_IO_PORT_05_PIN_09 10 port 5 pin 9.

BSP_IO_PORT 05 _PIN_10

IO port 5 pin 10.

BSP_10_PORT 05 PIN_11

IO port 5 pin 11.

BSP_IO_PORT_05 PIN_12

IO port 5 pin 12.

BSP_|O_PORT 05 PIN 13

IO port 5 pin 13.

BSP_IO_PORT 05 PIN_14

IO port 5 pin 14.

BSP_I0_PORT 05 PIN_15

IO port 5 pin 15.

BSP_IO_PORT_06_PIN_00

Nov.08.19

IO port 6 pin 0.

BSP_ 10 _PORT 06 PIN 01 10 port 6 pin 1.

BSP_|O_PORT_06_PIN_02 |0 port 6 pin 2.

BSP_10 PORT 06 _PIN 03 IO port 6 pin 3.

BSP_I0_PORT 06 _PIN_04 IO port 6 pin 4.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 129601

Flexible Software Package

API Reference > BSP > BSP I/O access

User’s Manual

BSP_IO_PORT _06_PIN_05

IO port 6 pin 5.
BSP_|O_PORT_06_PIN_06 |0 port 6 pin 6.
BSP_IO_PORT_06_PIN_07 IO port 6 pin 7.
BSP_I0_PORT 06 _PIN_08 10 port 6 pin 8.
BSP_10_PORT 06 _PIN_09 10 port 6 pin 9.

BSP_IO_PORT 06_PIN_10

IO port 6 pin 10.

BSP_10_PORT 06 PIN_11

IO port 6 pin 11.

BSP_IO_PORT_06_PIN_12

IO port 6 pin 12.

BSP_|O_PORT 06 PIN 13

IO port 6 pin 13.

BSP_IO_PORT 06_PIN_14

IO port 6 pin 14.

BSP_I0_PORT 06 _PIN_15

IO port 6 pin 15.

BSP_IO_PORT_07_PIN_00

10 port 7 pin 0.
BSP_I0_PORT 07 _PIN 01 10 port 7 pin 1.
BSP_IO_PORT_07_PIN_02 |0 port 7 pin 2.
BSP_IO_PORT_07_PIN_03 |0 port 7 pin 3.
BSP_I0_PORT 07 _PIN_04 10 port 7 pin 4.
BSP_10_PORT 07 _PIN_05 10 port 7 pin 5.
BSP_IO_PORT_07_PIN_06 |0 port 7 pin 6.
BSP_IO_PORT_07_PIN_07 10 port 7 pin 7.
BSP_I0_PORT 07 _PIN_08 10 port 7 pin 8.
BSP_10_PORT_07_PIN_09 10 port 7 pin 9.

BSP_IO_PORT 07_PIN_10

IO port 7 pin 10.

BSP_10_PORT 07 PIN_11

IO port 7 pin 11.

BSP_IO_PORT_07_PIN_12

IO port 7 pin 12.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 130/ 601

Flexible Software Package

API Reference > BSP > BSP I/O access

User’s Manual

BSP_IO_PORT_07_PIN_13

IO port 7 pin 13.

BSP_IO_PORT 07_PIN_14

IO port 7 pin 14.

BSP_I0_PORT 07 _PIN_15

IO port 7 pin 15.

BSP_IO_PORT_08_PIN_00

IO port 8 pin 0.
BSP_I0_PORT 08 PIN 01 10 port 8 pin 1.
BSP_IO_PORT_08 PIN_02 |0 port 8 pin 2.
BSP_IO_PORT_08 PIN_03 |0 port 8 pin 3.
BSP_I0_PORT 08 PIN_04 10 port 8 pin 4.
BSP_IO_PORT_08_PIN_05 |0 port 8 pin 5.
BSP_IO_PORT_08 _PIN_06 |0 port 8 pin 6.
BSP_IO_PORT_08 PIN_07 |0 port 8 pin 7.
BSP_IO_PORT_08_PIN_08 |0 port 8 pin 8.
BSP_IO_PORT_08_PIN_09 10 port 8 pin 9.

BSP_IO_PORT 08_PIN_10

IO port 8 pin 10.

BSP_10_PORT 08_PIN_11

IO port 8 pin 11.

BSP_IO_PORT_08_PIN_12

IO port 8 pin 12.

BSP_|O_PORT 08 _PIN 13

IO port 8 pin 13.

BSP_IO_PORT 08_PIN_14

IO port 8 pin 14.

BSP_I0_PORT 08 _PIN_15

IO port 8 pin 15.

BSP_IO_PORT_09_PIN_00

IO port 9 pin 0.
BSP_10_PORT 09 PIN 01 10 port 9 pin 1.
BSP_IO_PORT_09 PIN_02 10 port 9 pin 2.
BSP_IO_PORT_09 PIN_03 1O port 9 pin 3.
BSP_I0_PORT _09 PIN 04 IO port 9 pin 4.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 131 /601

Flexible Software Package

API Reference > BSP > BSP I/O access

User’s Manual

BSP_IO_PORT 09 PIN_05

IO port 9 pin 5.
BSP_IO_PORT_09 PIN_06 |0 port 9 pin 6.
BSP_IO_PORT_09 _PIN_07 IO port 9 pin 7.
BSP_I0_PORT 09 PIN_08 10 port 9 pin 8.
BSP_10_PORT_09 PIN_09 10 port 9 pin 9.

BSP_IO_PORT 09 PIN_10

IO port 9 pin 10.

BSP_10_PORT 09 PIN_11

IO port 9 pin 11.

BSP_IO_PORT_09 PIN_12

IO port 9 pin 12.

BSP_|O_PORT 09 PIN 13

IO port 9 pin 13.

BSP_IO_PORT 09 PIN_14

IO port 9 pin 14.

BSP_I0_PORT 09 PIN_15

IO port 9 pin 15.

BSP_IO_PORT_10_PIN_00

IO port 10 pin 0.

BSP_IO_PORT_10_PIN_01

IO port 10 pin 1.

BSP_|O_PORT _10_PIN_02

IO port 10 pin 2.

BSP_10_PORT 10 PIN_03

0 port 10 pin 3.

BSP_IO_PORT 10 _PIN_04

IO port 10 pin 4.

BSP_|O_PORT_10 PIN 05

IO port 10 pin 5.

BSP_IO_PORT_10_PIN_06

IO port 10 pin 6.

BSP_10_PORT 10 PIN_07

IO port 10 pin 7.

BSP_IO_PORT 10 PIN 08

IO port 10 pin 8.

BSP_|O_PORT_10 PIN_09

IO port 10 pin 9.

BSP_IO_PORT 10 _PIN_10

IO port 10 pin 10.

BSP_10_PORT 10 PIN_11

|0 port 10 pin 11.

BSP_IO_PORT_10 PIN_12

|0 port 10 pin 12.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 132 /601

Flexible Software Package

API Reference > BSP > BSP I/O access

User’s Manual

BSP_IO_PORT_10_PIN 13

IO port 10 pin 13.

BSP_|O_PORT 10 _PIN_14

IO port 10 pin 14.

BSP_10_PORT 10 PIN_15

|0 port 10 pin 15.

BSP_IO_PORT_11_PIN_00

IO port 11 pin O.

BSP_IO_PORT_11_PIN_01

IO port 11 pin 1.

BSP_|O_PORT 11_PIN_02

IO port 11 pin 2.

BSP_10_PORT 11 PIN_03

0 port 11 pin 3.

BSP_IO_PORT_11_PIN_04

0 port 11 pin 4.

BSP_IO_PORT_11_PIN_05

IO port 11 pin 5.

BSP_|O_PORT 11 _PIN_06

IO port 11 pin 6.

BSP_10_PORT 11 PIN_07

0 port 11 pin 7.

BSP_IO_PORT_11_PIN_08

IO port 11 pin 8.

BSP_IO_PORT_11_PIN_09

IO port 11 pin 9.

BSP_IO_PORT 11 PIN_10

IO port 11 pin 10.

BSP_10_PORT 11 PIN_11

0 port 11 pin 11.

BSP_IO_PORT_11_PIN_12

10 port 11 pin 12.

BSP_IO_PORT 11 PIN 13

IO port 11 pin 13.

BSP_|O_PORT 11 PIN_14

IO port 11 pin 14.

BSP_10_PORT 11 PIN_15

0 port 11 pin 15.

Function Documentation

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 133 /601

Flexible Software Package User’s Manual

API Reference > BSP > BSP I/O access

¢ R_BSP_PinRead()

__STATIC_INLINE uint32_t R_BSP_PinRead (bsp_io_port_pin_t pin)

Read the current input level of the pin.

Parameters

[in] pin The pin

Return values

Current input level

4 R_BSP_PinWrite()

__STATIC_INLINE void R_BSP_PinWrite (bsp_io_port pin_t pin, bsp_io_level t level)

Set a pin to output and set the output level to the level provided

Parameters
[in] pin The pin
[in] level The level

& R_BSP_PinAccessEnable()

__STATIC_INLINE void R_BSP_PinAccessEnable (void)

Enable access to the PFS registers. Uses a reference counter to protect against interrupts that
could occur via multiple threads or an ISR re-entering this code.

4 R_BSP_PinAccessDisable()

__STATIC_INLINE void R_BSP_PinAccessDisable (void)

Disable access to the PFS registers. Uses a reference counter to protect against interrupts that
could occur via multiple threads or an ISR re-entering this code.

4.2 Modules

Detailed Description

Modules are the smallest unit of software available in the FSP. Each module implements one
interface.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 134/ 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules

Modules
High-Speed Analog Comparator (r_acmphs)

This module implements the Comparator Interface using the high-
speed analog comparator.

Low-Power Analog Comparator (r_acmplp)

Driver for the ACMPLP peripheral on RA MCUs. This module
implements the Comparator Interface.

Analog to Digital Converter (r_adc)

Driver for the ADC12, ADC14, and ADC16 peripherals on RA MCUs.
This module implements the ADC Interface.

Asynchronous General Purpose Timer (r_agt)

Driver for the AGT peripheral on RA MCUs. This module implements
the Timer Interface.

Clock Frequency Accuracy Measurement Circuit (r_cac)

Driver for the CAC peripheral on RA MCUs. This module implements
the CAC Interface.

Clock Generation Circuit (r_cgc)

Driver for the CGC peripheral on RA MCUs. This module implements
the CGC Interface.

Cyclic Redundancy Check (CRC) Calculator (r_crc)

Driver for the CRC peripheral on RA MCUs. This module implements
the CRC Interface.

Capacitive Touch Sensing Unit (r_ctsu)

This HAL driver supports the Capacitive Touch Sensing Unit (CTSU). It
implements the CTSU Interface.

Digital to Analog Converter (r_dac)

Driver for the DAC12 peripheral on RA MCUs. This module
implements the DAC Interface.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 135/ 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules

Direct Memory Access Controller (r_dmac)

Driver for the DMAC peripheral on RA MCUs. This module implements
the Transfer Interface.

Data Operation Circuit (r_doc)

Driver for the DOC peripheral on RA MCUs. This module implements
the DOC Interface.

D/AVE 2D Port Interface (r_drw)

Driver for the DRW peripheral on RA MCUs. This module is a port of
D/AVE 2D.

Data Transfer Controller (r_dtc)

Driver for the DTC peripheral on RA MCUs. This module implements
the Transfer Interface.

Event Link Controller (r_elc)

Driver for the ELC peripheral on RA MCUs. This module implements
the ELC Interface.

Ethernet (r_ether)

Driver for the Ethernet peripheral on RA MCUs. This module
implements the Ethernet Interface.

Ethernet PHY (r_ether_phy)

The Ethernet PHY module (r_ether_phy) provides an API for standard
Ethernet PHY communications applications and uses the ETHERC
peripherals. It implements the Ethernet PHY Interface.

High-Performance Flash Driver (r_flash_hp)

Driver for the flash memory on RA high-performance MCUs. This
module implements the Flash Interface.

Low-Power Flash Driver (r_flash_Ip)

Driver for the flash memory on RA low-power MCUs. This module
implements the Flash Interface.

Graphics LCD Controller (r_glcdc)

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 136 / 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules

Driver for the GLCDC peripheral on RA MCUs. This module
implements the Display Interface.

General PWM Timer (r_gpt)

Driver for the GPT32 and GPT16 peripherals on RA MCUs. This
module implements the Timer Interface.

Interrupt Controller Unit (r_icu)

Driver for the ICU peripheral on RA MCUs. This module implements
the External IRQ Interface.

I2C Master on IIC (r_iic_master)

Driver for the IIC peripheral on RA MCUs. This module implements
the 12C Master Interface.

I2C Slave on IIC (r_iic_slave)

Driver for the IIC peripheral on RA MCUs. This module implements
the 12C Slave Interface.

I/O Ports (r_ioport)

Driver for the 1/0 Ports peripheral on RA MCUs. This module
implements the I/O Port Interface.

Independent Watchdog Timer (r_iwdt)

Driver for the IWDT peripheral on RA MCUs. This module implements
the WDT Interface.

JPEG Codec (r_jpeg)

Driver for the JPEG peripheral on RA MCUs. This module implements
the JPEG Codec Interface.

Key Interrupt (r_kint)

Driver for the KINT peripheral on RA MCUs. This module implements
the Key Matrix Interface.

Low Power Modes (r_Ipm)

Driver for the LPM peripheral on RA MCUs. This module implements

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 137/ 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules

the Low Power Modes Interface.

Low Voltage Detection (r_lvd)

Driver for the LVD peripheral on RA MCUs. This module implements
the Low Voltage Detection Interface.

Realtime Clock (r_rtc)

Driver for the RTC peripheral on RA MCUs. This module implements
the RTC Interface.

Serial Communications Interface (SCI) 12C (r_sci_i2c)

Driver for the SCI peripheral on RA MCUs. This module implements
the 12C Master Interface.

Serial Communications Interface (SCI) SPI (r_sci_spi)

Driver for the SCI peripheral on RA MCUs. This module implements
the SPI Interface.

Serial Communications Interface (SCI) UART (r_sci_uart)

Driver for the SCI peripheral on RA MCUs. This module implements
the UART Interface.

SD/MMC Host Interface (r_sdhi)

Driver for the SD/MMC Host Interface (SDHI) peripheral on RA MCUs.
This module implements the SD/MMC Interface.

Serial Peripheral Interface (r_spi)

Driver for the SPI peripheral on RA MCUs. This module implements
the SPI Interface.

Serial Sound Interface (r_ssi)

Driver for the SSIE peripheral on RA MCUs. This module implements
the 12S Interface.

Universal Serial Bus (r_usb_basic)

The USB module (r_usb_basic) provides an API to perform H /W
control of USB communication. It implements the USB Interface.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 138/ 601
Nov.08.19

Flexible Software Package

API Reference > Modules

User’s Manual

Host Mass Storage Class Driver (r_usb_hmsc)

The USB module (r_usb_hmsc) provides an API to perform hardware
control of USB communications. It implements the USB Interface.

Universal Serial Bus Peripheral Communication Device Class
(r_usb_pcdc)

This module is USB Peripheral Communication Device Class Driver
(PCDQ).
This module works in combination with (r_usb_basic module).

Watchdog Timer (r_wdt)

Driver for the WDT peripheral on RA MCUs. This module implements
the WDT Interface.

SEGGER emWin Port (rm_emwin_port)
SEGGER emWin port for RA MCUs.

FreeRTOS Plus FAT (rm_freertos_plus_fat)
Middleware for the Fat File System control on RA MCUs.

Amazon FreeRTOS Port (rm_freertos_port)

Amazon FreeRTOS port for RA MCUs.

Crypto Middleware (rm_psa_crypto)

Hardware acceleration for the mbedCrypto implementation of the
ARM PSA Crypto API.

Capacitive Touch Middleware (rm_touch)

This module supports the Capacitive Touch Sensing Unit (CTSU). It
implements the Touch Middleware Interface.

4.2.1 High-Speed Analog Comparator (r_ acmphs)

Modules

Functions

R11UMO0137EUO0081 Revision 0.81

Nov.08.19

RLENESAS Page 139 / 601

Flexible Software Package User’s Manual

API| Reference > Modules > High-Speed Analog Comparator (r_acmphs)

fsp_err t R_ACMPHS Open (comparator_ctrl t *p_ctrl, comparator_cfg_t const
*const p_cfg)

fsp_err t R_ACMPHS OutputEnable (comparator ctrl_t *const p_ctrl)

fsp_err t R_ACMPHS_InfoGet (comparator_ctrl_t *const p_ctrl,
comparator_info_t *const p_info)

fsp_err t R_ACMPHS StatusGet (comparator_ctrl_t *const p_ctrl,
comparator_status_t *const p_status)

fsp_err t R_ACMPHS Close (comparator _ctrl_t *const p_ctrl)

fsp_err t R_ACMPHS VersionGet (fsp_version_t *const p_version)

Detailed Description

This module implements the Comparator Interface using the high-speed analog comparator.

Overview

Features

The ACMPHS HAL module supports the following features:
» Callback on rising edge, falling edge or both

e Configurable debounce filter
e Option to include comparator output on VCOUT pin or ELC events

Configuration

Build Time Configurations for r acmphs

The following build time configurations are defined in fsp_cfg/r_acmphs_cfg.h:

Configuration Options Description
Parameter Checking e Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
e Disabled build.

Configurations for Comparator Driver on r_acmphs

This module can be added to the Threads tab from New -> Driver -> Analog -> Comparator Driver on
r_acmphs:

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 140 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Low-Power Analog Comparator (r_acmplp)

4.2.2 Low-Power Analog Comparator (r_acmplp)
Modules

Functions

fsp_err t R_ACMPLP_Open (comparator_ctrl_t *const p_ctrl, comparator cfg t
const *const p_cfqg)

fsp_err t R_ACMPLP_OutputEnable (comparator_ctrl_t *const p_ctrl)

fsp_err t R_ACMPLP_InfoGet (comparator_ctrl_t *const p_ctrl,
comparator_info_t *const p_info)

fsp_err t R_ACMPLP_StatusGet (comparator_ctrl_t *const p_ctrl,
comparator_status_t *const p_status)

fsp_err t R_ACMPLP_Close (comparator_ctrl_t *const p_ctrl)

fsp_err t R_ACMPLP VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the ACMPLP peripheral on RA MCUs. This module implements the Comparator Interface.

Overview

Features

The ACMPLP HAL module supports the following features:
e Normal mode or window mode
e Callback on rising edge, falling edge or both

e Configurable debounce filter
e Option to include comparator output on VCOUT pin or ELC events

Configuration

Build Time Configurations for r_acmplp

The following build time configurations are defined in fsp_cfg/r_acmplp_cfg.h:

Configuration Options Description
Parameter Checking ¢ Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
e Disabled build.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 141 /601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Low-Power Analog Comparator (r_acmplp)

Reference Voltage Selection e I[VREFO Reference Voltage Selection for
(ACMPLP1) e |[VREF1 ACMPLP1.

Configurations for Comparator Driver on r_acmplp

This module can be added to the Threads tab from New -> Driver -> Analog -> Comparator Driver on
r acmplp:

4.2.3 Analog to Digital Converter (r_adc)
Modules

Functions

fsp_err t R_ADC Open (adc_ctrl_t *p_ctrl, adc_cfg_t const *const p_cfqg)

fsp_err t R_ADC ScanCfg (adc_ctrl t *p ctrl, adc_channel cfg t const *const
p_channel cfg)

fsp_err t R_ADC InfoGet (adc_ctrl_t *p_ctrl, adc_info_t *p_adc_info)
fsp_err t R_ADC_ScanStart (adc_ctrl _t *p_ctrl)

fsp_err t R_ADC_ScanStop (adc_ctrl_t *p_ctrl)

fsp_err t R_ADC StatusGet (adc_ctrl t *p_ctrl, adc_status t *p_status)

fsp_err t R_ADC Read (adc_ctrl_t *p ctrl, adc_channel_t const reg_id, uintl6 t
*const p_data)

fsp_err t R_ADC_Read32 (adc_ctrl_t *p_ctrl, adc_channel_t const reg _id,
uint32_t *const p_data)

fsp_err t R_ADC_SampleStateCountSet (adc_ctrl_t *p ctrl, adc_sample_state t
*p_sample)

fsp_err t R_ADC Close (adc_ctrl_t *p_ctrl)

fsp_err t R _ADC OffsetSet (adc_ctrl t *const p_ctrl, adc_channel _t const
reg_id, int32_t offset)

fsp_err t R_ADC Calibrate (adc_ctrl_t *const p_ctrl, void *const p_extend)

fsp_err t R_ADC VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the ADC12, ADC14, and ADC16 peripherals on RA MCUs. This module implements the ADC
Interface.

R11UMO0137EU0081 Revision 0.81 RENESANS Page 142 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Analog to Digital Converter (r_adc)

Overview

Features
The ADC module supports the following features:

e 12, 14, or 16 bit maximum resolution depending on the MCU
e Configure scans to include:
o Multiple analog channels
o Temperature sensor channel
o Voltage sensor channel
e Configurable scan start trigger:
o Software scan triggers
o Hardware scan triggers (timer expiration, for example)
o External scan triggers from the ADTRGn port pins
e Configurable scan mode:
o Single scan mode, where each trigger starts a single scan
o Continuous scan mode, where all channels are scanned continuously
o Group scan mode, where channels are grouped into group A and group B. The
groups can be assigned different start triggers, and group A can be given priority
over group B. When group A has priority over group B, a group A trigger suspends
an ongoing group B scan.
Supports adding and averaging converted samples
Optional callback when scan completes
Supports reading converted data
Sample and hold support

Configuration

Build Time Configurations for r_adc

The following build time configurations are defined in fsp_cfg/r_adc_cfg.h:

Configuration Options Description
Parameter Checking e BSP If selected code for parameter
¢ Enabled checking is included in the
e Disabled build.

Configurations for ADC Driver on r_adc

This module can be added to the Threads tab from New -> Driver -> Analog -> ADC Driver on r_adc:

4.2.4 Asynchronous General Purpose Timer (r_agt)
Modules

Detailed Description

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 143 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Asynchronous General Purpose Timer (r_agt)

Driver for the AGT peripheral on RA MCUs. This module implements the Timer Interface.

Overview

Features
The AGT module has the following features:

Supports periodic mode, one-shot mode, and PWM mode.

Signal can be output to a pin.

Configurable period (counts per timer cycle).

Configurable duty cycle in PWM mode.

Configurable clock source, including PCLKB, LOCO, SUBCLK, and external sources input to
AGTIO.

Supports runtime reconfiguration of period.

Supports runtime reconfiguration of duty cycle in PWM mode.

Supports counting based on an external clock input to AGTIO.

Supports debounce filter on AGTIO pins.

Supports measuring pulse width or pulse period.

APIs are provided to start, stop, and reset the counter.

APIs are provided to get the current period, source clock frequency, and count direction.
APIs are provided to get the current timer status and counter value.

Selecting a Timer

RA MCUs have two timer peripherals: the General PWM Timer (GPT) and the Asynchronous General
Purpose Timer (AGT). When selecting between them, consider these factors:

GPT AGT
Low Power Modes The GPT can operate in sleep The AGT can operate in all low
mode. power modes (when count

source is LOCO or subclock).

Available Channels The number of GPT channels is All MCUs have 2 AGT channels.
device specific. All currently
supported MCUs have at least 7
GPT channels.

Timer Resolution All MCUs have at least one The AGT timers are 16-bit
32-bit GPT timer. timers.

Clock Source The GPT runs off PCLKD with a The AGT runs off PCLKB, LOCO,
configurable divider up to 1024. or subclock with a configurable
It can also be configured to divider up to 8 for PCLKB or up
count ELC events or external to 128 for LOCO or subclock.
pulses.

Configuration

Build Time Configurations for r_agt

The following build time configurations are defined in fsp_cfg/r_agt_cfg.h:

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 144 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Asynchronous General Purpose Timer (r_agt)

Configuration Options Description
Parameter Checking ¢ Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
e Disabled build.
Pin Output Support e Disabled If selected code for outputting a
e Enabled waveform to a pin is included in
the build.
Pin Input Support ¢ Disabled Enable input support to use
e Enabled pulse width measurement

mode, pulse period
measurement mode, or input
from P402, P402, or AGTIO.

Configurations for Timer Driver on r_agt

This module can be added to the Threads tab from New -> Driver -> Timers -> Timer Driver on
r agt:

4.2.5 Clock Frequency Accuracy Measurement Circuit (r_cac)
Modules

Functions

fsp_err t R_CAC Open (cac_ctrl_t *const p_ctrl, cac_cfg_t const *const p_cfqg)
fsp_err t R_CAC StartMeasurement (cac_ctrl_t *const p_ctrl)

fsp_err t R_CAC StopMeasurement (cac_ctrl_t *const p_ctrl)

fsp_err t R_CAC_Read (cac_ctrl_t *const p_ctrl, uintl6_t *const p_counter)
fsp_err t R_CAC Close (cac_ctrl_t *const p_ctrl)

fsp_err t R _CAC VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the CAC peripheral on RA MCUs. This module implements the CAC Interface.

Overview

The interface for the clock frequency accuracy measurement circuit (CAC) peripheral is used to
check a system clock frequency with a reference clock signal by counting the number of
measurement clock edges that occur between two edges of the reference clock.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 145/ 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Clock Frequency Accuracy Measurement Circuit (r_cac)

Features

e Supports clock frequency-measurement and monitoring based on a reference signal input

e Reference can be either an externally supplied clock source or an internal clock source

¢ An interrupt request may optionally be generated by a completed measurement, a detected
frequency error, or a counter overflow.

e A digital filter is available for an externally supplied reference clock, and dividers are

available for both internally supplied measurement and reference clocks.

Edge-detection options for the reference clock are configurable as rising, falling, or both.

Configuration

Build Time Configurations for r_cac

The following build time configurations are defined in fsp_cfg/r_cac_cfg.h:

Configuration Options Description
Parameter Checking ¢ Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
¢ Disabled build.

Configurations for Clock Accuracy Circuit Driver on r_cac

This module can be added to the Threads tab from New -> Driver -> Monitoring -> Clock Accuracy
Circuit Driver on r_cac:

4.2.6 Clock Generation Circuit (r_cgc)

Modules
Functions
fsp_err t R_CGC _Open (cgc_ctrl _t *const p_ctrl, cgc_cfg_t const *const p_cfg)
fsp_err t R_CGC_ClocksCfg (cgc_ctrl_t *const p_ctrl, cgc_clocks cfg t const
*const p_clock cfg)
fsp_err t R_CGC_ClockStart (cgc_ctrl_t *const p_ctrl, cgc_clock t clock source,
cgc_pll_cfg_t const *const p_pll_cfqg)
fsp_err t R_CGC_ClockStop (cgc_ctrl_t *const p_ctrl, cgc_clock_t clock_source)
fsp_err t R _CGC ClockCheck (cgc_ctrl _t *const p_ctrl, cgc_clock t
clock_source)
fsp_err t R_CGC_SystemClockSet (cgc_ctrl_t *const p_ctrl, cgc_clock t
clock source, cgc_divider _cfg_t const *const p_divider cfg)
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 146 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Clock Generation Circuit (r_cgc)

fsp_err t R _CGC _SystemClockGet (cgc_ctrl_t *const p_ctrl, cgc_clock t *const
p_clock source, cgc_divider cfg t *const p_divider _cfqg)

fsp_err t R_CGC_OscStopDetectEnable (cgc_ctrl_t *const p_ctrl)
fsp_err t R_CGC_OscStopDetectDisable (cgc_ctrl_t *const p_ctrl)
fsp_err t R_CGC_OscStopStatusClear (cgc_ctrl_t *const p_ctrl)
fsp_err t R _CGC Close (cgc_ctrl_t *const p_ctrl)

fsp_err t R_CGC VersionGet (fsp_version_t *version)

Detailed Description

Driver for the CGC peripheral on RA MCUs. This module implements the CGC Interface.

Overview
Features
The CGC module supports runtime modifications of clock settings. Key features include the following:

e Supports changing the system clock source to any of the following options (provided they
are supported on the MCU):
o High-speed on-chip oscillator (HOCO)
o Middle-speed on-chip oscillator (MOCO)
o Low-speed on-chip oscillator (LOCO)
o Main oscillator (external resonator or external clock input frequency)
o Sub-clock oscillator (external resonator)
o PLL (not available on all MCUs)
e When the system core clock frequency changes, the following things are updated:
o The CMSIS standard global variable SystemCoreClock is updated to reflect the new
clock frequency.
o Wait states for ROM and RAM are adjusted to the minimum supported value for the
new clock frequency.
o The operating power control mode is updated to the minimum supported value for
the new clock settings.

e Supports starting or stopping any of the system clock sources
e Supports changing dividers for the internal clocks

e Supports the oscillation stop detection feature

Note
This module is not required for the initial clock configuration. Initial clock settings are configurable on the Clocks
tab of the configuration tool. The initial clock settings are applied by the BSP during the startup process before
main.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 147 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Clock Generation Circuit (r_cgc)

Internal Clocks

The RA microcontrollers have up to seven internal clocks. Not all internal clocks exist on all MCUs.
Each clock domain has its own divider that can be updated in R_CGC_SystemClockSet(). The dividers
are subject to constraints described in the footnote of the table "Specifications of the Clock
Generation Circuit for the internal clocks" in the hardware manual.

The internal clocks include:

e System clock (ICLK): core clock used for CPU, flash, internal SRAM, DTC, and DMAC

e PCLKA/PCLKB/PCLKC/PCLKD: Peripheral clocks, refer to the table "Specifications of the Clock
Generation Circuit for the internal clocks" in the hardware manual to see which peripherals
are controlled by which clocks.

e FCLK: Clock source for reading data flash and for programming/erasure of both code and
data flash.

e BCLK: External bus clock

Configuration

Note
Theinitial clock settings are configurable on the Clocks tab of the configuration tool.
Thereis a configuration to enable the HOCO on reset in the OF Sl settings on the BSP tab.
The following clock related settings are configurable in the RA Common section on the BSP tab:
Main Oscillator Wait Time
Main Oscillator Clock Source (external oscillator or crystal/resonator)
Subclock Populated
Subclock Drive
Subclock Sabilization Time (ms)

o

o O o o

Build Time Configurations for r_cgc

The following build time configurations are defined in fsp_cfg/r_cgc_cfg.h:

Configuration Options Description
Parameter Checking ¢ Default (BSP) If selected code for parameter
e Enabled checking is included in the
¢ Disabled build.

Configurations for CGC Driver on r_cgc

This module can be added to the Threads tab from New -> Driver -> System -> CGC Driver on r_cgc:

4.2.7 Cyclic Redundancy Check (CRC) Calculator (r_crc)

Modules
Functions
fsp_err t R_CRC _Open (crc_ctrl_t *const p_ctrl, crc_cfg_t const *const p_cfqg)
fsp_err t R_CRC_Close (crc_ctrl_t *const p_ctrl)
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 148 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Cyclic Redundancy Check (CRC) Calculator (r_crc)

fsp_err t R_CRC_Calculate (crc_ctrl_t *const p_ctrl, crc_input_t *const
p_crc_input, uint32_t *calculatedValue)

fsp_err t R_CRC_CalculatedValueGet (crc_ctrl_t *const p_ctrl, uint32_t
*calculatedValue)

fsp_err t R_CRC_SnoopEnable (crc_ctrl_t *const p_ctrl, uint32_t crc_seed)
fsp_err t R_CRC_SnoopDisable (crc_ctrl_t *const p_ctrl)

fsp_err t R _CRC VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the CRC peripheral on RA MCUs. This module implements the CRC Interface.

Overview

The CRC module provides a API to calculate 8, 16 and 32-bit CRC values on a block of data in
memory or a stream of data over a Serial Communication Interface (SCI) channel using industry-
standard polynomials.

Features

e CRC module supports the following 8 and 16 bit CRC polynomials which operates on 8-bit
data in parallel
o X~8+X"2+X+1 (CRC-8)
o X*16+X"15+X"2+1 (CRC-16)
o X*16+X"12+X"5+1 (CRC-CCITT)
e CRC module supports the following 32 bit CRC polynomials which operates on 32-bit data in
parallel
0 XN324X"N26+X"N234 X224 XN 164+ XN 124 XM 114 XN 104 XN 8+ XN T+ XN 54X 44X
~2+X+ 1 (CRC-32)
o X324 X728+ X274 X726+ X254+ X234+ X722+ X720+ X719+
X™184+ X144 X134 XN 114X 104+ X794+ X8+ X" 6+4+1 (CRC-32C)
e CRC module can calculate CRC with LSB first or MSB first bit order.

Configuration

Build Time Configurations for r_crc

The following build time configurations are defined in fsp_cfg/r_crc_cfg.h:

Configuration Options Description
Parameter Checking e Default (BSP) If selected code for parameter
e Enabled checking is included in the
e Disabled build.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 149 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Cyclic Redundancy Check (CRC) Calculator (r_crc)

Configurations for CRC Driver on r_crc

This module can be added to the Threads tab from New -> Driver -> Monitoring -> CRC Driver on
r_crc:

4.2.8 Capacitive Touch Sensing Unit (r_ctsu)
Modules

Functions

fsp_err t R _CTSU Open (ctsu_ctrl_t *const p_ctrl, ctsu_cfg_t const *const
p_cfg)

Opens and configures the CTSU driver module. Implements
ctsu_api_t::open. More...

fsp_err t R_CTSU_ScanStart (ctsu_ctrl_t *const p_ctrl)

This function should be called each time a periodic timer expires. If
initial offset tuning is enabled, The first several calls are used to
tuning for the sensors. Once that is complete, normal processing of
the data from the last scan occurs. If a different control block should
be run on the next scan, that is set up as well, then the next scan is
started. Implements ctsu_api_t::scanStart. More...

fsp_err t R _CTSU DataGet (ctsu_ctrl t *const p_ctrl, uintl6_t *p data)

This function gets the sensor values as scanned by the CTSU.
Implements ctsu_api_t::dataGet. More...

fsp_err t R_CTSU Close (ctsu_ctrl_t *const p_ctrl)

Disables specified CTSU control block. Implements
transfer_api_t::close. More...

fsp_err t R_CTSU VersionGet (fsp_version_t *const p_version)

Return CTSU HAL driver version. Implements ctsu_api_t::versionGet.
More...

Detailed Description

This HAL driver supports the Capacitive Touch Sensing Unit (CTSU). It implements the CTSU Interface

Overview

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 150 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Capacitive Touch Sensing Unit (r_ctsu)

The capacitive touch sensing unit HAL driver (r_ctsu) provides an API to control the CTSU peripheral.
Capacitance measurement with various settings is possible by editing the configuration.

Features

e Supports both Self-capacitance multi scan mode and Mutual-capacitance full scan mode.
o The settings related to scanning can change in detail.
o Grouping of scans is possible.
e Starts scanning at any time.
o The scan may be started by a software trigger or an external trigger.
o The scan completion is signalled by the callback function.
Gets all results after scans are complete.
Additional build-time features
o Optional (build time) DTC support for CTSUWR and CTSURD respectively.
o Optional (build time) Support for real-time monitoring function by QE. (Not yet
available)

Configuration

Build Time Configurations for r_ctsu

The following build time configurations are defined in fsp_cfg/r_ctsu_cfg.h:

Configuration Options Description

Parameter Checking e Default (BSP) If selected code for parameter

e Enabled checking is included in the

e Disabled build.
Enable Support for using DTC ¢ Enabled If enabled, DTC instances will

¢ Disabled be included in the build for both

transmission and reception.
Interrupt priority level Interrupt vector number must Priority level of all CTSU
be an integer greater than 0 interrupt

(CSTU_WR,CTSU_RD,CTSU_FN)

NUM_SELF_ELEMENTS Interrupt vector number must Number of self elements
be an integer greater than 0

NUM_MUTUAL_ELEMENTS Interrupt vector number must Number of mutual elements
be an integer greater than 0

Configurations for CTSU Driver on r_ctsu

This module can be added to the Threads tab from New -> Driver -> CapTouch -> CTSU Driver on
r ctsu:

4.2.9 Digital to Analog Converter (r_dac)

Modules
Functions
R11UMO0137EU0081 Revision 0.81 RENESAS Page 151/ 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Digital to Analog Converter (r_dac)

fsp_err t R_DAC Open (dac_ctrl t *p_api_ctrl, dac_cfg_t const *const p_cfg)
fsp_err t R_DAC_ Write (dac_ctrl_t *p_api_ctrl, uintl6_t value)

fsp_err t R _DAC Start (dac_ctrl_t *p_api_ctrl)

fsp_err t R _DAC Stop (dac_ctrl_t *p_api_ctrl)

fsp_err t R_DAC Close (dac_ctrl_t *p_api_ctrl)

fsp_err t R_DAC VersionGet (fsp_version_t *p_version)

Detailed Description

Driver for the DAC12 peripheral on RA MCUs. This module implements the DAC Interface.

Overview

Features

The DAC module outputs one of 4096 voltage levels between the positive and negative reference
voltages.

e Supports setting left-justified or right-justified 12-bit value format for the 16-bit input data
registers

e Supports output amplifiers on selected MCUs

e Supports charge pump on selected MCUs

e Operate in synchronous anti-interference mode with the Analog-to-Digital Converter (ADC)
module.

Configuration

Build Time Configurations for r_dac

The following build time configurations are defined in fsp_cfg/r_dac_cfg.h:

Configuration Options Description
Parameter Checking ¢ Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
e Disabled build.

Configurations for DAC Driver on r_dac

This module can be added to the Threads tab from New -> Driver -> Analog -> DAC Driver on r_dac:

4.2.10 Direct Memory Access Controller (r_dmac)
Modules

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 152 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Direct Memory Access Controller (r_dmac)

Functions

fsp_err t R_DMAC Open (transfer_ctrl_t *const p_api_ctrl, transfer_cfg t const
*const p_cfg)

fsp_err t R_DMAC_Reconfigure (transfer_ctrl_t *const p_api_ctrl, transfer_info_t
o
p_info)

fsp_err t R_DMAC_Reset (transfer_ctrl_t *const p_api_ctrl, void const *volatile
p_src, void *volatile p_dest, uintl6_t const num_transfers)

fsp_err t R_DMAC_SoftwareStart (transfer_ctrl_t *const p_api_ctrl,
transfer_start mode_t mode)

fsp_err t R_DMAC _SoftwareStop (transfer_ctrl_t *const p_api_ctrl)
fsp_err t R_DMAC Enable (transfer _ctrl t *const p_api_ctrl)
fsp_err t R_DMAC Disable (transfer_ctrl _t *const p_api_ctrl)

fsp_err t R_DMAC InfoGet (transfer _ctrl_t *const p_api_ctrl,
transfer_properties_t *const p_info)

fsp_err t R_DMAC Close (transfer_ctrl_t *const p_api_ctrl)

fsp_err t R_DMAC VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the DMAC peripheral on RA MCUs. This module implements the Transfer Interface.

Overview

The Direct Memory Access Controller (DMAC) transfers data from one memory location to another
without using the CPU.

Features

e Supports multiple transfer modes
o Normal transfer
o Repeat transfer
o Block transfer
e Address increment, decrement, fixed, or offset modes
e Triggered by ELC events
o Some exceptions apply, see the Event table in the Event Numbers section of the
Interrupt Controller Unit chapter of the hardware manual
e Supports 1, 2, and 4 byte data units

Transfer Modes

R11UMO0137EU0081 Revision 0.81 RENESANS Page 153 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Direct Memory Access Controller (r_dmac)

The DMAC Module supports three modes of operation.

¢ Normal Mode - In normal mode, a single data unit is transfered every time the configured
ELC event is received by the DMAC channel. A data unit can be 1-byte, 2-bytes, or 4-bytes.
The source and destination addresses can be fixed, increment, decrement, or add an offset
to the next data unit after each transfer. A 16-bit counter decrements after each transfer.
When the counter reaches 0, transfers will no longer be triggered by the ELC event and the
CPU can be interrupted to signal that all transfers have finished.

* Repeat Mode - Repeat mode works the same way as normal mode, however the length is
limited to an integer in the range[1,1024]. When the transfer counter reaches 0, the
counter is reset to its configured value, the repeat area(source or destination address)
resets to its starting address and the block count remaining will decrement by 1. When the
block count reaches 0, transfers will no longer be triggered by the ELC event and the CPU
may be interrupted to signal that all transfers have finished.

e Block Mode - In block mode, the amount of data units transfered by each interrupt can be
set to an integer in the range [1,1024]. The number of blocks to transfer can also be
configured to a 16-bit number. After each block transfer the repeat area(source or
destination address) will reset to the original address and the other address will be
incremented or decremented to the next block.

Selecting the DTC or DMAC

The Transfer APl is implemented by both DTC and the DMAC so that applications can switch between
the DTC and the DMAC. When selecting between them, consider these factors:

DTC DMAC
Repeat Mode ¢ Repeats forever ¢ Configurable number of
¢ Max repeat size is 256 x repeats
4 bytes ¢ Max repeat size is 1024
x 4 bytes
Block Mode ¢ Max block size is 256 x e Max block size is 1024 x
4 bytes 4 bytes
Channels ¢ One instance per ¢ MCU specific (8
interrupt channels or less)
Chained Transfers e Supported ¢ Not Supported
Software Trigger ¢ Must use the software ¢ Has support for software
ELC event trigger without using

software ELC event

e Supports TRANSFER_ST
ART_MODE_SINGLE and
TRANSFER _START_MOD
E_REPEAT

Offset Address Mode

Not supported e Supported
Interrupts

The DTC and DMAC interrupts behave differently. The DTC uses the configured IELSR event IRQ as
the interrupt source whereas each DMAC channel has its own IRQ.

The transfer_info_t::irq setting also behaves a little differently depending on which mode is selected.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 154 / 601
Nov.08.19

Flexible Software Package

API| Reference > Modules > Direct Memory Access Controller (r_dmac)

User’s Manual

Normal Mode

DTC

DMAC

TRANSFER_IRQ_EACH
TRANSFER_IRQ _END

Repeat Mode

Interrupt after each transfer

Interrupt after last transfer

N/A

Interrupt after last transfer

DTC

DMAC

TRANSFER_IRQ_EACH
TRANSFER_IRQ_END

Block Mode

Interrupt after each transfer

Interrupt after each repeat

Interrupt after each repeat

Interrupt after last transfer

DTC

DMAC

TRANSFER_IRQ_EACH
TRANSFER_IRQ_END

Additional Considerations

Interrupt after each block

Interrupt after last block

Interrupt after each block

Interrupt after last block

e The DTC requires a moderate amount of RAM (one transfer_info_t struct per open instance
+ DTC_VECTOR TABLE_SIZE).

e The DTC stores transfer information in RAM and writes back to RAM after each transfer
whereas the DMAC stores all transfer information in registers.

e When transfers are configured for more than one activation source, the DTC must fetch the
transfer info from RAM on each interrupt. This can cause a higher latency between

transfers.

Configuration

Build Time Configurations for r_dmac

The following build time configurations are defined in fsp_cfg/r_dmac_cfg.h:

Configuration

Options

Description

Parameter Checking

e Default (BSP)
e Enabled
e Disabled

Configurations for Transfer Driver on r_dmac

If selected code for parameter
checking is included in the
build.

This module can be added to the Threads tab from New -> Driver -> Transfer -> Transfer Driver on

r dmac:

4.2.11 Data Operation Circuit (r_doc)

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 155/ 601

Flexible Software Package User’s Manual

API| Reference > Modules > Data Operation Circuit (r_doc)

Modules

Functions

fsp_err t R _DOC_Open (doc_ctrl_t *const p_api_ctrl, doc_cfg_t const *const
p_cfg)

fsp_err t R_DOC Close (doc_ctrl_t *const p_api_ctrl)

fsp_err t R _DOC StatusGet (doc_ctrl t *const p_api_ctrl, doc_status_t *const
p_status)

fsp_err t R_DOC Write (doc_ctrl_t *const p_api_ctrl, uintl6_t data)

fsp_err t R_DOC VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the DOC peripheral on RA MCUs. This module implements the DOC Interface.

Overview

Features

The DOC HAL module peripheral is used to compare, add or subtract 16-bit data and can detect the
following events:

¢ A mismatch or match between data values
» Overflow of an addition operation
» Underflow of a subtraction operation

A user-defined callback can be created to inform the CPU when any of above events occur.

Configuration

Build Time Configurations for r_doc

The following build time configurations are defined in fsp_cfg/r_doc_cfg.h:

Configuration Options Description
Parameter Checking e Default (BSP) If selected code for parameter
e Enabled checking is included in the
e Disabled build.

Configurations for Data Operation Circuit Driver on r_doc

This module can be added to the Threads tab from New -> Driver -> Monitoring -> Data Operation
Circuit Driver on r_doc:

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 156 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > D/AVE 2D Port Interface (r_drw)

4.2.12 D/AVE 2D Port Interface (r_drw)
Modules

Driver for the DRW peripheral on RA MCUs. This module is a port of D/AVE 2D.

Overview

Note
The D/AVE 2D Port Interface (D1 layer) does not provide any interfacesto the user. Consult the D/AVE 2D
driver documentation for further information.
For cross-platform compatibility purposes the D1 and D2 APIs are not bound by the Flex Software Package coding
guidelines for function names and general module functionality.

Configuration

Build Time Configurations for r_drw

The following build time configurations are defined in fsp_cfg/r_drw_cfg.h:

Configuration Options Description
Allow Indirect Mode e Enabled Enable indirect mode to allow
¢ Disabled no-copy mode for d2_adddlist

(see the D/AVE 2D driver
documentation for details).

Default Set Memory Allocation to

Custom Default to use built-in dynamic
memory allocation for the D2
heap. This will use an RTOS
heap if configured; otherwise,
standard C malloc and free will
be used.
Set to Custom to define your
own allocation scheme for the
D2 heap. In this case, the
developer will need to define
the following functions:

Memory Allocation

void * d1_malloc(size_t size)
void d1_free(void * ptr)

4.2.13 Data Transfer Controller (r_dtc)
Modules

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 157 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Data Transfer Controller (r_dtc)

Functions

fsp_err t R _DTC Open (transfer _ctrl t *const p_api_ctrl, transfer_cfg_t const
*const p_cfg)

fsp_err_t R_DTC_Reconfigure (transfer_ctrl_t *const p_api_ctrl, transfer_info_t
o
p_info)

fsp_err t R_DTC_Reset (transfer_ctrl_t *const p_api_ctrl, void const *volatile
p_src, void *volatile p_dest, uintl6_t const num_transfers)

fsp_err t R_DTC_SoftwareStart (transfer_ctrl_t *const p_api_ctrl,
transfer_start mode_t mode)

fsp_err t R_DTC SoftwareStop (transfer_ctrl_t *const p_api_ctrl)
fsp_err t R _DTC Enable (transfer ctrl t *const p_api_ctrl)
fsp_err t R _DTC Disable (transfer_ctrl t *const p_api_ctrl)

fsp_err t R_DTC InfoGet (transfer_ctrl_t *const p_api_ctrl, transfer_properties t
*const p_properties)

fsp_err t R_DTC_Close (transfer_ctrl_t *const p_api_ctrl)

fsp_err t R _DTC VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the DTC peripheral on RA MCUs. This module implements the Transfer Interface.

Overview

The Data Transfer Controller (DTC) transfers data from one memory location to another without
using the CPU.

The DTC uses a RAM based vector table. Each entry in the vector table corresponds to an entry in
the ISR vector table. When the DTC is triggered by an interrupt, it reads the DTC vector table,
fetches the transfer information, and then executes the transfer. After the transfer is executed, the
DTC writes the updated transfer info back to the location pointed to by the DTC vector table.

Features

e Supports multiple transfer modes
o Normal transfer
o Repeat transfer
o Block transfer
Chain transfers
Address increment, decrement or fixed modes
Can be triggered by any event that has reserved a slot in the interrupt vector table.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 158 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Data Transfer Controller (r_dtc)

o Some exceptions apply, see the Event table in the Event Numbers section of the
Interrupt Controller Unit chapter of the hardware manual
e Supports 1, 2, and 4 byte data units

Transfer Modes
The DTC Module supports three modes of operation.

¢ Normal Mode - In normal mode, a single data unit is transfered every time an interrupt is
received by the DTC. A data unit can be 1-byte, 2-bytes, or 4-bytes. The source and
destination addresses can be fixed, increment or decrement to the next data unit after each
transfer. A 16-bit counter(length) decrements after each transfer. When the counter
reaches 0, transfers will no longer be triggered by the interrupt source and the CPU can be
interrupted to signal that all transfers have finished.

e Repeat Mode - Repeat mode works the same way as normal mode, however the length is
limited to an integer in the range[1,256]. When the tranfer counter reaches 0, the counter
is reset to its configured value and the repeat area(source or destination address) resets to
its starting address and transfers will still be triggered by the interrupt.

e Block Mode - In block mode, the amount of data units transfered by each interrupt can be
set to an integer in the range [1,256]. The number of blocks to transfer can also be
configured to a 16-bit number. After each block transfer the repeat area(source or
destination address) will reset to the original address and the other address will be
incremented or decremented to the next block.

Note
1. The source and destination address of the transfer must be aligned to the configured data unit.
2. In normal mode the length can be set to [0,65535] . When the length is set to O, than the transaction will execute
65536 transfers not O.
3. In block mode, num_blocks can be set to [0,65535]. When the length is set to 0, than the transaction will execute
65536 transfers not 0.

Chaining Transfers

Multiple transfers can be configured for the same interrupt source by specifying an array of
transfer_info_t structs instead of just passing a pointer to one. In this configuration, every
transfer_info_t struct must be configured for a chain mode except for the last one. There are two
types of chain mode; CHAIN_MODE_EACH and CHAIN_MODE_END. If a transfer is configured in
CHAIN_MODE_EACH then it triggers the next transfer in the chain after it completes each transfer. If
a transfer is configured in CHAIN_MODE_END then it triggers the next transfer in the chain after it
completes its last transfer.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 159 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Data Transfer Controller (r_dtc)

DTC
Activation Transfer data
ource Even

Repeat mode? >{Yes]

[Ne]

Chain Mode
[Each]

Chain mode?

Chain Mode
[End, Disabled]

Decrement counter Reset fransfer
and update source Disable DTC counter and repeat
and destination activation source area(source or

pointer destination)

Chain Mode, . 5 Chain Mode, Go to next transfer
[Disabled] Chain mode [Each] info in the chain

Chain Mode

Transfer Complete

1. Counter refers to fransfer_info_t:length in normal and repeat mode and transfer_info_t:num_blocks in block mede.

Figure 93: DTC Transfer Flowchart

Selecting the DTC or DMAC

The Transfer API is implemented by both DTC and the DMAC so that applications can switch between
the DTC and the DMAC. When selecting between them, consider these factors:

DTC DMAC
Repeat Mode ¢ Repeats forever e Configurable number of
e Max repeat size is 256 x repeats
4 bytes e Max repeat size is 1024
x 4 bytes
Block Mode e Max block size is 256 x e Max block size is 1024 x
4 bytes 4 bytes
Channels ¢ One instance per e MCU specific (8
interrupt channels or less)
Chained Transfers e Supported ¢ Not Supported
Software Trigger ¢ Must use the software e Has support for software
ELC event trigger without using

software ELC event

e Supports TRANSFER_ST
ART _MODE_SINGLE and
TRANSFER _START _MOD
E_REPEAT

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 160 / 601
Nov.08.19

Flexible Software Package

API| Reference > Modules > Data Transfer Controller (r_dtc)

User’s Manual

Offset Address Mode

Additional Considerations

¢ Not supported

e Supported

e The DTC requires a moderate amount of RAM (one transfer_info_t struct per open instance
+ DTC_VECTOR TABLE_SIZE).

e The DTC stores transfer information in RAM and writes back to RAM after each transfer
whereas the DMAC stores all transfer information in registers.

e When transfers are configured for more than one activation source, the DTC must fetch the
transfer info from RAM on each interrupt. This can cause a higher latency between

transfers.

e The DTC interrupts the CPU using the activation source's IRQ. Each DMAC channel has its

own IRQ.

Interrupts

The DTC and DMAC interrupts behave differently. The DTC uses the configured IELSR event IRQ as

the interrupt source whereas each DMAC channel has its own IRQ.

The transfer_info_t::irq setting also behaves a little differently depending on which mode is selected.

Normal Mode

DTC

DMAC

TRANSFER_IRQ_EACH
TRANSFER_IRQ_END

Repeat Mode

Interrupt after each transfer

Interrupt after last transfer

N/A

Interrupt after last transfer

DTC

DMAC

TRANSFER_IRQ_EACH
TRANSFER_IRQ_END

Block Mode

Interrupt after each transfer

Interrupt after each repeat

Interrupt after each repeat

Interrupt after last transfer

DTC

DMAC

TRANSFER_IRQ EACH
TRANSFER_IRQ_END

Note

DTC_VECTOR TABLE_SIZE = (ICU_NVIC_IRQ_SOURCESX 4) Bytes

Configuration

Interrupt after each block

Interrupt after last block

Build Time Configurations for r_dtc

Interrupt after each block

Interrupt after last block

The following build time configurations are defined in fsp_cfg/r_dtc_cfg.h:

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 161/ 601

Flexible Software Package User’s Manual

API| Reference > Modules > Data Transfer Controller (r_dtc)

Configuration Options Description
Parameter Checking e Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
¢ Disabled build.
Linker section to keep DTC Configurable String Section to place the DTC vector
vector table table.

Configurations for Transfer Driver on r_dtc

This module can be added to the Threads tab from New -> Driver -> Transfer -> Transfer Driver on
r dtc:

4.2.14 Event Link Controller (r_elc)
Modules

Functions

fsp_err t R_ELC Open (elc_ctrl_t *const p_ctrl, elc_cfg_t const *const p_cfg)
fsp_err t R _ELC Close (elc_ctrl_t *const p_ctrl)

fsp_err t R_ELC SoftwareEventGenerate (elc_ctrl_t *const p_ctrl,
elc_software_event t event_number)

fsp_err t R _ELC _LinkSet (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral,
elc_event _t signal)

fsp_err t R_ELC_LinkBreak (elc_ctrl_t *const p_ctrl, elc_peripheral_t peripheral)
fsp_err t R_ELC_Enable (elc_ctrl_t *const p_ctrl)
fsp_err t R _ELC Disable (elc_ctrl t *const p_ctrl)

fsp_err t R_ELC VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the ELC peripheral on RA MCUs. This module implements the ELC Interface.

Overview

The event link controller (ELC) uses the event requests generated by various peripheral modules as
source signals to connect (link) them to different modules, allowing direct cooperation between the
modules without central processing unit (CPU) intervention. The conceptual diagram below illustrates
a potential setup where a pin interrupt triggers a timer which later triggers an ADC conversion and
CTSU scan, while at the same time a serial communication interrupt automatically starts a data
transfer. These tasks would be automatically handled without the need for polling or interrupt

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 162 / 601
Nov.08.19

Flexible Software Package

API Reference > Modules > Event Link Controller (r_elc)

User’s Manual

management.

Port IRQs

DMAC

TC

Timers

]

i
/s

ADC

o
(9]

Al

Serial

Software

Power

:

ELC

/0 Ports

HI
o
—

b
o
[9]

TSU

DTC

Ol o
=
3)

Figure 94: Event Link Controller Conceptual Diagram

In essence, the ELC is an array of multiplexers to route a wide variety of interrupt signals to a subset
of peripheral functions. Events are linked by setting the multiplexer for the desired function to the
desired signal (through R_ELC LinkSet). The diagram below illustrates one peripheral output of the
ELC. In this example, a conversion start is triggered for ADCO Group A when the GPTO counter

overflows:

Features

Available events
- -

— ELC

GPTO Match B R
GPTO Match C

Peripheral function

ADCO Start
Conversion A

GPTO Match D

O TraIHAREd D13

GPTO Overflow

K o

ELC_EVENT_GFTI_COUNTER_OVERFLOW

Selected event

Figure 95: ELC Example

The ELC HAL module can perform the following functions:

Initialize the ELC to a pre-defined set of links

Create an event link between two blocks

Break an event link between two blocks

Generate one of two software events that interrupt the CPU
Globally enable or disable event links

A variety of functions can be activated via events, including:

e General-purpose timer (GPT) control
e ADC and DAC conversion start
e Synchronized I/O port output (ports 1-4 only)

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 163 /601

Flexible Software Package User’s Manual

API Reference > Modules > Event Link Controller (r_elc)

e Capacitive touch unit (CTSU) measurement activation

Note
The available sources and peripherals may differ between devices. A full list of selectable peripherals and eventsis
available in the User's Manual for your device.
The source and destination peripherals must be configured to generate and receive events, respectively. Details on
how to enable event functionality are located in the User's Manual for your device.

Configuration

To link an event to a peripheral perform the following steps:

1. Configure the operation of the destination peripheral (including any configuration necessary
to receive events)

2. Use R_ELC _LinkSet to set the desired event link to the peripheral

3. (Optional) If autostart is not enabled, use R_ELC_Enable to enable transmission of event
signals

4. Configure the signaling module to output the desired event (typically an interrupt)

To disable the event, either use R_ELC_LinkBreak to clear the link for a specific event or
R_ELC Disable to globally disable event linking.

Note
The ELC module needs no pin, clocking or interrupt configuration; it is merely a mechanismto connect signals
between peripherals. However, when linking 1/0 Ports via the ELC the relevant 1/0 pins need to be configured as
inputs or outputs.

Build Time Configurations for r_elc

The following build time configurations are defined in fsp_cfg/r_elc_cfg.h:

Configuration Options Description
Parameter Checking ¢ Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
e Disabled build.

Configurations for ELC Driver on r_elc

This module can be added to the Threads tab from New -> Driver -> System -> ELC Driver on r_elc:

4.2.15 Ethernet (r_ether)

Modules
Functions
fsp_err t R_ETHER_Open (ether_ctrl_t *const p_ctrl, ether_cfg_t const *const
p_cfg)
After ETHERC, EDMAC and PHY-LSI are reset in software, an auto
negotiation of PHY-LSI is begun. Afterwards, the link signal change
interrupt is permitted. Implements ether_api_t::open. More...
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 164 / 601

Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules > Ethernet (r_ether)

fsp_err t R_ETHER Close (ether ctrl _t *const p_ctrl)

Disables interrupts. Removes power and releases hardware lock.
Implements ether_api_t::close. More...

fsp_err t R_ETHER Read (ether_ctrl_t *const p_ctrl, void **const pp_buffer,
uint32_t *const length_bytes)

Receive Ethernet frame. Receives data to the location specified by
the pointer to the receive buffer, using non-zero-copy
communication. Implements ether_api_t::read. More...

fsp_err t R_ETHER BufferRelease (ether ctrl t *const p_ctrl)

Release the receive buffer. Implements ether _api_t::BufferRelease.
More...

fsp_err t R_ETHER Write (ether_ctrl_t *const p_ctrl, void *const p_buffer,
uint32_t const frame_length)

Transmit Ethernet frame. Transmits data from the location specified
by the pointer to the transmit buffer, with the data size equal to the
specified frame length, using non-zero-copy communication.
Implements ether_api_t::write. More...

fsp_err t R_ETHER_LinkProcess (ether ctrl_t *const p_ctrl)

The Link up processing, the Link down processing, and the magic
packet detection processing are executed. Implements
ether _api_t::linkProcess. More...

fsp_err t R _ETHER WakeOnLANEnable (ether ctrl t *const p_ctrl)

The setting of ETHERC is changed from a usual sending and
receiving mode to the magic packet detection mode. Implements
ether_api_t::wakeOnLANEnable. More...

fsp_err t R_ETHER_VersionGet (fsp_version_t *const p_version)

Provides API and code version in the user provided pointer.
Implements ether_api_t::versionGet. More...

Detailed Description

Driver for the Ethernet peripheral on RA MCUs. This module implements the Ethernet Interface.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 165 / 601
Nov.08.19

Flexible Software Package

API Reference > Modules > Ethernet (r_ether)

User’s Manual

Overview

This module performs Ethernet frame transmission and reception using an Ethernet controller and an

Ethernet DMA controller.

Features

The Ethernet module supports the following features:

e Transmit/receive processing(Zerocopy and Non-Zerocopy)
» Callback function with returned event code
e Magic packet detection mode support

¢ Auto negotiation support

e Flow control support

e Multicast filtering support
e Broadcast filtering support
e Promiscuous mode support

Target Devices

The Ethernet module supports the following devices.

* RA6M3
* RA6M?2

Ethernet Frame Format

The Ethernet module supports the Ethernet II/IEEE 802.3 frame format.

Frame Format for Data Transmission and Reception

Preamble SFD
(7 bytes) (1 byte)

Transfer Transfer source
destination address
address (6 bytes) (6 bytes)

Lengthtype
(2 bytes)

Data + padding
(46 o 1,500 byles)

FCs
(4 bytes)

«+— Physical header —»#———— Ethernet header -+

Hardware
processing data N

Trailer —»

Payload

Valid software (Ethemet module) data

Figure 96: Frame Format Image

Yy

Hardware

—

processing data

The preamble and SFD signal the start of an Ethernet frame. The FCS contains the CRC of the
Ethernet frame and is calculated on the transmitting side. When data is received the CRC value of
the frame is calculated in hardware, and the Ethernet frame is discarded if the values do not match.
When the hardware determines that the data is normal, the valid range of receive data is:
(transmission destination address) + (transmission source address) + (length/type) + (data).

PAUSE Frame Format

Transfer destination
Address
(01:80:C2:00:00:01)

Preamble SFD
(7 bytes) (1 byte)

Transfer source Operation
address Lf;:ggg;e code
(6 bytes) (0x0001)

Pause duration
(0~65535)

Padding

FCs
{4 bytes)

<— Physical header —»4————— Ethemet header

Figure 97: Pause Frame Format Image

Payload

Trailer —»

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 166 / 601

Flexible Software Package User’s Manual

API Reference > Modules > Ethernet (r_ether)

The transmission destination address is specified as 01:80:C2:00:00:01 (a multicast address
reserved for PAUSE frames). At the start of the payload the length/type is specified as 0x8808 and
the operation code as 0x0001. The pause duration in the payload is specified by the value of the
automatic PAUSE (AP) bits in the automatic PAUSE frame setting register (APR), or the manual PAUSE
time setting (MP) bits in the manual PAUSE frame setting register (MPR).

Magic Packet Frame Format

Transfer source
Preamble SFD Transfer destination Length/type N FCs
address (FF:FF:FF:FF:FF:FF, Transfer destination Padding
(7 bytes) (1 byte) address (6 bytes) (6 bytes) (2 bytes) address x 16} (4 bytes)
«— Physical header —»#—————— Ethemet header Payload Trailer —»

Figure 98: Magic Packet Frame Format Image

In a Magic Packet, the value FF:FF:FF:FF:FF:FF followed by the transmission destination address
repeated 16 times is inserted somewhere in the Ethernet frame data.

Configuration

Build Time Configurations for r_ether

The following build time configurations are defined in fsp_cfg/driver/r_ether cfg.h:

Configuration Options Description
Parameter Checking e Default (BSP) If selected code for parameter
e Enabled checking is included in the
e Disabled build.
The polarity of the link signal e Fall -> Rise Specify the polarity of the link
output by the PHY-LSI ¢ Rise -> Fall signal output by the PHY-LSI.

When 0 is specified, link-up and
link-down correspond
respectively to the fall and rise
of the LINKSTA signal. When 1
is specified, link-up and link-
down correspond respectively
to the rise and fall of the
LINKSTA signal.

The link status is detected by ¢ Unused Use LINKSTA signal for detect

LINKSTA signal e Used link status changes 0 = unused
(use PHY-LSI status register) 1
= use (use LINKSTA signal)

Configurations for Ethernet Driver on r_ether

This module can be added to the Threads tab from New -> Driver -> Network -> Ethernet Driver on
r_ether:

4.2.16 Ethernet PHY (r_ether_phy)

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 167 / 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules > Ethernet PHY (r_ether_phy)

Modules

Functions

fsp_err t R_ETHER_PHY Open (ether_phy ctrl_t *const p_ctrl, ether_phy cfg_t
const *const p_cfg)

Resets Ethernet PHY device. Implements ether phy api_t::open. *.
More...

fsp_err t R_ETHER PHY Close (ether phy ctrl t *const p_ctrl)

Close Ethernet PHY device. Implements ether phy _api_t::close.
More...

fsp_err t R_ETHER_PHY_StartAutoNegotiate (ether phy ctrl_t *const p_ctrl)

Starts auto-negotiate. Implements
ether_phy api_t::startAutoNegotiate. More...

fsp_err t R_ETHER_PHY_LinkPartnerAbilityGet (ether_phy ctrl_t *const p_ctrl,
uint32_t *const p_line_speed_duplex, uint32_t *const p_local_pause,
uint32_t *const p_partner_pause)

Reports the other side's physical capability. Implements
ether_phy api_t::linkPartnerAbilityGet. More...

fsp_err t R _ETHER PHY LinkStatusGet (ether phy ctrl t *const p_ctrl)

Returns the status of the physical link. Implements
ether_phy api_t::linkStatusGet. More...

fsp_err t R _ETHER_PHY_ VersionGet (fsp_version_t *const p_version)

Provides API and code version in the user provided pointer.
Implements ether_phy_api_t::versionGet. More...

Detailed Description

The Ethernet PHY module (r_ether_phy) provides an API for standard Ethernet PHY communications
applications and uses the ETHERC peripherals. It implements the Ethernet PHY Interface.

Overview

The Ethernet PHY module provides Ethernet phy functionality.

Features

R11UMO0137EU0081 Revision 0.81 RENESANS Page 168 / 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules > Ethernet PHY (r_ether_phy)

The Ethernet PHY module supports the following features:
e Auto negotiation support
e Flow control support
e Link status check support

Target Devices

The Ethernet module supports the following devices.

e RA6M3
e RAGM?2

Accessing the MIl and RMII Registers

Use the PIR register to access the MIl and RMII registers in the PHY-LSI. Serial data in the MIl and
RMII management frame format is transmitted and received through the ETO_MDC and ETO_MDIO
pins controlled by software.

Mil and RMIl management frame format

Table lists the MIl and RMII management frame formats.

Access type MIl and RMII management frame
ltem PRE ST oP PHYAD REGAD TA DATA IDLE
Number 32 2 2 5 5 2 16 1
of bits
Read 1...1 01 10 00001 RRRRR Z0 DDDDD Z
DDDDD
DDDDD
D
Write 1...1 01 01 00001 RRRRR 10 DDDDD Z
DDDDD
DDDDD
D
Note

- PRE (preamble): Send 32 consecutive 1s.

- ST (start of frame): Send O1b.

- OP (operation code): Send 10b for read or 01b for write.

- PHYAD (PHY address): Up to 32 PHY-LS's can be connected to one MAC. PHY-LS s are selected with these 5
bits. When the

- PHY-LS addressis 1, send 00001b.

- REGAD (register address): One register is selected from up to 32 registersin the PHY-LS. When the register
addressis 1, send 00001b.

- TA (turnaround): Use 2-bit turnaround time to avoid contention between the register address and data during a
read operation.

Send 10b during a write operation. Release the bus for 1 bit during a read operation (Z is output).
(Thisisindicated as Z0 because 0 is output from the PHY-LS on the next clock cycle.)

- DATA (data): 16-bit data. Sequentially send or receive starting fromthe MSB.

- IDLE (IDLE condition): Wait time before inputting the next MIl or RMII management format. Release the bus
during a write

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 169 / 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules > Ethernet PHY (r_ether_phy)

operation (Z is output). No control is required, because a bus was already released during a read operation.

Configuration

Build Time Configurations for r_ether_phy

The following build time configurations are defined in fsp_cfg/driver/r_ether_phy cfg.h:

Configuration Options Description
Parameter Checking ¢ Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
¢ Disabled build.
Select PHY e Default Select PHY chip to use.
e KSZ8091RNB
e KSZ8041
e DP83620

Configurations for Ethernet Driver on r_ether_phy

This module can be added to the Threads tab from New -> Driver -> Network -> Ethernet Driver on
r_ether_phy:

4.2.17 High-Performance Flash Driver (r_flash_hp)

Modules
Functions
fsp_err t R_FLASH HP Open (flash_ctrl_t *const p_api_ctrl, flash_cfg_t const
*const p_cfg)
fsp_err t R_FLASH_HP_Write (flash_ctrl_t *const p_api_ctrl, uint32_t const
src_address, uint32_t flash_address, uint32_t const num_bytes)
fsp_err t R_FLASH HP Erase (flash_ctrl_t *const p_api_ctrl, uint32_t const
address, uint32_t const num_blocks)
fsp_err t R _FLASH HP_BlankCheck (flash_ctrl t *const p_api_ctrl, uint32_t
const address, uint32_t num_bytes, flash_result t
*blank_check_result)
fsp_err t R _FLASH HP_Close (flash_ctrl t *const p_api_ctrl)
fsp_err t R _FLASH HP_StatusGet (flash_ctrl_t *const p_api_ctrl, flash_status t
*const p_status)
fsp_err t R_FLASH HP_ AccessWindowsSet (flash_ctrl_t *const p_api_ctrl,
uint32_t const start_addr, uint32_t const end_addr)
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 170 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > High-Performance Flash Driver (r_flash_hp)

fsp_err t R _FLASH HP_AccessWindowClear (flash_ctrl_t *const p_api_ctrl)

fsp_err t R_FLASH HP_IdCodeSet (flash_ctrl_t *const p_api_ctrl, uint8 t const
*const p_id_code, flash_id_code_mode_t mode)

fsp_err t R_FLASH_HP_Reset (flash_ctrl_t *const p_api_ctrl)
fsp_err t R_FLASH_HP UpdateFlashClockFreq (flash_ctrl_t *const p_api_ctrl)

fsp_err t R _FLASH HP_StartUpAreaSelect (flash_ctrl t *const p_api_ctrl,
flash_startup_area swap t swap_type, bool is_temporary)

fsp_err t R _FLASH HP_ VersionGet (fsp_version_t *const p_version)

fsp_err t R_FLASH_HP_InfoGet (flash_ctrl_t *const p_api_ctrl, flash_info_t
*const p_info)

Detailed Description

Driver for the flash memory on RA high-performance MCUs. This module implements the Flash
Interface.

Overview

The Flash HAL module APIs allow an application to write, erase and blank check both the data and
ROM flash areas that reside within the MCU. The amount of flash memory available varies across
MCU parts.

Features
The R_FLASH_HP module has the following key features:

Blocking and non-blocking erasing, writing and blank-checking of data flash.

Blocking erasing, writing and blank-checking of code flash.

Callback functions for completion of non-blocking data-flash operations.

Access window (write protection) for ROM Flash, allowing only specified areas of code flash
to be erased or written.

e Boot block-swapping.

¢ |D code programming support.

Configuration

Build Time Configurations for r_flash_hp

The following build time configurations are defined in fsp_cfg/r_flash_hp_cfg.h:

Configuration Options Description
Parameter Checking ¢ Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 171 /601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > High-Performance Flash Driver (r_flash_hp)

e Disabled build.
Code Flash Programming e Enabled Controls whether or not code-
Enable ¢ Disabled flash programming is enabled.

Disabling reduces the amount
of ROM and RAM used by the

API.
Data Flash Programming Enable ¢ Enabled Controls whether or not data-
¢ Disabled flash programming is enabled.

Disabling reduces the amount
of ROM used by the API.

Configurations for Flash Driver on r_flash_hp

This module can be added to the Threads tab from New -> Driver -> Storage -> Flash Driver on
r_flash_hp:

4.2.18 Low-Power Flash Driver (r_flash_Ip)

Modules
Functions

fsp_err t R _FLASH LP Open (flash_ctrl_t *const p_api_ctrl, flash_cfg_t const
*const p_cfg)

fsp_err_ t R_FLASH_LP_ Write (flash_ctrl_t *const p_api_ctrl, uint32_t const
src_address, uint32_t flash_address, uint32_t const num_bytes)

fsp_err t R_FLASH_LP_Erase (flash_ctrl_t *const p_api_ctrl, uint32_t const
address, uint32_t const num_blocks)

fsp_err t R_FLASH_LP BlankCheck (flash_ctrl_t *const p_api_ctrl, uint32_t
const address, uint32_t num_bytes, flash_result t
*blank_check_result)

fsp_err t R_FLASH_LP Close (flash_ctrl_t *const p_api_ctrl)

fsp_err t R _FLASH LP_StatusGet (flash_ctrl t *const p_api_ctrl, flash_status_t
*const p_status)

fsp_err t R _FLASH LP_AccessWindowSet (flash_ctrl_t *const p_api_ctrl,
uint32_t const start_addr, uint32_t const end_addr)

fsp_err t R _FLASH LP_AccessWindowClear (flash_ctrl_t *const p_api_ctrl)

fsp_err t R_FLASH LP IdCodeSet (flash_ctrl_t *const p_api_ctrl, uint8 t const
*const p_id_code, flash_id_code_mode_t mode)

fsp_err t R_FLASH_LP Reset (flash_ctrl_t *const p_api_ctrl)

R11UMO0137EU0081 Revision 0.81 RLENESAS Page 172 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Low-Power Flash Driver (r_flash_Ip)

fsp_err t R_FLASH LP StartUpAreaSelect (flash_ctrl_t *const p_api_ctrl,
flash_startup_area_swap_t swap_type, bool is_temporary)

fsp_err t R_FLASH_LP UpdateFlashClockFreq (flash_ctrl_t *const p_api_ctrl)
fsp_err t R _FLASH LP VersionGet (fsp_version_t *const p_version)

fsp_err_ t R_FLASH_LP_InfoGet (flash_ctrl_t *const p_api_ctrl, flash_info_t *const
p_info)

Detailed Description

Driver for the flash memory on RA low-power MCUs. This module implements the Flash Interface.

Overview

The Flash HAL module APIs allow an application to write, erase and blank check both the data and
code flash areas that reside within the MCU. The amount of flash memory available varies across
MCU parts.

Features
The Low-Power Flash HAL module has the following key features:

Blocking and non-blocking erasing, writing and blank-checking of data flash.

Blocking erasing, writing and blank checking of code flash.

Callback functions for completion of non-blocking data flash operations.

Access window (write protection) for code flash, allowing only specified areas of code flash
to be erased or written.

* Boot block-swapping.

e ID code programming support.

Configuration

Build Time Configurations for r_flash_Ip

The following build time configurations are defined in fsp_cfg/r_flash_lp_cfg.h:

Configuration Options Description
Parameter Checking ¢ Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
¢ Disabled build.
Code Flash Programming e Enabled Controls whether or not code-
Enable ¢ Disabled flash programming is enabled.

Disabling reduces the amount
of ROM and RAM used by the

API.
Data Flash Programming Enable e Enabled Controls whether or not data-
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 173/ 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Low-Power Flash Driver (r_flash_Ip)

¢ Disabled flash programming is enabled.
Disabling reduces the amount
of ROM used by the API.

Configurations for Flash Driver on r_flash_Ip

This module can be added to the Threads tab from New -> Driver -> Storage -> Flash Driver on
r_flash_lIp:

4.2.19 Graphics LCD Controller (r_glcdc)
Modules

Functions

fsp_err t R_GLCDC Open (display_ctrl _t *const p_api_ctrl, display_cfg_t const
*const p_cfg)

Open GLCDC module. More...

fsp_err t R _GLCDC Close (display ctrl t *const p_api_ctrl)
Close GLCDC module. More...

fsp_err t R_GLCDC Start (display_ctrl_t *const p_api_ctrl)
Start GLCDC module. More...

fsp_err t R_GLCDC Stop (display_ctrl_t *const p_api_ctrl)
Stop GLCDC module. More...

fsp_err t R _GLCDC LayerChange (display_ctrl_t const *const p_api_ctrl,
display_runtime_cfg_t const *const p_cfg, display_frame_layer t
layer)

Change layer parameters of GLCDC module at runtime. More...

fsp_err t R_GLCDC BufferChange (display_ctrl_t const *const p_api_ctrl,
uint8_t *const framebuffer, display frame_layer t layer)

Change the framebuffer pointer for a layer. More...

fsp_err t R_GLCDC_ ColorCorrection (display_ctrl_t const *const p_api_ctrl,
display_correction_t const *const p_correction)

Perform color correction through the GLCDC module. More...

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 174/ 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Graphics LCD Controller (r_glcdc)

fsp_err t R_GLCDC_ClutUpdate (display_ctrl_t const *const p_api_ctrl,
display_clut _cfg_t const *const p_clut cfg, display frame_layer t
layer)

Update a color look-up table (CLUT) in the GLCDC module. More...

fsp_err t R _GLCDC StatusGet (display ctrl_t const *const p_api_ctrl,
display status_t *const p_status)

Get status of GLCDC module. More...

fsp_err t R_GLCDC VersionGet (fsp_version_t *p_version)
Get version of R_GLCDC module. More...

Detailed Description

Driver for the GLCDC peripheral on RA MCUs. This module implements the Display Interface.

Overview

The GLCDC is a multi-stage graphics output peripheral designed to automatically generate timing
and data signals for LCD panels. As part of its internal pipeline the two internal graphics layers can
be repositioned, alpha blended, color corrected, dithered and converted to and from a wide variety
of pixel formats.

Features

The following features are available:

Feature Options

Input color formats ARGB8888, ARGB4444, ARGB1555, RGB888
(32-bit), RGB565, CLUT 8bpp, CLUT 4bpp, CLUT
lbpp

Output color formats RGB888, RGB666, RGB565, Serial RGB888 (8-bit
parallel)

Correction processes Alpha blending, positioning, brightness and
contrast, gamma correction, dithering

Timing signals Dot clock, Vsync, Hsync, Vertical and horizontal
data enable (DE)

Maximum resolution Up to 1020 x 1008 pixels (dependent on sync
signal width)

Maximum dot clock 60MHz for serial RGB mode, 54MHz otherwise

R11UMO0137EU0081 Revision 0.81 RLENESAS Page 175/ 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Graphics LCD Controller (r_glcdc)

Internal clock divisors 1-9, 12, 16, 24, 32

Interrupts Vsync (line detect), Underflow

Other functions Byte-order and endianness control, line repeat
function

Configuration

Build Time Configurations for r_glcdc

The following build time configurations are defined in fsp_cfg/r_glcdc_cfg.h:

Configuration Options Description
Parameter Checking e Default (BSP) If selected code for parameter
e Enabled checking is included in the
¢ Disabled build.
Color Correction e On If selected code to adjust
o Off brightness, contrast and

gamma settings is included in
the build. When disabled all
color correction configuration
options are ignored.

4.2.20 General PWM Timer (r_gpt)

Modules
Functions
fsp_err t R_GPT Stop (timer_ctrl_t *const p_ctrl)
fsp_err t R_GPT Start (timer_ctrl_t *const p_ctrl)
fsp_err t R_GPT Reset (timer_ctrl_t *const p_ctrl)
fsp_err t R _GPT _Enable (timer_ctrl_t *const p_ctrl)
fsp_err t R_GPT Disable (timer_ctrl_t *const p_ctrl)
fsp_err t R_GPT_PeriodSet (timer_ctrl_t *const p_ctrl, uint32_t const
period_counts)
fsp_err t R_GPT DutyCycleSet (timer_ctrl_t *const p_ctrl, uint32_t const
duty_cycle_counts, uint32_t const pin)
fsp_err t R_GPT InfoGet (timer_ctrl _t *const p_ctrl, timer_info_t *const p_info)
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 176 / 601

Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules > General PWM Timer (r_gpt)

fsp_err t R_GPT StatusGet (timer_ctrl_t *const p_ctrl, timer_status_t *const
p_status)

fsp_err t R_GPT Close (timer_ctrl_t *const p_ctrl)

fsp_err t R_GPT_VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the GPT32 and GPT16 peripherals on RA MCUs. This module implements the Timer
Interface.

Overview

The GPT module can be used to count events, measure external input signals, generate a periodic
interrupt, or output a periodic or PWM signal to a GTIOC pin.

This module supports the GPT peripherals GPT32EH, GPT32E, GPT32, and GPT16. GPT16 is a 16-bit
timer. The other peripherals (GPT32EH, GPT32E, and GPT32) are 32-bit timers. The 32-bit timers are
all treated the same in this module from the API perspective.

Features
The GPT module has the following features:

e Supports periodic mode, one-shot mode, and PWM mode.

e Supports count source of PCLK, GTETRG pins, GTIOC pins, or ELC events.

e Supports debounce filter on GTIOC pins.

Signal can be output to a pin.

Configurable period (counts per timer cycle).

Configurable duty cycle in PWM mode.

Supports runtime reconfiguration of period.

Supports runtime reconfiguration of duty cycle in PWM mode.

APIs are provided to start, stop, and reset the counter.

APIs are provided to get the current period, source clock frequency, and count direction.
APIs are provided to get the current timer status and counter value.

Supports start, stop, clear, count up, count down, and capture by external sources from
GTETRG pins, GTIOC pins, or ELC events.

Selecting a Timer

RA MCUs have two timer peripherals: the General PWM Timer (GPT) and the Asynchronous General
Purpose Timer (AGT). When selecting between them, consider these factors:

GPT AGT
Low Power Modes The GPT can operate in sleep The AGT can operate in all low
mode. power modes.
Available Channels The number of GPT channels is All MCUs have 2 AGT channels.

device specific. All currently
supported MCUs have at least 7
GPT channels.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 177/ 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules > General PWM Timer (r_gpt)

Timer Resolution All MCUs have at least one The AGT timers are 16-bit
32-bit GPT timer. timers.
Clock Source The GPT runs off PCLKD witha The AGT runs off PCLKB, LOCO,

configurable divider up to 1024. or subclock.
It can also be configured to

count ELC events or external

pulses.

Configuration

Build Time Configurations for r_gpt

The following build time configurations are defined in fsp_cfg/r_gpt cfg.h:

Configuration Options Description
Parameter Checking e Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
e Disabled build.
Pin Output Support e Disabled If selected code for outputting a
e Enabled waveform to a pin is included in
the build.

Configurations for Timer Driver on r_gpt

This module can be added to the Threads tab from New -> Driver -> Timers -> Timer Driver on
r gpt:

4.2.21 Interrupt Controller Unit (r_icu)
Modules

Functions

fsp_err t R_ICU ExternallrqOpen (external_irq_ctrl_t *const p_api_ctrl,
external_irq_cfg_t const *const p_cfg)

fsp_err t R_ICU_ExternallrgEnable (external irq_ctrl_t *const p_api_ctrl)
fsp_err t R_ICU_ExternallrgDisable (external_irq_ctrl_t *const p_api_ctrl)
fsp_err t R_ICU _ExternallrgVersionGet (fsp_version_t *const p_version)

fsp_err_t R_ICU_ExternallrgClose (external_irg_ctrl_t *const p_api_ctrl)

Detailed Description

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 178/ 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Interrupt Controller Unit (r_icu)

Driver for the ICU peripheral on RA MCUs. This module implements the External IRQ Interface.

Overview

The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC, DTC, and
DMAC modules. R_ICU software module only implements the External IRQ Interface. The external_irq
interface is for configuring interrupts to fire when a trigger condition is detected on an external IRQ
pin.

Features

e Supports configuring interrupts for IRQ pins on the target MCUs
o Enabling and disabling interrupt generation.
o Configuring interrupt trigger on rising edge, falling edge, both edges, or low level
signal.
o Enabling and disabling the IRQ noise filter.
e Supports configuring a user callback function, which will be invoked by the HAL module
when an external pin interrupt is generated.

Configuration

Build Time Configurations for r_icu

The following build time configurations are defined in fsp_cfg/r_icu_cfg.h:

Configuration Options Description
Parameter Checking ¢ Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
e Disabled build.

Configurations for External IRQ Driver on r_icu

This module can be added to the Threads tab from New -> Driver -> Input -> External IRQ Driver on
r_icu:

4.2.22 12C Master on IIC (r_iic_master)

Modules
Functions
fsp_err t R_IIC_MASTER Open (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master _cfg_t const *const p_cfqg)
fsp_err t R_IIC_MASTER Read (i2c_master ctrl_t *const p_api_ctrl, uint8_t
*const p_dest, uint32_t const bytes, bool const restart)
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 179 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > 12C Master on IIC (r_iic_master)

fsp_err t R_IIC_MASTER Write (i2c_master ctrl_t *const p_api_ctrl, uint8_t
*const p_src, uint32_t const bytes, bool const restart)

fsp_err t R_IIC_MASTER_Abort (i2c_master_ctrl_t *const p_api_ctrl)

fsp_err t R_IIC_MASTER SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl,
uint32_t const slave, i2c_master_addr_mode_t const addr_mode)

fsp_err t R_IIC_MASTER Close (i2c_master_ctrl_t *const p_api_ctrl)

fsp_err t R_IIC_MASTER VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the IIC peripheral on RA MCUs. This module implements the 12C Master Interface.

Overview

The 12C master on 1IC HAL module supports transactions with an 12C Slave device. Callbacks must be
provided which would be invoked when a transmission or receive has been completed. The callback
arguments will contain information about the transaction status, bytes transferred and a pointer to
the user defined context.

Features

e Supports multiple transmission rates
o Standard Mode Support with up to 100-kHz transaction rate.
o Fast Mode Support with up to 400-kHz transaction rate.
o Fast Mode Plus Support with up to 1-MHz transaction rate.
I2C Master Read from a slave device.
I12C Master Write to a slave device.
Abort any in-progress transactions.
Set the address of the slave device.
Non-blocking behavior is achieved by the use of callbacks.
Additional build-time features
o Optional (build time) DTC support for read and write respectively.
o Optional (build time) support for 10-bit slave addressing.

Configuration

Build Time Configurations for r_iic_master

The following build time configurations are defined in fsp_cfg/r_iic_master_cfg.h:

Configuration Options Description
Parameter Checking e Default (BSP) If selected code for parameter
e Enabled checking is included in the
¢ Disabled build.
DTC on Transmission and e Enabled If enabled, DTC instances will
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 180 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > 12C Master on IIC (r_iic_master)

Reception ¢ Disabled be included in the build for both
transmission and reception.
10-bit slave addressing ¢ Enabled If enabled, the driver will
¢ Disabled support 10-bit slave addressing

mode along with the default
7-bit slave addressing mode.

Configurations for 12C Master Driver on r_iic_master

This module can be added to the Threads tab from New -> Driver -> Connectivity -> 12C Master
Driver on r_iic_master:

4.2.23 12C Slave on IIC (r_iic_slave)
Modules

Functions

fsp_err t R_IIC_SLAVE Open (i2c_slave _ctrl_t *const p_api_ctrl, i2c_slave cfg t
const *const p_cfg)

fsp_err t R_IIC_ SLAVE Read (i2c_slave ctrl t *const p_api_ctrl, uint8 t *const
p_dest, uint32_t const bytes)

fsp_err t R_IIC_SLAVE Write (i2c_slave ctrl t *const p_api_ctrl, uint8_t *const
p_src, uint32_t const bytes)

fsp_err t R_IIC_SLAVE Close (i2c_slave_ctrl_t *const p_api_ctrl)

fsp_err t R_IIC_SLAVE VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the IIC peripheral on RA MCUs. This module implements the 12C Slave Interface.

Overview

Features

e Supports multiple transmission rates
o Standard Mode Support with up to 100-kHz transaction rate.
o Fast Mode Support with up to 400-kHz transaction rate.
o Fast Mode Plus Support with up to 1-MHz transaction rate.
Reads data written by master device.
Write data which is read by master device.
Can be assigned a 10-bit address.
Clock stretching is supported and can be implemented via callbacks.
Provides Transmission/Reception transaction size in the callback.
I12C Slave can notify the following events via callbacks: Transmission/Reception Request,
Transmission/Reception Request for more data, Transmission/Reception Completion, Error

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 181/ 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > 12C Slave on IIC (r_iic_slave)

Condition.

Configuration

Build Time Configurations for r_iic_slave

The following build time configurations are defined in fsp_cfg/r_iic_slave_cfg.h:

Configuration Options Description
Parameter Checking ¢ Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
¢ Disabled build.

Configurations for 12C Slave Driver on r_iic_slave

This module can be added to the Threads tab from New -> Driver -> Connectivity -> 12C Slave Driver
on r_iic_slave:

4.2.24 1/0 Ports (r_ioport)

Modules
Functions

fsp_err t R_IOPORT Open (ioport_ctrl_t *const p_ctrl, const ioport _cfg_t *p_cfg)

fsp_err t R_IOPORT Close (ioport_ctrl_t *const p_ctrl)

fsp_err_t R_IOPORT_PinsCfg (ioport_ctrl_t *const p_ctrl, const ioport_cfg_t
*p_cfg)

p_cig

fsp_err t R_IOPORT PinCfg (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
uint32_t cfg)

fsp_err t R_IOPORT_PinEventinputRead (ioport _ctrl_t *const p_ctrl,
bsp_io_port_pin_t pin, bsp_io_level t *p_pin_event)

fsp_err t R_IOPORT_PinEventOutputWrite (ioport_ctrl t *const p_ctrl,
bsp_io_port pin_t pin, bsp_io_level t pin_value)

fsp_err t R_IOPORT _PinRead (ioport_ctrl t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t *p_pin_value)

fsp_err t R_IOPORT _PinWrite (ioport_ctrl_t *const p_ctrl, bsp_io_port_pin_t pin,
bsp_io_level_t level)

fsp_err_t R_IOPORT_PortDirectionSet (ioport_ctrl_t *const p_ctrl, bsp_io_port_t
port, ioport_size t direction_values, ioport_size_t mask)

R11UMO0137EU0081 Revision 0.81 RLENESAS Page 182 / 601

Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules > I/O Ports (r_ioport)

fsp_err t R_IOPORT PortEventinputRead (ioport _ctrl t *const p_ctrl,
bsp_io_port t port, ioport_size t *event data)

fsp_err t R_IOPORT PortEventOutputWrite (ioport_ctrl_t *const p_ctrl,
bsp_io_port t port, ioport_size t event data, ioport_size t
mask_value)

fsp_err t R_IOPORT PortRead (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size t *p_port value)

fsp_err_t R_IOPORT_PortWrite (ioport_ctrl_t *const p_ctrl, bsp_io_port_t port,
ioport_size_t value, ioport_size_t mask)

fsp_err t R_IOPORT EthernetModeCfg (ioport_ctrl_t *const p_ctrl,
ioport_ethernet_channel_t channel, ioport_ethernet_mode_t mode)

fsp_err t R_IOPORT VersionGet (fsp_version_t *p_data)

Detailed Description

Driver for the I/O Ports peripheral on RA MCUs. This module implements the I/O Port Interface.

Overview

The I/O port pins operate as general I/O port pins, 1/O pins for peripheral modules, interrupt input
pins, analog 1/O, port group function for the ELC, or bus control pins.

Features

The 1/0 PORT HAL module can not only configure the direction of the pin/pins but also other options
provided as follows:

Pull-up

NMOS/PMOS

Drive strength

Event edge trigger (falling, rising or both)

Whether the pin is to be used as an IRQ pin

Whether the pin is to be used as an analog pin

Whether the pin is to be used as a peripheral pin and which peripheral

The module also provides the following functionality:

e Sets event output data
e Reads event input data

Configuration

The 1/0 PORT HAL module must be configured by the user for the desired operation. The operating
state of an I/O pin can be set via the RA configurator. When the RA project is built, a pin
configuration file is created. When the application runs, the BSP will configure the MCU IO port
accordingly, using the same API functions mentioned in this document.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 183/ 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules > I/O Ports (r_ioport)

Build Time Configurations for r_ioport

The following build time configurations are defined in fsp_cfg/r_ioport_cfg.h:

Configuration Options Description
Parameter Checking e Default (BSP) If selected code for parameter
e Enabled checking is included in the
¢ Disabled build.

Configurations for I/O Port Driver on r_ioport

This module can be added to the Threads tab from New -> Driver -> System -> |I/O Port Driver on
r_ioport:

4.2.25 Independent Watchdog Timer (r_iwdt)
Modules

Functions

fsp_err t R_IWDT_Refresh (wdt_ctrl_t *const p_api_ctrl)

fsp_err t R_IWDT Open (wdt_ctrl_t *const p_api_ctrl, wdt_cfg_t const *const
p_cfg)

fsp_err t R _IWDT StatusClear (wdt _ctrl t *const p_api_ctrl, const wdt_status t
status)

fsp_err_ t R_IWDT_StatusGet (wdt_ctrl_t *const p_api_ctrl, wdt_status_t *const
p_status)

fsp_err t R_IWDT_CounterGet (wdt_ctrl_t *const p_api_ctrl, uint32_t *const
p_count)

fsp_err t R_IWDT TimeoutGet (wdt ctrl t *const p_api_ctrl,
wdt_timeout_values_t *const p_timeout)

fsp_err t R_IWDT VersionGet (fsp_version_t *const p_data)

Detailed Description

Driver for the IWDT peripheral on RA MCUs. This module implements the WDT Interface.

Overview

The independent watchdog timer is used to recover from unexpected errors in an application. The
timer must be refreshed periodically in the permitted count window by the application. If the count is
allowed to underflow or refresh occurs outside of the valid refresh period, the IWDT resets the device

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 184/ 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Independent Watchdog Timer (r_iwdt)

or generates an NMI.
Features
The IWDT HAL module has the following key features:
e When the IWDT underflows or is refreshed outside of the permitted refresh window, one of
the following events can occur:
o Resetting of the device
o Generation of an NMI
e The IWDT begins counting at reset.
Selecting a Watchdog

RA MCUs have two watchdog peripherals: the watchdog timer (WDT) and the independent watchdog
timer (IWDT). When selecting between them, consider these factors:

WDT IWDT
Start Mode The WDT can be started from The IWDT can only be
the application (register start configured by hardware to start
mode) or configured by automatically.

hardware to start automatically
(auto start mode).

Clock Source The WDT runs off a peripheral The IWDT has its own clock
clock. source which improves safety.

Configuration

The IWDT can be configured using the OFSO0 register settings on the BSP tab.

Build Time Configurations for r_iwdt

The following build time configurations are defined in fsp_cfg/r_iwdt_cfg.h:

Configuration Options Description
Parameter Checking e Default (BSP) If selected code for parameter
e Enabled checking is included in the
¢ Disabled build.

Configurations for Watchdog Driver on r_iwdt

This module can be added to the Threads tab from New -> Driver -> Monitoring -> Watchdog Driver
on r_iwdt:

4.2.26 JPEG Codec (r_jpeg)

Modules

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 185 / 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules > JPEG Codec (r_jpeg)

Functions

fsp_err t R_JPEG_Decode_Open (jpeg_decode_ctrl_t *const p_api_ctrl,
jpeg_decode cfg_t const *const p_cfqg)
Initialize the JPEG Codec module. More...

fsp_err t R_JPEG_Decode OutputBufferSet (jpeg decode ctrl t *p_api_ctrl, void
*p_output_buffer, uint32_t output buffer_size)
Assign output buffer to the JPEG Codec for storing output data.
More...

fsp_err t R _JPEG Decode LinesDecodedGet (jpeg _decode ctrl t *p_api_ctrl,
uint32_t *p_lines)
Returns the number of lines decoded into the output buffer. More...

fsp_err t R_JPEG_Decode_ HorizontalStrideSet (jpeg_decode_ctrl_t *p_api_ctrl,
uint32_t horizontal_stride)
Configure horizontal stride setting. More...

fsp_err t R_JPEG_Decode_InputBufferSet (jpeg_decode ctrl_t *const p_api_ctrl,
void *p_data_buffer, uint32_t data_buffer_size)
Assign input data buffer to JPEG codec for processing. More...

fsp_err t R _JPEG_Decode Close (jpeg_decode_ctrl_t *p_api_ctrl)
Cancel an outstanding JPEG codec operation and close the device.
More...

fsp_err t R_JPEG_Decode_ImageSizeGet (jpeg_decode_ctrl_t *p_api_ctrl,
uintl6_t *p_horizontal_size, uintl6_t *p_vertical_size)
Obtain the size of the image. This operation is valid during JPEG
decoding operation. More...

fsp_err t R_JPEG_Decode_StatusGet (jpeg _decode_ctrl t *p _api_ctrl,
jpeg_decode_status_t *p_status)
Get the status of the JPEG codec. This function can also be used to
poll the device. More...

fsp_err t R _JPEG Decode ImageSubsampleSet (jpeg decode ctrl t *const
p_api_ctrl, jpeg_decode_subsample_t horizontal_subsample,
jpeg_decode subsample_t vertical_subsample)

R11UMO0137EU0081 Revision 0.81 RLENESAS Page 186 / 601

Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules > JPEG Codec (r_jpeg)

Configure horizontal and vertical subsample. More...

fsp_err t R _JPEG_Decode PixelFormatGet (jpeg_decode_ctrl_t *p_api_ctrl,
jpeg_decode color_space_t *p_color_space)

Get the input pixel format. More...

fsp_err t R_JPEG_Decode VersionGet (fsp_version_t *p_version)

Get the version of the JPEG Codec driver. More...

Detailed Description

Driver for the JPEG peripheral on RA MCUs. This module implements the JPEG Codec Interface.

Overview

The JPEG Codec is a hardware block providing JPEG image encode and decode functionality in
parallel with other functions. Images can optionally be partially processed facilitating streaming
applications.

Features
The JPEG Codec provides a number of options useful in a variety of applications:

Basic encoding and decoding

Streaming input and/or output

Decoding JPEGs of unknown size

Shrink (sub-sample) an image during the decoding process

Rearrange input and output byte order (byte, word and/or longword swap)
JPEG error detection

The specifications for the codec are as follows:

Feature Options
Decompression input formats Baseline YCbCr 4:4:4, 4:2:2, 4:2:0 and 4:1:1
Decompression output formats ARGB8888, RGB565
Byte reordering Byte, halfword and/or word swapping on input
and output
Interrupt sources Image size acquired, input/output data pause,

decode complete, error

Configuration

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 187 / 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules > JPEG Codec (r_jpeg)

Build Time Configurations for r_jpeg

The following build time configurations are defined in fsp_cfg/r_jpeg_cfg.h:

Configuration Options Description
Parameter Checking e Default (BSP) If selected code for parameter
e Enabled checking is included in the
e Disabled build.
Decode Support ¢ Enabled If selected code for decoding
¢ Disabled JPEG images is included in the
build.
Encode Support Disabled If selected code for encoding
JPEG images is included in the
build.

4.2.27 Key Interrupt (r_kint)
Modules

Functions

fsp_err_t R_KINT_Open (keymatrix_ctrl_t *const p_api_ctrl, keymatrix_cfg_t
const *const p_cfqg)

fsp_err t R_KINT Enable (keymatrix_ctrl_t *const p_api_ctrl)
fsp_err_t R_KINT _Disable (keymatrix_ctrl_t *const p_api_ctrl)
fsp_err t R_KINT Close (keymatrix_ctrl_t *const p_api_ctrl)

fsp_err t R_KINT VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the KINT peripheral on RA MCUs. This module implements the Key Matrix Interface.

Overview

The KINT module configures the Key Interrupt (KINT) peripheral to detect rising or falling edges on
any of the KINT channels. When such an event is detected on any of the configured pins, the module
generates an interrupt.

Features
¢ Rising and falling edges on KINT channels

e A callback for notifying the application when edges are detected on the configured channels
e Supports a matrix keypad with edges on any two channels

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 188 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Key Interrupt (r_kint)

Configuration

Build Time Configurations for r_kint

The following build time configurations are defined in fsp_cfg/r_kint_cfg.h:

Configuration Options Description
Parameter Checking Enable e Default (BSP) If selected code for parameter
e Enabled checking is included in the
e Disabled build.

Configurations for Key Matrix Driver on r_kint

This module can be added to the Threads tab from New -> Driver -> Input -> Key Matrix Driver on
r _kint:

4.2.28 Low Power Modes (r_Ipm)
Modules

Functions

fsp_err t R _LPM Open (Ipm_ctrl t *const p_api_ctrl, Ipm_cfg _t const *const
p_cfg)

fsp_err t R_LPM Close (Ipm_ctrl_t *const p_api_ctrl)

fsp_err t R_LPM_LowPowerReconfigure (Ipm_ctrl_t *const p_api_ctrl, Iom_cfg_t
const *const p_cfqg)

fsp_err t R_LPM_LowPowerModeEnter (Ipm_ctrl_t *const p_api_ctrl)
fsp_err t R_LPM VersionGet (fsp_version_t *const p_version)

fsp_err t R_LPM loKeepClear (Ipm_ctrl_t *const p_api_ctrl)

Detailed Description

Driver for the LPM peripheral on RA MCUs. This module implements the Low Power Modes Interface.

Overview

The low power modes driver is used to configure and place the device into the desired low power
mode. Various sources can be configured to wake from standby, request snooze mode, end snooze
mode or end deep standby mode.

Features

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 189 / 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules > Low Power Modes (r_lpm)

The LPM HAL module has the following key features:

* Supports the follwowing low power modes:
o Deep Software Standby mode (On supported MCUs)
o Software Standby mode
o Sleep mode
°o Snooze mode
e Supports reducing power consumption when in deep software standby mode through
internal power supply control and by resetting the states of I/O ports.
e Supports disabling and enabling the MCU's other hardware peripherals

Configuration

Build Time Configurations for r_Ipm

The following build time configurations are defined in fsp_cfg/r_lpm_cfg.h:

Configuration Options Description
Parameter Checking e Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
e Disabled build.

Configurations for Low Power Modes Driver on r_Ipm

This module can be added to the Threads tab from New -> Driver -> Power -> Low Power Modes
Driver on r_lpm:

4.2.29 Low Voltage Detection (r_lvd)
Modules

Functions

fsp_err t R_LVD Open (lvd_ctrl_t *const p_api_ctrl, Ivd_cfg_t const *const
p_cfg)

fsp_err t R_LVD_Close (lvd_ctrl_t *const p_api_ctrl)

fsp_err t R_LVD_ StatusGet (Ivd ctrl_t *const p_api_ctrl, Ivd_status t
*p_lvd_status)

fsp_err t R_LVD_ StatusClear (lvd_ctrl_t *const p_api_ctrl)

fsp_err t R_LVD VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the LVD peripheral on RA MCUs. This module implements the Low Voltage Detection
Interface.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 190 / 601
Nov.08.19

Flexible Software Package

API| Reference > Modules > Low Voltage Detection (r_Ivd)

User’s Manual

Overview

The Low Voltage Detection module configures the voltage monitors to detect when V¢ crosses a

specified threshold.

Features

The LVD HAL module supports the following functions:

e Two run-time configurable voltage monitors (Voltage Monitor 1, Voltage Monitor 2)
o Configurable voltage threshold

o

[o}

[e]

[e]

Configuration

Digital filter (Available on specific MCUs)

Support for both interrupt or polling
= NMI or maskable interrupt can be configured

Rising, falling, or both edge event detection

Support for resetting the MCU when V¢ falls below configured threshold.

Build Time Configurations for r_Ivd

The following build time configurations are defined in fsp_cfg/r_lvd_cfg.h:

Configuration

Options

Description

Parameter Checking

Configurations for Low Voltage Detection Driver on r_lvd

e Default (BSP)

e Enabled
e Disabled

If selected code for parameter
checking is included in the

This module can be added to the Threads tab from New -> Driver -> Power -> Low Voltage Detection

Driver on r_lvd:

4.2.30 Realtime Clock (r_rtc)

Modules
Functions
fsp_err t
fsp_err t
fsp_err t
fsp_err t

R_RTC Open (rtc_ctrl_t *const p_ctrl, rtc_cfg_t const *const p_cfg)

R_RTC Close (rtc_ctrl_t *const p_ctrl)

R_RTC_CalendarTimeSet (rtc_ctrl_t *const p_ctrl, rtc_time_t *const

p_time)

R _RTC CalendarTimeGet (rtc_ctrl _t *const p_ctrl, rtc_time_t *const

p_time)

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 191 /601

Flexible Software Package User’s Manual

API Reference > Modules > Realtime Clock (r_rtc)

fsp_err t R_RTC_CalendarAlarmSet (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t
*const p_alarm)

fsp_err t R_RTC_CalendarAlarmGet (rtc_ctrl_t *const p_ctrl, rtc_alarm_time_t
*const p_alarm)

fsp_err t R_RTC_PeriodiclrqRateSet (rtc_ctrl_t *const p_ctrl,
rtc_periodic_irq_select t const rate)

fsp_err t R _RTC_ErrorAdjustmentSet (rtc_ctrl t *const p_ctrl,
rtc_error_adjustment_cfg_t const *const err_adj cfqg)

fsp_err t R_RTC InfoGet (rtc_ctrl_t *const p_ctrl, rtc_info_t *const p_rtc_info)

fsp_err t R_RTC VersionGet (fsp_version_t *version)

Detailed Description

Driver for the RTC peripheral on RA MCUs. This module implements the RTC Interface.

Overview

The RTC HAL module configures the RTC module and controls clock, calendar and alarm functions. A
callback can be used to respond to the alarm and periodic interrupt.

Features

e RTC time and date get and set.

e RTC time and date alarm get and set.

e RTC time counter start and stop.

e RTC alarm and periodic event notification.

The RTC HAL module supports three different interrupt types:

e An alarm interrupt generated on a match of any combination of year, month, day, day of

the week, hour, minute or second

A periodic interrupt generated every 2, 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, or 1/256

second(s)

e A carry interrupt is used internally when reading time from the RTC calender to get
accurant time readings.

Note
See section "23.3.5 Reading 64-Hz Counter and Time" of the RA6M3 manual RO1UHO0886EJ0100 for more details.

A user-defined callback function can be registered (in the rtc_api_t::open API call) and will be called
from the interrupt service routine (ISR) for alarm and periodic interrupt. When called, it is passed a
pointer to a structure (rtc_callback_args_t) that holds a user-defined context pointer and an
indication of which type of interrupt was fired.

Date and Time validation

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 192 / 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > Modules > Realtime Clock (r_rtc)

"Parameter Checking" needs to be enabled if date and time validation is required for
calendarTimeSet and calendarAlarmSet APIs. If "Parameter Checking" is enabled, the 'day of the
week' field is automatically calculated and updated by the driver for the provided date. When using
the calendarAlarmSet API, only the fields which have their corresponding match flag set are written
to the registers. Other register fields are reset to default value.

Sub-Clock error adjustment (Time Error Adjustment Function)

The time error adjustment function is used to correct errors, running fast or slow, in the time caused
by variation in the precision of oscillation by the sub-clock oscillator. Because 32,768 cycles of the
sub-clock oscillator constitute 1 second of operation when the sub-clock oscillator is selected, the
clock runs fast if the sub-clock frequency is high and slow if the sub-clock frequency is low. The time
error adjustment functions include:

e Automatic adjustment
e Adjustment by software

The error adjustment is reset every time RTC is reconfigured or time is set.

Note
RTC driver configurations do not do error adjustment internally while initiliazing the driver. Application must
make callsto the error adjustment api's for desired adjustment. See section 26.3.8 "Time Error Adjustment
Function" of the RA6M3 manual RO1UHO0886EJ0100) for more details on this feature
Configuration

Build Time Configurations for r_rtc

The following build time configurations are defined in fsp_cfg/r_rtc_cfg.h:

Configuration Options Description
Parameter Checking Enable e Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
e Disabled build.

Configurations for RTC Driver on r_rtc

This module can be added to the Threads tab from New -> Driver -> Timers -> RTC Driver on r_rtc:

4.2.31 Serial Communications Interface (SCIl) 12C (r_sci_i2c)

Modules
Functions
fsp_err t R_SCI _I12C VersionGet (fsp_version_t *const p_version)
fsp_err t R_SCI_I12C_Open (i2c_master_ctrl_t *const p_api_ctrl,
i2c_master_cfg_t const *const p_cfg)
fsp_err t R_SCI 12C Close (i2c_master _ctrl_t *const p_api_ctrl)
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 193 / 601

Nov.08.19

Flexible Software Package

API| Reference > Modules > Serial Communications Interface (SCI) 12C (r_sci_i2c)

User’s Manual

fsp_err t

fsp_err t

fsp_err t

fsp_err t

Detailed Description

R_SCI_12C_Read (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes, bool const restart)

R_SCI_12C_Write (i2c_master_ctrl_t *const p_api_ctrl, uint8_t *const
p_src, uint32_t const bytes, bool const restart)

R_SCI_12C_Abort (i2c_master_ctrl_t *const p_api_ctrl)

R_SCI_I12C SlaveAddressSet (i2c_master_ctrl_t *const p_api_ctrl,
uint32_t const slave, i2c_master_addr_mode_t const addr_mode)

Driver for the SCI peripheral on RA MCUs. This module implements the 12C Master Interface.

Overview

The Simple 12C master on SCI HAL module supports transactions with an I2C Slave device. Callbacks
must be provided which would be invoked when a transmission or receive has been completed. The
callback arguments will contain information about the transaction status, bytes transferred and a

pointer to the user defined context.

Features

e Supports multiple transmission rates
o Standard Mode Support with up to 100 kHz transaction rate.
o Fast Mode Support with up to 400 kHz transaction rate.

e Additional build-time features
o Optional (build time) DTC support for read and write respectively.
o Optional (build time) support for 10-bit slave addressing.

Configuration

Build Time Configurations for r_sci_i2c

SDA Delay in nanoseconds can be specified as a part of the configuration.
I2C Master Read from a slave device.
I2C Master Write to a slave device.
Abort any in-progress transactions.
Set the address of the slave device.
Non-blocking behavior is achieved by the use of callbacks.

The following build time configurations are defined in fsp_cfg/r_sci_i2c_cfg.h:

Configuration

Options

Description

Parameter Checking

Default (BSP)

If selected code for parameter

¢ Enabled checking is included in the
e Disabled build.
DTC on Transmission and e Enabled If enabled, DTC instances will
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 194 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Serial Communications Interface (SCI) 12C (r_sci_i2c)

Reception ¢ Disabled be included in the build for both
transmission and reception.
10-bit slave addressing ¢ Enabled If enabled, the driver will
¢ Disabled support 10-bit slave addressing

mode along with the default
7-bit slave addressing mode.

Configurations for 12C Master Driver on r_sci_i2c

This module can be added to the Threads tab from New -> Driver -> Connectivity -> 12C Master
Driver on r_sci_i2c:

4.2.32 Serial Communications Interface (SCIl) SPI (r_sci_spi)
Modules

Functions
fsp_err t R_SCI_SPI _Open (spi_ctrl_t *p_api_ctrl, spi_cfg_t const *const p_cfqg)

fsp_err t R _SCI SPI Read (spi_ctrl _t *const p_api_ctrl, void *p_dest, uint32_t
const length, spi_bit width_t const bit_width)

fsp_err t R_SCI_SPI Write (spi_ctrl_t *const p_api_ctrl, void const *p_src,
uint32_t const length, spi_bit width_t const bit_width)

fsp_err t R_SCI_SPI WriteRead (spi_ctrl_t *const p_api_ctrl, void const *p_src,
void *p_dest, uint32_t const length, spi_bit width_t const bit_width)

fsp_err t R_SCI _SPI Close (spi_ctrl_t *const p_api_ctrl)
fsp_err t R_SCI_SPI VersionGet (fsp_version_t *p_version)

fsp_err t R _SCI_SPI_CalculateBitrate (uint32_t bitrate, sci_spi_div_setting t
*sclk_div, bool use_mddr)

Detailed Description

Driver for the SCI peripheral on RA MCUs. This module implements the SPI Interface.

Overview

Features

e Standard SPI Modes
o Master or Slave Mode
o Clock Polarity (CPOL)
= CPOL=0 SCLK is low when idle
= CPOL=1 SCLK is high when idle

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 195 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Serial Communications Interface (SCI) SPI (r_sci_spi)

o Clock Phase (CPHA)
= CPHA=0 Data Sampled on the even edge of SCLK
= CPHA=1 Data Sampled on the odd edge of SCLK
o MSB/LSB first
e Configurable bit rate
e DTC Support
e Callback Events
o Transfer Complete
o RX Overflow Error (The SCI shift register is copied to the data register before
previous data was read)

Configuration

Build Time Configurations for r_sci_spi

The following build time configurations are defined in fsp_cfg/r_sci_spi_cfg.h:

Configuration Options Description
Parameter Checking ¢ Default (BSP) If selected code for parameter
e Enabled checking is included in the
¢ Disabled build.
DTC Support ¢ Enabled If support for transfering data
¢ Disabled using the DTC will be compiled
in.

Configurations for SPI Driver on r_sci_spi

This module can be added to the Threads tab from New -> Driver -> Connectivity -> SPI Driver on
r_sci_spi:

4.2.33 Serial Communications Interface (SCI) UART (r_sci_uart)

Modules
Functions
fsp_err t R_SCI_UART Open (uart _ctrl_t *const p_api_ctrl, uart_cfg_t const
*const p_cfg)
fsp_err t R_SCI_UART_Read (uart_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const bytes)
fsp_err t R_SCI UART Write (uart_ctrl_t *const p_api_ctrl, uint8_t const *const
p_src, uint32_t const bytes)
fsp_err t R _SCI_UART BaudSet (uart_ctrl_t *const p_api_ctrl, void const *const
p_baud_setting)
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 196 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

fsp_err t R_SCI_UART InfoGet (uart _ctrl_t *const p_api_ctrl, uart_info_t *const
p_info)

fsp_err t R_SCI_UART Close (uart_ctrl_t *const p_api_ctrl)
fsp_err t R_SCI_UART VersionGet (fsp_version_t *p_version)

fsp_err_ t R_SCI_UART Abort (uart_ctrl_t *const p_api_ctrl, uart_dir_t
communication_to_abort)

fsp_err t R _SCI_UART BaudCalculate (uint32_t baudrate, bool
bitrate_modulation, uint32_t baud rate_error x 1000, baud_setting t
*const p_baud_setting)

Detailed Description

Driver for the SCI peripheral on RA MCUs. This module implements the UART Interface.

Overview

Features
The SCI UART module supports the following features:

e Full-duplex UART communication

e Interrupt-driven data transmission and reception

e Invoking the user-callback function with an event code (RX/TX complete, TX data empty, RX
char, error, etc)

Baud-rate change at run-time

Bit rate modulation and noise cancellation

RS232 CTS/RTS hardware flow control (with an associated pin)
RS485 Half/Full Duplex flow control

Integration with the DTC transfer module

Abort in-progress read/write operations

FIFO support on supported channels

Configuration

Build Time Configurations for r_sci_uart

The following build time configurations are defined in fsp_cfg/r_sci_uart_cfg.h:

Configuration Options Description
Parameter Checking e Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
e Disabled build.
FIFO Support e Enable Enable FIFO support for the
e Disable SCI_UART module.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 197 / 601

Nov.08.19

Flexible Software Package

User’s Manual

API| Reference > Modules > Serial Communications Interface (SCI) UART (r_sci_uart)

DTC Support

RS232/RS485 Flow Control
Support

¢ Enable Enable DTC support for the

e Disable SCI_UART module.

e Enable Enable RS232 and RS485 flow

¢ Disable control support using a user
provided pin.

Configurations for UART Driver on r_sci_uart

This module can be added to the Threads tab from New -> Driver -> Connectivity -> UART Driver on

r sci_uart:

4.2.34 SD/MMC Host Interface (r_sdhi)

Modules

Functions

fsp_err t

fsp_err t

fsp_err t

fsp_err t

fsp_err t

fsp_err t

fsp_err t

fsp_err t

fsp_err t

fsp_err t

R_SDHI_Open (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_cfg t const
*const p_cfg)

R_SDHI_Medialnit (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_device t
*const p_device)

R_SDHI_Read (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const p_dest,
uint32_t const start_sector, uint32_t const sector_count)

R_SDHI_Write (sdmmc_ctrl_t *const p_api_ctrl, uint8_t const *const
p_source, uint32_t const start_sector, uint32_t const sector_count)

R_SDHI_Readlo (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const
p_data, uint32_t const function, uint32_t const address)

R_SDHI_Writelo (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const
p_data, uint32_t const function, uint32_t const address,
sdmmc_io_write_mode_t const read_after_write)

R_SDHI_ReadloExt (sdmmc_ctrl_t *const p_api_ctrl, uint8_t *const
p_dest, uint32_t const function, uint32_t const address, uint32_t
*const count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

R_SDHI_WriteloExt (sdmmc_ctrl_t *const p_api_ctrl, uint8_t const
*const p_source, uint32_t const function, uint32_t const address,
uint32_t const count, sdmmc_io_transfer_mode_t transfer_mode,
sdmmc_io_address_mode_t address_mode)

R_SDHI lolntEnable (sdmmc_ctrl_t *const p_api_ctrl, bool enable)

R_SDHI_StatusGet (sdmmc_ctrl_t *const p_api_ctrl, sdmmc_status t
*const p_status)

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS Page 198 / 601

Flexible Software Package User’s Manual

API| Reference > Modules > SD/MMC Host Interface (r_sdhi)

fsp_err t R _SDHI_Erase (sdmmc_ctrl_t *const p_api_ctrl, uint32_t const
start_sector, uint32_t const sector_count)

fsp_err t R_SDHI_Close (sdmmc_ctrl_t *const p_api_ctrl)

fsp_err t R_SDHI VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the SD/MMC Host Interface (SDHI) peripheral on RA MCUs. This module implements the
SD/MMC Interface.

Overview
Features

e Supports the following memory devices: SDSC (SD Standard Capacity), SDHC (SD High
Capacity), and SDXC (SD Extended Capacity)
o Supports reading, writing and erasing SD memory devices
o Supports 1-bit or 4-bit bus
o Supports detection of device write protection (SD cards only)
e Automatically configures the clock to the maximum clock rate supported by both host
(MCU) and device
Supports hardware acceleration using DMAC or DTC
e Supports callback notification when an operation completes or an error occurs

Configuration

Build Time Configurations for r_sdhi

The following build time configurations are defined in fsp_cfg/r_sdhi_cfg.h:

Configuration Options Description
Parameter Checking Enable ¢ Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
¢ Disabled build.
Unaligned Access Support e Disabled If enabled, code for supporting
e Enabled buffers that are not aligned on

a 4-byte boundary is included in
the build. Only disable this if all
buffers passed to the driver are
4-byte aligned.

Configurations for SD/MMC Driver on r_sdhi

This module can be added to the Threads tab from New -> Driver -> Storage -> SD/MMC Driver on
r sdhi:

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 199 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Serial Peripheral Interface (r_spi)

4.2.35 Serial Peripheral Interface (r_spi)
Modules

Functions

fsp_err t R_SPI Open (spi_ctrl_t *p_api_ctrl, spi_cfg t const *const p_cfg)

fsp_err t R_SPI Read (spi_ctrl_t *const p_api_ctrl, void *p_dest, uint32_t const
length, spi_bit_width_t const bit_width)

fsp_err t R_SPI_Write (spi_ctrl_t *const p_api_ctrl, void const *p_src, uint32_t
const length, spi_bit_width_t const bit_width)

fsp_err t R_SPI_WriteRead (spi_ctrl_t *const p_api_ctrl, void const *p_src, void
*p_dest, uint32_t const length, spi_bit_width_t const bit_width)

fsp_err t R_SPI Close (spi_ctrl_t *const p_api_ctrl)
fsp_err t R_SPI VersionGet (fsp_version_t *p_version)

fsp_err t R_SPI _CalculateBitrate (uint32_t bitrate, rspck_div_setting t
*spck_div)

Detailed Description

Driver for the SPI peripheral on RA MCUs. This module implements the SPI Interface.

Overview
Features

e Standard SPI Modes
o Master or Slave Mode
o Clock Polarity (CPOL)
= CPOL=0 SCLK is low when idle
= CPOL=1 SCLK is high when idle
o Clock Phase (CPHA)
= CPHA=0 Data Sampled on the even edge of SCLK (Master Mode Only)
= CPHA=1 Data Sampled on the odd edge of SCLK
o MSB/LSB first
o 8-Bit, 16-Bit, 32-Bit data frames
= Hardware endian swap in 16-Bit and 32-Bit mode
o 3-Wire or 4-Wire Mode
Configurable bitrate
Supports Full Duplex or Transmit Only Mode
DTC Support
Callback Events
o Transfer Complete
o RX Overflow Error (The SPI shift register is copied to the data register before
previous data was read)

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 200 / 601
Nov.08.19

Flexible Software Package

API| Reference > Modules > Serial Peripheral Interface (r_spi)

User’s Manual

o TX Underrun Error (No data to load into shift register for transmitting)
o Parity Error (When parity is enabled and a parity error is detected)

Configuration

Build Time Configurations for r_spi

The following build time configurations are defined in fsp_cfg/r_spi_cfg.h:

Configuration Options Description

Parameter Checking e Default (BSP) If selected code for parameter

e Enabled checking is included in the

e Disabled build.
Enable Support for using DTC ¢ Enabled If enabled, DTC instances will

¢ Disabled be included in the build for both

transmission and reception.

Enable Transmitting from RXI e Enabled If enabled, DTC instances will
Interrupt e Disabled be included in the build for both

transmission and reception.

Configurations for SPI Driver on r_spi

This module can be added to the Threads tab from New -> Driver -> Connectivity -> SPI Driver on

r_spi:

4.2.36 Serial Sound Interface (r_ssi)

Modules

Functions

fsp_err t
fsp_err t

fsp_err t

fsp_err t

fsp_err t

fsp_err t

R_SSI Open (i2s_ctrl_t *const p_ctrl, i2s_cfg_t const *const p_cfqg)
R_SSI Stop (i2s_ctrl_t *const p_ctrl)

R_SSI StatusGet (i2s_ctrl_t *const p_ctrl, i2s_status t *const
p_status)

R_SSI_Write (i2s_ctrl_t *const p_ctrl, void const *const p_src, uint32_t
const bytes)

R_SSI Read (i2s_ctrl_t *const p_ctrl, void *const p_dest, uint32_t
const bytes)

R_SSI WriteRead (i2s_ctrl_t *const p_ctrl, void const *const p_src,
void *const p_dest, uint32_t const bytes)

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS Page 201 / 601

Flexible Software Package User’s Manual

API| Reference > Modules > Serial Sound Interface (r_ssi)

fsp_err t R_SSI Mute (i2s_ctrl_t *const p_ctrl, i2s_mute_t const mute_enable)
fsp_err t R_SSI Close (i2s_ctrl_t *const p_ctrl)

fsp_err_t R_SSI VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the SSIE peripheral on RA MCUs. This module implements the 12S Interface.

Overview

Features
The SSI module supports the following features:

e Transmission and reception of uncompressed audio data using the standard 12S protocol
Full-duplex 12S communication (channel 0 only)

Integration with the DTC transfer module

Internal connection to GPT GTIOC1A timer output to generate the audio clock

Callback function notification when all data is loaded into the SSI FIFO

Configuration

Build Time Configurations for r_ssi

The following build time configurations are defined in fsp_cfg/r_ssi_cfg.h:

Configuration Options Description
Parameter Checking e Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
e Disabled build.
DTC Support ¢ Enabled If code for DTC transfer support
¢ Disabled is included in the build.

Configurations for I2S Driver on r_ssi

This module can be added to the Threads tab from New -> Driver -> Connectivity -> 12S Driver on
r_ssi:

4.2.37 Universal Serial Bus (r_usb_basic)

Modules
Functions
fsp_err t R_USB Open (usb_ctrl_t *const p_api_ctrl, usb_cfg t const *const
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 202 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Universal Serial Bus (r_ush_basic)

p_cfg, usb_instance_transfer_t *p_api_trans)

Applies power to the USB module specified in the argument (p_ctrl).
More...

fsp_err t R_USB_Close (usb_ctrl_t *const p_api_ctrl, usb_instance_transfer_t
*p_api_trans)

Terminates power to the USB module specified in argument (p_ctrl).
USBO module stops when USB_IPO is specified to the member
(module), USB1 module stops when USB_IP1 is specified to the
member (module). More...

fsp_err t R_USB Read (usb_ctrl t *const p_api_ctrl, uint8_t *p_buf, uint32_t
size, usb_instance_transfer t *p_api_trans)

Bulk/interrupt data transfer and control data transfer. More...

fsp_err t R_USB Write (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf, uint32_t
size, usb_instance_transfer_t *p_api_trans)

Bulk/Interrupt data transfer and control data transfer. More...

fsp_err t R_USB_Stop (usb_ctrl_t *const p_api_ctrl, usb_transfer_t type,
usb_instance_transfer_t *p_api_trans)

Requests a data read/write transfer be terminated when a data
read/write transfer is being performed. More...

fsp_err t R_USB_ Suspend (usb_ctrl_t *const p_api_ctrl, usb_instance_transfer t
*p_api_trans)

Sends a SUSPEND signal from the USB module assigned to the
member (module) of the usb_crtl_t structure. More...

fsp_err t R_USB_Resume (usb_ctrl_t *const p_api_ctrl, usb_instance_transfer_t
*p_api_trans)

Sends a RESUME signal from the USB module assigned to the
member (module) of the usb_ctrl_tstructure. More...

fsp_err t R_USB _VbusSet (usb_ctrl_t *const p_api_ctrl, uintl6 _t state,
usb_instance transfer_t *p_api_trans)

Specifies starting or stopping the VBUS supply. More...

fsp_err t R_USB_InfoGet (usb_ctrl t *const p_api_ctrl, usb_info_t *p_info)

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 203 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Universal Serial Bus (r_ush_basic)

Obtains completed USB-related events. More...

fsp_err t R_USB_PipeRead (usb_ctrl_t *const p_api_ctrl, uint8_t *p_buf,
uint32_t size, usb_instance_transfer t *p_api_trans)

Requests a data read (bulk/interrupt transfer) via the pipe specified
in the argument. More...

fsp_err t R _USB_PipeWrite (usb_ctrl t *const p_api_ctrl, uint8_t *p_buf,
uint32_t size, usb_instance_transfer_t *p_api_trans)

Requests a data write (bulk/interrupt transfer). More...

fsp_err t R_USB_PipeStop (usb_ctrl_t *const p_api_ctrl, usb_instance_transfer t
*p_api_trans)

Terminates a data read/write operation. More...

fsp_err t R_USB UsedPipesGet (usb_ctrl t *const p_api_ctrl, uintle_t *p pipe)

Gets the selected pipe number (number of the pipe that has
completed initalization) via bit map information. More...

fsp_err t R _USB_PipelnfoGet (usb_ctrl_t *const p_api_ctrl, usb_pipe_t *p_info)

Gets the following pipe information regarding the pipe specified in
the argument (p_ctrl) member (pipe): endpoint number, transfer
type, transfer direction and maximum packet size. More...

fsp_err t R_USB_PullUp (uint8_t state)

This API enables or disables pull-up of D+/D- line. More...

fsp_err t R _USB _EventGet (usb_ctrl t *const p_api_ctrl, usb_status_t *event)

Obtains completed USB related events. More...

fsp_err t R_USB VersionGet (fsp_version_t *const p_version)

Returns the version of this module. More...

fsp_err t R_USB_ModuleNumberGet (usb_ctrl_t *const p_api_ctrl, uint8_t
*module_number)

This API gets the module number. More...

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 204 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Universal Serial Bus (r_ush_basic)

fsp_err t R_USB_ClassTypeGet (usb_ctrl t *const p_api_ctrl, usb_class t
*class_type)

This API gets the class type. More...

fsp_err t R_USB DeviceAddressGet (usb_ctrl_t *const p_api_ctrl, uint8 t
*device_address)

This API gets the device address. More...

fsp_err t R_USB_PipeNumberGet (usb_ctrl_t *const p_api_ctrl, uint8_t
*pipe_number)

This API gets the pipe number. More...

fsp_err t R_USB_DeviceStateGet (usb_ctrl_t *const p_api_ctrl, uintl6_t *state)
This API gets the state of the device. More...

fsp_err t R_USB_DataSizeGet (usb_ctrl_t *const p_api_ctrl, uint32_t *data_size)
This API gets the data size. More...

fsp_err t R _USB SetupGet (usb_ctrl _t *const p_api_ctrl, usb_setup_t *setup)
This API gets the setup type. More...

Detailed Description

The USB module (r_usb_basic) provides an API to perform H / W control of USB communication. It
implements the USB Interface.

Overview

The USB module performs USB hardware control. The USB module operates in combination with one
type of sample device class drivers provided by Renesas.

Features
The USB module has the following key features:

e Overall
o Supporting USB Host or USB Peripheral.
o Device connect/disconnect, suspend/resume, and USB bus reset processing.
o Control transfer on pipe 0.
o Data transfer on pipes 1 to 9. (Bulk or Interrupt transfer)
o This driver supports RTOS version (hereinafter called "RTOS") and Non-OS version

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 205 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Universal Serial Bus (r_ush_basic)

(hereinafter called "Non-0OS"). RTOS uses the realtime OS (FreeRTOS). Non-0OS
does not use the real time OS.
e Host mode
o In host mode, enumeration as Low-speed/Full-speed/Hi-speed device (However,
operating speed is different by devices ability.)
o Transfer error determination and transfer retry.
e Peripheral mode
o In peripheral mode, enumeration as USB Host of USB1.1/2.0/3.0.

Configuration

Build Time Configurations for r_usb_basic

The following build time configurations are defined in fsp_cfg/r_usb_basic_cfg.h:

Configuration Options Description

Parameter Checking e Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
e Disabled build.

USB Operating mode Setting ¢ Host mode If Peri mode is selected, USB
¢ Peri mode operates as Peripheral.

Device Class Setting ¢ Host Communication Set USB to work in the selected

Device Class class.

¢ Host Human Interface
Device Class

¢ Host Mass Storage Class

e Host Vendor Class

e Peripheral
Communication Device
Class

e Peripheral Human
Interface Device Class

e Peripheral Mass Storage
Class

¢ Peripheral Vendor Class

DTC use setting e Uses DTC When it is enabled, it will
e Does not use DTC operate using DTC.
DMA use setting e Uses DMA When it is enabled, it will
e Does not use DMA operate using DMA.
DMA channel setting for e Uses DMACO Use the set channel for
transmission using USBO ¢ Uses DMAC1 transmission.
module e Uses DMAC2
¢ Uses DMAC3
e Uses DMAC4
e Uses DMAC5
e Uses DMAC6
e Uses DMAC7
DMA channel setting for e Uses DMACO Use the set channel for
reception using USBO module ¢ Uses DMAC1 reception.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 206 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Universal Serial Bus (r_ush_basic)

Uses DMAC?2
Uses DMAC3
Uses DMAC4
Uses DMAC5
Uses DMAC6
Uses DMAC7

DMA channel setting for
transmission using USB1
module

DMA channel setting for
reception using USB1 module

PLL clock frequency setting

CPU bus access wait setting

See e2

Uses DMACO
Uses DMAC1
Uses DMAC?2
Uses DMAC3
Uses DMAC4
Uses DMAC5
Uses DMAC6
Uses DMAC7

Uses DMACO
Uses DMAC1
Uses DMAC?2
Uses DMAC3
Uses DMAC4
Uses DMAC5
Uses DMAC6
Uses DMAC7

24MHz
20MHz

Other than 24/20MHz

studio for available

options.

Use the set channel for
transmission.

Use the set channel for
reception.

In the case of a USB module
other than USB1 module, this
definition is ignored.

CPU Bus Access Wait
Select(CPU Bus Wait Register
(BUSWAIT)BWAIT[3:0]) 2-17
access cycle wait

Setting the battery charging ¢ Using the battery

function charging function
¢ Not using the battery

charging function

Not using the battery charging
function Using the battery
charging function

Setting the power source IC ¢ High assert
e Low assert

Select High assert or Low
assert.

Please select whether to
deactivate or activate the DCP.

Setting USB port operation ¢ DCP enabled
when using the battery ¢ DCP disabled
charging function

Setting USB module to be used e Using USBO module During peripheral operation,
¢ Using USB1 module select whether to use USB 0 or
1.
Setting whether to notify the ¢ Not notifying. Please choose whether it
application when receiving the r ¢ Notifying corresponds to the class

equest(SET_INTERFACE/SET_FE
ATURE/CLEAR_FEATURE)

request.

Please choose whether it
corresponds to the double
buffer.

Select whether to use the ¢ Not Using double buffer
double buffer function. ¢ Using double buffer

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS Page 207 / 601

Flexible Software Package User’s Manual

API| Reference > Modules > Universal Serial Bus (r_ush_basic)

Select whether to use the ¢ Not Using continuous Please choose whether it
continuous transfer mode. transfer mode corresponds to the continuous
¢ Using continuous transfer mode.
transfer mode
FreeRTOS Integration ¢ Do not use FreeRTOS. Select whether to use FreeRTOS
e Use FreeRTOS. with USB.

Configurations for USB Driver on r_usb_basic

This module can be added to the Threads tab from New -> Middleware -> USB -> USB Driver on
r usb basic:

4.2.38 Host Mass Storage Class Driver (r_usb_hmsc)
Modules

The USB module (r_usb_hmsc) provides an API to perform hardware control of USB communications.
It implements the USB Interface.

This module is USB Basic Host and Peripheral. It works in combination with Driver (r_usb_basic
module).

Overview

The r_usb_hmsc module, when used in combination with the r_usb_basic module, operates as a USB
host mass storage class driver (HMSC). HMSC is built on the USB mass storage class Bulk-Only
Transport (BOT) protocol. It is possible to communicate with BOT-compatible USB storage devices by
combining it with the file system and storage device driver. This module should be used in
combination with the FreeRTOS+FAT File System.

Features
The r_usb_hmsc module has the following key features:
e Checking of connected USB storage devices (to determine whether or not operation is
supported)
e Storage command communication using the BOT protocol
e Support for SFF-8070i (ATAPI) USB mass storage subclass
e Sharing of a single pipe for IN/OUT directions or multiple devices
e Maximum 4 USB storage devices can be connected
Class Driver Overview

1. Class Requests

The class requests supported by this driver are shown below.

Request Description
GetMaxLun Gets the maximum number of units that are
supported.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 208 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Host Mass Storage Class Driver (r_usb_hmsc)

MassStrageReset Cancels a protocol error.

2. Storage Commands
This driver supports the following storage command.

TEST_UNIT_READY
REQUEST_SENSE
MODE_SELECT10
MODE_SENSE10
PREVENT_ALLOW
READ_FORMAT CAPACITY
READ10

WRITE10

Configuration

Clock Configuration
Refer to Universal Serial Bus (r_usb_basic) basic module.
Pin Configuration

Refer to Universal Serial Bus (r_usb_basic) basic module.

Usage Notes

* This driver is not guaranteed to provide USB communication operation. The customer
should verify operation when utilizing it in a system and confirm the ability to connect to a
variety of different types of devices.

e This module must be incorporated into a project using r_usb_basic. Once incorporated into
a project, use the API to perform USB hardware control.

e This driver is confirmed for operation in combination with the FreeRTOS+FAT File System.

Limitations

1. Some MSC devices may be unable to connect (because they are not recognized as storage
devices).

2. MSC devices that return values of 1 or higher in response to the GetMaxLun command
(mass storage class command) are not supported.

. Maximum 4 USB storage devices can be connected.

. USB storage devices with a sector size of 512 bytes can be connected.

. A device that does not respond to the READ_CAPACITY command operates as a device with
a sector size of 512 bytes.

o~ Ww

Examples
USB HMSC Example
Example Operating Environment

The following shows an example operating environment for the HMSC.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 209 / 601
Nov.08.19

Flexible Software Package

API| Reference > Modules > Host Mass Storage Class Driver (r_usb_hmsc)

User’s Manual

Refer to the associated instruction manuals for details on setting up the evaluation board and using

the emulator, etc.

+

USB Basic Host Driver

Host Mass Storage Device Class
Driver (HMSC)

Evaluation
Board

usB
Port

Enumeration and

USB Mass Storage
Device

User s I

Cable
-

Emulator
S

- Emulator Cable

Class Request
(PIPEO Control Transfer) usB Sthorage
- Device
Data Transfer use (USB Flash
(Bulk Transfer) Port Drive Device
- etc)
USB Cable
Host PC for
Emulator

e? studio, integrated development environment

Figure 99: Example Operating Environment

Application Specifications

The main functions of the application are as follows:

1. Performs enumeration and drive recognition processing on MSC devices.
2. After the above processsing finisihes, the application writes the file hmscdemo.txt to the

MSC device once.

3. After writing the above file, the APL repeatedly reads the file hmscdemo.txt. It continues to

read the file repeatedly until the switch is pressed again.

Application Processing (for RTOS)

This application has two tasks. An overview of the processing in these two tasks is provided below.

usb_apl_task

1. After start up, MCU pin setting, USB controller initialization, and application program

initialization are performed.

2. The MSC device is attached to the kit. When enumeration and drive recognition processing

have completed, the USB driver calls the callback function (usb_apl_callback). In the

callback function (usb_apl_callback), the application task is notified of the USB completion
event using the FreeRTOS functionality.
3. In the application task, information regarding the USB completion event about which

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 210/ 601

Flexible Software Package User’s Manual

API| Reference > Modules > Host Mass Storage Class Driver (r_usb_hmsc)

notification was received from the callback function is retrieved using the real-time OS
functionality.

4. If the USB completion event (the event member of the usb_ctrl_t structure) retrieved in step
2 above is USB_STS CONFIGURED then, based on the USB completion event, the MSC
device is mounted and the file is written to the MSC device.

5. If the USB completion event (the event member of the usb_ctrl_t structure) retrieved in step
2 above is USB_STS_DETACH, the application initializes the variables for state management.

HMSC APL
(usb_apl_task)

Initialization Processing

callback Fucntion
(usb_apl_callback)

USB Event Transmission

(USB_APL_SND_MSG)

USB Event Reception
(USB_APL_RCV_MSG) End
. :
SB_STS_CONFIGURED
N
‘ .
USB_STS_DETACH?
N

-5

Mount Processing
File Write Processing

Detach Processing

h

Figure 100: usb_apl _task

file_read_task

Of the application tasks usb_apl _task and file_read_task, file_read_task is processed while
usb_apl_task is in the wait state. This task performs file read processing on the file that was written
to the MSC device (hmscdemo.txt).

This is an hmsc example of minimal use of the USB in an application.

voi d usb_hnmsc_exanpl e (void)
{
usb_instance ctrl t ctrl;
usb_i nstance transfer t trans;
usb_instance transfer t *p_ness;
uint8_t g_buf[USB_VALUE 64];
capacity list _t *pcl;
FF Disk t *USB ret = NULL;
size t size return;
int close err;
apl _init();

usb _pin_setting(); /* USB pin function and port node setting. */

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 211/ 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Host Mass Storage Class Driver (r_usb_hmsc)

R11UMO0137EU0081 Revision 0.81 Page 212 /601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Host Mass Storage Class Driver (r_usb_hmsc)

R11UMO0137EU0081 Revision 0.81 Page 213 /601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Universal Serial Bus Peripheral Communication Device Class (r_usb_pcdc)

4.2.39 Universal Serial Bus Peripheral Communication Device Class
(r_usb_pcdc)

Modules

This module is USB Peripheral Communication Device Class Driver (PCDC).
This module works in combination with (r_usb_basic module).

Overview

The r_usb_pcdc module combines with the r_usb_basic module to provide USB Peripheral It operates
as a communication device class driver (hereinafter referred to as PCDC).
PCDC conforms to Abstract Control Model of USB communication device class specification
(hereinafter referred to as CDC) and can communicate with USB host.
Features
The r_usb_pcdc module has the following key features:

e Data transfer to and from a USB host.

e Response to CDC class requests.

e Provision of communication device class notification transmit service.
Basic Functions
CDC conforms to the communication device class specification Abstract Control Model subclass.
Abstract Control Model Overview
The Abstract Control Model subclass of CDC is a technology that bridges the gap between USB
devices and earlier modems (employing RS-232C connections), enabling use of application programs
designed for older modems. The class requests and class notifications supported are listed below.

Class Requests (Host to Peripheral)

This driver notifies to the application program when receiving the following class request.

Request Code Description
SetLineCoding 0x20 Makes communication line
settings

(communication speed, data
length,parity bit, and stop bit

length).
GetLineCoding 0x21 Acquires the communication
line setting state.
SetControlLineState 0x22 Makes communication line
control signal (RTS,DTR)
settings.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 214 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Universal Serial Bus Peripheral Communication Device Class (r_usb_pcdc)

For details concerning the Abstract Control Model requests, refer to Table 11, [Requests - Abstract
Control Model] in [USB Communications Class Subclass Specification for PSTN Devices], Revision 1.2.

Data Format of Class Requests
The data format of the class requests supported by the class driver software is described below.
1.SetLineCoding

This is the class request the host transmits to perform the UART line setting.
The SetLineCoding data format is shown below.

SetLineCoding Format

bmRequestTyp bRequest wValue windex wLength Data
et
0x21 SET_LINE_CODI 0x00 0x0 0x07 Line Coding
NG(0x20) Structure

Line Coding Structure

Offset Field Size Value Description
0 DwDTERate 4 Number Data terminal
speed (bps)
4 BcharFormat 1 Number Stop bits:
0 - 1 stop bit

1 - 1.5 stop bits
1 - 1.5 stop bits

2 - 2 stop bits
5 BparityType 1 Number Parity:
0 - None
1-0dd
2 - Even
6 BdataBits 1 Data bits (5, 6, 7,
8)
2.GetLineCoding
This is the class request the host transmits to request the UART line state.
The GetLineCoding data format is shown below.
GetLineCoding Format
bmRequestTyp bRequest wValue windex wLength Data
et
0xAl GET _LINE_COD 0x00 0x0 0x07 Line Coding
ING(0x21) Structure
3.SetControlLineState
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 215/ 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Universal Serial Bus Peripheral Communication Device Class (r_usb_pcdc)

This is a class request that the host sends to set up the signal for flow controls of UART.
This software does not support RTS/DTR control.
The SET_CONTROL_LINE_STATE data format is shown below.

SET_CONTROL_LINE_STATE Format

bmRequestTyp | bRequest wValue windex wLength Data
et
0x21 SET_CONTROL Control Signal 0x0 0x00 None
_LINE_STATE(O Bitmap
Xx22)

Control Signal Bitmap

Bit Position Description

D15 to D2 Reserved (reset to 0)

D1 DCE transmit function control:
0 - RTS Off
1-RTS On

DO Notification of DTE ready state:
0 - DTR Off
1-DTR On

Class Notifications (Peripheral to Host)

The table below shows the class notification support / non-support of this S / W.

Notification Code Description Supported
NETWORK_CONNECTIO 0x00 Notification of network No
N connection state
RESPONSE_AVAILABLE 0x01 Response to GET_ENCA No
PSLATED_ RESPONSE
SERIAL_STATE 0x20 Notification of serial Yes
line state

1.Serial State

The host is notified of the serial state when a change in the UART port state is detected.

This software supports the detection of overrun, parity and framing errors. A state notification is
performed when a change from normal state to error is detected. However, notification is not
continually transmitted when an error is continually detected.

SerialState Format

bmRequestTyp | bRequest wValue windex wLength Data
et
OxAl SERIAL_STATE(0x00 0x0 0x02 UART State
0x20) bitmap
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 216 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Universal Serial Bus Peripheral Communication Device Class (r_usb_pcdc)

UART state bitmap format

Bits Fieeld Description Supported
D15 to D7 Reserved -

D6 b over _run Overrun error detected Yes

D5 b _parity Parity error detected Yes

D4 b _framing Framing error detected Yes

D3 b _ring_signal INCOMING signal (ring No

signal) detected
D2 b _break Break signal detected No
D1 btx_arrier Data Set Ready: Line No

connected and ready
for communication

DO brx_carrier Data Carrier Detect: No
Carrier detected on line

PC Virtual COM-port Usage

The CDC device can be used as a virtual COM port when operating in Windows OS.

Use a PC running Windows OS, and connect an board. After USB enumeration, the CDC class
requests GetLineCoding and SetControlLineState are executed by the target, and the CDC device is
registered in Windows Device Manager as a virtual COM device.

Registering the CDC device as a virtual COM-port in Windows Device Manager enables data
communication with the CDC device via a terminal app such as [HyperTerminal] which comes
standard with Windows OS. When changing settings of the serial port in the Windows terminal
application, the UART setting is propagated to the firmware via the class request SetLineCoding.
Data input (or file transmission) from the terminal app window is transmitted to the board using
endpoint 2 (EP2); data from the board side is transmitted to the PC using EP1.

When the last packet of data received is the maximum packet size, and the terminal determines that
there is continuous data, the received data may not be displayed in the terminal. If the received data
is smaller than the maximum packet size, the data received up to that point is displayed in the
terminal.

The received data is outputted on the terminal when the data less than Maximum packet size is
received.

Configuration

Build Time Configurations for r_usb_pcdc

The following build time configurations are defined in fsp_cfg/r_usb_pcdc_cfg.h:

Configuration Options Description

Select which pipe to use for ¢ Using USB PIPE1 Please choose between 1 and 5.
bulk IN transfer during PCDC ¢ Using USB PIPE2
operation. ¢ Using USB PIPE3
e Using USB PIPE4
e Using USB PIPE5

R11UMO0137EU0081 Revision 0.81 RLENESAS Page 217 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Universal Serial Bus Peripheral Communication Device Class (r_usb_pcdc)

Select which pipe to use for ¢ Using USB PIPE1 Please choose between 1 and 5.
bulk OUT transfer during PCDC e Using USB PIPE2
operation. e Using USB PIPE3

e Using USB PIPE4

e Using USB PIPE5S
Select which pipe to use for ¢ Using USB PIPE6 Please choose between 6 and 9.
Interrupt IN transfer during ¢ Using USB PIPE7
PCDC operation. ¢ Using USB PIPES

e Using USB PIPE9

Configurations for USB PCDC driver on r_usb_pcdc

This module can be added to the Threads tab from New -> Middleware -> USB -> USB PCDC driver
on r_usb_pcdc:

4.2.40 Watchdog Timer (r_wdt)
Modules

Functions

fsp_err t R_WDT Refresh (wdt _ctrl_t *const p_ctrl)
fsp_err t R_WDT Open (wdt_ctrl_t *const p_ctrl, wdt cfg t const *const p_cfg)

fsp_err t R _WDT StatusClear (wdt_ctrl_t *const p_ctrl, const wdt status t
status)

fsp_err t R _WDT StatusGet (wdt_ctrl_t *const p_ctrl, wdt_status_t *const
p_status)

fsp_err t R _WDT_CounterGet (wdt_ctrl_t *const p_ctrl, uint32_t *const
p_count)

fsp_err t R_WDT TimeoutGet (wdt_ctrl_t *const p_ctrl, wdt_timeout values t
*const p_timeout)

fsp_err t R_WDT VersionGet (fsp_version_t *const p_version)

Detailed Description

Driver for the WDT peripheral on RA MCUs. This module implements the WDT Interface.

Overview

The watchdog timer is used to recover from unexpected errors in an application. The watchdog timer
must be refreshed periodically in the permitted count window by the application. If the count is
allowed to underflow or refresh occurs outside of the valid refresh period, the WDT resets the device
or generates an NMI.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 218 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Watchdog Timer (r_wdt)

Counter Value

100% |

Time

Counter successful Counter Counter Syccessful Successful

starts Refresh starts starts Refresh Refresh
Timer underflow — Refreshed in invalid refresh period - Refreshed in invalid refresh period -
device reset or NMI device reset or NMI device reset or NMI

Figure 101: Watchdog Timer Operation Example

Features
The WDT HAL module has the following key features:

e When the WDT underflows or is refreshed outside of the permitted refresh window, one of
the following events can occur:
o Resetting of the device
o Generation of an NMI
e The WDT has two supported modes:
o In auto start mode, the WDT begins counting at reset.
o In register start mode, the WDT can be started from the application.

Selecting a Watchdog

RA MCUs have two watchdog peripherals: the watchdog timer (WDT) and the independent watchdog
timer (IWDT). When selecting between them, consider these factors:

WDT IWDT
Start Mode The WDT can be started from The IWDT can only be
the application (register start configured by hardware to start
mode) or configured by automatically.

hardware to start automatically
(auto start mode).

Clock Source The WDT runs off a peripheral The IWDT has its own clock
clock. source which improves safety.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 219 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Watchdog Timer (r_wdt)

Configuration

When using register start mode, configure the watchdog timer on the Threads tab.

Note

When using auto start mode, configurations on the Threads tab are ignored. Configure the watchdog using the OFS
settings on the BSP tab.

Build Time Configurations for r wdt

The following build time configurations are defined in fsp_cfg/r_wdt_cfg.h:

Configuration Options Description
Parameter Checking e Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
e Disabled build.
Register Start NMI Support ¢ Enabled If enabled, code for NMI support
¢ Disabled in register start mode is

included in the build.

Configurations for Watchdog Driver on r_wdt

This module can be added to the Threads tab from New -> Driver -> Monitoring -> Watchdog Driver
on r_wdt:

4.2.41 SEGGER emWin Port (rm_emwin_port)
Modules

SEGGER emWin port for RA MCUs.

Overview

The SEGGER emWin RA Port module provides the configuration and hardware acceleration support
necessary for use of emWin on RA products. The port provides full integration with the graphics
peripherals (GLCDC, DRW and JPEG) as well as Amazon FreeRTOS.

Note
This port layer primarily enables hardware acceleration and background handling of many display operations and
does not contain code intended to be directly called by the user. Please consult the SEGGER emWin User Guide
(UMOQ3001) for details on how to use emWin in your project.

Hardware Acceleration

The following functions are currently performed with hardware acceleration:

e Drawing bitmaps (ARGB8888 and RGB565)

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 220 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > SEGGER emWin Port (rm_emwin_port)

* Rectangle fill
e Line and shape drawing
e Anti-aliased operations
o Circle stroke and fill
o Polygon stroke and fill
o Lines and arcs
JPEG decoding
LCD panel data conversion and output

Configuration

Build Time Configurations for rm_emwin_port

The following build time configurations are defined in fsp_cfg/rm_emwin_port_cfg.h:

Configuration Options Description
Memory Allocation|GUI Heap Value must be a non-negative Set the size of the heap to be
Size integer allocated for use exclusively by
emWin.
Memory Allocation|Section for Configurable String Specify the section in which to
GUI Heap allocate the GUI heap.
Memory Allocation|Maximum Value must be a non-negative Set the maximum number of
Layers integer available display layers.
Configuration|RTOS Support ¢ Enabled Enable or disable RTOS
¢ Disabled awareness (multithreading
support).
Configuration|Touch Panel ¢ Enabled Enable or disable touch panel
Support ¢ Disabled support.
Configuration|Mouse Support e Enabled Enable or disable support for
¢ Disabled mouse input.
Configuration|Memory Devices ¢ Enabled Enable or disable support for
¢ Disabled memory devices, which allow

the user to allocate their own
memory in the GUI heap.

Configuration|Text Rotation e Enabled Enable or disable support for
e Disabled displaying rotated text.
Configuration|Window Manager ¢ Enabled Enable or disable the emWin
¢ Disabled Window Manager (WM).
Configuration|Bidirectional Text e Enabled Enable or disable support for
¢ Disabled bidirectional text (such as
Arabic or Hebrew).
Configuration|Debug Logging ¢ None (0) Set the debug logging level.
Level ¢ Parameter checking
only (1)

¢ All checks enabled (2)
e Log errors (3)

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 221/ 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > SEGGER emWin Port (rm_emwin_port)

¢ Log warnings (4)
¢ Log all messages (5)

JPEG Decoding|Error Timeout Value must be a non-negative Set the timeout for JPEG
integer decoding operations (in RTOS
ticks) in the event of a decode
error.

JPEG Decoding|Input Buffer Size Value must be a non-negative Set the size of the JPEG decode
integer input buffer (in bytes). This

buffer is used to ensure 8-byte
alignment of input data.
Specifying a size smaller than
the size of the JPEG to decode
will use additional interrupts to
stream data in during the
decoding process.

JPEG Decoding|Output Buffer Value must be a non-negative Set the size of the JPEG decode

Size integer output buffer (in bytes). An
output buffer smaller than the
size of a decoded image will
use additional interrupts to
stream the data into a

framebuffer.
JPEG Decoding|Section for Configurable String Specify the section in which to
Buffers allocate the JPEG work buffers.

4.2.42 FreeRTOS Plus FAT (rm_freertos plus_fat)

Modules

Functions

fsp_err t RM_FREERTOS PLUS FAT Open (freertos plus_fat ctrl t *p ctrl,
freertos plus fat cfg t *p cfqg)

Returns the version of this module. The version number is encoded
such that the top two bytes are the major version number and the
bottom two bytes are the minor version number. More...

fsp_err t RM_FREERTOS PLUS FAT Close (freertos plus fat ctrl t *p ctrl)

Returns the version of this module. The version number is encoded
such that the top two bytes are the major version number and the
bottom two bytes are the minor version number. More...

fsp_err t RM _FREERTOS PLUS FAT VersionGet (fsp_version_t *const
p_version)

Returns the version of this module. The version number is encoded
such that the top two bytes are the major version number and the

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 222 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > FreeRTOS Plus FAT (rm_freertos_plus_fat)

bottom two bytes are the minor version number. More...

Detailed Description

Middleware for the Fat File System control on RA MCUs.

Overview

The FreeRTOS Plus FAT performs Fat File System control. This middleware is based on open source.
Please refer to the following URL for details. https://www.freertos.org/FreeRTOS-
Plus/FreeRTOS_Plus_FAT/index.html

Features

The FreeRTOS Plus FAT module supports the following features:

e File read support
e File write support

Configuration

Configurations for FreeRTOS+FAT
This module can be added to the Threads tab from New -> FreeRTOS+ -> FreeRTOS+FAT:

Configuration Options Description
pcDeviceName Name must be a valid C symbol Name must be a valid C symbol
Partition Must be a valid number Select the partition.
ulNumberOfSectors Name must be a valid number Select the ulNumberOfSectors.
NumberOfMemory Must be a valid number Select the NumberOfMemory.
ulSectorSize Must be a valid number Select the ulSectorSize.
xBlockDevicelsReentrant ¢ Disable Reentrant Select the Reentrant.

e Enable Reentrant

ulSignature Must be a valid number Select the ulSignature.
bPartitionNumber Must be a valid number Select the bPartitionNumber.
device_type e FREERTOS PLUS FAT D Select the device type.

EVICE_TYPE_USB
 FREERTOS_PLUS_FAT D
EVICE_TYPE_END

status e FREERTOS_PLUS _FAT D Select the status.
EVICE_STATUS_UNINITUI
ALIZED
e FREERTOS_PLUS _FAT D
EVICE_STATUS_INITUIALI

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 223/ 601
Nov.08.19

https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_FAT/index.html
https://www.freertos.org/FreeRTOS-Plus/FreeRTOS_Plus_FAT/index.html

Flexible Software Package User’s Manual

API| Reference > Modules > FreeRTOS Plus FAT (rm_freertos_plus_fat)

ZED

Build Time Configurations for rm_freertos_plus_fat

The following build time configurations are defined in freertos_plus/FreeRTOSFATConfig.h:

4.2.43 Amazon FreeRTOS Port (rm_freertos_port)
Modules

Amazon FreeRTOS port for RA MCUs.

Overview

Note
The FreeRTOS Port does not provide any interfaces to the user. Consult the AWS FreeRTOS documentation at
https:/mvw.freertos.org/ for further information.

Features

The RA FreeRTOS port supports the following features:

e Standard AWS FreeRTOS configurations
e Hardware stack monitor

Configuration

Build Time Configurations for all

The following build time configurations are defined in aws/FreeRTOSConfig.h:

Configuration Options Description
General|Custom Configurable String Add a path to your custom
FreeRTOSConfig.h FreeRTOSConfig.h file. It can be

used to override some or all of
the configurations defined here,
and to define additional
configurations.

Enabled Set to Enabled to use the

Disabled preemptive RTOS scheduler, or
Disabled to use the cooperative
RTOS scheduler.

General|Use Preemption

Enabled Some FreeRTOS ports have two
Disabled methods of selecting the next
task to execute - a generic
method, and a method that is
specific to that port.
The Generic method:

General|Use Port Optimised
Task Selection

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 224 / 601
Nov.08.19

https://www.freertos.org/

Flexible Software Package User’s Manual

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

Is used when Use Port
Optimized Task Selection is set
to 0, or when a port specific
method is not implemented.
Can be used with all FreeRTOS
ports.

Is completely written in C,
making it less efficient than a
port specific method.

Does not impose a limit on the
maximum number of available
priorities.

A port specific method:

Is not available for all ports.

Is used when Use Port
Optimized Task Selection is
Enabled.

Relies on one or more
architecture specific assembly
instructions (typically a Count
Leading Zeros [CLZ] or
equivalent instruction) so can
only be used with the
architecture for which it was
specifically written.

Is more efficient than the
generic method.

Typically imposes a limit of 32
on the maximum number of
available priorities.

General|Use Tickless Idle e Enabled Set Use Tickless Idle to Enabled
¢ Disabled to use the low power tickless
mode, or Disabled to keep the
tick interrupt running at all
times. Low power tickless
implementations are not
provided for all FreeRTOS ports.

Hooks|Use Idle Hook e Enabled Set to Enabled if you wish to
¢ Disabled use an idle hook, or Disabled to
omit an idle hook.

Hooks|Use Malloc Failed Hook e Enabled The kernel uses a call to
¢ Disabled pvPortMalloc() to allocate

memory from the heap each
time a task, queue or
semaphore is created. The
official FreeRTOS download
includes four sample memory
allocation schemes for this
purpose. The schemes are
implemented in the heap_1.c,
heap_2.c, heap_3.c, heap_4.c

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 225 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

and heap_5.c source files
respectively. Use Malloc Failed
Hook is only relevant when one
of these three sample schemes
is being used.

The malloc() failed hook
function is a hook (or callback)
function that, if defined and
configured, will be called if
pvPortMalloc() ever returns
NULL. NULL will be returned
only if there is insufficient
FreeRTOS heap memory
remaining for the requested
allocation to succeed.

If Use Malloc Failed Hook is
Enabled then the application
must define a malloc() failed
hook function. If Use Malloc
Failed Hook is set to Dosab;ed
then the malloc() failed hook
function will not be called, even
if one is defined. Malloc() failed
hook functions must have the
name and prototype shown
below.

void
vApplicationMallocFailedHook(
void);

Hooks|Use Daemon Task e Enabled If Use Timers and Use Daemon

Startup Hook ¢ Disabled Task Startup Hook are both
Enabled then the application
must define a hook function
that has the exact name and
prototype as shown below. The
hook function will be called
exactly once when the RTOS
daemon task (also known as
the timer service task) executes
for the first time. Any
application initialisation code
that needs the RTOS to be
running can be placed in the
hook function.
void void vApplicationDaemonT
askStartupHook(void);

Hooks|Use Tick Hook e Enabled Set to Enabled if you wish to
¢ Disabled use an tick hook, or Disabled to
omit an tick hook.

General|Cpu Clock Hz Configurable String Enter the frequency in Hz at
which the internal clock that

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 226 / 601
Nov.08.19

Flexible Software Package

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

User’s Manual

General|Tick Rate Hz

General|Max Priorities

General|Minimal Stack Size

Must be an integer and greater
than 0

Must be an integer and greater
than O

Must be an integer and greater
than 0

drives the peripheral used to
generate the tick interrupt will
be executing - this is normally
the same clock that drives the
internal CPU clock. This value is
required in order to correctly
configure timer peripherals.

The frequency of the RTOS tick
interrupt.

The tick interrupt is used to
measure time. Therefore a
higher tick frequency means
time can be measured to a
higher resolution. However, a
high tick frequency also means
that the RTOS kernel will use
more CPU time so be less
efficient. The RTOS demo
applications all use a tick rate
of 1000Hz. This is used to test
the RTOS kernel and is higher
than would normally be
required.

More than one task can share
the same priority. The RTOS
scheduler will share processor
time between tasks of the same
priority by switching between
the tasks during each RTOS
tick. A high tick rate frequency
will therefore also have the
effect of reducing the 'time
slice' given to each task.

The number of priorities
available to the application
tasks. Any number of tasks can
share the same priority.

Each available priority
consumes RAM within the RTOS
kernel so this value should not
be set any higher than actually
required by your application.

The size of the stack used by
the idle task. Generally this
should not be reduced from the
value set in the
FreeRTOSConfig.h file provided
with the demo application for
the port you are using.

Like the stack size parameter to
the xTaskCreate() and
xTaskCreateStatic() functions,

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 227/ 601

Flexible Software Package

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

User’s Manual

General|[Max Task Name Len

Stats|Use Trace Facility

Stats|Use Stats Formatting
Functions

General|Use 16 Bit Ticks

Must be an integer and greater
than 0

Enabled
Disabled

Enabled
Disabled

Disabled

the stack size is specified in
words, not bytes. If each item
placed on the stack is 32-bits,
then a stack size of 100 means
400 bytes (each 32-bit stack
item consuming 4 bytes).

The maximum permissible
length of the descriptive name
given to a task when the task is
created. The length is specified
in the number of characters
including the NULL termination
byte.

Set to Enabled if you wish to
include additional structure
members and functions to
assist with execution
visualisation and tracing.

Set Use Trace Facility and Use
Stats Formatting Functions to
Enabled to include the
vTaskList() and
vTaskGetRunTimeStats()
functions in the build. Setting
either to Disabled will omit
vTaskList() and
vTaskGetRunTimeStates() from
the build.

Time is measured in 'ticks' -
which is the number of times
the tick interrupt has executed
since the RTOS kernel was
started. The tick count is held in
a variable of type TickType _t.
Defining
configUSE_16 BIT TICKS as 1
causes TickType_t to be defined
(typedef'ed) as an unsigned
16bit type. Defining
configUSE_16_BIT_TICKS as 0
causes TickType_t to be defined
(typedef'ed) as an unsigned
32bit type.

Using a 16 bit type will greatly
improve performance on 8 and
16 bit architectures, but limits
the maximum specifiable time
period to 65535 'ticks'.
Therefore, assuming a tick
frequency of 250Hz, the
maximum time a task can delay

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 228 /601

Flexible Software Package User’s Manual

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

or block when a 16bit counter is
used is 262 seconds, compared
to 17179869 seconds when
using a 32bit counter.

General|ldle Should Yield e Enabled This parameter controls the
e Disabled behaviour of tasks at the idle

priority. It only has an effect if:
The preemptive scheduler is
being used.
The application creates tasks
that run at the idle priority.
If Use Time Slicing is Enabled
then tasks that share the same
priority will time slice. If none of
the tasks get preempted then it
might be assumed that each
task at a given priority will be
allocated an equal amount of
processing time - and if the
priority is above the idle priority
then this is indeed the case.
When tasks share the idle
priority the behaviour can be
slightly different. If Idle Should
Yield is Enabled then the idle
task will yield immediately if
any other task at the idle
priority is ready to run. This
ensures the minimum amount
of time is spent in the idle task
when application tasks are
available for scheduling. This
behaviour can however have
undesirable effects (depending
on the needs of your
application) as depicted below:

The diagram above shows the
execution pattern of four tasks
that are all running at the idle
priority. Tasks A, B and C are
application tasks. Task | is the
idle task. A context switch
occurs with regular period at
times TO, T1, ..., T6. When the
idle task yields task A starts to
execute - but the idle task has
already consumed some of the
current time slice. This results
in task | and task A effectively
sharing the same time slice.
The application tasks B and C
therefore get more processing

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 229 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

time than the application task
A

This situation can be avoided
by:

If appropriate, using an idle
hook in place of separate tasks
at the idle priority.

Creating all application tasks at
a priority greater than the idle
priority.

Setting Idle Should Yield to
Disabled.

Setting Idle Should Yield to
Disabled prevents the idle task
from yielding processing time
until the end of its time slice.
This ensure all tasks at the idle
priority are allocated an equal
amount of processing time (if
none of the tasks get pre-
empted) - but at the cost of a
greater proportion of the total
processing time being allocated
to the idle task.

General|Use Task Notifications e Enabled Setting Use Task Notifications
e Disabled to Enabled will include direct to

task notification functionality
and its associated API in the
build.
Setting Use Task Notifications
to Disabled will exclude direct
to task notification functionality
and its associated API from the
build.

Each task consumes 8
additional bytes of RAM when
direct to task notifications are
included in the build.

Enabled Set to Enabled to include mutex

Disabled functionality in the build, or
Disabled to omit mutex
functionality from the build.
Readers should familiarise
themselves with the differences
between mutexes and binary
semaphores in relation to the
FreeRTOS functionality.

General|Use Mutexes

Enabled Set to Enabled to include
Disabled recursive mutex functionality in
the build, or Disabled to omit

General|Use Recursive Mutexes

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 230/ 601
Nov.08.19

Flexible Software Package

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

User’s Manual

General|Use Counting
Semaphores

Hooks|Check For Stack
Overflow

General|Queue Registry Size

Enabled
Disabled

Enabled
Disabled

Must be an integer and greater
than 0

recursive mutex functionality
from the build.

Set to Enabled to include
counting semaphore
functionality in the build, or
Disabled to omit counting
semaphore functionality from
the build.

The stack overflow detection
page describes the use of this
parameter. This is not
recommended for RA MCUs
with hardware stack monitor
support. RA MCU designs
should enable the RA hardware
stack monitor instead.

The queue registry has two
purposes, both of which are
associated with RTOS kernel
aware debugging:

It allows a textual name to be
associated with a queue for
easy queue identification within
a debugging GUI.

It contains the information
required by a debugger to
locate each registered queue
and semaphore.

The queue registry has no
purpose unless you are using a
RTOS kernel aware debugger.
Registry Size defines the
maximum number of queues
and semaphores that can be
registered. Only those queues
and semaphores that you want
to view using a RTOS kernel
aware debugger need be
registered. See the API
reference documentation for
vQueueAddToRegistry() and
vQueueUnregisterQueue() for
more information.

General|Use Queue Sets e Enabled Set to Enabled to include queue
¢ Disabled set functionality (the ability to
block, or pend, on multiple
queues and semaphores), or
Disabled to omit queue set
functionality.
General|Use Time Slicing e Enabled If Use Time Slicing is Enabled,
¢ Disabled FreeRTOS uses prioritised
preemptive scheduling with
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 231 /601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

time slicing. That means the
RTOS scheduler will always run
the highest priority task that is
in the Ready state, and will
switch between tasks of equal
priority on every RTOS tick
interrupt. If Use Time Slicing is
Disabled then the RTOS
scheduler will still run the
highest priority task that is in
the Ready state, but will not
switch between tasks of equal
priority just because a tick
interrupt has occurred.

General|Use Newlib Reentrant e Enabled If Use Newlib Reentrant is

¢ Disabled Enabled then a newlib reent
structure will be allocated for
each created task.
Note Newlib support has been
included by popular demand,
but is not used by the
FreeRTOS maintainers
themselves. FreeRTOS is not
responsible for resulting newlib
operation. User must be
familiar with newlib and must
provide system-wide
implementations of the
necessary stubs. Be warned
that (at the time of writing) the
current newlib design
implements a system-wide
malloc() that must be provided

with locks.
General|Enable Backward e Enabled The FreeRTOS.h header file
Compatibility ¢ Disabled includes a set of #define

macros that map the names of
data types used in versions of
FreeRTOS prior to version 8.0.0
to the names used in FreeRTOS
version 8.0.0. The macros allow
application code to update the
version of FreeRTOS they are
built against from a pre 8.0.0
version to a post 8.0.0 version
without modification. Setting
Enable Backward Compatibility
to Disabled in
FreeRTOSConfig.h excludes the
macros from the build, and in
so doing allowing validation
that no pre version 8.0.0 names
are being used.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 232 / 601
Nov.08.19

Flexible Software Package

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

User’s Manual

General|[Num Thread Local
Storage Pointers

General|Stack Depth Type

General|Message Buffer Length
Type

Memory Allocation|Support
Static Allocation

Must be an integer and greater
than 0

Configurable String

Configurable String

e Enabled
¢ Disabled

Sets the number of indexes in
each task's thread local storage
array.

Sets the type used to specify
the stack depth in calls to
xTaskCreate(), and various
other places stack sizes are
used (for example, when
returning the stack high water
mark).

Older versions of FreeRTOS
specified stack sizes using
variables of type UBaseType_t,
but that was found to be too
restrictive on 8-bit
microcontrollers. Stack Depth
Type removes that restriction
by enabling application
developers to specify the type
to use.

FreeRTOS Message buffers use
variables of type Message
Buffer Length Type to store the
length of each message. If
Message Buffer Length Type is
not defined then it will default
to size_t. If the messages
stored in a message buffer will
never be larger than 255 bytes
then defining Message Buffer
Length Type to uint8 t will save
3 bytes per message on a
32-bit microcontroller. Likewise
if the messages stored in a
message buffer will never be
larger than 65535 bytes then
defining Message Buffer Length
Type to uintl6_t will save 2
bytes per message on a 32-bit
microcontroller.

If Support Static Allocation is
Enabled then RTOS objects can
be created using RAM provided
by the application writer.

If Support Static Allocation is
Disabled then RTOS objects can
only be created using RAM
allocated from the FreeRTOS
heap.

If Support Static Allocation is
left undefined it will default to
0.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 233 /601

Flexible Software Package User’s Manual

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

If Support Static Allocation is
Enabled then the application
writer must also provide two
callback functions: vApplication
GetldleTaskMemory() to provide
the memory for use by the
RTOS Idle task, and (if Use
Timers is Enabled) vApplication
GetTimerTaskMemory() to
provide memory for use by the
RTOS Daemon/Timer Service
task. Examples are provided
below.

/* Support Static Allocation is
Enabled, so the application
must provide an
implementation of vApplication
GetldleTaskMemory() to provide
the memory that is

used by the Idle task. */

void
vApplicationGetldleTaskMemory
(StaticTask t
**ppxldleTaskTCBBuffer,

StackType t
**ppxldleTaskStackBuffer,

uint32_t *pulldleTaskStackSize)
{

/* If the buffers to be provided
to the Idle task are declared
inside this

function then they must be
declared static - otherwise they
will be allocated on

the stack and so not exists after
this function exits. */

static StaticTask t
xldleTaskTCB;

static StackType_t
uxldleTaskStack|[
configMINIMAL_STACK_SIZE];

/* Pass out a pointer to the
StaticTask_t structure in which
the Idle task's

state will be stored. */
*ppxldleTaskTCBBuffer =

/* Pass out the array that will be
used as the Idle task's stack. */
*ppxldleTaskStackBuffer =
uxldleTaskStack;

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 234/ 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

/* Pass out the size of the array
pointed to by
*ppxldleTaskStackBuffer.

Note that, as the array is
necessarily of type
StackType t,
configMINIMAL_STACK SIZE is
specified in words, not bytes. */
*pulldleTaskStackSize =
configMINIMAL_STACK_SIZE;

/* Support Static Allocation and
Use Timers are both Enabled,
so the

application must provide an
implementation of vApplication
GetTimerTaskMemory()

to provide the memory that is
used by the Timer service task.
*/

void vApplicationGetTimerTask
Memory(StaticTask t
**ppxTimerTaskTCBBuffer,

StackType_t **ppxTimerTaskSta
ckBuffer,
 uint32_t
*pulTimerTaskStackSize)

{

/* If the buffers to be provided
to the Timer task are declared
inside this

function then they must be
declared static - otherwise they
will be allocated on

the stack and so not exists after
this function exits. */

static StaticTask t
xTimerTaskTCB;

static StackType_t
uxTimerTaskStack[configTIMER
_TASK STACK DEPTH J;

/* Pass out a pointer to the
StaticTask_t structure in which
the Timer

task's state will be stored. */
*ppxTimerTaskTCBBuffer =

/* Pass out the array that will be
used as the Timer task's stack.
*/

*ppxTimerTaskStackBuffer =

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 235/ 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

uxTimerTaskStack;

/* Pass out the size of the array
pointed to by
*ppxTimerTaskStackBuffer.
Note that, as the array is
necessarily of type
StackType t,
configTIMER_TASK STACK DEPT
H is specified in words, not
bytes. */
*pulTimerTaskStackSize = confi
gTIMER _TASK STACK DEPTH,;

}

Examples of the callback
functions that must be provided
by the application to

supply the RAM used by the Idle
and Timer Service tasks if
Support Static Allocation

is Enabled.

See the Static Vs Dynamic
Memory Allocation page for
more information.

Memory Allocation|Support ¢ Enabled If Support Dynamic Allocation is

Dynamic Allocation e Disabled Enabled then RTOS objects can
be created using RAM that is
automatically allocated from
the FreeRTOS heap.
If Support Dynamic Allocation is
set to 0 then RTOS objects can
only be created using RAM
provided by the application
writer.

See the Static Vs Dynamic
Memory Allocation page for
more information.

Memory Allocation|Total Heap Must be an integer and greater The total amount of RAM

Size than 0 available in the FreeRTOS heap.
This value will only be used if
Support Dynamic Allocation is
Enabled and the application
makes use of one of the sample
memory allocation schemes
provided in the FreeRTOS
source code download. See the
memory configuration section
for further details.

Memory Allocation|Application ¢ Enabled By default the FreeRTOS heap
Allocated Heap ¢ Disabled is declared by FreeRTOS and
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 236 / 601

Nov.08.19

Flexible Software Package

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

User’s Manual

Stats|Generate Run Time Stats

Timers|Use Timers

Timers|Timer Task Priority

Timers|Timer Queue Length

Timers|Timer Task Stack Depth

General|Library Max Syscall
Interrupt Priority

Enabled
Disabled

Enabled
Disabled

Must be an integer and greater
than 0

Must be an integer and greater
than 0

Must be an integer and greater
than 0

MCU Specific Options

placed in memory by the linker.
Setting Application Allocated
Heap to Enabled allows the
heap to instead be declared by
the application writer, which
allows the application writer to
place the heap wherever they
like in memory.

If heap_1.c, heap_2.c or
heap_4.c is used, and
Application Allocated Heap is
Enabled, then the application
writer must provide a uint8_t
array with the exact name and
dimension as shown below. The
array will be used as the
FreeRTOS heap. How the array
is placed at a specific memory
location is dependent on the
compiler being used - refer to
your compiler's documentation.

uint8_t ucHeapl
configTOTAL_HEAP_SIZE];

The Run Time Stats page
describes the use of this
parameter.

Set to Enabled to include
software timer functionality, or
Disabled to omit software timer
functionality. See the FreeRTOS
software timers page for a full
description.

Sets the priority of the software
timer service/daemon task. See
the FreeRTOS software timers
page for a full description.

Sets the length of the software
timer command queue. See the
FreeRTOS software timers page
for a full description.

Sets the stack depth allocated
to the software timer
service/daemon task. See the
FreeRTOS software timers page
for a full description.

The highest interrupt priority
that can be used by any
interrupt service routine that
makes calls to interrupt safe
FreeRTOS API functions. DO

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 237 /601

Flexible Software Package User’s Manual

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

NOT CALL INTERRUPT SAFE
FREERTOS APl FUNCTIONS
FROM ANY INTERRUPT THAT
HAS A HIGHER PRIORITY THAN
THIS! (higher priorities are
lower numeric values)

Below is explanation for macros
that are set based on this value
from FreeRTOS website.

In the RA port, configkERNEL _IN
TERRUPT_PRIORITY is not used
and the kernel runs at the
lowest priority.

Note in the following discussion
that only API functions that end
in "FromISR" can be called from
within an interrupt service
routine.

configMAX_SYSCALL_INTERRUP
T_PRIORITY sets the highest
interrupt priority from which
interrupt safe FreeRTOS API
functions can be called.

A full interrupt nesting model is
achieved by setting configMAX_
SYSCALL_INTERRUPT_PRIORITY
above (that is, at a higher
priority level) than configKkERNE
L INTERRUPT_PRIORITY. This
means the FreeRTOS kernel
does not completely disable
interrupts, even inside critical
sections. Further, this is
achieved without the
disadvantages of a segmented
kernel architecture.

Interrupts that do not call API
functions can execute at
priorities above configMAX_SYS
CALL _INTERRUPT_PRIORITY and
therefore never be delayed by
the RTOS kernel execution.

A special note for ARM Cortex-M
users: Please read the page
dedicated to interrupt priority
settings on ARM Cortex-M
devices. As a minimum,
remember that ARM Cortex-M

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 238/ 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

cores use numerically low
priority numbers to represent
HIGH priority interrupts, which
can seem counter-intuitive and
is easy to forget! If you wish to
assign an interrupt a low
priority do NOT assign it a
priority of O (or other low
numeric value) as this can
result in the interrupt actually
having the highest priority in
the system - and therefore
potentially make your system
crash if this priority is above co
nfigMAX_SYSCALL_INTERRUPT _
PRIORITY.

The lowest priority on a ARM
Cortex-M core is in fact 255 -
however different ARM Cortex-
M vendors implement a
different number of priority bits
and supply library functions
that expect priorities to be
specified in different ways. For
example, on the RA6M3 the
lowest priority you can specify
is 15 - and the highest priority
you can specify is 0.

General|Assert Configurable String The semantics of the
configASSERT() macro are the
same as the standard C assert()
macro. An assertion is triggered
if the parameter passed into
configASSERT() is zero.
configASSERT() is called
throughout the FreeRTOS
source files to check how the
application is using FreeRTOS.
It is highly recommended to
develop FreeRTOS applications
with configASSERT() defined.

The example definition (shown
at the top of the file and
replicated below) calls
vAssertCalled(), passing in the
file name and line number of
the triggering configASSERTY()
call (_FILE_ and _LINE__ are
standard macros provided by
most compilers). This is just for
demonstration as
vAssertCalled() is not a

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 239 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

FreeRTOS function,
configASSERT() can be defined
to take whatever action the
application writer deems
appropriate.

It is normal to define
configASSERT() in such a way
that it will prevent the
application from executing any
further. This if for two reasons;
stopping the application at the
point of the assertion allows the
cause of the assertion to be
debugged, and executing past
a triggered assertion will
probably result in a crash
anyway.

Note defining configASSERT()
will increase both the
application code size and
execution time. When the
application is stable the
additional overhead can be
removed by simply
commenting out the
configASSERT() definition in
FreeRTOSConfig.h.

/* Define configASSERTY() to call
vAssertCalled() if the assertion
fails. The assertion

has failed if the value of the
parameter passed into
configASSERT() equals zero. */
#define configASSERT((x)) if(
(x) == 0) vAssertCalled(
__FILE_, LINE_)

If running FreeRTOS under the
control of a debugger, then
configASSERT() can be defined
to just disable interrupts and sit
in a loop, as demonstrated
below. That will have the effect
of stopping the code on the line
that failed the assert test -
pausing the debugger will then
immediately take you to the
offending line so you can see
why it failed.

/* Define configASSERT() to
disable interrupts and sitin a
loop. */

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 240 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

#define configASSERT((x)) if(

(x)==0){
taskDISABLE_INTERRUPTS();
for(;;); }
General|lnclude Application e Enabled Include Application Defined
Defined Privileged Functions e Disabled Privileged Functions is only

used by FreeRTOS MPU.

If Include Application Defined
Privileged Functions is Enabled
then the application writer must
provide a header file called "ap
plication_defined_privileged fun
ctions.h", in which functions the
application writer needs to
execute in privileged mode can
be implemented. Note that,
despite having a .h extension,
the header file should contain
the implementation of the C
functions, not just the functions'
prototypes.

Functions implemented in "appl
ication_defined_privileged funct
ions.h" must save and restore
the processor's privilege state
using the prvRaisePrivilege()
function and
portRESET_PRIVILEGE() macro
respectively. For example, if a
library provided print function
accesses RAM that is outside of
the control of the application
writer, and therefore cannot be
allocated to a memory
protected user mode task, then
the print function can be
encapsulated in a privileged
function using the following
code:

void MPU_debug_printf(const
char *pcMessage)

{

/* State the privilege level of
the processor when the
function was called. */
BaseType_t xRunningPrivileged
= prvRaisePrivilege();

/* Call the library function,
which now has access to all
RAM. */

debug_printf(pcMessage);

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 241/ 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

/* Reset the processor privilege
level to its original value. */
portRESET PRIVILEGE(
xRunningPrivileged);

}

This technique should only be
use during development, and
not deployment, as it
circumvents the memory

protection.

Optional ¢ Enabled Include vTaskPrioritySet()

Functions|vTaskPrioritySet() e Disabled function in build

Function

Optional e Enabled Include uxTaskPriorityGet()

Functions|uxTaskPriorityGet() e Disabled function in build

Function

Optional e Enabled Include vTaskDelete() function

Functions|vTaskDelete() e Disabled in build

Function

Optional e Enabled Include vTaskSuspend()

Functions|vTaskSuspend() ¢ Disabled function in build

Function

Optional e Enabled Include xResumeFromISR()

Functions|xResumeFromISR() e Disabled function in build

Function

Optional ¢ Enabled Include vTaskDelayUntil()

Functions|vTaskDelayUntil() ¢ Disabled function in build

Function

Optional e Enabled Include vTaskDelay() function in

Functions|vTaskDelay() e Disabled build

Function

Optional Functions|xTaskGetSc e Enabled Include

hedulerState() Function e Disabled xTaskGetSchedulerState()
function in build

Optional Functions|xTaskGetCur e Enabled Include

rentTaskHandle() Function ¢ Disabled xTaskGetCurrentTaskHandle()
function in build

Optional Functions|uxTaskGetSt ¢ Enabled Include uxTaskGetStackHighWa

ackHighWaterMark() Function e Disabled terMark() function in build

Optional Functions|xTaskGetld| e Enabled Include

eTaskHandle() Function e Disabled xTaskGetldleTaskHandle()
function in build

Optional e Enabled Include eTaskGetState()

Functions|eTaskGetState() e Disabled function in build

Function

Optional Functions|xEventGrou e Enabled Include

R11UMO0137EU0081 Revision 0.81 RLENESAS Page 242 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Amazon FreeRTOS Port (rm_freertos_port)

pSetBitFromISR() Function ¢ Disabled xEventGroupSetBitFromISR()
function in build
Optional Functions|xTimerPend e Enabled Include
FunctionCall() Function e Disabled xTimerPendFunctionCall()
function in build
Optional ¢ Enabled Include xTaskAbortDelay()
Functions|xTaskAbortDelay() ¢ Disabled function in build
Function
Optional e Enabled Include xTaskGetHandle()
Functions|xTaskGetHandle() e Disabled function in build
Function
Optional Functions|xTaskResum e Enabled Include xTaskResumeFromISR()
eFromISR() Function e Disabled function in build
RA|Hardware Stack Monitor e Enabled Include RA stack monitor
e Disabled

4.2.44 Crypto Middleware (rm_psa_crypto)
Modules

Functions

fsp_err t RM_PSA_CRYPTO_TRNG_Read (uint8_t *const p_rngbuf, uint32_t
num_req_bytes, uint32_t *p num_gen_bytes)

Reads requested length of random data from the TRNG. Generate
nbytes of random bytes and store them in p_rngbuf buffer. More...

int mbedtls_platform_setup (mbedtls platform_context *ctx)

void mbedtls platform_teardown (mbedtls_platform_context *ctx)

Detailed Description

Hardware acceleration for the mbedCrypto implementation of the ARM PSA Crypto API.

Overview

Note
The PSA Crypto module does not provide any interfaces to the user. This release uses the mbed-Crypto version
1.1.0 which conforms to the PSA Crypto API 1.0 beta2 specification. Consult the ARM mbedCrypto
documentation at https://github.com/ARM mbed/mbed-crypto/blob/mbedcrypto-1.1.0/docs/getting_started.md for
further information.

Features

The PSA_Crypto module provides hardware support for the following PSA Crypto operations

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 243 / 601
Nov.08.19

https://github.com/ARMmbed/mbed-crypto/blob/mbedcrypto-1.1.0/docs/getting_started.md

Flexible Software Package User’s Manual

API| Reference > Modules > Crypto Middleware (rm_psa_crypto)

e SHA256 calculation
SHA224 calculation
AES128/256.
o Plain-Text Key generation
o Encryption with no padding and with PKCS7 padding.
o Decryption
o CBC and CTR modes
RSA2048
o Plain-Text Key Generation
o Signing
o Verification
e Random number generation

Configuration

Build Time Configurations for mbedCrypto

The following build time configurations are defined in fsp_cfg/mbedtls/config.h:

Configuration Options Description

Hardware Acceleration|TRNG Enabled Defines MBEDTLS ENTROPY_HA
RDWARE_ALT.

Hardware MCU Specific Options Defines MBEDTLS_SHA256_ALT

Acceleration|Hash|SHA256/224 and MBEDTLS_SHA256_PROCES
S ALT.

Hardware MCU Specific Options Defines MBEDTLS _AES SETKEY _

Acceleration|Cipher|AES ENC_ALT, MBEDTLS_AES SETKE
Y _DEC_ALT,
MBEDTLS AES ENCRYPT_ALT
and

MBEDTLS_AES_DECRYPT ALT

Hardware Acceleration|Public MCU Specific Options Defines MBEDTLS RSA_ALT.
Key Cryptography (PKC)|RSA
Hardware Acceleration|Secure Enabled MBEDTLS PLATFORM_SETUP TE
Crypto Engine Initialization ARDOWN_ALT
Platform|MBEDTLS_HAVE_ASM e Define MBEDTLS_HAVE_ASM

¢ Undefine
Platform|MBEDTLS_NO_UDBL DI * Define MBEDTLS_NO_UDBL_DIVISION
VISION e Undefine
Platform|MBEDTLS_NO_64BIT_M e Define MBEDTLS_NO_64BIT_MULTIPLIC
ULTIPLICATION e Undefine ATION
Platform|MBEDTLS HAVE_SSE2 ¢ Define MBEDTLS HAVE_SSE?2

e Undefine
Platform|MBEDTLS_HAVE_TIME e Define MBEDTLS_HAVE_TIME

¢ Undefine
Platform|MBEDTLS_HAVE_TIME_ * Define MBEDTLS_HAVE_TIME_DATE

R11UMO0137EU0081 Revision 0.81 RLENESAS Page 244 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Crypto Middleware (rm_psa_crypto)

DATE Undefine

Platform|MBEDTLS_PLATFORM_ Define MBEDTLS_PLATFORM_MEMORY

MEMORY Undefine

Platform|MBEDTLS_PLATFORM _ Define MBEDTLS_PLATFORM_NO_STD_

NO_STD_FUNCTIONS Undefine FUNCTIONS

Platform|Alternate|MBEDTLS_PL Define MBEDTLS_PLATFORM_EXIT_ALT

ATFORM_EXIT_ALT Undefine

Platform|Alternate|MBEDTLS_PL Define MBEDTLS_PLATFORM_TIME_ALT

ATFORM_TIME_ALT Undefine

Platform|Alternate|MBEDTLS_PL Define MBEDTLS_PLATFORM_FPRINTF_

ATFORM_FPRINTF_ALT Undefine ALT

Platform|Alternate|MBEDTLS_PL Define MBEDTLS_PLATFORM_PRINTF_A

ATFORM_PRINTF_ALT Undefine LT

Platform|Alternate|MBEDTLS_PL Define MBEDTLS_PLATFORM_SNPRINTF

ATFORM_SNPRINTF_ALT Undefine _ALT

Platform|Alternate|MBEDTLS_PL Define MBEDTLS_PLATFORM_VSNPRINT

ATFORM_VSNPRINTF_ALT Undefine F_ALT

Platform|Alternate|MBEDTLS_PL Define MBEDTLS_PLATFORM_NV_SEED

ATFORM_NV_SEED_ALT Undefine _ALT

General|MBEDTLS_DEPRECATE Define MBEDTLS_DEPRECATED_WARNI

D_WARNING Undefine NG

General|MBEDTLS_DEPRECATE Define MBEDTLS_DEPRECATED_REMOV

D_REMOVED Undefine ED

General|MBEDTLS_CHECK_PARA Define MBEDTLS_CHECK_PARAMS

MS Undefine

Platform|MBEDTLS_TIMING_ALT Define MBEDTLS_TIMING_ALT
Undefine

Cipher|Alternate|MBEDTLS _AES Define MBEDTLS_AES ALT

_ALT Undefine

Cipher]Alternate|]MBEDTLS_ARC Define MBEDTLS_ARC4 ALT

4 ALT Undefine

Cipher|Alternate|MBEDTLS_ARIA Define MBEDTLS_ARIA_ALT

_ALT Undefine

Cipher|Alternate|MBEDTLS_BLO Define MBEDTLS_BLOWFISH_ALT

WFISH_ALT Undefine

Cipher|Alternate| MBEDTLS CAM Define MBEDTLS CAMELLIA ALT

ELLIA_ALT Undefine

Cipher|Alternate| MBEDTLS _CCM Define MBEDTLS _CCM_ALT

_ALT Undefine

Cipher|Alternate|MBEDTLS_CHA Define MBEDTLS_CHACHA20_ALT

CHA20_ALT Undefine

Cipher|Alternate|MBEDTLS_CHA Define MBEDTLS_CHACHAPOLY_ALT

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 245 /601

Flexible Software Package User’s Manual

API| Reference > Modules > Crypto Middleware (rm_psa_crypto)

CHAPOLY_ALT ¢ Undefine
Cipher|Alternate|] MBEDTLS CMA e Define MBEDTLS CMAC_ALT
C ALT e Undefine
Cipher|Alternate|MBEDTLS DES ¢ Define MBEDTLS DES ALT
_ALT ¢ Undefine
Public Key Cryptography (PKC)| ¢ Define MBEDTLS DHM_ALT
DHM|Alternate|[MBEDTLS DHM _ e Undefine
ALT
Public Key Cryptography (PKC)| ¢ Define MBEDTLS ECJPAKE_ALT
ECC|Alternate|MBEDTLS_ECJPAK e Undefine
E_ALT
Cipher|Alternate| MBEDTLS _GCM e Define MBEDTLS _GCM_ALT
_ALT e Undefine
Cipher|Alternate|MBEDTLS_NIST ¢ Define MBEDTLS _NIST KW_ALT
_KW_ALT e Undefine
Hash|Alternate|MBEDTLS_MD2_ e Define MBEDTLS_MD2_ALT
ALT e Undefine
Hash|Alternate|MBEDTLS MD4 ¢ Define MBEDTLS MD4 ALT
ALT e Undefine
Hash|Alternate|MBEDTLS_MD5 _ e Define MBEDTLS_MD5_ALT
ALT e Undefine
Message Authentication Code (¢ Define MBEDTLS POLY1305 ALT
MAC)|Alternate|[MBEDTLS POLY e Undefine
1305_ALT
Hash|Alternate|MBEDTLS RIPEM e Define MBEDTLS RIPEMD160 ALT
D160 _ALT e Undefine
Hash|Alternate|MBEDTLS_SHA1 e Define MBEDTLS SHA1 ALT
_ALT e Undefine
Hash|Alternate|MBEDTLS_SHA5 e Define MBEDTLS_SHA512_ALT
12_ALT e Undefine
Cipher|Alternate|MBEDTLS XTE ¢ Define MBEDTLS XTEA ALT
A ALT e Undefine
Public Key Cryptography (PKC)| e Define MBEDTLS _ECP_ALT
ECC|Alternate|MBEDTLS_ECP_A e Undefine
LT
Hash|Alternate|MBEDTLS_MD2_ e Define MBEDTLS MD2_PROCESS_ALT
PROCESS_ALT e Undefine
Hash|Alternate|MBEDTLS_MD4 _ e Define MBEDTLS MD4 PROCESS _ALT
PROCESS_ALT e Undefine
Hash|Alternate|MBEDTLS_MD5 _ e Define MBEDTLS _MD5_PROCESS ALT
PROCESS_ALT ¢ Undefine
Hash|Alternate| MBEDTLS RIPEM e Define MBEDTLS_RIPEMD160_PROCESS
D160_PROCESS_ALT e Undefine _ALT
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 246 / 601

Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Crypto Middleware (rm_psa_crypto)

Hash|Alternate| MBEDTLS SHA1l Define MBEDTLS SHA1 PROCESS ALT
_PROCESS_ALT Undefine

Hash|Alternate| MBEDTLS_SHA5 Define MBEDTLS SHA512 PROCESS AL
12_PROCESS_ALT Undefine T
Cipher|Alternate|MBEDTLS_DES Define MBEDTLS_DES_SETKEY_ALT
_SETKEY_ALT Undefine

Cipher|Alternate| MBEDTLS_DES Define MBEDTLS DES CRYPT_ECB_ALT
_CRYPT_ECB_ALT Undefine

Cipher|Alternate|MBEDTLS_DES Define MBEDTLS_DES3_CRYPT_ECB_AL
3_CRYPT_ECB_ALT Undefine T

Public Key Cryptography (PKC)| Define MBEDTLS ECDH_GEN_PUBLIC_A
ECC|MBEDTLS_ECDH_GEN_PUBL Undefine LT

IC_ALT

Public Key Cryptography (PKC)| Define MBEDTLS ECDH_COMPUTE_SHA
ECC|MBEDTLS_ECDH_COMPUTE Undefine RED_ALT

_SHARED_ALT

Public Key Cryptography (PKC)| Define MBEDTLS _ECDSA VERIFY_ALT
ECCJ|Alternate| MBEDTLS ECDSA Undefine

_VERIFY_ALT

Public Key Cryptography (PKC)| Define MBEDTLS ECDSA SIGN_ALT
ECCJ|Alternate|MBEDTLS_ECDSA Undefine

_SIGN_ALT

Public Key Cryptography (PKC)| Define MBEDTLS _ECDSA GENKEY_ALT
ECCJ|Alternate|MBEDTLS ECDSA Undefine

_GENKEY_ALT

Public Key Cryptography (PKC)| Define MBEDTLS _ECDSA GENKEY_ALT
ECCJ|Alternate|MBEDTLS_ECDSA Undefine

_GENKEY_ALT

Public Key Cryptography (PKC)| Define MBEDTLS _ECP_INTERNAL ALT
ECC|Alternate|MBEDTLS _ECP_IN Undefine

TERNAL_ALT

Public Key Cryptography (PKC)| Define MBEDTLS_ECP_RANDOMIZE_JAC
ECC|Alternate|MBEDTLS_ECP_R Undefine _ALT

ANDOMIZE_JAC ALT

Public Key Cryptography (PKC)| Define MBEDTLS ECP_ADD_ MIXED ALT
ECC|Alternate|MBEDTLS ECP_A Undefine

DD_MIXED_ALT

Public Key Cryptography (PKC)| Define MBEDTLS ECP_DOUBLE_JAC AL
ECC|Alternate|MBEDTLS_ECP_D Undefine T

OUBLE_JAC ALT

Public Key Cryptography (PKC)| Define MBEDTLS_ECP_NORMALIZE_JAC
ECCJ|Alternate|MBEDTLS_ECP_N Undefine _MANY_ALT
ORMALIZE_JAC_MANY_ALT

Public Key Cryptography (PKC)| Define MBEDTLS ECP_NORMALIZE_JAC
ECC|Alternate|MBEDTLS_ECP_N Undefine _ALT

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 247/ 601

Flexible Software Package

API| Reference > Modules > Crypto Middleware (rm_psa_crypto)

User’s Manual

ORMALIZE_JAC_ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS ECP_D
OUBLE_ADD MXZ_ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS ECP_R
ANDOMIZE_MXZ ALT

Public Key Cryptography (PKC)|
ECC|Alternate|MBEDTLS_ECP_N
ORMALIZE_MXZ_ALT

RNG|MBEDTLS_TEST NULL_ENT
ROPY

Cipher|AES|MBEDTLS_AES_ROM
_TABLES

Cipher|AES|MBEDTLS_AES_FEW
ER_TABLES

Cipher|[MBEDTLS_CAMELLIA_SM
ALL_MEMORY

Cipher|MBEDTLS_CIPHER_MODE
_CBC

Cipher|[MBEDTLS_CIPHER_MODE
_CFB

Cipher|MBEDTLS_CIPHER_MODE
_CTR

Cipher|[MBEDTLS_CIPHER_MODE
_OFB

Cipher|MBEDTLS_CIPHER_MODE
_XTS

Cipher|[MBEDTLS_CIPHER_NULL _
CIPHER

Cipher|MBEDTLS_CIPHER_PADDI
NG_PKCS7

Cipher[MBEDTLS_CIPHER_PADDI
NG_ONE_AND_ZEROS

Cipher|MBEDTLS_CIPHER _PADDI
NG_ZEROS_AND_LEN

Cipher|[MBEDTLS_CIPHER_PADDI
NG_ZEROS

Public Key Cryptography (PKC)|
ECC|Curves|MBEDTLS _ECP DP_
SECP192R1 _ENABLED

Public Key Cryptography (PKC)|
ECC|Curves|MBEDTLS_ECP_DP_

Define
Undefine

Define
Undefine

Define
Undefine

Define
Undefine

Define
Undefine

Define
Undefine

Define
Undefine

Define
Undefine

Define
Undefine

Define
Undefine

Define
Undefine

Define
Undefine

Define
Undefine

Define
Undefine

Define
Undefine

Define
Undefine

Define
Undefine

Define
Undefine

Define
Undefine

MBEDTLS_ECP_DOUBLE_ADD M
XZ_ALT

MBEDTLS_ECP_RANDOMIZE_MX
Z ALT

MBEDTLS_ECP_NORMALIZE_MX
Z ALT

MBEDTLS_TEST_NULL_ENTROPY

MBEDTLS_AES_ROM_TABLES

MBEDTLS_AES_FEWER_TABLES

MBEDTLS_CAMELLIA_SMALL_ME
MORY

MBEDTLS_CIPHER_MODE_CBC

MBEDTLS_CIPHER_MODE_CFB

MBEDTLS_CIPHER_MODE_CTR

MBEDTLS_CIPHER_MODE_OFB

MBEDTLS_CIPHER_MODE_XTS

MBEDTLS_CIPHER_NULL_CIPHER

MBEDTLS_CIPHER_PADDING_PK
Cs7

MBEDTLS_CIPHER_PADDING_ON
E_AND_ZEROS

MBEDTLS_CIPHER PADDING_ZE
ROS_AND_LEN

MBEDTLS_CIPHER_PADDING_ZE
ROS

MBEDTLS_ECP_DP_SECP192R1_
ENABLED

MBEDTLS_ECP_DP_SECP224R1_
ENABLED

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 248/ 601

Flexible Software Package User’s Manual

API| Reference > Modules > Crypto Middleware (rm_psa_crypto)

SECP224R1_ENABLED

Public Key Cryptography (PKC)| e Define MBEDTLS _ECP_DP_SECP256R1_
ECC|Curves|MBEDTLS_ECP _DP_ e Undefine ENABLED

SECP256R1 _ENABLED

Public Key Cryptography (PKC)| ¢ Define MBEDTLS _ECP_DP SECP384R1_
ECC|Curves|MBEDTLS_ECP_DP_ e Undefine ENABLED
SECP384R1_ENABLED

Public Key Cryptography (PKC)| e Define MBEDTLS _ECP_DP SECP521R1_
ECC|Curves|MBEDTLS_ECP_DP_ e Undefine ENABLED

SECP521R1 ENABLED

Public Key Cryptography (PKC)| ¢ Define MBEDTLS ECP _DP SECP192K1
ECC|Curves|MBEDTLS_ECP_DP_ e Undefine ENABLED

SECP192K1 _ENABLED

Public Key Cryptography (PKC)| e Define MBEDTLS _ECP_DP SECP224K1
ECC|Curves|MBEDTLS_ECP_DP_ e Undefine ENABLED

SECP224K1 _ENABLED

Public Key Cryptography (PKC)| ¢ Define MBEDTLS_ECP_DP_SECP256K1 _
ECC|Curves|MBEDTLS_ECP _DP_ e Undefine ENABLED
SECP256K1_ENABLED

Public Key Cryptography (PKC)| ¢ Define MBEDTLS _ECP_DP BP256R1 EN
ECC|Curves|MBEDTLS_ECP_DP_ ¢ Undefine ABLED

BP256R1_ENABLED

Public Key Cryptography (PKC)| ¢ Define MBEDTLS _ECP_DP BP384R1 EN
ECC|Curves|MBEDTLS_ECP_DP_ e Undefine ABLED

BP384R1_ENABLED

Public Key Cryptography (PKC)| ¢ Define MBEDTLS ECP _DP BP512R1 EN
ECC|Curves|MBEDTLS_ECP_DP_ ¢ Undefine ABLED

BP512R1_ENABLED

Public Key Cryptography (PKC)| e Define MBEDTLS_ECP_DP CURVE25519
ECC|Curves|MBEDTLS_ECP_DP_ e Undefine _ENABLED

CURVE25519 ENABLED

Public Key Cryptography (PKC)| ¢ Define MBEDTLS ECP_DP CURVE448 E
ECC|Curves|MBEDTLS_ECP_DP_ ¢ Undefine NABLED

CURVE448 ENABLED

Public Key Cryptography (PKC)| e Define MBEDTLS_ECP_NIST_OPTIM
ECC|MBEDTLS_ECP_NIST OPTIM e Undefine

Public Key Cryptography (PKC)| ¢ Define MBEDTLS _ECP_RESTARTABLE
ECC|MBEDTLS_ECP_RESTARTAB e Undefine

LE

Public Key Cryptography (PKC)| ¢ Define MBEDTLS ECDH_LEGACY_CONT
ECC|MBEDTLS _ECDH_LEGACY_C ¢ Undefine EXT

ONTEXT

Public Key Cryptography (PKC)| ¢ Define MBEDTLS _ECDSA DETERMINIST
ECC|MBEDTLS_ECDSA DETERMI e Undefine IC

NISTIC

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 249 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Crypto Middleware (rm_psa_crypto)

Public Key Cryptography (PKC)| ¢ Define MBEDTLS PK PARSE EC EXTEN
ECC|MBEDTLS_PK_PARSE_EC E e Undefine DED
XTENDED
General|[MBEDTLS ERROR_STRE e Define MBEDTLS ERROR_STRERROR D
RROR_DUMMY e Undefine UMMY
Public Key Cryptography ¢ Define MBEDTLS GENPRIME
(PKC)|MBEDTLS_GENPRIME ¢ Undefine
Storage|MBEDTLS_FS_10 e Define MBEDTLS_FS_IO

* Undefine
RNG|MBEDTLS_NO_DEFAULT_E ¢ Define MBEDTLS_NO_DEFAULT_ENTRO
NTROPY_SOURCES ¢ Undefine PY_SOURCES
Platform|MBEDTLS_NO_PLATFO e Define MBEDTLS NO_PLATFORM_ENTR
RM_ENTROPY e Undefine OPY
RNG|MBEDTLS_ENTROPY_FORC ¢ Define MBEDTLS_ENTROPY_FORCE_SH
E_SHA256 ¢ Undefine A256
RNG|MBEDTLS_ENTROPY_NV_SE e Define MBEDTLS _ENTROPY_NV_SEED
ED e Undefine
Storage|MBEDTLS_PSA_CRYPTO ¢ Define MBEDTLS_PSA CRYPTO_KEY_FIL
_KEY_FILE_ID_ENCODES_OWNE e Undefine E_ID_ENCODES_OWNER
R
General|[MBEDTLS MEMORY_DE e Define MBEDTLS MEMORY_DEBUG
BUG e Undefine
General|[MBEDTLS_MEMORY_BA e Define MBEDTLS_MEMORY_BACKTRAC
CKTRACE e Undefine E
Public Key Cryptography (PKC)| e Define MBEDTLS _PK RSA _ALT SUPPOR
RSA|MBEDTLS_PK RSA ALT SUP e Undefine T
PORT
Public Key Cryptography ¢ Define MBEDTLS PKCS1 V15
(PKC)|MBEDTLS_PKCS1 V15 ¢ Undefine
Public Key Cryptography e Define MBEDTLS PKCS1 V21
(PKC)|MBEDTLS_PKCS1 V21 e Undefine
General|[MBEDTLS_PSA_CRYPTO e Define MBEDTLS_PSA CRYPTO_SPM
_SPM ¢ Undefine
RNG|MBEDTLS_PSA_INJECT _ENT e Define MBEDTLS PSA INJECT _ENTROPY
ROPY e Undefine
Public Key Cryptography (PKC)| ¢ Define MBEDTLS RSA NO_CRT
RSA|MBEDTLS_RSA _NO_CRT ¢ Undefine
General|[MBEDTLS _SELF TEST e Define MBEDTLS SELF TEST

e Undefine
Hash|MBEDTLS_SHA256_SMALL e Define MBEDTLS _SHA256 SMALLER
ER ¢ Undefine
General|[MBEDTLS _THREADING _ e Define MBEDTLS THREADING_ALT
ALT e Undefine

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 250 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Crypto Middleware (rm_psa_crypto)

General|[MBEDTLS THREADING _ e Define MBEDTLS THREADING_PTHREA
PTHREAD e Undefine D
General|[MBEDTLS_USE_PSA CR e Define MBEDTLS_USE_PSA CRYPTO
YPTO e Undefine
General|[MBEDTLS VERSION_FE e Define MBEDTLS VERSION_FEATURES
ATURES e Undefine
Platform|MBEDTLS_AESNI _C e Define MBEDTLS_AESNI_C
e Undefine
Cipher|MBEDTLS_AES C Define MBEDTLS _AES C
Cipher|MBEDTLS_ARC4 _C e Define MBEDTLS_ARC4 C
e Undefine
Public Key Cryptography ¢ Define MBEDTLS _ASN1 PARSE C
(PKC)|MBEDTLS_ASN1 PARSE C e Undefine
Public Key Cryptography ¢ Define MBEDTLS_ASN1 WRITE_C
(PKC)|MBEDTLS_ASN1 WRITE_C e Undefine
Public Key Cryptography ¢ Define MBEDTLS BASE64 C
(PKC)|MBEDTLS_BASE64 C e Undefine
Public Key Cryptography ¢ Define MBEDTLS BIGNUM_C
(PKC)|MBEDTLS_BIGNUM C e Undefine
Cipher|MBEDTLS BLOWFISH _C e Define MBEDTLS BLOWFISH _C
e Undefine
Cipher|MBEDTLS_CAMELLIA C e Define MBEDTLS CAMELLIA C
e Undefine
Cipher|MBEDTLS_ARIA C e Define MBEDTLS ARIA C
e Undefine
Cipher|MBEDTLS_CCM_C e Define MBEDTLS CCM _C
e Undefine
Cipher|MBEDTLS_CHACHA20 C e Define MBEDTLS CHACHA20 C
e Undefine
Cipher|[MBEDTLS_CHACHAPOLY _ e Define MBEDTLS CHACHAPOLY_C
C e Undefine
Cipher|MBEDTLS_CIPHER C e Define MBEDTLS CIPHER C
e Undefine
Message Authentication Code e Define MBEDTLS _CMAC _C
(MAC)|MBEDTLS_CMAC_C e Undefine
RNG|MBEDTLS _CTR _DRBG_C e Define MBEDTLS CTR DRBG_C
e Undefine
Cipher|MBEDTLS_DES C e Define MBEDTLS DES C
e Undefine
Public Key Cryptography ¢ Define MBEDTLS DHM C
(PKC)|DHM|MBEDTLS DHM _C e Undefine
Public Key Cryptography ¢ Define MBEDTLS ECDH_C

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 251 /601

Flexible Software Package User’s Manual

API| Reference > Modules > Crypto Middleware (rm_psa_crypto)

(PKC)|ECC|MBEDTLS_ECDH_C e Undefine
Public Key Cryptography ¢ Define MBEDTLS _ECDSA C
(PKC)|ECC|MBEDTLS_ECDSA C e Undefine
Public Key Cryptography ¢ Define MBEDTLS ECJPAKE _C
(PKC)|ECC|MBEDTLS_ECJPAKE_C ¢ Undefine
Public Key Cryptography ¢ Define MBEDTLS ECP_C
(PKC)|ECC|MBEDTLS_ECP_C e Undefine
Platform|MBEDTLS_ENTROPY_C e Define MBEDTLS ENTROPY_C
* Undefine
General|[MBEDTLS _ERROR_C e Define MBEDTLS_ERROR _C
e Undefine
Cipher|[MBEDTLS_GCM_C ¢ Define MBEDTLS_GCM_C
¢ Undefine
RNG|MBEDTLS_HAVEGE_C e Define MBEDTLS HAVEGE_C
e Undefine
Message Authentication Code ¢ Define MBEDTLS _HKDF _C
(MAC)|MBEDTLS_HKDF_C e Undefine
Message Authentication Code e Define MBEDTLS HMAC DRBG C
(MAC)|MBEDTLS_HMAC_DRBG _ e Undefine
Cc
Cipher|MBEDTLS_NIST KW _C e Define MBEDTLS _NIST KW _C
* Undefine
Hash|MBEDTLS _MD _C e Define MBEDTLS MD_C
e Undefine
Hash|MBEDTLS MD2 C e Define MBEDTLS MD2 C
e Undefine
Hash|MBEDTLS _MD4 C e Define MBEDTLS MD4 C
e Undefine
Hash|MBEDTLS MD5 C e Define MBEDTLS MD5 C
e Undefine
General|[MBEDTLS _MEMORY_BU e Define MBEDTLS MEMORY_BUFFER_AL
FFER_ALLOC_C e Undefine LOC_C
Public Key Cryptography ¢ Define MBEDTLS OID _C
(PKC)|MBEDTLS_OID_C e Undefine
Cipher|MBEDTLS_PADLOCK C e Define MBEDTLS PADLOCK C
e Undefine
Public Key Cryptography ¢ Define MBEDTLS PEM_PARSE_C
(PKC)|MBEDTLS_PEM_PARSE_C e Undefine
Public Key Cryptography ¢ Define MBEDTLS PEM_WRITE_C
(PKC)|MBEDTLS_PEM_WRITE_C e Undefine
Public Key Cryptography ¢ Define MBEDTLS PK C
(PKC)|MBEDTLS_PK_C e Undefine

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 252 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Crypto Middleware (rm_psa_crypto)

Public Key Cryptography ¢ Define MBEDTLS PK PARSE C
(PKC)|MBEDTLS_PK_PARSE_C e Undefine
Public Key Cryptography ¢ Define MBEDTLS _PK WRITE_C
(PKC)|MBEDTLS_PK WRITE_C e Undefine
Public Key Cryptography ¢ Define MBEDTLS PKCS5 C
(PKC)|MBEDTLS_PKCS5_C e Undefine
Public Key Cryptography ¢ Define MBEDTLS PKCS12 C
(PKC)|MBEDTLS_PKCS12 C e Undefine
Platform|MBEDTLS _PLATFORM _ e Define MBEDTLS PLATFORM C
C e Undefine
Message Authentication Code e Define MBEDTLS _POLY1305 C
(MAC)|MBEDTLS_POLY1305 C e Undefine
General|[MBEDTLS _PSA_CRYPTO e Define MBEDTLS PSA CRYPTO C
C e Undefine
Storage|MBEDTLS_PSA CRYPTO e Define MBEDTLS_PSA CRYPTO_STORA
_STORAGE_C e Undefine GE C
Storage|MBEDTLS PSA ITS FILE e Define MBEDTLS _PSA ITS FILE C
C e Undefine
Hash|MBEDTLS_RIPEMD160_C e Define MBEDTLS_RIPEMD160 C
e Undefine
Public Key Cryptography ¢ Define MBEDTLS RSA C
(PKC)|RSA|MBEDTLS_RSA_C e Undefine
Hash|MBEDTLS_SHA1 C e Define MBEDTLS SHA1 C
e Undefine
Hash|MBEDTLS SHA256 C e Define MBEDTLS SHA256 C
e Undefine
Hash|MBEDTLS _SHA512 C e Define MBEDTLS SHA512 C
e Undefine
General|[MBEDTLS THREADING _ e Define MBEDTLS THREADING _C
C e Undefine
General|[MBEDTLS _TIMING C e Define MBEDTLS _TIMING_C
e Undefine
General|[MBEDTLS _VERSION_C e Define MBEDTLS VERSION _C
e Undefine
Cipher|MBEDTLS_XTEA C e Define MBEDTLS_XTEA C
e Undefine
Public Key Cryptography (PKC)| ¢ Define MBEDTLS _MPI_WINDOW _SIZE
MBEDTLS_MPI_WINDOW_SIZE e Undefine
Public Key Cryptography (PKC)| Configurable String MBEDTLS_MPI_WINDOW _SIZE
MBEDTLS _MPI_WINDOW _SIZE value
value
Public Key Cryptography ¢ Define MBEDTLS _MPI_MAX SIZE

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 253 / 601
Nov.08.19

Flexible Software Package

API| Reference > Modules > Crypto Middleware (rm_psa_crypto)

User’s Manual

(PKC)|MBEDTLS_MPI_MAX_SIZE

Public Key Cryptography
(PKC)|MBEDTLS_MPI_MAX_SIZE
value

RNG|MBEDTLS_CTR_DRBG_ENT
ROPY_LEN

RNG|MBEDTLS_CTR_DRBG_ENT
ROPY_LEN value

RNG|MBEDTLS_CTR_DRBG_RES
EED_INTERVAL

RNG|MBEDTLS_CTR_DRBG_RES
EED_INTERVAL value

RNG|MBEDTLS_CTR_DRBG_MAX
_INPUT

RNG|MBEDTLS_CTR_DRBG_MAX
_INPUT value

RNG|MBEDTLS_CTR_DRBG_MAX
_REQUEST

RNG|MBEDTLS_CTR_DRBG_MAX
_REQUEST value

RNG|MBEDTLS_CTR_DRBG_MAX
_SEED_INPUT

RNG|MBEDTLS_CTR_DRBG_MAX
_SEED_INPUT value

RNG|MBEDTLS_CTR_DRBG_USE
128 BIT_KEY

RNG|MBEDTLS_HMAC_DRBG_RE
SEED_INTERVAL

RNG|MBEDTLS_HMAC_DRBG_RE
SEED_INTERVAL value

RNG|MBEDTLS_HMAC_DRBG_M
AX_INPUT

RNG|MBEDTLS_HMAC_DRBG_M
AX_INPUT value

RNG|MBEDTLS_HMAC_DRBG_M
AX_REQUEST

RNG|MBEDTLS_HMAC_DRBG_M
AX_REQUEST value

RNG|MBEDTLS_HMAC_DRBG_M
AX_SEED_INPUT

RNG|MBEDTLS_HMAC_DRBG_M
AX_SEED_INPUT value

¢ Undefine

Configurable String

¢ Define
¢ Undefine

Configurable String

¢ Define
¢ Undefine

Configurable String

¢ Define
¢ Undefine

Configurable String

e Define
¢ Undefine

Configurable String

e Define
¢ Undefine

Configurable String

¢ Define
¢ Undefine

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

MBEDTLS_MPI_MAX_SIZE value

RNG|MBEDTLS_CTR_DRBG_ENT
ROPY_LEN

RNG value|MBEDTLS_CTR_DRB
G_ENTROPY_LEN

RNG|MBEDTLS_CTR_DRBG_RES
EED_INTERVAL

RNG value|MBEDTLS_CTR_DRB
G_RESEED_INTERVAL

MBEDTLS_CTR_DRBG_MAX_INP
uT

MBEDTLS _CTR_DRBG_MAX_INP
UT value

MBEDTLS_CTR_DRBG_MAX_REQ
UEST

MBEDTLS CTR_DRBG_MAX REQ
UEST value

MBEDTLS_CTR_DRBG_MAX_SEE
D_INPUT

MBEDTLS_CTR_DRBG_MAX_SEE
D_INPUT value

MBEDTLS CTR_DRBG_USE 128 _
BIT_KEY

MBEDTLS_HMAC_DRBG_RESEED

_INTERVAL

MBEDTLS_HMAC_DRBG_RESEED

_INTERVAL value

MBEDTLS_HMAC_DRBG_MAX_IN
PUT

MBEDTLS HMAC _DRBG_MAX_IN
PUT value

MBEDTLS_HMAC_DRBG_MAX_R
EQUEST

MBEDTLS HMAC DRBG_MAX R
EQUEST value

MBEDTLS_HMAC_DRBG_MAX_SE
ED_INPUT

MBEDTLS_HMAC_DRBG_MAX_SE
ED_INPUT value

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 254 / 601

Flexible Software Package User’s Manual

API| Reference > Modules > Crypto Middleware (rm_psa_crypto)

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECP_MAX BITS

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECP_MAX BITS
value

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECP_WINDOW Sl
ZE

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECP_WINDOW_SI
ZE value

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECP_FIXED_POIN
T OPTIM

Public Key Cryptography (PKC)|
ECC|MBEDTLS_ECP_FIXED_POIN
T_OPTIM value

RNG|MBEDTLS_ENTROPY MAX_
SOURCES

RNG|MBEDTLS_ENTROPY_MAX
SOURCES value

RNG|MBEDTLS_ENTROPY _MAX_
GATHER

RNG|MBEDTLS_ENTROPY_MAX
GATHER value

RNG|MBEDTLS_ENTROPY MIN_H
ARDWARE

RNG|MBEDTLS_ENTROPY_MIN_H
ARDWARE value

General|[MBEDTLS_MEMORY ALl
GN_MULTIPLE

General|MBEDTLS_MEMORY_ALI
GN_MULTIPLE value

Platform|MBEDTLS_PLATFORM_
STD_CALLOC

Platform|MBEDTLS_PLATFORM_
STD_CALLOC value

Platform|MBEDTLS_PLATFORM_
STD_FREE

Platform|MBEDTLS_PLATFORM_
STD_FREE value

Platform|MBEDTLS_PLATFORM_
STD_EXIT

¢ Define
¢ Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

MBEDTLS_ECP_MAX_BITS

MBEDTLS_ECP_MAX_BITS value

MBEDTLS_ECP_WINDOW_SIZE

MBEDTLS_ECP_WINDOW _SIZE
value

MBEDTLS_ECP_FIXED_POINT OP
TIM

MBEDTLS ECP_FIXED _POINT_OP
TIM value

MBEDTLS_ENTROPY_MAX_SOUR
CES

MBEDTLS ENTROPY_MAX SOUR
CES value

MBEDTLS_ENTROPY_MAX_GATH
ER

MBEDTLS _ENTROPY_MAX GATH
ER value

MBEDTLS_ENTROPY_MIN_HARD
WARE

MBEDTLS ENTROPY_MIN_HARD
WARE value

MBEDTLS_MEMORY_ALIGN_MUL
TIPLE

MBEDTLS MEMORY_ALIGN_MUL
TIPLE value

MBEDTLS_PLATFORM_STD_CALL
oC

MBEDTLS PLATFORM STD CALL
OC value

MBEDTLS_PLATFORM_STD_FREE

MBEDTLS PLATFORM _STD FREE
value

MBEDTLS_PLATFORM_STD_EXIT

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS Page 255 / 601

Flexible Software Package

API| Reference > Modules > Crypto Middleware (rm_psa_crypto)

User’s Manual

Platform|MBEDTLS_PLATFORM_
STD_EXIT value

Platform|MBEDTLS_PLATFORM_
STD_TIME

Platform|MBEDTLS_PLATFORM_
STD_TIME value

Platform|MBEDTLS_PLATFORM_
STD_FPRINTF

Platform|MBEDTLS_PLATFORM_
STD_FPRINTF value

Platform|MBEDTLS_PLATFORM_
STD_PRINTF

Platform|MBEDTLS_PLATFORM_
STD_PRINTF value

Platform|MBEDTLS_PLATFORM_
STD_SNPRINTF

Platform|MBEDTLS_PLATFORM_
STD_SNPRINTF value

Platform|MBEDTLS_PLATFORM_
STD_EXIT_SUCCESS

Platform|MBEDTLS_PLATFORM_
STD_EXIT_SUCCESS value

Platform|MBEDTLS_PLATFORM_
STD_EXIT_FAILURE

Platform|MBEDTLS_PLATFORM_
STD_EXIT_FAILURE value

Platform|MBEDTLS_PLATFORM_
STD_NV_SEED_READ

Platform|MBEDTLS_PLATFORM_
STD_NV_SEED_READ value

Platform|MBEDTLS_PLATFORM_
STD_NV_SEED_WRITE

Platform|MBEDTLS_PLATFORM_
STD_NV_SEED_WRITE value

Platform|MBEDTLS_PLATFORM_
STD_NV_SEED _FILE

Platform|MBEDTLS_PLATFORM_
STD_NV_SEED_FILE value

Platform|MBEDTLS_PLATFORM_
CALLOC_MACRO

Platform|MBEDTLS_PLATFORM_
CALLOC_MACRO value

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

¢ Define
e Undefine

Configurable String

MBEDTLS PLATFORM_STD EXIT
value

MBEDTLS_PLATFORM_STD_TIME

MBEDTLS PLATFORM_STD TIME
value

MBEDTLS_PLATFORM_STD_FPRI
NTF

MBEDTLS PLATFORM_STD_FPRI
NTF value

MBEDTLS_PLATFORM_STD_PRIN
TF

MBEDTLS PLATFORM_STD_PRIN
TF value

MBEDTLS_PLATFORM_STD_SNP
RINTF

MBEDTLS PLATFORM_STD SNP
RINTF value

MBEDTLS_PLATFORM_STD_EXIT
_SUCCESS

MBEDTLS_PLATFORM_STD_EXIT
_SUCCESS value

MBEDTLS_PLATFORM_STD_EXIT
_FAILURE

MBEDTLS_PLATFORM_STD_EXIT
_FAILURE value

MBEDTLS_PLATFORM_STD_NV_
SEED_READ

MBEDTLS_PLATFORM_STD_NV_
SEED_READ value

MBEDTLS_PLATFORM_STD_NV_
SEED_WRITE

MBEDTLS_PLATFORM_STD_NV_
SEED_WRITE value

MBEDTLS_PLATFORM_STD_NV_
SEED _FILE

MBEDTLS_PLATFORM_STD_NV_
SEED_FILE value

MBEDTLS_PLATFORM_CALLOC_
MACRO

MBEDTLS PLATFORM_CALLOC_
MACRO value

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 256 / 601

Flexible Software Package User’s Manual

API| Reference > Modules > Crypto Middleware (rm_psa_crypto)

Platform|MBEDTLS_PLATFORM_
FREE_MACRO

Platform|MBEDTLS_PLATFORM _
FREE_MACRO value

Platform|MBEDTLS_PLATFORM_
EXIT_MACRO

Platform|MBEDTLS_PLATFORM _
EXIT_MACRO value

Platform|MBEDTLS_PLATFORM_
TIME_MACRO

Platform|MBEDTLS_PLATFORM _
TIME_MACRO value

Platform|MBEDTLS_PLATFORM_
TIME_TYPE_MACRO

Platform|MBEDTLS_PLATFORM _
TIME_TYPE_MACRO value

Platform|MBEDTLS_PLATFORM_
FPRINTF_MACRO

Platform|MBEDTLS_PLATFORM _
FPRINTF_MACRO value

Platform|MBEDTLS_PLATFORM_
PRINTF_MACRO

Platform|MBEDTLS_PLATFORM _
PRINTF_MACRO value

Platform|MBEDTLS_PLATFORM_
SNPRINTF_MACRO

Platform|MBEDTLS_PLATFORM _
SNPRINTF_MACRO value

Platform|MBEDTLS_PLATFORM_
VSNPRINTF_MACRO

Platform|MBEDTLS_PLATFORM_
VSNPRINTF_MACRO value

Platform|MBEDTLS_PLATFORM_
NV_SEED_READ_MACRO

Platform|MBEDTLS_PLATFORM_
NV_SEED_READ_MACRO value

Platform|MBEDTLS_PLATFORM_
NV_SEED_WRITE_MACRO

Platform|MBEDTLS_PLATFORM_
NV_SEED_WRITE_MACRO value

¢ Define
¢ Undefine

Configurable String

¢ Define
¢ Undefine

Configurable String

¢ Define
¢ Undefine

Configurable String

¢ Define
¢ Undefine

Configurable String

e Define
¢ Undefine

Configurable String

e Define
¢ Undefine

Configurable String

¢ Define
¢ Undefine

Configurable String

¢ Define
¢ Undefine

Configurable String

¢ Define
¢ Undefine

Configurable String

¢ Define
¢ Undefine

Configurable String

MBEDTLS_PLATFORM_FREE_MA
CRO

MBEDTLS PLATFORM_FREE_MA
CRO value

MBEDTLS_PLATFORM_EXIT_MAC
RO

MBEDTLS PLATFORM_EXIT _MAC
RO value

MBEDTLS_PLATFORM_TIME_MA
CRO

MBEDTLS PLATFORM_TIME_MA
CRO value

MBEDTLS_PLATFORM_TIME_TYP
E_MACRO

MBEDTLS_PLATFORM_TIME_TYP
E_MACRO value

MBEDTLS_PLATFORM_FPRINTF_
MACRO

MBEDTLS PLATFORM_FPRINTF_
MACRO value

MBEDTLS_PLATFORM_PRINTF_M
ACRO

MBEDTLS_PLATFORM_PRINTF_M
ACRO value

MBEDTLS_PLATFORM_SNPRINTF
_MACRO

MBEDTLS_PLATFORM_SNPRINTF
_MACRO value

MBEDTLS_PLATFORM_VSNPRINT
F_MACRO

MBEDTLS_PLATFORM_VSNPRINT
F_MACRO value

MBEDTLS_PLATFORM_NV_SEED
_READ_MACRO

MBEDTLS_PLATFORM_NV_SEED
_READ_MACRO value

MBEDTLS_PLATFORM_NV_SEED
_WRITE_MACRO

MBEDTLS_PLATFORM_NV_SEED
_WRITE_MACRO value

Platform|Alternate|MBEDTLS_PL ¢ Define MBEDTLS_PLATFORM_ZEROIZE_
ATFORM_ZEROIZE_ALT ¢ Undefine ALT

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS Page 257 / 601

Flexible Software Package User’s Manual

API| Reference > Modules > Crypto Middleware (rm_psa_crypto)

Platform|Alternate|MBEDTLS_PL ¢ Define MBEDTLS_PLATFORM_GMTIME_
ATFORM_GMTIME_R_ALT ¢ Undefine R_ALT

4.2.45 Capacitive Touch Middleware (rm_touch)
Modules

Functions

fsp_err t RM _TOUCH Open (touch_ctrl_t *const p_ctrl, touch_cfg _t const *const
p_cfg)

Opens and configures the TOUCH Middle module. Implements
touch_api_t::open. More...

fsp_err t RM_TOUCH_ScanStart (touch_ctrl_t *const p_ctrl)

This function should be called each time a periodic timer expires.
More...

fsp_err t RM_TOUCH_DataGet (touch_ctrl_t *const p_ctrl, uint64 t
*p_button_status, uintl6_t *p_slider_position, uintl6 _t
*p_wheel_position)

Gets the 64-bit mask indicating which buttons are pressed. More...

fsp_err t RM _TOUCH Close (touch_ctrl t *const p_ctrl)

Disables specified TOUCH control block. Implements
transfer_api_t::close. More...

fsp_err t RM_TOUCH_VersionGet (fsp_version_t *const p_version)

Detailed Description

This module supports the Capacitive Touch Sensing Unit (CTSU). It implements the Touch
Middleware Interface.

Overview

This module controls the CTSU API and provides touch buttons, sliders, and wheels. By editing the
settings, the user can make various settings for these. The CTSU HAL driver is always required.

Features

um_touch_slider 5position um_touch_button_on_off

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 258 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Modules > Capacitive Touch Middleware (rm_touch)

e Supports touch buttons(Self and Mutual), sliders and wheels
e Supports touch buttons(Self and Mutual), sliders, and wheels.
o The button status shows the status of up to 64 buttons in 64 bitmap.
o The slider position is in the range of 0 to 100.
o The Wheel position is in the range of 0 to 360.
e Starts scanning at any time.
o The scan may be started by a software trigger or an external trigger.
o The scan completion is signalled by the callback function.
Gets all results after scans are complete.
Additional build-time features
o Optional (build time) support for real-time monitoring function by QE. (Not yet
available)

Configuration

Build Time Configurations for rm_touch

The following build time configurations are defined in fsp_cfg/rm_touch_cfg.h:

Configuration Options Description

Parameter Checking ¢ Default (BSP) If selected code for parameter
¢ Enabled checking is included in the
e Disabled build.

QE_UPDATE_MONITOR e Enabled If enabled,
¢ Disabled

Number of buttons Name must be a valid C symbol Number of buttons

Number of sliders Name must be a valid C symbol Number of sliders

Number of wheels Name must be a valid C symbol Number of wheels

Configurations for TOUCH Driver on rm_touch

This module can be added to the Threads tab from New -> Middleware -> CapTouch -> TOUCH
Driver on rm_touch:

4.3 Interfaces

Detailed Description

The FSP interfaces provide APIs for common functionality. They can be implemented by one or more
modules. Modules can use other modules as dependencies using this interface layer.

Modules
ADC Interface
Interface for A/D Converters.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 259 / 601

Nov.08.19

Flexible Software Package

API| Reference > Interfaces

User’s Manual

CAC Interface

Interface for clock frequency accuracy measurements.

CGC Interface

Interface for clock generation.

Comparator Interface

Interface for comparators.

CRC Interface

Interface for cyclic redundancy checking.

CTSU Interface

Interface for Capacitive Touch Sensing Unit (CTSU) functions.

DAC Interface

Interface for D/A converters.

Display Interface

Interface for LCD panel displays.

DOC Interface

Interface for the Data Operation Circuit.

ELC Interface

Interface for the Event Link Controller.

Ethernet Interface

Interface for Ethernet functions.

Ethernet PHY Interface

Interface for Ethernet phy functions.

External IRQ Interface

R11UMO0137EUO0081 Revision 0.81

Nov.08.19

RLENESAS

Page 260/ 601

Flexible Software Package User’s Manual

API| Reference > Interfaces

Interface for detecting external interrupts.

Flash Interface

Interface for the Flash Memory.

I2C Master Interface

Interface for 12C master communication.

|12C Slave Interface

Interface for 12C slave communication.

I12S Interface

Interface for 12S audio communication.

I/O Port Interface

Interface for accessing I/O ports and configuring 1/O functionality.

JPEG Codec Interface

Interface for JPEG functions.

Key Matrix Interface

Interface for key matrix functions.

Low Power Modes Interface

Interface for accessing low power modes.

Low Voltage Detection Interface

Interface for Low Voltage Detection.

RTC Interface

Interface for accessing the Realtime Clock.

SD/MMC Interface

Interface for accessing SD, eMMC, and SDIO devices.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 261 / 601
Nov.08.19

Flexible Software Package User’s Manual

API| Reference > Interfaces

SPI Interface

Interface for SPI communications.

Timer Interface

Interface for timer functions.

Transfer Interface

Interface for data transfer functions.

UART Interface

Interface for UART communications.

USB Interface

Interface for USB functions.

USB HMSC Interface
Interface for USB HMSC functions.

USB PCDC Interface
Interface for USB PCDC functions.

WDT Interface

Interface for watch dog timer functions.

Touch Middleware Interface

Interface for Touch Middleware functions.

4.3.1 ADC Interface
Interfaces

Detailed Description

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 262 / 601
Nov.08.19

Flexible Software Package

API Reference > Interfaces > ADC Interface

User’s Manual

Interface for A/D Converters.

Summary

The ADC interface provides standard ADC functionality including one-shot mode (single scan),
continuous scan and group scan. It also allows configuration of hardware and software triggers for
starting scans. After each conversion an interrupt can be triggered, and if a callback function is
provided, the call back is invoked with the appropriate event information.

Implemented by: Analog to Digital Converter (r_adc)

Data Structures

struct adc_sample_state t
struct adc_status_t
struct adc_callback_args t
struct adc_ info t
struct adc_channel cfg t
struct adc_cfg t
struct adc_api_t
struct adc instance t
Typedefs
typedef void adc ctrl t
Enumerations
enum adc_mode_t
enum adc_resolution_t
enum adc_alignment t
enum adc_add_t
enum adc_clear_ t
enum adc_trigger_t
enum adc_sample_state reg t
enum adc_event_ t
R11UMO0137EU0081 Revision 0.81 :{ENESAS Page 263/ 601

Nov.08.19

Flexible Software Package User’s Manual

API Reference > Interfaces > ADC Interface

enum adc_group_a t
enum adc_channel_t

enum adc_state t

Data Structure Documentation

¢ adc_sample_state_t

struct adc_sample_state t
ADC sample state configuration
Data Fields
adc_sample_state reg t reg_id Sample state register ID.
uint8_t num_states Number of sampling states for
conversion. Ch16-20/21 use the
same value.
¢ adc_status_t
struct adc_status_t
ADC status.
Data Fields
adc_state t state Current state.
¢ adc_callback _args_t
struct adc_callback_args_t
ADC callback arguments definitions
Data Fields
uintl6_t unit ADC device in use.
adc_event t event ADC callback event.
void const * p_context Placeholder for user data.
adc_channel t channel Channel of conversion result.
Only valid for ADC_EVENT_CON
VERSION_COMPLETE.
¢ adc_info_t
struct adc_info_t
ADC Information Structure for Transfer Interface
Data Fields
__luintle t* p_address The address to start reading the
data from.
R11UM0137EU0081 Revision 0.81 RLENESAS Page 264 / 601

Nov.08.19

Flexible Software Package

API Reference > Interfaces > ADC Interface

User’s Manual

uint32_t

length

The total number of transfers to
read.

transfer_size t

transfer_size

The size of each transfer.

elc_peripheral t

elc_peripheral

Name of the peripheral in the
ELC list.

elc_event_t

elc_event

Name of the ELC event for the
peripheral.

uint32_t

calibration_data

Temperature sensor calibration
data (OXFFFFFFFF if
unsupported) for reference
voltage.

intl6e t

slope_microvolts

Temperature sensor slope in
microvolts/degrees C.

bool

calibration_ongoing

Calibration is in progress.

¢ adc_channel_cfg_t

struct adc_channel cfg t

ADC channel(s) configuration

Data Fields
uint32_t scan_mask Channels/bits: bit 0 is chO; bit
15 is ch15. Use
ADC_MASK CHANNEL_x.
uint32 t scan_mask group b Valid for group modes. Use
ADC_MASK CHANNEL x.
uint32_t add_mask Valid if add enabled in Open().

Use ADC_MASK_CHANNEL_x.

adc_group_a t

priority_group_a

Valid for group modes.

uint8 t sample_hold_mask Channels/bits 0-2. Use
ADC_MASK_CHANNEL_x.

uint8_t sample_hold_states Number of states to be used for
sample and hold. Affects
channels 0-2.

¢ adc _cfg t

struct adc_cfg_t

ADC general configuration

Data Fields

uintlé_t unit

ADC Unit to be used.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS Page 265 / 601

Flexible Software Package

API Reference > Interfaces > ADC Interface

User’s Manual

adc_mode _t

mode

ADC operation mode.

adc_resol

ution_t

resolution

ADC resolution 8, 10, or 12-bit.

adc_alignment t

alignment

Specify left or right alignment; ignored if addition used.

adc_add_t

add_average_count

Add or average samples.

adc_clear_t

clearing

Clear after read.

adc_tr

igger _t

trigger

Default and Group A trigger source.

adc_trigger_t

trigger_group_b

Group B trigger source; valid only for group mode.

IRQn_Type

scan_end_irq

Scan end IRQ number.

IRQN_Type

scan_end b _irq

Scan end group B IRQ number.

uint8_t

scan_end_ipl

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 266 / 601

Flexible Software Package User’s Manual

API Reference > Interfaces > ADC Interface

Scan end interrupt priority.

uint8_t scan_end_b_ipl

Scan end group B interrupt priority.

void(* | p_callback)(adc_callback args t *p_args)

Callback function; set to NULL for none.

void const * p_context

Placeholder for user data. Passed to the user callback in
adc_api_t::adc_callback args_t.

void const * p_extend

Extension parameter for hardware specific settings.

¢ adc_api_t

struct adc_api t

ADC functions implemented at the HAL layer will follow this API.

Data Fields
fsp_err_t(* open)(adc_ctrl_t *const p_ctrl, adc_cfg_t const *const p_cfg)
fsp_err t(* scanCfg)(adc_ctrl _t *const p_ctrl, adc_channel cfg t const *const
p_channel cfg)
fsp_err t(* scanStart)(adc_ctrl_t *const p_ctrl)
fsp_err_t(* | scanStop)(adc_ctrl_t *const p_ctrl)
fsp_err_t(* scanStatusGet)(adc_ctrl_t *const p_ctrl, adc_status_t *p_status)
fsp_err_t(* |read)(adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, uintl6_t
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 267 / 601

Nov.08.19

Flexible Software Package User’s Manual

API Reference > Interfaces > ADC Interface

*const p_data)

fsp_err_t(* read32)(adc_ctrl_t *const p_ctrl, adc_channel_t const reg id,
uint32_t *const p_data)

fsp_err_t(* sampleStateCountSet)(adc_ctrl_t *const p_ctrl, adc_sample_state t
*p_sample)

fsp_err_t(* calibrate)(adc_ctrl_t *const p_ctrl, void *const p_extend)

fsp_err_t(* | offsetSet)(adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id,
int32_t const offset)

fsp_err t(* close)(adc_ctrl_t *const p_ctrl)

fsp_err t(* infoGet)(adc_ctrl t *const p_ctrl, adc_info_t *const p_adc_info)

fsp_err t(* versionGet)(fsp_version_t *const p_version)

Field Documentation

¢ open

fsp_err_t(* adc_api_t::open) (adc_ctrl_t *const p_ctrl, adc_cfg_t const *const p_cfqg)

Initialize ADC Unit; apply power, set the operational mode, trigger sources, interrupt priority, and
configurations common to all channels and sensors.

Implemented as

o R_ADC _Open()
o R_SDADC Open()
Precondition
Configure peripheral clocks, ADC pins and IRQs prior to calling this function.

Parameters
[in] p_ctrl Pointer to control handle
structure
[in] p_cfg Pointer to configuration
structure
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 268 / 601

Nov.08.19

Flexible Software Package User’s Manual

API Reference > Interfaces > ADC Interface

¢ scanCfg

fsp_err_t(* adc_api_t::scanCfg) (adc_ctrl_t *const p_ctrl, adc_channel_cfg_t const *const
p_channel_cfg)

Configure the scan including the channels, groups, and scan triggers to be used for the unit that
was initialized in the open call. Some configurations are not supported for all implementations. See
implementation for details.

Implemented as

o R_ADC_ScanCfg()
o R_SDADC_ScanConfigure()

Parameters
[in] p_ctrl Pointer to control handle
structure
[in] p_channel _cfg Pointer to scan configuration
structure
¢ scanStart

fsp_err_t(* adc_api_t::scanStart) (adc_ctrl_t *const p_ctrl)

Start the scan (in case of a software trigger), or enable the hardware trigger.

Implemented as

o R_ADC_ScanStart()
o R_SDADC ScanStart()

Parameters
[in] p_ctrl Pointer to control handle
structure
¢ scanStop

fsp_err_t(* adc_api_t::scanStop) (adc_ctrl_t *const p_ctrl)

Stop the ADC scan (in case of a software trigger), or disable the hardware trigger.

Implemented as

o R_ADC_ScanStop()
o R_SDADC_ScanStop()

Parameters
[in] p_ctrl Pointer to control handle
structure
R11UMO0137EU0081 Revision 0.81 RENESAS Page 269 / 601

Nov.08.19

Flexible Software Package User’s Manual

API Reference > Interfaces > ADC Interface

& scanStatusGet

fsp_err_t(* adc_api_t::scanStatusGet) (adc_ctrl_t *const p_ctrl, adc_status t *p_status)

Check scan status.

Implemented as

o R_ADC StatusGet()
o R_SDADC_StatusGet()

Parameters
[in] p_ctrl Pointer to control handle
structure
[out] p_status Pointer to store current
status in
¢ read

fsp_err_t(* adc_api_t::read) (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, uintl6_t *const
p_data)

Read ADC conversion result.

Implemented as

o R_ADC_Read()
o R_SDADC Read()

Parameters

[in] p_ctrl Pointer to control handle
structure

[in] reg_id ADC channel to read (see
enumeration adc_channel _t)

[in] p_data Pointer to variable to load
value into.

R11UMO0137EU0081 Revision 0.81 RLENESAS Page 270 / 601

Nov.08.19

Flexible Software Package User’s Manual

API Reference > Interfaces > ADC Interface

¢ read32

fsp_err_t(* adc_api_t::read32) (adc_ctrl_t *const p_ctrl, adc_channel _t const reg_id, uint32_t *const
p_data)

Read ADC conversion result into a 32-bit word.

Implemented as

o R_SDADC_Read32()

Parameters
[in] p_ctrl Pointer to control handle
structure
[in] reg_id ADC channel to read (see
enumeration adc_channel_t)
[in] p_data Pointer to variable to load
value into.

¢ sampleStateCountSet

fsp_err_t(* adc_api_t::sampleStateCountSet) (adc_ctrl_t *const p_ctrl, adc_sample_state t
*p_sample)

Set the sample state count for the specified channel. Not supported for all implementations. See
implementation for details.

Implemented as

o R_ADC_SetSampleStateCount()

Parameters
[in] p_ctrl Pointer to control handle
structure
[in] p_sample Pointer to the ADC channels
and corresponding sample
states to be set
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 271 / 601

Nov.08.19

Flexible Software Package User’s Manual

API Reference > Interfaces > ADC Interface

¢ calibrate

fsp_err_t(* adc_api_t::calibrate) (adc_ctrl_t *const p_ctrl, void *const p_extend)

Calibrate ADC or associated PGA (programmable gain amplifier). The driver may require
implementation specific arguments to the p_extend input. Not supported for all implementations.
See implementation for details.

Implemented as

o R_SDADC Calibrate()

Parameters
[in] p_ctrl Pointer to control handle
structure
[in] p_extend Pointer to implementation
specific arguments

& offsetSet

fsp_err_t(* adc_api_t::offsetSet) (adc_ctrl_t *const p_ctrl, adc_channel_t const reg_id, int32_t const
offset)

Set offset for input PGA configured for differential input. Not supported for all implementations. See
implementation for details.

Implemented as

o R_SDADC_OffsetSet()

Parameters

[in] p_ctrl Pointer to control handle
structure

[in] reg_id ADC channel to read (see
enumeration adc_channel_t)

[in] offset See implementation for
details.

R11UMO0137EU0081 Revision 0.81 RLENESAS Page 272 / 601

Nov.08.19

Flexible Software Package User’s Manual

API Reference > Interfaces > ADC Interface

& close

fsp_err_t(* adc_api_t::close) (adc_ctrl_t *const p_ctrl)

Close the specified ADC unit by ending any scan in progress, disabling interrupts, and removing
power to the specified A/D unit.

Implemented as

o R_ADC Close()
o R_SDADC Close()

Parameters
[in] p_ctrl Pointer to control handle
structure
¢ infoGet

fsp_err_t(* adc_api_t::infoGet) (adc_ctrl_t *const p_ctrl, adc_info_t *const p_adc_info)

Return the ADC data register address of the first (lowest number) channel and the total number of
bytes to be read in order for the DTC/DMAC to read the conversion results of all configured
channels. Return the temperature sensor calibration and slope data.

Implemented as

o R_ADC_InfoGet()
o R_SDADC_InfoGet()

Parameters
[in] p_ctrl Pointer to control handle
structure
[out] p_adc_info Pointer to ADC information
structure
& versionGet
fsp_err_t(* adc_api_t::versionGet) (fsp_version_t *const p_version)
Retrieve the API version.
Implemented as
o R_ADC VersionGet()
o R_SDADC VersionGet()
Precondition
This function retrieves the API version.
Parameters
[in] p_version Pointer to version structure
¢ adc_instance_t
struct adc_instance_t
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 273 / 601

Nov.08.19

Flexible Software Package User’s Manual

API Reference > Interfaces > ADC Interface

This structure encompasses everything that is needed to use an instance of this interface.
Data Fields

adc_ctrl_t* p_ctrl Pointer to the control structure
for this instance.

adc_cfg _t const * p_cfg Pointer to the configuration
structure for this instance.

adc_channel_cfg t const * p_channel cfg Pointer to the channel
configuration structure for this
instance.

adc_api_t const * p_api Pointer to the API structure for
this instance.

Typedef Documentation

¢ adc_ctrl_t

typedef void adc_ctrl_t

ADC control block. Allocate using driver instance control structure from driver instance header file.

Enumeration Type Documentation

¢ adc_mode_t

enum adc_mode_t

ADC operation mode definitions

Enumerator

ADC_MODE_SINGLE_SCAN Single scan - one or more channels.

ADC_MODE_GROUP_SCAN Two trigger sources to trigger scan for two

groups which contain one or more channels.

ADC_MODE_CONTINUOUS_SCAN Continuous scan - one or more channels.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 274/ 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > Interfaces > ADC Interface

¢ adc_resolution_t

enum adc_resolution_t
ADC data resolution definitions

Enumerator
ADC_RESOLUTION_10 BIT 10 bit resolution
ADC_RESOLUTION_8 BIT 8 bit resolution
ADC_RESOLUTION_14 BIT 14 bit resolution
ADC_RESOLUTION_ 24 BIT 24 bit resolution
¢ adc_alignment_t
enum adc_alignment _t
ADC data alignment definitions

Enumerator
ADC_ALIGNMENT_LEFT Data alignment left.

R11UMO0137EU0081 Revision 0.81 RLENESAS Page 275 / 601

Nov.08.19

Flexible Software Package User’s Manual

API Reference > Interfaces > ADC Interface

¢ adc_add_t

enum adc_add_t

ADC data sample addition and averaging options

Enumerator

ADC_ADD_OFF Addition turned off for channels/sensors.

ADC_ADD_TWO Add two samples.

ADC_ADD_THREE Add three samples.

ADC_ADD_FOUR Add four samples.

ADC_ADD_SIXTEEN Add sixteen samples.

ADC_ADD_AVERAGE_TWO Average two samples.

ADC_ADD_AVERAGE_FOUR Average four samples.

ADC_ADD_AVERAGE_EIGHT Average eight samples.

¢ adc_clear_t

enum adc_clear_t

ADC clear after read definitions

Enumerator

ADC_CLEAR_AFTER_READ_OFF Clear after read off.

ADC_CLEAR_AFTER_READ_ON Clear after read on.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 276 / 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > Interfaces > ADC Interface

¢ adc_trigger_t

enum adc_trigger_t

ADC trigger mode definitions

Enumerator

ADC_TRIGGER_SOFTWARE Software trigger; not for group modes.

ADC_TRIGGER_SYNC_ELC Synchronous trigger via ELC.

ADC_TRIGGER_ASYNC_EXTERNAL External asynchronous trigger; not for group

modes.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 277 / 601
Nov.08.19

Flexible Software Package

API Reference > Interfaces > ADC Interface

User’s Manual

¢ adc_sample_state_reg_t

enum adc_sample state reg t

ADC sample state registers

Enumerator

ADC_SAMPLE_STATE_CHANNEL_0

Sample state

register channel 0.

ADC_SAMPLE_STATE_CHANNEL 1

Sample state

register channel 1.

ADC_SAMPLE_STATE_CHANNEL 2

Sample state

register channel 2.

ADC_SAMPLE_STATE_CHANNEL 3

Sample state

register channel 3.

ADC_SAMPLE_STATE_CHANNEL 4

Sample state

register channel 4.

ADC_SAMPLE_STATE_CHANNEL 5

Sample state

register channel 5.

ADC_SAMPLE_STATE_CHANNEL 6

Sample state

register channel 6.

ADC_SAMPLE_STATE_CHANNEL_7

Sample state

register channel 7.

ADC_SAMPLE_STATE_CHANNEL 8

Sample state

register channel 8.

ADC_SAMPLE_STATE_CHANNEL 9

Sample state

register channel 9.

ADC_SAMPLE_STATE_CHANNEL_10

Sample state

register channel 10.

ADC_SAMPLE_STATE_CHANNEL_11

Sample state

register channel 11.

ADC_SAMPLE_STATE_CHANNEL 12

Sample state

register channel 12.

ADC_SAMPLE_STATE_CHANNEL 13

Sample state

register channel 13.

ADC_SAMPLE_STATE_CHANNEL 14

Sample state

register channel 14.

ADC_SAMPLE_STATE_CHANNEL_15

Sample state

register channel 15.

ADC_SAMPLE_STATE_CHANNEL 16 TO 31

Sample state

register channel 16 to 31.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 278 /601

Flexible Software Package User’s Manual

API Reference > Interfaces > ADC Interface

¢ adc_event_t

enum adc_event _t
ADC callback event definitions

Enumerator
ADC_EVENT_SCAN_COMPLETE Normal/Group A scan complete.
ADC_EVENT _SCAN_COMPLETE_GROUP_B Group B scan complete.
ADC_EVENT _CALIBRATION_COMPLETE Calibration complete.
ADC_EVENT_CONVERSION_COMPLETE Conversion complete.

¢ adc_group_a_t

enum adc_group_a t

ADC action for group A interrupts group B scan. This enumeration is used to specify the priority
between Group A and B in group mode.

Enumerator

ADC_GROUP_A_PRIORITY_OFF Group A ignored and does not interrupt
ongoing group B scan.

ADC_GROUP_A_GROUP_B_WAIT_FOR_TRIGGER Group A interrupts Group B(single scan) which
restarts at next Group B trigger.

ADC_GROUP_A_GROUP_B_RESTART_SCAN Group A interrupts Group B(single scan) which

restarts immediately after Group A scan is
complete.

ADC_GROUP_A_GROUP_B_CONTINUOUS_SCAN Group A interrupts Group B(continuous scan)

which continues scanning without a new Group
B trigger.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 279 / 601
Nov.08.19

Flexible Software Package

API Reference > Interfaces > ADC Interface

User’s Manual

¢ adc_channel_t

enum adc_channel_t

ADC channels

Enumerator

ADC_CHANNEL_0

ADC channel 0.

ADC_CHANNEL_1

ADC channel 1.

ADC_CHANNEL_2

ADC channel 2.

ADC_CHANNEL_3

ADC channel 3.

ADC_CHANNEL_4

ADC channel 4.

ADC_CHANNEL_5

ADC channel 5.

ADC_CHANNEL_6

ADC channel 6.

ADC_CHANNEL_7

ADC channel 7.

ADC_CHANNEL_8

ADC channel 8.

ADC_CHANNEL_9

ADC channel 9.

ADC_CHANNEL_10

ADC channel 10.

ADC_CHANNEL _11

ADC channel 11.

ADC_CHANNEL_12

ADC channel 12.

ADC_CHANNEL_13

ADC channel 13.

ADC_CHANNEL_14

ADC channel 14.

ADC_CHANNEL_15

ADC channel 15.

ADC_CHANNEL_16

ADC channel 16.

ADC_CHANNEL_17

ADC channel 17.

ADC_CHANNEL_18

ADC channel 18.

ADC_CHANNEL_19

ADC channel 19.

ADC_CHANNEL_20

ADC channel 20.

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 280/ 601

Flexible Software Package User’s Manual

API Reference > Interfaces > ADC Interface

ADC_CHANNEL_21 ADC channel 21.
ADC_CHANNEL_22 ADC channel 22.
ADC_CHANNEL_23 ADC channel 23.
ADC_CHANNEL_24 ADC channel 24.
ADC_CHANNEL_25 ADC channel 25.
ADC_CHANNEL_26 ADC channel 26.
ADC_CHANNEL_27 ADC channel 27.
ADC_CHANNEL_TEMPERATURE Temperature sensor output.
ADC_CHANNEL_VOLT Internal reference voltage.

¢ adc_state_t

enum adc_state t

ADC states.

Enumerator

ADC _STATE_IDLE ADC is idle.

ADC_STATE_SCAN_IN_PROGRESS ADC scan in progress.

4.3.2 CAC Interface
Interfaces

Detailed Description

Interface for clock frequency accuracy measurements.

Summary

The interface for the clock frequency accuracy measurement circuit (CAC) peripheral is used to
check a system clock frequency with a reference clock signal by counting the number of pulses of
the clock to be measured.

Implemented by: Clock Frequency Accuracy Measurement Circuit (r_cac)

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 281/ 601
Nov.08.19

Flexible Software Package

API Reference > Interfaces > CAC Interface

User’s Manual

Data Structures

Typedefs

struct

struct

struct

struct

struct

struct

typedef void

Enumerations

enum

enum

enum

enum

enum

enum

enum

cac_ref clock config_t
cac_meas_clock config t
cac_callback args t
cac_cfg t

cac_api_t

cac_instance_t

cac_ctrl t

cac_event_ t
cac_clock type t
cac_clock source t
cac_ref divider t
cac_ref _digfilter t
cac_ref edge t

cac_meas_divider_t

Data Structure Documentation

& cac_ref clock _config_t

struct cac_ref clock config_t

Structure defining the settings that apply to reference clock configuration.

Data Fields

cac_ref divider_t divider Divider specification for the
Reference clock.

cac_clock source_t clock Clock source for the Reference
clock.

cac_ref _digfilter_t digfilter Digital filter selection for the
CACREF ext clock.

cac_ref edge t edge Edge detection for the

R11UMO0137EU0081 Revision 0.81 RLENESAS Page 282 / 601

Nov.08.19

Flexible Software Package

API Reference > Interfaces > CAC Interface

User’s Manual

Reference clock.

& cac_meas_clock _config_t

struct cac_meas_clock_config_t

Structure defining the settings that apply to measurement clock configuration.

Data Fields
cac_meas_divider_t divider Divider specification for the
Measurement clock.
cac_clock source_t clock Clock source for the
Measurement clock.
¢ cac_callback_args_t
struct cac_callback args t
Callback function parameter data
Data Fields
cac_event t event The event can be used to
identify what caused the
callback.
void const * p_context Value provided in configuration
structure.

& cac_cfg t

struct cac_cfg t

CAC Configuration

Data Fields

cac_ref clock config t

cac_ref clock

reference clock specific settings

cac_meas_clock config t

cac_meas_clock

measurement clock specific settings

uintlé_ t cac_upper_limit
the upper limit counter threshold
uintlé_t cac_lower_limit

the lower limit counter threshold

R11UMO0137EUO0081 Revision 0.81
Nov.08.19

RLENESAS

Page 283 /601

Flexible Software Package User’s Manual

API Reference > Interfaces > CAC Interface

IRQn_Type mendi_irq

Measurement End IRQ number.

IRQn_Type | ovfi_irq

Measurement Overflow IRQ number.

IRQn_Type ferri_irq

Frequency Error IRQ number.

uint8 t mendi_ipl

Measurement end interrupt priority.

uint8_t ovfi_ipl

Overflow interrupt priority.

uint8_t ferri_ipl

Frequency error interrupt priority.

void(* | p_callback)(cac_callback args t *p_args)

Callback provided when a CAC interrupt ISR occurs.

void const * | p_context

Passed to user callback in cac_callback_args_t.

void const * p_extend

CAC hardware dependent configuration */.

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 284 / 601
Nov.08.19

Flexible Software Package User’s Manual

API Reference > Interfaces > CAC Interface

& cac_api_t

struct cac_api_t

CAC functions implemented at the HAL layer API

Data Fields

fsp_err_t(* open)(cac_ctrl_t *const p_ctrl, cac_cfg_t const *const p_cfqg)

fsp_err t(* startMeasurement)(cac_ctrl _t *const p_ctrl)

fsp_err t(* stopMeasurement)(cac_ctrl_t *const p_ctrl)

fsp_err_t(* read)(cac_ctrl_t *const p_ctrl, uintl6_t *const p_counter)

fsp_err_t(* close)(cac_ctrl_t *const p_ctrl)

fsp_err_t(* | versionGet)(fsp_version_t *p_version)

Field Documentation

¢ open

fsp_err_t(* cac_api_t::open) (cac_ctrl_t *const p_ctrl, cac_cfg t const *const p_cfqg)

Open function for CAC device.

Parameters
[out] p_ctrl Pointer to CAC device
control. Must be declared by
user.
[in] cac_cfg t Pointer to CAC configuration
structure.
¢ startMeasurement
fsp_err_t(* cac_api_t::startMeasurement) (cac_ctrl_t *const p_ctrl)
Begin a measurement for the CAC peripheral.
Parameters
[in] p_ctrl Pointer to CAC device
control.
R11UMO0137EU0081 Revision 0.81 RLENESAS Page 285 / 601

Nov.08.19

Flexible Software Package User’s Manual

API Reference > Interfaces > CAC Interface

¢ stopMeasurement

fsp_err_t(* cac_api_t::stopMeasurement) (cac_ctrl_t *const p_ctrl)

End a measurement for the CAC peripheral.

Parameters

[in] p_ctrl Pointer to CAC device
control.

¢ read

fsp_err_t(* cac_api_t::read) (cac_ctrl_t *const p_ctrl, uintl6_t *const p_counter)

Read function for CAC peripheral.

Parameters
[in] p_ctrl Control for the CAC device
context.
[in] p_counter Pointer to variable in which
to store the current
CACNTBR register contents.
¢ close

fsp_err_t(* cac_api_t::close) (cac_ctrl_t *const p_ctrl)

Close function for CAC device.

Parameters
[in] p_ctrl Pointer to CAC device
control.
& versionGet
fsp_err_t(* cac_api_t::versionGet) (fsp_version_t *p_version)
Get the CAC API and code version information.
Parameters
[out] p_version is value returned.

& cac_instance_t

struct cac_instance_t

This structure encompasses everything that is needed to use an instance of this interface.

Data Fields

R11UMO0137EU0081 Revision 0.81 RENESANAS Page 286 / 601
Nov.08.19

Flexible Software Package

API Reference > Interfaces > CAC Interface

User’s Manual

cac_ctrl_t* p_ctrl Pointer t