

RX130 Group

User's Manual: Hardware

RENESAS 32-Bit MCU RX Family/RX100 Series

All information contained in these materials, including products and product specifications, represents information on the product at the time of publication and is subject to change by Renesas Electronics Corp. without notice. Please review the latest information published by Renesas Electronics Corp. through various means, including the Renesas Electronics Corp. website (http://www.renesas.com).

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
 - Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
- 6. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

NOTES FOR CMOS DEVICES

- (1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL (MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between VIL (MAX) and VIH (MIN).
- (2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc., causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling related to unused pins must be judged separately for each device and according to related specifications governing the device.
- (3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it when it has occurred. Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors should be grounded. The operator should be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with mounted semiconductor devices.
- (4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS device. Immediately after the power source is turned ON, devices with reset functions have not yet been initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A device is not initialized until the reset signal is received. A reset operation must be executed immediately after power-on for devices with reset functions.
- (5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal operation and external interface, as a rule, switch on the external power supply after switching on the internal power supply. When switching the power supply off, as a rule, switch off the external power supply and then the internal power supply. Use of the reverse power on/off sequences may result in the application of an overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements due to the passage of an abnormal current. The correct power on/off sequence must be judged separately for each device and according to related specifications governing the device.
- (6) INPUT OF SIGNAL DURING POWER OFF STATE: Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Input of signals during the power off state must be judged separately for each device and according to related specifications governing the device.

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual

34 The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- 3/4 The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

3/4 The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

34 The characteristics of Microprocessing unit or Microcontroller unit products in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

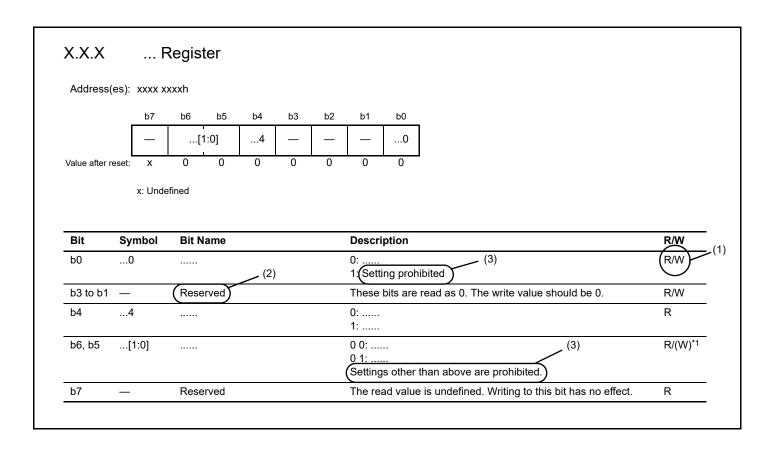
How to Use This Manual

1. Objective and Target Users

This manual was written to explain the hardware functions and electrical characteristics of this LSI to the target users, i.e. those who will be using this LSI in the design of application systems. Target users are expected to understand the fundamentals of electrical circuits, logic circuits, and microcomputers.

This manual is organized in the following items: an overview of the product, descriptions of the CPU, system control functions, and peripheral functions, electrical characteristics of the device, and usage notes.

When designing an application system that includes this LSI, take all points to note into account. Points to note are given in their contexts and at the final part of each section, and in the section giving usage notes.


The list of revisions is a summary of major points of revision or addition for earlier versions. It does not cover all revised items. For details on the revised points, see the actual locations in the manual.

The following documents have been prepared for the RX130 Group. Before using any of the documents, please visit our website to verify that you have the most up-to-date available version of the document.

Document Type	Contents	Document Title	Document No.
Datasheet	Overview of hardware and electrical characteristics	RX130 Group Datasheet	R01DS0273EJ
User's Manual: Hardware	Hardware specifications (pin assignments, memory maps, peripheral specifications, electrical characteristics, and timing charts) and descriptions of operation	RX130 Group User's Manual: Hardware	This User's manual
User's Manual: Software	Detailed descriptions of the CPU and instruction set	RX Family User's Manual: Software	R01US0032EJ
Application Note	Notes on board design	RX Family Hardware Design Guide	R01AN1411EJ
	Example for Initialize register	Example for Initialize register of RX130 Group	R01AN2592EJ
	Examples of applications and sample programs	_	_
Renesas Technical Update	Preliminary report on the specifications of a product, document, etc.	_	_

2. Description of Registers

Each register description includes a bit chart, illustrating the arrangement of bits, and a table of bits, describing the meanings of the bit settings. The standard format and notation for bit charts and tables are described below.

(1) R/W: The bit or field is readable and writable.

R/(W): The bit or field is readable and writable. However, writing to this bit or field has some

limitations. For details on the limitations, see the description or notes of respective registers.

R: The bit or field is readable. Writing to this bit or field has no effect.

(2) Reserved.

Use the specified value when writing to this bit or field; otherwise, the correct operation is not guaranteed.

(3) Setting prohibited. The correct operation is not guaranteed if such a setting is performed.

3. List of Abbreviations and Acronyms

Abbreviation	Full Form
ACIA	Asynchronous Communications Interface Adapter
bps	bits per second
CRC	Cyclic Redundancy Check
DMA	Direct Memory Access
DMAC	Direct Memory Access Controller
GSM	Global System for Mobile Communications
Hi-Z	High Impedance
IEBus	Inter Equipment Bus
I/O	Input/Output
IrDA	Infrared Data Association
LSB	Least Significant Bit
MSB	Most Significant Bit
NC	Non-Connect
PLL	Phase Locked Loop
PWM	Pulse Width Modulation
SIM	Subscriber Identity Module
UART	Universal Asynchronous Receiver/Transmitter
VCO	Voltage Controlled Oscillator

All trademarks and registered trademarks are the property of their respective owners.

SuperFlash® is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States and Japan.

Caution: This product uses SuperFlash® technology licensed from Silicon Storage Technology, Inc.

Contents

Fe	atures		40
1.	Overview		41
	1.1 Out	line of Specifications	41
	1.2 Lis	t of Products	45
	1.3 Blo	ck Diagram	48
	1.4 Pin	Functions	49
	1.5 Pin	Assignments	52
2.	CPU		63
	2.1 Fea	tures	63
	2.2 Reg	gister Set of the CPU	64
	2.2.1	General-Purpose Registers (R0 to R15)	65
	2.2.2	Control Registers	65
	2.2.2.1	Interrupt Stack Pointer (ISP)/User Stack Pointer (USP)	66
	2.2.2.2	Interrupt Table Register (INTB)	66
	2.2.2.3	Program Counter (PC)	66
	2.2.2.4	Processor Status Word (PSW)	67
	2.2.2.5	Backup PC (BPC)	68
	2.2.2.6	Backup PSW (BPSW)	69
	2.2.2.7	Fast Interrupt Vector Register (FINTV)	69
	2.2.3	Register Associated with DSP Instructions	69
	2.2.3.1	Accumulator (ACC)	69
	2.3 Pro	cessor Mode	70
	2.3.1	Supervisor Mode	70
	2.3.2	User Mode	70
	2.3.3	Privileged Instruction	70
	2.3.4	Switching between Processor Modes	70
	2.4 Dat	a Types	71
	2.5 Enc	lian	71
	2.5.1	Switching the Endian	71
	2.5.2	Access to I/O Registers	75
	2.5.3	Notes on Access to I/O Registers	75
	2.5.4	Data Arrangement	75
	2.5.4.1	Data Arrangement in Registers	75
	2.5.4.2	Data Arrangement in Memory	76
	2.5.5	Notes on the Allocation of Instruction Codes	76
	2.6 Vec	etor Table	77
	2.6.1	Fixed Vector Table	77
	2.6.2	Relocatable Vector Table	78
	2.7 Ope	eration of Instructions	79
	2.7.1 Data Prefetching by the RMPA Instruction and the String-Manipulation Instructions		79
	2.8 Pip	eline	79

	2.8.1	Overview	79
	2.8.2	Instructions and Pipeline Processing	81
	2.8	3.2.1 Instructions Converted into Single Micro-Operation and Pipeline Processing	81
	2.8	Instructions Converted into Multiple Micro-Operations and Pipeline Processing	83
	2.8	3.2.3 Pipeline Basic Operation	86
	2.8.3	Calculation of the Instruction Processing Time	88
	2.8.4	Numbers of Cycles for Response to Interrupts	89
3.	Opera	ting Modes	90
	3.1	Operating Mode Types and Selection	90
	3.2	Register Descriptions	91
	3.2.1	Mode Monitor Register (MDMONR)	91
	3.2.2	System Control Register 1 (SYSCR1)	92
	3.3	Details of Operating Modes	93
	3.3.1	Single-Chip Mode	93
	3.3.2	Boot Mode	93
	3.3	3.2.1 Boot Mode (SCI)	93
	3.4	Transitions of Operating Modes	93
	3.4.1	Mode Setting Pin Levels and Operating Mode Transitions	93
4.	Addres	ss Space	94
	4.1	Address Space	94
5.	I/O Re	gisters	96
	5.1	I/O Register Addresses (Address Order)	98
6.	Resets	S	116
	6.1	Overview	116
	6.2	Register Descriptions	118
	6.2.1	Reset Status Register 0 (RSTSR0)	118
	6.2.2	Reset Status Register 1 (RSTSR1)	119
	6.2.3	Reset Status Register 2 (RSTSR2)	120
	6.2.4	Software Reset Register (SWRR)	121
	6.3	Operation	122
	6.3.1	RES# Pin Reset	122
	6.3.2	Power-On Reset and Voltage Monitoring 0 Reset	122
	6.3.3	Voltage Monitoring 1 Reset and Voltage Monitoring 2 Reset	124
	6.3.4	Independent Watchdog Timer Reset	125
	6.3.5	Software Reset	125
	6.3.6	Determination of Cold/Warm Start	126
	6.3.7	Determination of Reset Generation Source	127
7.	Option	-Setting Memory (OFSM)	128
	7.1	Overview	128
	7.2	Register Descriptions	129
	7.2.1	Option Function Select Register 0 (OFS0)	129

	7.2.2	Option Function Select Register 1 (OFS1)	131
	7.2.3	Endian Select Register (MDE)	132
	7.3	Usage Note	133
	7.3.1	Setting Example of Option-Setting Memory	133
8.	Voltag	ge Detection Circuit (LVDAb)	134
	8.1	Overview	
	8.2	Register Descriptions	137
	8.2.1	Voltage Monitoring 1 Circuit Control Register 1 (LVD1CR1)	137
	8.2.2	Voltage Monitoring 1 Circuit Status Register (LVD1SR)	138
	8.2.3	Voltage Monitoring 2 Circuit Control Register 1 (LVD2CR1)	139
	8.2.4	Voltage Monitoring 2 Circuit Status Register (LVD2SR)	140
	8.2.5	Voltage Monitoring Circuit Control Register (LVCMPCR)	141
	8.2.6	Voltage Detection Level Select Register (LVDLVLR)	142
	8.2.7	Voltage Monitoring 1 Circuit Control Register 0 (LVD1CR0)	143
	8.2.8	Voltage Monitoring 2 Circuit Control Register 0 (LVD2CR0)	144
	8.3	VCC Input Voltage Monitor	145
	8.3.1	Monitoring Vdet0	145
	8.3.2	Monitoring Vdet1	145
	8.3.3	Monitoring Vdet2	145
	8.4	Reset from Voltage Monitor 0	146
	8.5	Interrupt and Reset from Voltage Monitoring 1	147
	8.6	Interrupt and Reset from Voltage Monitoring 2	149
	8.7	Event Link Output	151
	8.7.1	Interrupt Handling and Event Linking	151
9.	Clock	Generation Circuit	152
	9.1	Overview	152
	9.2	Register Descriptions	154
	9.2.1	System Clock Control Register (SCKCR)	154
	9.2.2	System Clock Control Register 3 (SCKCR3)	156
	9.2.3	PLL Control Register (PLLCR)	157
	9.2.4	PLL Control Register 2 (PLLCR2)	158
	9.2.5	Main Clock Oscillator Control Register (MOSCCR)	159
	9.2.6	Sub-Clock Oscillator Control Register (SOSCCR)	160
	9.2.7	Low-Speed On-Chip Oscillator Control Register (LOCOCR)	161
	9.2.8	IWDT-Dedicated On-Chip Oscillator Control Register (ILOCOCR)	162
	9.2.9	High-Speed On-Chip Oscillator Control Register (HOCOCR)	163
	9.2.10	High-Speed On-Chip Oscillator Forced Oscillation Control Register (HOFCR)	164
	9.2.1	Oscillation Stabilization Flag Register (OSCOVFSR)	165
	9.2.12	Oscillation Stop Detection Control Register (OSTDCR)	167
	9.2.13	Oscillation Stop Detection Status Register (OSTDSR)	168
	9.2.14	Main Clock Oscillator Wait Control Register (MOSCWTCR)	169

	9.2.1:	CLKOUT Output Control Register (CKOCR)	170
	9.2.1	Main Clock Oscillator Forced Oscillation Control Register (MOFCR)	171
	9.2.1	Low-Speed On-Chip Oscillator Trimming Register (LOCOTRR)	172
	9.2.1	IWDT-Dedicated On-Chip Oscillator Trimming Register (ILOCOTRR)	172
	9.2.1	High-Speed On-Chip Oscillator Trimming Register n (HOCOTRRn) (n = 0)	173
Ģ	9.3	Main Clock Oscillator	174
	9.3.1	Connecting a Crystal	174
	9.3.2	External Clock Input	175
	9.3.3	Handling of Pins When the Main Clock is Not Used	175
	9.3.4	Notes on the External Clock Input	175
9	9.4	Sub-Clock Oscillator	176
	9.4.1	Connecting 32.768-kHz Crystal	176
	9.4.2	Handling of Pins When Sub-Clock is Not Used	177
9	9.5	Oscillation Stop Detection Function	178
	9.5.1	Oscillation Stop Detection and Operation after Detection	178
	9.5.2	Oscillation Stop Detection Interrupts	179
9	9.6	PLL Circuit	180
Ģ	9.7	Internal Clock	180
	9.7.1	System Clock	180
	9.7.2	Peripheral Module Clock	180
	9.7.3	FlashIF Clock	180
	9.7.4	CAC Clock	180
	9.7.5	RTC-Dedicated Clock	181
	9.7.6	IWDT-Dedicated Clock	181
	9.7.7	Low-Power Timer Clock	181
	9.7.8	REMC Clock	181
9	9.8	Usage Notes	182
	9.8.1	Notes on Clock Generation Circuit	182
	9.8.2	Notes on Resonator	182
	9.8.3	Notes on Board Design	182
	9.8.4	Notes on Resonator Connection Pins	183
	9.8.5	Notes on Sub-Clock	183
10.	Clock	Frequency Accuracy Measurement Circuit (CAC)	187
	10.1	Overview	187
	10.2	Register Descriptions	189
	10.2.	CAC Control Register 0 (CACR0)	189
	10.2.	CAC Control Register 1 (CACR1)	190
	10.2.	CAC Control Register 2 (CACR2)	191
	10.2.	CAC Interrupt Request Enable Register (CAICR)	192
	10.2.	CAC Status Register (CASTR)	193
	10.2.	6 CAC Upper-Limit Value Setting Register (CAULVR)	194

10.2.7	CAC Lower-Limit Value Setting Register (CALLVR)	194
10.2.8	CAC Counter Buffer Register (CACNTBR)	194
10.3	Operation	195
10.3.1	Measuring Clock Frequency	195
10.3.2	Digital Filtering of Signals on the CACREF Pin	196
10.4	Interrupt Requests	196
10.5	Usage Notes	197
10.5.1	Module Stop Function Setting	197
11. Low Po	ower Consumption	198
11.1	Overview	198
11.2	Register Descriptions	202
11.2.1	Standby Control Register (SBYCR)	202
11.2.2	Module Stop Control Register A (MSTPCRA)	203
11.2.3	Module Stop Control Register B (MSTPCRB)	204
11.2.4	Module Stop Control Register C (MSTPCRC)	206
11.2.5	Module Stop Control Register D (MSTPCRD)	207
11.2.6	Operating Power Control Register (OPCCR)	208
11.2.7	Sub Operating Power Control Register (SOPCCR)	210
11.2.8	Sleep Mode Return Clock Source Switching Register (RSTCKCR)	215
11.3	Reducing Power Consumption by Switching Clock Signals	217
11.4	Module Stop Function	217
11.5	Function for Lower Operating Power Consumption	217
11.5.1	Setting Operating Power Control Mode	217
11.6	Low Power Consumption Modes	219
11.6.1	Sleep Mode	219
11.	6.1.1 Entry to Sleep Mode	219
11.	6.1.2 Exit from Sleep Mode	220
11.	6.1.3 Sleep Mode Return Clock Source Switching Function	220
11.6.2	Deep Sleep Mode	221
11.	6.2.1 Entry to Deep Sleep Mode	221
11.	6.2.2 Exit from Deep Sleep Mode	222
11.6.3	Software Standby Mode	223
11.	6.3.1 Entry to Software Standby Mode	223
11.	6.3.2 Exit from Software Standby Mode	224
11.	6.3.3 Example of Software Standby Mode Application	225
11.7	Usage Notes	226
11.7.1	I/O Port States	226
11.7.2	Module Stop State of DTC	226
11.7.3	On-Chip Peripheral Module Interrupts	226
11.7.4	Write Access to MSTPCRA, MSTPCRB, MSTPCRC, and MSTPCRD	226
11.7.5	Timing of WAIT Instructions	226

	11.7.6	Rewrite the Register by DTC in Sleep Mode	226
12.	Register '	Write Protection Function	227
	12.1 Re	gister Descriptions	228
	12.1.1	Protect Register (PRCR)	228
13.	Exception	n Handling	229
	13.1 Exe	ception Events	229
	13.1.1	Undefined Instruction Exception	230
	13.1.2	Privileged Instruction Exception	230
	13.1.3	Reset	230
	13.1.4	Non-Maskable Interrupt	230
	13.1.5	Interrupts	230
	13.1.6	Unconditional Trap	230
	13.2 Exe	ception Handling Procedure	231
	13.3 Ac	ceptance of Exception Events	233
	13.3.1	Acceptance Timing and Saved PC Value	233
	13.3.2	Vector and Site for Saving the Values in the PC and PSW	233
	13.4 Ha	rdware Processing for Accepting and Returning from Exceptions	234
	13.5 Ha	rdware Pre-Processing	235
	13.5.1	Undefined Instruction Exception	235
	13.5.2	Privileged Instruction Exception	235
	13.5.3	Reset	235
	13.5.4	Non-Maskable Interrupt	235
	13.5.5	Interrupt	236
	13.5.6	Unconditional Trap	236
	13.6 Ref	turn from Exception Handling Routine	237
	13.7 Pri	ority of Exception Events	237
14.	Interrupt	Controller (ICUb)	238
	14.1 Ov	erview	238
	14.2 Re	gister Descriptions	240
	14.2.1	Interrupt Request Register n (IRn) (n = interrupt vector number)	240
	14.2.2	Interrupt Request Enable Register m (IERm) (m = 02h to 1Fh)	241
	14.2.3	Interrupt Source Priority Register n (IPRn) (n = interrupt vector number)	242
	14.2.4	Fast Interrupt Set Register (FIR)	243
	14.2.5	Software Interrupt Generation Register (SWINTR)	244
	14.2.6	DTC Transfer Request Enable Register n (DTCERn) (n = interrupt vector number)	245
	14.2.7	IRQ Control Register i (IRQCRi) (i = 0 to 7)	246
	14.2.8	IRQ Pin Digital Filter Enable Register 0 (IRQFLTE0)	247
	14.2.9	IRQ Pin Digital Filter Setting Register 0 (IRQFLTC0)	248
	14.2.10	Non-Maskable Interrupt Status Register (NMISR)	249
	14.2.11	Non-Maskable Interrupt Enable Register (NMIER)	251

14.2.12	Non-Maskable Interrupt Status Clear Register (NMICLR)	252
14.2.13	NMI Pin Interrupt Control Register (NMICR)	253
14.2.14	NMI Pin Digital Filter Enable Register (NMIFLTE)	253
14.2.15	NMI Pin Digital Filter Setting Register (NMIFLTC)	254
14.3 Vo	ector Table	255
14.3.1	Interrupt Vector Table	255
14.3.2	Fast Interrupt Vector Table	261
14.3.3	Non-maskable Interrupt Vector Table	261
14.4 In	terrupt Operation	262
14.4.1	Detecting Interrupts	262
14.4.	1.1 Operation of Status Flags for Edge-Detected Interrupts	262
14.4.	1.2 Operation of Status Flags for Level-Detected Interrupts	264
14.4.2	Enabling and Disabling Interrupt Sources	265
14.4.3	Selecting Interrupt Request Destinations	266
14.4.4	Determining Priority	267
14.4.5	Multiple Interrupts	267
14.4.6	Fast Interrupt	267
14.4.7	Digital Filter	268
14.4.8	External Pin Interrupts	268
14.5 No	on-maskable Interrupt Operation	269
14.6 Re	eturn from Power-Down States	270
14.6.1	Return from Sleep Mode or Deep Sleep Mode	270
14.6.2	Return from Software Standby Mode	270
14.7 Us	sage Note	271
14.7.1	Note on WAIT Instruction Used with Non-Maskable Interrupt	271
15. Buses		272
15.1 O	verview	272
15.2 De	escription of Buses	274
15.2.1	CPU Buses	274
15.2.2	Memory Buses	274
15.2.3	Internal Main Buses	274
15.2.4	Internal Peripheral Buses	275
15.2.5	Write Buffer Function (Internal Peripheral Bus)	276
15.2.6	Parallel Operation	277
15.2.7	Restrictions	277
15.3 Re	egister Descriptions	278
15.3.1	Bus Error Status Clear Register (BERCLR)	278
15.3.2	Bus Error Monitoring Enable Register (BEREN)	278
15.3.3	Bus Error Status Register 1 (BERSR1)	279
15.3.4	Bus Error Status Register 2 (BERSR2)	279
15.3.5	Bus Priority Control Register (BUSPRI)	280

1	15.4	Bus Error Monitoring Section	282
	15.4.1	Type of Bus Error	282
	15	4.1.1 Illegal Address Access	282
	15	4.1.2 Timeout	282
	15.4.2	Operations When a Bus Error Occurs	282
	15.4.3	Conditions Leading to Bus Errors	283
16.	Data 1	ransfer Controller (DTCa)	284
1	16.1	Overview	
1	16.2	Register Descriptions	286
	16.2.1	DTC Mode Register A (MRA)	286
	16.2.2	DTC Mode Register B (MRB)	287
	16.2.3	DTC Transfer Source Register (SAR)	288
	16.2.4	DTC Transfer Destination Register (DAR)	288
	16.2.5	DTC Transfer Count Register A (CRA)	289
	16.2.6	DTC Transfer Count Register B (CRB)	290
	16.2.7	DTC Control Register (DTCCR)	290
	16.2.8	DTC Vector Base Register (DTCVBR)	291
	16.2.9	DTC Address Mode Register (DTCADMOD)	291
	16.2.1	0 DTC Module Start Register (DTCST)	292
	16.2.1	1 DTC Status Register (DTCSTS)	293
1	16.3	Request Sources	294
	16.3.1	Allocating Transfer Information and DTC Vector Table	294
1	16.4	Operation	296
	16.4.1	Transfer Information Read Skip Function	298
	16.4.2	Transfer Information Write-Back Skip Function	299
	16.4.3	Normal Transfer Mode	300
	16.4.4	Repeat Transfer Mode	301
	16.4.5	Block Transfer Mode	302
	16.4.6	Chain Transfer	303
	16.4.7	Operation Timing	304
	16.4.8	Execution Cycles of the DTC	307
	16.4.9	DTC Bus Mastership Release Timing	307
1	16.5	DTC Setting Procedure	308
1	16.6	Examples of DTC Usage	
	16.6.1		
	16.6.2	Chain Transfer When the Counter is 0	310
		Interrupt Source	
		Event Link	
		Low Power Consumption Function	
1		Usage Notes	
	16 10	1 Start Address of Transfer Information	313

	16.1	0.2	Allocating Transfer Information	313
17	. Ever	nt Lin	nk Controller (ELC)	314
	17.1	Ov	verview	314
	17.2	Re	gister Descriptions	315
	17.2	2.1	Event Link Control Register (ELCR)	315
	17.2	2.2	Event Link Setting Register n (ELSRn) (n = 1 to 4, 7, 8, 10, 12, 14 to 16, 18, 20, 22, 24, 25)	316
	17.2	2.3	Event Link Option Setting Register A (ELOPA)	319
	17.2	2.4	Event Link Option Setting Register B (ELOPB)	319
	17.2	2.5	Event Link Option Setting Register C (ELOPC)	320
	17.2	2.6	Event Link Option Setting Register D (ELOPD)	320
	17.2	2.7	Port Group Setting Register 1 (PGR1)	321
	17.2	2.8	Port Group Control Register 1 (PGC1)	322
	17.2	2.9	Port Buffer Register 1 (PDBF1)	323
	17.2	2.10	Event Link Port Setting Register n (PELn) (n = 0, 1)	324
	17.2	2.11	Event Link Software Event Generation Register (ELSEGR)	325
	17.3	Op	peration	326
	17.3	3.1	Relation between Interrupt Handling and Event Linking	326
	17.3	3.2	Event Linkage	327
	17.3	3.3	Operation of Peripheral Timer Modules When Event Signal is Input	328
	17.3	3.4	Operation of A/D and D/A Converters When Event Signal is Input	328
	17.3	3.5	I/O Port Operation When Event Signal is Input and Event Generation	328
	17.3	3.6	Example of Procedure for Linking Events	332
	17.4	Us	age Notes	333
	17.4	1.1	Setting ELSRn Register	333
	17.4	1.2	Setting Bit-Rotating Operation of Output Port Groups	333
	17.4	1.3	Linking DTC Transfer End Signal as Event	333
	17.4	1.4	Clock Settings	333
	17.4	1.5	Module Stop Function Setting	333
18				
	18.1		verview	
	18.2		Port Configuration	
	18.3		gister Descriptions	
	18.3		Port Direction Register (PDR)	
	18.3		Port Output Data Register (PODR)	
	18.3		Port Input Data Register (PIDR)	
	18.3		Port Mode Register (PMR)	
	18.3		Open Drain Control Register 0 (ODR0)	
	18.3		Open Drain Control Register 1 (ODR1)	
	18.3		Pull-Up Control Register (PCR)	
	18.3	8.8	Port Switching Register A (PSRA)	352

	18.3.9	Port Switching Register B (PSRB)	353
	18.3.10	Drive Capacity Control Register (DSCR)	354
	18.4 In	itialization of the Port Direction Register (PDR)	355
	18.5 Ha	andling of Unused Pins	357
19.	Multi-Fu	nction Pin Controller (MPC)	358
	19.1 O	verview	358
	19.2 Re	egister Descriptions	368
	19.2.1	Write-Protect Register (PWPR)	368
	19.2.2	P0n Pin Function Control Register (P0nPFS) (n = 3, 5, 7)	369
	19.2.3	P1n Pin Function Control Registers (P1nPFS) (n = 2 to 7)	370
	19.2.4	P2n Pin Function Control Register (P2nPFS) (n = 0 to 7)	372
	19.2.5	P3n Pin Function Control Registers (P3nPFS) (n = 0 to 4)	374
	19.2.6	P4n Pin Function Control Registers (P4nPFS) (n = 0 to 7)	376
	19.2.7	P5n Pin Function Control Registers (P5nPFS) (n = 1, 2, 4, 5)	377
	19.2.8	PAn Pin Function Control Registers (PAnPFS) (n = 0 to 7)	378
	19.2.9	PBn Pin Function Control Registers (PBnPFS) (n = 0 to 7)	380
	19.2.10	PCn Pin Function Control Registers (PCnPFS) (n = 0 to 7)	382
	19.2.11	PDn Pin Function Control Registers (PDnPFS) (n = 0 to 7)	384
	19.2.12	PEn Pin Function Control Registers (PEnPFS) (n = 0 to 7)	385
	19.2.13	PHn Pin Function Control Registers (PHnPFS) (n = 0 to 3)	387
	19.2.14	PJn Pin Function Control Registers (PJnPFS) (n = 1, 3, 6, 7)	388
	19.3 Us	sage Notes	389
	19.3.1	Procedure for Specifying Input/Output Pin Function	389
	19.3.2	Notes on MPC Register Setting	389
	19.3.3	Note on Using Analog Functions	390
	19.3.4	Notes on Using the CTSU Function of the Capacitive Touch Sensing Unit	390
20.	Multi-Fu	nction Timer Pulse Unit 2 (MTU2a)	391
		verview	
		egister Descriptions	
	20.2.1	Timer Control Register (TCR)	396
	20.2.2	Timer Mode Register (TMDR)	399
	20.2.3	Timer I/O Control Register (TIOR)	401
	20.2.4	Timer Compare Match Clear Register (TCNTCMPCLR)	412
	20.2.5	Timer Interrupt Enable Register (TIER)	413
	20.2.6	Timer Status Register (TSR)	416
	20.2.7	Timer Buffer Operation Transfer Mode Register (TBTM)	417
	20.2.8	Timer Input Capture Control Register (TICCR)	418
	20.2.9	Timer A/D Converter Start Request Control Register (TADCR)	419
	20.2.10	Timer A/D Converter Start Request Cycle Set Registers A and B (TADCORA and TADCORB)	420
	20.2.11	Timer A/D Converter Start Request Cycle Set Buffer Registers A and B	

	(TADCOBRA and TADCOBRB)	421
20.2.12	Timer Counter (TCNT)	421
20.2.13	Timer General Register (TGR)	422
20.2.14	Timer Start Registers (TSTR)	423
20.2.15	Timer Synchronous Registers (TSYR)	424
20.2.16	Timer Read/Write Enable Registers (TRWER)	425
20.2.17	Timer Output Master Enable Registers (TOER)	426
20.2.18	Timer Output Control Registers 1 (TOCR1)	427
20.2.19	Timer Output Control Registers 2 (TOCR2)	429
20.2.20	Timer Output Level Buffer Registers (TOLBR)	431
20.2.21	Timer Gate Control Registers (TGCR)	432
20.2.22	Timer Subcounters (TCNTS)	433
20.2.23	Timer Dead Time Data Registers (TDDR)	433
20.2.24	Timer Cycle Data Registers (TCDR)	434
20.2.25	Timer Cycle Buffer Registers (TCBR)	434
20.2.26	Timer Interrupt Skipping Set Registers (TITCR)	435
20.2.27	Timer Interrupt Skipping Counters (TITCNT)	436
20.2.28	Timer Buffer Transfer Set Registers (TBTER)	437
20.2.29	Timer Dead Time Enable Registers (TDER)	438
20.2.30	Timer Waveform Control Registers (TWCR)	439
20.2.31	Noise Filter Control Registers (NFCR)	440
20.2.32	Bus Master Interface	442
20.3 Open	ration	443
20.3.1	Basic Functions	443
20.3.2	Synchronous Operation	449
20.3.3	Buffer Operation	451
20.3.4	Cascaded Operation	455
20.3.5	PWM Modes	
20.3.6	Phase Counting Mode	464
20.3.7	Reset-Synchronized PWM Mode	470
20.3.8	Complementary PWM Mode	473
20.3.9	A/D Converter Start Request Delaying Function	504
20.3.10	External Pulse Width Measurement	508
20.3.11	Dead Time Compensation	509
20.3.12	Noise Filter	512
20.4 Inter	rupt Sources	513
20.4.1	Interrupt Sources and Priorities	513
20.4.2	DTC Activation	514
20.4.3	A/D Converter Activation	514
20.5 Open	ration Timing	516
20.5.1	Input/Output Timing	516

20.5.2	Interrupt Signal Timing	522
20.6 Usa	age Notes	525
20.6.1	Module Clock Stop Mode Setting	525
20.6.2	Count Clock Restrictions	525
20.6.3	Notes on Cycle Setting	525
20.6.4	Contention between TCNT Write and Clear Operations	526
20.6.5	Contention between TCNT Write and Increment Operations	526
20.6.6	Contention between TGR Write Operation and Compare Match	527
20.6.7	Contention between Buffer Register Write Operation and Compare Match	527
20.6.8	Contention between Buffer Register Write and TCNT Clear Operations	528
20.6.9	Contention between TGR Read Operation and Input Capture	528
20.6.10	Contention between TGR Write Operation and Input Capture	529
20.6.11	Contention between Buffer Register Write Operation and Input Capture	530
20.6.12	Contention between MTU2.TCNT Write Operation and Overflow/Underflow in Cascaded Operation	531
20.6.13	Counter Value When Count Operation is Stopped in Complementary PWM Mode	532
20.6.14	Buffer Operation Setting in Complementary PWM Mode	532
20.6.15	Buffer Operation and Compare Match Flags in Reset-Synchronized PWM Mode	533
20.6.16	Overflow Flags in Reset-Synchronized PWM Mode	534
20.6.17	Contention between Overflow/Underflow and Counter Clearing	535
20.6.18	Contention between TCNT Write Operation and Overflow/Underflow	535
20.6.19	Notes on Transition from Normal Mode or PWM Mode 1 to Reset-Synchronized PWM Mode	536
20.6.20	Output Level in Complementary PWM Mode or Reset-Synchronized PWM Mode	536
20.6.21	Interrupts during Periods in the Module Stop State	536
20.6.22	Simultaneous Input Capture in MTU1.TCNT and MTU2.TCNT in Cascade Connection	536
20.6.23	Notes When Complementary PWM Mode Output Protection Functions are Not Used	537
20.6.24	Point for Caution Regarding MTU5.TCNT and MTU5.TGR Registers	537
20.6.25	Points for Caution to Prevent Malfunctions in Synchronous Clearing for Complementary PWM Mode	538
20.6.26	Continuous Output of Interrupt Signal in Response to a Compare Match	540
20.6.27	Usage Notes on A/D Converter Delaying Function in Complementary PWM Mode	540
20.7 MT	*U Output Pin Initialization	542
20.7.1	Operating Modes	542
20.7.2	Operation in Case of Re-Setting Due to Error during Operation	542
20.7.3	Overview of Pin Initialization Procedures and Mode Transitions in Case of Error during Operation	543
20.8 Ope	erations Linked by the ELC	569
20.8.1	Event Signal Output to the ELC	569
20.8.2	MTU Operations in Response to Receiving Event Signals from the ELC	569
20.8.3	Notes on MTU by Event Signal Reception from the ELC	570

21	. Port Out	put Enable 2 (POE2a)	571
	21.1 O	verview	571
	21.2 Re	egister Descriptions	574
	21.2.1	Input Level Control/Status Register 1 (ICSR1)	574
	21.2.2	Output Level Control/Status Register 1 (OCSR1)	576
	21.2.3	Input Level Control/Status Register 2 (ICSR2)	577
	21.2.4	Software Port Output Enable Register (SPOER)	578
	21.2.5	Port Output Enable Control Register 1 (POECR1)	579
	21.2.6	Port Output Enable Control Register 2 (POECR2)	580
	21.2.7	Input Level Control/Status Register 3 (ICSR3)	581
	21.3 O ₁	peration	582
	21.3.1	Input Level Detection Operation	584
	21.3.2	Output-Level Compare Operation	585
	21.3.3	High-Impedance Control Using Registers	586
	21.3.4	High-Impedance Control on Detection of Stopped Oscillation	
	21.3.5	Release from the High-Impedance	586
	21.4 In	terrupts	587
	21.5 Us	sage Notes	587
	21.5.1	Transitions to Software Standby Mode	587
	21.5.2	When the POE Is Not Used	
	21.5.3	Specifying Pins Corresponding to the MTU	587
22	. 8-Bit Tim	ner (TMR)	588
	22.1 O	verview	588
	22.2 Re	egister Descriptions	
	22.2.1	Timer Counter (TCNT)	
	22.2.2	Time Constant Register A (TCORA)	594
	22.2.3	Time Constant Register B (TCORB)	594
	22.2.4	Timer Control Register (TCR)	595
	22.2.5	Timer Counter Control Register (TCCR)	596
	22.2.6	Timer Control/Status Register (TCSR)	598
	22.2.7	Timer Counter Start Register (TCSTR)	600
	22.3 O ₁	peration	601
	22.3.1	Pulse Output	601
	22.3.2	External Counter Reset Input	602
	22.4 O ₁	peration Timing	603
	22.4.1	TCNT Count Timing	603
	22.4.2	Timing of Interrupt Signal Output on a Compare Match	
	22.4.3	Timing of Timer Output Signal at Compare Match	604
	22.4.4	Timing of Counter Clear by Compare Match	605
	22.4.5	Timing of the External Reset for TCNT	
	22.4.6	Timing of Interrupt Signal Output on an Overflow	606

	22.5 Op	peration with Cascaded Connection	607
	22.5.1	16-Bit Count Mode	607
	22.5.2	Compare Match Count Mode	607
	22.6 Int	terrupt Sources	608
	22.6.1	Interrupt Sources and DTC Activation	608
	22.7 Li	nk Operation by ELC	609
	22.7.1	Event Signal Output to ELC	609
	22.7.2	TMR Operation when Receiving an Event Signal from ELC	609
	22.7.3	Notes on Operating TMR According to an Event Signal from ELC	610
	22.8 Us	sage Notes	611
	22.8.1	Module Stop State Setting	611
	22.8.2	Notes on Setting Cycle	611
	22.8.3	Conflict between TCNT Write and Counter Clear	611
	22.8.4	Conflict between TCNT Write and Increment	612
	22.8.5	Conflict between TCORA or TCORB Write and Compare Match	612
	22.8.6	Conflict between Compare Matches A and B	613
	22.8.7	Switching of Internal Clocks and TCNT Operation	613
	22.8.8	Clock Source Setting with Cascaded Connection	615
	22.8.9	Continuous Output of Compare Match Interrupt Signal	615
23.	Compare	e Match Timer (CMT)	616
	23.1 Ov	verview	616
	23.2 Re	egister Descriptions	617
	23.2.1	Compare Match Timer Start Register 0 (CMSTR0)	617
	23.2.2	Compare Match Timer Control Register (CMCR)	617
	23.2.3	Compare Match Counter (CMCNT)	618
	23.2.4	Compare Match Constant Register (CMCOR)	618
	23.3 O _I	peration	619
	23.3.1	Periodic Count Operation	619
	23.3.2	CMCNT Count Timing	619
	23.4 Int	terrupts	620
	23.4.1	Interrupt Sources	620
	23.4.2	Timing of Compare Match Interrupt Generation	620
	23.5 Li	nk Operations by ELC	621
	23.5.1	Event Signal Output to ELC	621
	23.5.2	CMT Operation When Receiving an Event Signal from ELC	621
	23.5.3	Notes on Operating CMT According to an Event Signal from ELC	621
	23.6 Us	sage Notes	622
	23.6.1	Setting the Module Stop Function	622
	23.6.2	Conflict between CMCNT Counter Writing and Compare Match	622
	23.6.3	Conflict between CMCNT Counter Writing and Incrementing	622

24. R	ealtime (Clock (RTCc)	623
24.1	Ove	rview	623
24.2	Reg	ister Descriptions	625
2	24.2.1	64-Hz Counter (R64CNT)	625
2	24.2.2	Second Counter (RSECCNT)/Binary Counter 0 (BCNT0)	626
2	24.2.3	Minute Counter (RMINCNT)/Binary Counter 1 (BCNT1)	627
2	24.2.4	Hour Counter (RHRCNT)/Binary Counter 2 (BCNT2)	628
2	24.2.5	Day-of-Week Counter (RWKCNT)/Binary Counter 3 (BCNT3)	629
2	24.2.6	Date Counter (RDAYCNT)	630
2	4.2.7	Month Counter (RMONCNT)	631
2	24.2.8	Year Counter (RYRCNT)	632
2	24.2.9	Second Alarm Register (RSECAR)/Binary Counter 0 Alarm Register (BCNT0AR)	633
2	4.2.10	Minute Alarm Register (RMINAR)/Binary Counter 1 Alarm Register (BCNT1AR)	634
2	4.2.11	Hour Alarm Register (RHRAR)/Binary Counter 2 Alarm Register (BCNT2AR)	635
2	4.2.12	Day-of-Week Alarm Register (RWKAR)/Binary Counter 3 Alarm Register (BCNT3AR)	636
2	24.2.13	Date Alarm Register (RDAYAR)/Binary Counter 0 Alarm Enable Register (BCNT0AER)	637
2	24.2.14	Month Alarm Register (RMONAR)/Binary Counter 1 Alarm Enable Register (BCNT1AER)	638
2	24.2.15	Year Alarm Register (RYRAR)/Binary Counter 2 Alarm Enable Register (BCNT2AER)	639
2	24.2.16	Year Alarm Enable Register (RYRAREN)/Binary Counter 3 Alarm Enable Register (BCNT3AER)	640
2	4.2.17	RTC Control Register 1 (RCR1)	641
2	4.2.18	RTC Control Register 2 (RCR2)	642
2	4.2.19	RTC Control Register 3 (RCR3)	644
	24.2.19	Notes on using a low CL crystal unit	644
2	4.2.20	Time Error Adjustment Register (RADJ)	645
24.3	Ope	eration	646
2	24.3.1	Outline of Initial Settings of Registers after Power On	646
2	24.3.2	Clock and Count Mode Setting Procedure	647
2	24.3.3	Setting the Time	648
2	24.3.4	30-Second Adjustment	648
2	24.3.5	Reading 64-Hz Counter and Time	649
2	24.3.6	Alarm Function	650
2	24.3.7	Procedure for Disabling Alarm Interrupt	651
2	24.3.8	Time Error Adjustment Function	651
	24.3.8.	1 Automatic Adjustment	651
	24.3.8.	2 Adjustment by Software	652
	24.3.8.	Procedure for Changing the Mode of Adjustment	653
	24.3.8.	4 Procedure for Stopping Adjustment	653
24.4	Inte	rrupt Sources	654

	24.5	Usag	e Notes	656
	24.5.1		Register Writing during Counting	656
	24.5.2	2	Use of Periodic Interrupts	656
	24.5.3	3	RTCOUT (1-Hz/64-Hz) Clock Output	656
	24.5.4	ļ	Transitions to Low Power Consumption Modes after Setting Registers	657
	24.5.5	5	Notes When Writing to and Reading from Registers	657
	24.5.6	5	Changing the Count Mode	657
	24.5.7	7	Initialization Procedure When the Realtime Clock is Not to be Used	658
25.	Low-P	ower	Timer (LPT)	. 659
	25.1	Over	view	659
	25.2	Regi	ster Descriptions	660
	25.2.1		Low-power timer control register 1 (LPTCR1)	660
	25.2.2	2	Low-power timer control register 2 (LPTCR2)	662
	25.2.3	3	Low-power timer control register 3 (LPTCR3)	663
	25.2.4	ļ	Low-Power Timer Cycle Setting Register (LPTPRD)	664
	25.2.5	5	Low-Power Timer Compare Register 0 (LPCMR0)	666
	25.2.6	5	Low-Power Timer Standby Wakeup Enable Register (LPWUCR)	667
	25.3	Oper	ation	668
	25.3.1		Periodic Count Operation	668
	25.3.2	2	Count Timing of Low-Power Timer Counter	670
	25.3.3	3	Clearing Timing of Low-Power Timer Counter	670
			ase from Software Standby Mode by an Interrupt Signal through the Event Link Controller	671
	25.5	Usag	e Notes	671
	25.5.1		Notes on Transition to Software Standby Mode	671
26.	Indepe	ende	nt Watchdog Timer (IWDTa)	. 672
	26.1	Over	view	672
	26.2	Regi	ster Descriptions	674
	26.2.1		IWDT Refresh Register (IWDTRR)	674
	26.2.2	2	IWDT Control Register (IWDTCR)	675
	26.2.3	3	IWDT Status Register (IWDTSR)	678
	26.2.4	ļ	IWDT Reset Control Register (IWDTRCR)	679
	26.2.5	5	IWDT Count Stop Control Register (IWDTCSTPR)	680
	26.2.6	5	Option Function Select Register 0 (OFS0)	680
	26.3	Oper	ation	681
	26.3.1		Count Operation in Each Start Mode	681
	26	.3.1.1	Register Start Mode	681
	26	.3.1.2	Auto-Start Mode	683
	26.3.2	2	Control over Writing to the IWDTCR, IWDTRCR, and IWDTCSTPR Registers	685
	26.3.3	3	Refresh Operation	686
	26.3.4	ļ	Status Flags	688

26.3.5	Reset Output	688
26.3.6	Interrupt Sources	688
26.3.7	Reading the Counter Value	689
26.3.8	Correspondence between Option Function Select Register 0 (OFS0) and IWDT Registers	690
26.4 Usaş	ge Notes	690
26.4.1	Refresh Operations	690
26.4.2	Clock Divide Ratio Setting	690
27. Serial Con	nmunications Interface (SCIg, SCIh)	691
27.1 Ove	rview	691
27.2 Reg	ister Descriptions	699
27.2.1	Receive Shift Register (RSR)	699
27.2.2	Receive Data Register (RDR)	699
27.2.3	Receive Data Register H, L, HL (RDRH, RDRL, RDRHL)	700
27.2.4	Transmit Data Register (TDR)	700
27.2.5	Transmit Data Register H, L, HL (TDRH, TDRL, TDRHL)	701
27.2.6	Transmit Shift Register (TSR)	701
27.2.7	Serial Mode Register (SMR)	702
27.2.8	Serial Control Register (SCR)	706
27.2.9	Serial Status Register (SSR)	711
27.2.10	Smart Card Mode Register (SCMR)	716
27.2.11	Bit Rate Register (BRR)	718
27.2.12	Modulation Duty Register (MDDR)	726
27.2.13	Serial Extended Mode Register (SEMR)	727
27.2.14	Noise Filter Setting Register (SNFR)	730
27.2.15	I ² C Mode Register 1 (SIMR1)	731
27.2.16	I ² C Mode Register 2 (SIMR2)	732
27.2.17	I ² C Mode Register 3 (SIMR3)	733
27.2.18	I ² C Status Register (SISR)	735
27.2.19	SPI Mode Register (SPMR)	736
27.2.20	Extended Serial Module Enable Register (ESMER)	737
27.2.21	Control Register 0 (CR0)	738
27.2.22	Control Register 1 (CR1)	738
27.2.23	Control Register 2 (CR2)	739
27.2.24	Control Register 3 (CR3)	740
27.2.25	Port Control Register (PCR)	740
27.2.26	Interrupt Control Register (ICR)	741
27.2.27	Status Register (STR)	742
27.2.28	Status Clear Register (STCR)	743
27.2.29	Control Field 0 Data Register (CF0DR)	743
27.2.30	Control Field 0 Compare Enable Register (CF0CR)	744
27.2.31	Control Field 0 Receive Data Register (CF0RR)	744

27.2.32	Primary Control Field 1 Data Register (PCF1DR)	744
27.2.33	Secondary Control Field 1 Data Register (SCF1DR)	745
27.2.34	Control Field 1 Compare Enable Register (CF1CR)	745
27.2.35	Control Field 1 Receive Data Register (CF1RR)	745
27.2.36	Timer Control Register (TCR)	746
27.2.37	Timer Mode Register (TMR)	746
27.2.38	Timer Prescaler Register (TPRE)	747
27.2.39	Timer Count Register (TCNT)	747
27.3 Op	eration in Asynchronous Mode	748
27.3.1	Serial Data Transfer Format	748
27.3.2	Receive Data Sampling Timing and Reception Margin in Asynchronous Mode	750
27.3.3	Clock	751
27.3.4	Double-Speed Mode	751
27.3.5	CTS and RTS Functions	752
27.3.6	SCI Initialization (Asynchronous Mode)	753
27.3.7	Serial Data Transmission (Asynchronous Mode)	754
27.3.8	Serial Data Reception (Asynchronous Mode)	758
27.4 Mu	ılti-Processor Communications Function	762
27.4.1	Multi-Processor Serial Data Transmission	763
27.4.2	Multi-Processor Serial Data Reception	764
27.5 Op	eration in Clock Synchronous Mode	767
27.5.1	Clock	767
27.5.2	CTS and RTS Functions	768
27.5.3	SCI Initialization (Clock Synchronous Mode)	769
27.5.4	Serial Data Transmission (Clock Synchronous Mode)	770
27.5.5	Serial Data Reception (Clock Synchronous Mode)	774
27.5.6	Simultaneous Serial Data Transmission and Reception (Clock Synchronous Mode)	777
27.6 Op	eration in Smart Card Interface Mode	778
27.6.1	Sample Connection	778
27.6.2	Data Format (Except in Block Transfer Mode)	779
27.6.3	Block Transfer Mode	780
27.6.4	Receive Data Sampling Timing and Reception Margin	781
27.6.5	SCI Initialization (Smart Card Interface Mode)	782
27.6.6	Serial Data Transmission (Except in Block Transfer Mode)	784
27.6.7	Serial Data Reception (Except in Block Transfer Mode)	787
27.6.8	Clock Output Control	789
27.7 Op	eration in Simple I ² C Mode	790
27.7.1	Generation of Start, Restart, and Stop Conditions	791
27.7.2	Clock Synchronization	793
27.7.3	SSDA Output Delay	794
27.7.4	SCI Initialization (Simple I ² C Mode)	795

27.7.5	Operation in Master Transmission (Simple I ² C Mode)	796
27.7.6	Master Reception (Simple I ² C Mode)	798
27.7.7	Recovery from Bus Hang-up	800
27.8 Op	eration in Simple SPI Mode	801
27.8.1	States of Pins in Master and Slave Modes	802
27.8.2	SS Function in Master Mode	802
27.8.3	SS Function in Slave Mode	802
27.8.4	Relationship between Clock and Transmit/Receive Data	803
27.8.5	SCI Initialization (Simple SPI Mode)	804
27.8.6	Transmission and Reception of Serial Data (Simple SPI Mode)	804
27.9 Bit	Rate Modulation Function	804
27.10 Ext	rended Serial Mode Control Section: Description of Operation	805
27.10.1	Serial Transfer Protocol	805
27.10.2	Transmitting a Start Frame	806
27.10.3	Receiving a Start Frame	809
27.10	3.1 Priority Interrupt Bit	814
27.10.4	Detection of Bus Collisions	815
27.10.5	Digital Filter for Input on the RXDX12 Pin	816
27.10.6	Bit Rate Measurement	817
27.10.7	Selectable Timing for Sampling Data Received through RXDX12	818
27.10.8	Timer	819
27.11 No	ise Cancellation Function	821
27.12 Into	errupt Sources	822
27.12.1	Buffer Operations for TXI and RXI Interrupts	822
27.12.2	Interrupts in Asynchronous Mode, Clock Synchronous Mode, and Simple SPI Mode	822
27.12.3	Interrupts in Smart Card Interface Mode	823
27.12.4	Interrupts in Simple I ² C Mode	824
27.12.5	Interrupt Requests from the Extended Serial Mode Control Section	825
27.13 Eve	ent Linking	826
27.14 Usa	age Notes	827
27.14.1	Setting the Module Stop Function	827
27.14.2	Break Detection and Processing	827
27.14.3	Mark State and Sending Breaks	827
27.14.4	Receive Error Flags and Transmit Operations (Clock Synchronous Mode and Simple SPI Mode)	827
27.14.5	Writing Data to the TDR Register	827
27.14.6	Restrictions on Clock Synchronous Transmission (Clock Synchronous Mode and Simple SPI Mode)	828
27.14.7	Restrictions on Using DTC	829
27.14.8	Notes on Starting Transfer	829
27.14.9	SCI Operations during Low Power Consumption State	829
27.14.10	External Clock Input in Clock Synchronous Mode and Simple SPI Mode	832

27.14.1	1 Limitations on Simple SPI Mode	833
27.14.1	2 Limitation 1 on Usage of the Extended Serial Mode Control Section	834
27.14.1	3 Limitation 2 on Usage of the Extended Serial Mode Control Section	834
27.14.1	4 Note on Transmit Enable Bit (TE Bit)	835
27.14.1	5 Note on Stopping Reception When Using the RTS Function in Asynchronous I	Mode 835
28. Remote	e Control Signal Receiver (REMC)	836
28.1 C	Overview	836
28.2 R	Registers	838
28.2.1	Function Select Register 0 (REMCON0)	838
28.2.2	Function Select Register 1 (REMCON1)	839
28.2.3	Status Register (REMSTS)	840
28.2.4	Interrupt Control Register (REMINT)	843
28.2.5	Compare Control Register (REMCPC)	843
28.2.6	Compare Value Setting Register (REMCPD)	844
28.2.7	Header Pattern Minimum Width Setting Register (HDPMIN)	844
28.2.8	Header Pattern Maximum Width Setting Register (HDPMAX)	844
28.2.9	Data '0' Pattern Minimum Width Setting Register (D0PMIN)	845
28.2.10	Data '0' Pattern Maximum Width Setting Register (D0PMAX)	845
28.2.11	Data '1' Pattern Minimum Width Setting Register (D1PMIN)	845
28.2.12	Data '1' Pattern Maximum Width Setting Register (D1PMAX)	846
28.2.13	Special Data Pattern Minimum Width Setting Register (SDPMIN)	846
28.2.14	Special Data Pattern Maximum Width Setting Register (SDPMAX)	846
28.2.15	Pattern End Setting Register (REMPE)	847
28.2.16	Receiver Standby Control Register (REMSTC)	848
28.2.17	Receive Bit Count Register (REMRBIT)	849
28.2.18	Receive Data 0 Register (REMDAT0)	849
28.2.19	Receive Data j Register (REMDATj) (j = 1 to 7)	850
28.2.20	Measurement Result Register (REMTIM)	850
28.2.21	HOCO Clock Supply Control Register (HOSCR)	851
28.3 C	Operation	852
28.3.1	Overview of REMC Operation	852
28.3.2	Initial Setting	852
28.3.3	Pattern Setting	854
28.3.4	Operating Clocks	857
28.3	3.4.1 When Using IWDTCLK as REMC Operating Clock	857
28.3	When Using Sub-Clock as the REMC Operating Clock	858
28.3	When Using HOCO Clock as the REMC Operating Clock	859
28.3	3.4.4 Using TMR Compare Match Output as REMC Operating Clock	860
28.3.5	PMCn Input	860
28.3.6	Pattern Detection	862
28.3	3.6.1 Header Pattern Detection	863

	28.3.6	.2 Data '0' Pattern Detection	863
	28.3.6	.3 Data '1' Pattern Detection	864
	28.3.6	.4 Special Data Pattern Detection	864
	28.3.6	.5 Examples of Setting Pattern Setting Registers	865
	28.3.6	.6 Updating Status Flags upon Pattern Detection	865
	28.3.7	Pattern End	867
	28.3.8	Receive Data Buffer	868
	28.3.9	Compare Function	872
	28.3.10	Error Pattern Reception	873
	28.3.11	Storing Base Timer Value When Pattern is Detected	875
	28.3.12	Interrupts	876
	28.3.13	Data Reception in Low Power Consumption State	877
	28.3.1	3.1 Using REMC Interrupt Request to Return from Low Power Consumption State	877
	28.3.1	3.2 Data Reception in Software Standby Mode	878
2	28.4 Usa	ige Notes	881
	28.4.1	Module Stop Function Setting	881
	28.4.2	Settings for Peripheral Module Clock and REMC Operating Clock	881
	28.4.3	Restriction on Using Independent Watchdog Timer (IWDT)	881
	28.4.4	Restriction on Using Low-Power Timer (LPT)	881
	28.4.5	Starting/Stopping Operation of Remote Control Signal Receiver	881
	28.4.6	Accessing Registers	881
	28.4.7	PMCn Input Control	882
	28.4.8	Notes on Changing the Operating Clock	882
	28.4.9	Reading Registers	882
	28.4.10	Notes on Data Reception in Software Standby Mode	882
29.	I ² C-bus Ir	nterface (RIICa)	883
2	29.1 Ove	erview	883
2	29.2 Reg	gister Descriptions	886
	29.2.1	I ² C-bus Control Register 1 (ICCR1)	886
	29.2.2	I ² C-bus Control Register 2 (ICCR2)	888
	29.2.3	I ² C-bus Mode Register 1 (ICMR1)	892
	29.2.4	I ² C-bus Mode Register 2 (ICMR2)	893
	29.2.5	I ² C-bus Mode Register 3 (ICMR3)	895
	29.2.6	I ² C-bus Function Enable Register (ICFER)	897
	29.2.7	I ² C-bus Status Enable Register (ICSER)	899
	29.2.8	I ² C-bus Interrupt Enable Register (ICIER)	901
	29.2.9	I ² C-bus Status Register 1 (ICSR1)	903
	29.2.10	I ² C-bus Status Register 2 (ICSR2)	906
	29.2.11	Slave Address Register Ly (SARLy) (y = 0 to 2)	909
	29.2.12	Slave Address Register Uy (SARUy) (y = 0 to 2)	910
	29.2.13	I ² C-bus Bit Rate Low-Level Register (ICBRL)	911

	29.2.	I ² C-bus Bit Rate High-Level Register (ICBRH)	912
	29.2.	15 I ² C-bus Transmit Data Register (ICDRT)	914
	29.2.	16 I ² C-bus Receive Data Register (ICDRR)	914
	29.2.	17 I ² C-bus Shift Register (ICDRS)	914
29	.3	Operation	915
	29.3.	Communication Data Format	915
	29.3.2	2 Initial Settings	916
	29.3.3	Master Transmit Operation	917
	29.3.4	Master Receive Operation	920
	29.3.5	Slave Transmit Operation	926
	29.3.6	Slave Receive Operation	929
29	.4	SCL Synchronization Circuit	931
29	.5	SDA Output Delay Function	932
29	.6	Digital Noise Filter Circuit	933
29	.7	Address Match Detection	934
	29.7.	Slave-Address Match Detection	934
	29.7.2	Detection of the General Call Address	936
	29.7.3	B Device-ID Address Detection	937
	29.7.4	Host Address Detection	939
29	.8	Automatic Low-Hold Function for SCL	940
	29.8.	Function to Prevent Wrong Transmission of Transmit Data	940
	29.8.2	NACK Reception Transfer Abort Function	941
	29.8.3	Function to Prevent Failure to Receive Data	942
29	.9	Arbitration-Lost Detection Functions	944
	29.9.	Master Arbitration-Lost Detection (MALE Bit)	944
	29.9.2	Function to Detect Loss of Arbitration during NACK Transmission (NALE Bit)	946
	29.9.3	Slave Arbitration-Lost Detection (SALE Bit)	947
29	.10	Start Condition/Restart Condition/Stop Condition Issuing Function	948
	29.10	.1 Issuing a Start Condition	948
	29.10	.2 Issuing a Restart Condition	948
	29.10	.3 Issuing a Stop Condition	949
29	.11	Bus Hanging	950
	29.11	.1 Timeout Function	950
	29.11	.2 Extra SCL Clock Cycle Output Function	952
	29.11	.3 RIIC Reset and Internal Reset	953
29	.12	SMBus Operation	954
	29.12		
	29.12		
	29.12	` '	
29	.13	Interrupt Sources	
	29.13	.1 Buffer Operation for TXI and RXI Interrupts	956

	29.14	Initial	ization of Registers and Functions When a Reset is Issued or a Condition is Detected	957
	29.15	Event	Link Function (Output)	958
	29.1	5.1	Interrupt Handling and Event Linking	958
	29.16	Usage	Notes	959
	29.1	6.1	Setting Module Stop Function	959
	29.1	6.2	Notes on Starting Transfer	959
30.	Seria	al Perip	heral Interface (RSPIa)	960
	30.1	Overv	view	960
	30.2	Regis	ter Descriptions	964
	30.2	.1	RSPI Control Register (SPCR)	964
	30.2	.2	RSPI Slave Select Polarity Register (SSLP)	966
	30.2	.3	RSPI Pin Control Register (SPPCR)	967
	30.2	.4	RSPI Status Register (SPSR)	968
	30.2	.5	RSPI Data Register (SPDR)	971
	30.2	.6	RSPI Sequence Control Register (SPSCR)	974
	30.2	.7	RSPI Sequence Status Register (SPSSR)	975
	30.2	.8	RSPI Bit Rate Register (SPBR)	976
	30.2	.9	RSPI Data Control Register (SPDCR)	977
	30.2	.10	RSPI Clock Delay Register (SPCKD)	979
	30.2	.11	RSPI Slave Select Negation Delay Register (SSLND)	980
	30.2	.12	RSPI Next-Access Delay Register (SPND)	981
	30.2	.13	RSPI Control Register 2 (SPCR2)	982
	30.2	.14	RSPI Command Registers 0 to 7 (SPCMD0 to SPCMD7)	984
	30.3	Opera	ıtion	987
	30.3	.1	Overview of RSPI Operations	987
	30.3	.2	Controlling RSPI Pins	988
	30.3	.3	RSPI System Configuration Examples	989
	3	0.3.3.1	Single Master/Single Slave (with This MCU Acting as Master)	989
	3	0.3.3.2	Single Master/Single Slave (with This MCU Acting as Slave)	990
	3	0.3.3.3	Single Master/Multi-Slave (with This MCU Acting as Master)	991
	3	0.3.3.4	Single Master/Multi-Slave (with This MCU Acting as Slave)	992
	3	0.3.3.5	Multi-Master/Multi-Slave (with This MCU Acting as Master)	993
	3	0.3.3.6	Master (Clock Synchronous Operation)/Slave (Clock Synchronous Operation) (with This MCU Acting as Master)	994
	3	0.3.3.7	Master (Clock Synchronous Operation)/Slave (Clock Synchronous Operation) (with This MCU Acting as Slave)	994
	30.3	.4	Data Format	995
	3	0.3.4.1	When Parity is Disabled (SPCR2.SPPE = 0)	996
	3	0.3.4.2	When Parity is Enabled (SPCR2.SPPE = 1)	1000
	30.3	.5	Transfer Format	1004
	3	0.3.5.1	CPHA = 0	1004
	3	0.3.5.2	CPHA = 1	1005

	30.3.6	Communications Operating Mode	1006
	30.3.6	.1 Full-Duplex Synchronous Serial Communications (SPCR.TXMD = 0)	1006
	30.3.6	.2 Transmit Operations Only (SPCR.TXMD = 1)	1007
	30.3.7	Transmit Buffer Empty/Receive Buffer Full Interrupts	1008
	30.3.8	Error Detection	1010
	30.3.8	.1 Overrun Error	1011
	30.3.8	.2 Parity Error	1013
	30.3.8	.3 Mode Fault Error	1014
	30.3.9	Initializing RSPI	1015
	30.3.9	.1 Initialization by Clearing the SPE Bit	1015
	30.3.9	.2 System Reset	1015
	30.3.10	SPI Operation	1016
	30.3.10	0.1 Master Mode Operation	1016
	30.3.10	0.2 Slave Mode Operation	1026
	30.3.11	Clock Synchronous Operation	1030
	30.3.1	1.1 Master Mode Operation	1030
	30.3.1	1.2 Slave Mode Operation	1034
	30.3.12	Loopback Mode	1036
	30.3.13	Self-Diagnosis of Parity Bit Function	1037
	30.3.14	Interrupt Sources	1038
	30.4 Usa	ge Notes	1039
	30.4.1	Setting Module Stop Function	1039
	30.4.2	Note on Low Power Consumption Functions	1039
	30.4.3	Notes on Starting Transfer	1039
	30.4.4	Notes on the SPRF and SPTEF flags	1039
31.	CRC Calc	culator (CRC)	1040
	31.1 Ove	erview	1040
	31.2 Reg	gister Descriptions	1041
	31.2.1	CRC Control Register (CRCCR)	1041
	31.2.2	CRC Data Input Register (CRCDIR)	1041
	31.2.3	CRC Data Output Register (CRCDOR)	1042
	31.3 Ope	eration	1043
	31.4 Usa	ge Notes	1046
	31.4.1	Module Stop Function Setting	1046
	31.4.2	Note on Transmission	1046
32.	Capacitive	e Touch Sensing Unit (CTSUa)	1047
	-	erview	
	32.2 Reg	gister Descriptions	1049
	32.2.1	CTSU Control Register 0 (CTSUCR0)	1049
	32.2.2	CTSU Control Register 1 (CTSUCR1)	1051
	32.2.3	CTSU Synchronous Noise Reduction Setting Register (CTSUSDPRS)	1052

	32.2.4	CTSU Sensor Stabilization Wait Control Register (CTSUSST)	1053
	32.2.5	CTSU Measurement Channel Register 0 (CTSUMCH0)	1054
	32.2.6	CTSU Measurement Channel Register 1 (CTSUMCH1)	1055
	32.2.7	CTSU Channel Enable Control Register n (CTSUCHACn) (n = 0 to 3)	1056
	32.2.8	CTSU Channel Enable Control Register 4 (CTSUCHAC4)	1057
	32.2.9	CTSU Channel Transmit/Receive Control Register n (CTSUCHTRCn) (n = 0 to 3)	1058
	32.2.10	CTSU Channel Transmit/Receive Control Register 4 (CTSUCHTRC4)	1059
	32.2.11	CTSU High-Pass Noise Reduction Control Register (CTSUDCLKC)	1060
	32.2.12	CTSU Status Register (CTSUST)	1061
	32.2.13	CTSU High-Pass Noise Reduction Spectrum Diffusion Control Register (CTSUSSC)	1063
	32.2.14	CTSU Sensor Offset Register 0 (CTSUSO0)	1064
	32.2.15	CTSU Sensor Offset Register 1 (CTSUSO1)	1065
	32.2.16	CTSU Sensor Counter (CTSUSC)	1066
	32.2.17	CTSU Reference Counter (CTSURC)	1067
	32.2.18	CTSU Error Status Register (CTSUERRS)	1068
	32.2.19	CTSU Reference Current Calibration Register (CTSUTRMR)	1069
3	32.3 Op	eration	1070
	32.3.1	Principles of Measurement Operation	1070
	32.3.2	Measurement Modes	1072
	32.3.2	.1 Initial Setting Flowchart	1073
	32.3.2	.2 Status Counter	1074
	32.3.2	.3 Self-Capacitance Single Scan Mode Operation	1075
	32.3.2	.4 Self-Capacitance Multi-Scan Mode Operation	1077
	32.3.2	5 Mutual Capacitance Full Scan Mode Operation	1079
	32.3.3	Items Common to Multiple Modes	1082
	32.3.3	.1 Sensor Stabilization Wait Time and Measurement Time	1082
	32.3.3	.2 Interrupts	1083
3	32.4 Usa	age Notes	1085
	32.4.1	Measurement Result Data (CTSUSC and CTSURC Counters)	1085
	32.4.2	Software Trigger	1085
	32.4.3	External Trigger	1085
	32.4.4	Notes on Forcibly Stopping Operation	1086
	32.4.5	TSCAP Pin	1086
	32.4.6	Notes during Measurement Operation (CTSUCR0.CTSUSTRT Bit = 1)	1086
33.	12-Bit A/[D Converter (S12ADE)	1087
		erview	
		gister Descriptions	
	33.2.1	A/D Data Registers y (ADDRy), A/D Data Duplication Register (ADDBLDR), A/D Temperature Sensor Data Register (ADTSDR), A/D Internal Reference Voltage Data Register (ADOCDR)	
		- · · · · · · · · · · · · · · · · · · ·	

33.2.2	A/D Self-Diagnosis Data Register (ADRD)	1094
33.2.3	A/D Control Register (ADCSR)	1095
33.2.4	A/D Channel Select Register A0 (ADANSA0)	1098
33.2.5	A/D Channel Select Register A1 (ADANSA1)	1099
33.2.6	A/D Channel Select Register B0 (ADANSB0)	1100
33.2.7	A/D Channel Select Register B1 (ADANSB1)	1101
33.2.8	A/D-Converted Value Addition/Average Function Select Register 0 (ADADS0)	1102
33.2.9	A/D-Converted Value Addition/Average Function Select Register 1 (ADADS1)	1103
33.2.10	A/D-Converted Value Addition/Average Count Select Register (ADADC)	1105
33.2.11	A/D Control Extended Register (ADCER)	1106
33.2.12	A/D Conversion Start Trigger Select Register (ADSTRGR)	1108
33.2.13	A/D Conversion Extended Input Control Register (ADEXICR)	1110
33.2.14	A/D Sampling State Register n (ADSSTRn) (n = 0 to 7, L, T, O)	1112
33.2.15	A/D Disconnection Detection Control Register (ADDISCR)	1113
33.2.16	A/D Event Link Control Register (ADELCCR)	1114
33.2.17	A/D Group Scan Priority Control Register (ADGSPCR)	1115
33.2.18	A/D Compare Function Control Register (ADCMPCR)	1116
33.2.19	A/D Compare Function Window A Channel Select Register 0 (ADCMPANSR0)	1118
33.2.20	A/D Compare Function Window A Channel Select Register 1 (ADCMPANSR1)	1119
33.2.21	A/D Compare Function Window A Extended Input Select Register (ADCMPANSER)	1120
33.2.22	A/D Compare Function Window A Comparison Condition Setting Register 0 (ADCMPLR0)	1121
33.2.23	A/D Compare Function Window A Comparison Condition Setting Register 1 (ADCMPLR1)	1122
33.2.24	A/D Compare Function Window A Extended Input Comparison Condition Setting Regi (ADCMPLER)	
33.2.25	A/D Compare Function Window A Lower-Side Level Setting Register (ADCMPDR0)	1124
33.2.26	A/D Compare Function Window A Upper-Side Level Setting Register (ADCMPDR1)	1126
33.2.27	A/D Compare Function Window A Channel Status Register 0 (ADCMPSR0)	1127
33.2.28	A/D Compare Function Window A Channel Status Register 1 (ADCMPSR1)	1128
33.2.29	A/D Compare Function Window A Extended Input Channel Status Register (ADCMPSER)	1129
33.2.30	A/D High-Potential/Low-Potential Reference Voltage Control Register (ADHVREFCNT)	1130
33.2.31	A/D Compare Function Window A/B Status Monitor Register (ADWINMON)	1131
33.2.32	A/D Compare Function Window B Channel Select Register (ADCMPBNSR)	1132
33.2.33	A/D Compare Function Window B Lower-Side Level Setting Register (ADWINLLB)	1134
33.2.34	A/D Compare Function Window B Upper-Side Level Setting Register (ADWINULB)	1136
33.2.35	A/D Compare Function Window B Channel Status Register (ADCMPBSR)	1137
33.2.36	A/D Data Storage Buffer Register n (ADBUFn) (n = 0 to 15)	1138
33.2.37	A/D Data Storage Buffer Enable Register (ADBUFEN)	1139
33.2.38	A/D Data Storage Buffer Pointer Register (ADBUFPTR)	1140

33.3.1	Scanning Operation	
33.3.2	Single Scan Mode	
33.3.2		
33.3.2	•	
33.3.2		
33.3.2	•	
33.3.3	Continuous Scan Mode	
33.3.3	B.1 Basic Operation	
33.3.3	3.2 Channel Selection and Self-Diagnosis	
33.3.4	Group Scan Mode	
33.3.4	l.1 Basic Operation	
33.3.4	A/D Conversion in Double Trigger Mode	
33.3.4	Operation under Group-A Priority Control	
33.3.5	Compare Function (Window A, Window B)	
33.3.5	Compare Function Window A/B	
33.3.5	ELC Output of Compare Function	
33.3.5	Using Data Buffers	
33.3.5	Restrictions for Compare Function	
33.3.6	Analog Input Sampling Time and Scan Conversion Time	
33.3.7	Usage Example of A/D Data Register Automatic Clearing Function	
33.3.8	A/D-Converted Value Addition/Average Mode	
33.3.9	Disconnection Detection Assist Function	
33.3.10	Starting A/D Conversion with Asynchronous Trigger	
33.3.11	Starting A/D Conversion with Synchronous Trigger from Peripheral Module	
33.4 Int	errupt Sources and DTC Transfer Requests	
33.4.1	Interrupt Requests	
33.5 Ev	ent Link Function	
33.5.1	Event Output to the ELC	
33.5.2	12-Bit A/D Converter Operation by Event from the ELC	
33.5.3	Note on 12-Bit A/D Converter When an Event Is Input from the ELC	
33.6 Sel	ecting Reference Voltage	••••
	owable Impedance of Signal Source	
	age Notes	
33.8.1	Notes on Reading Data Registers	••••
33.8.2	Notes on Stopping A/D Conversion	
33.8.3	A/D Conversion Restarting Timing and Termination Timing	
33.8.4	Notes on Scan End Interrupt Handling	
33.8.5	Module Stop Function Setting	
33.8.6	Notes on Entering Low Power Consumption States	

33.8	8 Pin Setting when the 12-bit A/D Converter is Used	1173
33.8	9 Error in Absolute Accuracy When Disconnection Detection Assistance is in Use	1173
33.8	10 ADHSC Bit Rewriting Procedure	1174
33.8	11 Voltage Range of Analog Power Supply Pins	1175
33.8	12 Notes on Board Design	1176
33.8	13 Notes on Noise Prevention	1176
D/A (Converter (DAa)	1177
	` ,	
	•	
	•	
34.6		
34.6	Note on Usage When Measure against Interference between D/A	
Temr	perature Sensor (TEMPSA)	1186
	· ,	
	-	
	č	
	· · · · ·	
30.2	,	
36.2		
36.2 36.2		
36.2	Comparator B Flag Register (CPBFLG)	1194
36.2 36.2	Comparator B Flag Register (CPBFLG)	1194
36.2 36.2 36.2	Comparator B Flag Register (CPBFLG) Comparator B Interrupt Control Register (CPBINT) Comparator B Filter Select Register (CPBF)	1194 1195 1196
36.2 36.2	Comparator B Flag Register (CPBFLG) Comparator B Interrupt Control Register (CPBINT) Comparator B Filter Select Register (CPBF) Comparator B Mode Select Register (CPBMD)	1194 1195 1196
	33.8. 33.8. 33.8. 33.8. 33.8. 33.8. 33.8. D/A 0 34.1 34.2 34.2. 34.2. 34.2. 34.3 34.3 34.4 34.5 34.6 34.6. 34.6. 34.6. 35.1 35.2 35.2 35.3 Comp 36.1 36.2	33.8.9 Error in Absolute Accuracy When Disconnection Detection Assistance is in Use 33.8.10 ADHSC Bit Rewriting Procedure 33.8.11 Voltage Range of Analog Power Supply Pins 33.8.12 Notes on Board Design 33.8.13 Notes on Noise Prevention D/A Converter (DAa) 34.1 Overview 34.2 Register Descriptions 34.2.1 D/A Data Register m (DADRm) (m = 0, 1) 34.2.2 D/A Control Register (DACR) 34.2.3 DADRm Format Select Register (DADPR) (m = 0, 1) 34.2.4 D/A A/D Synchronous Start Control Register (DADSCR) 34.3 Operation 34.3.1 Measure against Interference between D/A and A/D Conversion 34.4 Event Link Operation Setting Procedure 34.5 Usage Notes on Event Link Operation 34.6.1 Module Stop Function Setting 34.6.2 Operation of the D/A Converter in Module Stop State 34.6.3 Operation of the D/A Converter in Software Standby Mode 34.6.4 Note on Usage When Measure against Interference between D/A and A/D Conversion is Enabled Temperature Sensor (TEMPSA) 35.1 Overview 35.2 Register Descriptions 35.3.1 Before Using the Temperature Sensor 35.3.2 Setting the 12-Bit A/D Converter Comparator B (CMPBa) 36.1 Overview

36.3	Operation	1199
36.3	Comparator Bn Digital Filter (n = 0, 1)	1203
36.4	Comparator B0 and Comparator B1 Interrupts	1204
36.5	Event Link Output	1204
36.5	Relationship between Interrupt Handling and Event Linking	1204
36.5	5.2 Comparator Bn Output (n = 0, 1) Function	1204
36.5	Example of Using Comparator B to Exit Software Standby Mode	1205
36.6	Usage Note	1205
36.6	Module Stop Function Setting	1205
37. Data	a Operation Circuit (DOC)	1206
37.1	Overview	1206
37.2	Register Descriptions	1207
37.2	2.1 DOC Control Register (DOCR)	1207
37.2	DOC Data Input Register (DODIR)	1208
37.2	DOC Data Setting Register (DODSR)	1208
37.3	Operation	1209
37.3	3.1 Data Comparison Mode	1209
37.3	3.2 Data Addition Mode	1210
37.3	Data Subtraction Mode	1211
37.4	Interrupt Requests	1211
37.5	Event Link Output	1212
37.5	5.1 Interrupt Handling and Event Linking	1212
37.6	Usage Note	1212
37.6	Module Stop Function Setting	1212
38. RAN	И	1213
38.1	Overview	1213
38.2	Operation	1213
38.2	2.1 Low Power Consumption Function	1213
39. Flas	sh Memory	1214
39.1	Overview	1214
39.2	ROM Area and Memory Plane/Block Configuration	1215
39.3	E2 DataFlash Area and Block Configuration	1216
39.4	Register Descriptions	1217
39.4	4.1 E2 DataFlash Control Register (DFLCTL)	1217
39.4	Flash P/E Mode Entry Register (FENTRYR)	1218
39.4	Protection Unlock Register (FPR)	1219
39.4	Protection Unlock Status Register (FPSR)	1219
39.4	Flash P/E Mode Control Register (FPMCR)	1220
39.4	Flash Initial Setting Register (FISR)	1221
39.4	Flash Reset Register (FRESETR)	1223
39.4	4.8 Flash Area Select Register (FASR)	1223

	39.4.9	Flash Control Register (FCR)	1224
	39.4.10	Flash Extra Area Control Register (FEXCR)	1226
	39.4.11	Flash Processing Start Address Register H (FSARH)	1227
	39.4.12	Flash Processing Start Address Register L (FSARL)	1227
	39.4.13	Flash Processing End Address Register H (FEARH)	1228
	39.4.14	Flash Processing End Address Register L (FEARL)	1228
	39.4.15	Flash Read Buffer Register H (FRBH)	1229
	39.4.16	Flash Read Buffer Register L (FRBL)	1229
	39.4.17	Flash Write Buffer Register H (FWBH)	1229
	39.4.18	Flash Write Buffer Register L (FWBL)	1230
	39.4.19	Flash Status Register 0 (FSTATR0)	1231
	39.4.20	Flash Status Register 1 (FSTATR1)	1233
	39.4.21	Flash Error Address Monitor Register H (FEAMH)	1234
	39.4.22	Flash Error Address Monitor Register L (FEAML)	1234
	39.4.23	Flash Start-Up Setting Monitor Register (FSCMR)	1235
	39.4.24	Flash Access Window Start Address Monitor Register (FAWSMR)	1235
	39.4.25	Flash Access Window End Address Monitor Register (FAWEMR)	1236
	39.4.26	Unique ID Register n (UIDRn) (n = 0 to 31)	1236
39.	.5 Start	-Up Program Protection	1237
39.	.6 Area	Protection	1238
39.	.7 Prog	ramming and Erasure	1239
	39.7.1	Sequencer Modes	1239
	39.7.1.1	E2 DataFlash Access Disabled Mode	1239
	39.7.1.2	Read Mode	1240
	39.7.1.3	P/E Modes	1240
	39.7.2	Mode Transitions	1240
	39.7.2.1	Transition from E2 DataFlash Access Disable Mode to Read Mode	1240
	39.7.2.2	Transition from Read Mode to P/E Mode	1241
	39.7.2.3	Transition from P/E Mode to Read Mode	1243
	39.7.3	Software Commands	1245
	39.7.4	Software Command Usage	1246
	39.7.4.1	Program	1246
	39.7.4.2	Block Erase	1248
	39.7.4.3	Blank Check	1250
	39.7.4.4	Start-Up Area Information Program/Access Window Information Program	1252
	39.7.4.5	Unique ID Read	1253
	39.7.4.6	Forced Stop of Software Commands	1254
	39.7.5	Interrupt	1254
39.	.8 Boot	Mode	1255
	39.8.1	Boot Mode (SCI Interface)	1256
	39.8.1.1	Operating Conditions in Boot Mode (SCI Interface)	1256

	39.8.1.2	Starting Up in Boot Mode (SCI Interface)	1257
	39.8.2	Boot Mode (FINE Interface)	1258
	39.8.2.1	Operating Conditions in Boot Mode (FINE Interface)	1258
39.	.9 Flasł	Memory Protection	1259
	39.9.1	ID Code Protection	1259
	39.9.1.1	Boot Mode ID Code Protection	1260
	39.9.1.2	On-Chip Debugging Emulator ID Code Protection	1261
39.	.10 Com	munication Protocol	1262
	39.10.1	State Transition in Boot Mode (SCI Interface)	1262
	39.10.2	Command and Response Configuration	1263
	39.10.3	Response to Undefined Commands	1263
	39.10.4	Boot Mode Status Inquiry	1264
	39.10.5	Inquiry Commands	1265
	39.10.5	1 Supported Device Inquiry	1265
	39.10.5	2 Data Area Availability Inquiry	1266
	39.10.5	3 User Area Information Inquiry	1266
	39.10.5	4 Data Area Information Inquiry	1267
	39.10.5	5 Block Information Inquiry	1267
	39.10.6	Setting Commands	1268
	39.10.6	1 Device Select	1268
	39.10.6	2 Operating Frequency Select	1269
	39.10.6	3 Program/Erase Host Command Wait State Transition	1270
	39.10.7	ID Code Authentication Command	1271
	39.10.7	1 ID Code Check	1271
	39.10.8	Program/Erase Commands	1272
	39.10.8	.1 User/Data Area Program Preparation	1272
	39.10.8	2 Program	1273
	39.10.8	3 Data Area Program	1274
	39.10.8	4 Erase Preparation	1275
	39.10.8	.5 Block Erase	1275
	39.10.9	Read-Check Commands	1276
	39.10.9	.1 Memory Read	1276
	39.10.9		
	39.10.9	3 Data Area Checksum	1278
	39.10.9		
	39.10.9		
	39.10.9		
	39.10.9		
39.		l Programmer Operation in Boot Mode (SCI Interface)	
	39.11.1	Bit Rate Automatic Adjustment Procedure	
	39.11.2	Procedure to Receive the MCU Information	1283

	39.1	1.3	Procedure to Select the Device and Change the Bit Rate	1284
	39.1	1.4	Procedure for Transition to the Program/Erase Host Command Wait State	1285
	39.1	1.5	Procedure to Unlock Boot Mode ID Code Protection	1286
	39.1	1.6	Procedure to Erase the User Area and Data Area	1287
	39.1	1.7	Procedure to Program the User Area and Data Area	1288
	39.1	1.8	Procedure to Check Data in the User Area	1289
	39.1	1.9	Procedure to Check Data in the Data Area	1290
	39.1	1.10	Procedure to Set the Access Window in the User Area	1291
	39.12	Rew	riting by Self-Programming	1292
	39.12	2.1	Overview	1292
	39.13	Usa	ge Notes	1293
	39.14	Usa	ge Notes in Boot Mode	1294
40.	Elect	rical (Characteristics	1295
	40.1	Abs	olute Maximum Ratings	1295
	40.2	DC	Characteristics	1297
	40.2.1		Normal I/O Pin Output Characteristics (1)	1318
	40.2.2		Normal I/O Pin Output Characteristics (2)	1321
	40.2.	.3	Normal I/O Pin Output Characteristics (3)	1324
	40.3	AC	Characteristics	1326
	40.3.	.1	Clock Timing	1326
	40.3.	.2	Reset Timing	1330
	40.3.	.3	Timing of Recovery from Low Power Consumption Modes	1331
	40.3.	.4	Control Signal Timing	1334
	40.3.	.5	Timing of On-Chip Peripheral Modules	1335
	40.4	A/D	Conversion Characteristics	1347
	40.5	D/A	Conversion Characteristics	1355
	40.6	Tem	perature Sensor Characteristics	1355
	40.7	Con	nparator Characteristics	1356
	40.8	CTS	SU Characteristics	1358
	40.9	Pow	er-On Reset Circuit and Voltage Detection Circuit Characteristics	1358
	40.10	Osc	illation Stop Detection Timing	1363
	40.11	RON	M (Flash Memory for Code Storage) Characteristics	1364
	40.12	E2 I	DataFlash Characteristics (Flash Memory for Data Storage)	1366
	40.13	Usa	ge Notes	1367
	40.13	3.1	Connecting VCL Capacitor and Bypass Capacitors	1367
Аp	pendix 1	. Por	t States in Each Processing Mode	1372
Ар	pendix 2	. Pac	kage Dimensions	1374
RE	VISION	HIST	ORY	1380

RX130 Group Renesas MCUs

R01UH0560EJ0300 Rev.3.00 Aug 09, 2018

32-MHz, 32-bit RX MCUs, 50 DMIPS, up to 512-KB flash memory, up to 36 pins capacitive touch sensing unit, up to 6 comms channels, 12-bit A/D, D/A, RTC, IEC60730 compliance, 1.8-V to 5.5-V single supply

Features

■ 32-bit RX CPU core

- Max. operating frequency: 32 MHz Capable of 50 DMIPS in operation at 32 MHz Accumulator handles 64-bit results (for a single instruction) from 2-bit × 32-bit operations
- Multiplication and division unit handles 32-bit × 32-bit operations (multiplication instructions take one CPU clock cycle)
- Fast interrupt
- CISC Harvard architecture with 5-stage pipeline
 Variable-length instructions, ultra-compact code
 On-chip debugging circuit

■ Low power design and architecture

- Operation from a single 1.8-V to 5.5-V supply
- Three low power consumption modes

 Low power timer (LPT) that operates during the software standby state
- High-speed operating mode: 96 μA/MHz Supply current in software standby mode: 0.37 μA
- Recovery time from software standby mode: 4.8 μs

■ On-chip flash memory for code, no wait states

- 64 K/128 K/256 K/383 K/512 Kbytes
- Operation at 32 MHz, read cycle of 31.25 ns
- No wait states for reading at full CPU speed Programmable at 1.8 V
- For instructions and operands

■ On-chip data flash memory

- 8 Kbytes (1,000,000 program/erase cycles (typ.))
- BGO (Background Operation)

■ On-chip SRAM, no wait states

• 10 K/16 K/32 K/48 Kbytes size capacities

- Four transfer modes
- Transfer can be set for each interrupt source.

- · Module operation can be initiated by event signals without using
- Linked operation between modules is possible while the CPU is sleeping.

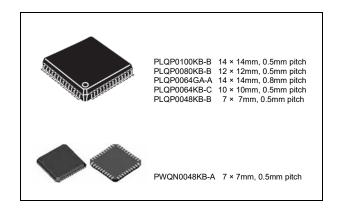
■ Reset and supply management

- Eight types of reset, including the power-on reset (POR)
 Low voltage detection (LVD) with voltage settings

■ Clock functions

- External clock input frequency: Up to 20 MHz
- Main clock oscillator frequency: 1 to 20 MHz Sub clock oscillator frequency: 32.768 kHz PLL circuit input: 4 MHz to 8 MHz

- Low-speed on-chip oscillator: 4 MHz High-speed on-chip oscillator: 32 MHz ± 1 % IWDT-dedicated on-chip oscillator: 15 kHz Generate a 32.768 kHz clock for the real-time clock
- On-chip clock frequency accuracy measurement circuit (CAC)


- Adjustment functions (30 seconds, leap year, and error)
- · Calendar count mode or binary count mode selectable

■ Independent watchdog timer

• 15-kHz on-chip oscillator produces a dedicated clock signal to drive IWDT operation.

■ Useful functions for IEC60730 compliance

 Self-diagnostic and disconnection-detection assistance functions for the A/D converter, clock frequency accuracy measurement circuit, independent watchdog timer, RAM test assistance functions using the DOC, etc.

■ MPC

• Input/output functions selectable from multiple pins

■ Up to 6 communication functions

- SCI with many useful functions (up to 4 channels)
 Asynchronous mode (Fine adjustable baud rate: 0 to 255/255), clock synchronous mode, smart card interface mode
- I²C bus interface: Transfer at up to 400 kbps, capable of SMBus operation (one channel)

 • RSPI (one channel): Transfer at up to 16 Mbps

■ Remote control signal reception

- Two units integrated
- Four pattern waveform matching supported

■ Up to 12 extended-function timersMPC

- 16-bit MTU: input capture, output compare, complementary PWM output, phase counting mode (six channels) 8-bit TMR (four channels)
- · 16-bit compare-match timers (two channels)

■ 12-bit A/D converter

- Capable of conversion within 1.4 μs
- 17 channels
- Sampling time can be set for each channel
- Conversion results compare features
 Self-diagnostic function and analog input disconnection detection assistance function
- Double trigger (data duplication) function for motor control

D/A converter

· Two channels

■ Capacitive touch sensing unit

- Self-capacitance method: A single pin configures a single key, supporting up to 36 keys
- Mutual capacitance method: Matrix configuration with 36pins, supporting up to 324 keys

■ Comparator B

Two channels

■ General I/O ports

• 5-V tolerant, open drain, input pull-up, switching of driving capacity

■ Temperature sensor

■ Unique ID

• 32-byte ID code for the MCU

■ Operating temperature range

- -40 to +85°C
- -40 to +105°C

■ Applications

General industrial and consumer equipment

1. Overview

1.1 Outline of Specifications

Table 1.1 lists the specifications, and Table 1.2 gives a comparison of the functions of the products in different packages.

Table 1.1 is for products with the greatest number of functions, so the number of peripheral modules and channels will differ in accordance with the package type. For details, see Table 1.2, Comparison of Functions for Different Packages in the RX130 Group.

Table 1.1 Outline of Specifications (1/3)

Classification	Module/Function	Description					
CPU	CPU	 Maximum operating frequency: 32 MHz 32-bit RX CPU Minimum instruction execution time: One instruction per clock cycle Address space: 4-Gbyte linear Register set General purpose: Sixteen 32-bit registers Control: Eight 32-bit registers Accumulator: One 64-bit registers Basic instructions: 73 (variable-length instruction format) DSP instructions: 9 Addressing modes: 10 Data arrangement Instructions: Little endian Data: Selectable as little endian or big endian On-chip 32-bit multiplier: 32-bit × 32-bit → 64-bit On-chip divider: 32-bit ÷ 32-bit → 32 bits Barrel shifter: 32 bits 					
Memory	ROM	 Capacity: 64 K/128 K/256 K/383 K/512 Kbytes No-wait memory access Programming/erasing method: Serial programming (asynchronous serial communication), self-programming 					
	RAM	 Capacity: 10 K/16 K/32 K/48 Kbytes No-wait memory access 					
	E2 DataFlash	Capacity: 8 Kbytes Number of erase/write cycles: 1,000,000 (typ)					
MCU operating mo	ode	Single-chip mode					
Clock	Clock generation circuit	 Main clock oscillator, sub-clock oscillator, low-speed on-chip oscillator, high-speed on-chip oscillator, PLL frequency synthesizer, and IWDT-dedicated on-chip oscillator Oscillation stop detection: Available Clock frequency accuracy measurement circuit (CAC) Independent settings for the system clock (ICLK), peripheral module clock (PCLK), and FlashIF clock (FCLK) The CPU and system sections such as other bus masters run in synchronization with the system clock (ICLK): 32 MHz (at max.) Peripheral modules run in synchronization with the PCLKB: 32 MHz (at max.) The flash peripheral circuit runs in synchronization with the FCLK: 32 MHz (at max.) The ICLK frequency can only be set to FCLK, PCLKB, or PCLKD multiplied by n (n: 1,2,4,8,16,32,64) 					
Resets		RES# pin reset, power-on reset, voltage monitoring reset, independent watchdog timer reset, and software reset					
Voltage detection	Voltage detection circuit (LVDAb)	When the voltage on VCC falls below the voltage detection level, an internal reset or internal interrupt is generated. Voltage detection circuit 0 is capable of selecting the detection voltage from 4 levels Voltage detection circuit 1 is capable of selecting the detection voltage from 14 levels Voltage detection circuit 2 is capable of selecting the detection voltage from 4 levels					
consumption functions • Three low por		Module stop function Three low power consumption modes Sleep mode, deep sleep mode, and software standby mode					
	Function for lower operating power consumption	Operating power control modes High-speed operating mode, middle-speed operating mode, and low-speed operating mode					
Interrupt Unterrupt controller (ICUb) • Interest • Exterest • Non interest •		 Interrupt vectors: 115 External interrupts: 9 (NMI, IRQ0 to IRQ7 pins) Non-maskable interrupts: 5 (The NMI pin, oscillation stop detection interrupt, voltage monitoring 1 interrupt, voltage monitoring 2 interrupt, and IWDT interrupt) 16 levels specifiable for the order of priority 					

Table 1.1 Outline of Specifications (2/3)

Classification	Module/Function	Description Transfer modes: Normal transfer, repeat transfer, and block transfer Activation sources: Interrupts Chain transfer function					
DMA	Data transfer controller (DTCa)						
I/O ports	General I/O ports	100-pin /80-pin /64-pin /48-pin I/O: 88/68/52/38 Input: 1/1/1/1 Pull-up resistors: 88/68/52/38 Open-drain outputs: 67/47/35/26 5-V tolerance: 4/4/2/2					
Event link controll	er (ELC)	 Event signals of 47 types can be directly connected to the module Operations of timer modules are selectable at event input Capable of event link operation for port B 					
Multi-function pin	controller (MPC)	Capable of selecting the input/output function from multiple pins					
Timers	Multi-function timer pulse unit 2 (MTU2a)	(16 bits × 6 channels) × 1 unit Up to 16 pulse-input/output lines and three pulse-input lines are available based on the six 16-bit timer channels Select from among eight or seven counter-input clock signals for each channel (PCLK/1, PCLK/4, PCLK/16, PCLK/64, PCLK/256, PCLK/1024, MTCLKA, MTCLKB, MTCLKC, MTCLKD) other than channel 5, for which only four signals are available. Input capture function 21 output compare/input capture registers Pulse output mode Complementary PWM output mode Reset synchronous PWM mode Phase-counting mode Capable of generating conversion start triggers for the A/D converter					
	Port output enable 2 (POE2a)	Controls the high-impedance state of the MTU's waveform output pins					
	Compare match timer (CMT)	 (16 bits × 2 channels) × 1 unit Select from among four clock signals (PCLK/8, PCLK/32, PCLK/128, PCLK/512) 					
	Independent watchdog timer (IWDTa)	 14 bits × 1 channel Count clock: Dedicated low-speed on-chip oscillator for the IWDT Frequency divided by 1, 16, 32, 64, 128, or 256 					
	Realtime clock (RTCc)*1	Clock source: Sub-clock Calendar count mode or binary count mode selectable Interrupts: Alarm interrupt, periodic interrupt, and carry interrupt					
	Low power timer (LPT)	 16 bits × 1 channel Clock source: Sub-clock, Dedicated low-speed on-chip oscillator for the IWDT Frequency divided by 2, 4, 8, 16, or 32 					
	8-bit timer (TMR)	 (8 bits × 2 channels) × 2 units Seven internal clocks (PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1024, and PCLK/8192) and an external clock can be selected Pulse output and PWM output with any duty cycle are available Two channels can be cascaded and used as a 16-bit timer 					
Communication functions	Serial communications interfaces (SCIg, SCIh)	7 channels (channel 0, 1, 5, 6, 8, 9: SClg, channel 12: SClh) SClg Serial communications modes: Asynchronous, clock synchronous, and smart-card interface On-chip baud rate generator allows selection of the desired bit rate Choice of LSB-first or MSB-first transfer Average transfer rate clock can be input from TMR timers for SCl5, SCl6, and SCl12 Start-bit detection: Level or edge detection is selectable. Simple I ² C Simple SPI 9-bit transfer mode Bit rate modulation Event linking by the ELC (only on channel 5) SClh (The following functions are added to SClg) Supports the serial communications protocol, which contains the start frame and information frame Supports the LIN format					
	I ² C bus interface (RIICa)	1 channel Communications formats: I ² C bus format/SMBus format Master mode or slave mode selectable Supports fast mode					

Table 1.1 Outline of Specifications (3/3)

Classification M	Module/Function	Description
	erial peripheral interface RSPIa)	 1 channel Transfer facility Using the MOSI (master out, slave in), MISO (master in, slave out), SSL (slave select), and RSPCK (RSPI clock) signals enables serial transfer through SPI operation (four lines) or clock-synchronous operation (three lines) Capable of handling serial transfer as a master or slave Data formats Choice of LSB-first or MSB-first transfer The number of bits in each transfer can be changed to 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit buffers for transmission and reception Up to four frames can be transmitted or received in a single transfer operation (with each frame having up to 32 bits) Double buffers for both transmission and reception
	Remote control signal eceiver (REMC)	 2 channels Four pattern matching (header, data 0, data 1, and special data detection) 8-byte receive buffer per unit The operating clock can be selected from among the PCLK, sub-clock, HOCO, IWDTCLK, and TMR.
12-bit A/D converter (S12ADE)		 12 bits (24 channels × 1 unit) 12-bit resolution Minimum conversion time: 1.4 µs per channel when the ADCLK is operating at 32 MHz Operating modes Scan mode (single scan mode, continuous scan mode, and group scan mode) Group A priority control (only for group scan mode) Sampling variable Sampling time can be set up for each channel. Self-diagnostic function Double trigger mode (A/D conversion data duplicated) Detection of analog input disconnection Conversion results compare features A/D conversion start conditions A software trigger, a trigger from a timer (MTU), an external trigger signal, or ELC Event linking by the ELC
Temperature sensor (TEMPSA)	 1 channel The voltage output from the temperature sensor is converted into a digital value by the 12-bit A/D converter.
D/A converter (DA)		2 channels 8-bit resolution Output voltage: 0V to AVCC0
CRC calculator (CRC)	 CRC code generation for arbitrary amounts of data in 8-bit units Select any of three generating polynomials: X⁸ + X² + X + 1, X¹⁶ + X¹⁵ + X² + 1, or X¹⁶ + X¹² + X⁵ + 1 Generation of CRC codes for use with LSB-first or MSB-first communications is selectable.
Comparator B (CMPE	3a)	2 channels Function to compare the reference voltage and the analog input voltage Window comparator operation or standard comparator operation is selectable
Capacitive touch sens	sing unit (CTSUa)	Detection pin: 36 channels
Data operation circuit	(DOC)	Comparison, addition, and subtraction of 16-bit data
Unique ID		32-byte ID code for the MCU
Power supply voltage	s/Operating frequencies	VCC = 1.8 to 2.4 V: 8 MHz, VCC = 2.4 to 2.7 V: 16 MHz, VCC = 2.7 to 5.5 V: 32 MHz
Operating temperatur	re range	D version: -40 to +85°C, G version: -40 to +105°C
Packages		100-pin LFQFP (PLQP0100KB-B) 14 × 14 mm, 0.5 mm pitch 80-pin LFQFP (PLQP0080KB-B) 12 × 12 mm, 0.5 mm pitch 64-pin LFQFP (PLQP0064KB-C) 10 × 10 mm, 0.5 mm pitch 64-pin LQFP (PLQP0064GA-A) 14 × 14 mm, 0.8 mm pitch 48-pin LFQFP (PLQP0048KB-B) 7 × 7 mm, 0.5 mm pitch 48-pin HWQFN (PWQN0048KB-A) 7 × 7 mm, 0.5 mm pitch
Debugging interfaces	i	FINE interface

Note 1. When the realtime clock is not to be used, refer to section 24.5.7, Initialization Procedure When the Realtime Clock is Not to be Used.

Table 1.2 Comparison of Functions for Different Packages in the RX130 Group

		RX130 Group							
Module/Functio	ns	100 Pins	80 Pins	64 Pins	48 Pins				
Interrupts External interrupts			IMI, to IRQ7	NMI, IRQ0 to IRQ2, IRQ4 to IRQ7	NMI, IRQ0, IRQ1, IRQ4 to IRQ7				
DMA	Data transfer controller	Available							
Timers	Multi-function timer pulse unit 2		6 channels ((MTU0 to MTU5)					
	Port output enable 2		POE0# to I	POE3#, POE8#					
	8-bit timer		2 chann	els × 2 units					
	Compare match timer		2 chanı	nels × 1 unit					
	Low power timer		1 0	channel					
	Realtime clock		Available Not supported						
	Independent watchdog timer								
Communication functions	Serial communications interfaces (SCIg)	6 channels (SCI1, 5, 6) (SCI0, 1, 5, 6, 8, 9)							
	Serial communications interfaces (SCIh)								
	I ² C bus interface		1 0	channel					
	Serial peripheral interface	1 channel							
	Remote control signal receiver (REMC)	2 channels	Not supported						
Capacitive touch	sensing unit	36 channels	36 channels	32 channels	24 channels				
12-bit A/D conve	rter	24 channels	17 channels	14 channels	10 channels				
Temperature sen	sor		Av	railable					
D/A converter		2 channels Not supported							
CRC calculator		Available							
Event link controller		Available							
Comparator B			2 c	hannels					
Packages		100-pin LFQFP (0.5 mm)	80-pin LFQFP (0.5 mm)	64-pin LQFP (0.8 mm) 64-pin LFQFP (0.5 mm)	48-pin LFQFP (0.5 mm) 48-pin HWQFN (0.5 mm)				

1.2 List of Products

Table 1.3 is a lists of products, and Figure 1.1 shows how to read the product part no., memory capacity, and package type.

Table 1.3 List of Products (1/2)

Group	Part No.	Part No. (for Orders)	Package	ROM Capacity	RAM Capacity	E2 DataFlash	Operating Frequency (Max.)	Operating Temperature
RX130	R5F51308ADFP	R5F51308ADFP#30	PLQP0100KB-B					
	R5F51308ADFN	R5F51308ADFN#30	PLQP0080KB-B	Ī				
	R5F51308ADFM			E10 Khytaa				
	R5F51308ADFK	R5F51308ADFK#30	PLQP0064GA-A	512 Kbytes				
	R5F51308ADFL	R5F51308ADFL#30	PLQP0048KB-B					
	R5F51308ADNE	R5F51308ADNE#U0	PWQN0048KB-A		48 Kbytes			
	R5F51307ADFP R5F51307ADFP#30 PLQP0100KB-B			46 Kbyles				
	R5F51307ADFN	R5F51307ADFN#30	PLQP0080KB-B	1				
	R5F51307ADFM	R5F51307ADFM#30	PLQP0064KB-C	384 Kbytes				
	R5F51307ADFK	R5F51307ADFK#30	PLQP0064GA-A	304 Kbyles				
	R5F51307ADFL	R5F51307ADFL#30	PLQP0048KB-B	1				
	R5F51307ADNE	R5F51307ADNE#U0	PWQN0048KB-A					
	R5F51306BDFP*1	R5F51306BDFP#30*1	PLQP0100KB-B					
	R5F51306BDFN*1	R5F51306BDFN#30*1	PLQP0080KB-B	1				
	R5F51306BDFM*1	R5F51306BDFM#30*1	PLQP0064KB-C	64KB-C 256 Kbytes		8 Kbytes	32 MHz	–40 to +85°C
	R5F51306BDFK*1	R5F51306BDFK#30*1	PLQP0064GA-A	200 Kbytes	32 Kbytes			
	R5F51306BDFL*1	R5F51306BDFL#30*1	PLQP0048KB-B	1				
	R5F51306BDNE*1	R5F51306BDNE#U0*1	PWQN0048KB-A	1				
	R5F51305BDFP*1	R5F51305BDFP#30*1	PLQP0100KB-B					
	R5F51305ADFN	R5F51305ADFN#30	PLQP0080KB-B	Ī				
	R5F51305ADFM	R5F51305ADFM#30	PLQP0064KB-C	128 Kbytes	16 Kbytes			
	R5F51305ADFK	R5F51305ADFK#30	PLQP0064GA-A	120 Kbytes	10 Kbytes			
	R5F51305ADFL	R5F51305ADFL#30	PLQP0048KB-B	Ī				
	R5F51305ADNE	R5F51305ADNE#U0	PWQN0048KB-A	1				
	R5F51303ADFN	R5F51303ADFN#30	PLQP0080KB-B					
	R5F51303ADFM	5F51303ADFM R5F51303ADFM#30 PLQP0064KB-C						
	R5F51303ADFK	R5F51303ADFK#30	PLQP0064GA-A	64 Kbytes	10 Kbytes			
	R5F51303ADFL	R5F51303ADFL#30	PLQP0048KB-B					
	R5F51303ADNE	R5F51303ADNE#U0	PWQN0048KB-A					

Table 1.3 List of Products (2/2)

Group	Part No.	Part No. (for Orders)	Package	ROM Capacity	RAM Capacity	E2 DataFlash	Operating Frequency (Max.)	Operating Temperature
RX130	R5F51308AGFP	R5F51308AGFP#30	PLQP0100KB-B					
	R5F51308AGFN	R5F51308AGFN#30	PLQP0080KB-B					
	R5F51308AGFM	R5F51308AGFM#30	PLQP0064KB-C	512 Kbytes				
	R5F51308AGFK	R5F51308AGFK#30	PLQP0064GA-A	512 Kbyles				
	R5F51308AGFL	R5F51308AGFL#30	PLQP0048KB-B					
	R5F51308AGNE	R5F51308AGNE#U0	PWQN0048KB-A		48 Kbytes			
	R5F51307AGFP	R5F51307AGFP#30	PLQP0100KB-B		46 Kbyles			
	R5F51307AGFN	R5F51307AGFN#30	PLQP0080KB-B					
	R5F51307AGFM	R5F51307AGFM#30	PLQP0064KB-C	384 Kbytes				
	R5F51307AGFK	R5F51307AGFK#30	PLQP0064GA-A	304 Kbyles				
	R5F51307AGFL	R5F51307AGFL#30	PLQP0048KB-B					
	R5F51307AGNE	R5F51307AGNE#U0	PWQN0048KB-A					
	R5F51306BGFP*1	R5F51306BGFP#30*1	PLQP0100KB-B	256 Khutaa		8 Kbytes	32 MHz	-40 to +105°C
	R5F51306BGFN*1	R5F51306BGFN#30*1	PLQP0080KB-B					
	R5F51306BGFM*1	R5F51306BGFM#30*1	PLQP0064KB-C		32 Kbytes			
	R5F51306BGFK*1	R5F51306BGFK#30*1	PLQP0064GA-A	256 Kbytes	32 Naytes			
	R5F51306BGFL*1	R5F51306BGFL#30*1	PLQP0048KB-B			_		
	R5F51306BGNE*1	R5F51306BGNE#U0*1	PWQN0048KB-A					
	R5F51305BGFP*1	R5F51305BGFP#30*1	PLQP0100KB-B		16 Kbytes			
	R5F51305AGFN	R5F51305AGFN#30	PLQP0080KB-B					
	R5F51305AGFM	R5F51305AGFM#30	PLQP0064KB-C	128 Kbytes				
	R5F51305AGFK	R5F51305AGFK#30	PLQP0064GA-A	120 Rbytes				
	R5F51305AGFL	R5F51305AGFL#30	PLQP0048KB-B					
	R5F51305AGNE	R5F51305AGNE#U0	PWQN0048KB-A					
	R5F51303AGFN	R5F51303AGFN#30	PLQP0080KB-B					
	R5F51303AGFM	R5F51303AGFM#30	PLQP0064KB-C					
	R5F51303AGFK	R5F51303AGFK#30	PLQP0064GA-A	64 Kbytes	10 Kbytes			
	R5F51303AGFL	R5F51303AGFL#30	PLQP0048KB-B					
	R5F51303AGNE	R5F51303AGNE#U0	PWQN0048KB-A					

Note: The part numbers for orders above are used for products in mass production or under development when this manual is issued. Refer to the Renesas Electronics Corporation website for the latest part numbers.

Note 1. The chip version portion of the part number of this product has been changed to B from A.

There are no differences between the specifications of chip versions A and B.

We are not accepting new orders for chip version A.

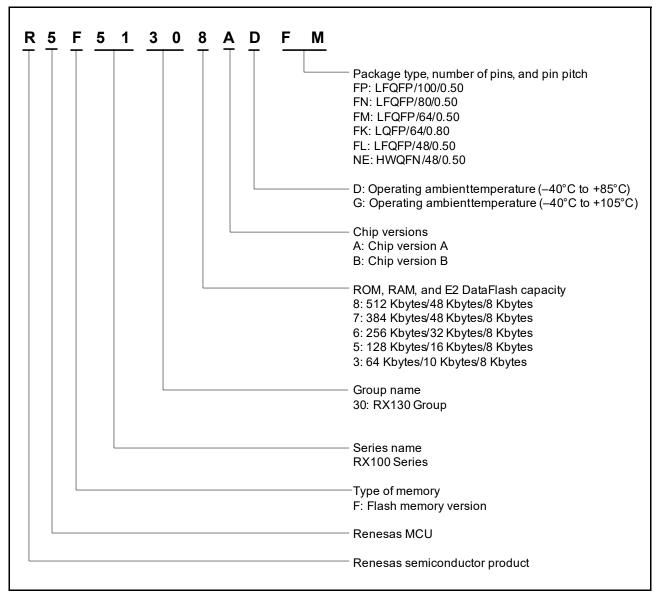


Figure 1.1 How to Read the Product Part Number

1.3 Block Diagram

Figure 1.2 shows a block diagram.

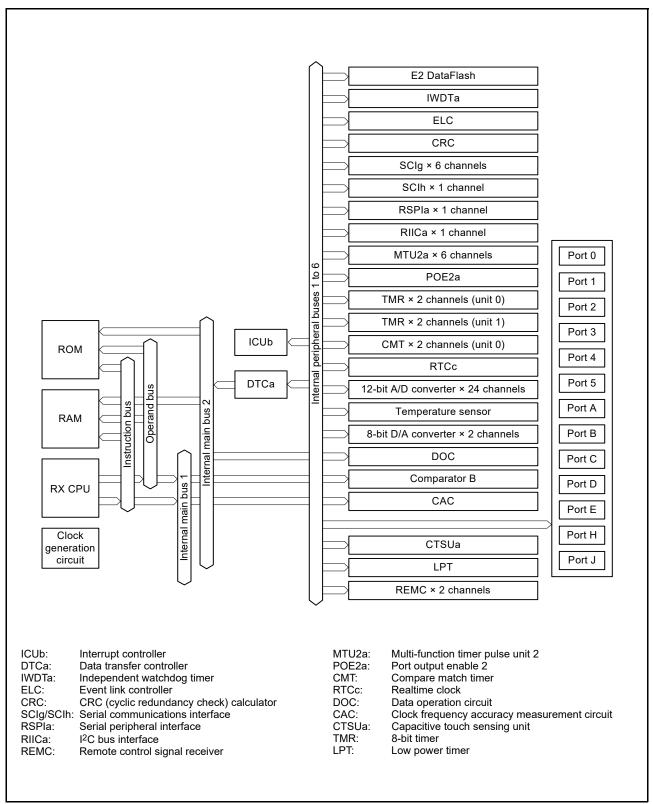


Figure 1.2 Block Diagram

1.4 Pin Functions

Table 1.4 lists the pin functions.

Table 1.4 Pin Functions (1/3)

Classifications	Pin Name	I/O	Description		
Power supply	VCC	Input	Power supply pin. Connect it to the system power supply.		
	VCL	_	Connect this pin to the VSS pin via the $4.7~\mu\text{F}$ smoothing capacitor used to stabilize the internal power supply. Place the capacitor close to the pin.		
	VSS	Input	Ground pin. Connect it to the system power supply (0 V).		
Clock	XTAL	Output	Pins for connecting a crystal. An external clock can be input through the		
	EXTAL	Input	EXTAL pin.		
	XCIN	Input	Input/output pins for the sub-clock oscillator. Connect a crystal between		
	XCOUT	Output	XCIN and XCOUT.		
	CLKOUT	Output	Clock output pin.		
, ,		Pin for setting the operating mode. The signal levels on this pin must not be changed during operation.			
System control	RES#	Input	Reset pin. This MCU enters the reset state when this signal goes low.		
CAC	CACREF	Input	Input pin for the clock frequency accuracy measurement circuit.		
On-chip emulator	FINED	I/O	FINE interface pin.		
Interrupts	NMI	Input	Non-maskable interrupt request pin.		
	IRQ0 to IRQ7	Input	Interrupt request pins.		
Multi-function timer pulse unit 2	MTIOC0A, MTIOC0B, MTIOC0C, MTIOC0D	I/O	The TGRA0 to TGRD0 input capture input/output compare output/PWM output pins.		
	MTIOC1A, MTIOC1B	I/O	The TGRA1 and TGRB1 input capture input/output compare output/PWM output pins.		
	MTIOC2A, MTIOC2B	I/O	The TGRA2 and TGRB2 input capture input/output compare output/PWM output pins.		
	MTIOC3A, MTIOC3B, MTIOC3C, MTIOC3D	I/O	The TGRA3 to TGRD3 input capture input/output compare output/PWM output pins.		
	MTIOC4A, MTIOC4B, MTIOC4C, MTIOC4D	I/O	The TGRA4 to TGRD4 input capture input/output compare output/PWM output pins.		
	MTIC5U, MTIC5V, MTIC5W	Input	The TGRU5, TGRV5, and TGRW5 input capture input/external pulse input pins.		
	MTCLKA, MTCLKB, MTCLKC, MTCLKD	Input	Input pins for the external clock.		
Port output enable 2	POE0# to POE3#, POE8#	Input	Input pins for request signals to place the MTU pins in the high impedance state.		
Realtime clock	RTCOUT	Output	Output pin for the 1-Hz/64-Hz clock.		
8-bit timer	TMO0 to TMO3	Output	Compare match output pins.		
	TMCI0 to TMCI3	Input	Input pins for the external clock to be input to the counter.		
	TMRI0 to TMRI3	Input	Counter reset input pins.		

Table 1.4 Pin Functions (2/3)

Classifications	Pin Name	I/O	Description			
Serial	Asynchronous mode/clock s	synchrono	us mode			
communications interface (SCIg)	SCK0, SCK1, SCK5, SCK6, SCK8, SCK9	I/O	Input/output pins for the clock.			
	RXD0, RXD1, RXD5, RXD6, RXD8, RXD9	Input	Input pins for received data.			
	TXD0, TXD1, TXD5, TXD6, TXD8, TXD9	Output	Output pins for transmitted data.			
	CTS0#, CTS1#, CTS5#, CTS6#, CTS8#, CTS9#	Input	Input pins for controlling the start of transmission and reception.			
	RTS0#, RTS1#, RTS5#, RTS6#, RTS8#, RTS9#	Output	Output pins for controlling the start of transmission and reception.			
	Simple I ² C mode					
	SSCL0, SSCL1, SSCL5, SSCL6, SSCL8, SSCL9	I/O	Input/output pins for the I ² C clock.			
	SSDA0, SSDA1, SSDA5, SSDA6, SSDA8, SSDA9	I/O	Input/output pins for the I ² C data.			
	Simple SPI mode					
	SCK0, SCK1, SCK5, SCK6, SCK8, SCK9	I/O	Input/output pins for the clock.			
	SMISO0, SMISO1, SMISO5, SMISO6, SMISO8, SMISO9	I/O	Input/output pins for slave transmit data.			
	SMOSI0, SMOSI1, SMOSI5, SMOSI6, SMOSI8, SMOSI9	I/O	Input/output pins for master transmit data.			
	SS0#, SS1#, SS5#, SS6#, SS8#, SS9#	Input	Slave-select input pins.			
Serial	Asynchronous mode/clock synchronous mode					
communications nterface (SCIh)	SCK12	I/O	Input/output pin for the clock.			
(- /	RXD12	Input	Input pin for receiving data.			
	TXD12	Output	Output pin for transmitting data.			
	CTS12#	Input	Input pin for controlling the start of transmission and reception.			
	RTS12#	Output	Output pin for controlling the start of transmission and reception.			
	• Simple I ² C mode					
	SSCL12	I/O	Input/output pin for the I ² C clock.			
	SSDA12	I/O	Input/output pin for the I ² C data.			
	Simple SPI mode					
	SCK12	I/O	Input/output pin for the clock.			
	SMISO12	I/O	Input/output pin for slave transmit data.			
	SMOSI12	I/O	Input/output pin for master transmit data.			
	SS12#	Input	Slave-select input pin.			
	Extended serial mode					
	RXDX12	Input	Input pin for data reception by SCIf.			
	TXDX12	Output	Output pin for data transmission by SCIf.			
	SIOX12	I/O	Input/output pin for data reception or transmission by SCIf.			
I ² C bus interface	SCL0	I/O	Input/output pin for I^2C bus interface clocks. Bus can be directly driven b the N-channel open drain output.			
	SDA0	I/O	Input/output pin for I ² C bus interface data. Bus can be directly driven by the N-channel open drain output.			

Table 1.4 Pin Functions (3/3)

Classifications	Pin Name	I/O	Description
Serial peripheral	RSPCKA	I/O	Input/output pin for the RSPI clock.
interface	MOSIA	I/O	Input/output pin for transmitting data from the RSPI master.
	MISOA	I/O	Input/output pin for transmitting data from the RSPI slave.
	SSLA0	I/O	Input/output pin to select the slave for the RSPI.
	SSLA1 to SSLA3	Output	Output pins to select the slave for the RSPI.
Remote control	PMC0	Input	Input pin for external pulse signal
signal receiver (REMC)	PMC1	Input	Input pin for external pulse signal
12-bit A/D converter	AN000 to AN007, AN016 to AN031	Input	Input pins for the analog signals to be processed by the A/D converter.
	ADTRG0#	Input	Input pin for the external trigger signal that start the A/D conversion.
D/A converter	DA0, DA1	Output	Analog output pins of the D/A converter.
Comparator B	CMPB0, CMPB1	Input	Input pin for the analog signal to be processed by comparator B.
	CVREFB0, CVREFB1	Input	Analog reference voltage supply pin for comparator B.
	CMPOB0, CMPOB1	Output	Output pin for comparator B.
CTSU	TS0 to TS35	I/O	Electrostatic capacitance measurement pins (touch pins).
	TSCAP	_	Connect to the VSS via a decoupling capacitor (10 nF) for stabilizing the internal voltage
Analog power supply	AVCC0	Input	Analog voltage supply pin for the 12-bit A/D converter and D/A converter. Connect this pin to VCC when not using the 12-bit A/D converter and D/A converter.
	AVSS0	Input	Analog ground pin for the 12-bit A/D converter and D/A converter. Connect this pin to VSS when not using the 12-bit A/D converter and D/A converter.
	VREFH0	Input	Analog reference voltage supply pin for the 12-bit A/D converter.
	VREFL0	Input	Analog reference ground pin for the 12-bit A/D converter.
I/O ports	P03 to P07	I/O	5-bit input/output pins.
	P12 to P17	I/O	6-bit input/output pins.
	P20 to P27	I/O	8-bit input/output pins.
	P30 to P37	I/O	8-bit input/output pins (P35 input pin).
	P40 to P47	I/O	8-bit input/output pins.
	P50 to P55	I/O	6-bit input/output pins.
	PA0 to PA7	I/O	8-bit input/output pins.
	PB0 to PB7	I/O	8-bit input/output pins.
	PC0 to PC7	I/O	8-bit input/output pins.
	PD0 to PD7	I/O	8-bit input/output pins.
	PE0 to PE7	I/O	8-bit input/output pins.
	PH0 to PH3	I/O	4-bit input/output pins.
	PJ1, PJ3, PJ6, PJ7	I/O	4-bit input/output pins.

1.5 Pin Assignments

Figure 1.3 to Figure 1.7 show the pin assignments. Table 1.5 to Table 1.8 show the lists of pins and pin functions.

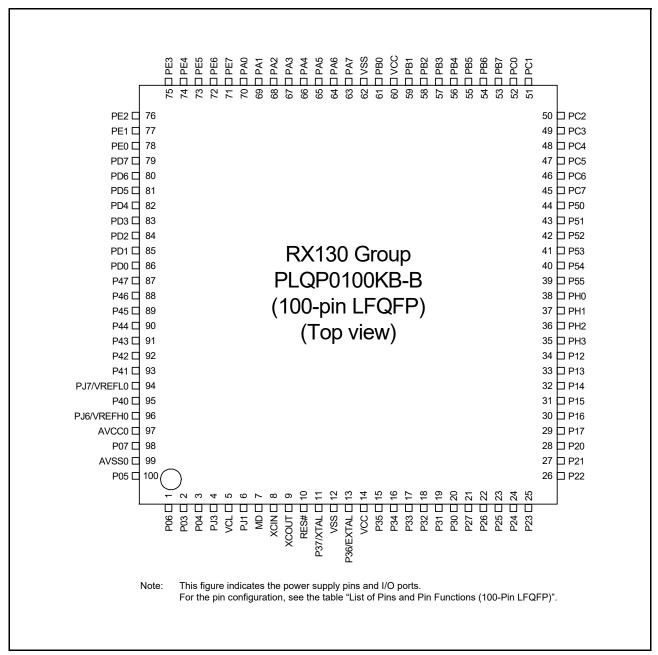


Figure 1.3 Pin Assignments of the 100-Pin LFQFP

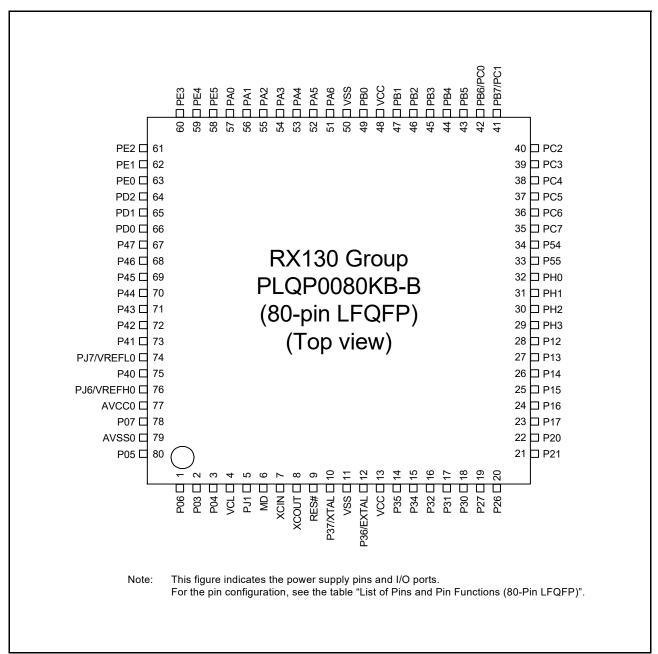


Figure 1.4 Pin Assignments of the 80-Pin LFQFP

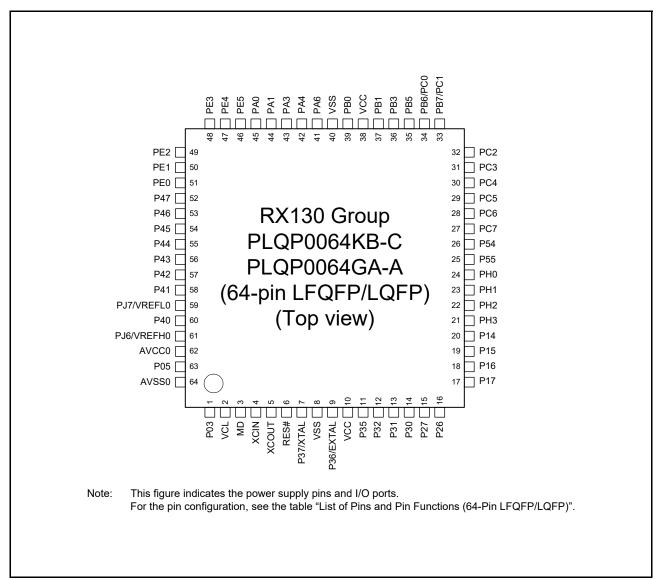


Figure 1.5 Pin Assignments of the 64-Pin LFQFP/LQFP

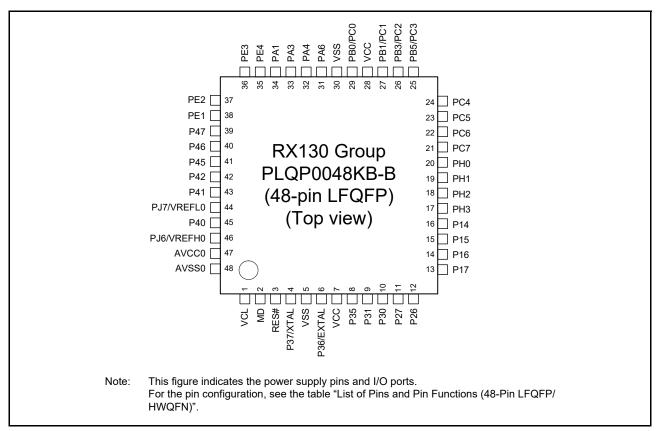


Figure 1.6 Pin Assignments of the 48-Pin LQFP

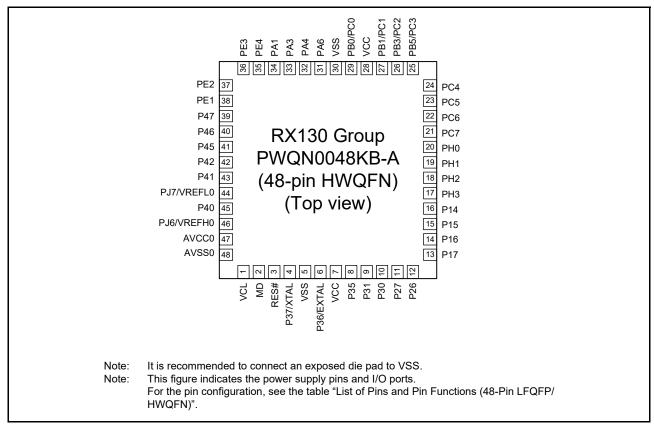


Figure 1.7 Pin Assignments of the 48-Pin HWQFN

Table 1.5 List of Pins and Pin Functions (100-Pin LFQFP) (1/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, TMR, POE)	Communications (SCIg, SCIh, RSPI, RIIC, REMC)	Touch sensing	Others
		P06*1				
		P03*1				DA0
		P04*1				
		PJ3	MTIOC3C	CTS6#/RTS6#/SS6#		
	VCL					
i		PJ1	MTIOC3A			
,	MD					FINED
3	XCIN					
)	XCOUT					
0	RES#					
1	XTAL	P37				
2	VSS					
13	EXTAL	P36				
4	VCC					
5		P35				NMI
6		P34	MTIOC0A/TMCI3/POE2#	SCK6		IRQ4
7		P33	MTIOC0D/TMRI3/POE3#	RXD6/SMISO6/SSCL6	1	IRQ3
8		P32	MTIOC0C/TMO3	TXD6/SMOSI6/SSDA6	TS0	IRQ2/RTCOUT
9		P31	MTIOC4D/TMCI2	CTS1#/RTS1#/SS1#	TS1	IRQ1
20		P30	MTIOC4B/POE8#/TMRI3	RXD1/SMISO1/SSCL1	TS2	IRQ0
21		P27	MTIOC2B/TMCI3	SCK1	TS3	
22		P26	MTIOC2A/TMO1	TXD1/SMOSI1/SSDA1	TS4	
:3		P25	MTIOC4C/MTCLKB	I No Welling Chine Chine	1.0.	ADTRG0#
24		P24	MTIOC4A/MTCLKA/TMRI1			//DT/YGG#
25		P23	MTIOC3D/MTCLKD	CTS0#/RTS0#/SS0#		
26		P22	MTIOC3B/MTCLKC/TMO0	SCK0		
27		P21	MTIOC3B/IMCI0	RXD0/SMISO0/SSCL0		
28		P20	MTIOC1A/TMRI0	TXD0/SMOSI0/SSDA0		
29	(5V tolerant)	P17	MTIOC3A/MTIOC3B/TMO1/ POE8#	SCK1/MISOA/SDA0		IRQ7
30	(5V tolerant)	P16	MTIOC3C/MTIOC3D/TMO2	TXD1/SMOSI1/SSDA1/MOSIA/SCL0		IRQ6/RTCOUT/ ADTRG0#
31		P15	MTIOC0B/MTCLKB/TMCI2	RXD1/SMISO1/SSCL1	TS5	IRQ5
32		P14	MTIOC3A/MTCLKA/TMRI2	CTS1#/RTS1#/SS1#	TS6	IRQ4
3	(5V tolerant)	P13	MTIOC0B/TMO3	SDA0	100	IRQ3
4	(5V tolerant)	P12	TMCI1	SCL0		IRQ2
35	(ov tolorant)	PH3	TMCI0	0020	TS7	11102
36		PH2	TMRI0		TS8	IRQ1
7		PH1	TMO0		TS9	IRQ0
8		PH0	1.11.00		TS10	CACREF
19		P55	MTIOC4D/TMO3		TS11	JACINEI .
10		P54	MTIOC4B/TMCI1		TS12	
11		P53	WITTOUTD/TIMOTT		1012	
12		P52		PMC1	<u> </u>	
		P52		PMC0	<u> </u>	
3				FINOU		
4		P50	MATIOCO A /BATOLIKO /TRACC	TVD0/CMOCIO/CODAO/A4/COA	T040	CACREE
.5		PC7	MTIOC3A/MTCLKB/TMO2	TXD8/SMOSI8/SSDA8/MISOA	TS13	CACREF
-6		PC6	MTIOC3C/MTCLKA/TMCI2	RXD8/SMISO8/SSCL8/MOSIA	TS14	
17		PC5	MTIOC3B/MTCLKD/TMRI2	SCK8/RSPCKA	TS15	
18		PC4	MTIOC3D/MTCLKC/TMCI1/ POE0#	SCK5/CTS8#/RTS8#/SS8#/SSLA0	TSCAP	
.9		PC3	MTIOC4D	TXD5/SMOSI5/SSDA5	TS16	
0		PC2	MTIOC4B	RXD5/SMISO5/SSCL5/SSLA3	TS17	
51		PC1	MTIOC3A	SCK5/SSLA2		
52		PC0	MTIOC3C	CTS5#/RTS5#/SS5#/SSLA1		

Table 1.5 List of Pins and Pin Functions (100-Pin LFQFP) (2/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, TMR, POE)	Communications (SCIg, SCIh, RSPI, RIIC, REMC)	Touch sensing	Others
53		PB7	MTIOC3B	TXD9/SMOSI9/SSDA9	TS18	
54		PB6	MTIOC3D	RXD9/SMISO9/SSCL9	TS19	
55		PB5	MTIOC2A/MTIOC1B/TMRI1/ POE1#	SCK9	TS20	
56		PB4		CTS9#/RTS9#/SS9#	TS21	
57		PB3	MTIOC0A/MTIOC4A/TMO0/ POE3#	SCK6	TS22	
58		PB2		CTS6#/RTS6#/SS6#	TS23	
59		PB1	MTIOC0C/MTIOC4C/TMCI0	TXD6/SMOSI6/SSDA6	TS24	IRQ4/CMPOB1
30	VCC					
61		PB0	MTIC5W	RXD6/SMISO6/SSCL6/RSPCKA	TS25	
32	VSS					
33		PA7		MISOA		
64		PA6	MTIC5V/MTCLKB/TMCl3/ POE2#	CTS5#/RTS5#/SS5#/MOSIA	TS26	
35		PA5		RSPCKA	TS27	
66		PA4	MTIC5U/MTCLKA/TMRI0	TXD5/SMOSI5/SSDA5/SSLA0	TS28	IRQ5/CVREFB1
37		PA3	MTIOC0D/MTCLKD	RXD5/SMISO5/SSCL5	TS29	IRQ6/CMPB1
86		PA2		RXD5/SMISO5/SSCL5/SSLA3	TS30	
69		PA1	MTIOC0B/MTCLKC	SCK5/SSLA2	TS31	
70		PA0	MTIOC4A	SSLA1	TS32	CACREF
71		PE7				IRQ7/AN023
72		PE6				IRQ6/AN022
73		PE5	MTIOC4C/MTIOC2B			IRQ5/AN021/CMPOB0
74		PE4	MTIOC4D/MTIOC1A		TS33	AN020/CMPA2/ CLKOUT
75		PE3	MTIOC4B/POE8#	CTS12#/RTS12#/SS12#	TS34	AN019/CLKOUT
76		PE2	MTIOC4A	RXD12/RXDX12/SMISO12/SSCL12	TS35	IRQ7/AN018/CVREFB
77		PE1	MTIOC4C	TXD12/TXDX12/SIOX12/SMOSI12/ SSDA12		AN017/CMPB0
78		PE0		SCK12		AN016
79		PD7	MTIC5U/POE0#			IRQ7/AN031
30		PD6	MTIC5V/POE1#			IRQ6/AN030
31		PD5	MTIC5W/POE2#			IRQ5/AN029
32		PD4	POE3#			IRQ4/AN028
33		PD3	POE8#			IRQ3/AN027
34		PD2	MTIOC4D	SCK6		IRQ2/AN026
35		PD1	MTIOC4B	RXD6/SMISO6/SSCL6		IRQ1/AN025
36		PD0		TXD6/SMOSI6/SSDA6		IRQ0/AN024
37		P47*1				AN007
38		P46*1				AN006
39		P45*1				AN005
90		P44*1				AN004
91		P43*1				AN003
92		P42*1				AN002
93		P41*1				AN001
94	VREFL0	PJ7*1				
95		P40*1				AN000
96	VREFH0	PJ6*1				
97	AVCC0					
98		P07*1				ADTRG0#
99	AVSS0					
100	1	P05*1	1	<u> </u>	+	DA1

Note 1. The power source of the I/O buffer for these pins is AVCCO.

Table 1.6 List of Pins and Pin Functions (80-Pin LFQFP) (1/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, TMR, POE)	Communications (SCIg, SCIh, RSPI, RIIC)	Touch sensing	Others
		P06*1				
		P03*1				DA0
		P04*1				
	VCL					
1		PJ1	MTIOC3A			
	MD					FINED
	XCIN					
	XCOUT					
	RES#					
0	XTAL	P37				
1	VSS					
2	EXTAL	P36				
3	vcc					
4		P35				NMI
5		P34	MTIOC0A/TMCI3/POE2#	SCK6		IRQ4
6		P32	MTIOCOC/TMO3	TXD6/SMOSI6/SSDA6	TS0	IRQ2/RTCOUT
7		P31	MTIOC4D/TMCI2	CTS1#/RTS1#/SS1#	TS1	IRQ1
8		P30	MTIOC4B/TMRI3/POE8#	RXD1/SMISO1/SSCL1	TS2	IRQ0
						IINQU
9		P27	MTIOC2B/TMCI3	SCK1	TS3	
0		P26	MTIOC2A/TMO1	TXD1/SMOSI1/SSDA1	TS4	
1		P21	MTIOC1B/TMCI0		1	
2		P20	MTIOC1A/TMRI0		1	
3	(5V tolerant)	P17	MTIOC3A/MTIOC3B/TMO1/ POE8#	SCK1/MISOA/SDA0		IRQ7
4	(5V tolerant)	P16	MTIOC3C/MTIOC3D/TMO2	TXD1/SMOSI1/SSDA1/MOSIA/SCL0		IRQ6/RTCOUT/ ADTRG0#
5		P15	MTIOC0B/MTCLKB/TMCI2	RXD1/SMISO1/SSCL1	TS5	IRQ5
6		P14	MTIOC3A/MTCLKA/TMRI2	CTS1#/RTS1#/SS1#	TS6	IRQ4
7	(5V tolerant)	P13	MTIOC0B/TMO3	SDA0		IRQ3
8	(5V tolerant)	P12	TMCI1	SCL0		IRQ2
9		PH3	TMCI0		TS7	
0		PH2	TMRI0		TS8	IRQ1
1		PH1	TMO0		TS9	IRQ0
2		PH0			TS10	CACREF
3		P55	MTIOC4D/TMO3		TS11	
4		P54	MTIOC4B/TMCI1		TS12	
5		PC7	MTIOC3A/TMO2/MTCLKB	MISOA	TS13	CACREF
6		PC6	MTIOC3C/MTCLKA/TMCI2	MOSIA	TS14	5. (G) (E)
7		PC5	MTIOC3E/MTCLKD/TMRI2	RSPCKA	TS15	
88		PC5 PC4	MTIOC3D/MTCLKC/TMCI1/	SCK5/SSLA0	TSCAP	
		DCC	POE0#	TVDE/OMOQUE/CODA 5	T040	
9		PC3	MTIOC4D	TXD5/SMOSI5/SSDA5	TS16	
.0		PC2	MTIOC4B	RXD5/SMISO5/SSCL5/SSLA3	TS17	
1		PB7/ PC1* ²	MTIOC3B		TS18	
2		PB6/ PC0*2	MTIOC3D		TS19	
3		PB5	MTIOC2A/MTIOC1B/TMRI1/ POE1#		TS20	
4		PB4			TS21	
-5		PB3	MTIOC0A/MTIOC4A/TMO0/ POE3#	SCK6	TS22	
6		PB2		CTS6#/RTS6#/SS6#	TS23	
		PB1	MTIOC0C/MTIOC4C/TMCI0	TXD6/SMOSI6/SSDA6	TS24	IRQ4/CMPOB1
	1	FDI	INTROCOC/MITIOC4C/TMICIO	1 VD0/20/10/22DA0	1324	IITQ4/CIVIPUBT
17 18	VCC					

Table 1.6 List of Pins and Pin Functions (80-Pin LFQFP) (2/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, TMR, POE)	Communications (SCIg, SCIh, RSPI, RIIC)	Touch sensing	Others
50	VSS					
51		PA6	MTIC5V/MTCLKB/TMCI3/ POE2#	CTS5#/RTS5#/SS5#/MOSIA	TS26	
52		PA5		RSPCKA	TS27	
53		PA4	MTIC5U/MTCLKA/TMRI0	TXD5/SMOSI5/SSDA5/SSLA0	TS28	IRQ5/CVREFB1
54		PA3	MTIOC0D/MTCLKD	RXD5/SMISO5/SSCL5	TS29	IRQ6/CMPB1
55		PA2		RXD5/SMISO5/SSCL5/SSLA3	TS30	
56		PA1	MTIOC0B/MTCLKC	SCK5/SSLA2	TS31	
57		PA0	MTIOC4A	SSLA1	TS32	CACREF
58		PE5	MTIOC4C/MTIOC2B			IRQ5/AN021/CMPOB0
59		PE4	MTIOC4D/MTIOC1A		TS33	AN020/CMPA2/ CLKOUT
60		PE3	MTIOC4B/POE8#	CTS12#/RTS12#/SS12#	TS34	AN019/CLKOUT
61		PE2	MTIOC4A	RXD12/RXDX12/SMISO12/SSCL12	TS35	IRQ7/AN018/CVREFB0
62		PE1	MTIOC4C	TXD12/TXDX12/SIOX12/SMOSI12/ SSDA12		AN017/CMPB0
63		PE0		SCK12		AN016
64		PD2	MTIOC4D	SCK6		IRQ2/AN026
65		PD1	MTIOC4B	RXD6/SMISO6/SSCL6		IRQ1/AN025
66		PD0		TXD6/SMOSI6/SSDA6		IRQ0/AN024
67		P47*1				AN007
68		P46*1				AN006
69		P45*1				AN005
70		P44*1				AN004
71		P43*1				AN003
72		P42*1				AN002
73		P41*1				AN001
74	VREFL0	PJ7*1				
75		P40*1				AN000
76	VREFH0	PJ6*1				
77	AVCC0					
78		P07*1				ADTRG0#
79	AVSS0					
80		P05*1				DA1

Note 1. The power source of the I/O buffer for these pins is AVCC0.

Note 2. PC0 and PC1 are valid only when the port switching function is selected.

Table 1.7 List of Pins and Pin Functions (64-Pin LFQFP/LQFP) (1/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, TMR, POE)	Communications (SCIg, SCIh, RSPI, RIIC)	Touch sensing	Others
1		P03*1				DA0
2	VCL					
3	MD					FINED
4	XCIN					
5	XCOUT					
6	RES#					
7	XTAL	P37				
8	VSS					
9	EXTAL	P36				
10	VCC					
11		P35				NMI
12		P32	MTIOC0C/TMO3	TXD6/SMOSI6/SSDA6	TS0	IRQ2/RTCOUT
13		P31	MTIOC4D/TMCI2	CTS1#/RTS1#/SS1#	TS1	IRQ1
14		P30	MTIOC4B/TMRI3/POE8#	RXD1/SMISO1/SSCL1	TS2	IRQ0
15		P27	MTIOC2B/TMCI3	SCK1	TS3	
16		P26	MTIOC2A/TMO1	TXD1/SMOSI1/SSDA1	TS4	
17	(5V tolerant)	P17	MTIOC3A/MTIOC3B/TMO1/ POE8#	SCK1/MISOA/SDA0		IRQ7
18	(5V tolerant)	P16	MTIOC3C/MTIOC3D/TMO2	TXD1/SMOSI1/SSDA1/MOSIA/SCL0		IRQ6/RTCOUT/ ADTRG0#
19		P15	MTIOC0B/MTCLKB/TMCI2	RXD1/SMISO1/SSCL1	TS5	IRQ5
20		P14	MTIOC3A/MTCLKA/TMRI2	CTS1#/RTS1#/SS1#	TS6	IRQ4
21		PH3	TMCI0		TS7	
22		PH2	TMRI0		TS8	IRQ1
23		PH1	TMO0		TS9	IRQ0
24		PH0			TS10	CACREF
25		P55	MTIOC4D/TMO3		TS11	
26		P54	MTIOC4B/TMCI1		TS12	
27		PC7	MTIOC3A/TMO2/MTCLKB	MISOA	TS13	CACREF
28		PC6	MTIOC3C/MTCLKA/TMCI2	MOSIA	TS14	
29		PC5	MTIOC3B/MTCLKD/TMRI2	RSPCKA	TS15	
30		PC4	MTIOC3D/MTCLKC/TMCI1/ POE0#	SCK5/SSLA0	TSCAP	
31		PC3	MTIOC4D	TXD5/SMOSI5/SSDA5	TS16	
32		PC2	MTIOC4B	RXD5/SMISO5/SSCL5/SSLA3	TS17	
33		PB7/ PC1* ²	MTIOC3B		TS18	
34		PB6/ PC0* ²	MTIOC3D		TS19	
35		PB5	MTIOC2A/MTIOC1B/TMRI1/ POE1#		TS20	
36		PB3	MTIOC0A/MTIOC4A/TMO0/ POE3#	SCK6	TS22	
37		PB1	MTIOC0C/MTIOC4C/TMCI0	TXD6/SMOSI6/SSDA6	TS24	IRQ4/CMPOB1
38	VCC					
39		PB0	MTIC5W	RXD6/SMISO6/SSCL6/RSPCKA	TS25	
40	VSS					
41		PA6	MTIC5V/MTCLKB/TMCI3/ POE2#	CTS5#/RTS5#/SS5#/MOSIA	TS26	
42		PA4	MTIC5U/MTCLKA/TMRI0	TXD5/SMOSI5/SSDA5/SSLA0	TS28	IRQ5/CVREFB1
43		PA3	MTIOC0D/MTCLKD	RXD5/SMISO5/SSCL5	TS29	IRQ6/CMPB1
44		PA1	MTIOC0B/MTCLKC	SCK5/SSLA2	TS31	
45		PA0	MTIOC4A	SSLA1	TS32	CACREF
46		PE5	MTIOC4C/MTIOC2B			IRQ5/AN021/CMPOB0
47		PE4	MTIOC4D/MTIOC1A		TS33	AN020/CMPA2/ CLKOUT
48		PE3	MTIOC4B/POE8#	CTS12#/RTS12#/SS12#	TS34	AN019/CLKOUT

Table 1.7 List of Pins and Pin Functions (64-Pin LFQFP/LQFP) (2/2)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, TMR, POE)	Communications (SCIg, SCIh, RSPI, RIIC)	Touch sensing	Others
49		PE2	MTIOC4A	RXD12/RXDX12/SMISO12/SSCL12	TS35	IRQ7/AN018/CVREFB0
50		PE1	MTIOC4C	TXD12/TXDX12/SIOX12/SMOSI12/ SSDA12		AN017/CMPB0
51		PE0		SCK12		AN016
52		P47*1				AN007
53		P46*1				AN006
54		P45*1				AN005
55		P44*1				AN004
56		P43*1				AN003
57		P42*1				AN002
58		P41*1				AN001
59	VREFL0	PJ7*1				
60		P40*1				AN000
61	VREFH0	PJ6*1				
62	AVCC0					
63		P05*1				DA1
64	AVSS0					
		-	•	•	•	

Note 1. The power source of the I/O buffer for these pins is AVCC0.

Note 2. PC0 and PC1 are valid only when the port switching function is selected.

Table 1.8 List of Pins and Pin Functions (48-Pin LFQFP/HWQFN)

Pin No.	Power Supply, Clock, System Control	I/O Port	Timers (MTU, TMR, POE)	Communications (SCIg, SCIh, RSPI, RIIC)	Touch sensing	Others
1	VCL					
	MD					FINED
;	RES#					
	XTAL	P37				
5	VSS					
3	EXTAL	P36				
7	VCC					
3		P35				NMI
)		P31	MTIOC4D/TMCI2	CTS1#/RTS1#/SS1#	TS1	IRQ1
10		P30	MTIOC4B/TMRI3/POE8#	RXD1/SMISO1/SSCL1	TS2	IRQ0
11		P27	MTIOC2B/TMCI3	SCK1	TS3	
12		P26	MTIOC2A/TMO1	TXD1/SMOSI1/SSDA1	TS4	
13	(5V tolerant)	P17	MTIOC3A/MTIOC3B/TMO1/ POE8#	SCK1/MISOA/SDA0		IRQ7
14	(5V tolerant)	P16	MTIOC3C/MTIOC3D/TMO2	TXD1/SMOSI1/SSDA1/MOSIA/ SCL0		IRQ6/ADTRG0#
15		P15	MTIOC0B/MTCLKB/TMCI2	RXD1/SMISO1/SSCL1	TS5	IRQ5
6		P14	MTIOC3A/MTCLKA/TMRI2	CTS1#/RTS1#/SS1#	TS6	IRQ4
17		PH3	TMCI0		TS7	
8		PH2	TMRI0		TS8	IRQ1
19		PH1	TMO0		TS9	IRQ0
20		PH0			TS10	CACREF
1		PC7	MTIOC3A/TMO2/MTCLKB	MISOA	TS13	CACREF
22		PC6	MTIOC3C/MTCLKA/TMCI2	MOSIA	TS14	
23		PC5	MTIOC3B/MTCLKD/TMRI2	RSPCKA	TS15	
24		PC4	MTIOC3D/MTCLKC/TMCI1/ POE0#	SCK5/SSLA0	TSCAP	
25		PB5/PC3*1	MTIOC2A/MTIOC1B/TMRI1/ POE1#		TS20	
26		PB3/PC2*1	MTIOC0A/MTIOC4A/TMO0/ POE3#	SCK6	TS22	
27		PB1/PC1*1	MTIOC0C/MTIOC4C/TMCI0	TXD6/SMOSI6/SSDA6	TS24	IRQ4/CMPOB1
28	VCC					
29		PB0/PC0*1	MTIC5W	RXD6/SMISO6/SSCL6/RSPCKA	TS25	
30	VSS					
31		PA6	MTIC5V/MTCLKB/TMCl3/ POE2#	CTS5#/RTS5#/SS5#/MOSIA	TS26	
32		PA4	MTIC5U/MTCLKA/TMRI0	TXD5/SMOSI5/SSDA5/SSLA0	TS28	IRQ5/CVREFB1
33		PA3	MTIOC0D/MTCLKD	RXD5/SMISO5/SSCL5	TS29	IRQ6/CMPB1
34		PA1	MTIOC0B/MTCLKC	SCK5/SSLA2	TS31	
35		PE4	MTIOC4D/MTIOC1A		TS33	AN020/CMPA2/ CLKOUT
36		PE3	MTIOC4B/POE8#	CTS12#/RTS12#	TS34	AN019/CLKOUT
37		PE2	MTIOC4A	RXD12/RXDX12/SSCL12	TS35	IRQ7/AN018/CVREFB0
88		PE1	MTIOC4C	TXD12/TXDX12/SIOX12/SSDA12		AN017/CMPB0
39		P47*2			1	AN007
10		P46*2			1	AN006
1		P45*2			1	AN005
2		P42*2			1	AN002
13		P41*2			1	AN001
4	VREFL0	PJ7*2			1	
5	-	P40*2			†	AN000
6	VREFH0	PJ6* ²			†	
7	AVCC0				+	
18	AVSS0	 		+	+	

Note 1. PC0 to PC3 are valid only when the port switching function is selected.

Note 2. The power source of the I/O buffer for these pins is AVCC0.

2. CPU

This MCU has the RX CPU as its core.

A variable-length instruction format has been adopted for the RX CPU. Allocating the more frequently used instructions to the shorter instruction lengths facilitates the development of efficient programs that take up less memory. The CPU has 73 basic instructions and nine DSP instructions, for a total of 82 instructions. It has 10 addressing modes and caters to register-to-register operations, register-to-memory operations, immediate-to-register operations, immediate-to-memory operations, memory-to-memory transfer, and bitwise operations. In a single cycle, high-speed calculation is attained for not just register-to-register operations, but also for other types of combined instructions. The CPU includes an internal multiplier and an internal divider for high-speed multiplication and division.

The RX CPU has a five-stage pipeline for processing instructions. The stages are instruction fetching, decoding, execution, memory access, and write-back. In cases where pipeline processing is drawn-out by memory access, subsequent operations may in fact be executed earlier. By adopting an "out-of-order completion" of this kind, instruction

2.1 Features

• Minimum instruction execution rate: One instruction per clock cycle

execution is controlled to optimize the number of clock cycles.

• Address space: 4-Gbyte linear

• Register set of the CPU

General purpose: Sixteen 32-bit registers

Control: Eight 32-bit registers Accumulator: One 64-bit register

Basic instructions: 73 (arithmetic/logic instructions, data-transfer instructions, branch instructions, bit-manipulation instructions, string-manipulation instructions, and system-manipulation instructions)

Relative branch instructions to suit branch distances

Variable-length instruction format (lengths from 1 to 8 bytes)

Short formats for frequently used instructions

• DSP instructions: 9

Supports 16-bit × 16-bit multiplication and multiply-and-accumulate operations.

Rounds the data in the accumulator.

• Addressing modes: 10

• Five-stage pipeline

Adoption of "out-of-order completion"

Processor modes

A supervisor mode and a user mode are supported.

• Data arrangement

Selectable as little endian or big endian

2.2 Register Set of the CPU

The RX CPU has 16 general-purpose registers, eight control registers, and one accumulator used for DSP instructions.

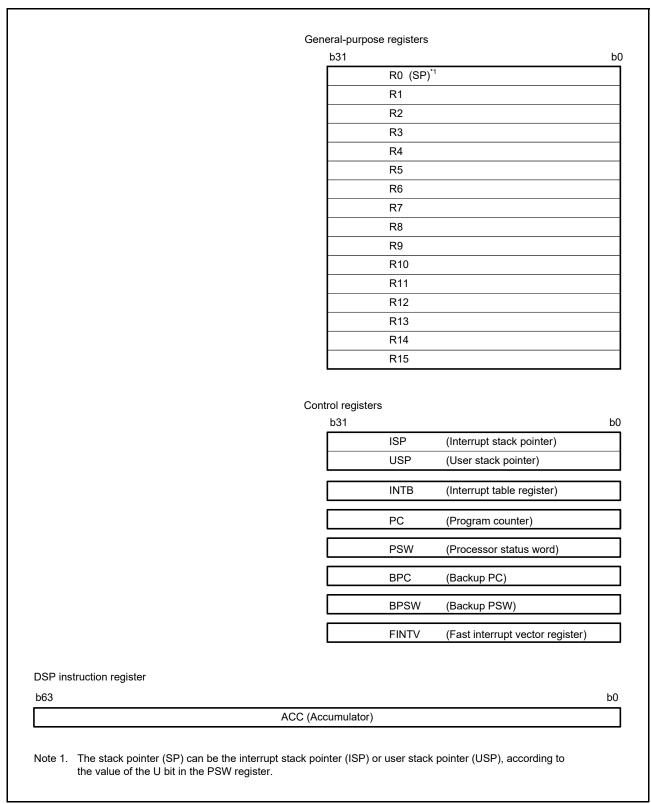
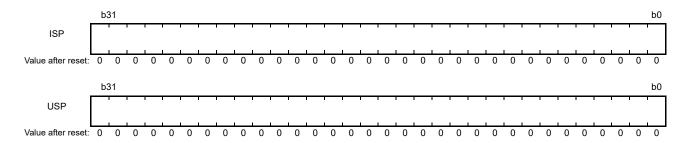


Figure 2.1 Register Set of the CPU

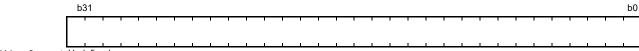
2.2.1 General-Purpose Registers (R0 to R15)


This CPU has 16 general-purpose registers (R0 to R15). R0 to R15 can be used as data registers or address registers. R0, a general-purpose register, also functions as the stack pointer (SP). The stack pointer is switched to operate as the interrupt stack pointer (ISP) or user stack pointer (USP) by the value of the stack pointer select bit (U) in the processor status word (PSW).

2.2.2 Control Registers

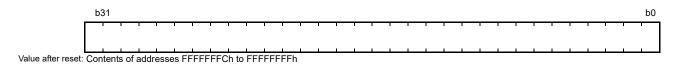
This CPU has the following eight control registers.

- Interrupt stack pointer (ISP)
- User stack pointer (USP)
- Interrupt table register (INTB)
- Program counter (PC)
- Processor status word (PSW)
- Backup PC (BPC)
- Backup PSW (BPSW)
- Fast interrupt vector register (FINTV)

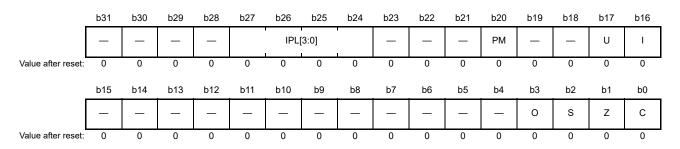

2.2.2.1 Interrupt Stack Pointer (ISP)/User Stack Pointer (USP)

The stack pointer (SP) can be either of two types, the interrupt stack pointer (ISP) or the user stack pointer (USP). Whether the stack pointer operates as the ISP or USP depends on the value of the stack pointer select bit (U) in the processor status word (PSW).

Set the ISP or USP to a multiple of 4, as this reduces the numbers of cycles required to execute interrupt sequences and instructions entailing stack manipulation.


2.2.2.2 Interrupt Table Register (INTB)

Value after reset: Undefined


The interrupt table register (INTB) specifies the address where the relocatable vector table starts.

2.2.2.3 Program Counter (PC)

The program counter (PC) indicates the address of the instruction being executed.

2.2.2.4 Processor Status Word (PSW)

Bit	Symbol	Bit Name	Description	R/W
b0	С	Carry Flag	0: No carry has occurred. 1: A carry has occurred.	R/W
b1	Z	Zero Flag	0: Result is not 0. 1: Result is 0.	R/W
b2	S	Sign Flag	0: Result is a positive value or 0. 1: Result is a negative value.	R/W
b3	0	Overflow Flag	No overflow has occurred. An overflow has occurred.	R/W
b15 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b16	 *1	Interrupt Enable	0: Interrupt disabled. 1: Interrupt enabled.	R/W
b17	U* ¹	Stack Pointer Select	O: Interrupt stack pointer (ISP) is selected. User stack pointer (USP) is selected.	R/W
b19, b18	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b20	PM*1,*2,*3	Processor Mode Select	O: Supervisor mode is selected. 1: User mode is selected.	R/W
b23 to b21	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b27 to b24	IPL[3:0]*1	Processor Interrupt Priority Level	b27 b24 0 0 0 0: Priority level 0 (lowest) 0 0 0 1: Priority level 1 0 0 1 0: Priority level 2 0 0 1 1: Priority level 3 0 1 0 0: Priority level 4 0 1 0 1: Priority level 5 0 1 1 0: Priority level 6 0 1 1 1: Priority level 7 1 0 0 0: Priority level 8 1 0 0 1: Priority level 9 1 0 1 0: Priority level 10 1 0 1 1: Priority level 11 1 1 0 0: Priority level 12 1 1 0 1: Priority level 13 1 1 1 0: Priority level 14 1 1 1: Priority level 15 (highest)	R/W
b31 to b28	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. In user mode, writing to the IPL[3:0], PM, U, and I bits by an MVTC or a POPC instruction is ignored. Writing to the IPL[3:0] bits by an MVTIPL instruction generates a privileged instruction exception.

Note 2. In supervisor mode, writing to the PM bit by an MVTC or a POPC instruction is ignored, but writing to the other bits is possible.

Note 3. Switching from supervisor mode to user mode requires execution of an RTE instruction after having set the PSW.PM bit saved on the stack to 1 or executing an RTFI instruction after having set the BPSW.PM bit to 1.

The processor status word (PSW) indicates the results of instruction execution or the state of the CPU.

C Flag (Carry Flag)

This flag indicates whether a carry, borrow, or shift-out has occurred as the result of an operation.

Z Flag (Zero Flag)

This flag indicates that the result of an operation was 0.

S Flag (Sign Flag)

This flag indicates that the result of an operation was negative.

O Flag (Overflow Flag)

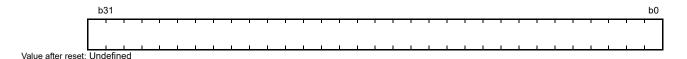
This flag indicates that an overflow occurred during an operation.

I Bit (Interrupt Enable)

This bit enables interrupt requests. When an exception is accepted, this bit becomes 0.

U Bit (Stack Pointer Select)

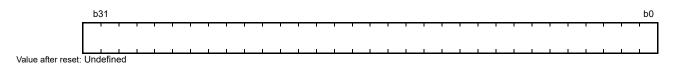
This bit specifies the stack pointer as either the ISP or USP. When an exception request is accepted, this bit becomes 0. When the processor mode is switched from supervisor mode to user mode, this bit becomes 1.


PM Bit (Processor Mode Select)

This bit specifies the processor mode. When an exception is accepted, this bit becomes 0.

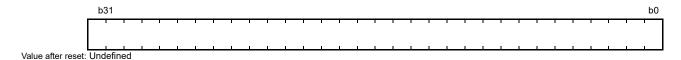
IPL[3:0] Bits (Processor Interrupt Priority Level)

The IPL[3:0] bits specify the processor interrupt priority level as one of 16 levels from zero to 15, wherein priority level zero is the lowest and priority level 15 the highest. When the priority level of a requested interrupt is higher than the processor interrupt priority level, the interrupt is enabled. Setting the IPL[3:0] bits to level 15 (Fh) disables all interrupt requests. The IPL[3:0] bits are set to level 15 (Fh) when a non-maskable interrupt is generated. When interrupts are generated, the bits are set to the priority levels of accepted interrupts.


2.2.2.5 Backup PC (BPC)

The backup PC (BPC) is provided to speed up response to interrupts.

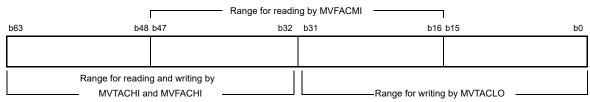
After a fast interrupt has been generated, the contents of the program counter (PC) are saved in the BPC register.


2.2.2.6 Backup PSW (BPSW)

The backup PSW (BPSW) is provided to speed up response to interrupts.

After a fast interrupt has been generated, the contents of the processor status word (PSW) are saved in the BPSW. The allocation of bits in the BPSW corresponds to that in the PSW.

2.2.2.7 Fast Interrupt Vector Register (FINTV)



The fast interrupt vector register (FINTV) is provided to speed up response to interrupts.

The FINTV register specifies a branch destination address when a fast interrupt has been generated.

2.2.3 Register Associated with DSP Instructions

2.2.3.1 Accumulator (ACC)

Value after reset: Undefined

The accumulator (ACC) is a 64-bit register used for DSP instructions. The accumulator is also used for the multiply and multiply-and-accumulate instructions; EMUL, EMULU, MUL, and RMPA, in which case the prior value in the accumulator is modified by execution of the instruction.

Use the MVTACHI and MVTACLO instructions for writing to the accumulator. The MVTACHI and MVTACLO instructions write data to the higher-order 32 bits (bits 63 to 32) and the lower-order 32 bits (bits 31 to 0), respectively. Use the MVFACHI and MVFACMI instructions for reading data from the accumulator. The MVFACHI and MVFACMI instructions read data from the higher-order 32 bits (bits 63 to 32) and the middle 32 bits (bits 47 to 16), respectively.

2.3 Processor Mode

The RX CPU supports two processor modes, supervisor and user. These processor modes enable the realization of a hierarchical CPU resource protection.

Each processor mode imposes a level on rights of access to the CPU resources and the instructions that can be executed. Supervisor mode carries greater rights than those of user mode.

The initial state after a reset is supervisor mode.

2.3.1 Supervisor Mode

In supervisor mode, all CPU resources are accessible and all instructions are available. However, writing to the processor mode select bit (PM) in the processor status word (PSW) by executing an MVTC or a POPC instruction will be ignored. For details on how to write to the PM bit, refer to section 2.2.2.4, Processor Status Word (PSW).

2.3.2 User Mode

In user mode, write access to the CPU resources listed below is restricted. The restriction applies to any instruction capable of write access.

- Some bits (bits IPL[3:0], PM, U, and I) in the processor status word (PSW)
- Interrupt stack pointer (ISP)
- Interrupt table register (INTB)
- Backup PSW (BPSW)
- Backup PC (BPC)
- Fast interrupt vector register (FINTV)

2.3.3 Privileged Instruction

Privileged instructions can only be executed in supervisor mode. Executing a privileged instruction in user mode produces a privileged instruction exception. Privileged instructions include the RTFI, MVTIPL, RTE, and WAIT instructions.

2.3.4 Switching between Processor Modes

Manipulating the processor mode select bit (PM) in the processor status word (PSW) switches the processor mode. However, rewriting to the PM bit by executing an MVTC or a POPC instruction is prohibited. Switch the processor mode by following the procedures described below.

(1) Switching from user mode to supervisor mode

After an exception occurs, the PSW.PM bit is set to 0 and the CPU switches to supervisor mode. The hardware preprocessing is executed in supervisor mode. The state of the processor mode before the exception was generated is retained in the copy of PSW.PM bit is saved on the stack.

(2) Switching from supervisor mode to user mode

Executing an RTE instruction when the value of the copy of the PSW.PM bit that has been preserved on the stack is 1 or an RTFI instruction when the value of the copy of the PSW.PM bit that has been preserved in the backup PSW (BPSW) is 1 causes a transition to user mode. In the transition to user mode, the value of the stack pointer designation bit (the U bit in the PSW) becomes 1.

2.4 Data Types

The RX CPU can handle three types of data: integer, bit, and string.

For details, refer to RX Family User's Manual: Software.

2.5 Endian

For the RX CPU, instructions are little endian, but the data arrangement is selectable as little or big endian.

2.5.1 Switching the Endian

As arrangements of bytes, this MCU supports both big endian, where the higher-order byte (MSB) is at location 0, and little endian, where the lower-order byte (LSB) is at location 0.

For details on the endian setting, refer to section 3, Operating Modes.

Operations for access differ according to the endian setting and, depending on the instruction, whether 8-, 16- or 32-bit access has been selected. Operations for access in the various possible cases are described in Table 2.1 to Table 2.12. In the tables,

LL indicates bits D7 to D0 of the general-purpose register,

LH indicates bits D15 to D8 of the general-purpose register,

HL indicates bits D23 to D16 of the general-purpose register, and

HH indicates bits D31 to D24 of the general-purpose register.

	D31 to D24	D23 to D16	D15 to D8	D7 to D0
General purpose register: Rm	HH	HL	LH	LL

Table 2.1 32-Bit Read Operations when Little Endian has been Selected

Operation Address of src	Reading a 32-bit unit from address 0	Reading a 32-bit unit from address 1	Reading a 32-bit unit from address 2	Reading a 32-bit unit from address 3	Reading a 32-bit unit from address 4
Address 0	Transfer to LL	_		_	_
Address 1	Transfer to LH	Transfer to LL	_	_	_
Address 2	Transfer to HL	Transfer to LH	Transfer to LL	_	_
Address 3	Transfer to HH	Transfer to HL	Transfer to LH	Transfer to LL	_
Address 4	_	Transfer to HH	Transfer to HL	Transfer to LH	Transfer to LL
Address 5	_	_	Transfer to HH	Transfer to HL	Transfer to LH
Address 6	_	_	_	Transfer to HH	Transfer to HL
Address 7	_	_	_	_	Transfer to HH

Table 2.2 32-Bit Read Operations when Big Endian has been Selected

Operation Address of src	Reading a 32-bit unit from address 0	Reading a 32-bit unit from address 1	Reading a 32-bit unit from address 2	Reading a 32-bit unit from address 3	Reading a 32-bit unit from address 4
Address 0	Transfer to HH	_	_	_	_
Address 1	Transfer to HL	Transfer to HH	_	_	_
Address 2	Transfer to LH	Transfer to HL	Transfer to HH	_	_
Address 3	Transfer to LL	Transfer to LH	Transfer to HL	Transfer to HH	_
Address 4	_	Transfer to LL	Transfer to LH	Transfer to HL	Transfer to HH
Address 5	_	_	Transfer to LL	Transfer to LH	Transfer to HL
Address 6	_	_	_	Transfer to LL	Transfer to LH
Address 7	_	_	_	_	Transfer to LL

Table 2.3 32-Bit Write Operations when Little Endian has been Selected

Operation					
Address of dest	Writing a 32-bit unit to address 0	Writing a 32-bit unit to address 1	Writing a 32-bit unit to address 2	Writing a 32-bit unit to address 3	Writing a 32-bit unit to address 4
Address 0	Transfer from LL	_	_	_	_
Address 1	Transfer from LH	Transfer from LL	_	_	_
Address 2	Transfer from HL	Transfer from LH	Transfer from LL	_	_
Address 3	Transfer from HH	Transfer from HL	Transfer from LH	Transfer from LL	_
Address 4	_	Transfer from HH	Transfer from HL	Transfer from LH	Transfer from LL
Address 5	_	_	Transfer from HH	Transfer from HL	Transfer from LH
Address 6	_	_	_	Transfer from HH	Transfer from HL
Address 7	_	_	_	_	Transfer from HH

Table 2.4 32-Bit Write Operations when Big Endian has been Selected

Operation					
Address of dest	Writing a 32-bit unit to address 0	Writing a 32-bit unit to address 1	Writing a 32-bit unit to address 2	Writing a 32-bit unit to address 3	Writing a 32-bit unit to address 4
Address 0	Transfer from HH	_	_	_	_
Address 1	Transfer from HL	Transfer from HH	_	_	_
Address 2	Transfer from LH	Transfer from HL	Transfer from HH	_	_
Address 3	Transfer from LL	Transfer from LH	Transfer from HL	Transfer from HH	_
Address 4	_	Transfer from LL	Transfer from LH	Transfer from HL	Transfer from HH
Address 5	_	_	Transfer from LL	Transfer from LH	Transfer from HL
Address 6	_	_	_	Transfer from LL	Transfer from LH
Address 7	_	_	_	_	Transfer from LL

Table 2.5 16-Bit Read Operations when Little Endian has been Selected

Operation Address of src	Reading a 16-bit unit from address 0	Reading a 16-bit unit from address 1	Reading a 16-bit unit from address 2	Reading a 16-bit unit from address 3	Reading a 16-bit unit from address 4	Reading a 16-bit unit from address 5	Reading a 16-bit unit from address 6
Address 0	Transfer to LL	_	_	_	_	_	_
Address 1	Transfer to LH	Transfer to LL	_	_	_	_	_
Address 2	_	Transfer to LH	Transfer to LL	_	_	_	_
Address 3	_	_	Transfer to LH	Transfer to LL	_	_	_
Address 4	_	_	_	Transfer to LH	Transfer to LL	_	_
Address 5	_	_	_	_	Transfer to LH	Transfer to LL	_
Address 6	_	_	_	_	_	Transfer to LH	Transfer to LL
Address 7	_	_	_	_	_	_	Transfer to LH

Table 2.6 16-Bit Read Operations when Big Endian has been Selected

Operation Address of src	Reading	Reading a 16-bit unit from address 1	Reading a 16-bit unit from address 2	Reading a 16-bit unit from address 3	Reading a 16-bit unit from address 4	Reading a 16-bit unit from address 5	Reading a 16-bit unit from address 6
Address 0	Transfer to LH	_	_	_	_	_	_
Address 1	Transfer to LL	Transfer to LH	_	_	_	_	_
Address 2	_	Transfer to LL	Transfer to LH	_	_	_	_
Address 3	_	_	Transfer to LL	Transfer to LH	_	_	_
Address 4	_	_	_	Transfer to LL	Transfer to LH	_	_
Address 5	_	_	_	_	Transfer to LL	Transfer to LH	_
Address 6	_	_	_	_	_	Transfer to LL	Transfer to LH
Address 7	_	_	_	_	_	_	Transfer to LL

Table 2.7 16-Bit Write Operations when Little Endian has been Selected

Operation Address of dest	Writing a 16-bit unit to address 0	Writing a 16-bit unit to address 1	Writing a 16-bit unit to address 2	Writing a 16-bit unit to address 3	Writing a 16-bit unit to address 4	Writing a 16-bit unit to address 5	Writing a 16-bit unit to address 6
Address 0	Transfer from LL	_	_	_	_	_	_
Address 1	Transfer from LH	Transfer from LL	_	_	_	_	_
Address 2	_	Transfer from LH	Transfer from LL	_	_	_	_
Address 3	_	_	Transfer from LH	Transfer from LL	_	_	_
Address 4	_	_	_	Transfer from LH	Transfer from LL	_	_
Address 5	_	_	_	_	Transfer from LH	Transfer from LL	_
Address 6	_	_	_	_	_	Transfer from LH	Transfer from LL
Address 7	_	_	_	_	-	-	Transfer from LH

Table 2.8 16-Bit Write Operations when Big Endian has been Selected

Operation Address of dest	Writing a 16-bit unit to address 0	Writing a 16-bit unit to address 1	Writing a 16-bit unit to address 2	Writing a 16-bit unit to address 3	Writing a 16-bit unit to address 4	Writing a 16-bit unit to address 5	Writing a 16-bit unit to address 6
Address 0	Transfer from LL	_	_	_	_	_	_
Address 1	Transfer from LH	Transfer from LL	_	_	_	_	_
Address 2	_	Transfer from LH	Transfer from LL	_	_	_	_
Address 3	_	_	Transfer from LH	Transfer from LL	_	_	_
Address 4	_	_	_	Transfer from LH	Transfer from LL	_	_
Address 5	_	_	_	_	Transfer from LH	Transfer from LL	_
Address 6	_	_	_	_	_	Transfer from LH	Transfer from LL
Address 7	_	_	_	_	_	_	Transfer from LH

Table 2.9 8-Bit Read Operations when Little Endian has been Selected

Operation Address of src		Reading an 8-bit unit from address 1	Reading an 8-bit unit from address 2	Reading an 8-bit unit from address 3
Address 0	Transfer to LL	_	_	_
Address 1	_	Transfer to LL	_	_
Address 2	_	_	Transfer to LL	_
Address 3	_	_	_	Transfer to LL

Table 2.10 8-Bit Read Operations when Big Endian has been Selected

Operation Address of src	Reading an 8-bit unit from address 0	Reading an 8-bit unit from address 1	Reading an 8-bit unit from address 2	Reading an 8-bit unit from address 3
Address 0	Transfer to LL	_	_	_
Address 1	_	Transfer to LL	_	_
Address 2	_	_	Transfer to LL	_
Address 3	_	_	_	Transfer to LL

Table 2.11 8-Bit Write Operations when Little Endian has been Selected

Operation Address of dest	Writing an 8-bit unit to address 0	Writing an 8-bit unit to address 1	Writing an 8-bit unit to address 2	Writing an 8-bit unit to address 3
Address 0	Transfer from LL	_	_	_
Address 1	_	Transfer from LL	_	_
Address 2	_	_	Transfer from LL	_
Address 3	_	_	_	Transfer from LL

Table 2.12 8-Bit Write Operations when Big Endian has been Selected

Operation Address of dest	Writing an 8-bit unit to address 0	Writing an 8-bit unit to address 1	Writing an 8-bit unit to address 2	Writing an 8-bit unit to address 3
Address 0	Transfer from LL	_	_	_
Address 1	_	Transfer from LL	_	_
Address 2	_	_	Transfer from LL	_
Address 3	_	_	_	Transfer from LL

2.5.2 Access to I/O Registers

The addresses of I/O registers are fixed, and this is regardless of whether the setting is for little endian or big endian. Accordingly, changes to the endian do not affect access to I/O registers. For the arrangements of I/O registers, refer to the descriptions of registers in the relevant sections.

2.5.3 Notes on Access to I/O Registers

Ensure that access to I/O registers is in accord with the following rules.

- With I/O registers for which a bus width of 8 bits is indicated, use instructions having operands of the same width (8 bits). That is, access these registers by using instructions with .B as the size specifier (.size), or with .B or .UB as the size-extension specifier (.memex).
- With I/O registers for which a bus width of 16 bits is indicated, use instructions having operands of the same width (16 bits). That is, access these registers by using instructions with .W as the size specifier (.size), or with .W or .UW as the size-extension specifier (.memex).
- With I/O registers for which a bus width of 32 bits is indicated, use instructions having operands of the same width (32 bits). That is, access these registers by using instructions with .L as the size specifier (.size), or with .L size-extension specifier (.memex).

2.5.4 Data Arrangement

2.5.4.1 Data Arrangement in Registers

Figure 2.2 shows the relation between the sizes of registers and bit numbers.

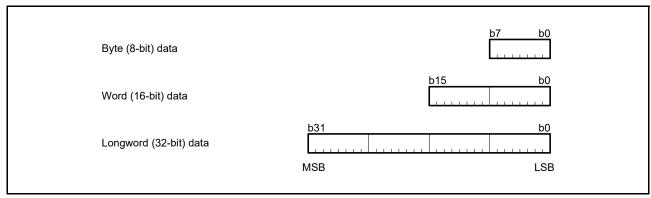


Figure 2.2 Data Arrangement in Registers

2.5.4.2 Data Arrangement in Memory

Data in memory have three sizes: byte (8-bit), word (16-bit), and longword (32-bit). The data arrangement is selectable as little endian or big endian. Figure 2.3 shows the arrangement of data in memory.

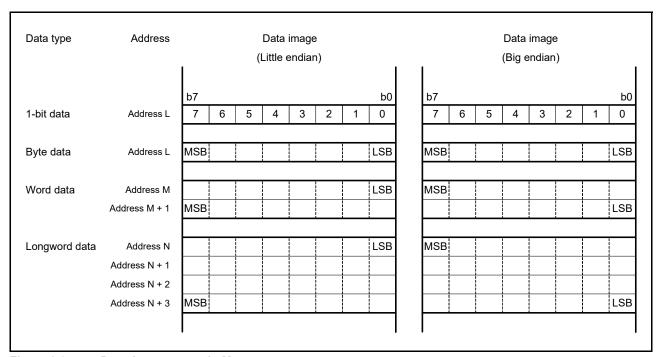


Figure 2.3 Data Arrangement in Memory

2.5.5 Notes on the Allocation of Instruction Codes

The allocation of instruction codes to an external space where the endian differs from that of the chip is prohibited. If the instruction codes are allocated to the external space, they must be allocated to areas where the endian setting is the same as that for the chip.

2.6 Vector Table

There are two types of vector table: fixed and relocatable. Each vector in the vector table consists of 4 bytes and specifies the address where the corresponding exception handling routine starts.

2.6.1 Fixed Vector Table

The fixed vector table is allocated to a fixed address range. The individual vectors for the privileged instruction exception, undefined instruction exception, non-maskable interrupt, and reset are allocated to addresses in the range from FFFFFF80h to FFFFFFFh. Figure 2.4 shows the fixed vector table.

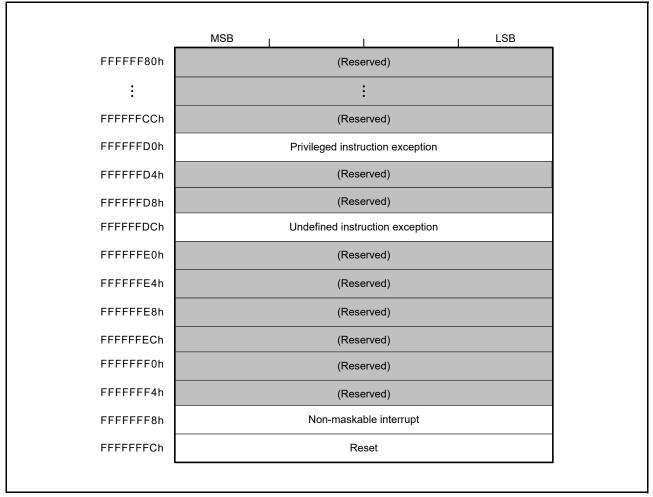


Figure 2.4 Fixed Vector Table

2.6.2 Relocatable Vector Table

The address where the relocatable vector table is placed can be adjusted. The table is a 1,024-byte region that contains all vectors for unconditional traps and interrupts and starts at the address (IntBase) specified in the interrupt table register (INTB). Figure 2.5 shows the relocatable vector table.

Each vector in the relocatable vector table has a vector number from 0 to 255. Each of the INT instructions, which act as the sources of unconditional traps, is allocated to the vector that has the same number as is specified as the operand of the instruction itself (from 0 to 255). The BRK instruction is allocated to the vector with number 0. Furthermore, vector numbers (from 0 to 255) are allocated to interrupt requests in a fixed way for each product. For more on interrupt vector numbers, refer to section 14.3.1, Interrupt Vector Table.

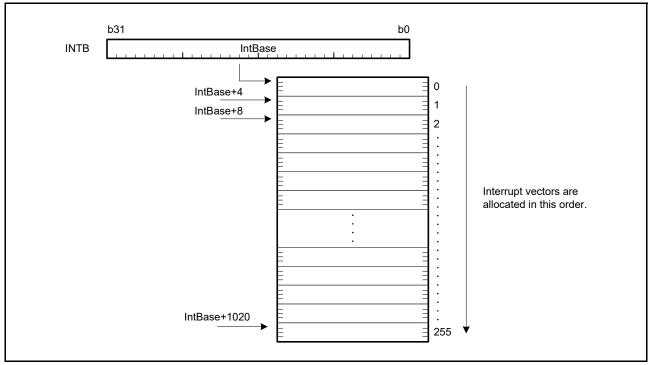


Figure 2.5 Relocatable Vector Table

2.7 Operation of Instructions

2.7.1 Data Prefetching by the RMPA Instruction and the String-Manipulation Instructions

The RMPA instruction and the string-manipulation instructions except the SSTR instruction (that is, SCMPU, SMOVB, SMOVF, SMOVU, SUNTIL, and SWHILE instructions) may prefetch data from the memory to speed up the read processing. Data is prefetched from the prefetching start position with 3 bytes as the upper limit. The prefetching start positions of each operation are shown below.

- RMPA instruction: The multiplicand address specified by R1, and the multiplier address specified by R2
- SCMPU instruction: The source address specified by R1 for comparison, and the destination address specified by R2 for comparison
- SUNTIL and SWHILE instructions: The destination address specified by R1 for comparison
- SMOVB, SMOVF, and SMOVU instructions: The source address specified by R2 for transfer

2.8 Pipeline

2.8.1 Overview

The RX CPU has five-stage pipeline structure. The RX CPU instruction is converted into one or more micro-operations, which are then executed in pipeline processing. In the pipeline stage, the IF stage is executed in the unit of instructions, while the D and subsequent stages are executed in the unit of micro-operations.

The operation of pipeline and respective stages is described below.

(1) IF stage (instruction fetch stage)

In the IF stage, the CPU fetches instructions from the memory. As the RX CPU has four 4-byte instruction queues, it fetches instructions until the instruction queue is full, regardless of the completion of decoding in the D (decoding) stage.

(2) D stage (decoding stage)

The CPU decodes instructions (DEC) in the D stage and converts them into micro-operations. The CPU reads the register information (RF) in this stage and executes a bypass process (BYP) if the result of the preceding instruction will be used in a subsequent instruction. The write of operation result to the register (RW) can be executed with the register reference by using the bypass process.

(3) E stage (execution stage)

Operations and address calculations (OP) are processed in the E stage.

(4) M stage (memory access stage)

Operand memory accesses (OA1, OA2) are processed in the M stage. This stage is used only when the memory is accessed, and is divided into two sub-stages, M1 and M2. The RX CPU enables respective memory accesses for M1 and M2.

- M1 stage (memory-access stage 1)
 - Operand memory access (OA1) is processed.
 - Store operation: The pipeline processing ends when a write request is received via the bus.
 - Load operation: The operation proceeds to the M2 stage when a read request is received via the bus. If a request and load data are received at the same timing (no-wait memory access), the operation proceeds to the WB stage.
- M2 stage (memory-access stage 2)
 - Operand memory access (OA2) is processed. The CPU waits for the load data in the M2 stage. When the load data is received, the operation proceeds to the WB stage.

(5) WB stage (write-back stage)

The operation result and the data read from memory are written to the register (RW) in the WB stage. The data read from memory and the other type of data, such as the operation result, can be written to the register in the same clock cycles.

Figure 2.6 shows the pipeline configuration and its operation.

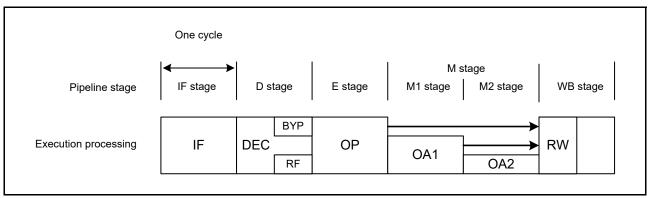


Figure 2.6 Pipeline Configuration and its Operation

2.8.2 Instructions and Pipeline Processing

The operands in the table below indicate the following meaning.

#IMM: Immediate flag: bit, flag

Rs, Rs2, Rd, Rd2, Ri, Rb: General-purpose register

CR: Control register dsp: displacement pcdsp: displacement

2.8.2.1 Instructions Converted into Single Micro-Operation and Pipeline Processing

The table below lists the instructions that are converted into a single micro-operation. The number of cycles in the table indicates the number of cycles during no-wait memory access.

Table 2.13 Instructions that are Converted into a Single Micro-Operation

Instruction	Mnemonic (indicates the common operation when the size is omitted)	Reference Figure	Number of Cycles
Arithmetic/logic instructions (register-register, immediate-register) Except EMUL, EMULU, RMPA, DIV, DIVU and SATR	 {ABS, NEG, NOT} "Rd"/"Rs, Rd" {ADC, MAX, MIN, ROTL, ROTR, XOR} "#IMM, Rd"/"Rs, Rd" ADD "#IMM, Rd"/"Rs, Rd"/"#IMM, Rs, Rd"/"Rs, Rs2, Rd" {AND, MUL, OR, SUB} "#IMM, Rd"/"Rs, Rd"/"Rs, Rs2, Rd" {CMP, TST} "#IMM, Rs"/"Rs, Rs2" NOP {ROLC, RORC, SAT} "Rd" SBB "Rs, Rd" {SHAR, SHLL, SHLR} "#IMM, Rd"/"Rs, Rd"/"#IMM, Rs, Rd" 	Figure 2.7	1
Arithmetic/logic instructions (division)	DIV "#IMM, Rd"/"Rs, Rd"	Figure 2.7	3 to 20*1
	DIVU "#IMM, Rd"/"Rs, Rd"	Figure 2.7	2 to 18*1
Data transfer instructions (register-register, immediate-register)	 MOV "#IMM, Rd"/"Rs, Rd" {MOVU, REVL, REVW} "Rs, Rd" SCCnd "Rd" {STNZ, STZ} "#IMM, Rd" 	Figure 2.7	1
Transfer instructions (load operation)	 {MOV, MOVU} "[Rs], Rd"/"dsp[Rs], Rd"/"[Rs+], Rd"/"[-Rs], Rd"/"[Ri, Rb], Rd" POP "Rd" 	Figure 2.8	Throughput: 1 Latency: 2* ²
Transfer instructions (store operation)	 MOV "Rs, [Rd]"/"Rs, dsp[Rd]"/"Rs, [Rd+]"/"Rs, [-Rd]"/"Rs, [Ri, Rb]"/"#IMM, dsp[Rd]"/"#IMM, [Rd]" PUSH "Rs" PUSHC "CR" SCCnd "[Rd]"/"dsp[Rd]" 	Figure 2.9	1
Bit manipulation instructions (register)	 {BCLR, BNOT, BSET} "#IMM, Rd"/"Rs, Rd" BMCnd "#IMM, Rd" BTST "#IMM, Rs"/"Rs, Rs2" 	Figure 2.7	1
Branch instructions	BCnd "pcdsp" {BRA, BSR} "pcdsp"/"Rs" {JMP, JSR} "Rs"	Figure 2.17	Branch taken: 3 Branch not taken: 1
System manipulation instructions	 {CLRPSW, SETPSW} "flag" MVTC "#IMM, CR"/"Rs, CR" MVFC "CR, Rd" MVTIPL"#IMM" 	_	1
DSP instructions	• {MACHI, MACLO, MULHI, MULLO} "Rs, Rs2" • {MVFACHI, MVFACMI} "Rd" • {MVTACHI, MVTACLO} "Rs" • RACW"#IMM"	Figure 2.7	1

Note 1. The number of cycles for the dividing instruction varies according to the divisor and dividend.

Note 2. For the number of cycles for throughput and latency, refer to section 2.8.3, Calculation of the Instruction Processing Time.

Figure 2.7 to Figure 2.9 show the operation of instructions that are converted into a basic single micro-operation.

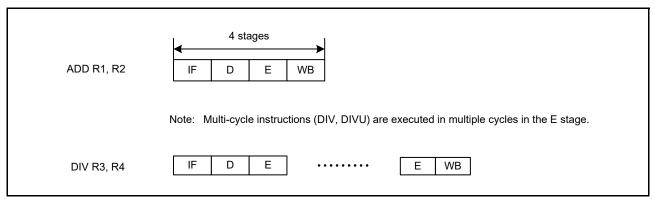


Figure 2.7 Operation for Register-Register, Immediate-Register

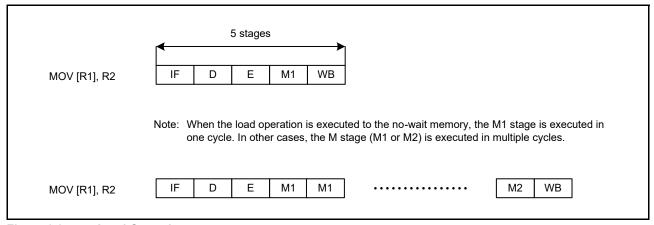


Figure 2.8 Load Operation

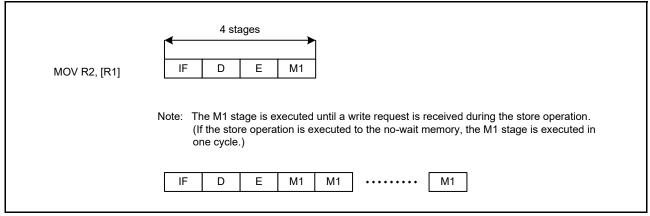


Figure 2.9 Store Operation

2.8.2.2 Instructions Converted into Multiple Micro-Operations and Pipeline Processing

The table below lists the instructions that are converted into multiple micro-operations. The number of cycles in the table indicates the number of cycles during no-wait memory access.

Table 2.14 Instructions that are Converted into Multiple Micro-Operations (1/2)

Instruction	Mnemonic (indicates the common operation when the size is omitted)	Reference Figure	Number of Cycles
Arithmetic/logic instructions (memory source operand)	 {ADC, ADD, AND, MAX, MIN, MUL, OR, SBB, SUB, XOR} "[Rs], Rd"/"dsp[Rs], Rd" {CMP, TST} "[Rs], Rs2"/"dsp[Rs], Rs2" 	Figure 2.10	3
Arithmetic/logic instructions	• DIV "[Rs], Rd / dsp[Rs], Rd"	_	5 to 22
(division)	DIVU"[Rs], Rd / dsp[Rs], Rd"	_	4 to 20
Arithmetic/logic instruction (multiplier: 32 × 32 → 64 bits) (register-register, register- immediate)	64 bits)		2
Arithmetic/logic instruction (multiplier: 32 × 32 → 64 bits) (memory source operand)	• {EMUL, EMULU} "[Rs], Rd"/"dsp[Rs], Rd"	_	4
Arithmetic/logic instructions (multiply-and-accumulate operation)	• RMPA.B	_	6+7×floor(n/4)+4×(n%4) n: Number of processing bytes*1
	• RMPA.W	_	6+5×floor(n/2)+4×(n%2) n: Number of processing words*1
	• RMPA.L	_	6+4n n: Number of processing longwords*1
Arithmetic/logic instruction (64-bit signed saturation processing for the RMPA instruction)	• SATR	_	3
Data transfer instructions (memory-memory transfer)	 MOV "[Rs], [Rd]"/"dsp[Rs], [Rd]"/"[Rs], dsp[Rd]"/ "dsp[Rs], dsp[Rd]" PUSH "[Rs]"/"dsp[Rs]" 	Figure 2.11	3
Bit manipulation instructions (memory source operand)	 {BCLR, BNOT, BSET} "#IMM, [Rd]"/"#IMM, dsp[Rd]"/ "Rs, [Rd]"/"Rs, dsp[Rd]" BMCnd "#IMM, [Rd]"/"#IMM, dsp[Rd]" BTST "#IMM, [Rs]"/"#IMM, dsp[Rs]"/"Rs, [Rs2]"/"Rs, dsp[Rs2] 	Figure 2.11	3
Transfer instruction (load operation)	• POPC "CR"	_	Throughput: 3 Latency: 4*2
Transfer instruction (save operation of multiple registers)	PUSHM "Rs-Rs2"	_	n n: Number of registers* ³
Transfer instruction (restore operation of multiple registers)	• POPM "Rs-Rs2"	_	Throughput: n Latency: n+1 n: Number of registers* ^{2,*4}
Transfer instruction (register-register)	• XCHG "Rs, Rd"	Figure 2.13	2
Transfer instruction (memory-register)	XCHG "[Rs], Rd"/"dsp[Rs], Rd"	Figure 2.14	2
Branch instructions	• RTS	_	5
	• RTSD "#IMM"		5
	RTSD "#IMM, Rd-Rd2"	_	Throughput: n<5?5:1+n Latency: n<4?5:2+n n: Number of registers*2

Table 2.14 Instructions that are Converted into Multiple Micro-Operations (2/2)

Instruction	Mnemonic (indicates the common operation when the size is omitted)	Reference Figure	Number of Cycles
String manipulation instructions*5	• SCMPU	_	2+4×floor(n/4)+4×(n%4) n: Number of comparison bytes*1
	• SMOVB	_	n>3? 6+3×floor(n/4)+3×(n%4): 2+3n n: Number of transfer bytes*1
	• SMOVF, SMOVU	_	2+3×floor(n/4)+3×(n%4) n: Number of transfer bytes*1
	• SSTR.B	_	2+floor(n/4)+n%4 n: Number of transfer bytes*1
	• SSTR.W	_	2+floor(n/2)+n%2 n: Number of transfer words*1
	• SSTR.L	_	2+n n: Number of transfer longwords
	• SUNTIL.B, SWHILE.B	_	3+3×floor(n/4)+3×(n%4) n: Number of comparison bytes*1
	• SUNTIL.W, SWHILE.W	_	3+3×floor(n/2)+3×(n%2) n: Number of comparison words*1
	• SUNTIL.L, SWHILE.L	_	3+3×n n: Number of comparison longwords
System manipulation instructions	• RTE	_	6
	• RTFI	_	3

^{?:} Conditional operator

Note 1. floor(x): Max. integer that is smaller than x

Note 2. For the number of cycles for throughput and latency, refer to section 2.8.3, Calculation of the Instruction Processing Time.

Note 3. The PUSHM instruction is converted into multiple store operations. The pipeline processing is the same as the one for the store operations of the MOV instruction, where the operation is repeated for the number of specified registers.

Note 4. The POPM instruction is converted into multiple load operations. The pipeline processing is the same as the one for the load operations of the MOV instruction, where the operation is repeated for the number of specified registers.

Note 5. Each of the SCMPU, SMOVU, SWHILE, and SUNTIL instructions ends the execution regardless of the specified cycles, if the end condition is satisfied during execution.

Figure 2.10 to Figure 2.14 show the operation of instructions that are converted into basic multiple micro-operations. Note: mop: Micro-operation, stall: Pipeline stall

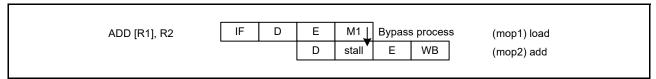


Figure 2.10 Arithmetic/Logic Instruction (Memory Source Operand)

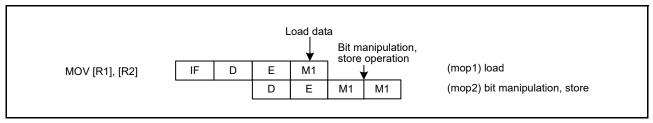


Figure 2.11 MOV Instruction (Memory-Memory), Bit Manipulation Instruction (Memory Source Operand)

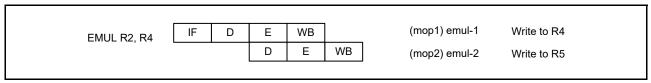


Figure 2.12 EMUL, EMULU Instructions (Register- Register, Register-Immediate)

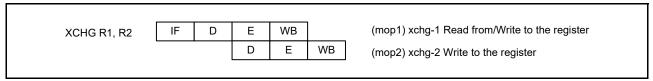


Figure 2.13 XCHG Instruction (Registers)

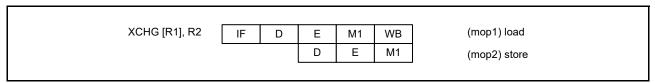


Figure 2.14 XCHG Instruction (Memory Source Operand)

2.8.2.3 Pipeline Basic Operation

In the ideal pipeline processing, each stage is executed in one cycle, though all instructions may not be pipelined in due to the processing in each stage and the branch execution.

The CPU controls the pipeline stage with the IF stage in the unit of instructions, while the D and subsequent stages in the unit of micro-operations.

The figures below show the pipeline processing of typical cases.

Note: mop: Micro-operation, stall: Pipeline stall

(1) Pipeline Flow with Stalls

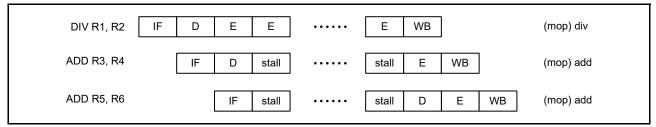


Figure 2.15 When an Instruction which Requires Multiple Cycles is Executed in the E Stage

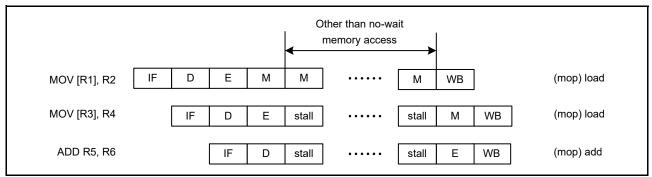


Figure 2.16 When an Instruction which Requires more than One Cycle for its Operand Access is Executed

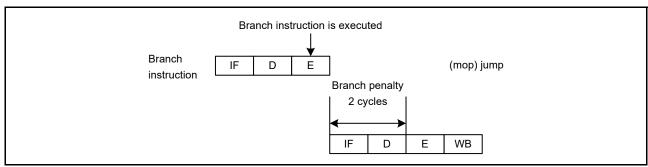


Figure 2.17 When a Branch Instruction is Executed (an Unconditional Branch Instruction is Executed or the Condition is Satisfied for a Conditional Branch Instruction)

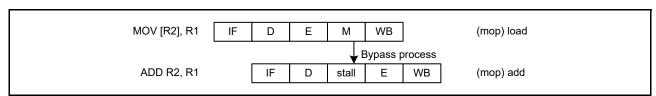


Figure 2.18 When the Subsequent Instruction Uses an Operand Read from the Memory

(2) Pipeline Flow with no Stall

(a) Bypass process

Even when the result of the preceding instruction will be used in a subsequent instruction, the operation processing between registers is pipelined in by the bypass process.

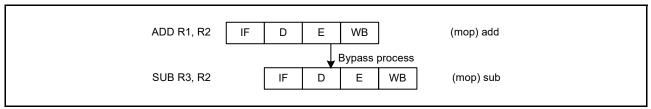


Figure 2.19 Bypass Process

(b) When WB stages for the memory load and for the operation are overlapped

Even when the WB stages for the memory load and for the operation are overlapped, the operation processing is pipelined in, because the load data and the operation result can be written to the register at the same timing.

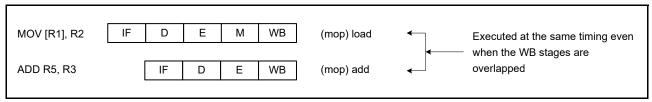


Figure 2.20 When WB Stages for the Memory Load and for the Operation are Overlapped

(c) When subsequent instruction writes to the same register before the end of memory load

Even when the subsequent instruction writes to the same register before the end of memory load, the operation processing is pipelined in, because the WB stage for the memory load is canceled.

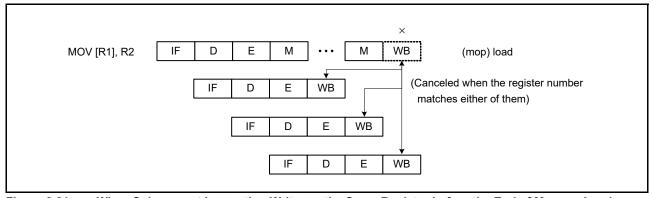


Figure 2.21 When Subsequent Instruction Writes to the Same Register before the End of Memory Load

(d) When the load data is not used by the subsequent instruction

When the load data is not used by the subsequent instruction, the subsequent operations are in fact executed earlier and the operation processing ends (out-of-order completion).

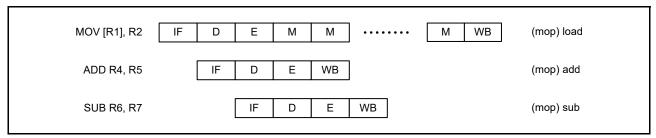


Figure 2.22 When Load Data is not Used by the Subsequent Instruction

2.8.3 Calculation of the Instruction Processing Time

Though the instruction processing time of the CPU varies according to the pipeline processing, the approximate time can be calculated in the following methods.

- Count the number of cycles (see Table 2.13 and Table 2.14)
- When the load data is used by the subsequent instruction, the number of cycles described as "latency" is counted as the number of cycles for the memory load instruction. For the cycles other than the memory load instruction, the number of cycles described as "throughput" is counted.
- If the instruction fetch stall is generated, the number of cycles increments.
- Depending on the system configuration, multiple cycles are required for the memory access.

2.8.4 Numbers of Cycles for Response to Interrupts

Table 2.15 lists numbers of cycles taken by processing for response to interrupts.

Table 2.15 Numbers of Cycles for Response to Interrupts

Type of Interrupt Request/Details of Processing	Fast Interrupt	Other Interrupts
ICU Judgment of priority order	2 cycles	
CPU Number of cycles from notification to acceptance of the interrupt request	N cycles (varies with the instruction being execureceived)	ated at the time the interrupt was
CPU Pre-processing by hardware Saving the current PC and PSW values in RAM (or in control registers in the case of the fast interrupt) Reading of the vector Branching to the start of the exception handling routine	4 cycles	6 cycles

Times calculated from the values in Table 2.15 will be applicable when access to memory from the CPU is processed with no waiting. The ROM and RAM in products of this MCU allow such access. Numbers of cycles for response to interrupts can be minimized by placing program code (and vectors) in ROM and the stack in RAM. Furthermore, place the addresses where the exception handling routine start on 8-byte boundaries.

For information on the number of cycles from notification to acceptance of the interrupt request, indicated by N in the table above, see Table 2.13, Instructions that are Converted into a Single Micro-Operation, and Table 2.14, Instructions that are Converted into Multiple Micro-Operations.

The timing of interrupt acceptance depends on the state of the pipelines. For more information on this, refer to section 13.3.1, Acceptance Timing and Saved PC Value.

3. Operating Modes

3.1 Operating Mode Types and Selection

Operating modes are selected by the pin level when a reset is released.

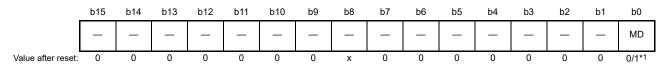
Table 3.1 shows the relationship between levels on the mode setting pins (MD) on release from the reset state and the operating mode selected at that time. For details on each of the operating modes, refer to section 3.3, Details of Operating Modes.

Table 3.1 Selection of Operating Modes by the Mode Setting Pin

Mode Pin	Operating Mode
MD *1	Operating Mode
Low	Boot mode
High	Single-chip mode

Note 1. Do not change the level on the MD pin while the MCU is operating.

The endian is selectable in single-chip mode. Endian is set by the MDE.MDE[2:0] bits in the option-setting memory. For the correspondence between the setting and endian, see Table 3.2.


Table 3.2 Endian Setting in Single-Chip Mode

MDE.MDE[2:0] Bits	Endian
000b	Big endian
111b	Little endian

3.2 Register Descriptions

3.2.1 Mode Monitor Register (MDMONR)

Address(es): 0008 0000h



Bit	Symbol	Bit Name	Description	R/W
b0	MD	MD Pin Status Flag	0: The MD pin is low. 1: The MD pin is high.	R
b7 to b1	_	Reserved	These bits are read as 0.	R
b8	_	Reserved	The read value is undefined.	R
b15 to b9	_	Reserved	These bits are read as 0.	R

Note 1. Depends on the setting of the mode pin (MD). When the MD pin is low, the bit value is 0; otherwise, the bit value is 1.

3.2.2 System Control Register 1 (SYSCR1)

Address(es): 0008 0008h

Bit	Symbol	Bit Name	Description	R/W
b0	RAME	RAM Enable	0: The RAM is disabled. 1: The RAM is enabled.	R/W
b15 to b	o1 —	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC1 bit to 1 (write enabled) before rewriting this register.

RAME Bit (RAM Enable)

The RAME bit enables or disables the RAM.

A 0 should not be written to this bit during access to the RAM. When accessing the RAM immediately after changing the RAME bit from 0 (RAM disabled) to 1 (RAM enabled), make sure that the RAME bit is 1 before the access.

Even when the RAME bit is set to 0, the RAM retains its value. To retain the value in the RAM, keep the specified RAM standby voltage (VRAM). For details, refer to section 40, Electrical Characteristics.

3.3 Details of Operating Modes

3.3.1 Single-Chip Mode

In this mode, all I/O ports can be used as general input/output ports, peripheral function input/output, or interrupt input pins.

The chip starts up in single-chip mode if the high level is on the MD pin on release from the reset state.

3.3.2 Boot Mode

In this mode, the on-chip flash memory modifying program (boot program) stored in a dedicated area within the MCU operates. The on-chip flash memory (ROM and E2 DataFlash) can be modified from outside the MCU by using a universal asynchronous receiver/transmitter (SCI1). For details, refer to section 39, Flash Memory.

The chip starts up in boot mode if the low level is on the MD pin on release from the reset state.

3.3.2.1 Boot Mode (SCI)

When a reset is released while the MD pin is low, boot mode (SCI) is selected. For details on boot mode (SCI), refer to section 39.8.1, Boot Mode (SCI Interface).

3.4 Transitions of Operating Modes

3.4.1 Mode Setting Pin Levels and Operating Mode Transitions

Figure 3.1 shows operating mode transitions according to the setting of the MD pin.

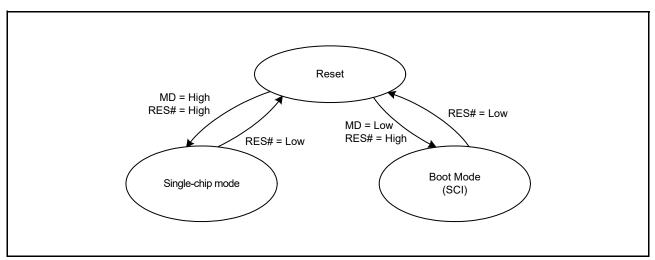
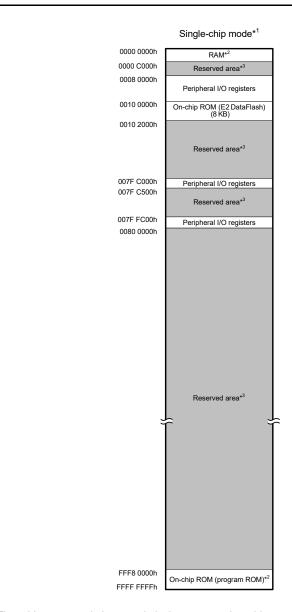


Figure 3.1 Mode Setting Pin Levels and Operating Modes

RX130 Group 4. Address Space


4. Address Space

4.1 Address Space

This MCU has a 4-Gbyte address space, consisting of the range of addresses from 0000 0000h to FFFF FFFFh. That is, linear access to an address space of up to 4 Gbytes is possible, and this contains both program and data areas. Figure 4.1 shows the memory maps.

RX130 Group 4. Address Space

Note 1. The address space in boot mode is the same as the address space in single-chip mode.

Note 2. The capacity of ROM/RAM differs depending on the products.

ROM (bytes)		RAM (bytes)				
Capacity	Address	Capacity	Address			
512 Kbytes	FFF8 0000h to FFFF FFFFh	48 Kbytes	0000 0000h to 0000 BFFFh			
384 Kbytes	FFFA 8000h to FFFF FFFFh					
256 Kbytes	FFFC 0000h to FFFF FFFFh	32 Kbytes	0000 0000h to 0000 7FFFh			
128 Kbytes	FFFE 0000h to FFFF FFFFh	16 Kbytes	0000 0000h to 0000 3FFFh			
64 Kbytes	FFFF 0000h to FFFF FFFFh	10 Kbytes	0000 0000h to 0000 27FFh			

Note: See Table 1.3, List of Products, for the product type name.

Note 3. Reserved areas should not be accessed.

Figure 4.1 Memory Map in Each Operating Mode

I/O Registers

This section provides information on the on-chip I/O register addresses and bit configuration. The information is given as shown below. Notes on writing to registers are also given below.

(1) I/O register addresses (address order)

- Registers are listed from the lower allocation addresses.
- Registers are classified according to module symbols.
- Numbers of cycles for access indicate numbers of cycles of the given base clock.
- Among the internal I/O register area, addresses not listed in the list of registers are reserved. Reserved addresses
 must not be accessed. Do not access these addresses; otherwise, the operation when accessing these bits and
 subsequent operations cannot be guaranteed.

(2) Notes on writing to I/O registers

When writing to an I/O register, the CPU starts executing the subsequent instruction before completing I/O register write. This may cause the subsequent instruction to be executed before the post-update I/O register value is reflected on the operation.

As described in the following examples, special care is required for the cases in which the subsequent instruction must be executed after the post-update I/O register value is actually reflected.

[Examples of cases requiring special care]

- The subsequent instruction must be executed while an interrupt request is disabled with the IENj bit in IERn of the ICU (interrupt request enable bit) cleared to 0.
- A WAIT instruction is executed immediately after the preprocessing for causing a transition to the low power consumption state.

In the above cases, after writing to an I/O register, wait until the write operation is completed using the following procedure and then execute the subsequent instruction.

- (a) Write to an I/O register.
- (b) Read the value from the I/O register to a general register.
- (c) Execute the operation using the value read.
- (d) Execute the subsequent instruction.

[Instruction examples]

• Byte-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.B #SFR_DATA, [R1] CMP [R1].UB, R1 ;; Next process

• Word-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.W #SFR_DATA, [R1] CMP [R1].W, R1 ;; Next process

• Longword-size I/O registers

MOV.L #SFR_ADDR, R1 MOV.L #SFR_DATA, [R1] CMP [R1].L, R1 ;; Next process

If multiple registers are written to and a subsequent instruction should be executed after the write operations are entirely completed, only read the I/O register that was last written to and execute the operation using the value; it is not necessary to read or execute operation for all the registers that were written to.

(3) Number of Access Cycles to I/O Registers

For numbers of clock cycles for access to I/O registers, see Table 5.1, List of I/O Registers (Address Order). The number of access cycles to I/O registers is obtained by following equation.*1

Number of access cycles to I/O registers = Number of bus cycles for internal main bus 1 +

Number of divided clock synchronization cycles +

Number of bus cycles for internal peripheral buses 1 to 3, and 6

The number of bus cycles of internal peripheral buses 1 to 3, and 6 differs according to the register to be accessed. When the registers for peripheral functions connected to internal peripheral buses 2, 3, and 6 (except for bus error related registers) are accessed, the number of divided clock synchronization cycles is added.

The number of divided clock synchronization cycles differs depending on the frequency ratio between ICLK and PCLK (or FCLK) or bus access timing.

In the peripheral function unit, when the frequency ratio of ICLK is equal to or greater than that of PCLK (or FCLK), the sum of the number of bus cycles for internal main bus 1 and the number of the divided clock synchronization cycles will be one cycle of PCLK (or FCLK) at a maximum. Therefore, one PCLK (or FCLK) has been added to the number of access cycles shown in Table 5.1.

When the frequency ratio of ICLK is lower than that of PCLK (or FCLK), the subsequent bus access is started from the ICLK cycle following the completion of the access to the peripheral functions. Therefore, the access cycles are described on an ICLK basis.

Note 1. This applies to the number of cycles when the access from the CPU does not conflict with the instruction fetching to the external memory or bus access from the different bus master (DTC).

(4) Restrictions in Relation to RMPA and String-Manipulation Instructions

The allocation of data to be handled by RMPA or string-manipulation instructions to I/O registers is prohibited, and operation is not guaranteed if this restriction is not observed.

(5) Notes on Sleep Mode and Mode Transitions

During sleep mode or mode transitions, do not write to the system control related registers (indicated by 'SYSTEM' in the Module Symbol column in Table 5.1, List of I/O Registers (Address Order)).

5.1 I/O Register Addresses (Address Order)

Table 5.1 List of I/O Registers (Address Order) (1 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
0008 0000h	SYSTEM	Mode Monitor Register	MDMONR	16	16	3 ICLK	section 3.
0008 0008h	SYSTEM	System Control Register 1	SYSCR1	16	16	3 ICLK	section 3.
0008 000Ch	SYSTEM	Standby Control Register	SBYCR	16	16	3 ICLK	section 11.
0008 0010h	SYSTEM	Module Stop Control Register A	MSTPCRA	32	32	3 ICLK	section 11.
0008 0014h	SYSTEM	Module Stop Control Register B	MSTPCRB	32	32	3 ICLK	section 11.
0008 0018h	SYSTEM	Module Stop Control Register C	MSTPCRC	32	32	3 ICLK	section 11.
0008 001Ch	SYSTEM	Module Stop Control Register D	MSTPCRD	32	32	3 ICLK	section 11.
0008 0020h	SYSTEM	System Clock Control Register	SCKCR	32	32	3 ICLK	section 9.
0008 0026h	SYSTEM	System Clock Control Register 3	SCKCR3	16	16	3 ICLK	section 9.
0008 0028h	SYSTEM	PLL Control Register	PLLCR	16	16	3 ICLK	section 9.
0008 002Ah	SYSTEM	PLL Control Register 2	PLLCR2	8	8	3 ICLK	section 9.
0008 0032h	SYSTEM	Main Clock Oscillator Control Register	MOSCCR	8	8	3 ICLK	section 9.
0008 0033h	SYSTEM	Sub-Clock Oscillator Control Register	SOSCCR	8	8	3 ICLK	section 9.
0008 0034h	SYSTEM	Low-Speed On-Chip Oscillator Control Register	LOCOCR	8	8	3 ICLK	section 9.
0008 0035h	SYSTEM	IWDT-Dedicated On-Chip Oscillator Control Register	ILOCOCR	8	8	3 ICLK	section 9.
0008 0036h	SYSTEM	High-Speed On-Chip Oscillator Control Register	HOCOCR	8	8	3 ICLK	section 9.
0008 003Ch	SYSTEM	Oscillation Stabilization Flag Register	OSCOVFSR	8	8	3 ICLK	section 9.
0008 003Dh	SYSTEM	High-Speed On-Chip Oscillator Forced Oscillation Control Register	HOFCR	8	8	3 ICLK	section 9.
0008 003Eh	SYSTEM	CLKOUT Output Control Register	CKOCR	16	16	3 ICLK	section 9.
0008 0040h	SYSTEM	Oscillation Stop Detection Control Register	OSTDCR	8	8	3 ICLK	section 9.
0008 0041h	SYSTEM	Oscillation Stop Detection Status Register	OSTDSR	8	8	3 ICLK	section 9.
0008 0060h	SYSTEM	Low-Speed On-Chip Oscillator Trimming Register	LOCOTRR	8	8	3 ICLK	section 9.
0008 0064h	SYSTEM	IWDT-Dedicated On-Chip Oscillator Trimming Register	ILOCOTRR	8	8	3 ICLK	section 9.
0008 0068h	SYSTEM	High-Speed On-Chip Oscillator Trimming Register 0	HOCOTRR0	8	8	3 ICLK	section 9.
0008 00A0h	SYSTEM	Operating Power Control Register	OPCCR	8	8	3 ICLK	section 11.
0008 00A1h	SYSTEM	Sleep Mode Return Clock Source Switching Register	RSTCKCR	8	8	3 ICLK	section 11.
0008 00A2h	SYSTEM	Main Clock Oscillator Wait Control Register	MOSCWTCR	8	8	3 ICLK	section 9.
0008 00AAh	SYSTEM	Sub Operating Power Control Register	SOPCCR	8	8	3 ICLK	section 11.
0008 00B0h	LPT	Low-Power Timer Control Register 1	LPTCR1	8	8	3 ICLK	section 25.
0008 00B1h	LPT	Low-Power Timer Control Register 2	LPTCR2	8	8	3 ICLK	section 25.
0008 00B2h	LPT	Low-Power Timer Control Register 3	LPTCR3	8	8	3 ICLK	section 25.
0008 00B4h	LPT	Low-Power Timer Cycle Setting Register	LPTPRD	16	16	3 ICLK	section 25.
0008 00B8h	LPT	Low-Power Timer Compare Register 0	LPCMR0	16	16	3 ICLK	section 25.
0008 00BCh	LPT	Low-Power Timer Standby Wakeup Enable Register	LPWUCR	16	16	3 ICLK	section 25.
0008 00C0h	SYSTEM	Reset Status Register 2	RSTSR2	8	8	3 ICLK	section 6.
0008 00C2h	SYSTEM	Software Reset Register	SWRR	16	16	3 ICLK	section 6.
0008 00E0h	SYSTEM	Voltage Monitoring 1 Circuit Control Register 1	LVD1CR1	8	8	3 ICLK	section 8.
0008 00E1h	SYSTEM	Voltage Monitoring 1 Circuit Status Register	LVD1SR	8	8	3 ICLK	section 8.
0008 00E2h	SYSTEM	Voltage Monitoring 2 Circuit Control Register 1	LVD13R	8	8	3 ICLK	section 8.
0008 00E3h	SYSTEM	Voltage Monitoring 2 Circuit Status Register	LVD2SR	8	8	3 ICLK	section 8.
0008 03FEh	SYSTEM	Protect Register	PRCR	16	16	3 ICLK	section 12.
0008 1300h	BSC	Bus Error Status Clear Register	BERCLR	8	8	2 ICLK	section 15.
0008 1304h	BSC	Bus Error Monitoring Enable Register	BEREN	8	8	2 ICLK	section 15.
0008 1308h	BSC	Bus Error Status Register 1	BERSR1	8	8	2 ICLK	section 15.
0008 130Ah	BSC	Bus Error Status Register 2	BERSR2	16	16	2 ICLK	section 15.
0008 1310h	BSC	Bus Priority Control Register	BUSPRI	16	16	2 ICLK	section 15
0008 2400h	DTC	DTC Control Register	DTCCR	8	8	2 ICLK	section 16.
0008 2404h	DTC	DTC Vector Base Register	DTCVBR	32	32	2 ICLK	section 16.
	DTC	DTC Address Mode Register	DTCADMOD	8	8	2 ICLK	section 16.

Table 5.1 List of I/O Registers (Address Order) (2 / 18)

0008 240Ch DTC 0008 240Eh DTC 0008 7010h to 0008 70FFh ICU 0008 70FFh ICU 0008 71FFh ICU 0008 72E0h ICU 0008 72F0h ICU 0008 72F0h ICU 0008 7300h to 0008 73FFh ICU 0008 7507h ICU 0008 7510h ICU 0008 7584h ICU 0008 7587h ICU 0008 7580h ICU 0008 7581h ICU 0008 7583h ICU 0008 7590h ICU 0008 7590h ICU 0008 8000h CMT 0008 8000h CMT 0008 8000h CMT0 0008 8000h CMT1 0008 8000h CMT1 0008 8000h CMT1 0008 8000h CMT1 0008 8000h IWDT 0008 8030h IWDT 0008 8030h IWDT 0008 8036h IWDT 0008 8036h <th>DTC Module Start Register DTC Status Register Interrupt Request Register 016 to 255 DTC Activation Enable Register 027 to 255 Interrupt Request Enable Register 02 to 1F Software Interrupt Activation Register Fast Interrupt Set Register Interrupt Source Priority Register 000 to 255 IRQ Control Register 0 to 7 IRQ Pin Digital Filter Enable Register 0 IRQ Pin Digital Filter Setting Register 0 Non-Maskable Interrupt Status Register Non-Maskable Interrupt Enable Register Non-Maskable Interrupt Status Clear Register NMI Pin Interrupt Control Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Setting Register Compare Match Timer Start Register 0 Compare Match Timer Control Register Compare Match Counter</th> <th>DTCST DTCSTS IRn DTCERN IERM SWINTR FIR IPRN IRQCRI IRQFLTCO NMISR NMIER NMICLR NMICLR NMICLR NMIFLTE NMIFLTC CMSTRO</th> <th>8 16 8 8 8 8 16 8 8 8 8 8 8</th> <th>8 16 8 8 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8</th> <th>2 ICLK 2 ICLK</th> <th>section 16. section 14. section 14.</th>	DTC Module Start Register DTC Status Register Interrupt Request Register 016 to 255 DTC Activation Enable Register 027 to 255 Interrupt Request Enable Register 02 to 1F Software Interrupt Activation Register Fast Interrupt Set Register Interrupt Source Priority Register 000 to 255 IRQ Control Register 0 to 7 IRQ Pin Digital Filter Enable Register 0 IRQ Pin Digital Filter Setting Register 0 Non-Maskable Interrupt Status Register Non-Maskable Interrupt Enable Register Non-Maskable Interrupt Status Clear Register NMI Pin Interrupt Control Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Setting Register Compare Match Timer Start Register 0 Compare Match Timer Control Register Compare Match Counter	DTCST DTCSTS IRn DTCERN IERM SWINTR FIR IPRN IRQCRI IRQFLTCO NMISR NMIER NMICLR NMICLR NMICLR NMIFLTE NMIFLTC CMSTRO	8 16 8 8 8 8 16 8 8 8 8 8 8	8 16 8 8 16 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 ICLK	section 16. section 14.
0008 7010h to 0008 70FFh ICU 0008 70FFh ICU 0008 71FFh ICU 0008 72E0h ICU 0008 72E0h ICU 0008 72F0h ICU 0008 73F0h ICU 0008 73F0h ICU 0008 7500h to 0008 7507h ICU 0008 7510h ICU 0008 7514h ICU 0008 7580h ICU 0008 7581h ICU 0008 7582h ICU 0008 7590h ICU 0008 7594h ICU 0008 8000h CMT 0008 8000h CMT 0008 8000h CMT0 0008 8000h CMT1 0008 8000h CMT1 0008 8000h CMT1 0008 8030h IWDT 0008 8034h IWDT 0008 8036h IWDT 0008 8038h IWDT 0008 8038h IWDT	Interrupt Request Register 016 to 255 DTC Activation Enable Register 027 to 255 Interrupt Request Enable Register 02 to 1F Software Interrupt Activation Register Fast Interrupt Set Register Interrupt Source Priority Register 000 to 255 IRQ Control Register 0 to 7 IRQ Pin Digital Filter Enable Register 0 IRQ Pin Digital Filter Setting Register 0 Non-Maskable Interrupt Status Register Non-Maskable Interrupt Enable Register Non-Maskable Interrupt Enable Register NMI Pin Interrupt Control Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Enable Register Compare Match Timer Start Register 0 Compare Match Timer Control Register	IRN DTCERN IERM SWINTR FIR IPRN IRQCRI IRQFLTE0 IRQFLTC0 NMISR NMIER NMICR NMICR NMICR NMIFLTE NMIFLTE	8 8 8 16 8 8 16 8 8 8 8	8 8 8 8 16 8 8 16 8 8	2 ICLK	section 14.
0008 70FFh 0008 71FFh ICU 0008 71FFh ICU 0008 722Fh ICU 0008 72E0h ICU 0008 72F0h ICU 0008 73F0h ICU 0008 73FFh ICU 0008 7500h to ICU 0008 7510h ICU 0008 7580h ICU 0008 7581h ICU 0008 7583h ICU 0008 7590h ICU 0008 7594h ICU 0008 8000h CMT 0008 8000h CMT 0008 8000h CMT0 0008 8000h CMT1 0008 8000h CMT1 0008 8000h CMT1 0008 8030h IWDT 0008 8032h IWDT 0008 8036h IWDT 0008 8038h IWDT 0008 8038h IWDT 0008 8038h IWDT 0008 8038h IWDT	DTC Activation Enable Register 027 to 255 Interrupt Request Enable Register 02 to 1F Software Interrupt Activation Register Fast Interrupt Set Register Interrupt Source Priority Register 000 to 255 IRQ Control Register 0 to 7 IRQ Pin Digital Filter Enable Register 0 IRQ Pin Digital Filter Setting Register 0 Non-Maskable Interrupt Status Register Non-Maskable Interrupt Enable Register Non-Maskable Interrupt Enable Register NMI Pin Interrupt Control Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Setting Register Compare Match Timer Start Register 0 Compare Match Timer Control Register	DTCERN IERM SWINTR FIR IPRN IRQCRI IRQFLTEO IRQFLTCO NMISR NMIER NMICR NMICR NMICR NMIFLTE NMIFLTE	8 8 16 8 8 16 8 8 8	8 8 16 8 8 8 16 8 8	2 ICLK	section 14.
0008 71FFh 0008 7202h to 0008 721Fh ICU 0008 72E0h ICU 0008 72F0h ICU 0008 7300h to 0008 73FFh ICU 0008 7500h to 0008 7507h ICU 0008 7510h ICU 0008 7514h ICU 0008 7580h ICU 0008 7581h ICU 0008 7582h ICU 0008 7590h ICU 0008 8000h CMT 0008 8000h CMT 0008 8002h CMT0 0008 8004h CMT1 0008 8008h CMT1 0008 8009h IWDT 0008 8032h IWDT 0008 8034h IWDT 0008 8036h IWDT 0008 8038h IWDT	Interrupt Request Enable Register 02 to 1F Software Interrupt Activation Register Fast Interrupt Set Register Interrupt Source Priority Register 000 to 255 IRQ Control Register 0 to 7 IRQ Pin Digital Filter Enable Register 0 IRQ Pin Digital Filter Setting Register 0 Non-Maskable Interrupt Status Register Non-Maskable Interrupt Enable Register Non-Maskable Interrupt Enable Register NMI Pin Interrupt Control Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Setting Register Compare Match Timer Start Register 0 Compare Match Timer Control Register	IERM SWINTR FIR IPRn IRQCRI IRQCRI IRQFLTE0 IRQFLTC0 NMISR NMIER NMICLR NMICLR NMICLR NMIFLTE NMIFLTE	8 8 16 8 8 16 8 8 8	8 8 16 8 8 8 16 8 8	2 ICLK	section 14.
0008 721Fh 0008 72E0h ICU 0008 72F0h ICU 0008 7300h to ICU 0008 7500h to ICU 0008 7507h ICU 0008 7507h ICU 0008 7510h ICU 0008 7514h ICU 0008 7580h ICU 0008 7581h ICU 0008 7582h ICU 0008 7590h ICU 0008 8000h CMT 0008 8002h CMT0 0008 8004h CMT0 0008 8006h CMT1 0008 8008h CMT1 0008 8009h IWDT 0008 8032h IWDT 0008 8034h IWDT 0008 8036h IWDT 0008 8038h IWDT 0008 8038h IWDT 0008 8038h IWDT	Software Interrupt Activation Register Fast Interrupt Set Register Interrupt Source Priority Register 000 to 255 IRQ Control Register 0 to 7 IRQ Pin Digital Filter Enable Register 0 IRQ Pin Digital Filter Setting Register 0 Non-Maskable Interrupt Status Register Non-Maskable Interrupt Enable Register Non-Maskable Interrupt Enable Register NMI Pin Interrupt Control Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Setting Register Compare Match Timer Start Register 0 Compare Match Timer Control Register	SWINTR FIR IPRn IRQCRI IRQFLTE0 IRQFLTC0 NMISR NMIER NMICLR NMICR NMIFLTE	8 16 8 8 8 16 8 8 8	8 16 8 8 16 8 8	2 ICLK	section 14.
0008 72F0h ICU 0008 73F0h to ICU 0008 73FFh ICU 0008 75F0h ICU 0008 7507h ICU 0008 7510h ICU 0008 7514h ICU 0008 7580h ICU 0008 7582h ICU 0008 7583h ICU 0008 7590h ICU 0008 8000h CMT 0008 8002h CMT0 0008 8004h CMT0 0008 8006h CMT1 0008 800Ah CMT1 0008 8030h IWDT 0008 8034h IWDT 0008 8036h IWDT 0008 8038h IWDT 0008 8038h IWDT 0008 8038h IWDT	Fast Interrupt Set Register Interrupt Source Priority Register 000 to 255 IRQ Control Register 0 to 7 IRQ Pin Digital Filter Enable Register 0 IRQ Pin Digital Filter Setting Register 0 Non-Maskable Interrupt Status Register Non-Maskable Interrupt Enable Register Non-Maskable Interrupt Enable Register NMI Pin Interrupt Control Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Setting Register Compare Match Timer Start Register 0 Compare Match Timer Control Register	FIR IPRn IRQCRI IRQFLTE0 IRQFLTC0 NMISR NMIER NMICLR NMICLR NMICR NMIFLTE NMIFLTE	16 8 8 8 16 8 8 8	16 8 8 8 16 8	2 ICLK 2 ICLK 2 ICLK 2 ICLK 2 ICLK 2 ICLK	section 14. section 14. section 14. section 14. section 14. section 14.
0008 7300h to ICU 0008 73FFh ICU 0008 75FFh ICU 0008 75FFh ICU 0008 7510h ICU 0008 7514h ICU 0008 7580h ICU 0008 7581h ICU 0008 7582h ICU 0008 7590h ICU 0008 8000h CMT 0008 8000h CMT 0008 8004h CMT0 0008 8008h CMT1 0008 800Ah CMT1 0008 803Ch CMT1 0008 803Ch IWDT	Interrupt Source Priority Register 000 to 255 IRQ Control Register 0 to 7 IRQ Pin Digital Filter Enable Register 0 IRQ Pin Digital Filter Setting Register 0 Non-Maskable Interrupt Status Register Non-Maskable Interrupt Enable Register Non-Maskable Interrupt Enable Register NMI Pin Interrupt Control Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Setting Register Compare Match Timer Start Register 0 Compare Match Timer Control Register	IPRN IRQCRI IRQFLTE0 IRQFLTC0 NMISR NMIER NMICLR NMICLR NMICR NMIFLTE	8 8 8 16 8 8 8	8 8 8 16 8	2 ICLK 2 ICLK 2 ICLK 2 ICLK 2 ICLK	section 14. section 14. section 14. section 14.
0008 73FFh 0008 7500h to 0008 7507h ICU 0008 7510h ICU 0008 7514h ICU 0008 7580h ICU 0008 7581h ICU 0008 7582h ICU 0008 7583h ICU 0008 7590h ICU 0008 8000h CMT 0008 8000h CMT 0008 8004h CMT0 0008 8008h CMT1 0008 800Ah CMT1 0008 803Ch CMT1 0008 803Ch IWDT	IRQ Control Register 0 to 7 IRQ Pin Digital Filter Enable Register 0 IRQ Pin Digital Filter Setting Register 0 Non-Maskable Interrupt Status Register Non-Maskable Interrupt Enable Register Non-Maskable Interrupt Status Clear Register NMI Pin Interrupt Control Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Setting Register Compare Match Timer Start Register 0 Compare Match Timer Control Register	IRQCRI IRQFLTE0 IRQFLTC0 NMISR NMIER NMICLR NMICLR NMICLR NMIFLTE	8 8 16 8 8 8	8 8 16 8	2 ICLK 2 ICLK 2 ICLK 2 ICLK	section 14. section 14. section 14.
0008 7507h 0008 7510h ICU 0008 7514h ICU 0008 7580h ICU 0008 7581h ICU 0008 7582h ICU 0008 7583h ICU 0008 7590h ICU 0008 8000h CMT 0008 8000h CMT 0008 8004h CMT0 0008 8006h CMT1 0008 8008h CMT1 0008 800Ah CMT1 0008 803Ch IWDT 0008 8032h IWDT 0008 8034h IWDT 0008 8036h IWDT 0008 8038h IWDT 0008 8038h IWDT	IRQ Pin Digital Filter Enable Register 0 IRQ Pin Digital Filter Setting Register 0 Non-Maskable Interrupt Status Register Non-Maskable Interrupt Enable Register Non-Maskable Interrupt Status Clear Register NMI Pin Interrupt Control Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Setting Register Compare Match Timer Start Register 0 Compare Match Timer Control Register	IRQFLTEO IRQFLTCO NMISR NMIER NMICLR NMICR NMIFLTE NMIFLTC	8 16 8 8 8	8 16 8	2 ICLK 2 ICLK 2 ICLK	section 14. section 14. section 14.
0008 7514h ICU 0008 7580h ICU 0008 7581h ICU 0008 7582h ICU 0008 7583h ICU 0008 7590h ICU 0008 7594h ICU 0008 8000h CMT 0008 8002h CMT0 0008 8004h CMT0 0008 8008h CMT1 0008 800Ah CMT1 0008 800Ch CMT1 0008 803Ch IWDT 0008 8032h IWDT 0008 8036h IWDT 0008 8036h IWDT 0008 8038h IWDT	IRQ Pin Digital Filter Setting Register 0 Non-Maskable Interrupt Status Register Non-Maskable Interrupt Enable Register Non-Maskable Interrupt Status Clear Register NMI Pin Interrupt Control Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Setting Register Compare Match Timer Start Register 0 Compare Match Timer Control Register	IRQFLTCO NMISR NMIER NMICLR NMICR NMIFLTE NMIFLTC	16 8 8 8 8	16 8 8	2 ICLK 2 ICLK	section 14.
0008 7580h ICU 0008 7581h ICU 0008 7582h ICU 0008 7583h ICU 0008 7590h ICU 0008 7594h ICU 0008 8000h CMT 0008 8002h CMT0 0008 8004h CMT0 0008 8006h CMT1 0008 8008h CMT1 0008 800Ch CMT1 0008 8030h IWDT 0008 8032h IWDT 0008 8036h IWDT 0008 8038h IWDT 0008 8038h IWDT	Non-Maskable Interrupt Status Register Non-Maskable Interrupt Enable Register Non-Maskable Interrupt Status Clear Register NMI Pin Interrupt Control Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Setting Register Compare Match Timer Start Register 0 Compare Match Timer Control Register	NMISR NMIER NMICLR NMICR NMIFLTE NMIFLTC	8 8 8	8	2 ICLK	section 14.
0008 7581h ICU 0008 7582h ICU 0008 7583h ICU 0008 7590h ICU 0008 7594h ICU 0008 8000h CMT 0008 8002h CMT0 0008 8004h CMT0 0008 8006h CMT1 0008 800Ah CMT1 0008 800Ch CMT1 0008 8030h IWDT 0008 8032h IWDT 0008 8036h IWDT 0008 8038h IWDT 0008 8038h IWDT 0008 8038h IWDT	Non-Maskable Interrupt Enable Register Non-Maskable Interrupt Status Clear Register NMI Pin Interrupt Control Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Setting Register Compare Match Timer Start Register 0 Compare Match Timer Control Register	NMIER NMICLR NMICR NMIFLTE NMIFLTC	8 8 8	8		
0008 7582h ICU 0008 7583h ICU 0008 7590h ICU 0008 7594h ICU 0008 8000h CMT 0008 8002h CMT0 0008 8004h CMT0 0008 8006h CMT0 0008 8008h CMT1 0008 800Ah CMT1 0008 800Ch CMT1 0008 8030h IWDT 0008 8034h IWDT 0008 8036h IWDT 0008 8038h IWDT 0008 8038h IWDT	Non-Maskable Interrupt Status Clear Register NMI Pin Interrupt Control Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Setting Register Compare Match Timer Start Register 0 Compare Match Timer Control Register	NMICLR NMICR NMIFLTE NMIFLTC	8		2 ICLK	
0008 7583h ICU 0008 7590h ICU 0008 7594h ICU 0008 8000h CMT 0008 8002h CMT0 0008 8004h CMT0 0008 8006h CMT0 0008 8008h CMT1 0008 800Ah CMT1 0008 8030h IWDT 0008 8032h IWDT 0008 8036h IWDT 0008 8036h IWDT 0008 8038h IWDT 0008 8038h IWDT	NMI Pin Interrupt Control Register NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Setting Register Compare Match Timer Start Register 0 Compare Match Timer Control Register	NMICR NMIFLTE NMIFLTC	8	8		section 14.
0008 7590h ICU 0008 7594h ICU 0008 8000h CMT 0008 8002h CMT0 0008 8004h CMT0 0008 8006h CMT0 0008 8008h CMT1 0008 800Ah CMT1 0008 800Ch CMT1 0008 8030h IWDT 0008 8032h IWDT 0008 8036h IWDT 0008 8038h IWDT 0008 8038h IWDT	NMI Pin Digital Filter Enable Register NMI Pin Digital Filter Setting Register Compare Match Timer Start Register 0 Compare Match Timer Control Register	NMIFLTE NMIFLTC			2 ICLK	section 14.
0008 7594h ICU 0008 8000h CMT 0008 8002h CMT0 0008 8004h CMT0 0008 8006h CMT0 0008 8008h CMT1 0008 800Ah CMT1 0008 800Ch CMT1 0008 8030h IWDT 0008 8032h IWDT 0008 8036h IWDT 0008 8038h IWDT 0008 8038h IWDT	NMI Pin Digital Filter Setting Register Compare Match Timer Start Register 0 Compare Match Timer Control Register	NMIFLTC		8	2 ICLK	section 14.
0008 8000h CMT 0008 8002h CMT0 0008 8004h CMT0 0008 8006h CMT0 0008 8006h CMT1 0008 800Ah CMT1 0008 800Ch CMT1 0008 8030h IWDT 0008 8032h IWDT 0008 8036h IWDT 0008 8036h IWDT 0008 8038h IWDT	Compare Match Timer Start Register 0 Compare Match Timer Control Register		8	8	2 ICLK	section 14.
0008 8002h CMT0 0008 8004h CMT0 0008 8006h CMT0 0008 8006h CMT0 0008 8008h CMT1 0008 800Ah CMT1 0008 800Ch CMT1 0008 8030h IWDT 0008 8032h IWDT 0008 8036h IWDT 0008 8038h IWDT	Compare Match Timer Control Register	CMSTR0	8	8	2 ICLK	section 14.
0008 8004h CMT0 0008 8006h CMT0 0008 8008h CMT1 0008 800Ah CMT1 0008 800Ch CMT1 0008 8030h IWDT 0008 8032h IWDT 0008 8036h IWDT 0008 8036h IWDT			16	16	2 or 3 PCLKB	section 23.
0008 8006h CMT0 0008 8008h CMT1 0008 800Ah CMT1 0008 800Ch CMT1 0008 8030h IWDT 0008 8032h IWDT 0008 8036h IWDT 0008 8038h IWDT	Compare Match Counter	CMCR	16	16	2 or 3 PCLKB	section 23.
0008 8008h CMT1 0008 800Ah CMT1 0008 800Ch CMT1 0008 8030h IWDT 0008 8032h IWDT 0008 8034h IWDT 0008 8036h IWDT	Compare Mator Counter	CMCNT	16	16	2 or 3 PCLKB	section 23.
0008 800Ah CMT1 0008 800Ch CMT1 0008 8030h IWDT 0008 8032h IWDT 0008 8034h IWDT 0008 8036h IWDT	Compare Match Constant Register	CMCOR	16	16	2 or 3 PCLKB	section 23.
0008 800Ah CMT1 0008 800Ch CMT1 0008 8030h IWDT 0008 8032h IWDT 0008 8034h IWDT 0008 8036h IWDT 0008 8038h IWDT	Compare Match Timer Control Register	CMCR	16	16	2 or 3 PCLKB	section 23.
0008 800Ch CMT1 0008 8030h IWDT 0008 8032h IWDT 0008 8034h IWDT 0008 8036h IWDT 0008 8038h IWDT	Compare Match Counter	CMCNT	16	16	2 or 3 PCLKB	section 23.
0008 8032h IWDT 0008 8034h IWDT 0008 8036h IWDT 0008 8038h IWDT	Compare Match Constant Register	CMCOR	16	16	2 or 3 PCLKB	section 23.
0008 8034h IWDT 0008 8036h IWDT 0008 8038h IWDT	IWDT Refresh Register	IWDTRR	8	8	2 or 3 PCLKB	section 26.
0008 8036h IWDT 0008 8038h IWDT	IWDT Control Register	IWDTCR	16	16	2 or 3 PCLKB	section 26.
0008 8038h IWDT	IWDT Status Register	IWDTSR	16	16	2 or 3 PCLKB	section 26.
0008 8038h IWDT	IWDT Reset Control Register	IWDTRCR	8	8	2 or 3 PCLKB	section 26.
	IWDT Count Stop Control Register	IWDTCSTPR	8	8	2 or 3 PCLKB	section 26.
0008 80C0h DA	D/A Data Register 0	DADR0	16	16	2 or 3 PCLKB	section 34.
0008 80C2h DA	D/A Data Register 1	DADR1	16	16	2 or 3 PCLKB	section 34.
0008 80C4h DA	D/A Control Register	DACR	8	8	2 or 3 PCLKB	section 34.
0008 80C5h DA	DADRm Format Select Register	DADPR	8	8	2 or 3 PCLKB	section 34.
0008 80C6h DA	D/A A/D Synchronous Start Control Register	DAADSCR	8	8	2 or 3 PCLKB	section 34.
0008 8200h TMR0	Timer Control Register	TCR	8	8	2 or 3 PCLKB	section 22.
0008 8201h TMR1	Timer Control Register	TCR	8	8	2 or 3 PCLKB	section 22.
0008 8202h TMR0	Timer Control/Status Register	TCSR	8	8	2 or 3 PCLKB	section 22.
0008 8203h TMR1	Timer Control/Status Register	TCSR	8	8	2 or 3 PCLKB	section 22.
0008 8204h TMR0	Time Constant Register A	TCORA	8	8	2 or 3 PCLKB	section 22.
0008 8204h TMR0		TCORA	16	16	2 or 3 PCLKB	section 22.
0008 8205h TMR1	Time Constant Register A	TCORA	8	8	2 or 3 PCLKB	section 22.
0008 8206h TMR0	Time Constant Register B	TCORB	8	8	2 or 3 PCLKB	section 22.
0008 8206h TMR0		TCORB	16	16	2 or 3 PCLKB	section 22.
0008 8200H TMR0	Time Constant Register B	TCORB	8	8	2 or 3 PCLKB	section 22.
0008 8207h TMR1	Timer Counter	TCNT	8	8	2 or 3 PCLKB	section 22.
0008 8208h TMR0	Timer Counter Timer Counter	TCNT	16	16	2 or 3 PCLKB	section 22.
0008 8209h TMR1		TCNT	8	8	2 or 3 PCLKB	section 22.
0008 820Ah TMR0 0008 820Ah TMR0	Timer Counter Timer Counter Control Register	TCCR	16	16	2 or 3 PCLKB 2 or 3 PCLKB	section 22.

Table 5.1 List of I/O Registers (Address Order) (3 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
0008 820Bh	TMR1	Timer Counter Control Register	TCCR	8	8	2 or 3 PCLKB	section 22.
0008 820Ch	TMR0	Timer Counter Start Register	TCSTR	8	8	2 or 3 PCLKB	section 22.
0008 8210h	TMR2	Timer Control Register	TCR	8	8	2 or 3 PCLKB	section 22.
0008 8211h	TMR3	Timer Control Register	TCR	8	8	2 or 3 PCLKB	section 22.
0008 8212h	TMR2	Timer Control/Status Register	TCSR	8	8	2 or 3 PCLKB	section 22.
0008 8213h	TMR3	Timer Control/Status Register	TCSR	8	8	2 or 3 PCLKB	section 22.
0008 8214h	TMR2	Time Constant Register A	TCORA	8	8	2 or 3 PCLKB	section 22.
0008 8214h	TMR23	Time Constant Register A	TCORA	16	16	2 or 3 PCLKB	section 22.
0008 8215h	TMR3	Time Constant Register A	TCORA	8	8	2 or 3 PCLKB	section 22.
0008 8216h	TMR2	Time Constant Register B	TCORB	8	8	2 or 3 PCLKB	section 22.
0008 8216h	TMR23	Time Constant Register B	TCORB	16	16	2 or 3 PCLKB	section 22.
0008 8217h	TMR3	Time Constant Register B	TCORB	8	8	2 or 3 PCLKB	section 22.
0008 8218h	TMR2	Timer Counter	TCNT	8	8	2 or 3 PCLKB	section 22.
0008 8218h	TMR23	Timer Counter	TCNT	16	16	2 or 3 PCLKB	section 22.
0008 8219h	TMR3	Timer Counter	TCNT	8	8	2 or 3 PCLKB	section 22.
0008 821Ah	TMR2	Timer Counter Control Register	TCCR	8	8	2 or 3 PCLKB	section 22.
0008 821Ah	TMR23	Timer Counter Control Register	TCCR	16	16	2 or 3 PCLKB	section 22.
0008 821Bh	TMR3	Timer Counter Control Register	TCCR	8	8	2 or 3 PCLKB	section 22.
0008 821Ch	TMR2	Timer Counter Start Register	TCSTR	8	8	2 or 3 PCLKB	section 22.
0008 8280h	CRC	CRC Control Register	CRCCR	8	8	2 or 3 PCLKB	section 31.
0008 8281h	CRC	CRC Data Input Register	CRCDIR	8	8	2 or 3 PCLKB	section 31.
0008 8282h	CRC	CRC Data Output Register	CRCDOR	16	16	2 or 3 PCLKB	section 31.
0008 8300h	RIIC0	I ² C Bus Control Register 1	ICCR1	8	8	2 or 3 PCLKB	section 29.
0008 8301h	RIIC0	I ² C Bus Control Register 2	ICCR2	8	8	2 or 3 PCLKB	section 29.
0008 8302h	RIIC0	I ² C Bus Mode Register 1	ICMR1	8	8	2 or 3 PCLKB	section 29.
0008 8303h	RIIC0	I ² C Bus Mode Register 2	ICMR2	8	8	2 or 3 PCLKB	section 29.
0008 8304h	RIIC0	I ² C Bus Mode Register 3	ICMR3	8	8	2 or 3 PCLKB	section 29.
0008 8305h	RIIC0	I ² C Bus Function Enable Register	ICFER	8	8	2 or 3 PCLKB	section 29.
0008 8306h	RIIC0	I ² C Bus Status Enable Register	ICSER	8	8	2 or 3 PCLKB	section 29.
0008 8307h	RIIC0	I ² C Bus Interrupt Enable Register	ICIER	8	8	2 or 3 PCLKB	section 29.
0008 8308h	RIIC0	I ² C Bus Status Register 1	ICSR1	8	8	2 or 3 PCLKB	section 29.
0008 8309h	RIIC0	I ² C Bus Status Register 2	ICSR2	8	8	2 or 3 PCLKB	section 29.
0008 830Ah	RIIC0	Slave Address Register L0	SARL0	8	8	2 or 3 PCLKB	section 29.
0008 830Bh	RIIC0	Slave Address Register U0	SARU0	8	8	2 or 3 PCLKB	section 29.
0008 830Ch	RIIC0	Slave Address Register L1	SARL1	8	8	2 or 3 PCLKB	section 29.
0008 830Dh	RIIC0	Slave Address Register L1	SARU1	8	8	2 or 3 PCLKB	
0008 830Eh	RIIC0	Slave Address Register U1 Slave Address Register L2	SARL2	8	8	2 or 3 PCLKB	section 29.
0008 830Fh	RIIC0	Slave Address Register L2	SARU2	8	8	2 or 3 PCLKB	section 29.
0008 830FII	RIIC0	12C Bus Bit Rate Low-Level Register	ICBRL	8	8	2 or 3 PCLKB	section 29.
		<u> </u>	ICBRH			2 or 3 PCLKB	
0008 8311h	RIIC0	I ² C Bus Bit Rate High-Level Register		8	8		section 29.
0008 8312h	RIIC0	12C Bus Transmit Data Register	ICDRT	8	8	2 or 3 PCLKB	section 29.
0008 8313h	RIIC0	I ² C Bus Receive Data Register	ICDRR	8	8	2 or 3 PCLKB	section 29.
0008 8380h	RSPI0	RSPI Control Register	SPCR	8	8	2 or 3 PCLKB	section 30.
0008 8381h	RSPI0	RSPI Slave Select Polarity Register	SSLP	8	8	2 or 3 PCLKB	section 30.
0008 8382h	RSPI0	RSPI Pin Control Register	SPPCR	8	8	2 or 3 PCLKB	section 30.
0008 8383h	RSPI0	RSPI Status Register	SPSR	8	8	2 or 3 PCLKB	section 30.
0008 8384h	RSPI0	RSPI Data Register	SPDR	32	16, 32	2 or 3 PCLKB/2 ICLK	section 30.
0008 8388h	RSPI0	RSPI Sequence Control Register	SPSCR	8	8	2 or 3 PCLKB	section 30.
0008 8389h	RSPI0	RSPI Sequence Status Register	SPSSR	8	8	2 or 3 PCLKB	section 30.
0008 838Ah	RSPI0	RSPI Bit Rate Register	SPBR	8	8	2 or 3 PCLKB	section 30.
0008 838Bh	RSPI0	RSPI Data Control Register	SPDCR	8	8	2 or 3 PCLKB	section 30.
0008 838Ch	RSPI0	RSPI Clock Delay Register	SPCKD	8	8	2 or 3 PCLKB	section 30.

Table 5.1 List of I/O Registers (Address Order) (4 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
0008 838Dh	RSPI0	RSPI Slave Select Negation Delay Register	SSLND	8	8	2 or 3 PCLKB	section 30.
0008 838Eh	RSPI0	RSPI Next-Access Delay Register	SPND	8	8	2 or 3 PCLKB	section 30.
0008 838Fh	RSPI0	RSPI Control Register 2	SPCR2	8	8	2 or 3 PCLKB	section 30.
0008 8390h	RSPI0	RSPI Command Register 0	SPCMD0	16	16	2 or 3 PCLKB	section 30.
0008 8392h	RSPI0	RSPI Command Register 1	SPCMD1	16	16	2 or 3 PCLKB	section 30.
0008 8394h	RSPI0	RSPI Command Register 2	SPCMD2	16	16	2 or 3 PCLKB	section 30.
0008 8396h	RSPI0	RSPI Command Register 3	SPCMD3	16	16	2 or 3 PCLKB	section 30.
0008 8398h	RSPI0	RSPI Command Register 4	SPCMD4	16	16	2 or 3 PCLKB	section 30.
0008 839Ah	RSPI0	RSPI Command Register 5	SPCMD5	16	16	2 or 3 PCLKB	section 30.
0008 839Ch	RSPI0	RSPI Command Register 6	SPCMD6	16	16	2 or 3 PCLKB	section 30.
0008 839Eh	RSPI0	RSPI Command Register 7	SPCMD7	16	16	2 or 3 PCLKB	section 30.
0008 8600h	MTU3	Timer Control Register	TCR	8	8	2 or 3 PCLKB	section 20.
0008 8601h	MTU4	Timer Control Register	TCR	8	8	2 or 3 PCLKB	section 20.
0008 8602h	MTU3	Timer Mode Register	TMDR	8	8	2 or 3 PCLKB	section 20.
0008 8603h	MTU4	Timer Mode Register	TMDR	8	8	2 or 3 PCLKB	section 20.
0008 8604h	MTU3	Timer I/O Control Register H	TIORH	8	8	2 or 3 PCLKB	section 20.
0008 8605h	MTU3	Timer I/O Control Register L	TIORL	8	8	2 or 3 PCLKB	section 20.
0008 8606h	MTU4	Timer I/O Control Register H	TIORH	8	8	2 or 3 PCLKB	section 20.
0008 8607h	MTU4	Timer I/O Control Register L	TIORL	8	8	2 or 3 PCLKB	section 20.
0008 8608h	MTU3	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB	section 20.
0008 8609h	MTU4	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB	section 20.
0008 860Ah	MTU	Timer Output Master Enable Registers	TOER	8	8	2 or 3 PCLKB	section 20.
008 860Dh	MTU	Timer Gate Control Registers	TGCR	8	8	2 or 3 PCLKB	section 20.
008 860Eh	MTU	Timer Output Control Register 1	TOCR1	8	8	2 or 3 PCLKB	section 20.
0008 860Fh	MTU	Timer Output Control Register 2	TOCR2	8	8	2 or 3 PCLKB	section 20.
008 8610h	MTU3	Timer Counter	TCNT	16	16	2 or 3 PCLKB	section 20.
008 8612h	MTU4	Timer Counter	TCNT	16	16	2 or 3 PCLKB	section 20.
008 8614h	MTU	Timer Cycle Data Register	TCDR	16	16	2 or 3 PCLKB	section 20.
008 8616h	MTU	Timer Dead Time Data Register	TDDR	16	16	2 or 3 PCLKB	section 20.
008 8618h	MTU3	Timer General Register A	TGRA	16	16	2 or 3 PCLKB	section 20.
0008 861Ah	MTU3	Timer General Register B	TGRB	16	16	2 or 3 PCLKB	section 20.
0008 861Ch	MTU4	Timer General Register A	TGRA	16	16	2 or 3 PCLKB	section 20.
0008 861Eh	MTU4	Timer General Register B	TGRB	16	16	2 or 3 PCLKB	section 20.
0008 8620h	MTU	Timer Subcounter	TCNTS	16	16	2 or 3 PCLKB	section 20.
0008 8622h	MTU	Timer Cycle Buffer Register	TCBR	16	16	2 or 3 PCLKB	section 20.
0008 8624h	MTU3	Timer General Register C	TGRC	16	16	2 or 3 PCLKB	section 20.
0008 8626h	MTU3	Timer General Register D	TGRD	16	16	2 or 3 PCLKB	section 20.
0008 8628h	MTU4	Timer General Register C	TGRC	16	16	2 or 3 PCLKB	section 20.
0008 862Ah	MTU4	Timer General Register D	TGRD	16	16	2 or 3 PCLKB	section 20.
0008 862Ch	MTU3	Timer Status Register	TSR	8	8	2 or 3 PCLKB	section 20.
0008 862Dh	MTU4	Timer Status Register	TSR	8	8	2 or 3 PCLKB	section 20.
0008 8630h	MTU MTU	Timer Interrupt Skipping Set Register	TITCR	8	8	2 or 3 PCLKB	section 20.
0008 8631h	MTU		TITCNT	8	8	2 or 3 PCLKB	
0008 8632h	MTU	Timer Interrupt Skipping Counter Timer Buffer Transfer Set Register	TBTER	8	8	2 or 3 PCLKB	section 20.
		<u> </u>					section 20.
0008 8634h	MTU	Timer Dead Time Enable Register	TDER	8	8	2 or 3 PCLKB	section 20.
0008 8636h	MTU	Timer Output Level Buffer Register	TOLBR	8	8	2 or 3 PCLKB	section 20.
0008 8638h	MTU3	Timer Buffer Operation Transfer Mode Register	TBTM	8	8	2 or 3 PCLKB	section 20.
0008 8639h	MTU4	Timer Buffer Operation Transfer Mode Register	TBTM	8	8	2 or 3 PCLKB	section 20.
0008 8640h	MTU4	Timer A/D Converter Start Request Control Register	TADCR	16	16	2 or 3 PCLKB	section 20.
0008 8644h	MTU4	Timer A/D Converter Start Request Cycle Set Register A	TADCORA	16	16	2 or 3 PCLKB	section 20.
0008 8646h	MTU4	Timer A/D Converter Start Request Cycle Set Register B	TADCORB	16	16	2 or 3 PCLKB	section 20.
0008 8648h	MTU4	Timer A/D Converter Start Request Cycle Set Buffer Register A	TADCOBRA	16	16	2 or 3 PCLKB	section 20.

Table 5.1 List of I/O Registers (Address Order) (5 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
0008 864Ah	MTU4	Timer A/D Converter Start Request Cycle Set Buffer Register B	TADCOBRB	16	16	2 or 3 PCLKB	section 20.
0008 8660h	MTU	Timer Waveform Control Register	TWCR	8	8, 16	2 or 3 PCLKB	section 20.
0008 8680h	MTU	Timer Start Register	TSTR	8	8, 16	2 or 3 PCLKB	section 20.
0008 8681h	MTU	Timer Synchronous Register	TSYR	8	8, 16	2 or 3 PCLKB	section 20.
0008 8684h	MTU	Timer Read/Write Enable Register	TRWER	8	8, 16	2 or 3 PCLKB	section 20.
0008 8690h	MTU0	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB	section 20.
0008 8691h	MTU1	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB	section 20.
0008 8692h	MTU2	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB	section 20.
0008 8693h	MTU3	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB	section 20.
0008 8694h	MTU4	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB	section 20.
0008 8695h	MTU5	Noise Filter Control Register	NFCR	8	8, 16	2 or 3 PCLKB	section 20.
0008 8700h	MTU0	Timer Control Register	TCR	8	8	2 or 3 PCLKB	section 20.
0008 8701h	MTU0	Timer Mode Register	TMDR	8	8	2 or 3 PCLKB	section 20.
0008 8702h	MTU0	Timer I/O Control Register H	TIORH	8	8	2 or 3 PCLKB	section 20.
0008 8703h	MTU0	Timer I/O Control Register L	TIORL	8	8	2 or 3 PCLKB	section 20.
0008 8704h	MTU0	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB	section 20.
0008 8705h	MTU0	Timer Status Register	TSR	8	8	2 or 3 PCLKB	section 20.
0008 8706h	MTU0	Timer Counter	TCNT	16	16	2 or 3 PCLKB	section 20.
0008 8708h	MTU0	Timer General Register A	TGRA	16	16	2 or 3 PCLKB	section 20.
0008 870Ah	MTU0	Timer General Register B	TGRB	16	16	2 or 3 PCLKB	section 20.
0008 870Ch	MTU0	Timer General Register C	TGRC	16	16	2 or 3 PCLKB	section 20.
0008 870Eh	MTU0	Timer General Register D	TGRD	16	16	2 or 3 PCLKB	section 20.
0008 8720h	MTU0	Timer General Register E	TGRE	16	16	2 or 3 PCLKB	section 20.
0008 8722h	MTU0	Timer General Register F	TGRF	16	16	2 or 3 PCLKB	section 20.
0008 8724h	MTU0	Timer Interrupt Enable Register 2	TIER2	8	8	2 or 3 PCLKB	section 20.
0008 8726h	MTU0	Timer Buffer Operation Transfer Mode Register	TBTM	8	8	2 or 3 PCLKB	section 20.
0008 8780h	MTU1	Timer Control Register	TCR	8	8	2 or 3 PCLKB	section 20.
0008 8781h	MTU1	Timer Mode Register	TMDR	8	8	2 or 3 PCLKB	section 20.
0008 8782h	MTU1	Timer I/O Control Register	TIOR	8	8	2 or 3 PCLKB	section 20.
0008 8784h	MTU1	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB	section 20.
0008 8785h	MTU1	Timer Status Register	TSR	8	8	2 or 3 PCLKB	section 20.
0008 8786h	MTU1	Timer Counter	TCNT	16	16	2 or 3 PCLKB	section 20.
0008 8788h	MTU1	Timer General Register A	TGRA	16	16	2 or 3 PCLKB	section 20.
0008 878Ah	MTU1	Timer General Register B	TGRB	16	16	2 or 3 PCLKB	section 20.
0008 8790h	MTU1	Timer Input Capture Control Register	TICCR	8	8	2 or 3 PCLKB	section 20.
0008 8800h	MTU2	Timer Control Register	TCR	8	8	2 or 3 PCLKB	section 20.
0008 8801h	MTU2	Timer Mode Register	TMDR	8	8	2 or 3 PCLKB	section 20.
0008 8802h	MTU2	Timer I/O Control Register	TIOR	8	8	2 or 3 PCLKB	section 20.
0008 8804h	MTU2	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB	section 20.
0008 8805h	MTU2	Timer Status Register	TSR	8	8	2 or 3 PCLKB	section 20.
0008 8806h	MTU2	Timer Counter	TCNT	16	16	2 or 3 PCLKB	section 20.
0008 8808h	MTU2	Timer General Register A	TGRA	16	16	2 or 3 PCLKB	section 20.
0008 880Ah	MTU2	Timer General Register B	TGRB	16	16	2 or 3 PCLKB	section 20.
0008 8880h	MTU5	Timer Counter U	TCNTU	16	16	2 or 3 PCLKB	section 20.
0008 8882h	MTU5	Timer General Register U	TGRU	16	16	2 or 3 PCLKB	section 20.
0008 8884h	MTU5	Timer Control Register U	TCRU	8	8	2 or 3 PCLKB	section 20.
0008 8886h	MTU5	Timer I/O Control Register U	TIORU	8	8	2 or 3 PCLKB	section 20.
0008 8890h	MTU5	Timer Counter V	TCNTV	16	16	2 or 3 PCLKB	section 20.
0008 8892h	MTU5	Timer General Register V	TGRV	16	16	2 or 3 PCLKB	section 20.
0008 8894h	MTU5	Timer Control Register V	TCRV	8	8	2 or 3 PCLKB	section 20.
0008 8896h	MTU5	Timer I/O Control Register V	TIORV	8	8	2 or 3 PCLKB	section 20.
	MTU5	Timer Counter W	TCNTW	16	16	2 or 3 PCLKB	3 20.

Table 5.1 List of I/O Registers (Address Order) (6 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
0008 88A2h	MTU5	Timer General Register W	TGRW	16	16	2 or 3 PCLKB	section 20.
0008 88A4h	MTU5	Timer Control Register W	TCRW	8	8	2 or 3 PCLKB	section 20.
0008 88A6h	MTU5	Timer I/O Control Register W	TIORW	8	8	2 or 3 PCLKB	section 20.
0008 88B2h	MTU5	Timer Interrupt Enable Register	TIER	8	8	2 or 3 PCLKB	section 20.
0008 88B4h	MTU5	Timer Start Register	TSTR	8	8	2 or 3 PCLKB	section 20.
0008 88B6h	MTU5	Timer Compare Match Clear Register	TCNTCMPCLR	8	8	2 or 3 PCLKB	section 20.
0008 8900h	POE	Input Level Control/Status Register 1	ICSR1	16	8, 16	2 or 3 PCLKB	section 21.
0008 8902h	POE	Output Level Control/Status Register 1	OCSR1	16	8, 16	2 or 3 PCLKB	section 21.
0008 8908h	POE	Input Level Control/Status Register 2	ICSR2	16	8, 16	2 or 3 PCLKB	section 21.
0008 890Ah	POE	Software Port Output Enable Register	SPOER	8	8	2 or 3 PCLKB	section 21.
0008 890Bh	POE	Port Output Enable Control Register 1	POECR1	8	8	2 or 3 PCLKB	section 21.
0008 890Ch	POE	Port Output Enable Control Register 2	POECR2	8	8	2 or 3 PCLKB	section 21.
0008 890Eh	POE	Input Level Control/Status Register 3	ICSR3	16	8, 16	2 or 3 PCLKB	section 21.
0008 9000h	S12AD	A/D Control Register	ADCSR	16	16	2 or 3 PCLKB	section 33.
0008 9004h	S12AD	A/D Channel Select Register A0	ADANSA0	16	16	2 or 3 PCLKB	section 33.
0008 9006h	S12AD	A/D Channel Select Register A1	ADANSA1	16	16	2 or 3 PCLKB	section 33.
0008 9008h	S12AD	A/D-Converted Value Addition/Average Function Select Register 0	ADADS0	16	16	2 or 3 PCLKB	section 33.
0008 900Ah	S12AD	A/D-Converted Value Addition/Average Function Select Register 1	ADADS1	16	16	2 or 3 PCLKB	section 33.
0008 900Ch	S12AD	A/D-Converted Value Addition/Average Count Select Register	ADADC	8	8	2 or 3 PCLKB	section 33.
0008 900Eh	S12AD	A/D Control Extended Register	ADCER	16	16	2 or 3 PCLKB	section 33.
0008 9010h	S12AD	A/D Conversion Start Trigger Select Register	ADSTRGR	16	16	2 or 3 PCLKB	section 33.
0008 9012h	S12AD	A/D Conversion Extended Input Control Register	ADEXICR	16	16	2 or 3 PCLKB	section 33.
0008 9014h	S12AD	A/D Channel Select Register B0	ADANSB0	16	16	2 or 3 PCLKB	section 33.
0008 9016h	S12AD	A/D Channel Select Register B1	ADANSB1	16	16	2 or 3 PCLKB	section 33.
0008 9018h	S12AD	A/D Data Duplication Register	ADDBLDR	16	16	2 or 3 PCLKB	section 33.
0008 901Ah	S12AD	A/D Temperature Sensor Data Register	ADTSDR	16	16	2 or 3 PCLKB	section 33.
0008 901Ch	S12AD	A/D Internal Reference Voltage Data Register	ADOCDR	16	16	2 or 3 PCLKB	section 33.
0008 901Eh	S12AD	A/D Self-Diagnosis Data Register	ADRD	16	16	2 or 3 PCLKB	section 33.
0008 9020h	S12AD	A/D Data Register 0	ADDR0	16	16	2 or 3 PCLKB	section 33.
0008 9022h	S12AD	A/D Data Register 1	ADDR1	16	16	2 or 3 PCLKB	section 33.
0008 9024h	S12AD	A/D Data Register 2	ADDR2	16	16	2 or 3 PCLKB	section 33.
0008 9026h	S12AD	A/D Data Register 3	ADDR3	16	16	2 or 3 PCLKB	section 33.
0008 9028h	S12AD	A/D Data Register 4	ADDR4	16	16	2 or 3 PCLKB	section 33.
0008 902Ah	S12AD	A/D Data Register 5	ADDR5	16	16	2 or 3 PCLKB	section 33.
0008 902Ch	S12AD	A/D Data Register 6	ADDR6	16	16	2 or 3 PCLKB	section 33.
0008 902Eh	S12AD	A/D Data Register 7	ADDR7	16	16	2 or 3 PCLKB	section 33.
0008 9040h	S12AD	A/D Data Register 16	ADDR16	16	16	2 or 3 PCLKB	section 33.
0008 9042h	S12AD	A/D Data Register 17	ADDR17	16	16	2 or 3 PCLKB	section 33.
0008 9044h	S12AD	A/D Data Register 18	ADDR18	16	16	2 or 3 PCLKB	section 33.
0008 9046h	S12AD	A/D Data Register 19	ADDR19	16	16	2 or 3 PCLKB	section 33.
0008 9048h	S12AD	A/D Data Register 20	ADDR20	16	16	2 or 3 PCLKB	section 33.
0008 904Ah	S12AD	A/D Data Register 21	ADDR21	16	16	2 or 3 PCLKB	section 33.
0008 904Ch	S12AD	A/D Data Register 22	ADDR22	16	16	2 or 3 PCLKB	section 33.
0008 904Eh	S12AD	A/D Data Register 23	ADDR23	16	16	2 or 3 PCLKB	section 33.
0008 9050h	S12AD	A/D Data Register 24	ADDR24	16	16	2 or 3 PCLKB	section 33.
0008 9052h	S12AD	A/D Data Register 25	ADDR25	16	16	2 or 3 PCLKB	section 33.
0008 9054h	S12AD	A/D Data Register 26	ADDR26	16	16	2 or 3 PCLKB	section 33.
0008 9056h	S12AD	A/D Data Register 27	ADDR27	16	16	2 or 3 PCLKB	section 33.
0008 9058h	S12AD	A/D Data Register 28	ADDR28	16	16	2 or 3 PCLKB	section 33.
		•	ADDR29		16	2 or 3 PCLKB	
0008 905Ah	S12AD	A/D Data Register 29		16	10	2 UI 3 EUI ND	section 33.

Table 5.1 List of I/O Registers (Address Order) (7 / 18)

0.008 9077h 917AD AD Discommendon Detection Commit Register ADDISCOR 6 6 2 or 3 PCLKB section 9008 907h 917AD AD Event Link Christia Register ADDISCOR 6 6 2 or 3 PCLKB section 9008 9000h 317AD AD Event Link Christia Register ADDISCOR 6 16 2 or 3 PCLKB section 9008 9000h 317AD AD Compare Function Window AD Balants Monther Register ADDISCOR 8 8 2 or 3 PCLKB section 9008 9000h 317AD AD Compare Function Window AD Balants Monther Register ADDISCOR 16 16 2 or 3 PCLKB section 9008 9000h 317AD AD Compare Function Window AD Balants Monther Register ADDISCOR 16 16 2 or 3 PCLKB section 9008 9000h 317AD AD Compare Function Window AD Balants Monther Register ADDISCOR 16 16 2 or 3 PCLKB section 9008 9000h 317AD AD Compare Function Window AD Balants Monther Register ADDISCOR 16 16 2 or 3 PCLKB section 9008 9000h 317AD AD Compare Function Window AD Balants Monther Register ADCAMPAIS 8 8 2 or 3 PCLKB section 9008 9000h 317AD AD Compare Function Window AD Compare Function Window AD Balants Monther Register ADCAMPAIS 16 16 2 or 3 PCLKB section 9008 9000h 317AD AD Compare Function Window AD Command Select Register ADCAMPAIS 16 16 2 or 3 PCLKB section 9008 9000h 317AD AD Compare Function Window AD Command Select Register ADCAMPAIS 16 16 2 or 3 PCLKB section 9008 9000h 317AD AD Compare Function Window AD Command Select Register ADCAMPAIS 16 16 2 or 3 PCLKB section 9009 9000h 317AD AD Compare Function Window AD Command Select Register ADCAMPAIS 16 16 2 or 3 PCLKB section 9009 9000h 317AD AD Compare Function Window AD Command Select Register ADCAMPAIS 16 16 2 or 3 PCLKB section 9009 9000h 317AD AD Compare Function Window AD Command Select Register ADCAMPAIS 16 16 2 or 3 PCLKB section 9009 9000h 317AD AD Compare Function Window AD Command Select Register ADCAMPAIS 16 16 2 or 3 PCLKB section 9009 9000	Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
	0008 905Eh	S12AD	A/D Data Register 31	ADDR31	16	16	2 or 3 PCLKB	section 33.
	0008 907Ah	S12AD	A/D Disconnection Detection Control Register	ADDISCR	8	8	2 or 3 PCLKB	section 33.
2008 9084h STAPO AD Flagh-Potenhalt on-Potenhal Reference Voltage Control ADHVREFORT 8 8 2 or 3 PCLV8 section Register ADMVREFOR 8 8	0008 907Dh	S12AD	A/D Event Link Control Register	ADELCCR	8	8	2 or 3 PCLKB	section 33.
September Programme	0008 9080h	S12AD	A/D Group Scan Priority Control Register	ADGSPCR	16	16	2 or 3 PCLKB	section 33.
	0008 908Ah	S12AD		ADHVREFCNT	8	8	2 or 3 PCLKB	section 33.
	0008 908Ch	S12AD	A/D Compare Function Window A/B Status Monitor Register	ADWINMON	8	8	2 or 3 PCLKB	section 33.
Register Register Section	0008 9090h	S12AD	A/D Compare Function Control Register	ADCMPCR	16	16	2 or 3 PCLKB	section 33.
Condition Setting Register	0008 9092h	S12AD		ADCMPANSER	8	8	2 or 3 PCLKB	section 33.
0008 9098h \$12AD APD Compare Function Window A Channel Select Register 1 ADCMPANSR1 16 16 2 or 3 PCLKB sector 0008 9098h \$12AD APD Compare Function Window A Comparison Condition ADCMPRRD 16 16 2 or 3 PCLKB sector 0008 9098h \$12AD APD Compare Function Window A Comparison Condition ADCMPRRD 16 16 2 or 3 PCLKB sector 0008 9098h \$12AD APD Compare Function Window A Lower-Side Level Setting ADCMPRD 16 16 2 or 3 PCLKB sector 0008 9096h \$12AD APD Compare Function Window A Channel Status Register 1 ADCMPRD 16 16 2 or 3 PCLKB sector 0008 9040h \$12AD APD Compare Function Window A Channel Status Register 1 ADCMPSRI 16 16 2 or 3 PCLKB sector 0008 9040h \$12AD APD Compare Function Window A Channel Status Register 1 ADCMPSRI 16 16 2 or 3 PCLKB sector 0008 9040h \$12AD APD Compare Function Window A Channel Status Register 1 ADCMPSRR 8 2 or 3 PCLKB	0008 9093h	S12AD		ADCMPLER	8	8	2 or 3 PCLKB	section 33.
	0008 9094h	S12AD	A/D Compare Function Window A Channel Select Register 0	ADCMPANSR0	16	16	2 or 3 PCLKB	section 33.
Setting Register 0	0008 9096h	S12AD	A/D Compare Function Window A Channel Select Register 1	ADCMPANSR1	16	16	2 or 3 PCLKB	section 33.
Setting Register	0008 9098h	S12AD		ADCMPLR0	16	16	2 or 3 PCLKB	section 33.
Register	0008 909Ah	S12AD		ADCMPLR1	16	16	2 or 3 PCLKB	section 33.
Register Register Register Register Register Register ADCMPSR0 16 16 2 or 3 PCLKB section Register ADCMPSR0 16 16 2 or 3 PCLKB section Register Register Register ADCMPSR0 16 16 2 or 3 PCLKB section Register Register Register ADCMPSR0 16 16 2 or 3 PCLKB Section Register Register Register ADCMPSR0 8 8 2 or 3 PCLKB Section Register Register ADCMPSR0 8 8 2 or 3 PCLKB Section Register Register ADCMPSR0 8 8 2 or 3 PCLKB Section Register Register ADCMPSR0 8 8 2 or 3 PCLKB Section Register Register ADCMPSR0 8 8 2 or 3 PCLKB Section Register Register ADCMPSR0 8 8 2 or 3 PCLKB Section Register Register Register ADCMPSR0 8 8 2 or 3 PCLKB Section Register Register Register ADCMPSR0 8 8 2 or 3 PCLKB Section Register Register ADCMPSR0 8 8 2 or 3 PCLKB Section Register Register ADCMPSR0 8 8 2 or 3 PCLKB Section Register ADCMPSR0 8 8 2 or 3 PCLKB Section Register ADCMPSR0 8 8 2 or 3 PCLKB Section Register ADCMPSR0 8 8 2 or 3 PCLKB Section Register ADCMPSR0 8 8 2 or 3 PCLKB Section Register ADCMPSR0 Register ADCMPSR0 8 8 2 or 3 PCLKB Section Register ADCMPSR0 Register Register ADCMPSR0 Register Register ADCMPSR0 Register ADCMPSR0 Register R	0008 909Ch	S12AD		ADCMPDR0	16	16	2 or 3 PCLKB	section 33.
0008 90A2h S12AD AD Compare Function Window A Channel Status Register 1 ADCMPSER 8 8 2 or 3 PCLKB section 0008 90A4h \$12AD AD Compare Function Window A Extended Input Channel ADCMPSER 8 8 2 or 3 PCLKB section 0008 90A8h \$12AD AD Compare Function Window B Channel Select Register ADCMPBINSR 8 8 2 or 3 PCLKB section 0008 90A8h \$12AD AD Compare Function Window B Lower-Side Level Setting Register ADWINLEB 16 16 2 or 3 PCLKB section 0008 90AAh \$12AD AD Compare Function Window B Upper-Side Level Setting Register ADWINULB 16 16 2 or 3 PCLKB section 0008 90ACh \$12AD AD Compare Function Window B Status Register ADMPSR 8 8 2 or 3 PCLKB section 0008 90ACh \$12AD AD Data Storage Buffer Register 0 ADBUF0 16 16 2 or 3 PCLKB section 0008 90B6h \$12AD AD Data Storage Buffer Register 2 ADBUF2 16 16 2 or 3 PCLKB section<	0008 909Eh	S12AD		ADCMPDR1	16	16	2 or 3 PCLKB	section 33.
0008 90AHh S12AD AVD Compare Function Window A Extended Input Channel ADCMPSER 8 8 2 or 3 PCLKB section 0008 90ABh S12AD AVD Compare Function Window B Channel Select Register ADCMPBNSR 8 8 2 or 3 PCLKB section 0008 90ABh S12AD AVD Compare Function Window B Lower-Sirde Level Setting Register ADWINLLB 16 16 2 or 3 PCLKB section 0008 90ACh S12AD AVD Compare Function Window B Upper-Sirde Level Setting Register ADWINULB 16 16 2 or 3 PCLKB section 0008 90ACh S12AD AVD Compare Function Window B Upper-Sirde Level Setting Register 0 ADBUFD 16 16 2 or 3 PCLKB section 0008 90ACh S12AD AVD Compare Function Window B Status Register 0 ADBUFD 16 16 2 or 3 PCLKB section 0008 90BAD S12AD AVD Data Storage Buffer Register 0 ADBUFD 16 16 2 or 3 PCLKB section 0008 90BAD S12AD AVD Data Storage Buffer Register 2 ADBUF2 16 16 2 or 3 PCL	0008 90A0h	S12AD	A/D Compare Function Window A Channel Status Register 0	ADCMPSR0	16	16	2 or 3 PCLKB	section 33.
Saltus Register	0008 90A2h	S12AD	A/D Compare Function Window A Channel Status Register 1	ADCMPSR1	16	16	2 or 3 PCLKB	section 33.
0008 90A8h S12AD AD Compare Function Window B Lower-Side Level Setting Register ADWINLLB 16 16 2 or 3 PCLKB section 0008 90AAh S12AD AD Compare Function Window B Upper-Side Level Setting Register ADWINULB 16 16 2 or 3 PCLKB section 0008 90ACh S12AD AD Compare Function Window B Status Register ADEMPSR 8 8 2 or 3 PCLKB section 0008 90BDN S12AD AD Data Storage Buffer Register 1 ADBUF0 16 16 2 or 3 PCLKB section 0008 90BDN S12AD AD Data Storage Buffer Register 1 ADBUF1 16 16 2 or 3 PCLKB section 0008 90BBh S12AD AD Data Storage Buffer Register 2 ADBUF2 16 16 2 or 3 PCLKB section 0008 90BBh S12AD AD Data Storage Buffer Register 3 ADBUF3 16 16 2 or 3 PCLKB section 0008 90BBh S12AD AD Data Storage Buffer Register 4 ADBUF4 16 16 2 or 3 PCLKB section 0008 90BCh S12	0008 90A4h	S12AD		ADCMPSER	8	8	2 or 3 PCLKB	section 33.
Register ADWINULB 16	0008 90A6h	S12AD	A/D Compare Function Window B Channel Select Register	ADCMPBNSR	8	8	2 or 3 PCLKB	section 33.
Register	0008 90A8h	S12AD		ADWINLLB	16	16	2 or 3 PCLKB	section 33.
0008 90B0h \$12AD A/D Data Storage Buffer Register 0 ABBUF0 16 16 2 or 3 PCLKB section 0008 90B2h \$12AD A/D Data Storage Buffer Register 1 ADBUF1 16 16 2 or 3 PCLKB section 0008 90B4h \$12AD A/D Data Storage Buffer Register 2 ADBUF2 16 16 2 or 3 PCLKB section 0008 90B8h \$12AD A/D Data Storage Buffer Register 3 ADBUF3 16 16 2 or 3 PCLKB section 0008 90B8h \$12AD A/D Data Storage Buffer Register 4 ADBUF4 16 16 2 or 3 PCLKB section 0008 90B8h \$12AD A/D Data Storage Buffer Register 6 ADBUF5 16 16 2 or 3 PCLKB section 0008 90BCh \$12AD A/D Data Storage Buffer Register 6 ADBUF6 16 16 2 or 3 PCLKB section 0008 90C0h \$12AD A/D Data Storage Buffer Register 7 ADBUF6 16 16 2 or 3 PCLKB section 0008 90Ch \$12AD A/D Data Storage Buffer Register 1	0008 90AAh	S12AD		ADWINULB	16	16	2 or 3 PCLKB	section 33.
0008 9082h S12AD AVD Data Storage Buffer Register 1 ADBUF1 16 16 2 or 3 PCLKB section 0008 90B4h S12AD AVD Data Storage Buffer Register 2 ADBUF2 16 16 2 or 3 PCLKB section 0008 90B6h S12AD AVD Data Storage Buffer Register 3 ADBUF3 16 16 2 or 3 PCLKB section 0008 90B6h S12AD AVD Data Storage Buffer Register 4 ADBUF4 16 16 2 or 3 PCLKB section 0008 90B6h S12AD AVD Data Storage Buffer Register 5 ADBUF5 16 16 2 or 3 PCLKB section 0008 90BCh S12AD AVD Data Storage Buffer Register 6 ADBUF6 16 16 2 or 3 PCLKB section 0008 90C0h S12AD AVD Data Storage Buffer Register 7 ADBUF7 16 16 2 or 3 PCLKB section 0008 90C2h S12AD AVD Data Storage Buffer Register 9 ADBUF9 16 16 2 or 3 PCLKB section 0008 90C2h S12AD AVD Data Storage Buffer Register 1	0008 90ACh	S12AD	A/D Compare Function Window B Status Register	ADCMPBSR	8	8	2 or 3 PCLKB	section 33.
0008 90B4h \$12AD AVD Data Storage Buffer Register 2 ADBUF2 16 16 2 or 3 PCLKB section 0008 90B6h \$12AD AVD Data Storage Buffer Register 3 ADBUF3 16 16 2 or 3 PCLKB section 0008 90B6h \$12AD AVD Data Storage Buffer Register 4 ADBUF4 16 16 2 or 3 PCLKB section 0008 90B6h \$12AD AVD Data Storage Buffer Register 5 ADBUF5 16 16 2 or 3 PCLKB section 0008 90B6h \$12AD AVD Data Storage Buffer Register 6 ADBUF5 16 16 2 or 3 PCLKB section 0008 90B6h \$12AD AVD Data Storage Buffer Register 7 ADBUF7 16 16 2 or 3 PCLKB section 0008 90C0h \$12AD AVD Data Storage Buffer Register 8 ADBUF9 16 16 2 or 3 PCLKB section 0008 90C4h \$12AD AVD Data Storage Buffer Register 10 ADBUF10 16 16 2 or 3 PCLKB section 0008 90C6h \$12AD AVD Data Storage Buffer Register 14	0008 90B0h	S12AD	A/D Data Storage Buffer Register 0	ADBUF0	16	16	2 or 3 PCLKB	section 33.
0008 9086h S12AD A/D Data Storage Buffer Register 3 ADBUF3 16 16 2 or 3 PCLKB section 0008 9088h S12AD A/D Data Storage Buffer Register 4 ADBUF4 16 16 2 or 3 PCLKB section 0008 908Ah S12AD A/D Data Storage Buffer Register 5 ADBUF5 16 16 2 or 3 PCLKB section 0008 90BCh S12AD A/D Data Storage Buffer Register 6 ADBUF6 16 16 2 or 3 PCLKB section 0008 90C0h S12AD A/D Data Storage Buffer Register 7 ADBUF7 16 16 2 or 3 PCLKB section 0008 90C0h S12AD A/D Data Storage Buffer Register 8 ADBUF8 16 16 2 or 3 PCLKB section 0008 90C4h S12AD A/D Data Storage Buffer Register 9 ADBUF9 16 16 2 or 3 PCLKB section 0008 90C4h S12AD A/D Data Storage Buffer Register 11 ADBUF10 16 16 2 or 3 PCLKB section 0008 90C8h S12AD A/D Data Storage Buffer Register 12	0008 90B2h	S12AD	A/D Data Storage Buffer Register 1	ADBUF1	16	16	2 or 3 PCLKB	section 33.
0008 908h \$12AD A/D Data Storage Buffer Register 4 ADBUF4 16 16 2 or 3 PCLKB section 0008 908Ah \$12AD A/D Data Storage Buffer Register 5 ADBUF5 16 16 2 or 3 PCLKB section 0008 90BCh \$12AD A/D Data Storage Buffer Register 6 ADBUF6 16 16 2 or 3 PCLKB section 0008 90Eth \$12AD A/D Data Storage Buffer Register 7 ADBUF7 16 16 2 or 3 PCLKB section 0008 90C0h \$12AD A/D Data Storage Buffer Register 8 ADBUF8 16 16 2 or 3 PCLKB section 0008 90C2h \$12AD A/D Data Storage Buffer Register 9 ADBUF9 16 16 2 or 3 PCLKB section 0008 90C4h \$12AD A/D Data Storage Buffer Register 10 ADBUF10 16 16 2 or 3 PCLKB section 0008 90C8h \$12AD A/D Data Storage Buffer Register 11 ADBUF11 16 16 2 or 3 PCLKB section 0008 90C8h \$12AD A/D Data Storage Buffer Register 13	0008 90B4h	S12AD	A/D Data Storage Buffer Register 2	ADBUF2	16	16	2 or 3 PCLKB	section 33.
0008 90BAh \$12AD A/D Data Storage Buffer Register 5 ADBUF5 16 16 2 or 3 PCLKB section 0008 90BCh \$12AD A/D Data Storage Buffer Register 6 ADBUF6 16 16 2 or 3 PCLKB section 0008 90BEh \$12AD A/D Data Storage Buffer Register 7 ADBUF7 16 16 2 or 3 PCLKB section 0008 90C0h \$12AD A/D Data Storage Buffer Register 8 ADBUF8 16 16 2 or 3 PCLKB section 0008 90C2h \$12AD A/D Data Storage Buffer Register 9 ADBUF9 16 16 2 or 3 PCLKB section 0008 90C4h \$12AD A/D Data Storage Buffer Register 10 ADBUF10 16 16 2 or 3 PCLKB section 0008 90C8h \$12AD A/D Data Storage Buffer Register 11 ADBUF11 16 16 2 or 3 PCLKB section 0008 90C8h \$12AD A/D Data Storage Buffer Register 12 ADBUF12 16 16 2 or 3 PCLKB section 0008 90CAh \$12AD A/D Data Storage Buffer Register 13 <td>0008 90B6h</td> <td>S12AD</td> <td>A/D Data Storage Buffer Register 3</td> <td>ADBUF3</td> <td>16</td> <td>16</td> <td>2 or 3 PCLKB</td> <td>section 33.</td>	0008 90B6h	S12AD	A/D Data Storage Buffer Register 3	ADBUF3	16	16	2 or 3 PCLKB	section 33.
0008 90BCh S12AD A/D Data Storage Buffer Register 6 ADBUF6 16 16 2 or 3 PCLKB section 0008 90BEh S12AD A/D Data Storage Buffer Register 7 ADBUF7 16 16 2 or 3 PCLKB section 0008 90C0h S12AD A/D Data Storage Buffer Register 8 ADBUF8 16 16 2 or 3 PCLKB section 0008 90C2h S12AD A/D Data Storage Buffer Register 9 ADBUF9 16 16 2 or 3 PCLKB section 0008 90C4h S12AD A/D Data Storage Buffer Register 10 ADBUF10 16 16 2 or 3 PCLKB section 0008 90C8h S12AD A/D Data Storage Buffer Register 11 ADBUF11 16 16 2 or 3 PCLKB section 0008 90C8h S12AD A/D Data Storage Buffer Register 12 ADBUF12 16 16 2 or 3 PCLKB section 0008 90CAh S12AD A/D Data Storage Buffer Register 13 ADBUF13 16 16 2 or 3 PCLKB section 0008 90CEh S12AD A/D Data Storage Buffer Register 14<	0008 90B8h	S12AD	A/D Data Storage Buffer Register 4	ADBUF4	16	16	2 or 3 PCLKB	section 33.
0008 90BEh S12AD AVD Data Storage Buffer Register 7 ADBUF7 16 16 2 or 3 PCLKB section 0008 90C0h S12AD AVD Data Storage Buffer Register 8 ADBUF8 16 16 2 or 3 PCLKB section 0008 90C2h S12AD AVD Data Storage Buffer Register 9 ADBUF9 16 16 2 or 3 PCLKB section 0008 90C4h S12AD AVD Data Storage Buffer Register 10 ADBUF10 16 16 2 or 3 PCLKB section 0008 90C8h S12AD AVD Data Storage Buffer Register 11 ADBUF11 16 16 2 or 3 PCLKB section 0008 90C8h S12AD AVD Data Storage Buffer Register 12 ADBUF12 16 16 2 or 3 PCLKB section 0008 90CAh S12AD AVD Data Storage Buffer Register 13 ADBUF13 16 16 2 or 3 PCLKB section 0008 90CCh S12AD AVD Data Storage Buffer Register 14 ADBUF13 16 16 2 or 3 PCLKB section 0008 90CEh S12AD AVD Data Storage Buffer Register 1	0008 90BAh	S12AD	A/D Data Storage Buffer Register 5	ADBUF5	16	16	2 or 3 PCLKB	section 33.
0008 90C0h S12AD A/D Data Storage Buffer Register 8 ADBUF8 16 16 2 or 3 PCLKB section 0008 90C2h S12AD A/D Data Storage Buffer Register 9 ADBUF9 16 16 2 or 3 PCLKB section 0008 90C4h S12AD A/D Data Storage Buffer Register 10 ADBUF10 16 16 2 or 3 PCLKB section 0008 90C6h S12AD A/D Data Storage Buffer Register 11 ADBUF11 16 16 2 or 3 PCLKB section 0008 90C8h S12AD A/D Data Storage Buffer Register 12 ADBUF12 16 16 2 or 3 PCLKB section 0008 90CAh S12AD A/D Data Storage Buffer Register 13 ADBUF13 16 16 2 or 3 PCLKB section 0008 90CEh S12AD A/D Data Storage Buffer Register 14 ADBUF14 16 16 2 or 3 PCLKB section 0008 90CEh S12AD A/D Data Storage Buffer Register 15 ADBUF15 16 16 2 or 3 PCLKB section 0008 90DEh S12AD A/D Data Storage Buffer Register	0008 90BCh	S12AD	A/D Data Storage Buffer Register 6	ADBUF6	16	16	2 or 3 PCLKB	section 33.
0008 90C2h \$12AD A/D Data Storage Buffer Register 9 ADBUF9 16 16 2 or 3 PCLKB section 0008 90C4h \$12AD A/D Data Storage Buffer Register 10 ADBUF10 16 16 2 or 3 PCLKB section 0008 90C6h \$12AD A/D Data Storage Buffer Register 11 ADBUF11 16 16 2 or 3 PCLKB section 0008 90C8h \$12AD A/D Data Storage Buffer Register 12 ADBUF12 16 16 2 or 3 PCLKB section 0008 90CAh \$12AD A/D Data Storage Buffer Register 13 ADBUF13 16 16 2 or 3 PCLKB section 0008 90CCh \$12AD A/D Data Storage Buffer Register 14 ADBUF13 16 16 2 or 3 PCLKB section 0008 90CEh \$12AD A/D Data Storage Buffer Register 15 ADBUF15 16 16 2 or 3 PCLKB section 0008 90D0h \$12AD A/D Data Storage Buffer Pegister ADBUFEN 8 8 2 or 3 PCLKB section 0008 90D1h \$12AD A/D Sampling State Register 1	0008 90BEh	S12AD	A/D Data Storage Buffer Register 7	ADBUF7	16	16	2 or 3 PCLKB	section 33.
0008 90C4h \$12AD A/D Data Storage Buffer Register 10 ADBUF10 16 16 2 or 3 PCLKB section 0008 90C6h \$12AD A/D Data Storage Buffer Register 11 ADBUF11 16 16 2 or 3 PCLKB section 0008 90C8h \$12AD A/D Data Storage Buffer Register 12 ADBUF12 16 16 2 or 3 PCLKB section 0008 90CAh \$12AD A/D Data Storage Buffer Register 13 ADBUF13 16 16 2 or 3 PCLKB section 0008 90CCh \$12AD A/D Data Storage Buffer Register 14 ADBUF13 16 16 2 or 3 PCLKB section 0008 90CCh \$12AD A/D Data Storage Buffer Register 14 ADBUF14 16 16 2 or 3 PCLKB section 0008 90DCh \$12AD A/D Data Storage Buffer Register 15 ADBUFEN 8 8 2 or 3 PCLKB section 0008 90DDh \$12AD A/D Data Storage Buffer Pointer Register ADBUFEN 8 8 2 or 3 PCLKB section 0008 90DDh \$12AD A/D Sampling State Register	0008 90C0h	S12AD	A/D Data Storage Buffer Register 8	ADBUF8	16	16	2 or 3 PCLKB	section 33.
0008 90C6h \$12AD A/D Data Storage Buffer Register 11 ADBUF11 16 16 2 or 3 PCLKB section 0008 90C8h \$12AD A/D Data Storage Buffer Register 12 ADBUF12 16 16 2 or 3 PCLKB section 0008 90CAh \$12AD A/D Data Storage Buffer Register 13 ADBUF13 16 16 2 or 3 PCLKB section 0008 90CCh \$12AD A/D Data Storage Buffer Register 14 ADBUF13 16 16 2 or 3 PCLKB section 0008 90CCh \$12AD A/D Data Storage Buffer Register 14 ADBUF14 16 16 2 or 3 PCLKB section 0008 90Ch \$12AD A/D Data Storage Buffer Register 15 ADBUF15 16 16 2 or 3 PCLKB section 0008 90Dh \$12AD A/D Data Storage Buffer Register ADBUFEN 8 8 2 or 3 PCLKB section 0008 90Dh \$12AD A/D Data Storage Buffer Register ADBUFEN 8 8 2 or 3 PCLKB section 0008 90Dh \$12AD A/D Sampling State Register T	0008 90C2h	S12AD	A/D Data Storage Buffer Register 9	ADBUF9	16	16	2 or 3 PCLKB	section 33.
0008 90C6h \$12AD A/D Data Storage Buffer Register 11 ADBUF11 16 16 2 or 3 PCLKB section 0008 90C8h \$12AD A/D Data Storage Buffer Register 12 ADBUF12 16 16 2 or 3 PCLKB section 0008 90CAh \$12AD A/D Data Storage Buffer Register 13 ADBUF13 16 16 2 or 3 PCLKB section 0008 90CCh \$12AD A/D Data Storage Buffer Register 14 ADBUF14 16 16 2 or 3 PCLKB section 0008 90CEh \$12AD A/D Data Storage Buffer Register 15 ADBUF15 16 16 2 or 3 PCLKB section 0008 90D0h \$12AD A/D Data Storage Buffer Enable Register ADBUFEN 8 8 2 or 3 PCLKB section 0008 90D2h \$12AD A/D Data Storage Buffer Pointer Register ADBUFEN 8 8 2 or 3 PCLKB section 0008 90D2h \$12AD A/D Sampling State Register L ADSSTRL 8 8 2 or 3 PCLKB section 0008 90Eh \$12AD A/D Sampling State Register O <td>0008 90C4h</td> <td>S12AD</td> <td>A/D Data Storage Buffer Register 10</td> <td>ADBUF10</td> <td>16</td> <td>16</td> <td>2 or 3 PCLKB</td> <td>section 33.</td>	0008 90C4h	S12AD	A/D Data Storage Buffer Register 10	ADBUF10	16	16	2 or 3 PCLKB	section 33.
0008 90C8h S12AD A/D Data Storage Buffer Register 12 ADBUF12 16 16 2 or 3 PCLKB section 0008 90CAh S12AD A/D Data Storage Buffer Register 13 ADBUF13 16 16 2 or 3 PCLKB section 0008 90CCh S12AD A/D Data Storage Buffer Register 14 ADBUF14 16 16 2 or 3 PCLKB section 0008 90CEh S12AD A/D Data Storage Buffer Register 15 ADBUF15 16 16 2 or 3 PCLKB section 0008 90D0h S12AD A/D Data Storage Buffer Enable Register ADBUFEN 8 8 2 or 3 PCLKB section 0008 90D2h S12AD A/D Data Storage Buffer Pointer Register ADBUFPTR 8 8 2 or 3 PCLKB section 0008 90D1h S12AD A/D Sampling State Register L ADSSTRL 8 8 2 or 3 PCLKB section 0008 90DFh S12AD A/D Sampling State Register O ADSSTRO 8 8 2 or 3 PCLKB section 0008 90E1h S12AD A/D Sampling State Register 1	0008 90C6h	S12AD		ADBUF11	16	16		section 33.
0008 90CAh S12AD A/D Data Storage Buffer Register 13 ADBUF13 16 16 2 or 3 PCLKB section 0008 90CCh S12AD A/D Data Storage Buffer Register 14 ADBUF14 16 16 2 or 3 PCLKB section 0008 90CEh S12AD A/D Data Storage Buffer Register 15 ADBUF15 16 16 2 or 3 PCLKB section 0008 90D0h S12AD A/D Data Storage Buffer Enable Register ADBUFEN 8 8 2 or 3 PCLKB section 0008 90D2h S12AD A/D Data Storage Buffer Pointer Register ADBUFFN 8 8 2 or 3 PCLKB section 0008 90D1h S12AD A/D Sampling State Register L ADSSTRL 8 8 2 or 3 PCLKB section 0008 90Eh S12AD A/D Sampling State Register T ADSSTRO 8 8 2 or 3 PCLKB section 0008 90E0h S12AD A/D Sampling State Register O ADSSTRO 8 8 2 or 3 PCLKB section 0008 90E1h S12AD A/D Sampling State Register 1 A	0008 90C8h	S12AD		ADBUF12	16	16		section 33.
0008 90CCh S12AD A/D Data Storage Buffer Register 14 ADBUF14 16 16 2 or 3 PCLKB section 0008 90CCh S12AD A/D Data Storage Buffer Register 15 ADBUF15 16 16 2 or 3 PCLKB section 0008 90D0h S12AD A/D Data Storage Buffer Enable Register ADBUFEN 8 8 2 or 3 PCLKB section 0008 90D2h S12AD A/D Data Storage Buffer Pointer Register ADBUFPTR 8 8 2 or 3 PCLKB section 0008 90D1h S12AD A/D Sampling State Register L ADSSTRL 8 8 2 or 3 PCLKB section 0008 90D1h S12AD A/D Sampling State Register T ADSSTRT 8 8 2 or 3 PCLKB section 0008 90E0h S12AD A/D Sampling State Register O ADSSTRO 8 8 2 or 3 PCLKB section 0008 90E1h S12AD A/D Sampling State Register 1 ADSSTR1 8 8 2 or 3 PCLKB section 0008 90E2h S12AD A/D Sampling State Register 2 ADSSTR2			<u> </u>					section 33.
0008 90CEh S12AD A/D Data Storage Buffer Register 15 ADBUF15 16 16 2 or 3 PCLKB section 0008 90D0h S12AD A/D Data Storage Buffer Enable Register ADBUFEN 8 8 2 or 3 PCLKB section 0008 90D2h S12AD A/D Data Storage Buffer Pointer Register ADBUFPTR 8 8 2 or 3 PCLKB section 0008 90DDh S12AD A/D Sampling State Register L ADSSTRL 8 8 2 or 3 PCLKB section 0008 90DEh S12AD A/D Sampling State Register T ADSSTRT 8 8 2 or 3 PCLKB section 0008 90E0h S12AD A/D Sampling State Register O ADSSTRO 8 8 2 or 3 PCLKB section 0008 90E0h S12AD A/D Sampling State Register O ADSSTRO 8 8 2 or 3 PCLKB section 0008 90E1h S12AD A/D Sampling State Register 1 ADSSTR1 8 8 2 or 3 PCLKB section 0008 90E2h S12AD A/D Sampling State Register 2 ADSSTR2								section 33.
0008 90D0h S12AD A/D Data Storage Buffer Enable Register ADBUFEN 8 8 2 or 3 PCLKB section 0008 90D2h S12AD A/D Data Storage Buffer Pointer Register ADBUFPTR 8 8 2 or 3 PCLKB section 0008 90DDh S12AD A/D Sampling State Register L ADSSTRL 8 8 2 or 3 PCLKB section 0008 90DEh S12AD A/D Sampling State Register T ADSSTRT 8 8 2 or 3 PCLKB section 0008 90Eh S12AD A/D Sampling State Register O ADSSTRO 8 8 2 or 3 PCLKB section 0008 90E0h S12AD A/D Sampling State Register O ADSSTRO 8 8 2 or 3 PCLKB section 0008 90E1h S12AD A/D Sampling State Register 1 ADSSTR1 8 8 2 or 3 PCLKB section 0008 90E2h S12AD A/D Sampling State Register 2 ADSSTR2 8 8 2 or 3 PCLKB section			<u> </u>					section 33.
0008 90D2h S12AD A/D Data Storage Buffer Pointer Register ADBUFPTR 8 8 2 or 3 PCLKB section 0008 90DDh S12AD A/D Sampling State Register L ADSSTRL 8 8 2 or 3 PCLKB section 0008 90DEh S12AD A/D Sampling State Register T ADSSTRT 8 8 2 or 3 PCLKB section 0008 90Eh S12AD A/D Sampling State Register O ADSSTRO 8 8 2 or 3 PCLKB section 0008 90E0h S12AD A/D Sampling State Register O ADSSTR1 8 8 2 or 3 PCLKB section 0008 90E1h S12AD A/D Sampling State Register 1 ADSSTR1 8 8 2 or 3 PCLKB section 0008 90E2h S12AD A/D Sampling State Register 2 ADSSTR2 8 8 2 or 3 PCLKB section			<u> </u>					section 33.
0008 90DDh S12AD A/D Sampling State Register L ADSSTRL 8 8 2 or 3 PCLKB section 0008 90DEh S12AD A/D Sampling State Register T ADSSTRT 8 8 2 or 3 PCLKB section 0008 90DFh S12AD A/D Sampling State Register O ADSSTRO 8 8 2 or 3 PCLKB section 0008 90E0h S12AD A/D Sampling State Register O ADSSTRO 8 8 2 or 3 PCLKB section 0008 90E1h S12AD A/D Sampling State Register 1 ADSSTR1 8 8 2 or 3 PCLKB section 0008 90E2h S12AD A/D Sampling State Register 2 ADSSTR2 8 8 2 or 3 PCLKB section								section 33.
0008 90DEh S12AD A/D Sampling State Register T ADSSTRT 8 8 2 or 3 PCLKB section 0008 90DFh S12AD A/D Sampling State Register O ADSSTRO 8 8 2 or 3 PCLKB section 0008 90E0h S12AD A/D Sampling State Register O ADSSTRO 8 8 2 or 3 PCLKB section 0008 90E1h S12AD A/D Sampling State Register 1 ADSSTR1 8 8 2 or 3 PCLKB section 0008 90E2h S12AD A/D Sampling State Register 2 ADSSTR2 8 8 2 or 3 PCLKB section								section 33.
0008 90DFh S12AD A/D Sampling State Register O ADSSTRO 8 8 2 or 3 PCLKB section 0008 90E0h S12AD A/D Sampling State Register 0 ADSSTRO 8 8 2 or 3 PCLKB section 0008 90E1h S12AD A/D Sampling State Register 1 ADSSTR1 8 8 2 or 3 PCLKB section 0008 90E2h S12AD A/D Sampling State Register 2 ADSSTR2 8 8 2 or 3 PCLKB section								section 33.
0008 90E0h S12AD A/D Sampling State Register 0 ADSSTR0 8 8 2 or 3 PCLKB section 0008 90E1h S12AD A/D Sampling State Register 1 ADSSTR1 8 8 2 or 3 PCLKB section 0008 90E2h S12AD A/D Sampling State Register 2 ADSSTR2 8 8 2 or 3 PCLKB section								section 33.
0008 90E1h S12AD A/D Sampling State Register 1 ADSSTR1 8 8 2 or 3 PCLKB section 0008 90E2h S12AD A/D Sampling State Register 2 ADSSTR2 8 8 2 or 3 PCLKB section								section 33.
0008 90E2h S12AD A/D Sampling State Register 2 ADSSTR2 8 8 2 or 3 PCLKB section								section 33.
								section 33.
0008 90E3h								section 33.

Table 5.1 List of I/O Registers (Address Order) (8 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
0008 90E4h	S12AD	A/D Sampling State Register 4	ADSSTR4	8	8	2 or 3 PCLKB	section 33.
0008 90E5h	S12AD	A/D Sampling State Register 5	ADSSTR5	8	8	2 or 3 PCLKB	section 33.
0008 90E6h	S12AD	A/D Sampling State Register 6	ADSSTR6	8	8	2 or 3 PCLKB	section 33.
0008 90E7h	S12AD	A/D Sampling State Register 7	ADSSTR7	8	8	2 or 3 PCLKB	section 33.
0008 A000h	SCI0	Serial Mode Register	SMR	8	8	2 or 3 PCLKB	section 27.
0008 A001h	SCI0	Bit Rate Register	BRR	8	8	2 or 3 PCLKB	section 27.
0008 A002h	SCI0	Serial Control Register	SCR	8	8	2 or 3 PCLKB	section 27.
0008 A003h	SCI0	Transmit Data Register	TDR	8	8	2 or 3 PCLKB	section 27.
0008 A004h	SCI0	Serial Status Register	SSR	8	8	2 or 3 PCLKB	section 27.
0008 A005h	SCI0	Receive Data Register	RDR	8	8	2 or 3 PCLKB	section 27.
0008 A006h	SMCI0	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB	section 27.
0008 A007h	SCI0	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB	section 27.
0008 A008h	SCI0	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB	section 27.
0008 A009h	SCI0	I ² C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB	section 27.
0008 A00Ah	SCI0	I ² C Mode Register 2	SIMR2	8	8	2 or 3 PCLKB	section 27.
0008 A00Bh	SCI0	I ² C Mode Register 3	SIMR3	8	8	2 or 3 PCLKB	section 27.
0008 A00Ch	SCI0	I ² C Status Register	SISR	8	8	2 or 3 PCLKB	section 27.
0008 A00Dh	SCI0	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB	section 27.
0008 A00Eh	SCI0	Transmit Data Register HL	TDRHL	16	16	2 or 3 PCLKB	section 27.
0008 A00Eh	SCI0	Transmit Data Register H	TDRH	8	8	2 or 3 PCLKB	section 27.
0008 A00Fh	SCI0	Transmit Data Register L	TDRL	8	8	2 or 3 PCLKB	section 27.
0008 A010h	SCI0	Receive Data Register HL	RDRHL	16	16	2 or 3 PCLKB	section 27.
0008 A010h	SCI0	Receive Data Register H	RDRH	8	8	2 or 3 PCLKB	section 27.
0008 A011h	SCI0	Receive Data Register L	RDRL	8	8	2 or 3 PCLKB	section 27.
0008 A012h	SCI0	Modulation Duty Register	MDDR	8	8	2 or 3 PCLKB	section 27.
0008 A020h	SCI1	Serial Mode Register	SMR	8	8	2 or 3 PCLKB	section 27.
0008 A021h	SCI1	Bit Rate Register	BRR	8	8	2 or 3 PCLKB	section 27.
0008 A022h	SCI1	Serial Control Register	SCR	8	8	2 or 3 PCLKB	section 27.
0008 A023h	SCI1	Transmit Data Register	TDR	8	8	2 or 3 PCLKB	section 27.
0008 A024h	SCI1	Serial Status Register	SSR	8	8	2 or 3 PCLKB	section 27.
0008 A025h	SCI1	Receive Data Register	RDR	8	8	2 or 3 PCLKB	section 27.
0008 A026h	SMCI1	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB	section 27.
0008 A027h	SCI1	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB	section 27.
0008 A028h	SCI1	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB	section 27.
0008 A029h	SCI1	I ² C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB	section 27.
0008 A02Ah	SCI1	I ² C Mode Register 2	SIMR2	8	8	2 or 3 PCLKB	section 27.
0008 A02Bh	SCI1	I ² C Mode Register 3	SIMR3	8	8	2 or 3 PCLKB	section 27.
0008 A02Ch	SCI1	12C Status Register	SISR	8	8	2 or 3 PCLKB	section 27.
0008 A02Dh	SCI1	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB	section 27.
0008 A02Eh	SCI1	Transmit Data Register HL	TDRHL	16	16	2 or 3 PCLKB	section 27.
						2 or 3 PCLKB	
0008 A02Eh	SCI1	Transmit Data Register H	TDRH	8	8		section 27.
0008 A02Fh	SCI1	Transmit Data Register L	TDRL	8	8	2 or 3 PCLKB	section 27.
0008 A030h	SCI1	Receive Data Register HL	RDRHL	16	16	2 or 3 PCLKB	section 27.
0008 A030h	SCI1	Receive Data Register H	RDRH	8	8	2 or 3 PCLKB	section 27.
0008 A031h	SCI1	Receive Data Register L	RDRL	8	8	2 or 3 PCLKB	section 27.
0008 A032h	SCI1	Modulation Duty Register	MDDR	8	8	2 or 3 PCLKB	section 27.
0008 A0A0h	SCI5	Serial Mode Register	SMR	8	8	2 or 3 PCLKB	section 27.
0008 A0A1h	SCI5	Bit Rate Register	BRR	8	8	2 or 3 PCLKB	section 27.
0008 A0A2h	SCI5	Serial Control Register	SCR	8	8	2 or 3 PCLKB	section 27.
0008 A0A3h	SCI5	Transmit Data Register	TDR	8	8	2 or 3 PCLKB	section 27.
0008 A0A4h	SCI5	Serial Status Register	SSR	8	8	2 or 3 PCLKB	section 27.
0008 A0A5h	SCI5	Receive Data Register	RDR	8	8	2 or 3 PCLKB	section 27.

Table 5.1 List of I/O Registers (Address Order) (9 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
0008 A0A6h	SMCI5	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB	section 27.
0008 A0A7h	SCI5	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB	section 27.
0008 A0A8h	SCI5	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB	section 27.
0008 A0A9h	SCI5	I ² C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB	section 27.
0008 A0AAh	SCI5	I ² C Mode Register 2	SIMR2	8	8	2 or 3 PCLKB	section 27.
0008 A0ABh	SCI5	I ² C Mode Register 3	SIMR3	8	8	2 or 3 PCLKB	section 27.
0008 A0ACh	SCI5	I ² C Status Register	SISR	8	8	2 or 3 PCLKB	section 27.
0008 A0ADh	SCI5	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB	section 27.
0008 A0AEh	SCI5	Transmit Data Register HL	TDRHL	16	16	2 or 3 PCLKB	section 27.
0008 A0AEh	SCI5	Transmit Data Register H	TDRH	8	8	2 or 3 PCLKB	section 27.
0008 A0AFh	SCI5	Transmit Data Register L	TDRL	8	8	2 or 3 PCLKB	section 27.
0008 A0B0h	SCI5	Receive Data Register HL	RDRHL	16	16	2 or 3 PCLKB	section 27.
0008 A0B0h	SCI5	Receive Data Register H	RDRH	8	8	2 or 3 PCLKB	section 27.
0008 A0B1h	SCI5	Receive Data Register L	RDRL	8	8	2 or 3 PCLKB	section 27.
0008 A0B2h	SCI5	Modulation Duty Register	MDDR	8	8	2 or 3 PCLKB	section 27.
0008 A0C0h	SCI6	Serial Mode Register	SMR	8	8	2 or 3 PCLKB	section 27.
0008 A0C1h	SCI6	Bit Rate Register	BRR	8	8	2 or 3 PCLKB	section 27.
0008 A0C2h	SCI6	Serial Control Register	SCR	8	8	2 or 3 PCLKB	section 27.
0008 A0C3h	SCI6	Transmit Data Register	TDR	8	8	2 or 3 PCLKB	section 27.
0008 A0C4h	SCI6	Serial Status Register	SSR	8	8	2 or 3 PCLKB	section 27.
0008 A0C5h	SCI6	Receive Data Register	RDR	8	8	2 or 3 PCLKB	section 27.
0008 A0C6h	SMCI6	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB	section 27.
0008 A0C7h	SCI6	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB	section 27.
0008 A0C8h	SCI6	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB	section 27.
0008 A0C9h	SCI6	I ² C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB	section 27.
0008 A0CAh	SCI6	I ² C Mode Register 2	SIMR2	8	8	2 or 3 PCLKB	section 27.
0008 A0CBh	SCI6	I ² C Mode Register 3	SIMR3	8	8	2 or 3 PCLKB	section 27.
0008 A0CCh	SCI6	I ² C Status Register	SISR	8	8	2 or 3 PCLKB	section 27.
0008 A0CDh	SCI6	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB	section 27.
0008 A0CEh	SCI6	Transmit Data Register HL	TDRHL	16	16	2 or 3 PCLKB	section 27.
0008 A0CEh	SCI6	Transmit Data Register H	TDRH	8	8	2 or 3 PCLKB	section 27.
0008 A0CFh	SCI6	Transmit Data Register L	TDRL	8	8	2 or 3 PCLKB	section 27.
0008 A0D0h	SCI6	Receive Data Register HL	RDRHL	16	16	2 or 3 PCLKB	section 27.
0008 A0D0h	SCI6	Receive Data Register H	RDRH	8	8	2 or 3 PCLKB	section 27.
0008 A0D1h	SCI6	Receive Data Register L	RDRL	8	8	2 or 3 PCLKB	section 27.
0008 A0D111	SCI6	Modulation Duty Register	MDDR	8	8	2 or 3 PCLKB	section 27.
0008 A0D2II	SCI8	Serial Mode Register	SMR	8	8	2 or 3 PCLKB	section 27.
0008 A100h	SCI8	•	BRR	8	8	2 or 3 PCLKB	
		Bit Rate Register Serial Control Register					section 27.
0008 A102h	SCI8		SCR	8	8	2 or 3 PCLKB	section 27.
0008 A103h	SCI8	Transmit Data Register	TDR	8	8	2 or 3 PCLKB	section 27.
0008 A104h	SCI8	Serial Status Register	SSR	8	8	2 or 3 PCLKB	section 27.
0008 A105h	SCI8	Receive Data Register	RDR	8	8	2 or 3 PCLKB	section 27.
0008 A106h	SMCI8	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB	section 27.
0008 A107h	SCI8	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB	section 27.
0008 A108h	SCI8	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB	section 27.
0008 A109h	SCI8	I ² C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB	section 27.
0008 A10Ah	SCI8	I ² C Mode Register 2	SIMR2	8	8	2 or 3 PCLKB	section 27.
0008 A10Bh	SCI8	I ² C Mode Register 3	SIMR3	8	8	2 or 3 PCLKB	section 27.
0008 A10Ch	SCI8	I ² C Status Register	SISR	8	8	2 or 3 PCLKB	section 27.
0008 A10Dh	SCI8	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB	section 27.
0008 A10Eh	SCI8	Transmit Data Register HL	TDRHL	16	16	2 or 3 PCLKB	section 27.
0008 A10Eh	SCI8	Transmit Data Register H	TDRH	8	8	2 or 3 PCLKB	section 27.

Table 5.1 List of I/O Registers (Address Order) (10 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
0008 A10Fh	SCI8	Transmit Data Register L	TDRL	8	8	2 or 3 PCLKB	section 27.
0008 A110h	SCI8	Receive Data Register HL	RDRHL	16	16	2 or 3 PCLKB	section 27.
0008 A110h	SCI8	Receive Data Register H	RDRH	8	8	2 or 3 PCLKB	section 27.
0008 A111h	SCI8	Receive Data Register L	RDRL	8	8	2 or 3 PCLKB	section 27.
0008 A112h	SCI8	Modulation Duty Register	MDDR	8	8	2 or 3 PCLKB	section 27.
0008 A120h	SCI9	Serial Mode Register	SMR	8	8	2 or 3 PCLKB	section 27.
0008 A121h	SCI9	Bit Rate Register	BRR	8	8	2 or 3 PCLKB	section 27.
0008 A122h	SCI9	Serial Control Register	SCR	8	8	2 or 3 PCLKB	section 27.
0008 A123h	SCI9	Transmit Data Register	TDR	8	8	2 or 3 PCLKB	section 27.
0008 A124h	SCI9	Serial Status Register	SSR	8	8	2 or 3 PCLKB	section 27.
0008 A125h	SCI9	Receive Data Register	RDR	8	8	2 or 3 PCLKB	section 27.
0008 A126h	SMCI9	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB	section 27.
0008 A127h	SCI9	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB	section 27.
0008 A128h	SCI9	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB	section 27.
0008 A129h	SCI9	I ² C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB	section 27.
0008 A12Ah	SCI9	I ² C Mode Register 2	SIMR2	8	8	2 or 3 PCLKB	section 27.
0008 A12Bh	SCI9	I ² C Mode Register 3	SIMR3	8	8	2 or 3 PCLKB	section 27.
0008 A12Ch	SCI9	I ² C Status Register	SISR	8	8	2 or 3 PCLKB	section 27.
0008 A12Dh	SCI9	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB	section 27.
0008 A12Eh	SCI9	Transmit Data Register HL	TDRHL	16	16	2 or 3 PCLKB	section 27.
0008 A12Eh	SCI9	Transmit Data Register H	TDRH	8	8	2 or 3 PCLKB	section 27.
0008 A12Fh	SCI9	Transmit Data Register L	TDRL	8	8	2 or 3 PCLKB	section 27.
0008 A130h	SCI9	Receive Data Register HL	RDRHL	16	16	2 or 3 PCLKB	section 27.
0008 A130h	SCI9	Receive Data Register H	RDRH	8	8	2 or 3 PCLKB	section 27.
0008 A131h	SCI9	Receive Data Register L	RDRL	8	8	2 or 3 PCLKB	section 27.
0008 A132h	SCI9	Modulation Duty Register	MDDR	8	8	2 or 3 PCLKB	section 27.
0008 B000h	CAC	CAC Control Register 0	CACR0	8	8	2 or 3 PCLKB	section 10.
0008 B001h	CAC	CAC Control Register 1	CACR1	8	8	2 or 3 PCLKB	section 10.
0008 B002h	CAC	CAC Control Register 2	CACR2	8	8	2 or 3 PCLKB	section 10.
0008 B003h	CAC	CAC Interrupt Request Enable Register	CAICR	8	8	2 or 3 PCLKB	section 10.
0008 B004h	CAC	CAC Status Register	CASTR	8	8	2 or 3 PCLKB	section 10.
0008 B006h	CAC	CAC Upper-Limit Value Setting Register	CAULVR	16	16	2 or 3 PCLKB	section 10.
0008 B008h	CAC	CAC Lower-Limit Value Setting Register	CALLVR	16	16	2 or 3 PCLKB	section 10.
0008 B00Ah	CAC	CAC Counter Buffer Register	CACNTBR	16	16	2 or 3 PCLKB	section 10.
0008 B080h	DOC	DOC Control Register	DOCR	8	8	2 or 3 PCLKB	section 37.
0008 B082h	DOC	DOC Data Input Register	DODIR	16	16	2 or 3 PCLKB	section 37.
0008 B084h	DOC	DOC Data Setting Register	DODSR	16	16	2 or 3 PCLKB	section 37.
0008 B100h	ELC		ELCR	8	8	2 or 3 PCLKB	
		Event Link Control Register					section 17.
0008 B102h	ELC	Event Link Setting Register 1	ELSR1	8	8	2 or 3 PCLKB	section 17.
0008 B103h	ELC	Event Link Setting Register 2	ELSR2	8	8	2 or 3 PCLKB	section 17.
0008 B104h	ELC	Event Link Setting Register 3	ELSR3	8	8	2 or 3 PCLKB	section 17.
0008 B105h	ELC	Event Link Setting Register 4	ELSR4	8	8	2 or 3 PCLKB	section 17.
0008 B108h	ELC	Event Link Setting Register 7	ELSR7	8	8	2 or 3 PCLKB	section 17.
0008 B109h	ELC	Event Link Setting Register 8	ELSR8	8	8	2 or 3 PCLKB	section 17.
0008 B10Bh	ELC	Event Link Setting Register 10	ELSR10	8	8	2 or 3 PCLKB	section 17.
0008 B10Dh	ELC	Event Link Setting Register 12	ELSR12	8	8	2 or 3 PCLKB	section 17.
0008 B10Fh	ELC	Event Link Setting Register 14	ELSR14	8	8	2 or 3 PCLKB	section 17.
0008 B110h	ELC	Event Link Setting Register 15	ELSR15	8	8	2 or 3 PCLKB	section 17.
0008 B111h	ELC	Event Link Setting Register 16	ELSR16	8	8	2 or 3 PCLKB	section 17.
0008 B113h	ELC	Event Link Setting Register 18	ELSR18	8	8	2 or 3 PCLKB	section 17.
0008 B115h	ELC	Event Link Setting Register 20	ELSR20	8	8	2 or 3 PCLKB	section 17.
0008 B117h	ELC	Event Link Setting Register 22	ELSR22	8	8	2 or 3 PCLKB	section 17.

Table 5.1 List of I/O Registers (Address Order) (11 / 18)

	Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
0008 B119h	ELC	Event Link Setting Register 24	ELSR24	8	8	2 or 3 PCLKB	section 17.
0008 B11Ah	ELC	Event Link Setting Register 25	ELSR25	8	8	2 or 3 PCLKB	section 17.
0008 B11Fh	ELC	Event Link Option Setting Register A	ELOPA	8	8	2 or 3 PCLKB	section 17.
0008 B120h	ELC	Event Link Option Setting Register B	ELOPB	8	8	2 or 3 PCLKB	section 17.
0008 B121h	ELC	Event Link Option Setting Register C	ELOPC	8	8	2 or 3 PCLKB	section 17.
0008 B122h	ELC	Event Link Option Setting Register D	ELOPD	8	8	2 or 3 PCLKB	section 17.
0008 B123h	ELC	Port Group Setting Register 1	PGR1	8	8	2 or 3 PCLKB	section 17.
0008 B125h	ELC	Port Group Control Register 1	PGC1	8	8	2 or 3 PCLKB	section 17.
0008 B127h	ELC	Port Buffer Register 1	PDBF1	8	8	2 or 3 PCLKB	section 17.
0008 B129h	ELC	Event Link Port Setting Register 0	PEL0	8	8	2 or 3 PCLKB	section 17.
0008 B12Ah	ELC	Event Link Port Setting Register 1	PEL1	8	8	2 or 3 PCLKB	section 17.
0008 B12Dh	ELC	Event Link Software Event Generation Register	ELSEGR	8	8	2 or 3 PCLKB	section 17.
0008 B300h	SCI12	Serial Mode Register	SMR	8	8	2 or 3 PCLKB	section 27.
0008 B301h	SCI12	Bit Rate Register	BRR	8	8	2 or 3 PCLKB	section 27.
0008 B302h	SCI12	Serial Control Register	SCR	8	8	2 or 3 PCLKB	section 27.
0008 B303h	SCI12	Transmit Data Register	TDR	8	8	2 or 3 PCLKB	section 27.
0008 B304h	SCI12	Serial Status Register	SSR	8	8	2 or 3 PCLKB	section 27.
0008 B305h	SCI12	Receive Data Register	RDR	8	8	2 or 3 PCLKB	section 27.
0008 B306h	SMCI12	Smart Card Mode Register	SCMR	8	8	2 or 3 PCLKB	section 27.
0008 B307h	SCI12	Serial Extended Mode Register	SEMR	8	8	2 or 3 PCLKB	section 27.
0008 B308h	SCI12	Noise Filter Setting Register	SNFR	8	8	2 or 3 PCLKB	section 27.
0008 B309h	SCI12	I ² C Mode Register 1	SIMR1	8	8	2 or 3 PCLKB	section 27.
0008 B30Ah	SCI12	I ² C Mode Register 2	SIMR2	8	8	2 or 3 PCLKB	section 27.
0008 B30Bh	SCI12	I ² C Mode Register 3	SIMR3	8	8	2 or 3 PCLKB	section 27.
0008 B30Ch	SCI12	I ² C Status Register	SISR	8	8	2 or 3 PCLKB	section 27.
0008 B30Dh	SCI12	SPI Mode Register	SPMR	8	8	2 or 3 PCLKB	section 27.
0008 B30Eh	SCI12	Transmit Data Register HL	TDRHL	16	16	2 or 3 PCLKB	section 27.
0008 B30Eh	SCI12	Transmit Data Register H	TDRH	8	8	2 or 3 PCLKB	section 27.
0008 B30Fh	SCI12	Transmit Data Register L	TDRL	8	8	2 or 3 PCLKB	section 27.
0008 B310h	SCI12	Receive Data Register HL	RDRHL	16	16	2 or 3 PCLKB	section 27.
0008 B310h	SCI12	Receive Data Register H	RDRH	8	8	2 or 3 PCLKB	section 27.
0008 B311h	SCI12	Receive Data Register L	RDRL	8	8	2 or 3 PCLKB	section 27.
0008 B312h	SCI12	Modulation Duty Register	MDDR	8	8	2 or 3 PCLKB	section 27.
0008 B320h	SCI12	Extended Serial Module Enable Register	ESMER	8	8	2 or 3 PCLKB	section 27.
0008 B321h	SCI12	Control Register 0	CR0	8	8	2 or 3 PCLKB	section 27.
0008 B322h	SCI12	Control Register 1	CR1	8	8	2 or 3 PCLKB	section 27.
0008 B323h	SCI12	Control Register 2	CR2	8	8	2 or 3 PCLKB	section 27.
0008 B324h	SCI12	Control Register 3	CR3	8	8	2 or 3 PCLKB	section 27.
0008 B325h	SCI12	Port Control Register	PCR	8	8	2 or 3 PCLKB	section 27.
0008 B326h	SCI12	Interrupt Control Register	ICR	8	8	2 or 3 PCLKB	section 27.
0008 B327h	SCI12	Status Register	STR	8	8	2 or 3 PCLKB	section 27.
0008 B328h	SCI12	Status Clear Register	STCR	8	8	2 or 3 PCLKB	section 27.
0008 B329h	SCI12	Control Field 0 Data Register	CF0DR	8	8	2 or 3 PCLKB	section 27.
0008 B32Ah	SCI12	Control Field 0 Compare Enable Register	CF0CR	8	8	2 or 3 PCLKB	section 27.
0008 B32Bh	SCI12	Control Field 0 Receive Data Register	CF0RR	8	8	2 or 3 PCLKB	section 27.
0008 B32Bh	SCI12	Primary Control Field 1 Data Register	PCF1DR	8	8	2 or 3 PCLKB	section 27.
0008 B32Dh	SCI12	Secondary Control Field 1 Data Register	SCF1DR	8	8	2 or 3 PCLKB	section 27.
	SCI12			8	8		
0008 B32Eh		Control Field 1 Poseivo Data Register	CF1CR			2 or 3 PCLKB	section 27.
0008 B32Fh	SCI12	Control Field 1 Receive Data Register	CF1RR	8	8	2 or 3 PCLKB	section 27.
0008 B330h	SCI12 SCI12	Timer Control Register	TCR	8	8	2 or 3 PCLKB	section 27.
0008 B331h		Timer Mode Register	TMR	8	8	2 or 3 PCLKB	section 27.

Table 5.1 List of I/O Registers (Address Order) (12 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
0008 B333h	SCI12	Timer Count Register	TCNT	8	8	2 or 3 PCLKB	section 27.
0008 C000h	PORT0	Port Direction Register	PDR	8	8	2 or 3 PCLKB	section 18.
0008 C001h	PORT1	Port Direction Register	PDR	8	8	2 or 3 PCLKB	section 18.
0008 C002h	PORT2	Port Direction Register	PDR	8	8	2 or 3 PCLKB	section 18.
0008 C003h	PORT3	Port Direction Register	PDR	8	8	2 or 3 PCLKB	section 18.
0008 C004h	PORT4	Port Direction Register	PDR	8	8	2 or 3 PCLKB	section 18.
0008 C005h	PORT5	Port Direction Register	PDR	8	8	2 or 3 PCLKB	section 18.
0008 C00Ah	PORTA	Port Direction Register	PDR	8	8	2 or 3 PCLKB	section 18.
0008 C00Bh	PORTB	Port Direction Register	PDR	8	8	2 or 3 PCLKB	section 18.
0008 C00Ch	PORTC	Port Direction Register	PDR	8	8	2 or 3 PCLKB	section 18.
0008 C00Dh	PORTD	Port Direction Register	PDR	8	8	2 or 3 PCLKB	section 18.
0008 C00Eh	PORTE	Port Direction Register	PDR	8	8	2 or 3 PCLKB	section 18.
0008 C011h	PORTH	Port Direction Register	PDR	8	8	2 or 3 PCLKB	section 18.
0008 C012h	PORTJ	Port Direction Register	PDR	8	8	2 or 3 PCLKB	section 18.
0008 C020h	PORT0	Port Output Data Register	PODR	8	8	2 or 3 PCLKB	section 18.
0008 C021h	PORT1	Port Output Data Register	PODR	8	8	2 or 3 PCLKB	section 18.
0008 C022h	PORT2	Port Output Data Register	PODR	8	8	2 or 3 PCLKB	section 18.
0008 C023h	PORT3	Port Output Data Register	PODR	8	8	2 or 3 PCLKB	section 18.
0008 C024h	PORT4	Port Output Data Register	PODR	8	8	2 or 3 PCLKB	section 18.
0008 C025h	PORT5	Port Output Data Register	PODR	8	8	2 or 3 PCLKB	section 18.
0008 C02Ah	PORTA	Port Output Data Register	PODR	8	8	2 or 3 PCLKB	section 18.
0008 C02Bh	PORTB	Port Output Data Register	PODR	8	8	2 or 3 PCLKB	section 18.
0008 C02Ch	PORTC	Port Output Data Register	PODR	8	8	2 or 3 PCLKB	section 18.
0008 C02Dh	PORTD	Port Output Data Register	PODR	8	8	2 or 3 PCLKB	section 18.
0008 C02Eh	PORTE	Port Output Data Register	PODR	8	8	2 or 3 PCLKB	section 18.
0008 C031h	PORTH	Port Output Data Register	PODR	8	8	2 or 3 PCLKB	section 18.
0008 C032h	PORTJ	Port Output Data Register	PODR	8	8	2 or 3 PCLKB	section 18.
0008 C040h	PORT0	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	section 18.
0008 C041h	PORT1	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	section 18.
0008 C042h	PORT2	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	section 18.
0008 C043h	PORT3	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	section 18.
0008 C044h	PORT4	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	section 18.
0008 C045h	PORT5	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	section 18.
0008 C04Ah	PORTA	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	section 18.
0008 C04Bh	PORTB	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	section 18.
0008 C04Ch	PORTC	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	section 18.

Table 5.1 List of I/O Registers (Address Order) (13 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
0008 C04Dh	PORTD	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	section 18.
0008 C04Eh	PORTE	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	section 18.
0008 C051h	PORTH	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	section 18.
0008 C052h	PORTJ	Port Input Data Register	PIDR	8	8	3 or 4 PCLKB cycles when reading, 2 or 3 PCLKB cycles when writing	section 18.
0008 C060h	PORT0	Port Mode Register	PMR	8	8	2 or 3 PCLKB	section 18.
0008 C061h	PORT1	Port Mode Register	PMR	8	8	2 or 3 PCLKB	section 18.
0008 C062h	PORT2	Port Mode Register	PMR	8	8	2 or 3 PCLKB	section 18.
0008 C063h	PORT3	Port Mode Register	PMR	8	8	2 or 3 PCLKB	section 18.
0008 C064h	PORT4	Port Mode Register	PMR	8	8	2 or 3 PCLKB	section 18.
0008 C065h	PORT5	Port Mode Register	PMR	8	8	2 or 3 PCLKB	section 18.
0008 C06Ah	PORTA	Port Mode Register	PMR	8	8	2 or 3 PCLKB	section 18.
0008 C06Bh	PORTB	Port Mode Register	PMR	8	8	2 or 3 PCLKB	section 18.
0008 C06Ch	PORTC	Port Mode Register	PMR	8	8	2 or 3 PCLKB	section 18.
0008 C06Dh	PORTD	Port Mode Register	PMR	8	8	2 or 3 PCLKB	section 18.
0008 C06Eh	PORTE	Port Mode Register	PMR	8	8	2 or 3 PCLKB	section 18.
0008 C071h	PORTH	Port Mode Register	PMR	8	8	2 or 3 PCLKB	section 18
0008 C072h	PORTJ	Port Mode Register	PMR	8	8	2 or 3 PCLKB	section 18
0008 C082h	PORT1	Open Drain Control Register 0	ODR0	8	8	2 or 3 PCLKB	section 18
0008 C083h	PORT1	Open Drain Control Register 1	ODR1	8	8	2 or 3 PCLKB	section 18
0008 C084h	PORT2	Open Drain Control Register 0	ODR0	8	8	2 or 3 PCLKB	section 18.
0008 C085h	PORT2	Open Drain Control Register 1	ODR1	8	8	2 or 3 PCLKB	section 18.
0008 C086h	PORT3	Open Drain Control Register 0	ODR0	8	8	2 or 3 PCLKB	section 18
0008 C087h	PORT3	Open Drain Control Register 1	ODR1	8	8	2 or 3 PCLKB	section 18
0008 C094h	PORTA	Open Drain Control Register 0	ODR0	8	8	2 or 3 PCLKB	section 18
0008 C095h	PORTA	Open Drain Control Register 1	ODR1	8	8	2 or 3 PCLKB	section 18
0008 C096h	PORTB	Open Drain Control Register 0	ODR0	8	8	2 or 3 PCLKB	section 18
0008 C097h	PORTB	Open Drain Control Register 1	ODR1	8	8	2 or 3 PCLKB	section 18
0008 C098h	PORTC	, ,	ODR0	8	8	2 or 3 PCLKB	section 18
0008 C099h	PORTC	Open Drain Control Register 0 Open Drain Control Register 1	ODR1	8	8	2 or 3 PCLKB	section 18
0008 C099h	PORTD	Open Drain Control Register 0	ODR0	8	8	2 or 3 PCLKB	section 18
0008 C09Ah		· · · · · · · · · · · · · · · · · · ·					
	PORTE	Open Drain Control Register 0	ODR0	8	8	2 or 3 PCLKB	section 18
0008 C0A4h	PORTJ	Open Drain Control Register 0	ODR0	8	8	2 or 3 PCLKB	section 18
0008 C0C0h	PORT0	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	section 18
0008 C0C1h	PORT1	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	section 18.
0008 C0C2h	PORT2	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	section 18
0008 C0C3h	PORT3	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	section 18
0008 C0C4h	PORT4	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	section 18.
0008 C0C5h	PORT5	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	section 18.
0008 C0CAh	PORTA	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	section 18
0008 C0CBh	PORTB	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	section 18.
0008 C0CCh	PORTC	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	section 18.
0008 C0CDh	PORTD	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	section 18
0008 C0CEh	PORTE	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	section 18
0008 C0D1h	PORTH	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	section 18
0008 C0D2h	PORTJ	Pull-Up Control Register	PCR	8	8	2 or 3 PCLKB	section 18.
0008 C0E1h	PORT1	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	section 18.

Table 5.1 List of I/O Registers (Address Order) (14 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
0008 C0E2h	PORT2	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	section 18.
0008 C0E3h	PORT3	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	section 18.
0008 C0E5h	PORT5	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	section 18.
0008 C0EAh	PORTA	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	section 18.
0008 C0EBh	PORTB	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	section 18.
0008 C0ECh	PORTC	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	section 18.
0008 C0EDh	PORTD	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	section 18.
0008 C0EEh	PORTE	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	section 18.
0008 C0F1h	PORTH	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	section 18.
0008 C0F2h	PORTJ	Drive Capacity Control Register	DSCR	8	8	2 or 3 PCLKB	section 18.
0008 C11Fh	MPC	Write-Protect Register	PWPR	8	8	2 or 3 PCLKB	section 19.
0008 C120h	PORT	Port Switching Register B	PSRB	8	8	2 or 3 PCLKB	section 18.
0008 C121h	PORT	Port Switching Register A	PSRA	8	8	2 or 3 PCLKB	section 18.
0008 C143h	MPC	P03 Pin Function Control Register	P03PFS	8	8	2 or 3 PCLKB	section 19.
0008 C145h	MPC	P05 Pin Function Control Register	P05PFS	8	8	2 or 3 PCLKB	section 19.
0008 C147h	MPC	P07 Pin Function Control Register	P07PFS	8	8	2 or 3 PCLKB	section 19.
0008 C14Ah	MPC	P12 Pin Function Control Register	P12PFS	8	8	2 or 3 PCLKB	section 19.
0008 C14Bh	MPC	P13 Pin Function Control Register	P13PFS	8	8	2 or 3 PCLKB	section 19.
0008 C14Ch	MPC	P14 Pin Function Control Register	P14PFS	8	8	2 or 3 PCLKB	section 19.
0008 C14Dh	MPC	P15 Pin Function Control Register	P15PFS	8	8	2 or 3 PCLKB	section 19.
0008 C14Eh	MPC	P16 Pin Function Control Register	P16PFS	8	8	2 or 3 PCLKB	section 19.
0008 C14Fh	MPC	P17 Pin Function Control Register	P17PFS	8	8	2 or 3 PCLKB	section 19.
0008 C150h	MPC	P20 Pin Function Control Register	P20PFS	8	8	2 or 3 PCLKB	section 19.
0008 C151h	MPC	P21 Pin Function Control Register	P21PFS	8	8	2 or 3 PCLKB	section 19.
0008 C152h	MPC	P22 Pin Function Control Register	P22PFS	8	8	2 or 3 PCLKB	section 19.
0008 C153h	MPC	P23 Pin Function Control Register	P23PFS	8	8	2 or 3 PCLKB	section 19.
0008 C154h	MPC	P24 Pin Function Control Register	P24PFS	8	8	2 or 3 PCLKB	section 19.
0008 C155h	MPC	P25 Pin Function Control Register	P25PFS	8	8	2 or 3 PCLKB	section 19.
0008 C156h	MPC	P26 Pin Function Control Register	P26PFS	8	8	2 or 3 PCLKB	section 19.
0008 C157h	MPC	P27 Pin Function Control Register	P27PFS	8	8	2 or 3 PCLKB	section 19.
0008 C158h	MPC	P30 Pin Function Control Register	P30PFS	8	8	2 or 3 PCLKB	section 19.
0008 C159h	MPC	P31 Pin Function Control Register	P31PFS	8	8	2 or 3 PCLKB	section 19.
0008 C15Ah	MPC	P32 Pin Function Control Register	P32PFS	8	8	2 or 3 PCLKB	section 19.
0008 C15Bh	MPC	P33 Pin Function Control Register	P33PFS	8	8	2 or 3 PCLKB	section 19.
0008 C15Ch	MPC	P34 Pin Function Control Register	P34PFS	8	8	2 or 3 PCLKB	section 19.
0008 C160h	MPC	P40 Pin Function Control Register	P40PFS	8	8	2 or 3 PCLKB	section 19.
0008 C161h	MPC	P41 Pin Function Control Register	P41PFS	8	8	2 or 3 PCLKB	section 19.
0008 C162h	MPC	P42 Pin Function Control Register	P42PFS	8	8	2 or 3 PCLKB	section 19.
0008 C163h	MPC	P43 Pin Function Control Register	P43PFS	8	8	2 or 3 PCLKB	section 19.
0008 C164h	MPC	P44 Pin Function Control Register	P44PFS	8	8	2 or 3 PCLKB	section 19.
0008 C165h	MPC	P45 Pin Function Control Register	P45PFS	8	8	2 or 3 PCLKB	section 19.
0008 C166h	MPC	P46 Pin Function Control Register	P46PFS	8	8	2 or 3 PCLKB	section 19.
0008 C167h	MPC	P47 Pin Function Control Register	P47PFS	8	8	2 or 3 PCLKB	section 19.
0008 C169h	MPC	P51 Pin Function Control Register	P51PFS	8	8	2 or 3 PCLKB	section 19.
0008 C16Ah	MPC	P52 Pin Function Control Register	P52PFS	8	8	2 or 3 PCLKB	section 19.
0008 C16Ch	MPC	P54 Pin Function Control Register	P54PFS	8	8	2 or 3 PCLKB	section 19.
0008 C16Dh	MPC	P55 Pin Function Control Register	P55PFS	8	8	2 or 3 PCLKB	section 19.
0008 C190h	MPC	PA0 Pin Function Control Register	PAOPFS	8	8	2 or 3 PCLKB	section 19.
0008 C191h	MPC	PA1 Pin Function Control Register	PA1PFS	8	8	2 or 3 PCLKB	section 19.
0008 C19111 0008 C192h	MPC	PA2 Pin Function Control Register	PA2PFS	8	8	2 or 3 PCLKB	section 19.
0008 C192H	MPC	PA3 Pin Function Control Register	PA3PFS	8	8	2 or 3 PCLKB	
	IVIT	r Ao r in r unouon control register	FAJEFJ	0	0	ZUISFULND	section 19.

Table 5.1 List of I/O Registers (Address Order) (15 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
0008 C195h	MPC	PA5 Pin Function Control Register	PA5PFS	8	8	2 or 3 PCLKB	section 19.
0008 C196h	MPC	PA6 Pin Function Control Register	PA6PFS	8	8	2 or 3 PCLKB	section 19.
0008 C197h	MPC	PA7 Pin Function Control Register	PA7PFS	8	8	2 or 3 PCLKB	section 19.
0008 C198h	MPC	PB0 Pin Function Control Register	PB0PFS	8	8	2 or 3 PCLKB	section 19.
0008 C199h	MPC	PB1 Pin Function Control Register	PB1PFS	8	8	2 or 3 PCLKB	section 19.
0008 C19Ah	MPC	PB2 Pin Function Control Register	PB2PFS	8	8	2 or 3 PCLKB	section 19.
0008 C19Bh	MPC	PB3 Pin Function Control Register	PB3PFS	8	8	2 or 3 PCLKB	section 19.
0008 C19Ch	MPC	PB4 Pin Function Control Register	PB4PFS	8	8	2 or 3 PCLKB	section 19.
0008 C19Dh	MPC	PB5 Pin Function Control Register	PB5PFS	8	8	2 or 3 PCLKB	section 19.
0008 C19Eh	MPC	PB6 Pin Function Control Register	PB6PFS	8	8	2 or 3 PCLKB	section 19.
0008 C19Fh	MPC	PB7 Pin Function Control Register	PB7PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1A0h	MPC	PC0 Pin Function Control Register	PC0PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1A1h	MPC	PC1 Pin Function Control Register	PC1PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1A2h	MPC	PC2 Pin Function Control Register	PC2PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1A3h	MPC	PC3 Pin Function Control Register	PC3PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1A4h	MPC	PC4 Pin Function Control Register	PC4PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1A5h	MPC	PC5 Pin Function Control Register	PC5PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1A6h	MPC	PC6 Pin Function Control Register	PC6PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1A7h	MPC	PC7 Pin Function Control Register	PC7PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1A8h	MPC	PD0 Pin Function Control Register	PD0PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1A9h	MPC	PD1 Pin Function Control Register	PD1PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1AAh	MPC	PD2 Pin Function Control Register	PD2PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1ABh	MPC	PD3 Pin Function Control Register	PD3PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1ACh	MPC	PD4 Pin Function Control Register	PD4PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1ADh	MPC	PD5 Pin Function Control Register	PD5PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1AEh	MPC	PD6 Pin Function Control Register	PD6PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1AFh	MPC	PD7 Pin Function Control Register	PD7PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1B0h	MPC	PE0 Pin Function Control Register	PE0PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1B1h	MPC	PE1 Pin Function Control Register	PE1PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1B2h	MPC	PE2 Pin Function Control Register	PE2PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1B3h	MPC	PE3 Pin Function Control Register	PE3PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1B4h	MPC	PE4 Pin Function Control Register	PE4PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1B5h	MPC	PE5 Pin Function Control Register	PE5PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1B6h	MPC	PE6 Pin Function Control Register	PE6PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1B7h	MPC	PE7 Pin Function Control Register	PE7PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1C8h	MPC	PH0 Pin Function Control Register	PH0PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1C9h	MPC	PH1 Pin Function Control Register	PH1PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1CAh	MPC	PH2 Pin Function Control Register	PH2PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1CAH	MPC	PH3 Pin Function Control Register	PH3PFS	8	8	2 or 3 PCLKB	section 19.
	MPC	<u>`</u>					
0008 C1D1h		PJ1 Pin Function Control Register	PJ1PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1D3h	MPC	PJ3 Pin Function Control Register	PJ3PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1D6h	MPC	PJ6 Pin Function Control Register	PJ6PFS	8	8	2 or 3 PCLKB	section 19.
0008 C1D7h	MPC	PJ7 Pin Function Control Register	PJ7PFS	8	8	2 or 3 PCLKB	section 19.
0008 C290h	SYSTEM	Reset Status Register 0	RSTSR0	8	8	4 or 5 PCLKB	section 6.
0008 C291h	SYSTEM	Reset Status Register 1	RSTSR1	8	8	4 or 5 PCLKB	section 6.
0008 C293h	SYSTEM	Main Clock Oscillator Forced Oscillation Control Register	MOFCR	8	8	4 or 5 PCLKB	section 9.
0008 C297h	SYSTEM	Voltage Monitoring Circuit Control Register	LVCMPCR	8	8	4 or 5 PCLKB	section 8.
0008 C298h	SYSTEM	Voltage Detection Level Select Register	LVDLVLR	8	8	4 or 5 PCLKB	section 8.
0008 C29Ah	SYSTEM	Voltage Monitoring 1 Circuit Control Register 0	LVD1CR0	8	8	4 or 5 PCLKB	section 8.
0008 C29Bh	SYSTEM	Voltage Monitoring 2 Circuit Control Register 0	LVD2CR0	8	8	4 or 5 PCLKB	section 8.
0008 C400h	RTC	64-Hz Counter	R64CNT	8	8	2 or 3 PCLKB	section 24.
0008 C402h	RTC	Second Counter	RSECCNT	8	8	2 or 3 PCLKB	section 24.

Table 5.1 List of I/O Registers (Address Order) (16 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
0008 C402h	RTC	Binary Counter 0	BCNT0	8	8	2 or 3 PCLKB	section 24.
0008 C404h	RTC	Minute Counter	RMINCNT	8	8	2 or 3 PCLKB	section 24.
0008 C404h	RTC	Binary Counter 1	BCNT1	8	8	2 or 3 PCLKB	section 24.
0008 C406h	RTC	Hour Counter	RHRCNT	8	8	2 or 3 PCLKB	section 24.
0008 C406h	RTC	Binary Counter 2	BCNT2	8	8	2 or 3 PCLKB	section 24.
0008 C408h	RTC	Day-of-Week Counter	RWKCNT	8	8	2 or 3 PCLKB	section 24.
0008 C408h	RTC	Binary Counter 3	BCNT3	8	8	2 or 3 PCLKB	section 24.
0008 C40Ah	RTC	Date Counter	RDAYCNT	8	8	2 or 3 PCLKB	section 24.
0008 C40Ch	RTC	Month Counter	RMONCNT	8	8	2 or 3 PCLKB	section 24.
0008 C40Eh	RTC	Year Counter	RYRCNT	16	16	2 or 3 PCLKB	section 24.
0008 C410h	RTC	Second Alarm Register	RSECAR	8	8	2 or 3 PCLKB	section 24.
0008 C410h	RTC	Binary Counter 0 Alarm Register	BCNT0AR	8	8	2 or 3 PCLKB	section 24.
0008 C412h	RTC	Minute Alarm Register	RMINAR	8	8	2 or 3 PCLKB	section 24.
0008 C412h	RTC	Binary Counter 1 Alarm Register	BCNT1AR	8	8	2 or 3 PCLKB	section 24.
0008 C414h	RTC	Hour Alarm Register	RHRAR	8	8	2 or 3 PCLKB	section 24.
0008 C414h	RTC	Binary Counter 2 Alarm Register	BCNT2AR	8	8	2 or 3 PCLKB	section 24.
0008 C416h	RTC	Day-of-Week Alarm Register	RWKAR	8	8	2 or 3 PCLKB	section 24.
0008 C416h	RTC	Binary Counter 3 Alarm Register	BCNT3AR	8	8	2 or 3 PCLKB	section 24.
0008 C418h	RTC	Date Alarm Register	RDAYAR	8	8	2 or 3 PCLKB	section 24.
0008 C418h	RTC	Binary Counter 0 Alarm Enable Register	BCNT0AER	8	8	2 or 3 PCLKB	section 24.
0008 C41Ah	RTC	Month Alarm Register	RMONAR	8	8	2 or 3 PCLKB	section 24.
0008 C41Ah	RTC	Binary Counter 1 Alarm Enable Register	BCNT1AER	8	8	2 or 3 PCLKB	section 24.
0008 C41Ch	RTC	Year Alarm Register	RYRAR	16	16	2 or 3 PCLKB	section 24.
0008 C41Ch	RTC	Binary Counter 2 Alarm Enable Register	BCNT2AER	16	16	2 or 3 PCLKB	section 24.
0008 C41Eh	RTC	Year Alarm Enable Register	RYRAREN	8	8	2 or 3 PCLKB	section 24.
0008 C41Eh	RTC	Binary Counter 3 Alarm Enable Register	BCNT3AER	8	8	2 or 3 PCLKB	section 24.
0008 C422h	RTC	RTC Control Register 1	RCR1	8	8	2 or 3 PCLKB	section 24.
0008 C424h	RTC	RTC Control Register 2	RCR2	8	8	2 or 3 PCLKB	section 24.
0008 C426h	RTC	RTC Control Register 3	RCR3	8	8	2 or 3 PCLKB	section 24.
0008 C42Eh	RTC	Time Error Adjustment Register	RADJ	8	8	2 or 3 PCLKB	section 24.
0008 C580h	СМРВ	Comparator B Control Register 1	CPBCNT1	8	8	2 or 3 PCLKB	section 36.
0008 C581h	СМРВ	Comparator B Control Register 2	CPBCNT2	8	8	2 or 3 PCLKB	section 36.
0008 C582h	CMPB	Comparator B Flag Register	CPBFLG	8	8	2 or 3 PCLKB	section 36.
0008 C583h	CMPB	Comparator B Interrupt Control Register	CPBINT	8	8	2 or 3 PCLKB	section 36.
0008 C584h	CMPB	Comparator B Filter Select Register	CPBF	8	8	2 or 3 PCLKB	section 36.
0008 C585h	CMPB	Comparator B Mode Select Register	CPBMD	8	8	2 or 3 PCLKB	section 36.
0008 C586h	CMPB	Comparator B Reference Input Voltage Select Register	CPBREF	8	8	2 or 3 PCLKB	section 36.
0008 C587h	CMPB	Comparator B Output Control Register	CPBOCR	8	8	2 or 3 PCLKB	section 36.
000A 0900h	CTSU	CTSU Control Register 0	CTSUCR0	8	8	1 or 2 PCLKB	section 32.
000A 0901h	CTSU	CTSU Control Register 1	CTSUCR1	8	8	1 or 2 PCLKB	section 32.
		CTSU Synchronous Noise Reduction Setting Register					
000A 0902h	CTSU	, , , , , , , , , , , , , , , , , , , ,	CTSUSDPRS	8	8	1 or 2 PCLKB	section 32.
000A 0903h	CTSU	CTSU Sensor Stabilization Wait Control Register		8	8	1 or 2 PCLKB	section 32.
000A 000Fh	CTSU	CTSU Measurement Channel Register 0	CTSUMCH0	8	8	1 or 2 PCLKB	section 32.
000A 0905h	CTSU	CTSU Measurement Channel Register 1	CTSUMCH1	8	8	1 or 2 PCLKB	section 32.
000A 0906h	CTSU	CTSU Channel Enable Control Register 0	CTSUCHAC0	8	8	1 or 2 PCLKB	section 32.
000A 0008h	CTSU	CTSU Channel Enable Control Register 1	CTSUCHAC1	8	8	1 or 2 PCLKB	section 32.
000A 0908h	CTSU	CTSU Channel Enable Control Register 2	CTSUCHAC2	8	8	1 or 2 PCLKB	section 32.
000A 0909h	CTSU	CTSU Channel Enable Control Register 3	CTSUCHAC3	8	8	1 or 2 PCLKB	section 32.
000A 090Ah	CTSU	CTSU Channel Enable Control Register 4	CTSUCHAC4	8	8	1 or 2 PCLKB	section 32.
000A 090Bh	CTSU	CTSU Channel Transmit/Receive Control Register 0	CTSUCHTRC0	8	8	1 or 2 PCLKB	section 32.
000A 090Ch	CTSU	CTSU Channel Transmit/Receive Control Register 1	CTSUCHTRC1	8	8	1 or 2 PCLKB	section 32.
000A 090Dh	CTSU	CTSU Channel Transmit/Receive Control Register 2	CTSUCHTRC2	8	8	1 or 2 PCLKB	section 32.

Table 5.1 List of I/O Registers (Address Order) (17 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
000A 090Eh	CTSU	CTSU Channel Transmit/Receive Control Register 3	CTSUCHTRC3	8	8	1 or 2 PCLKB	section 32.
000A 090Fh	CTSU	CTSU Channel Transmit/Receive Control Register 4	CTSUCHTRC4	8	8	1 or 2 PCLKB	section 32.
000A 0910h	CTSU	CTSU High-Pass Noise Reduction Control Register	CTSUDCLKC	8	8	1 or 2 PCLKB	section 32.
000A 0911h	CTSU	CTSU Status Register	CTSUST	8	8	1 or 2 PCLKB	section 32.
000A 0912h	CTSU	CTSU High-Pass Noise Reduction Spectrum Diffusion Control Register	CTSUSSC	16	16	1 or 2 PCLKB	section 32.
000A 0914h	CTSU	CTSU Sensor Offset Register 0	CTSUSO0	16	16	1 or 2 PCLKB	section 32.
000A 0916h	CTSU	CTSU Sensor Offset Register 1	CTSUSO1	16	16	1 or 2 PCLKB	section 32.
000A 0918h	CTSU	CTSU Sensor Counter	CTSUSC	16	16	1 or 2 PCLKB	section 32.
000A 091Ah	CTSU	CTSU Reference Counter	CTSURC	16	16	1 or 2 PCLKB	section 32.
000A 091Ch	CTSU	CTSU Error Status Register	CTSUERRS	16	16	1 or 2 PCLKB	section 32.
000A 0B00h	REMC0	Function Select Register 0	REMCON0	8	8	1 or 2 PCLKB	section 28.
000A 0B01h	REMC0	Function Select Register 1	REMCON1	8	8	1 or 2 PCLKB	section 28.
000A 0B02h	REMC0	Status Register	REMSTS	8	8	1 or 2 PCLKB	section 28.
000A 0B03h	REMC0	Interrupt Control Register	REMINT	8	8	1 or 2 PCLKB	section 28.
000A 0B04h	REMC0	Compare Control Register	REMCPC	8	8	1 or 2 PCLKB	section 28.
000A 0B05h	REMC0	Compare Value Setting Register	REMCPD	8	8	1 or 2 PCLKB	section 28.
000A 0B06h	REMC0	Header Pattern Minimum Width Setting Register	HDPMIN	16	16	1 or 2 PCLKB	section 28.
000A 0B08h	REMC0	Header Pattern Maximum Width Setting Register	HDPMAX	16	16	1 or 2 PCLKB	section 28.
000A 0B0Ah	REMC0	Data '0' Pattern Minimum Width Setting Register	D0PMIN	8	8	1 or 2 PCLKB	section 28.
000A 0B0Bh	REMC0	Data '0' Pattern Maximum Width Setting Register	D0PMAX	8	8	1 or 2 PCLKB	section 28.
000A 0B0Ch	REMC0	Data '1' Pattern Minimum Width Setting Register	D1PMIN	8	8	1 or 2 PCLKB	section 28.
000A 0B0Dh	REMC0	Data '1' Pattern Maximum Width Setting Register	D1PMAX	8	8	1 or 2 PCLKB	section 28.
000A 0B0Eh	REMC0	Special Data Pattern Minimum Width Setting Register	SDPMIN	16	16	1 or 2 PCLKB	section 28.
000A 0B10h	REMC0	Special Data Pattern Maximum Width Setting Register	SDPMAX	16	16	1 or 2 PCLKB	section 28.
000A 0B12h	REMC0	Pattern End Setting Register	REMPE	16	16	1 or 2 PCLKB	section 28.
000A 0B14h	REMC0	Reception Standby Control Register	REMSTC	8	8	1 or 2 PCLKB	section 28.
000A 0B15h	REMC0	Receive Bit Count Register	REMRBIT	8	8	1 or 2 PCLKB	section 28.
000A 0B16h	REMC0	Receive Data 0 Register	REMDAT0	8	8	1 or 2 PCLKB	section 28.
000A 0B17h	REMC0	Receive Data 1 Register	REMDAT1	8	8	1 or 2 PCLKB	section 28.
000A 0B18h	REMC0	Receive Data 2 Register	REMDAT2	8	8	1 or 2 PCLKB	section 28.
000A 0B19h	REMC0	Receive Data 3 Register	REMDAT3	8	8	1 or 2 PCLKB	section 28.
000A 0B1Ah	REMC0	Receive Data 4 Register	REMDAT4	8	8	1 or 2 PCLKB	section 28.
000A 0B1Ah	REMC0	Receive Data 5 Register	REMDAT5	8	8	1 or 2 PCLKB	section 28.
000A 0B1Ch	REMC0	Receive Data 6 Register	REMDAT6	8	8	1 or 2 PCLKB	section 28.
000A 0B1Ch	REMC0	Receive Data 7 Register	REMDAT7	8	8	1 or 2 PCLKB	section 28.
	REMC0	Measurement Result Register				1 or 2 PCLKB	
000A 0B1Eh		•	REMTIM	16	16		section 28.
000A 0B80h	REMC1	Function Select Register 0	REMCON0	8	8	1 or 2 PCLKB	section 28.
000A 0B81h	REMC1	Function Select Register 1	REMCON1	8	8	1 or 2 PCLKB	section 28.
000A 0B82h	REMC1	Status Register	REMSTS	8	8	1 or 2 PCLKB	section 28.
000A 0B83h	REMC1	Interrupt Control Register	REMINT	8	8	1 or 2 PCLKB	section 28.
000A 0B84h	REMC1	Compare Control Register	REMCPC	8	8	1 or 2 PCLKB	section 28.
000A 0B85h	REMC1	Compare Value Setting Register	REMCPD	8	8	1 or 2 PCLKB	section 28.
000A 0B86h	REMC1	Header Pattern Minimum Width Setting Register	HDPMIN	16	16	1 or 2 PCLKB	section 28.
000A 0B88h	REMC1	Header Pattern Maximum Width Setting Register	HDPMAX	16	16	1 or 2 PCLKB	section 28.
000A 0B8Ah	REMC1	Data '0' Pattern Minimum Width Setting Register	D0PMIN	8	8	1 or 2 PCLKB	section 28.
000A 0B8Bh	REMC1	Data '0' Pattern Maximum Width Setting Register	D0PMAX	8	8	1 or 2 PCLKB	section 28.
000A 0B8Ch	REMC1	Data '1' Pattern Minimum Width Setting Register	D1PMIN	8	8	1 or 2 PCLKB	section 28.
000A 0B8Dh	REMC1	Data '1' Pattern Maximum Width Setting Register	D1PMAX	8	8	1 or 2 PCLKB	section 28.
000A 0B8Eh	REMC1	Special Data Pattern Minimum Width Setting Register	SDPMIN	16	16	1 or 2 PCLKB	section 28.
000A 0B90h	REMC1	Special Data Pattern Maximum Width Setting Register	SDPMAX	16	16	1 or 2 PCLKB	section 28.
000A 0B92h	REMC1	Pattern End Setting Register	REMPE	16	16	1 or 2 PCLKB	section 28.
000A 0B94h	REMC1	Reception Standby Control Register	REMSTC	8	8	1 or 2 PCLKB	section 28.

Table 5.1 List of I/O Registers (Address Order) (18 / 18)

Address	Module Symbol	Register Name	Register Symbol	Number of Bits	Access Size	Number of Access Cycles	Reference Section
000A 0B95h	REMC1	Receive Bit Count Register	REMRBIT	8	8	1 or 2 PCLKB	section 28.
000A 0B96h	REMC1	Receive Data 0 Register	REMDAT0	8	8	1 or 2 PCLKB	section 28.
000A 0B97h	REMC1	Receive Data 1 Register	REMDAT1	8	8	1 or 2 PCLKB	section 28.
000A 0B98h	REMC1	Receive Data 2 Register	REMDAT2	8	8	1 or 2 PCLKB	section 28.
000A 0B99h	REMC1	Receive Data 3 Register	REMDAT3	8	8	1 or 2 PCLKB	section 28.
000A 0B9Ah	REMC1	Receive Data 4 Register	REMDAT4	8	8	1 or 2 PCLKB	section 28.
000A 0B9Bh	REMC1	Receive Data 5 Register	REMDAT5	8	8	1 or 2 PCLKB	section 28.
000A 0B9Ch	REMC1	Receive Data 6 Register	REMDAT6	8	8	1 or 2 PCLKB	section 28.
000A 0B9Dh	REMC1	Receive Data 7 Register	REMDAT7	8	8	1 or 2 PCLKB	section 28.
000A 0B9Eh	REMC1	Measurement Result Register	REMTIM	16	16	1 or 2 PCLKB	section 28.
000A 0C00h	REMCOM	HOCO Clock Supply Control Register	HOSCR	8	8	1 or 2 PCLKB	section 28.
007F C090h	FLASH	E2 DataFlash Control Register	DFLCTL	8	8	2 or 3 FCLK	section 39.
007F C0ACh	TEMPS	Temperature Sensor Calibration Data Register	TSCDRL	8	8	2 or 3 FCLK	section 35.
007F C0ADh	TEMPS	Temperature Sensor Calibration Data Register	TSCDRH	8	8	2 or 3 FCLK	section 35.
007F C0B0h	FLASH	Flash Start-Up Setting Monitor Register	FSCMR	16	16	2 or 3 FCLK	section 39.
007F C0B2h	FLASH	Flash Access Window Start Address Monitor Register	FAWSMR	16	16	2 or 3 FCLK	section 39.
007F C0B4h	FLASH	Flash Access Window End Address Monitor Register	FAWEMR	16	16	2 or 3 FCLK	section 39.
007F C0B6h	FLASH	Flash Initial Setting Register	FISR	8	8	2 or 3 FCLK	section 39.
007F C0B7h	FLASH	Flash Extra Area Control Register	FEXCR	8	8	2 or 3 FCLK	section 39.
007F C0B8h	FLASH	Flash Error Address Monitor Register L	FEAML	16	16	2 or 3 FCLK	section 39.
007F C0BAh	FLASH	Flash Error Address Monitor Register H	FEAMH	8	8	2 or 3 FCLK	section 39.
007F C0C0h	FLASH	Protection Unlock Register	FPR	8	8	2 or 3 FCLK	section 39.
007F C0C1h	FLASH	Protection Unlock Status Register	FPSR	8	8	2 or 3 FCLK	section 39.
007F C0C2h	FLASH	Flash Read Buffer Register L	FRBL	16	16	2 or 3 FCLK	section 39.
007F C0C4h	FLASH	Flash Read Buffer Register H	FRBH	16	16	2 or 3 FCLK	section 39.
007F FF80h	FLASH	Flash P/E Mode Control Register	FPMCR	8	8	2 or 3 FCLK	section 39.
007F FF81h	FLASH	Flash Area Select Register	FASR	8	8	2 or 3 FCLK	section 39.
007F FF82h	FLASH	Flash Processing Start Address Register L	FSARL	16	16	2 or 3 FCLK	section 39.
007F FF84h	FLASH	Flash Processing Start Address Register H	FSARH	8	8	2 or 3 FCLK	section 39.
007F FF85h	FLASH	Flash Control Register	FCR	8	8	2 or 3 FCLK	section 39.
007F FF86h	FLASH	Flash Processing End Address Register L	FEARL	16	16	2 or 3 FCLK	section 39.
007F FF88h	FLASH	Flash Processing End Address Register H	FEARH	8	8	2 or 3 FCLK	section 39.
007F FF89h	FLASH	Flash Reset Register	FRESETR	8	8	2 or 3 FCLK	section 39.
007F FF8Ah	FLASH	Flash Status Register 0	FSTATR0	8	8	2 or 3 FCLK	section 39.
007F FF8Bh	FLASH	Flash Status Register 1	FSTATR1	8	8	2 or 3 FCLK	section 39.
007F FF8Ch	FLASH	Flash Write Buffer Register L	FWBL	16	16	2 or 3 FCLK	section 39.
007F FF8Eh	FLASH	Flash Write Buffer Register H	FWBH	16	16	2 or 3 FCLK	section 39.
007F FFB2h	FLASH	Flash P/E Mode Entry Register	FENTRYR	16	16	2 or 3 FCLK	section 39.
007F FFBEh	CTSU	CTSU Reference Current Calibration Register	CTSUTRMR	8	8	2 or 3 FCLK	section 32.

6. Resets

6.1 Overview

There are seven types of resets: RES# pin reset, power-on reset, voltage monitoring 0 reset, voltage monitoring 1 reset, voltage monitoring 2 reset, independent watchdog timer reset, and software reset.

Table 6.1 lists the reset names and sources.

Table 6.1 Reset Names and Sources

Reset Name	Source
RES# pin reset	Voltage input to the RES# pin is driven low.
Power-on reset	VCC rises (voltage monitored: VPOR)*1
Voltage monitoring 0 reset	VCC falls (voltage monitored: Vdet0)*1
Voltage monitoring 1 reset	VCC falls (voltage monitored: Vdet1)*1
Voltage monitoring 2 reset	VCC falls (voltage monitored: Vdet2)*1
Independent watchdog timer reset	The independent watchdog timer underflows, or a refresh error occurs.
Software reset	Register setting

Note 1. For the voltages to be monitored (VPOR, Vdet0, Vdet1, and Vdet2), see section 8, Voltage Detection Circuit (LVDAb) and section 40, Electrical Characteristics.

The internal state and pins are initialized by a reset.

Table 6.2 lists the reset targets to be initialized.

Table 6.2 Targets Initialized by Each Reset Source

				Reset Source	9		
Target to be Initialized	RES# Pin Reset	Power-On Reset	Voltage Monitoring 0 Reset	Independent Watchdog Timer Reset	Voltage Monitoring 1 Reset	Voltage Monitoring 2 Reset	Software Reset
The power-on reset detect flag (RSTSR0.PORF)	0	_	_	_	_	_	_
Register related to the cold start/warm start determination flag (RSTSR1.CWSF)	*1	0	_	_	_	_	_
Voltage monitoring 0 reset detect flag (RSTSR0.LVD0RF)	0	0	_	_	_	_	_
The independent watchdog timer reset detect flag (RSTSR2.IWDTRF)	0	0	0	_	_	_	_
Registers related to the independent watchdog timer (IWDTRR, IWDTCR, IWDTSR, IWDTRCR, IWDTCSTPR, ILOCOCR)	0	0	0	_	_	_	_
The voltage monitoring 1 reset detect flag (RSTSR0.LVD1RF)	0	0	0	0	_	_	_
Registers related to voltage monitor function 1 (LVD1CR0, LVCMPCR.LVD1E, LVDLVLR.LVD1LVL[3:0])	0	0	0	0	_	_	_
(LVD1CR1, LVD1SR)	0	0	0	0	_	_	_
The voltage monitoring 2 reset detect flag (RSTSR0.LVD2RF)	0	0	0	0	0	_	_
Registers related to voltage monitor function 2 (LVD2CR0, LVCMPCR.EXVCCINP2, LVD2E, LVDLVLR.LVD2LVL[1:0])	0	0	0	0	O	_	_
(LVD2CR1, LVD2SR)	0	0	0	0	0	_	_
The software reset detect flag (RSTSR2.SWRF)	0	0	0	0	0	0	_
Register related to the realtime clock*2							
Registers other than the above, CPU, and internal state	0	0	0	0	0	0	0

o: Targets to be initialized, —: No change occurs.

When a reset is canceled, the reset exception handling starts. For the reset exception handling, see section 13, Exception Handling.

Table 6.3 lists the pin related to the reset.

Table 6.3 Pin Related to Reset

Pin Name	I/O	Function
RES#	Input	Reset pin

Note 1. Initialized at a power-on.

Note 2. Some control bits (RCR1.CIE, RCR1.RTCOS, RCR2.RTCOE, ADJ30, and RESET) are initialized by all types of reset. For details on the target bits, refer to section 24, Realtime Clock (RTCc).

6.2 Register Descriptions

6.2.1 Reset Status Register 0 (RSTSR0)

Address(es): 0008 C290h

_	b7	b6	b5	b4	b3	b2	b1	b0
	ı	_	_	_	LVD2R F	LVD1R F	LVD0R F	PORF
Value after reset:	0	0	0	0	0*1	0*1	0*1	0*1

Bit	Symbol	Bit Name	Description	R/W
b0	PORF	Power-On Reset Detect Flag	O: Power-on reset not detected. 1: Power-on reset detected.	R(/W) *2
b1	LVD0RF	Voltage Monitoring 0 Reset Detect Flag	Voltage monitoring 0 reset not detected. Voltage monitoring 0 reset detected.	R(/W) *2
b2	LVD1RF	Voltage Monitoring 1 Reset Detect Flag	Voltage monitoring 1 reset not detected. Voltage monitoring 1 reset detected.	R(/W) *2
b3	LVD2RF	Voltage Monitoring 2 Reset Detect Flag	Voltage monitoring 2 reset not detected. Voltage monitoring 2 reset detected.	R(/W) *2
b7 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. The value after reset depends on the reset source.

PORF Flag (Power-On Reset Detect Flag)

The PORF flag indicates that a power-on reset has occurred.

[Setting condition]

• When a power-on reset occurs.

[Clearing conditions]

- When resets shown in Table 6.2 occur.
- When PORF is read as 1 and then 0 is written to PORF.

LVD0RF Flag (Voltage Monitoring 0 Reset Detect Flag)

The LVD0RF flag indicates that VCC voltage has fallen below Vdet0.

[Setting condition]

• When Vdet0-level VCC voltage is detected.

[Clearing conditions]

- When resets listed in Table 6.2 occur.
- When LVD0RF is read as 1 and then 0 is written to LVD0RF.

LVD1RF Flag (Voltage Monitoring 1 Reset Detect Flag)

The LVD1RF flag indicates that VCC voltage has fallen below Vdet1. [Setting condition]

When Vdet1-level VCC voltage is detected.

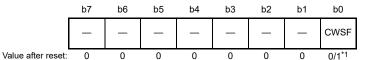
[Clearing conditions]

- When a reset listed in Table 6.2 occurs.
- When LVD1RF is read as 1 and then 0 is written to LVD1RF.

Note 2. Only 0 can be written to clear the flag.

LVD2RF Flag (Voltage Monitoring 2 Reset Detect Flag)

The LVD2RF flag indicates that VCC voltage has fallen below Vdet2. [Setting condition]


• When Vdet2-level VCC voltage is detected.

[Clearing conditions]

- When a reset listed in Table 6.2 occurs.
- When LVD2RF is read as 1 and then 0 is written to LVD2RF.

6.2.2 Reset Status Register 1 (RSTSR1)

Address(es): 0008 C291h

Bit	Symbol	Bit Name	Description	R/W
b0	CWSF	Cold/Warm Start Determination Flag	0: Cold start 1: Warm start	R(/W) *2
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. The value after reset depends on the reset source.

Note 2. Only 1 can be written to set the flag.

RSTSR1 determines whether a power-on reset has caused the reset processing (cold start) or a reset signal input during operation has caused the reset processing (warm start).

CWSF Flag (Cold/Warm Start Determination Flag)

The CWSF flag indicates the type of reset processing: cold start or warm start.

The CWSF flag is initialized at a power-on.

[Setting condition]

• When 1 is written through programming; it is not set to 0 even when 0 is written.

[Clearing condition]

• When a reset listed in Table 6.2 occurs.

6.2.3 Reset Status Register 2 (RSTSR2)

Address(es): 0008 00C0h

Bit	Symbol	Bit Name	Description	R/W
b0	IWDTRF	Independent Watchdog Timer Reset Detect Flag	Independent watchdog timer reset not detected. Independent watchdog timer reset detected.	R(/W) *2
b1	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b2	SWRF	Software Reset Detect Flag	Software reset not detected. Software reset detected.	R(/W)
b7 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. The value after reset depends on the reset source.

Note 2. Only 0 can be written to clear the flag.

IWDTRF Flag (Independent Watchdog Timer Reset Detect Flag)

The IWDTRF flag indicates that an independent watchdog timer reset has occurred. [Setting condition]

• When an independent watchdog timer reset occurs.

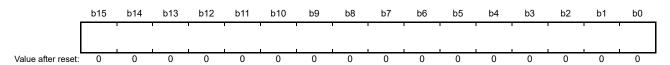
[Clearing conditions]

- When a reset listed in Table 6.2 occurs.
- When IWDTRF is read as 1 and then 0 is written to IWDTRF.

SWRF Flag (Software Reset Detect Flag)

The SWRF flag indicates that a software reset has occurred.

[Setting condition]


• When a software reset occurs.

[Clearing conditions]

- When a reset listed in Table 6.2 occurs.
- When SWRF is read as 1 and then 0 is written to SWRF.

6.2.4 Software Reset Register (SWRR)

Address(es): 0008 00C2h

Writing A501h in the SWRR register resets the MCU. This register is read as 0000h. Set the PRCR.PRC1 bit to 1 (write enabled) before rewriting this register.

6.3 Operation

6.3.1 RES# Pin Reset

This is a reset generated by the RES# pin.

When the RES# pin is driven low, all the processing in progress is aborted and the LSI enters a reset state.

In order to unfailingly reset the LSI, the RES# pin should be held low for the specified power supply stabilization time at a power-on.

When the RES# pin is driven high from low, the internal reset is canceled after the post-RES# cancellation wait time (tRESWT) has elapsed, and then the CPU starts the reset exception handling.

For details, see section 40, Electrical Characteristics.

6.3.2 Power-On Reset and Voltage Monitoring 0 Reset

The power-on reset is an internal reset generated by the power-on reset circuit. A power-on reset is generated when power is supplied to the RES# pin while it is connected to VCC via a resistor. When connecting a capacitor to the RES# pin, also ensure that the voltage on the RES# pin is always at least VIH. For details on VIH, refer to section 40, Electrical Characteristics. After VCC has exceeded VPOR and the specified period (power-on reset time) has elapsed, the internal reset is canceled and the CPU starts the reset exception handling. The power-on reset time is a stabilization period for the external power supply and the MCU circuit. After a power-on reset has been generated, the PORF flag in RSTSR0 is set to 1. The PORF flag is initialized by RES# pin reset.

The voltage monitoring 0 reset is an internal reset generated by the voltage monitoring circuit. If the voltage detection circuit 0 start bit (LVDAS) in option function select register 1 (OFS1) is 0 (voltage monitoring 0 reset is enabled after a reset) and VCC falls below Vdet0, the RSTSR0.LVD0RF flag becomes 1 and the voltage detection circuit generates voltage monitoring 0 reset. Clear the OFS1.LVDAS bit to 0 if the voltage monitoring 0 reset is to be used.

Release from the voltage monitoring 0 reset state occurs when VCC rises above Vdet0 and the LVD0 reset time (tLVD0) elapses, and then the CPU starts the reset exception handling.

Figure 6.1 shows operations during a power-on reset and voltage monitoring 0 reset.

For details on voltage monitoring 0 reset, refer to section 8, Voltage Detection Circuit (LVDAb).

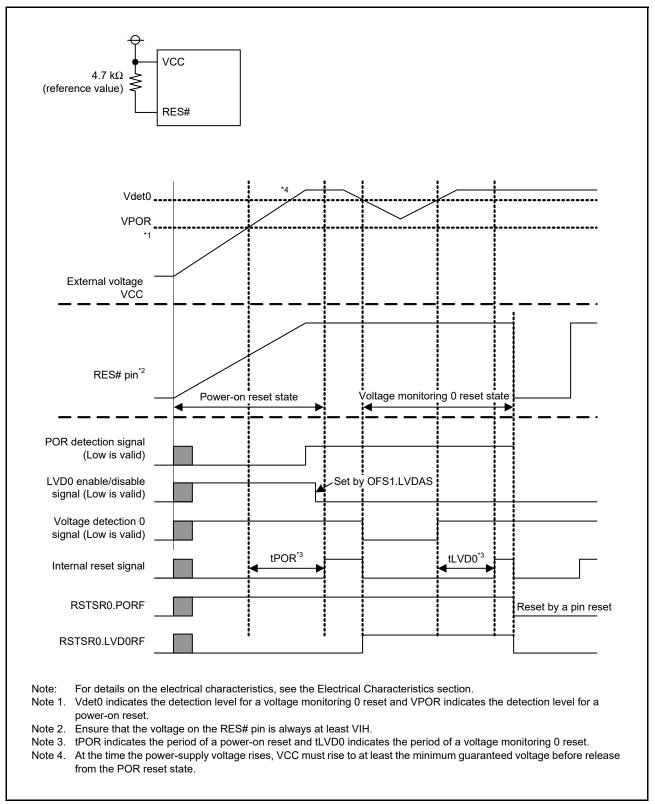


Figure 6.1 Operation Examples During a Power-On Reset and Voltage Monitoring 0 Reset

6.3.3 Voltage Monitoring 1 Reset and Voltage Monitoring 2 Reset

The voltage monitoring 1 reset and voltage monitoring 2 reset are internal resets generated by the voltage monitoring circuit.

When the voltage monitoring 1 interrupt/reset enable bit (LVD1RIE) is set to 1 (enabling generation of a reset or interrupt by the voltage detection circuit) and the voltage monitoring 1 circuit mode select bit (LVD1RI) is set to 1 (selecting generation of a reset in response to detection of a low voltage) in the voltage monitoring 1 circuit control register 0 (LVD1CR0), the RSTSR0.LVD1RF flag is set to 1 and the voltage-detection circuit generates a voltage monitoring 1 reset if VCC falls to or below Vdet1.

Likewise, when the voltage monitoring 2 interrupt/reset enable bit (LVD2RIE) is set to 1 (enabling generation of a reset or interrupt by the voltage detection circuit) and the voltage monitoring 2 circuit mode select bit (LVD2RI) is set to 1 (selecting generation of a reset in response to detection of a low voltage) in voltage monitoring 2 circuit control register 0 (LVD2CR0), the RSTSR0.LVD2RF flag is set to 1 and the voltage detection circuit generates a voltage monitoring 2 reset if VCC falls to or below Vdet2.

Timing for release from the voltage monitoring 1 reset state is selectable with the voltage monitoring 1 reset negation select bit (LVD1RN) in the LVD1CR0 register. When the LVD1CR0.LVD1RN bit is 0 and VCC has fallen to or below Vdet1, the CPU is released from the internal reset state and starts reset exception handling once the voltage monitoring 1 reset time (tLVD1) has elapsed after VCC has risen above Vdet1. When the LVD1CR0.LVD1RN bit is 1 and VCC has fallen to or below Vdet1, the CPU is released from the internal reset state and starts reset exception handling once the voltage monitoring 1 reset time (tLVD1) has elapsed.

Likewise, timing for release from the voltage monitoring 2 reset state is selectable by setting the voltage monitoring 2/comparator A2 reset negation select bit (LVD2RN) in the LVD2CR0 register. Detection levels Vdet1 and Vdet2 can be changed by settings in the voltage detection level select register (LVDLVLR).

Figure 6.2 shows examples of operations during voltage monitoring 1 and 2 resets.

For details on the voltage monitoring 1 reset and voltage monitoring 2 reset, refer to section 8, Voltage Detection Circuit (LVDAb).

Figure 6.2 Operation Examples During Voltage Monitoring 1 Reset and Voltage Monitoring 2 Reset

6.3.4 Independent Watchdog Timer Reset

Independent watchdog timer reset is an internal reset generated by the independent watchdog timer.

Output of the independent watchdog timer reset from the independent watchdog timer can be selected by setting the IWDT reset control register (IWDTRCR) and option function select register 0 (OFS0).

When output of the independent watchdog timer reset is selected, an independent watchdog timer reset is generated if the independent watchdog timer underflows, or if data is written outside the refresh-permitted period. When the internal reset time (tRESW2) has elapsed after the independent watchdog timer reset has been generated, the internal reset is canceled and the CPU starts the reset exception handling.

For details on the independent watchdog timer reset, see section 26, Independent Watchdog Timer (IWDTa).

6.3.5 Software Reset

The software reset is an internal reset generated by the software reset circuit.

When A501h is written to SWRR, a software reset is generated. When the internal reset time (tRESW2) has elapsed after the software reset is generated, the internal reset is canceled and the CPU starts the reset exception handling.

6.3.6 Determination of Cold/Warm Start

By reading the CWSF flag in RSTSR1, the type of reset processing caused can be identified; that is, whether a power-on reset has caused the reset processing (cold start) or a reset signal input during operation has caused the reset processing (warm start).

The CWSF flag in RSTSR1 is set to 0 when a power-on reset occurs (cold start); otherwise the flag is not set to 0. The flag is set to 1 when 1 is written to it through programming; it is not set to 0 even when 0 is written.

Figure 6.3 shows an example of cold/warm start determination operation.

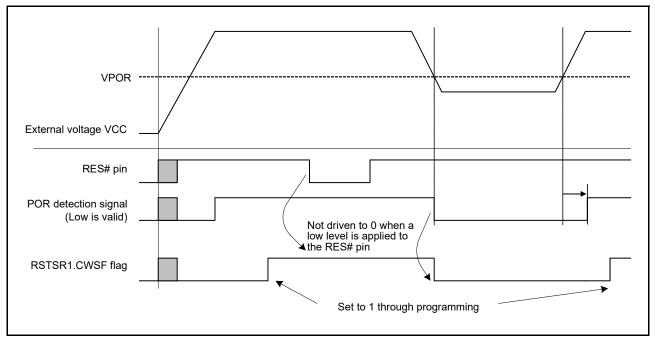


Figure 6.3 Example of Cold/Warm Start Determination Operation

6.3.7 Determination of Reset Generation Source

Reading RSTSR0 and RSTSR2 determines which reset was used to execute the reset exception handling. Figure 6.4 shows an example of the flow to identify a reset generation source.

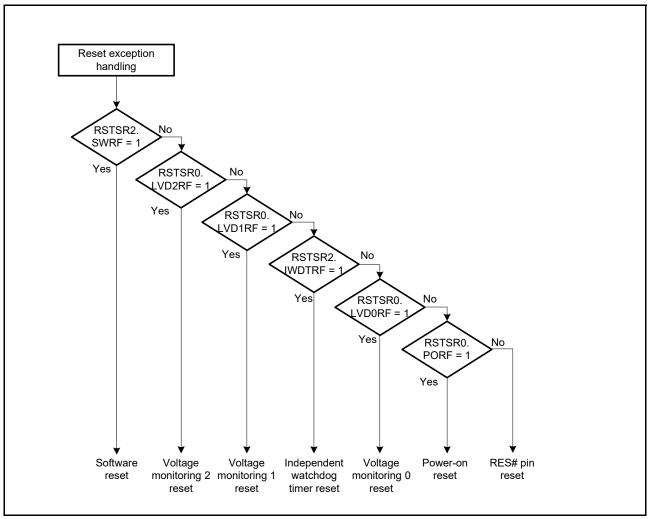


Figure 6.4 Example of Reset Generation Source Determination Flow

7. Option-Setting Memory (OFSM)

7.1 Overview

Option-setting memory (OFSM) refers to a set of registers that are provided for selecting the state of the microcontroller after a reset. The option-setting memory is allocated in the ROM.

Figure 7.1 shows the option-setting memory area.

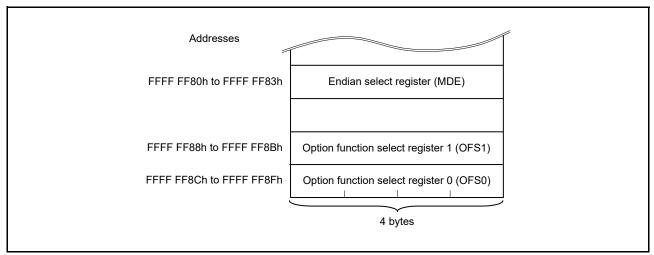
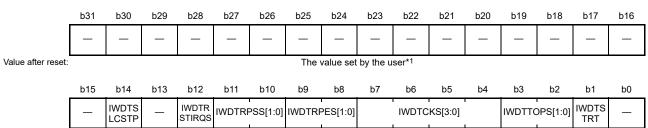



Figure 7.1 Option-Setting Memory Area

7.2 Register Descriptions

7.2.1 Option Function Select Register 0 (OFS0)

Address(es): OFSM.OFS0 FFFF FF8Ch

Value after reset:

The value set by the user*1

Bit	Symbol	Bit Name	Description	R/W
b0	_	Reserved	When reading, this bit returns the value written by the user. The write value should be 1.	R
b1	IWDTSTRT	IWDT Start Mode Select	IWDT is automatically activated in auto-start mode after a reset IWDT is halted after a reset	R
b3, b2	IWDTTOPS[1:0]	IWDT Timeout Period Select	b3 b2 0 0: 128 cycles (007Fh) 0 1: 512 cycles (01FFh) 1 0: 1024 cycles (03FFh) 1 1: 2048 cycles (07FFh)	R
b7 to b4	IWDTCKS[3:0]	IWDT Clock Frequency Division Ratio Select	b7 b4 0 0 0 0: No division 0 0 1 0: Divide-by-16 0 0 1 1: Divide-by-32 0 1 0 0: Divide-by-64 1 1 1 1: Divide-by-128 0 1 0 1: Divide-by-256 Settings other than above are prohibited.	R
b9, b8	IWDTRPES[1:0]	IWDT Window End Position Select	b9 b8 0 0: 75% 0 1: 50% 1 0: 25% 1 1: 0% (No window end position setting)	R
b11, b10	IWDTRPSS[1:0]	IWDT Window Start Position Select	b11 b10 0 0: 25% 0 1: 50% 1 0: 75% 1 1: 100% (No window start position setting)	R
b12	IWDTRSTIRQS	IWDT Reset Interrupt Request Select	Non-maskable interrupt request is enabled Reset is enabled	R
b13	_	Reserved	When reading, this bit returns the value written by the user. The write value should be 1.	R
b14	IWDTSLCSTP	IWDT Sleep Mode Count Stop Control	Counting stop is disabled Counting stop is enabled when entering sleep, software standby, or deep sleep mode	R
b31 to b15	_	Reserved	When reading, these bits return the value written by the user. The write value should be 1.	R

Note 1. The value of the blank product is FFFF FFFFh. It is set to the written value after written by the user.

The OFS0 register is allocated in the ROM. Set this register at the same time as writing the program. After writing to the OFS0 register once, do not write to it again.

When erasing the block including the OFS0 register, the OFS0 register value becomes FFFF FFFFh.

The setting in the OFS0 register is ignored in boot mode, and this register functions similarly when it is set to FFFF FFFFh.

IWDTSTRT Bit (IWDT Start Mode Select)

This bit selects the mode in which the IWDT is activated after a reset (stopped state or activated in auto-start mode). When activated in auto-start mode, the OFS0 register setting for the IWDT is effective.

IWDTTOPS[1:0] Bits (IWDT Timeout Period Select)

These bits select the timeout period, i.e. the time it takes for the down-counter to underflow, as 128, 512, 1024, or 2048 cycles of the frequency-divided clock set by the IWDTCKS[3:0] bits. The time (number of IWDT-dedicated clock cycles) it takes to underflow after a refresh operation is determined by the combination of the IWDTCKS[3:0] bits and IWDTTOPS[1:0] bits.

For details, see section 26, Independent Watchdog Timer (IWDTa).

IWDTCKS[3:0] Bits (IWDT Clock Frequency Division Ratio Select)

These bits select, from 1/1, 1/16, 1/32, 1/64, 1/128, and 1/256, the division ratio of the prescaler to divide the frequency of the IWDT-dedicated clock. Using the setting of these bits together with the IWDTTOPS[1:0] bit setting, the IWDT counting period can be set from 128 to 524288 IWDT-dedicated clock cycles.

For details, see section 26, Independent Watchdog Timer (IWDTa).

IWDTRPES[1:0] Bits (IWDT Window End Position Select)

These bits select the position of the end of the window for the down-counter as 0%, 25%, 50%, or 75% of the value being counted by the counter. The value of the window end position must be smaller than the value of the window start position (window start position > window end position). If the value for the window end position is greater than the value for the window start position, only the value for the window start position is effective.

The counter values corresponding to the settings for the start and end positions of the window in the IWDTRPSS[1:0] and IWDTRPES[1:0] bits vary with the setting of the IWDTTOPS[1:0] bits.

For details, refer to section 26, Independent Watchdog Timer (IWDTa).

IWDTRPSS[1:0] Bits (IWDT Window Start Position Select)

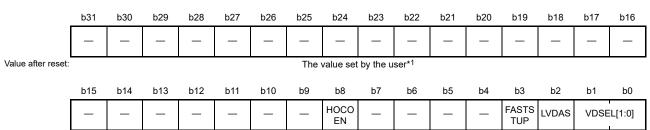
These bits select the position where the window for the down-counter starts as 25%, 50%, 75%, or 100% of the value being counted (the point at which counting starts is 100% and the point at which an underflow occurs is 0%). The interval between the positions where the window starts and ends becomes the period in which refreshing is possible, and refreshing is not possible outside this period.

For details, refer to section 26, Independent Watchdog Timer (IWDTa).

IWDTRSTIRQS Bit (IWDT Reset Interrupt Request Select)

The setting of this bit selects the operation on an underflow of the down-counter or generation of a refresh error. Either an independent watchdog timer reset or a non-maskable interrupt request is selectable.

For details, refer to section 26, Independent Watchdog Timer (IWDTa).


IWDTSLCSTP Bit (IWDT Sleep Mode Count Stop Control)

This bit selects whether to stop counting when entering sleep, software standby, or deep sleep mode. For details, see section 26, Independent Watchdog Timer (IWDTa).

7.2.2 Option Function Select Register 1 (OFS1)

Address(es): OFSM.OFS1 FFFF FF88h

Value after reset:

The value set by the user*1

Bit	Symbol	Bit Name	Description	R/W
b1, b0	VDSEL[1:0]	Voltage Detection 0 Level Select	b1 b0 0 0: 3.84 V is selected 0 1: 2.82 V is selected 1 0: 2.51 V is selected 1 1: 1.90 V is selected	R
b2	LVDAS	Voltage Detection 0 Circuit Start	Voltage monitoring 0 reset is enabled after a reset Voltage monitoring 0 reset is disabled after a reset	R
b3	FASTSTUP	Power-On Fast Startup Time	0: Fast startup time at power on 1: Normal startup	R
b7 to b4	_	Reserved	When reading, these bits return the value written by the user. The write value should be 1.	R
b8	HOCOEN	HOCO Oscillation Enable	HOCO oscillation is enabled after a reset HOCO oscillation is disabled after a reset	R
b31 to b9	_	Reserved	When reading, these bits return the value written by the user. The write value should be 1.	R

Note 1. The value of the blank product is FFFF FFFFh. It is set to the written value after written by the user.

The OFS1 register is allocated in the ROM. Set this register at the same time as writing the program. After writing, do not write additions to this register.

When erasing the block including the OFS1 register, the OFS1 register value becomes FFFF FFFFh.

The setting in the OFS1 register is ignored in boot mode, and this register functions similarly when it is set to FFFF FFFFh.

VDSEL[1:0] Bits (Voltage Detection 0 Level Select)

These bits select the voltage detection level to be monitored by the voltage detection 0 circuit.

LVDAS Bit (Voltage Detection 0 Circuit Start)

This bit selects whether the voltage monitoring 0 reset is enabled or disabled after a reset.

The Vdet0 voltage to be monitored by the voltage detection 0 circuit is selected by the VDSEL[1:0] bits.

FASTSTUP Bit (Power-On Fast Startup Time)

The startup time can be reduced by setting this bit to 0 (fast startup time at power on) when it is possible to meet the power-on VCC rising gradient (during fast startup time) shown in Electrical Characteristics. Do not set this bit to 0 when it is not possible to meet the power-on VCC rising gradient (during fast startup time).

HOCOEN Bit (HOCO Oscillation Enable)

This bit selects whether the HOCO oscillation is effective or not after a reset.

Setting the HOCOEN bit to 0 allows the HOCO oscillation to be started before the CPU starts operation, and therefore

reduces the wait time for oscillation stabilization.

Note that even if the HOCOEN bit is set to 0, the system clock source is not switched to HOCO. The system clock source is switched to HOCO only by modifying the clock source select bits (SCKCR3.CKSEL[2:0]) from the CPU. Also, when the HOCOEN bit is set to 0, the HOCO oscillation stabilization time (tHOCO) is secured by hardware, so the

Also, when the HOCOEN bit is set to 0, the HOCO oscillation stabilization time (tHOCO) is secured by hardware, so the clock with the accuracy of the HOCO oscillation frequency (fHOCO) shown in Electrical Characteristics is supplied after release from the CPU reset state.

7.2.3 Endian Select Register (MDE)

Address(es): OFSM.MDE FFFF FF80h

	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	1	1	1	1	1	1	-	1	-	I	1	-		-		_
Value after reset:							The	/alue set	by the u	ser*1						•
	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
		1	-	1	1	1		1	-	1	1		1	MDE[2:0]		

Value after reset:

The value set by the user*1

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	MDE[2:0]	Endian Select	b2 b0 0 0 0: Big endian 1 1 1: Little endian Settings other than above are prohibited.	R
b31 to b3	_	Reserved	When reading, these bits return the value written by the user. The write value should be 1.	R

Note 1. The value of the blank product is FFFF FFFFh. It is set to the written value after written by the user.

The MDE register selects the endian for the CPU.

MDE is allocated in the ROM. Set the register at the same time as writing the program. After writing to the register once, do not write to it again.

When erasing the block including the MDE register, the MDE register value becomes FFFF FFFFh.

MDE[2:0] Bits (Endian Select)

These bits select little endian or big endian for the CPU.

7.3 Usage Note

7.3.1 Setting Example of Option-Setting Memory

Since the option-setting memory is allocated in the ROM, values cannot be written by executing instructions. Write appropriate values when writing the program. An example of the settings is shown below.

 To set ffff fff8h in the OFS0 register .org 0ffff ff8ch .lword 0fffffff8h

Note: Programming formats vary depending on the compiler. Refer to the compiler manual for details.

8. Voltage Detection Circuit (LVDAb)

The voltage detection circuit (LVD) monitors the voltage level input to the VCC pin using a program.

8.1 Overview

In voltage detection 0, the detection voltage can be selected from four levels using option function select register 1 (OFS1).

In voltage detection 1, the detection voltage can be selected from 14 levels using the voltage detection level select register (LVDLVLR).

In voltage detection 2, the detection voltage can be selected from four levels using the LVDLVLR register by switching between input voltages to VCC and the CMPA2 pin.

Voltage monitoring 0 reset, voltage monitoring 1 reset/interrupt, and voltage monitoring 2 reset/interrupt can be used. Table 8.1 lists the specifications of the voltage detection circuit. Figure 8.1 is a block diagram of the voltage detection circuit. Figure 8.2 is a block diagram of the voltage monitoring 1 interrupt/reset circuit. Figure 8.3 is a block diagram of the voltage monitoring 2 interrupt/reset circuit.

Table 8.1 LVD Specifications

Item		Voltage Monitoring 0	Voltage Monitoring 1	Voltage Monitoring 2
VCC monitoring	Monitored voltage	Vdet0	Vdet1	Vdet2
	Detection target	Voltage drops past Vdet0	When voltage rises above or drops below Vdet1	When voltage rises above or drops below Vdet2
				Input voltages to VCC and the CMPA2 pin can be switched using the LVCMPCR.EXVCCINP2 bit
	Detection voltage	Voltage selectable from four levels using OFS1	Voltage selectable from 14 levels using the LVDLVLR.LVD1LVL[3:0] bits	Voltage selectable from four levels using the LVDLVLR.LVD2LVL[1:0] bits
	Monitoring flag	Not available	LVD1SR.LVD1MON flag: Monitors whether voltage is higher or lower than Vdet1	LVD2SR.LVD2MON flag: Monitors whether voltage is higher or lower than Vdet2
			LVD1SR.LVD1DET flag: Vdet1 passage detection	LVD2SR.LVD2DET flag: Vdet2 passage detection
Process upon	Reset	Voltage monitoring 0 reset	Voltage monitoring 1 reset	Voltage monitoring 2 reset
voltage detection		Reset when Vdet0 > VCC CPU restart after specified time with VCC > Vdet0	Reset when Vdet1 > VCC CPU restart timing selectable: after specified time with VCC > Vdet1 or Vdet1 > VCC	Reset when Vdet2 > VCC or the CMPA2 pin CPU restart timing selectable: after specified time with VCC or the CMPA2 pin > Vdet2 or after specified time with Vdet2 > VCC or the CMPA2 pin
	Interrupt	Not available	Voltage monitoring 1 interrupt	Voltage monitoring 2 interrupt
			Non-maskable or maskable interrupt is selectable	Non-maskable or maskable interrupt is selectable
			Interrupt request issued when Vdet1 > VCC and VCC > Vdet1 or either	Interrupt request issued when Vdet2 > VCC or the CMPA2 pin and VCC or the CMPA2 pin > Vdet2 or either
Event link function		Not available	Available Vdet1 passage detection event output	Not available

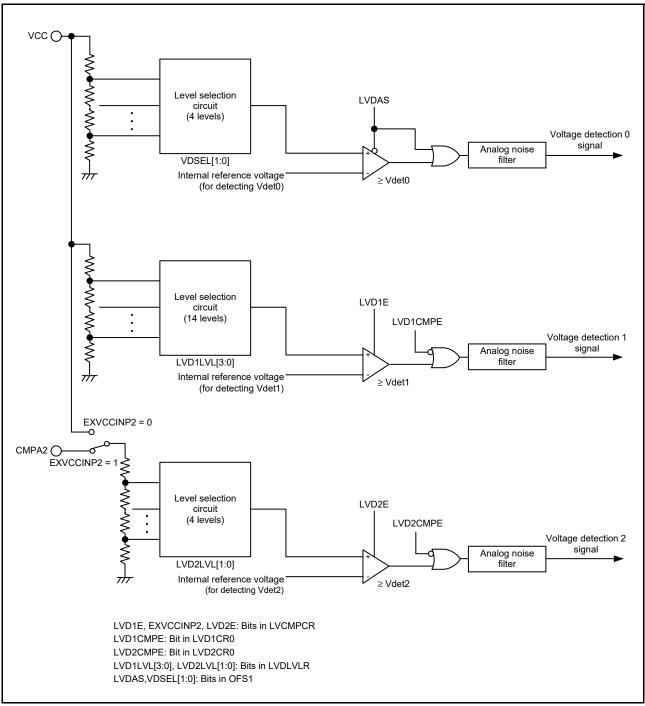


Figure 8.1 Block Diagram of the LVD

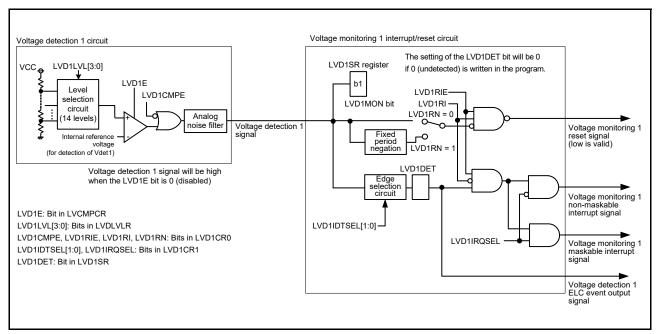


Figure 8.2 Block Diagram of Voltage Monitoring 1 Interrupt/Reset Circuit

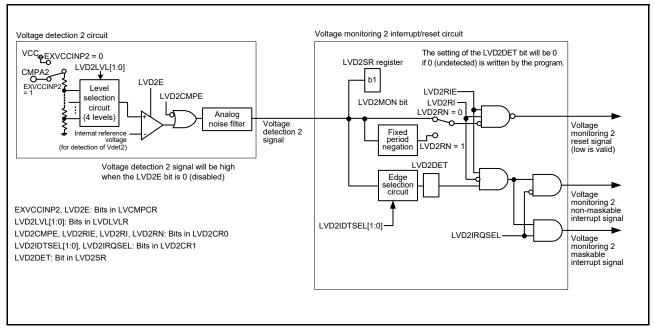


Figure 8.3 Block Diagram of Voltage Monitoring 2 Interrupt/Reset Circuit

Table 8.2 lists the I/O pins relevant to the voltage detection circuit.


Table 8.2 I/O Pins of the Voltage Detection Circuit

Pin Name	1/0	Function
CMPA2	Input	Detection target voltage pin for voltage detection 2

8.2 Register Descriptions

8.2.1 Voltage Monitoring 1 Circuit Control Register 1 (LVD1CR1)

Address(es): 0008 00E0h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	LVD1IDTSEL [1:0]	Voltage Monitoring 1 Interrupt ELC Event Generation Condition Select	b1 b0 0 0: When VCC ≥ Vdet1 (rise) is detected 0 1: When VCC < Vdet1 (drop) is detected 1 0: When drop and rise are detected 1 1: Setting prohibited	R/W
b2	LVD1IRQSEL	Voltage Monitoring 1 Interrupt Type Select	O: Non-maskable interrupt 1: Maskable interrupt	R/W
b7 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC3 bit to 1 (write enabled) before rewriting this register.

8.2.2 Voltage Monitoring 1 Circuit Status Register (LVD1SR)

Address(es): 0008 00E1h

Bit	Symbol	Bit Name	Description	R/W
b0	LVD1DET	Voltage Monitoring 1 Voltage Change Detection Flag	0: Not detected 1: Vdet1 passage detection	R/(W) *1
b1	LVD1MON	Voltage Monitoring 1 Signal Monitor Flag	0: VCC < Vdet1 1: VCC ≥ Vdet1 or LVD1MON circuit is disabled	R
b7 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC3 bit to 1 (write enabled) before rewriting this register.

Note 1. Only 0 can be written to this bit. After writing 0 to this bit, it takes two system clock cycles for the bit to be read as 0.

LVD1DET Flag (Voltage Monitoring 1 Voltage Change Detection Flag)

The LVD1DET flag is enabled when the LVCMPCR.LVD1E bit is 1 (voltage detection 1 circuit enabled) and the LVD1CR0.LVD1CMPE bit is 1 (voltage monitoring 1 circuit comparison result output enabled).

The LVD1DET flag should be set to 0 after LVD1CR0.LVD1RIE is set to 0 (disabled). LVD1CR0.LVD1RIE can be set to 1 (enabled) again after a period of two or more cycles of PCLKB has elapsed.

Depending on the number of cycles of PCLKB defined for access to read an I/O register, two or more cycles of PCLKB may have to be secured as waiting time.

LVD1MON Flag (Voltage Monitoring 1 Signal Monitor Flag)

The LVD1MON flag is enabled when the LVCMPCR.LVD1E bit is 1 (voltage detection 1 circuit enabled) and the LVD1CR0.LVD1CMPE bit is 1 (voltage monitoring 1 circuit comparison result output enabled).

8.2.3 Voltage Monitoring 2 Circuit Control Register 1 (LVD2CR1)

Address(es): 0008 00E2h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	LVD2IDTSEL [1:0]	Voltage Monitoring 2 Interrupt Generation Condition Select	 b1 b0 0 0: When VCC or the CMPA2 pin ≥ Vdet2 (rise) is detected 1: When VCC or the CMPA2 pin < Vdet2 (drop) is detected 0: When drop and rise are detected 1: Setting prohibited 	R/W
b2	LVD2IRQSEL	Voltage Monitoring 2 Interrupt Type Select	0: Non-maskable interrupt 1: Maskable interrupt	R/W
b7 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC3 bit to 1 (write enabled) before rewriting this register.

8.2.4 Voltage Monitoring 2 Circuit Status Register (LVD2SR)

Address(es): 0008 00E3h

Bit	Symbol	Bit Name	Description	R/W
b0	LVD2DET	Voltage Monitoring 2 Voltage Change Detection Flag	0: Not detected 1: Vdet2 passage detection	R/(W) *1
b1	LVD2MON	Voltage Monitoring 2 Signal Monitor Flag	0: VCC or the CMPA2 pin < Vdet2 1: VCC or the CMPA2 pin ≥ Vdet2 or LVD2MON is disabled	R
b7 to b2	2 —	Reserved	These bits are read as 0. The write value should be 0.	R/W

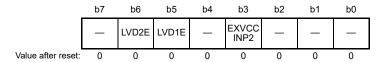
Note: Set the PRCR.PRC3 bit to 1 (write enabled) before rewriting this register.

Note 1. Only 0 can be written to this bit. After writing 0 to this bit, it takes two system clock cycles for the bit to be read as 0.

LVD2DET Flag (Voltage Monitoring 2 Voltage Change Detection Flag)

The LVD2DET flag is enabled when the LVCMPCR.LVD2E bit is 1 (voltage detection 2 circuit enabled) and the LVD2CR0.LVD2CMPE bit is 1 (voltage monitoring 2 circuit comparison result output enabled).

The LVD2DET flag should be set to 0 after LVD2CR0.LVD2RIE is set to 0 (disabled). LVD2CR0.LVD2RIE can be set to 1 (enabled) again after a period of two or more cycles of PCLKB has elapsed.


Depending on the number of cycles of PCLKB defined for access to read an I/O register, two or more cycles of PCLKB may have to be secured as waiting time.

LVD2MON Flag (Voltage Monitoring 2 Signal Monitor Flag)

The LVD2MON flag is enabled when the LVCMPCR.LVD2E bit is 1 (voltage detection 2 circuit enabled) and the LVD2CR0.LVD2CMPE bit is 1 (voltage monitoring 2 circuit comparison result output enabled).

8.2.5 Voltage Monitoring Circuit Control Register (LVCMPCR)

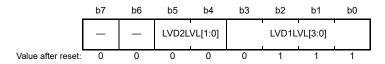
Address(es): 0008 C297h

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b3	EXVCCINP2	Voltage Detection 2 Comparison Voltage External Input Select *1	0: Power supply voltage (VCC) 1: CMPA2 pin input voltage	R/W
b4	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b5	LVD1E	Voltage Detection 1 Enable	Voltage detection 1 circuit disabled Voltage detection 1 circuit enabled	R/W
b6	LVD2E	Voltage Detection 2 Enable	Voltage detection 2 circuit disabled Voltage detection 2 circuit enabled	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC3 bit to 1 (write enabled) before rewriting this register.

Note 1. The EXVCCINP2 bit can be changed only when the LVD1E and LVD2E bits are both 0 (voltage detection 1 circuit and voltage detection 2 circuit disabled).

LVD1E Bit (Voltage Detection 1 Enable)


When using voltage detection 1 interrupt/reset or the LVD1SR.LVD1MON flag, set the LVD1E bit to 1. The voltage detection 1 circuit starts once td(E-A) passes after the LVD1E bit value is changed from 0 to 1.

LVD2E Bit (Voltage Detection 2 Enable)

When using voltage detection 2 interrupt/reset or the LVD2SR.LVD2MON flag, set the LVD2E bit to 1. The voltage detection 2 circuit starts once td(E-A) passes after the LVD2E bit value is changed from 0 to 1.

8.2.6 Voltage Detection Level Select Register (LVDLVLR)

Address(es): 0008 C298h

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	LVD1LVL[3:0]	Voltage Detection 1 Level Select (Standard voltage during drop in voltage)	b3 b0 0 0 0: 4.29 V 0 0 0 0 1: 4.14 V 0 0 1 0: 4.02 V 0 0 1 1: 3.84 V 0 1 0 0: 3.10 V 0 1 0 1: 3.00 V 0 1 1 0: 2.90 V 0 1 1 1: 2.79 V 1 0 0 0: 2.68 V 1 0 1 0: 2.58 V 1 0 1 0: 2.48 V 1 0 1 1: 2.20 V 1 1 0 0: 1.96 V 1 1 0: 1.86 V Settings other than those listed above are prohibited.	R/W
b5, b4	LVD2LVL[1:0]	Voltage Detection 2 Level Select (Standard voltage during drop in voltage)	b5 b4 0 0: 4.29V 0 1: 4.14V 1 0: 4.02V 1 1: 3.84V	R/W
b7, b6	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC3 bit to 1 (write enabled) before rewriting this register.

When changing the LVDLVLR register, first set the LVCMPCR.LVD1E and LVCMPCR.LVD2E bits to 0 (voltage detection n circuit disabled) (n = 1, 2).

When a setting is made so that the voltage detection level range set by the LVD1LVL[3:0] bit overlaps with the range set by the LVD2LVL[1:0] bit register, it cannot be specified which of LVD1 and LVD2 is used for voltage detection. For details on the voltage detection level range, refer to section 40, Electrical Characteristics.

8.2.7 Voltage Monitoring 1 Circuit Control Register 0 (LVD1CR0)

Address(es): 0008 C29Ah

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b0	LVD1RIE	Voltage Monitoring 1 Interrupt/Reset Enable	0: Disabled 1: Enabled	R/W
b1	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b2	LVD1CMPE	Voltage Monitoring 1 Circuit Comparison Result Output Enable	Voltage monitoring 1 circuit comparison results output disabled Voltage monitoring 1 circuit comparison results output enabled	R/W
b3	_	Reserved	The read value is undefined. The write value should be 0.	R/W
b5, b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b6	LVD1RI	Voltage Monitoring 1 Circuit Mode Select	Voltage monitoring 1 interrupt occurs when the voltage passes Vdet1 Voltage monitoring 1 reset occurs when the voltage falls below Vdet1	R/W
b7	LVD1RN	Voltage Monitoring 1 Reset Negation Select	O: Negation follows a stabilization time (tLVD1) after VCC > Vdet1 is detected. 1: Negation follows a stabilization time (tLVD1) after assertion of the voltage monitoring 1 reset.	R/W

Note: Set the PRCR.PRC3 bit to 1 (write enabled) before rewriting this register.

LVD1RIE Bit (Voltage Monitoring 1 Interrupt/Reset Enable)

The LVD1RIE bit is enabled when the LVCMPCR.LVD1E bit is set to 1 (voltage detection 1 circuit enabled) and the LVD1CMPE bit is set to 1 (voltage monitoring 1 circuit comparison results output enabled).

Ensure that neither a voltage monitoring 1 reset nor a voltage monitoring 1 non-maskable interrupt is generated during programming or erasure of the flash memory.

LVD1RN Bit (Voltage Monitoring 1 Reset Negation Select)

If the LVD1RN bit is to be set to 1 (negation follows a stabilization time after assertion of the voltage monitoring 1 reset), set the LOCOCR.LCSTP bit to 0 (LOCO is operating). Furthermore, if a transition to software standby mode, the only possible value for the LVD1RN bit is 0 (negation follows a stabilization time after VCC > Vdet1 is detected). Do not set the LVD1RN bit to 1 (negation follows a stabilization time after assertion of the voltage monitoring 1 reset).

8.2.8 Voltage Monitoring 2 Circuit Control Register 0 (LVD2CR0)

Address(es): 0008 C29Bh

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b0	LVD2RIE	Voltage Monitoring 2 Interrupt/Reset Enable	0: Disabled 1: Enabled	R/W
b1	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b2	LVD2CMPE	Voltage Monitoring 2 Circuit Comparison Result Output Enable	Voltage monitoring 2 circuit comparison results output disabled Voltage monitoring 2 circuit comparison results output enabled	R/W
b3	_	Reserved	The read value is undefined. The write value should be 0.	R/W
b5, b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b6	LVD2RI	Voltage Monitoring 2 Circuit Mode Select	Voltage monitoring 2 interrupt during Vdet2 passage Voltage monitoring 2 reset enabled when the voltage falls to and below Vdet2	R/W
b7	LVD2RN	Voltage Monitoring 2 Reset Negation Select	O: Negation follows a stabilization time (tLVD2) after VCC or the CMPA2 pin > Vdet2 is detected. 1: Negation follows a stabilization time (tLVD2) after assertion of the voltage monitoring 2 reset.	R/W

Note: Set the PRCR.PRC3 bit to 1 (write enabled) before rewriting this register.

LVD2RIE Bit (Voltage Monitoring 2 Interrupt/Reset Enable)

The LVD2RIE bit is enabled when the LVCMPCR.LVD2E bit is set to 1 (voltage detection 2 circuit enabled) and the LVD2CMPE bit is set to 1 (voltage monitoring 2 circuit comparison results output enabled).

Ensure that neither a voltage monitoring 2 reset nor a voltage monitoring 2 non-maskable interrupt is generated during programming or erasure of the flash memory.

LVD2RN Bit (Voltage Monitoring 2 Reset Negation Select)

If the LVD2RN bit is to be set to 1 (negation follows a stabilization time after assertion of the voltage monitoring 2 reset), set the LOCOCR.LCSTP bit to 0 (LOCO is operating). Furthermore, if a transition to software standby mode, the only possible value for the LVD2RN bit is 0 (negation follows a stabilization time after VCC or the CMPA2 pin > Vdet2 is detected). Do not set the LVD2RN bit to 1 (negation follows a stabilization time after assertion of the voltage monitoring 2 reset).

8.3 VCC Input Voltage Monitor

8.3.1 Monitoring Vdet0

Monitoring Vdet0 is not possible.

8.3.2 Monitoring Vdet1

After making the following settings, the LVD1SR.LVD1MON flag can be used to monitor the results of comparison by voltage monitor 1.

- (1) Specify the detection voltage by setting the LVDLVLR.LVD1LVL[3:0] bits (voltage detection 1 level select).
- (2) Set the LVCMPCR.LVD1E bit to 1 (voltage detection 1 circuit enabled).
- (3) After waiting for td(E-A), set the LVD1CR0.LVD1CMPE bit to 1 (voltage monitoring 1 circuit comparison results output enabled).

8.3.3 Monitoring Vdet2

After making the following settings, the LVD2SR.LVD2MON flag can be used to monitor the results of comparison by voltage monitor 2.

- (1) Specify the detection voltage by setting the LVDLVLR.LVD2LVL[1:0] bits (voltage detection 2 level).
- (2) Set the LVCMPCR.EXVCCINP2 bit to 0 (VCC voltage) or 1 (CMPA2 pin input voltage).
- (3) Set the LVCMPCR.LVD2E bit to 1 (voltage detection 2 circuit enabled).
- (4) After waiting for td(E-A), set the LVD2CR0.LVD2CMPE bit to 1 (voltage monitoring 2 circuit comparison results output enabled).

8.4 Reset from Voltage Monitor 0

When using the reset from voltage monitor 0, clear the voltage detection 0 circuit start bit (OFS1.LVDAS) to 0 (enabling the voltage monitor 0 reset after a reset).

Figure 8.4 shows an example of operations for a voltage monitoring 0 reset.

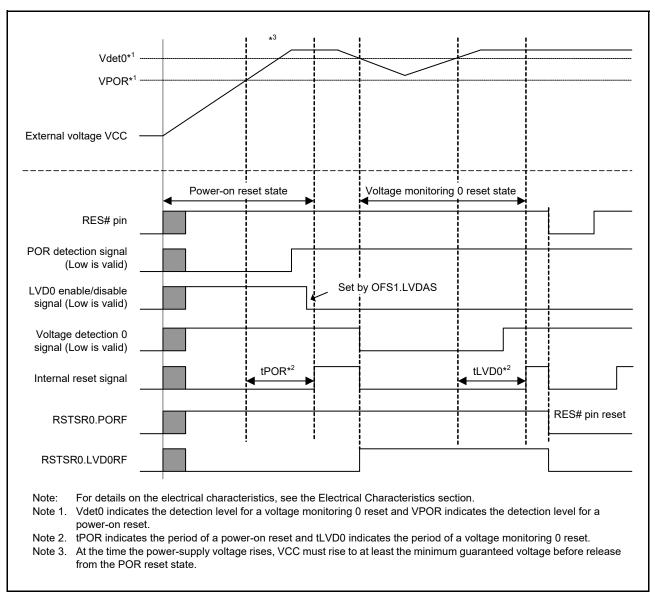


Figure 8.4 Example of Voltage Monitoring 0 Reset Operation

8.5 Interrupt and Reset from Voltage Monitoring 1

Table 8.3 shows the procedures for setting bits related to the voltage monitoring 1 interrupt and voltage monitoring 1 reset. Table 8.4 shows the procedures for stopping bits related to the voltage monitoring 1 interrupt and voltage monitoring 1 reset. Figure 8.5 shows an example of operations for a voltage monitoring 1 interrupt. For the operation of the voltage monitoring 1 reset, see Figure 6.2 in section 6, Resets.

Table 8.3 Procedures for Setting Bits Related to the Voltage Monitoring 1 Interrupt and Voltage Monitoring 1
Reset

Step	Voltage Monitoring 1 Interrupt, Voltage Monitoring 1 ELC Event Output	Voltage Monitoring 1 Reset		
1*1	Select the detection voltage by setting the LVDLVLR.LVD1LVL[3:0] bits.			
2*1	Set the LVD1CR0.LVD1RI bit to 0 (voltage monitoring 1 interrupt).	Set the LVD1CR0.LVD1RI bit to 1 (voltage monitoring 1 reset). Select the type of reset negation by setting the LVD1CR0.LVD1RN bit.		
3	Select the timing of interrupt requests by setting the LVD1CR1.LVD1IDTSEL[1:0] bits. Select the type of interrupt by setting the LVD1CR1.LVD1IRQSEL bit.	_		
4	_	Set the LVD1CR0.LVD1RIE bit to 1 (voltage monitoring 1 interrupt/reset enabled).		
5*1	Set the LVCMPCR.LVD1E bit to 1 (voltage detection 1 circuit enabled).			
6*1	Wait for at least td(E-A).			
7	Set the LVD1CR0.LVD1CMPE bit to 1 (voltage monitoring 1 ci	rcuit comparison results output enabled).		
8	Wait for at least 2 µs.	_		
9	Set the LVD1SR.LVD1DET bit to 0.	_		
10	Set the LVD1CR0.LVD1RIE bit to 1 (voltage monitoring 1 interrupt/reset enabled).	_		

Note 1. Steps 1, 2, 5, and 6 are not required if operation is with the setting to select the voltage monitoring 1 interrupt (LVD1CR0.LVD1RI = 0) and operation can be restarted by simply changing the settings of the LVD1CR1.LVD1IRQSEL and LVD1IDTSEL[1:0] bits after monitoring is stopped or if restarting is in a case where the settings related to the voltage-detection circuit were not changed after monitoring was stopped. When changes are to be made and operation is with the setting to select the voltage monitoring 1 reset (LVD1CR0.LVD1RI = 1), proceed through all steps from 1 to 10.

Table 8.4 Procedures for Stopping Bits Related to the Voltage Monitoring 1 Interrupt and Voltage Monitoring 1 Reset

Step	Voltage Monitoring 1 Interrupt, Voltage Monitoring 1 ELC Event Output	Voltage Monitoring 1 Reset	
1	Set the LVD1CR0.LVD1RIE bit to 0 (voltage monitoring 1 interrupt/reset disabled).	_	
2	Set the LVD1CR0.LVD1CMPE bit to 0 (voltage monitoring 1 circuit comparison results output disabled).		
3*1	Set the LVCMPCR.LVD1E bit to 0 (voltage detection 1 circuit disabled).		
4	— Set the LVD1CR0.LVD1RIE bit to 0 (voltage monitoring 1 interrupt/reset disabled).		
5	Modify settings of bits related to the voltage detection circuit registers other than LVCMPCR.LVD1E, LVD1CR0.LVD1RIE, and LVD1CR0.LVD1CMPE.		

Note 1. Step 3 is not required if operation is with the setting to select the voltage monitoring 1 interrupt (LVD1CR0.LVD1RI = 0) and operation can be restarted by simply changing the settings of the LVD1CR1.LVD1IRQSEL and LVD1IDTSEL[1:0] bits after monitoring is stopped or if restarting is in a case where the settings related to the voltage-detection circuit were not changed after monitoring was stopped. When changes are to be made and operation is with the setting to select the voltage monitoring 1 reset (LVD1CR0.LVD1RI = 1), proceed through all steps from 1 to 5.

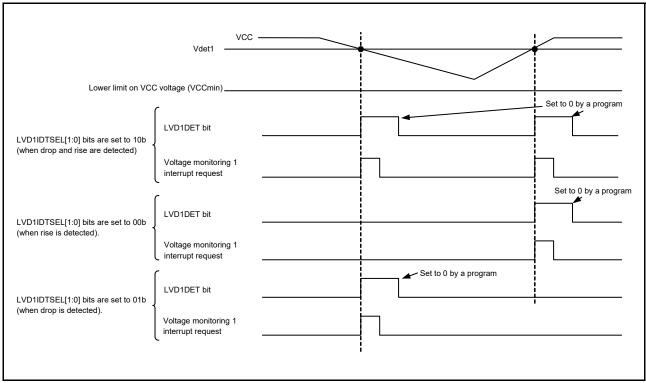


Figure 8.5 Example of Voltage Monitoring 1 Interrupt Operation

8.6 Interrupt and Reset from Voltage Monitoring 2

Table 8.5 shows the procedures for setting bits related to the voltage monitoring 2 interrupt and voltage monitoring 2 reset. Table 8.6 shows the procedure for stopping bits related to the voltage monitoring 2 interrupt and voltage monitoring 2 reset. Figure 8.6 shows an example of operations for a voltage monitoring 2 interrupt. For the operation of the voltage monitoring 2 reset, see Figure 6.2 in section 6, Resets.

Table 8.5 Procedures for Setting Bits Related to the Voltage Monitoring 2 Interrupt and Voltage Monitoring 2 Reset

Step	Voltage Monitoring 2 Interrupt	Voltage Monitoring 2 Reset			
1*1	Select the detection voltage by setting the LVDLVLR.LVD2LVL[1:0] bits.				
2*1	Set the LVCMPCR.EXVCCINP2 bit to 0 (VCC voltage) or set it to 1 (CMPA2 pin input voltage).				
3*1	Set the LVD2CR0.LVD2RI bit to 0 (voltage monitoring 2 interrupt).	Set the LVD2CR0.LVD2RI bit to 1 (voltage monitoring 2 reset). Select the type of reset negation by setting the LVD2CR0.LVD2RN bit.			
4	Select the timing of interrupt requests by setting the LVD2CR1.LVD2IDTSEL[1:0] bits. Select the type of interrupt by setting the LVD2CR1.LVD2IRQSEL bit.	_			
5	_	Set the LVD2CR0.LVD2RIE bit to 1 (voltage monitoring 2 interrupt/reset enabled).			
6*1	Set the LVCMPCR.LVD2E bit to 1 (voltage detection 2 circuit enabled).				
7*1	Wait for at least td(E-A).				
8	Set the LVD2CR0.LVD2CMPE bit to 1 (voltage monitoring 2 ci	ircuit comparison results output enabled).			
9	Wait for at least 2 µs.	_			
10	Set the LVD2SR.LVD2DET bit to 0.	_			
11	Set the LVD2CR0.LVD2RIE bit to 1 (voltage monitoring 2 interrupt/reset enabled)	_			

Note 1. Steps 1, 2, 3, 6, and 7 are not required if operation is with the setting to select the voltage monitoring 2 interrupt (LVD2CR0.LVD2RI = 0) and operation can be restarted by simply changing the settings of the LVD2CR1.LVD2IRQSEL and LVD2IDTSEL[1:0] bits after monitoring is stopped or if restarting is in a case where the settings related to the voltage-detection circuit were not changed after monitoring was stopped. When changes are to be made and operation is with the setting to select the voltage monitoring 2 reset (LVD2CR0.LVD2RI = 1), proceed through all steps from 1 to 11.

Table 8.6 Procedures for Stopping Bits Related to the Voltage Monitoring 2 Interrupt and Voltage Monitoring 2 Reset

Step	Voltage Monitoring 2 Interrupt	Voltage Monitoring 2 Reset		
1	Set the LVD2CR0.LVD2RIE bit to 0 (voltage monitoring 2 interrupt/reset disabled).	_		
2	Set the LVD2CR0.LVD2CMPE bit to 0 (voltage monitoring 2 circuit comparison results output disabled).			
3*1	Set the LVCMPCR.LVD2E bit to 0 (voltage monitoring 2 circuit disabled).			
4	— Set the LVD2CR0.LVD2RIE bit to 0 (voltage monitoring 2 interrupt/reset disabled).			
5	Modify settings of bits related to the voltage detection circuit registers other than LVCMPCR.LVD2E, LVD2CR0.LVD2RIE, and LVD2CR0.LVD2CMPE.			

Note 1. Step 3 is not required if operation is with the setting to select the voltage monitoring 2 interrupt (LVD2CR0.LVD2RI = 0) and operation can be restarted by simply changing the settings of the LVD2CR1.LVD2IRQSEL and LVD2IDTSEL[1:0] bits after monitoring is stopped or if restarting is in a case where the settings related to the voltage-detection circuit were not changed after monitoring was stopped. When changes are to be made and operation is with the setting to select the voltage monitoring 2 reset (LVD2CR0.LVD2RI = 1), proceed through all steps from 1 to 5.

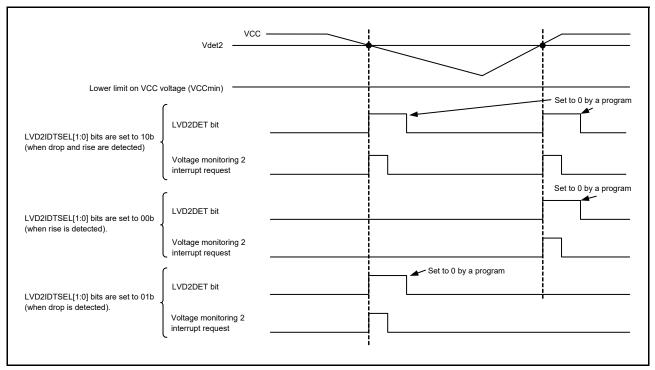


Figure 8.6 Example of Voltage Monitoring 2 Interrupt Operation

8.7 Event Link Output

The LVD can output the event signals to the event link controller (ELC).

(1) Vdet1 passage detection event output

The LVD outputs the event signal when it is detected that the voltage has passed the Vdet1 voltage while both the voltage detection 1 circuit and the voltage monitoring 1 circuit comparison result output are enabled.

When enabling the LVD's event link output function, be sure to make settings for enabling the LVD before enabling the LVD event link function of the ELC. To stop the LVD's event link output function, be sure to make settings for stopping the LVD before disabling the LVD event link function of the ELC.

8.7.1 Interrupt Handling and Event Linking

The LVD has the bits to separately enable or disable the voltage monitoring 1 and 2 interrupts. When an interrupt source is generated and the interrupt is enabled by the interrupt enable bit, the interrupt request signal is output to the CPU. On the contrary, as soon as an interrupt source is generated, the event link signal is output as the event signal to the other module via the ELC regardless of the state of the interrupt enable bit.

It is possible to output voltage monitoring 1 and 2 interrupts in software standby. The event signals for the ELC, however, are output as follows:

• When the event of passing Vdet1 is detected in software standby mode, no event signal is generated for the ELC because no clock is presented in software standby mode. Since the Vdet1 passage detection flag is preserved, however, when the supply of the clock is resumed after restoring from software standby mode, the event signal for the ELC is output according to the state of the Vdet1 passage detection flag.

9. Clock Generation Circuit

9.1 Overview

This MCU incorporates a clock generation circuit.

Table 9.1 lists the specifications of the clock generation circuit. Figure 9.1 shows a block diagram of the clock generation circuit.

Table 9.1 Specifications of Clock Generation Circuit

Item	Specification
Uses	 Generates the system clock (ICLK) to be supplied to the CPU, DTC, ROM, and RAM. Generates the peripheral module clocks (PCLKB and PCLKD) to be supplied to peripheral modules. The peripheral module clock used as the operating clock is PCLKD for S12AD and PCLKB are for other modules. Generates the FlashIF clock (FCLK) to be supplied to the FlashIF. Generates the CAC clock (CACCLK) to be supplied to the CAC. Generates the RTC-dedicated sub-clock (RTCSCLK) to be supplied to the RTC. Generates the IWDT-dedicated low-speed clock (IWDTCLK) to be supplied to the IWDT. Generates the LPT clock (LPTCLK) to be supplied to the REMC.
Operating frequencies*1	ICLK: 32 MHz (max)*2 PCLKB: 32 MHz (max) PCLKD: 32 MHz (max) FCLK: 1 to 32 MHz (for programming and erasing the ROM and E2 DataFlash) 32 MHz (max) (for reading from the E2 DataFlash) CACCLK: Same frequency as each oscillator RTCSCLK: 32.768 kHz IWDTCLK: 15 kHz LPTCLK: The same frequency as that of the selected oscillator REMCLK: Same frequency as each oscillator
Main clock oscillator*3	 Resonator frequency: 1 to 20 MHz (VCC ≥ 2.4 V), 1 to 8 MHz (VCC < 2.4 V) External clock input frequency: 20 MHz (max) Connectable resonator or additional circuit: ceramic resonator, crystal Connection pins: EXTAL, XTAL Oscillation stop detection function: When a main clock oscillation stop is detected, the system clock source is switched to LOCO and MTU output can be forcedly driven to high-impedance. Drive capacity switching function
Sub-clock oscillator	 Resonator frequency: 32.768 kHz Connectable resonator or additional circuit: crystal Connection pin: XCIN, XCOUT Drive capacity switching function
PLL circuit	 Input clock source: Main clock Input pulse frequency division ratio: Selectable from 1, 2, and 4 Input frequency: 4 to 8 MHz Frequency multiplication ratio: Selectable from 4 to 8 (increments of 0.5) VCO oscillation frequency: 24 to 32 MHz (VCC ≥ 2.4 V)
High-speed on-chip oscillator (HOCO)	Oscillation frequency: 32 MHz
Low-speed on-chip oscillator (LOCO)	Oscillation frequency: 4 MHz
IWDT-dedicated on-chip oscillator	Oscillation frequency: 15 kHz

Note 1. The maximum operating frequency in high-speed operating mode. For the maximum operating frequency in the other operating modes, refer to section 11.2.6, Operating Power Control Register (OPCCR).

Note 2. The relationship of frequencies must be set as follows. ICLK: FCLK, PCLKB, and PCLKD = 1: N (N is an integer).

Note 3. When oscillating the PLL at 32 MHz, the frequency of the main clock oscillator is limited to 8 or 16 MHz.

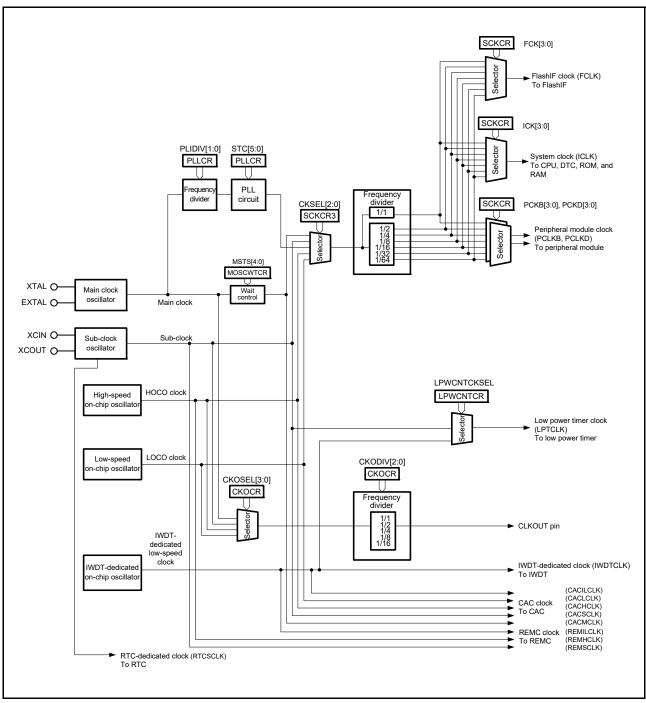
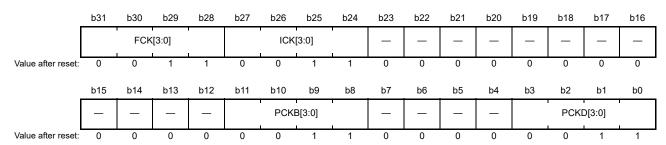


Figure 9.1 Block Diagram of Clock Generation Circuit

Table 9.2 lists the I/O pins of the clock generation circuit.


Table 9.2 I/O Pins of Clock Generation Circuit

Pin Name	I/O	Description
XTAL	Output	These pins are used to connect a crystal. The EXTAL pin can also be used to input an
EXTAL	Input	external clock. For details, refer to section 9.3.2, External Clock Input.
XCIN	Input	These pins are used to connect a 32.768-kHz crystal.
XCOUT	Output	
CLKOUT	Output	Clock output pin

9.2 Register Descriptions

9.2.1 System Clock Control Register (SCKCR)

Address(es): 0008 0020h

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	PCKD[3:0]	Peripheral Module Clock D	b3 b0	R/W
		(PCLKD) Select	0 0 0 0: ×1	
		,	0 0 0 1: ×1/2	
			0 0 1 0: ×1/4	
			0 0 1 1: ×1/8	
			0 1 0 0: ×1/16	
			0 1 0 1: ×1/32	
			0 1 1 0: ×1/64	
			Settings other than above are prohibited.	
b7 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b11 to b8	PCKB[3:0]	Peripheral Module Clock B	b11 b8	R/W
		(PCLKB) Select	0 0 0 0: ×1	
			0 0 0 1: ×1/2	
			0 0 1 0: ×1/4	
			0 0 1 1: ×1/8	
			0 1 0 0: ×1/16	
			0 1 0 1: ×1/32	
			0 1 1 0: ×1/64	
			Settings other than above are prohibited.	
b23 to b12	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b27 to b24	ICK[3:0]	System Clock (ICLK)	b27 b24 0 0 0 0: ×1	R/W
		Select		
			0 0 0 1: ×1/2	
			0 0 1 0: ×1/4	
			0 0 1 1: ×1/8	
			0 1 0 0: ×1/16 0 1 0 1: ×1/32	
			0 1 0 1: ×1/32 0 1 1 0: ×1/64	
			Settings other than above are prohibited.	
b31 to b28	FCK[3:0]	FlashIF Clock (FCLK)	b31 b28 0 0 0 0: ×1	R/W
		Select	0 0 0 0 . ^1 0 0 0 1: ×1/2	
			0 0 1 0: ×1/4	
			0 0 1 0. ^1/4 0 0 1 1: ×1/8	
			0 1 1 . ^ 1/6 0 1 0 0: ×1/16	
			0 1 0 0. ^1/10 0 1 0 1: ×1/32	
			0 1 0 1. ^1/32 0 1 1 0: ×1/64	
			Settings other than above are prohibited.	
			octalige of the than above are profibiled.	

Note: Set the PRCR.PRC0 bit to 1 (write enabled) before rewriting this register.

This register cannot be rewritten while the flash memory is being programmed or erased.

When an instruction for writing to SCKCR or SCKCR3 is to follow writing to the SCKCR register, do so in accord with the procedure below.

1. Write to the SCKCR register.

- 2. Confirm that the value has actually been written to the SCKCR register.
- 3. Proceed to the next step.

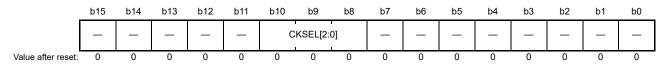
PCKD[3:0] Bits (Peripheral Module Clock D (PCLKD) Select)

These bits select the frequency of peripheral module clock D (PCLKD).

PCKB[3:0] Bits (Peripheral Module Clock B (PCLKB) Select)

These bits select the frequency of peripheral module clock B (PCLKB).

ICK[3:0] Bits (System Clock (ICLK) Select)


These bits select the frequency of the system clock (ICLK).

FCK[3:0] Bits (FlashIF Clock (FCLK) Select)

These bits select the frequency of the FlashIF clock (FCLK).

9.2.2 System Clock Control Register 3 (SCKCR3)

Address(es): 0008 0026h

Bit	Symbol	Bit Name	Description	R/W
b7 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b10 to b8	CKSEL[2:0]	Clock Source Select	b10 b8 0 0 0: LOCO 0 0 1: HOCO 0 1 0: Main clock oscillator 0 1 1: Sub-clock oscillator 1 0 0: PLL circuit Settings other than above are prohibited.	R/W
b15 to b11	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC0 bit to 1 (write enabled) before rewriting this register.

This register cannot be rewritten while the flash memory is being programmed or erased.

CKSEL[2:0] Bits (Clock Source Select)

These bits select the source of the system clock (ICLK), peripheral module clock (PCLKB and PCLKD), and FlashIF clock (FCLK) from low-speed on-chip oscillator (LOCO), high-speed on-chip oscillator (HOCO), the main clock oscillator, the sub-clock oscillator, and the PLL circuit.

Transitions to clock sources which are not in operation are prohibited.

9.2.3 PLL Control Register (PLLCR)

Address(es): 0008 0028h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	PLIDIV[1:0]	PLL Input Frequency Division Ratio Select	b1 b0 0 0: ×1 0 1: ×1/2 1 0: ×1/4 1 1: Setting prohibited	R/W
b7 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b13 to b8	STC[5:0]	Frequency Multiplication Factor Select	b13 b8 0 0 0 1 1 1: ×4 0 0 1 0 0 0: ×4.5 0 0 1 0 1 0: ×5 0 0 1 0 1 0: ×5.5 0 0 1 0 1 1: ×6 0 0 1 1 0 0: ×6.5 0 0 1 1 0 1: ×7 0 0 1 1 1 0: ×7.5 0 0 1 1 1 1: ×8 Settings other than above are prohibited.	R/W
b15, b14	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC0 bit to 1 (write enabled) before rewriting this register.

Writing to the PLLCR is prohibited when the PLLCR2.PLLEN bit is 0 (PLL is operating).

PLIDIV[1:0] Bits (PLL Input Frequency Division Ratio Select)

These bits select the frequency division ratio of the PLL clock source.

Set these bits so that the frequency of PLL input signal is within the range of 4 MHz to 8 MHz.

STC[5:0] Bits (Frequency Multiplication Factor Select)

These bits select the frequency multiplication factor of the PLL circuit.

Set these bits so that the PLL oscillation frequency is within the range of 24 MHz to 32 MHz.

9.2.4 PLL Control Register 2 (PLLCR2)

Address(es): 0008 002Ah

Bit	Symbol	Bit Name	Description	R/W
b0	PLLEN	PLL Stop Control	0: PLL is operating. 1: PLL is stopped.	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC0 bit to 1 (write enabled) before rewriting this register.

PLLEN Bit (PLL Stop Control)

This bit runs or stops the PLL circuit.

After setting the PLLEN bit to 0 (PLL is operating), confirm that the OSCOVFSR.PLOVF bit is 1 before switching the system clock to the PLL clock.

That is, a fixed time for stabilization is required after the setting for PLL operation. A fixed time is also required for oscillation to stop after the setting to stop PLL operation. Accordingly, take note of the following limitations when starting and stopping PLL operation.

- After stopping the PLL, confirm that the OSCOVFSR.PLOVF bit is 0 before restarting the PLL.
- Confirm that the PLL is operating and that the OSCOVFSR.PLOVF bit is 1 before stopping the PLL.
- Regardless of whether or not it is selected as the system clock, confirm that the OSCOVFSR.PLOVF bit is 1 before executing a WAIT instruction to place the MCU in software standby mode.
- After stopping the PLL, confirm that the OSCOVFSR.PLOVF bit is 0 and execute a WAIT instruction before entering software standby mode.

When the PLL clock is selected by the SCKCR3.CKSEL[2:0] bits, do not set the PLLEN bit (PLL is stopped) to 1. When the external voltage (VCC) is below 2.4 V or low-speed operating mode is selected by the SOPCCR.SOPCM bit, do not set the PLLEN bit to 0 (PLL is operating).

9.2.5 Main Clock Oscillator Control Register (MOSCCR)

Address(es): 0008 0032h

Bit	Symbol	Bit Name	Description	R/W
b0	MOSTP	Main Clock Oscillator Stop	Main clock oscillator is operating. Main clock oscillator is stopped.	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC0 bit to 1 (write enabled) before rewriting this register.

Set this register after setting up the main clock oscillator wait control register.

MOSTP Bit (Main Clock Oscillator Stop)

This bit runs or stops the main clock oscillator.

After setting the MOSTP bit to 0 (main clock oscillator is operating), read the OSCOVFSR.MOOVF bit to confirm that is has become 1, and then use the main clock.

For the main clock oscillator, a fixed time is required for oscillation to become stable after the settings for operation have been made. Furthermore, a fixed time is required for oscillation to actually stop after the settings to stop oscillation have been made. Accordingly, take note of the following limitations when starting and stopping operation.

- After stopping the main clock oscillator, confirm that the OSCOVFSR.MOOVF bit is 0 before restarting the main clock oscillator.
- Confirm that the main clock oscillator is operating and that the OSCOVFSR.MOOVF bit is 1 before stopping the main clock oscillator.
- Regardless of whether or not it is selected as the system clock, confirm that the OSCOVFSR.MOOVF bit is 1 and
 execute a WAIT instruction in order to operate the main clock oscillator and place the MCU in software standby
 mode.
- After stopping the main clock oscillator, confirm that the OSCOVFSR.MOOVF bit is 0 and execute a WAIT
 instruction before entering software standby mode.

Do not set the MOSTP bit to 1 when one of the following condition is met.

- When the main clock is selected as the clock source for the system clock (SCKCR3.CKSEL[2:0] = 010b)
- When the PLL clock is selected as the clock source for the system clock (SCKCR3.CKSEL[2:0] = 100b)
- When the PLL is operating (PLLCR2.PLLEN = 0)

Do not set the MOSTP bit to 0 when the following condition is met.

• When low-speed operating mode is selected by the SOPCCR.SOPCM bit

9.2.6 Sub-Clock Oscillator Control Register (SOSCCR)

Address(es): 0008 0033h

Bit	Symbol	Bit Name	Description	R/W
b0	SOSTP	Sub-Clock Oscillator Stop	Sub-clock oscillator is operating. Sub-clock oscillator is stopped.	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC0 bit to 1 (write enabled) before rewriting this register.

SOSTP Bit (Sub-Clock Oscillator Stop)

This bit runs or stops the sub-clock oscillator.

The SOSTP bit and the sub-clock oscillator control bit in RTC control register 3 (RCR3.RTCEN) controls whether to operate or stop the sub-clock oscillator. If one of these bits is set so as to enable the operation, the sub-clock oscillator runs.

When changing the value of the SOSTP bit or RCR3.RTCEN bit, execute subsequent instructions after reading the bit and checking that its value has actually been updated (refer to (2), Notes on writing to I/O registers, in section 5, I/O Registers).

After the setting of the SOSTP bit or the RCR3.RTCEN bit has been changed so that the sub-clock oscillator operates, only start using the sub-clock after the sub-clock oscillation stabilization time (t_{SUBOSC}) has elapsed.

That is, a fixed time for stabilization is required after the setting for sub-clock oscillator operation. A fixed time is also required for oscillation to stop after the setting to stop the oscillator. Accordingly, take note of the following limitations when starting and stopping the oscillator.

- When restarting the sub-clock oscillator after it has been stopped, allow at least five cycles of the sub-clock as an interval over which it is still stopped.
- Ensure that oscillation by the sub-clock oscillator is stable when making the setting to stop the sub-clock oscillator.
- Regardless of whether or not it is selected as the system clock, ensure that oscillation by the sub-clock oscillator is stable before executing a WAIT instruction to place the chip on software standby.
- When a transition to software standby mode is to follow the setting to stop the sub-clock oscillator, wait for at least two cycles of the sub-clock oscillator after the setting to stop the sub-clock oscillator and before executing the WAIT instruction.

While the sub-clock oscillator is selected by the SCKCR3.CKSEL[2:0] bits, do not set the SOSTP bit to 1 (sub-clock oscillator is stopped).

9.2.7 Low-Speed On-Chip Oscillator Control Register (LOCOCR)

Address(es): 0008 0034h

Bit	Symbol	Bit Name	Description	R/W
b0	LCSTP	LOCO Stop	0: LOCO is operating. 1: LOCO is stopped.	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC0 bit to 1 (write enabled) before rewriting this register.

LCSTP Bit (LOCO Stop)

This bit runs or stops the LOCO.

After the setting of the LCSTP bit has been changed so that the LOCO operates, only start using the LOCO clock after the LOCO clock oscillation stabilization time (t_{LOCO}) has elapsed.

That is, a fixed time for stabilization of oscillation is required after the setting for LOCO operation. A fixed time is also required for oscillation to stop after the setting to stop the oscillator. Accordingly, take note of the following limitations when starting and stopping the oscillator.

- When restarting the LOCO after it has been stopped, allow at least five cycles of the LOCO as an interval over which it is still stopped.
- Ensure that oscillation by the LOCO is stable when making the setting to stop the LOCO.
- Regardless of whether or not it is selected as the system clock, ensure that oscillation by the LOCO is stable before executing a WAIT instruction to place the chip on software standby.
- When a transition to software standby mode is to follow the setting to stop the LOCO, wait for at least three cycles of the LOCO after the setting to stop the LOCO and before executing the WAIT instruction.

While the LOCO is selected by the SCKCR3.CKSEL[2:0] bits, do not set the LCSTP bit to 1 (LOCO is stopped). While low-speed operating mode is selected by the SOPCCR.SOPCM bit, do not set the LCSTP bit to 0 (LOCO is operating).

9.2.8 IWDT-Dedicated On-Chip Oscillator Control Register (ILOCOCR)

Address(es): 0008 0035h

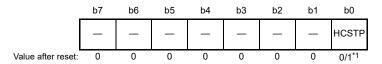
Bit	Symbol	Bit Name	Description	R/W
b0	ILCSTP	IWDT-Dedicated On-Chip Oscillator Stop	IWDT-dedicated on-chip oscillator is operating. IWDT-dedicated on-chip oscillator is stopped.	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC0 bit to 1 (write enabled) before rewriting this register.

When the IWDT start mode select bit in option function select register 0 (OFS0.IWDTSTRT) is 0 (IWDT is operating), the setting of this register is invalid; it is valid only when the OFS0.IWDTSTRT bit is set to 1 (IWDT is stopped). The ILCSTP bit cannot be changed from 0 (IWDT-dedicated on-chip oscillator is operating) to 1 (IWDT-dedicated on-chip oscillator is stopped) while ILOCOCR is valid.

ILCSTP Bit (IWDT-Dedicated On-Chip Oscillator Stop)

This bit runs or stops the IWDT-dedicated on-chip oscillator.


After the setting of the ILCSTP bit has been changed so that the IWDT-dedicated on-chip oscillator operates, supply of the clock is started the MCU internally after a fixed time corresponding to the IWDT-dedicated clock oscillation stabilization time (t_{ILOCO}) has elapsed.

If the IWDT-dedicated clock is to be used, only start using the oscillator after this wait time has elapsed.

Ensure that oscillation by the IWDT-dedicated on-chip oscillator is stable before executing a WAIT instruction to place the chip on software standby mode.

9.2.9 High-Speed On-Chip Oscillator Control Register (HOCOCR)

Address(es): 0008 0036h

Bit	Symbol	Bit Name	Description	R/W
b0	HCSTP	HOCO Stop	0: HOCO is operating. 1: HOCO is stopped.	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC0 bit to 1 (write enabled) before rewriting this register.

Note 1. The HCSTP bit value after a reset is 0 when the HOCO oscillation enable bit in option function select register 1 (OFS1.HOCOEN) is 0. The HCSTP bit value after a reset is 1 when the OFS1.HOCOEN bit is 1.

HCSTP Bit (HOCO Stop)

This bit runs or stops the HOCO.

This bit and the high-speed on-chip oscillator forced oscillation bit (HOFCR.HOFXIN) of the high-speed on-chip oscillator forced oscillation control register run or stop the HOCO. The HOCO can be started by setting the HCSTP bit to operating or by setting the HOFXIN bit to forced oscillation. Also, when the HOFXIN bit is set to forced oscillation, the oscillator operates even in software standby mode.

When changing the HCSTP bit from 1 to 0 (i.e. changing the HOCO clock from stopped to operating), confirm that the OSCOVFSR.HCOVF flag is 1 before switching the system clock to the HOCO clock.

That is, a fixed time for stabilization of oscillation is required after the setting for HOCO operation. A fixed time is also required for oscillation to stop after the setting to stop the oscillator. Accordingly, take note of the following limitations when starting and stopping the oscillator.

- After stopping the HOCO, confirm that the OSCOVFSR.HCOVF flag is 0 before restarting the HOCO.
- Confirm that the HOCO is operating and that the OSCOVFSR.HCOVF flag is 1 before stopping the HOCO.
- Regardless of whether or not it is selected as the system clock, confirm that the OSCOVFSR.HCOVF flag is 1 before executing a WAIT instruction to place the MCU in software standby mode.
- After stopping the HOCO, confirm that the OSCOVFSR.HCOVF flag is 0 and execute a WAIT instruction before entering software standby mode.

While the HOCO is selected by the SCKCR3.CKSEL[2:0] bits, do not set the HCSTP bit to 1 (HOCO is stopped). While low-speed operating mode is selected by the SOPCCR.SOPCM bit, do not set the HCSTP bit to 0 (HOCO is operating).

9.2.10 High-Speed On-Chip Oscillator Forced Oscillation Control Register (HOFCR)

Address(es): 0008 003Dh

Bit	Symbol	Bit Name	Description	R/W
b0	HOFXIN	High-Speed On-Chip Oscillator Forced Oscillation	0: Oscillator is not controlled by this bit. 1: High-speed on-chip oscillator is forcedly oscillated.	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC0 bit to 1 (write enabled) before rewriting this register.

HOFXIN Bit (High-Speed On-Chip Oscillator Forced Oscillation)

This bit controls forced oscillation of the HOCO. When forced oscillation is enabled, the HOCO enters the oscillating state even in software standby mode.

Select the HOCO as the clock source for counting by the remote control signal receiver (REMC), and only enable forced oscillation by the HOCO when signals are to be received in software standby mode. Other than this, do not enable forced oscillation by the HOCO.

When rewriting the HOFXIN bit, confirm that its value has actually been updated by reading the bit before executing subsequent instructions.

Writing 1 to the HOFXIN bit (HOCO forced oscillation) is prohibited when the low-speed operation mode is selected by the sub-operation power control mode selection bit in the sub-operation power control register (SOPCCR.SOPCM).

9.2.11 Oscillation Stabilization Flag Register (OSCOVFSR)

Address(es): 0008 003Ch

Bit	Symbol	Bit Name	Description	R/W
b0	MOOVF	Main Clock Oscillation Stabilization Flag	0: Main clock is stopped 1: Oscillation is stable and the clock can be used as the system clock*2	R
b1	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b2	PLOVF	PLL Clock Oscillation Stabilization Flag	0: PLL is stopped or not stabilized*3 1: Oscillation is stable and the clock can be used as the system clock	R
b3	HCOVF	HOCO Clock Oscillation Stabilization Flag	0: HOCO is stopped or not stabilized 1: Oscillation is stable and the clock can be used as the system clock*3	R
b7 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

- Note 1. The HCOVF flag value after a reset is 1 when the HOCO oscillation enable bit in option function selection register 1 (OFS1.HOCOEN) is 0. The HCOVF flag value after a reset is 1 when the OFS1.HOCOEN bit is 0.
- Note 2. When an appropriate value is set in the wait control register for each oscillator. If a set value (wait time) is not adequate, clock supply starts before oscillation becomes stable.
- Note 3. The control of the HOCO by the HOFCR.HOFXIN bit is not reflected to the HCOVF flag. Therefore, the HCSTP bit is set to 1 while the HOFXIN bit is 1, the HCOVF flag becomes 0 even though the HOCO continues to oscillate. When enabling forced oscillation of the HOCO, set the HOCOCR.HCSTP bit to 0 and then confirm that the OSCOVFSR.HCOVF flag is 1 before setting the HOFXIN bit to 1.

The OSCOVFSR register monitors whether oscillation of each oscillator has become stable.

If a wait control register is provided for each oscillator, specify a wait time that is longer than or equal to the stabilization time of the corresponding oscillation circuit.

MOOVF Flag (Main Clock Oscillation Stabilization Flag)

This flag indicates whether oscillation of the main clock is stable.

[Setting condition]

• After the MOSCCR.MOSTP bit is set to 0 (main clock oscillator is operating) when the MOSTP bit is 1 (main clock oscillator is stopped), the corresponding time set in the MOSCWTCR register has elapsed and supply of the main clock is started to the MCU internally.

[Clearing condition]

• After the MOSCCR.MOSTP bit is set to 1, the processing to stop the oscillation of the main clock oscillator is completed.

PLOVF Flag (PLL Clock Oscillation Stabilization Flag)

This flag indicates whether oscillation of the PLL clock is stable.

[Setting condition]

After the PLLCR2.PLLEN is set to 0 (PLL is operating) when the PLLEN bit is 1 (PLL is stopped), the MOOVF flag becomes 1, the PLL clock oscillation stabilization time (tPLL) has elapsed, and supply of the PLL clock is started to the MCU internally.

[Clearing condition]

After the PLLCR2.PLLEN bit is set to 1, the processing to stop the oscillation of the PLL is completed.

HCOVF Flag (HOCO Clock Oscillation Stabilization Flag)

This flag indicates whether oscillation of the HOCO clock is stable.

[Setting condition]

• After the HOCOCR.HCSTP bit is set to 0 (HOCO is operating) when the HCSTP bit is 1 (HOCO is stopped), supply of the HOCO clock is started to the MCU internally.

[Clearing condition]

• After the HOCOCR.HCSTP bit is set to 1, the processing to stop the oscillation of the HOCO is completed.

9.2.12 Oscillation Stop Detection Control Register (OSTDCR)

Address(es): 0008 0040h

Bit	Symbol	Bit Name	Description	R/W
b0	OSTDIE	Oscillation Stop Detection Interrupt Enable	O: The oscillation stop detection interrupt is disabled. Oscillation stop detection is not notified to the POE. The oscillation stop detection interrupt is enabled. Oscillation stop detection is notified to the POE.	R/W
b6 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b7	OSTDE	Oscillation Stop Detection Function Enable	Oscillation stop detection function is disabled. Scillation stop detection function is enabled.	R/W

Note: Set the PRCR.PRC0 bit to 1 (write enabled) before rewriting this register.

OSTDIE Bit (Oscillation Stop Detection Interrupt Enable)

If the oscillation stop detection flag in the oscillation stop detection status register (OSTDSR.OSTDF) requires clearing, do this after setting the OSTDIE bit to 0. Wait for at least two cycles of PCLKB before again setting the OSTDIE bit to 1. According to the number of cycles for access to read a given I/O register, wait time longer than two cycles of PCLKB may have to be secured.

OSTDE Bit (Oscillation Stop Detection Function Enable)

This bit enables or disables the oscillation stop detection function.

When the OSTDE bit is 1 (oscillation stop detection function enabled), the LOCO stop bit (LOCOCR.LCSTP) is set to 0 and the LOCO operation is started. The LOCO cannot be stopped while the oscillation stop detection function is enabled; writing 1 (LOCO is stopped) to the LOCOCR.LCSTP bit is invalid.

When the oscillation stop detection flag in the oscillation stop detection status register (OSTDSR.OSTDF) is 1 (main clock oscillation stop has been detected), writing 0 to the OSTDE bit is invalid.

When the OSTDE bit is 1, a transition cannot be made to software standby mode. To make a transition to software standby mode, execute the WAIT instruction with the OSTDE bit being 0.

9.2.13 Oscillation Stop Detection Status Register (OSTDSR)

Address(es): 0008 0041h

Bit	Symbol	Bit Name	Description	R/W
b0	OSTDF	Oscillation Stop Detection Flag	The main clock oscillation stop has not been detected. The main clock oscillation stop has been detected.	R/(W) *1
b7 to b1	_	Reserved	These bits are read as 0 and cannot be modified.	R

Note: Set the PRCR.PRC0 bit to 1 (write enabled) before rewriting this register.

Note 1. This bit can only be set to 0.

OSTDF Flag (Oscillation Stop Detection Flag)

This bit is a flag to indicate the main clock status. When the OSTDF flag is 1, it indicates that the main clock oscillation stop has been detected.

Once the main clock oscillation stop is detected, the OSTDF flag is not set to 0 even though the main clock oscillation is restarted. The OSTDF flag is set to 0 by reading 1 from the bit and then writing 0. At least three ICLK cycles of wait time is necessary between writing 0 to the OSTDF flag and reading the OSTDF flag as 0. If the OSTDF flag is set to 0 while the main clock oscillation is stopped, the OSTDF flag becomes 0 and then returns to 1.

When the main clock oscillator (010b) or PLL (100b) is selected by the clock source select bits in system clock control register 3 (SCKCR3.CKSEL[2:0]), the OSTDF flag cannot be modified to 0. The OSTDF flag should be set to 0 after switching the clock source to a source other than the main clock oscillator and the PLL.

[Setting condition]

• The main clock oscillation is stopped with the OSTDCR.OSTDE bit being 1 (oscillation stop detection function enabled).

[Clearing condition]

• 1 is read and then 0 is written when the SCKCR3.CKSEL[2:0] bits are neither 010b nor 100b.

9.2.14 Main Clock Oscillator Wait Control Register (MOSCWTCR)

Address(es): 0008 00A2h

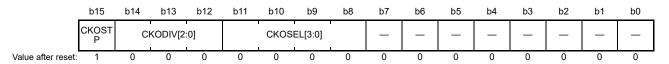
Bit	Symbol	Bit Name	Description	R/W
b4 to b0	MSTS[4:0]	Main Clock Oscillator Wait Time	b4 0 0 0 0 0 0: Wait time = 2 cycles (0.5 μs) 0 0 0 0 1: Wait time = 1024 cycles (256 μs) 0 0 0 1 1: Wait time = 2048 cycles (512 μs) 0 0 0 1 1: Wait time = 2048 cycles (512 μs) 0 0 0 1 1: Wait time = 4096 cycles (1.024 ms) 0 0 1 0 0: Wait time = 8192 cycles (2.048 ms) 0 0 1 0 1: Wait time = 16384 cycles (4.096 ms) 0 0 1 1 0: Wait time = 32768 cycles (8.192 ms) 0 0 1 1 1: Wait time = 65536 cycles (16.384 ms) Settings other than above are prohibited. Wait time when LOCO = 4.0 MHz (0.25 μs, TYP.)	R/W
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC1 bit to 1 (write enabled) before rewriting this register.

MSTS[4:0] Bits (Main Clock Oscillator Wait Time)

Set these bits to select the oscillation stabilization wait time of the main clock oscillator.

Set the main clock oscillation stabilization time to longer than or equal to the stabilization time recommended by the oscillator manufacturer. When the main clock is externally input, set these bits to 00000b because the oscillation stabilization time is not required.


The wait time set by the MSTS[4:0] bits is counted using the LOCO clock. The LOCO automatically oscillates when necessary, regardless of the value of the LOCOCR.LCSTP bit.

After the set wait time has elapsed, supply of the main clock is started to the MCU internally and the OSCOVFSR.MOOVF flag becomes 1. If the set wait time is short, supply of the main clock is started before oscillation of the clock becomes stable.

Only rewrite the MOSCWTCR register when the MOSCCR.MOSTP bit is 1 and the OSCOVFSR.MOOVF flag is 0. Do not rewrite this register under any other conditions.

9.2.15 CLKOUT Output Control Register (CKOCR)

Address(es): 0008 003Eh

Bit	Symbol	Bit Name	Description	R/W
b7 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b11 to b8	CKOSEL[3:0]	CLKOUT Output Source Select	b11 b8 0 0 0 0: LOCO clock 0 0 0 1: HOCO clock 0 0 1 0: Main clock oscillator 0 0 1 1: Sub-clock oscillator 0 1 0 0: PLL Settings other than above are prohibited.	R/W
b14 to b12	CKODIV[2:0]	CLKOUT Output Division Ratio Select	b14 b2 0 0 0: No division 0 0 1: ×1/2 0 1 0: ×1/4 0 1 1: ×1/8 1 0 0: ×1/16 Settings other than above are prohibited.	R/W
b15	CKOSTP	CLKOUT Output Stop Control	0: CLKOUT pin output enabled*1 1: CLKOUT pin output disabled	R/W

Note: Set the PRCR.PRC0 bit to 1 (write enabled) before rewriting this register.

Note 1. It is also necessary to set the pin function control register and port mode register for the corresponding pin.

CKOSEL[3:0] Bits (CLKOUT Output Source Select)

Set these bits to select the LOCO clock, HOCO clock, main clock, sub-clock, or PLL as the source of the clock to be output from the CLKOUT pin.

CKODIV[2:0] Bits (CLKOUT Output Division Ratio Select)

Set these bits to select the clock division ratio.

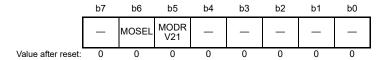
Set the CKOSTP bit to 1 when changing the division ratio.

The division ratio of the output clock frequency should be set to no higher than 8 MHz when VCC is 2.7 V or above, and no higher than 4 MHz when VCC is below 2.7 V.

For details on the characteristics of the clock output from the CLKOUT pin, see Table 40.33, Timing of On-Chip Peripheral Modules (1).

CKOSTP Bit (CLKOUT Output Stop Control)

Set this bit to enable or disable output from the CLKOUT pin.


When this bit is set to 1, the selected clock is output. When this bit is set to 1, a low level is output.

If the CKOSTP bit is rewritten while the clock is still oscillating, a glitch may be generated in the output.

9.2.16 Main Clock Oscillator Forced Oscillation Control Register (MOFCR)

Address(es): 0008 C293h

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b5	MODRV21	Main Clock Oscillator Drive Capability Switch	VCC ≥ 2.4 V 0: 1 MHz to 10 MHz 1: 10 MHz to 20 MHz VCC < 2.4 V 0: 1 MHz to 8 MHz 1: Setting prohibited	R/W
b6	MOSEL	Main Clock Oscillator Switch	0: Resonator 1: External oscillator input	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC1 bit to 1 (write enabled) before rewriting this register.

The EXTAL/XTAL pin is also used as a port. In the initial setting state, the pin is set as a port.

MODRV21 Bit (Main Clock Oscillator Drive Capability Switch)

These bits select the drive capability of the main clock oscillator.

MOSEL Bit (Main Clock Oscillator Switch)

This bit selects the oscillation source of the main clock oscillator.

9.2.17 Low-Speed On-Chip Oscillator Trimming Register (LOCOTRR)

Address(es): 0008 0060h

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	LOCOTRD[4:0]	Low-Speed On-Chip Oscillator Frequency Adjustment	b4 b0 1 0 0 0 0: -16 (Frequency: Low) 1 0 0 0 1: -15 : : 0 1 1 1 0: 14 0 1 1 1 1: 15 (Frequency: High)	R/W
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC0 bit to 1 (write enabled) before rewriting this register.

Note 1. Chip-specific value

LOCOTRD[4:0] Bits (Low-Speed On-Chip Oscillator Frequency Adjustment)

Set the frequency adjustment value for the low-speed on-chip oscillator.

The setting range is -16 (10h) to 15 (0Fh) by two's complements. The greater the set value is, the higher the frequency is. The frequency is adjusted under certain conditions before shipment, so the value after reset varies with the chip. After a reset, the oscillation frequency returns to the factory default.

9.2.18 IWDT-Dedicated On-Chip Oscillator Trimming Register (ILOCOTRR)

Address(es): 0008 0064h

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	ILOCOTRD [4:0]	IWDT-Dedicated On-Chip Oscillator Frequency Adjustment	b4 b0 0 0 0 0 0:0 (Frequency: Low) 0 0 0 0 1:1 : : 1 1 1 1 0:30 1 1 1 1 1:31 (Frequency: High)	R/W
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC0 bit to 1 (write enabled) before rewriting this register.

Note 1. Chip-specific value

ILOCOTRD[4:0] Bits (IWDT-Dedicated On-Chip Oscillator Frequency Adjustment)

Set the frequency adjustment value for the IWDT-dedicated on-chip oscillator.

The setting range is from 0 (00h) to 31 (1Fh) by binary numbers. The greater the set value is, the higher the frequency is. The frequency is adjusted under certain conditions before shipment, so the value after reset varies with the chip. After a reset, the oscillation frequency returns to the factory default.

9.2.19 High-Speed On-Chip Oscillator Trimming Register n (HOCOTRRn) (n = 0)

Address(es): HOCOTRR0 0008 0068h

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	HOCOTRD[5:0]	High-Speed On-Chip Oscillator Frequency Adjustment	b5 b0 0 0 0 0 0 0: 0 (Frequency: Low) 0 0 0 0 0 1: 1 : : 1 1 1 1 1 0: 62 1 1 1 1 1 1: 63 (Frequency: High)	R/W
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC0 bit to 1 (write enabled) before rewriting this register.

Note 1. Chip-specific value

HOCOTRR0 corresponds to 32 MHz.

HOCOTRD[5:0] Bits (High-Speed On-Chip Oscillator Frequency Adjustment)

Set the frequency adjustment value for the high-speed on-chip oscillator.

The setting range is from 0 (00h) to 63 (3Fh) by binary numbers. The greater the set value is, the higher the frequency is. The frequency is adjusted under certain conditions before shipment, so the value after reset varies with the chip. After a reset, the oscillation frequency returns to the factory default.

9.3 Main Clock Oscillator

There are two ways of supplying the clock signal from the main clock oscillator: connecting an oscillator or the input of an external clock signal.

9.3.1 Connecting a Crystal

Figure 9.2 shows an example of connecting a crystal.

A damping resistor (Rd) should be added, if necessary. Since the resistor values vary depending on the resonator and the oscillation drive capability, use values recommended by the resonator manufacturer. If use of an external feedback resistor (Rf) is directed by the resonator manufacturer, insert an Rf between EXTAL and XTAL by following the instruction.

When connecting a resonator to supply the clock, the frequency of the resonator should be in the frequency range of the resonator for the main clock oscillator described in Table 9.1.

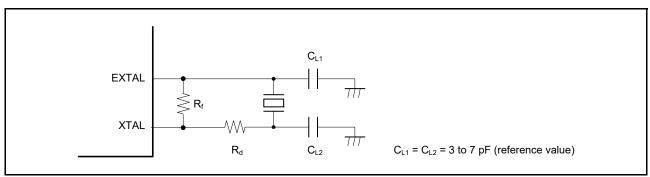


Figure 9.2 Example of Crystal Connection

Table 9.3 Damping Resistance (Reference Values)

Frequency (MHz)	2	8	16	20
$Rd\left(\Omega\right)$	0	0	0	0

Figure 9.3 shows an equivalent circuit of the crystal. Use a crystal that has the characteristics shown in Table 9.4 as a reference.

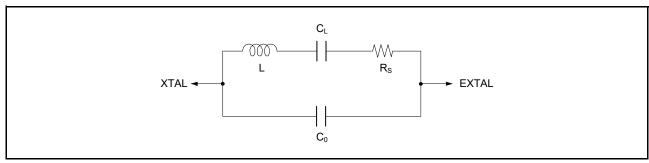


Figure 9.3 Equivalent Circuit of Crystal

Table 9.4 Crystal Characteristics (Reference Values)

Frequency (MHz)	8	12	16	
R_S max (Ω)	200	120	56	
C ₀ max (pF)	1.3	1.3	1.4	

9.3.2 External Clock Input

Figure 9.4 shows connection of an external clock. Set the MOFCR.MOSEL bit to 1 and open the XTAL pin to operate the oscillator by inputting an external clock signal.

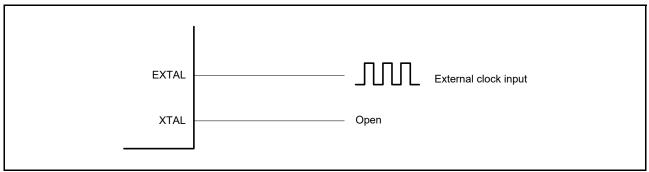


Figure 9.4 Connection Example of External Clock

9.3.3 Handling of Pins When the Main Clock is Not Used

For details on pin handling when the main clock is not used, refer to section 18.5, Handling of Unused Pins.

9.3.4 Notes on the External Clock Input

The frequency of the external clock input can only be changed while the main clock oscillator is stopped. Do not change the frequency of the external clock input while the setting of the main clock oscillator stop bit (MOSCCR.MOSTP) is 0 (main clock oscillator is operating).

9.4 Sub-Clock Oscillator

The only way of supplying the clock signal from the sub-clock oscillator is connecting a crystal.

9.4.1 Connecting 32.768-kHz Crystal

To supply a clock to the sub-clock oscillator, connect a 32.768-kHz crystal, as shown in Figure 9.5.

A damping resistor Rd should be added, if necessary. Since the resistor values vary depending on the resonator and the oscillation drive capability, use values recommended by the resonator manufacturer. If use of an external feedback resistor (Rf) is directed by the resonator manufacturer, insert an Rf between XCIN and XCOUT by following the instruction. When connecting a resonator to supply the clock, the frequency of the resonator should be in the frequency range of the resonator for the sub-clock oscillator described in Table 9.1.

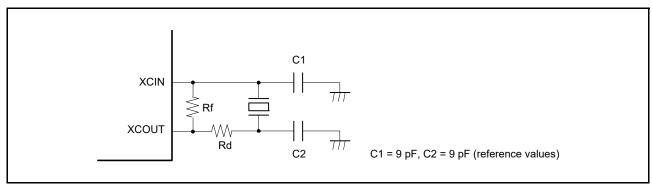


Figure 9.5 Connection Example of 32.768-kHz Crystal

Figure 9.6 shows an equivalent circuit for the 32.768-kHz crystal. Use a crystal that has the characteristics listed in Table 9.5.

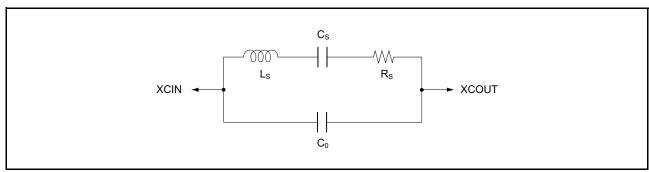


Figure 9.6 Equivalent Circuit for Crystal

Table 9.5 Crystal Characteristics (Reference Values)

Frequency (kHz)	32.768 (Low CL)		
R_S max (k Ω)	50		
C ₀ max (pF)	0.9		

9.4.2 Handling of Pins When Sub-Clock is Not Used

If the sub-clock is not in use, connect the XCIN pin to VSS via a resistor (to pull VSS down) and leave the XCOUT pin open-circuit as shown in Figure 9.7.

In addition, if an oscillator is not connected, set the sub-clock oscillator stop bit (SOSCCR.SOSTP) to 1 (stopping the oscillator) and the sub-clock oscillator control bit in RTC control register 3 (RCR3.RTCEN) to 0 (stopping the sub-clock oscillator). The value of some RTC registers related to the sub-clock will be undefined after a cold start. Accordingly, be sure to set these bits after a cold start.

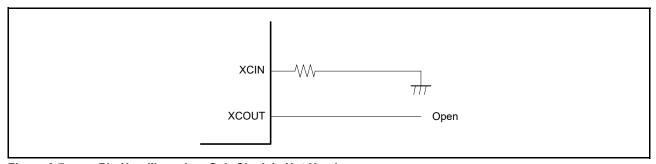


Figure 9.7 Pin Handling when Sub-Clock is Not Used

9.5 Oscillation Stop Detection Function

9.5.1 Oscillation Stop Detection and Operation after Detection

The oscillation stop detection function is used to detect the main clock oscillator stop and to supply LOCO clock pulses from the low-speed on-chip oscillator as the system clock source instead of the main clock.

An oscillation stop detection interrupt request can be generated when an oscillation stop is detected. In addition, the MTU output can be forcedly driven to the high-impedance on the detection. For details, refer to section 20, Multi-Function Timer Pulse Unit 2 (MTU2a) and section 21, Port Output Enable 2 (POE2a).

In the MCU, the main clock oscillation stop is detected when the input clock remains to be 0 or 1 for a certain period, for example, due to a malfunction of the main clock oscillator (refer to section 40, Electrical Characteristics).

When an oscillation stop is detected, the main clock selected by the clock source select bits (SCKCR3.CKSEL[2:0]) is switched to the LOCO clock by the corresponding selectors in the former stage. Therefore, if an oscillation stop is detected with the main clock selected as the system clock source, the system clock source is switched to the LOCO clock without a change of CKSEL[2:0].

If an oscillation stop is detected while the PLL clock is selected by the clock source select bits (SCKCR3.CKSEL[2:0]) in system clock control register 3, the SCKCR3.CKSEL[2:0] bit value does not change and the PLL clock remains the system clock source. However, the frequency becomes a free-running oscillation frequency.

Switching between the main clock and LOCO clock is controlled by the oscillation stop detection flag (OSTDSR.OSTDF). The clock source is switched to the LOCO clock when the OSTDF flag is 1, and is switched to the main clock again when the OSTDF flag is set to 0. At this time, if the main clock or PLL clock is selected with the CKSEL[2:0] bits, the OSTDF flag cannot be set to 0. To switch the clock source to the main clock or PLL clock again after the oscillation stop detection, set the CKSEL[2:0] bits to a clock source other than the main clock or PLL clock and set the OSTDF flag to 0. After that, check that the OSTDF flag is not 1, and then set the CKSEL[2:0] bits to the main clock or PLL clock after the specified oscillation stabilization time has elapsed.

After a reset is released, the main clock oscillator is stopped and the oscillation stop detection function is disabled. To enable the oscillation stop detection function, activate the main clock oscillator and write 1 to the oscillation stop detection function enable bit (OSTDCR.OSTDE) after a specified oscillation stabilization time has elapsed. The oscillation stop detection function is provided against the main clock stop by an external cause. Therefore, the oscillation stop detection function should be disabled before the main clock oscillator is stopped by the software or a transition is made to software standby mode.

When the system clock with the main clock selected as the system clock source and CAC main clock (CACMCLK) are selected, these clocks are switched to the LOCO clock by the oscillation stop detection. The system clock (ICLK) frequency during the LOCO clock operation is specified by the LOCO oscillation frequency and the division ratio set by the system clock (ICLK) select bits (SCKCR.ICK[3:0]).

When the PLL clock is selected as the system clock source, this clock operate at the PLL free-funning frequency by the oscillation stop detection.

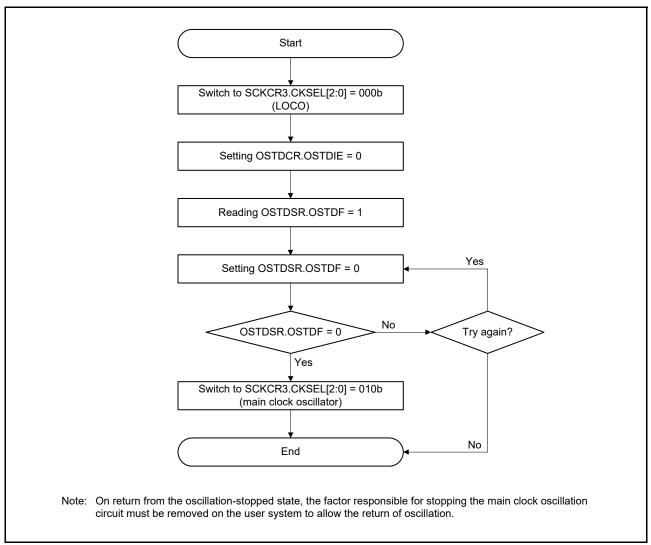


Figure 9.8 Flow of Recovery from Detection of Oscillator Stop

9.5.2 Oscillation Stop Detection Interrupts

An oscillation-stop detection interrupt (OSTDI) will be generated if the oscillation-stop detection flag (OSTDSR.OSTDF) becomes 1 while the oscillation-stop detection interrupt enable bit (OSTDCR.OSTDIE) is 1 (oscillation stop detection interrupt enabled). At this time, the main clock oscillator stop is notified to port output enable 2 (POE). On accepting the notification of the oscillation stop, the POE sets the OSTST high-impedance flag in input level control/status register 3 (ICSR3.OSTSTF) to 1. After the oscillation stop is detected, wait for at lease 10 cycles of PCLK before writing to this ICSR3.OSTSTF flag. When the OSTDSR.OSTDF flag requires clearing, do so setting the oscillation stop detection interrupt enable bit (OSTDCR.OSTDIE) to 0. Wait for at least two cycles of PCLKB clock before again setting the OSTDCR.OSTDIE bit to 1. According to the number of cycles for access to read a given I/O register, wait time longer than two cycles of PCLKB may have to be secured.

The oscillation stop detection interrupt is a non-maskable interrupt. Since non-maskable interrupts are disabled in the initial state after a reset release, enable the non-maskable interrupts by the software before using oscillation stop detection interrupts. For details, refer to section 14, Interrupt Controller (ICUb).

9.6 PLL Circuit

The PLL circuit has a function to multiply the frequency from the oscillator.

9.7 Internal Clock

Clock sources of internal clock signals are the main clock, sub-clock, HOCO clock, LOCO clock, PLL clock, and dedicated low-speed clock for the IWDT. The internal clocks listed below are produced from these sources.

- (1) Operating clock of the CPU, DTC, ROM, and RAM: System clock (ICLK)
- (2) Operating clocks of peripheral modules: Peripheral module clocks (PCLKB and PCLKD)
- (3) Operating clock of the FlashIF: FlashIF clock (FCLK)
- (4) Operating clock for the CAC: CAC clock (CACCLK)
- (5) Operating clock for the RTC: RTC-dedicated sub-clock (RTCSCLK)
- (6) Operating clock for the IWDT: IWDT-dedicated low-speed clock (IWDTCLK)
- (7) Operating clock for the low-power timer: LPT clock (LPTCLK)
- (8) Operating clock for the REMC: REMC clock (REMCLK)

Frequencies of the internal clocks are set by the combination of the divisors selected by the SCKCR.FCK[3:0], ICK[3:0], PCKB[3:0], and PCKD[3:0], the clock source selected by the SCKCR3.CKSEL[2:0] bits, and the bits that select the frequency of the PLL circuit (PLLCR.STC[5:0] and PLIDIV[1:0] bits). If the value of any of these bits is changed, subsequent operation will be at the frequency determined by the new value.

9.7.1 System Clock

The system clock (ICLK) is used as the operating clock of the CPU, DTC, ROM, and RAM. The ICLK frequency is specified by the SCKCR.ICK[3:0] bits, and the SCKCR3.CKSEL[2:0] bits, and the PLLCR.STC[5:0] and PLIDIV[1:0] bits.

9.7.2 Peripheral Module Clock

The peripheral module clocks (PCLKB and PCLKD) are the operating clocks for use by peripheral modules. The PCLKB and PCLKD frequencies are specified by the SCKCR.PCKB[3:0] and PCKD[3:0] bits, the SCKCR3.CKSEL[2:0] bits, and the PLLCR.STC[5:0] and PLIDIV[1:0] bits.

The peripheral module clock used as the operating clock is PCLKD for S12AD, and PCLKB are for other modules.

9 7 3 FlashIF Clock

The FlashIF clock (FCLK) is used as the operating clock of the FlashIF.

The FCLK frequency is specified by the SCKCR.FCK[3:0] bits, and the SCKCR3.CKSEL[2:0] bits, and the PLLCR.STC[5:0] and PLIDIV[1:0] bits.

9.7.4 CAC Clock

The CAC clock (CACCLK) is an operating clock for the CAC module.

The CACCLK clocks include CACMCLK which is generated by the main clock oscillator, CACSCLK which is generated by the sub-clock oscillator, CACHCLK which is generated by the high-speed on-chip oscillator, CACLCLK which is generated by the low-speed on-chip oscillator, and CACILCLK which is generated by the IWDT-dedicated on-chip oscillator.

9.7.5 RTC-Dedicated Clock

The RTC-dedicated clock (RTCSCLK) is the operating clock for the RTC.

RTCSCLK is generated by the sub-clock oscillator.

9.7.6 IWDT-Dedicated Clock

The IWDT-dedicated clock (IWDTCLK) is the operating clock for the IWDT. IWDTCLK is internally generated by the IWDT-dedicated on-chip oscillator.

9.7.7 Low-Power Timer Clock

The low-power timer clock (LPTCLK) is an operating clock for the low-power timer. The LPTCLK clocks include a clock generated by the sub-clock oscillator and a clock generated by the IWDT-dedicated on-chip oscillator.

9.7.8 REMC Clock

The REMC clock (REMCLK) is an operating clock for the REMC module.

The REMCLK clocks include REMSCLK which is generated by the sub-clock oscillator, REMHCLK which is generated by the high-speed on-chip oscillator, and REMILCLK which is generated by the IWDT-dedicated on-chip oscillator.

9.8 Usage Notes

9.8.1 Notes on Clock Generation Circuit

(1) The frequencies of the system clock (ICLK), peripheral module clocks (PCLKB and PCLKD), and FlashIF clock (FCLK) supplied to each module can be selected by the SCKCR register. Each frequency should meet the following:

Select each frequency that is within the operation guaranteed range of clock cycle time (tcyc) specified in AC characteristics of electrical characteristics.

The frequencies must not exceed the ranges listed in Table 9.1.

The peripheral modules operate on the PCLKB and PCLKD. Note therefore that the operating speed of modules such as the timer and SCI varies before and after the frequency is changed.

- (2) The relationship of frequencies of the system clock (ICLK), peripheral module clocks B and D (PCLKB and PCLKD), and FlashIF clock (FCLK) must be set as follows.
 ICLK:FCLK, PCLKB, PCLKD = 1:N (N is an integer)
- (3) To secure the processing after the clock frequency is changed, modify the pertinent clock control register to change the frequency, and then read the value from the register, and then perform the subsequent processing.

9.8.2 Notes on Resonator

Since various resonator characteristics relate closely to the user's board design, adequate evaluation is required on the user side before use, referencing the resonator connection example shown in this section. The circuit constants for the resonator depend on the resonator to be used and the stray capacitance of the mounting circuit. Therefore, the circuit constants should be determined in full consultation with the resonator manufacturer. The voltage to be applied between the resonator pins must be within the absolute maximum rating.

9.8.3 Notes on Board Design

When using a crystal, place the resonator and its load capacitors as close to the XTAL and EXTAL pins as possible. Other signal lines should be routed away from the oscillation circuit as shown in Figure 9.9 to prevent electromagnetic induction from interfering with correct oscillation.



Figure 9.9 Notes on Board Design for Oscillation Circuit (Applies to the Sub-Clock Oscillator, in Case of the Main Clock Oscillator)

9.8.4 Notes on Resonator Connection Pins

When the main clock is not used, the EXTAL and XTAL pins can be used as general ports P36 and P37. When using these pins as general ports, be sure to stop the main clock (MOSCCR.MOSTP = 1). However, do not use the EXTAL and XTAL pins as general ports P36 and P37 in a system that uses the main clock.

When the main clock is used, do not set P36 and P37 to output.

9.8.5 Notes on Sub-Clock

The sub-clock can be used as the system clock, as the count source for the realtime clock, or as both. Take note of the following limitations and points for caution regarding the settings, including when the sub-clock is not in use.

- With regard to making the sub-clock oscillator run or stop, setting either the sub-clock oscillator stop bit in the sub-clock oscillator control register (SOSCCR.SOSTP) or the sub-clock oscillator control bit in RTC control register 3 (RCR3.RTCEN) will make the oscillator run.
- To use the sub-clock as the system clock and as the count source of the realtime clock simultaneously, perform initial settings according to the flowchart example shown in Figure 9.10. After that, perform the clock setting procedure shown in section 24.3.2, Clock and Count Mode Setting Procedure.

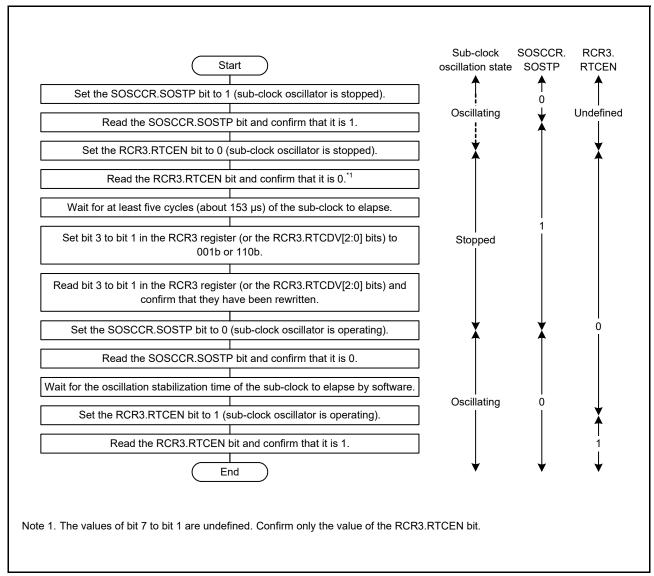


Figure 9.10 Example of Initialization Flowchart When Sub-Clock is Used as Count Source of Realtime Clock

RX130 Group 9. Clock Generation Circuit

• When using the sub-clock only as the count source of the realtime clock, perform initial settings according to the flowchart example shown in Figure 9.11. After that, perform the clock setting procedure shown in section 24.3.2, Clock and Count Mode Setting Procedure.

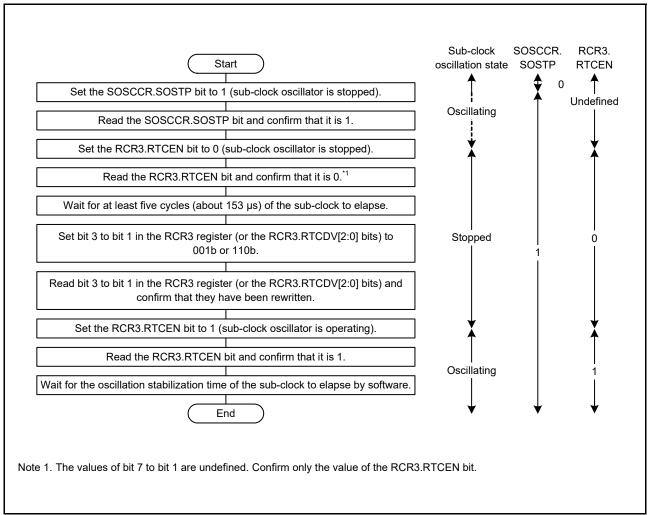


Figure 9.11 Example of Initialization Flowchart When Sub-Clock is Used Only as Count Source of Realtime Clock

RX130 Group 9. Clock Generation Circuit

• When using the sub-clock only as the system clock, perform initial settings according to the flowchart example shown in Figure 9.12.

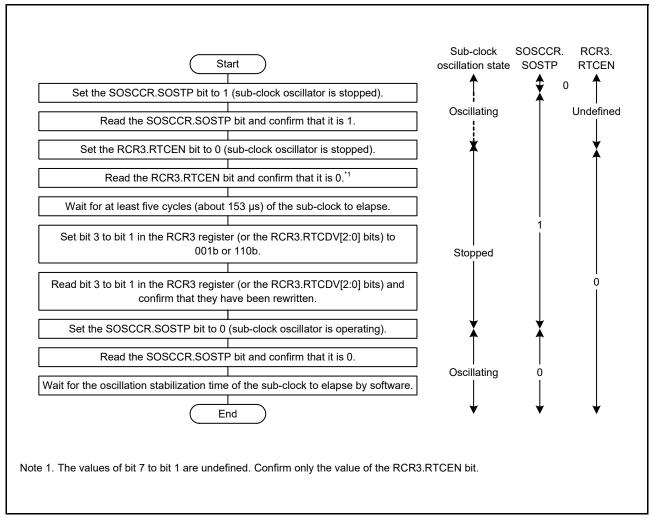


Figure 9.12 Example of Initialization Flowchart When Sub-Clock is Used Only as System Clock

RX130 Group 9. Clock Generation Circuit

• When not using the sub-clock, perform initial settings according to the flowchart example in Figure 9.13.

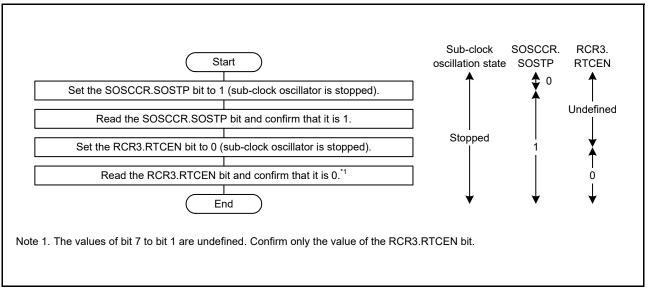


Figure 9.13 Example of Initialization Flowchart When Sub-Clock is Not Used

- Regardless of the RCR3.RTCEN bit setting, wait until the oscillator stabilization wait time elapses before rewriting the SOSCCR.SOSTP bit to 0 (sub-clock oscillator is operating).
- Since the sub-clock control circuit is in an unstable state after a cold start, it must be initialized regardless of
 whether or not the sub-clock is in use. The sub-clock is initialized by setting the SOSCCR.SOSTP bit to 1 and the
 RCR3.RTCEN bit to 0 (sub-clock oscillator is stopped). See section 24.2.19, RTC Control Register 3 (RCR3),
 for instructions to initialize the RCR3.RTCEN bit.
 Although the sub-clock oscillator pins are not available in 40 or fewer pin package products, initialize the sub-clock
- The RCR3.RTCDV[2:0] bits must also be set when operating the sub-clock oscillator. Set these bits while the sub-clock oscillator is stopped. Do not rewrite these bits while the sub-clock oscillator is operating.
- When successively rewriting the SOSCCR.SOSTP bit followed by the RCR3.RTCEN bit or vice versa, confirm that the first bit rewrite was completed successfully before rewriting the second bit.

control circuit in the same way.

10. Clock Frequency Accuracy Measurement Circuit (CAC)

10.1 Overview

The clock frequency accuracy measurement circuit (CAC) counts pulses of the clock to be measured (measurement target clock) within the time generated by the clock to be used as a measurement reference (measurement reference clock), and determines the accuracy depending on whether the number of pulses is within the allowable range. When measurement is completed or the number of pulses within the time generated by the measurement reference clock is not within the allowable range, an interrupt request is generated.

Table 10.1 lists the specifications of the CAC and Figure 10.1 shows a block diagram of the CAC.

Table 10.1 CAC Specifications

Item	Description
Measurement target clocks	The frequency of the following clocks can be measured.
	Main clock
	Sub-clock
	HOCO clock
	LOCO clock
	IWDTCLK clock
	 Peripheral module clock B (PCLKB)
Measurement reference clocks	External clock input to the CACREF pin
	Main clock
	Sub-clock
	HOCO clock
	LOCO clock
	IWDTCLK clock
	 Peripheral module clock B (PCLKB)
Selectable function	Digital filter function
Interrupt sources	Measurement end interrupt
	Frequency error interrupt
	Overflow interrupt
Low power consumption function	Module stop state can be set.

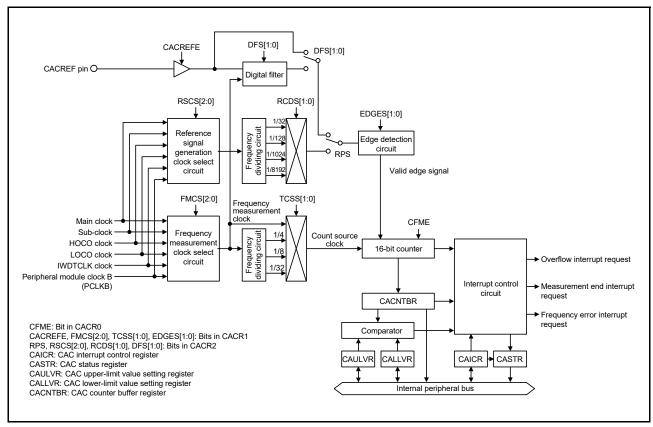


Figure 10.1 CAC Block Diagram

Table 10.2 shows the pin configuration of the CAC.

Table 10.2 Pin Configuration of CAC

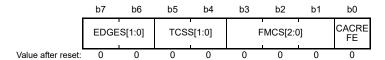
Pin Name	I/O	Function	
CACREF	Input	Measurement reference clock input pin	

10.2 Register Descriptions

10.2.1 CAC Control Register 0 (CACR0)

Address(es): 0008 B000h

Bit	Symbol	Bit Name	Description	R/W
b0	CFME	Clock Frequency Measurement Enable	Clock frequency measurement is disabled. Clock frequency measurement is enabled.	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W


CFME Bit (Clock Frequency Measurement Enable)

This bit specifies whether clock frequency measurement is enabled or disabled.

When rewriting this bit, more time is required than other bits for the new value to be reflected in the register. Further write access to this bit are ignored until the current write access is reflected in the register. Read the bit to confirm that the rewrite has been reflected in the register.

10.2.2 CAC Control Register 1 (CACR1)

Address(es): 0008 B001h

Bit	Symbol	Bit Name	Description	R/W
b0	CACREFE CACREF Pin Input Enable 0: CACREF pin input is disabled. 1: CACREF pin input is enabled.		R/W	
b3 to b1	FMCS[2:0]	Measurement Target Clock Select	b3 b1 0 0 0: Main clock 0 0 1: Sub-clock 0 1 0: HOCO clock 0 1 1: LOCO clock 1 0 0: IWDTCLK clock 1 0 1: Peripheral module clock B (PCLKB) Settings other than above are prohibited.	R/W
b5, b4	TCSS[1:0]	Timer Count Clock Source Select	b5 b4 0 0: No division 0 1: ×1/4 clock 1 0: ×1/8 clock 1 1: ×1/32 clock	R/W
b7, b6	EDGES[1:0]	Valid Edge Select	b7 b6 0 0: Rising edge 0 1: Falling edge 1 0: Both rising and falling edges 1 1: Setting prohibited	R/W

Note 1. Set the CACR1 register when the CACR0.CFME bit is 0.

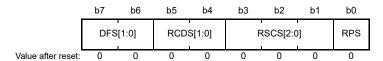
CACREFE Bit (CACREF Pin Input Enable)

This bit specifies whether the CACREF pin input is enabled or disabled.

FMCS[2:0]Bits (Measurement Target Clock Select)

These bits select the measurement target clock whose frequency is to be measured.

TCSS[1:0] Bits (Timer Count Clock Source Select)


These bits select the count clock source for the clock frequency accuracy measurement circuit.

EDGES[1:0]Bits (Valid Edge Select)

These bits select the valid edge for the reference signal.

10.2.3 CAC Control Register 2 (CACR2)

Address(es): 0008 B002h

Bit	Symbol	Bit Name	Description	R/W				
b0	b0 RPS Reference Signal Select		PS Reference Signal Select 0: CACREF pin input 1: Internal clock (internally generated signal)					
b3 to b1	RSCS[2:0]	Measurement Reference Clock Select	b3 b1 0 0 0: Main clock 0 0 1: Sub-clock 0 1 0: HOCO clock 0 1 1: LOCO clock 1 0 0: IWDTCLK clock 1 0 1: Peripheral module clock B (PCLKB) Settings other than above are prohibited.	R/W				
b5, b4	RCDS[1:0]	Measurement Reference Clock Frequency Division Ration Select	b5 b4 0 0: ×1/32 clock 0 1: ×1/128 clock 1 0: ×1/1024 clock 1 1: ×1/8192 clock	R/W				
b7, b6	DFS[1:0]	Digital Filter Select	 b7 b6 0 0: Digital filtering is disabled. 0 1: The sampling clock for the digital filter is the frequency measuring clock. 1 0: The sampling clock for the digital filter is the frequency measuring clock divided by 4. 1 1: The sampling clock for the digital filter is the frequency measuring clock divided by 16. 	R/W				

Note 1. Set the CACR2 register when the CACR0.CFME bit is 0.

RPS Bit (Reference Signal Select)

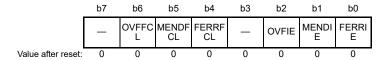
This bit selects whether to use the CACREF pin input or an internal clock (internally generated signal) as the reference signal.

RSCS[2:0]Bits (Measurement Reference Clock Select)

These bits select the clock source for generating the measurement reference clock.

RCDS[1:0]Bits (Measurement Reference Clock Frequency Division Ration Select)

These bits select the frequency division ratio of the measurement reference clock.


DFS[1:0]Bits (Digital Filter Select)

The setting of these bits enables or disables the digital filter and selects its sampling clock.

10.2.4 CAC Interrupt Request Enable Register (CAICR)

Address(es): 0008 B003h

Bit	Symbol	Bit Name	Description	R/W
b0	FERRIE	Frequency Error Interrupt Request Enable	Frequency error interrupt request is disabled. Frequency error interrupt request is enabled.	R/W
b1	MENDIE	Measurement End Interrupt Request Enable	Measurement end interrupt request is disabled. Measurement end interrupt request is enabled.	R/W
b2	OVFIE	Overflow Interrupt Request Enable	e 0: Overflow interrupt request is disabled. 1: Overflow interrupt request is enabled.	
b3	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b4	FERRFCL	FERRF Clear	When 1 is written to this bit, the CASTR.FERRF flag is cleared. This bit is read as 0.	
b5	MENDFCL	MENDF Clear	When 1 is written to this bit, the CASTR.MENDF flag is cleared. This bit is read as 0.	
b6	OVFFCL	OVFF Clear	When 1 is written to this bit, the CASTR.OVFF flag is cleared. This bit is read as 0.	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

FERRIE Bit (Frequency Error Interrupt Request Enable)

This bit specifies whether the frequency error interrupt request is enabled or disabled.

MENDIE Bit (Measurement End Interrupt Request Enable)

This bit specifies whether the measurement end interrupt request is enabled or disabled.

OVFIE Bit (Overflow Interrupt Request Enable)

This bit specifies whether the overflow interrupt request is enabled or disabled.

FERRFCL Bit (FERRF Clear)

Setting this bit to 1 clears the CASTR.FERRF flag.

MENDFCL Bit (MENDF Clear)

Setting this bit to 1 clears the CASTR.MENDF flag.

OVFFCL Bit (OVFF Clear)

Setting this bit to 1 clears the CASTR.OVFF flag.

10.2.5 CAC Status Register (CASTR)

Address(es): 0008 B004h

Bit	Symbol	Bit Name	Description	R/W
b0	FERRF	Frequency Error Flag	O: The clock frequency is within the range corresponding to the settings. 1: The clock frequency has deviated beyond the range corresponding to the settings (frequency error).	R
b1	MENDF	Measurement End Flag	0: Measurement is in progress. 1: Measurement has ended.	R
b2	OVFF	Overflow Flag	O: The counter has not overflowed. T: The counter has overflowed.	R
b7 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

FERRF Flag (Frequency Error Flag)

This flag indicates deviation of the clock frequency from the set value (frequency error). [Setting condition]

• The clock frequency is outside of the setting range.

[Clearing condition]

• 1 is written to the CAICR.FERRFCL bit.

MENDF Flag (Measurement End Flag)

This flag indicates the end of measurement.

[Setting condition]

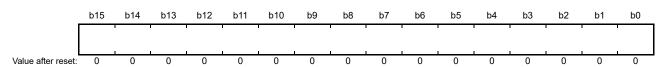
• Measurement has finished.

[Clearing condition]

• 1 is written to the CAICR.MENDFCL bit.

OVFF Flag (Overflow Flag)

This flag indicates that the counter has overflowed. [Setting condition]


• The counter has overflowed.

[Clearing condition]

• 1 is written to the CAICR.OVFFCL bit.

10.2.6 CAC Upper-Limit Value Setting Register (CAULVR)

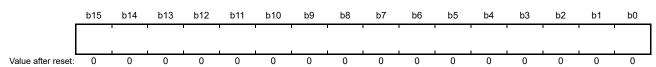
Address(es): 0008 B006h

CAULVR is a 16-bit readable/writable register that specifies the upper-limit value of the counter used for measuring the frequency. When the frequency rises above the value specified in this register, a frequency error is detected. Write to this register when the CACRO.CFME bit is 0.

The counter value held in CACNTBR can vary with the difference between the phases of the digital filter and edgedetection circuit on the one hand and the signal on the CACREF pin on the other, so ensure that this setting allows an adequate margin.

10.2.7 CAC Lower-Limit Value Setting Register (CALLVR)

Address(es): 0008 B008h



CALLVR is a 16-bit readable/writable register that specifies the lower-limit value of the counter used for measuring the frequency. When the frequency falls below the value specified in this register, a frequency error is detected. Write to this register when the CACRO.CFME bit is 0.

The counter value held in CACNTBR can vary with the difference between the phases of the digital filter and edgedetection circuit on the one hand and the signal on the CACREF pin on the other, so ensure that this setting allows an adequate margin.

10.2.8 CAC Counter Buffer Register (CACNTBR)

Address(es): 0008 B00Ah

CACNTBR is a 16-bit read-only register that retains the counter value at the time a valid reference signal edge is input.

10.3 Operation

10.3.1 Measuring Clock Frequency

The clock frequency accuracy measurement circuit measures the clock frequency using the CACREF pin input or the internal clock as a reference. Figure 10.2 shows an operating example of the clock frequency accuracy measurement circuit.

The clock frequency accuracy measurement circuit operates as shown below when measuring the clock frequency.

Figure 10.2 Operating Example of Clock Frequency Accuracy Measurement Circuit

- (1) When the CACREF pin input is used as a reference (CACR1.CACREFE bit = 1), clock frequency measurement is enabled by writing 1 to the CACR0.CFME bit while the CACR2.RPS bit is 0 and the CACR1.CACREFE bit is 1. On the other hand, when the internal clock is used as a reference (CACR1.CACREFE bit = 0), clock frequency measurement is enabled by writing 1 to the CACR0.CFME bit while the CACR2.RPS bit is 1.
- (2) When the CACREF pin input is used as a reference, the timer starts up-counting if the valid edge selected by the CACR1.EDGES[1:0] bits is input from the CACREF pin after 1 is written to the CFME bit. The valid edge is a rising edge (CACR1.EDGES[1:0] = 00b) in Figure 10.2.
 When the internal clock is used as a reference, the timer starts up-counting if the valid edge selected by the CACR1.EDGES[1:0] bits is input based on the clock source selected by the CACR2.RSCS[2:0] bits after 1 is written to the CFME bit. The valid edge is a rising edge (CACR1.EDGES[1:0] = 00b) in Figure 10.2.
- (3) When the next valid edge is input, the counter value is transferred in CACNTBR and compared with the values of CAULVR and CALLVR. If both CACNTBR ≤ CAULVR and CACNTBR ≥ CALLVR are satisfied, only the MENDF flag in CASTR is set to 1 because the clock frequency is correct. If the MENDIE bit in CAICR is 1, a measurement end interrupt is generated.
- (4) When the next valid edge is input, the counter value is transferred in CACNTBR and compared with the values of CAULVR and CALLVR. In the case of CACNTBR > CAULVR, the FERRF flag in CASTR is set to 1 because the

- clock frequency is erroneous. If the FERRIE bit in CAICR is 1, a frequency error interrupt is generated. Also, the MENDF flag in CASTR is set to 1. If the MENDIE bit in CAICR is 1, a measurement end interrupt is generated.
- (5) When the next valid edge is input, the counter value is transferred in CACNTBR and compared with the values of CAULVR and CALLVR. In the case of CACNTBR < CALLVR, the FERRF flag in CASTR is set to 1 because the clock frequency is erroneous. If the FERRIE bit in CAICR is 1, a frequency error interrupt is generated. Also, the MENDF flag in CASTR is set to 1. If the MENDIE bit in CAICR is 1, a measurement end interrupt is generated.
- (6) While the CFME bit in CACR0 is 1, the counter value is transferred in CACNTBR and compared with the values of CAULVR and CALLVR every time a valid edge is input. Writing 0 to the CFME bit in CACR0 clears the counter and stops up-counting.

10.3.2 Digital Filtering of Signals on the CACREF Pin

The CACREF pin has a digital filter. Levels on the target pin for sampling are conveyed to the internal circuitry after matching three consecutive times at the selected sampling interval and the same level continues to be conveyed internally until the level on the pin again matches three consecutive times.

Enabling and disabling of the digital filter and its sampling clock are selectable.

The counter value transferred in CACNTBR may be in error by up to one cycle of the sampling clock due to the difference between the phases of the digital filter and the signal input to the CACREF pin.

When a frequency dividing clock is selected as a count source clock, the counter value error is obtained by the following formula:

Counter value error = (One cycle of the count source clock) / (One cycle of the sampling clock)

10.4 Interrupt Requests

The CAC generates three types of interrupt request: frequency error interrupt, measurement end interrupt, and overflow interrupt. When an interrupt source is generated, the corresponding status flag becomes 1. Table 10.3 lists details on the interrupt requests of the clock frequency accuracy measurement circuit.

Table 10.3 Interrupt Requests of Clock Frequency Accuracy Measurement Circuit

Interrupt Request	Interrupt Enable Bit	Status Flag	Interrupt Source
Frequency error interrupt	CAICR.FERRIE	CASTR.FERRF	The result of comparing CACNTBR to CAULVR and CALLVR is either CACNTBR > CAULVR or CACNTBR < CALLVR.
Measurement end interrupt	CAICR.MENDIE	CASTR.MENDF	A valid edge is input from the CACREF pin. Note however that a measurement end interrupt does not occur at the first valid edge after writing 1 to the CACR0.CFME bit.
Overflow interrupt	CAICR.OVFIE	CASTR.OVFF	The counter has overflowed.

10.5 Usage Notes

10.5.1 Module Stop Function Setting

CAC operation can be disabled or enabled using module stop control register C (MSTPCRC). The initial setting is for the CAC to be halted. Register access is enabled by releasing the module stop state. For details, refer to section 11, Low Power Consumption.

11. Low Power Consumption

11.1 Overview

This MCU has several functions for reducing power consumption, by setting clock dividers, stopping modules, changing to low power consumption mode in normal operation, and changing to operating power control mode.

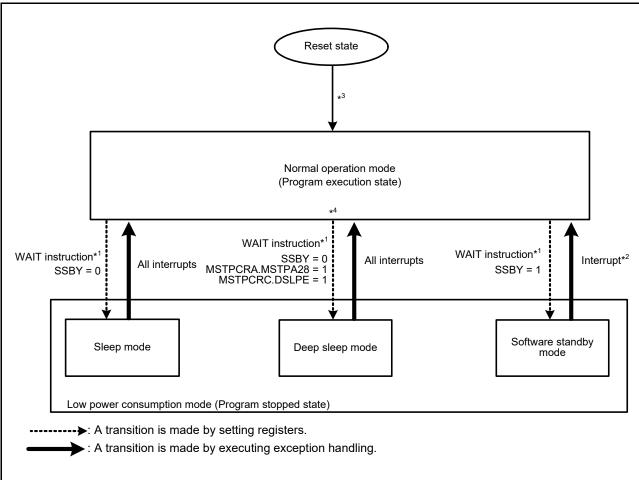
Table 11.1 lists the specifications of low power consumption functions, and Table 11.2 lists the conditions to change to low power consumption modes, states of the CPU and peripheral modules, and the method for exiting each mode. After a reset, this MCU returns to normal mode, but modules except the DTC and RAM are stopped.

Table 11.1 Specifications of Low Power Consumption Functions

Item	Specification
Clock divider functions	The frequency division ratio can be set independently for the system clock (ICLK), peripheral module clock (PCLKB), S12AD clock (PCLKD), and FlashIF clock (FCLK).*1
Module stop function	Each peripheral module can be stopped independently by the module stop control register.
Function for transition to low power consumption mode	Transition to a low power consumption mode in which the CPU, peripheral modules, or oscillators are stopped is enabled.
Low power consumption modes	Sleep mode Deep sleep mode Software standby mode
Operating power control modes	 Power consumption can be reduced in normal operation, sleep mode, and deep sleep mode by selecting an appropriate operating power control mode according to the operating frequency and operating voltage. Three operating power control modes are available High-speed operating mode Middle-speed operating mode Low-speed operating mode

Note 1. For details, refer to section 9, Clock Generation Circuit.

Table 11.2 Operating Conditions of Each Power Consumption Mode


	Sleep Mode	Deep Sleep Mode	Software Standby Mode
Entry trigger	Control register + instruction	Control register + instruction	Control register + instruction
Exit trigger	Interrupt	Interrupt	Interrupt*1
After exiting from each mode, CPU begins from*2	Interrupt handling	Interrupt handling	Interrupt handling
Main clock oscillator	Operating possible	Operating possible	Stopped
Sub-clock oscillator	Operating possible	Operating possible	Operating possible
High-speed on-chip oscillator	Operating possible	Operating possible	Operating possible*8
Low-speed on-chip oscillator	Operating possible	Operating possible	Stopped
IWDT-dedicated on-chip oscillator	Operating possible*3	Operating possible*3	Operating possible*3
PLL	Operating possible	Operating possible	Stopped
CPU	Stopped (Retained)	Stopped (Retained)	Stopped (Retained)
RAM0 (0000 0000h to 0000 BFFFh)	Operating possible (Retained)	Stopped (Retained)	Stopped (Retained)
DTC	Operating possible*5	Stopped (Retained)	Stopped (Retained)
Flash memory	Operating	Stopped (Retained)	Stopped (Retained)
Independent watchdog timer (IWDT)	Operating possible*3	Operating possible*3	Operating possible*3
Remote control signal receiver (REMC)	Operating possible	Operating possible	Operating possible*9
Realtime clock (RTC)	Operating possible	Operating possible	Operating possible
Low power timer (LPT)	Operating possible	Operating possible	Operating possible
Voltage detection circuit (LVD)	Operating possible	Operating possible	Operating possible
Power-on reset circuit	Operating	Operating	Operating
Peripheral modules	Operating possible	Operating possible	Stopped (Retained)*4
I/O ports	Operating	Operating	Retained*10
RTCOUT	Operating possible	Operating possible	Operating possible
CLKOUT	Operating possible	Operating possible	Operating possible*6
Comparator B	Operating possible	Operating possible	Operating possible*7

[&]quot;Operating possible" means that operating or stopped can be controlled by the register setting.

- Note 1. "Interrupts" here indicates an external pin interrupt (the NMI or IRQ0 to IRQ7) or any of peripheral interrupts (the RTC alarm, RTC interval, IWDT, REMC, and voltage monitoring interrupts).
- Note 2. This does not include a RES# pin reset, power-on reset, voltage monitoring reset, or independent watchdog-timer reset. One of these reset sources initiate transition to reset state.
- Note 3. Operating or stopping is selected by setting the IWDT sleep mode count stop control bit (IWDTSLCSTP) in option function select register 0 (OFS0) in IWDT auto-start mode. In any mode other than IWDT auto-start mode, operating or stopping is selected by the setting of the sleep mode count stop control bit (SLCSTP) in the IWDT count stop control register (IWDTCSTPR).
- Note 4. The peripheral logic states are retained.
- Note 5. During sleep mode, do not write to the system control related registers (indicated by 'SYSTEM' in the Module Symbol column in Table 5.1, List of I/O Registers (Address Order).
- Note 6. The clock signal is not output when the clock output select bits in the CLKOUT output control register (CKOCR.CKOSEL[2:0]) are set to a value other than 011b (sub clock oscillator). When the HOCO forced oscillation is enabled in software standby mode, do not set the CKOCR.CKOSEL[2:0] bits to 001b (HOCO clock).
- Note 7. Using the digital filter function is prohibited. Operation for outputting the comparison result to the CMPOBn pin is possible.
- Note 8. Operation or stopping can be selected by the high-speed on-chip oscillator forced oscillation bit of the high-speed on-chip oscillator forced oscillation control register (HOFCR.HOFXIN) bit. When the low-power control enable bit (LPCE) in the receiver standby control register is set to 1, operation is also possible. For details, refer to section 28, Remote Control Signal Receiver (REMC).
- Note 9. Operation is possible when the clock source for the operating clock is the sub clock, HOCO clock, or IWDT-dedicated on-chip oscillator clock.
- Note 10. When the remote control signal receiver (REMC) is operated, related pins continue operating.

[&]quot;Stopped (Retained)" means that internal register values are retained and internal operations are suspended.

- Note 1. If an interrupt is accepted while entering low power consumption mode, the transition to the program stop state is exited and the interrupt exception handling is executed.
- Note 2. "Interrupts" here indicates an external pin interrupt (the NMI or IRQ0 to IRQ7) or any of peripheral interrupts (the RTC alarm, RTC interval, IWDT, REMC, and voltage monitoring interrupts).
- Note 3. The LOCO is the clock source following a transition from the reset state to normal mode.
- Note 4. Makes a transition from sleep mode, deep sleep mode, or software standby mode to normal operating mode by an interrupt. In the case of exiting sleep mode, the clock source after exiting is selectable. For details, refer to the description of the RSTCKCR register.

For deep sleep mode and software standby mode, the clock source after exiting is the same as that of the clock before entering software standby mode.

Transition to the reset state is made at any state instantly after a RES# pin reset, power on reset, voltage monitoring reset, IWDT reset, or software reset is generated.

Figure 11.1 Mode Transitions

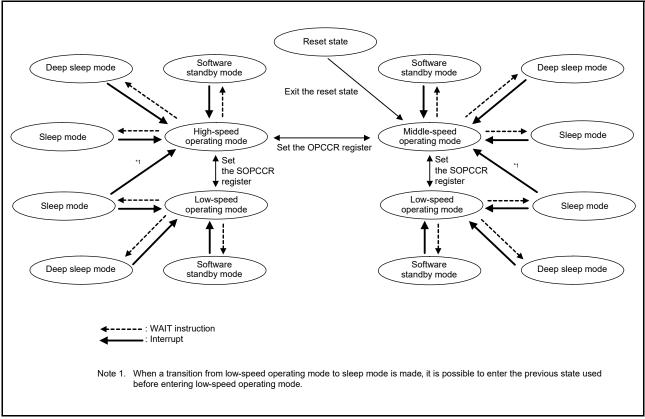
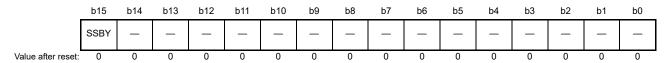


Figure 11.2 Operating Modes

- The sub-clock oscillator does not stop when entering software standby mode.
- It is possible to return from sleep mode to the previous operating state used before entering sleep mode. However, when a transition from low-speed operating mode to sleep mode is made, it is possible to enter the previous state used before entering low-speed operating mode.
- After exiting the reset state, operation starts in middle-speed operating mode.

Table 11.3 Oscillator Usability in Each Mode


	PLL	носо	LOCO	IWDT dedicated On-chip Oscillator	Main Clock Oscillator	Sub-Clock Oscillator
High-speed operating mode	Usable*1	Usable	Usable	Usable	Usable	Usable
Middle-speed operating mode	Usable*1	Usable	Usable	Usable	Usable	Usable
Low-speed operating mode	Not usable	Not usable	Not usable	Usable	Not usable	Usable

Note 1. The PLL is usable when the power supply voltage is 2.4 V or above.

11.2 Register Descriptions

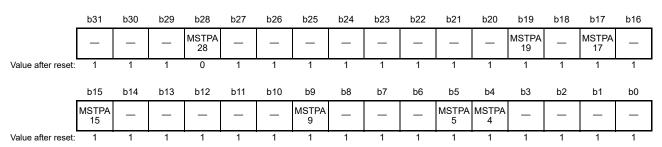
11.2.1 Standby Control Register (SBYCR)

Address(es): 0008 000Ch

Bit	Symbol	Bit Name	Description	R/W
b14 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b15	SSBY	Software Standby	Set entry to sleep mode or deep sleep mode after the WAIT instruction is executed Set entry to software standby mode after the WAIT instruction is executed	R/W

Note: Set the PRCR.PRC1 bit to 1 (write enabled) before rewriting this register.

SSBY Bit (Software Standby)


The SSBY bit specifies the transition destination after the WAIT instruction is executed.

When the SSBY bit is set to 1, the MCU enters software standby mode after execution of the WAIT instruction. When the MCU returns to normal mode after an interrupt has triggered and exits from software standby mode, the SSBY bit remains 1. The SSBY bit can be cleared by writing 0 to the SSBY bit.

When the oscillation stop detection function enable bit (OSTDCR.OSTDE) in the oscillation stop detection control register is 1, the set value of the SSBY bit is invalid. Even if the SSBY bit is 1, the MCU will enter sleep mode or deep sleep mode after execution of the WAIT instruction.

11.2.2 Module Stop Control Register A (MSTPCRA)

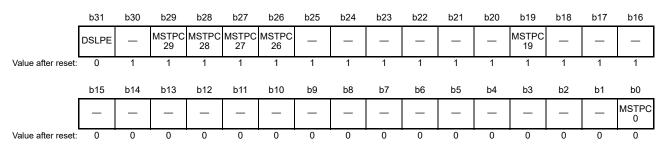
Address(es): 0008 0010h

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	_	Reserved	These bits are read as 1. The write value should be 1.	R/W
b4	MSTPA4	8-bit Timer 3 and 2 (Unit 1) Module Stop	Target module: TMR3, TMR2 0: This module clock is enabled 1: This module clock is disabled	R/W
b5	MSTPA5	8-bit Timer 1 and 0 (Unit 0) Module Stop	Target module: TMR1, TMR0 0: This module clock is enabled 1: This module clock is disabled	R/W
b8 to b6	_	Reserved	These bits are read as 1. The write value should be 1.	R/W
b9	MSTPA9	Multifunction Timer Pulse Unit Module Stop	Target module: (MTU0 to MTU5) 0: This module clock is enabled 1: This module clock is disabled	R/W
b14 to b10	_	Reserved	These bits are read as 1. The write value should be 1.	R/W
b15	MSTPA15	Compare Match Timer (Unit 0) Module Stop	Target module: CMT unit 0 (CMT0, CMT1) 0: This module clock is enabled 1: This module clock is disabled	R/W
b16	_	Reserved	This bit is read as 1. The write value should be 1.	R/W
b17	MSTPA17	12-Bit A/D Converter Module Stop	Target module: S12AD 0: This module clock is enabled 1: This module clock is disabled	R/W
b18	_	Reserved	This bit is read as 1. The write value should be 1.	R/W
b19	MSTPA19	D/A Converter Module Stop	Target module: DA 0: This module clock is enabled 1: This module clock is disabled	R/W
b27 to b20	_	Reserved	These bits are read as 1. The write value should be 1.	R/W
b28	MSTPA28	Data Transfer Controller Module Stop	Target module: DTC 0: This module clock is enabled 1: This module clock is disabled	R/W
b31 to b29	_	Reserved	These bits are read as 1. The write value should be 1.	R/W

Note: Set the PRCR.PRC1 bit to 1 (write enabled) before rewriting this register.

11.2.3 Module Stop Control Register B (MSTPCRB)

Address(es): 0008 0014h


	b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
	MSTPB 31	MSTPB 30	_	-	_	MSTPB 26	MSTPB 25	_	MSTPB 23	_	MSTPB 21	_	_	_	MSTPB 17	-
Value after reset:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	_	_	1	-	MSTPB 10	MSTPB 9	_	1	MSTPB 6	-	MSTPB 4	_	_	_	-
Value after reset:	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	_	Reserved	These bits are read as 1. The write value should be 1.	R/W
b4	MSTPB4	Serial Communication Interface SCIf Module Stop	Target module: SCIf (SCI12) 0: This module clock is enabled 1: This module clock is disabled	R/W
b5	_	Reserved	This bit is read as 1. The write value should be 1.	R/W
b6	MSTPB6	DOC Module Stop	Target module: DOC 0: This module clock is enabled 1: This module clock is disabled	R/W
b8, b7	_	Reserved	These bits are read as 1. The write value should be 1.	R/W
b9	MSTPB9	ELC Module Stop	Target module: ELC 0: This module clock is enabled 1: This module clock is disabled	R/W
b10	MSTPB10	Comparator Module Stop	Target module: Comparator 0: This module clock is enabled 1: This module clock is disabled	R/W
b16 to b11	_	Reserved	These bits are read as 1. The write value should be 1.	R/W
b17	MSTPB17	Serial Peripheral Interface 0 Module Stop	Target module: RSPI0 0: This module clock is enabled 1: This module clock is disabled	R/W
b20 to b18	_	Reserved	This bit is read as 1. The write value should be 1.	R/W
b21	MSTPB21	I ² C Bus Interface 0 Module Stop	Target module: RIIC0 0: This module clock is enabled 1: This module clock is disabled	R/W
b22	_	Reserved	This bit is read as 1. The write value should be 1.	R/W
b23	MSTPB23	CRC Calculator Module Stop	Target module: CRC 0: This module clock is enabled 1: This module clock is disabled	R/W
b24	_	Reserved	This bit is read as 1. The write value should be 1.	R/W
b25	MSTPB25	Serial Communication Interface 6 Module Stop	Target module: SCI6 0: This module clock is enabled 1: This module clock is disabled	R/W
b26	MSTPB26	Serial Communication Interface 5 Module Stop	Target module: SCI5 0: This module clock is enabled 1: This module clock is disabled	R/W
b29 to b27	_	Reserved	These bits are read as 1. The write value should be 1.	R/W
b30	MSTPB30	Serial Communication Interface 1 Module Stop	Target module: SCI1 0: This module clock is enabled 1: This module clock is disabled	R/W
b31	MSTPB31	Serial Communication Interface 0 Module Stop	Target module: SCI0 0: This module clock is enabled 1: This module clock is disabled	R/W

Note: Set the PRCR.PRC1 bit to 1 (write enabled) before rewriting this register.

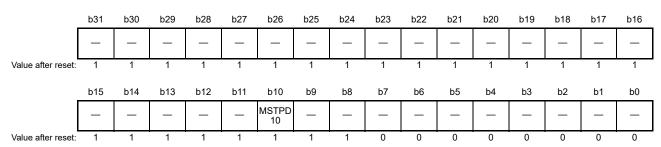
11.2.4 Module Stop Control Register C (MSTPCRC)

Address(es): 0008 0018h

Bit	Symbol	Bit Name	Description	R/W
b0	MSTPC0	RAM0 Module Stop*1	Target module: RAM0 (0000 0000h to 0000 FFFFh) 0: RAM0 operating 1: RAM0 stopped	R/W
b15 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b18 to b16	_	Reserved	These bits are read as 1. The write value should be 1.	R/W
b19	MSTPC19	Clock Frequency Accuracy Measurement Circuit Module Stop*2	Target module: CAC 0: This module clock is enabled 1: This module clock is disabled	R/W
b25 to b20	_	Reserved	These bits are read as 1. The write value should be 1.	R/W
b26	MSTPC26	Serial Communication Interface 9 Module Stop	Target module: SCI9 0: This module clock is enabled 1: This module clock is disabled	R/W
b27	MSTPC27	Serial Communication Interface 8 Module Stop	Target module: SCI8 0: This module clock is enabled 1: This module clock is disabled	R/W
b28	MSTPC28	Remote control signal receiver 1 Module Stop*3	Target module: REMC1 0: This module clock is enabled 1: This module clock is disabled	R/W
b29	MSTPC29	Remote control signal receiver 0 Module Stop*4	Target module: REMC0 0: This module clock is enabled 1: This module clock is disabled	R/W
b30	_	Reserved	This bit is read as 1. The write value should be 1.	R/W
b31	DSLPE	Deep Sleep Mode Enable	0: Deep sleep mode is disabled 1: Deep sleep mode is enabled	R/W

- Note: Set the PRCR.PRC1 bit to 1 (write enabled) before rewriting this register.
- Note 1. The corresponding MSTPC0 bit should not be set to 1 during access to the RAM. The corresponding RAM should not be accessed while the MSTPC0 bit is 1.
- Note 2. The MSTPC19 bit should be rewritten while the oscillation of the clock to be controlled by this bit is stable. For entering software standby mode after rewriting this bit, wait for two cycles of the slowest clock among the clocks output by the oscillators actually oscillating and execute the WAIT instruction.
- Note 3. Rewrite the MSTPC28 bit while the oscillation of the clock whose source is REMC1 is stable. For entering software standby mode after rewriting this bit, wait for two cycles of this clock and execute the WAIT instruction.
- Note 4. Rewrite the MSTPC29 bit while the oscillation of the clock whose source is REMC0 is stable. For entering software standby mode after rewriting this bit, wait for two cycles of this clock and execute the WAIT instruction.

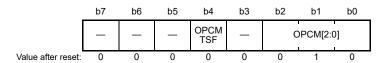
DSLPE Bit (Deep Sleep Mode Enable)


The DSLPE bit enables or disables a transition to deep sleep mode.

When the CPU executes the WAIT instruction with the DSLPE bit set to 1 and the SBYCR.SSBY and MSTPCRA.MSTPA28 bits meet specified conditions, the MCU enters deep sleep mode. For details, refer to section 11.6.2, Deep Sleep Mode.

11.2.5 Module Stop Control Register D (MSTPCRD)

Address(es): 0008 001Ch



Bit	Symbol	Bit Name	Description	R/W
b7 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b9, b8	_	Reserved	These bits are read as 1. The write value should be 1.	R/W
b10	MSTPD10	Touch Sensor Control Unit Module Stop	Target module: CTSU 0: This module clock is enabled 1: This module clock is disabled	R/W
b31 to b11	_	Reserved	These bits are read as 1. The write value should be 1.	R/W

Note: Set the PRCR.PRC1 bit to 1 (write enabled) before rewriting this register.

11.2.6 Operating Power Control Register (OPCCR)

Address(es): 0008 00A0h

Bit	Symbol	Bit Name	Description	R/W	
b2 to b0 OPCM[2:0]		Operating Power Control Mode Select	b2 b0 0 0 0: High-speed operating mode 0 1 0: Middle-speed operating mode Settings other than above are prohibited.	R/W	
b3	_	Reserved	This bit is read as 0. The write value should be 0.	R/W	
b4	OPCMTSF	Operating Power Control Mode Transition Status Flag	0: Transition completed 1: During transition	R	
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W	

Note: Set the PRCR.PRC1 bit to 1 (write enabled) before rewriting this register.

The OPCCR register is used to reduce power consumption in normal operating mode, sleep mode, and deep sleep mode. Power consumption can be reduced according to the operating frequency and operating voltage to be used by the OPCCR setting.

The OPCCR register cannot be rewritten under the following conditions:

- When the OPCCR.OPCMTSF flag is 1 (during transition)
- Time period from WAIT instruction execution for a sleep mode transition, until exit from sleep mode to normal operation
- Time period from WAIT instruction execution for a deep sleep mode transition, until exit from deep sleep mode to normal operation
- When the SOPCCR.SOPCM bit is 1 (low-speed operating mode)

The OPCCR register cannot be rewritten while the flash memory is being programmed or erased (P/E).

For the procedures of changing operating power control modes, refer to Function in section 11.5, Function for Lower Operating Power Consumption.

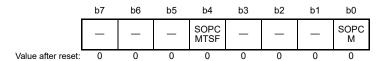
During a transition to an operating power control mode (while the OPCCR.OPCMTSF flag is 1), a correct value cannot be read from the E2 DataFlash. If a setting is made so that the E2 DataFlash is read using a DTC transfer, stop the DTC module before rewriting the OPCCR.OPCM[2:0] bits.

During sleep mode or mode transitions, do not write to the registers related to system control (indicated by 'SYSTEM' in the Module Symbol column in Table 5.1, List of I/O Registers (Address Order)).

OPCM[2:0] Bits (Operating Power Control Mode Select)

The OPCM[2:0] bits select operating power control mode in normal operating mode, sleep mode, and deep sleep mode. Table 11.4 shows the relationship between operating power control modes, the OPCM[2:0] and SOPCM bit settings, and the operating frequency and voltage ranges.

OPCMTSF Flag (Operating Power Control Mode Transition Status Flag)


This flag indicates the switching control state during and after operating power mode transition.

This flag becomes 1 when the value of the OPCM[2:0] bits is rewritten, and 0 when mode transition is completed. Read this flag and confirm that it is 0 before proceeding to the next processing. Only rewrite the OPCM[2:0] bits when this flag is 0.

11.2.7 Sub Operating Power Control Register (SOPCCR)

Address(es): 0008 00AAh

Bit	Symbol	Bit Name	Description	R/W
b0	SOPCM	Sub Operating Power Control Mode Select	0: High-speed operating mode or middle-speed operating mode*1 1: Low-speed operating mode	R/W
b3 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b4	SOPCMTSF	Sub Operating Power Control Mode Transition Status Flag	Transition completed During transition	R
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC1 bit to 1 (write enabled) before rewriting this register.

Note 1. Depends on the setting of OPCCR.OPCM[2:0].

The SOPCCR register is used to reduce power consumption in normal operating mode, sleep mode, and deep sleep mode by controlling a transition to low-speed operating mode.

Setting this register initiates entry to/exit from low-speed operating mode.

Low-speed operating mode is used for the sub-clock oscillator only.

The OPCCR register cannot be rewritten when the SOPCM bit is 1 (low-speed operating mode).

The SOPCCR register cannot be rewritten under the following conditions:

- When the SOPCCR.SOPCMTSF flag is 1 (during transition)
- Time period from WAIT instruction execution for a sleep mode transition, until exit from sleep mode to normal operation
- Time period from WAIT instruction execution for a deep sleep mode transition, until exit from deep sleep mode to normal operation

This register cannot be rewritten while the flash memory is being programmed or erased (P/E).

For the procedures for changing operating power control modes, refer to Function in section 11.5, Function for Lower Operating Power Consumption.

During a transition to an operating power control mode (while the SOPCCR.SOPCMTSF flag is 1), a correct value cannot be read from the E2 DataFlash. If a setting is made so that the E2 DataFlash is read using a DTC transfer, stop the DTC module before rewriting the SOPCCR.SOPCM bit.

During sleep mode or mode transitions, do not write to the registers related to system control (indicated by 'SYSTEM' in the Module Symbol column in Table 5.1, List of I/O Registers (Address Order)).

SOPCM Bit (Sub Operating Power Control Mode Select)

The SOPCM bit selects operating power control in normal operating mode and sleep mode.

Setting this bit to 1 allows a transition to low-speed operating mode. Setting this bit to 0 allows a return to the operating mode (operating mode set by OPCCR.OPCM[2:0]) before the transition to low-speed operating mode.

Table 11.4 shows the relationship between operating power control modes, the OPCM[2:0] and SOPCM bit settings, and the operating frequency and voltage ranges.

SOPCMTSF Flag (Sub Operating Power Control Mode Transition Status Flag)

The SOPCMTSF flag indicates the switching control state when the sub operating power control mode is switched. This flag becomes 1 when the value of the SOPCM bit is rewritten, and 0 when mode transition is completed. Read this flag and confirm that it is 0 before proceeding to the next processing. Only rewrite the SOPCM bit when this flag is 0.

Table 11.4 Operating Frequency and Voltage Ranges in Operating Power Control Modes

				Operating Frequency Range						
Onevetine Bewer				Flash Memory Rea	Flash Memory Programming/ Erasure Frequency					
Operating Power Control Mode	OPCM[2:0] Bits	SOPCM Bit	Operating Voltage Range	ICLK	FCLK	PCLKD	PCLKB	FCLK		
High-speed	000b	000b	0	2.7 to 5.5 V	Up to 32 MHz	Up to 32 MHz	Up to 32 MHz	Up to 32 MHz	1 to 32 MHz	
operating mode							2.4 to 2.7 V	Up to 16 MHz	Up to 16 MHz	Up to 16 MHz
			1.8 to 2.4 V	Up to 8 MHz	Up to 8 MHz	Up to 8 MHz	Up to 8 MHz	_		
Middle-speed	010b	0	2.4 to 5.5 V	Up to 12 MHz	Up to 12 MHz	Up to 12 MHz	Up to 12 MHz	1 to 12 MHz		
operating mode			1.8 to 2.4 V	Up to 8 MHz	Up to 8 MHz	Up to 8 MHz	Up to 8 MHz	1 to 8 MHz		
Low-speed	000b	1	1.8 to 5.5 V	Up to 32.768 kHz	Up to 32.768 kHz	Up to 32.768 kHz	Up to 32.768 kHz	_		
operating mode	010b	1	1.8 to 5.5 V							

Note: When using the FCLK at lower than 4 MHz during programming or erasing the flash memory, the frequency can be set to 1, 2, or 3 MHz.

Each operating power control mode is described below.

• High-Speed Operating Mode

The maximum operating frequency during FLASH read is 32 MHz for ICLK, PCLKD; 32 MHz for PCLKB and FCLK. The operating voltage range is 1.8 to 5.5 V during FLASH read. However, for ICLK, FCLK, PCLKB, and PCLKD, the maximum operating frequency during FLASH read is 16 MHz when the operating voltage is 2.4 V or larger and smaller than 2.7 V. The maximum operating frequency during FLASH read is 8 MHz for all the clocks when the operating voltage is 1.8 V or larger and smaller than 2.4 V.

During FLASH programming/erasure, the operating frequency range is 1 to 32 MHz and the operating voltage range is 2.7 to 5.5 V.

The following restriction applies when high-speed operating mode is selected.

• The PLL can be used when the operating voltage is 2.4 V or above.

Figure 11.3 shows the operating voltages and frequencies in high-speed operating mode.

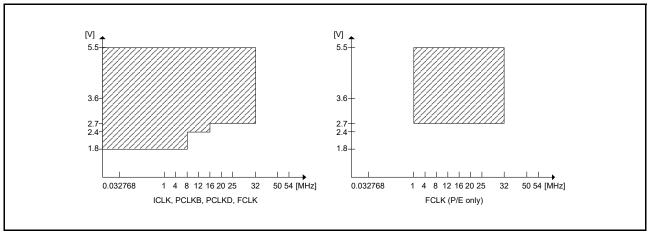


Figure 11.3 Operating Voltages and Frequencies in High-Speed Operating Mode

Note: When using the FCLK at lower than 4 MHz during programming or erasing the flash memory, the frequency can be set to 1, 2, or 3 MHz.

• Middle-Speed Operating Mode

As compared to high-speed operating mode, this mode reduces power consumption for low-speed operation. The maximum operating frequency during FLASH read is 12 MHz for ICLK, FCLK, PCLKB, and PCLKD. The operating voltage range is 1.8 to 5.5 V during FLASH read. The maximum operating frequency during FLASH read is 8 MHz for all the clocks when the operating voltage is 1.8 V or larger and smaller than 2.4 V.

During FLASH programming/erasure, the operating frequency range is 1 to 12 MHz and the operating voltage range is 1.8 to 5.5 V. The maximum operating frequency during FLASH programming/erasure is 8 MHz when the operating voltage is 1.8 V or larger and smaller than 2.4 V.

The power consumption of this mode is lower than that of high speed mode under the same conditions.

After a reset is canceled, operation is started from this mode.

The following restriction applies when middle-speed operating mode is selected:

• The PLL can be used when the operating voltage is 2.4 V or above.

Figure 11.4 shows the operating voltages and frequencies in middle-speed operating mode.

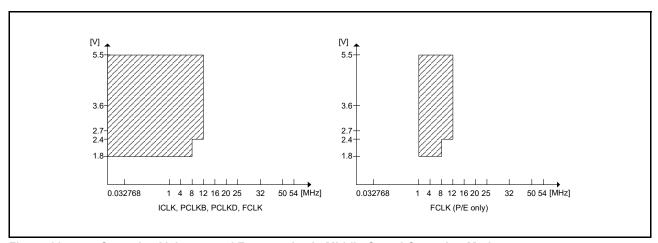


Figure 11.4 Operating Voltages and Frequencies in Middle-Speed Operating Mode

Note: When using the FCLK at lower than 4 MHz during programming or erasing the flash memory, the frequency can be set to 1, 2, or 3 MHz.

• Low-Speed Operating Mode

A transition to low-speed operating mode is set by writing 1 to the SOPCM bit in the SOPCCR register. The setting of the OPCM[2:0] bits cannot be modified during low-speed operating mode. This mode is used only for the sub oscillator of 32.768 kHz.

During reading the flash memory (FLASH), the maximum operating frequency of ICLK, FCLK, PCLKB, and PCLKD is 32.768 kHz. The operating voltage is in the range of 1.8 to 5.5 V.

The following restrictions apply when low-speed operating mode is selected:

- P/E operations for flash memory are prohibited.
- The PLL, main clock oscillator, LOCO, and HOCO cannot be used.

Note: The SOPCM bit cannot be set to 1 when the PLLCR2.PLLEN bit is 0 (PLL is operating).

The SOPCM bit cannot be set to 1 when the HOCOCR.HCSTP bit is 0 (HOCO is operating).

The SOPCM bit cannot be set to 1 when the HOFCR.HOFXIN bit is 1 (HOCO is forcibly operating).

The SOPCM bit cannot be set to 1 when the MOSCCR.MOSTP bit is 0 (Main clock oscillator is operating).

The SOPCM bit cannot be set to 1 when the LOCOCR.LCSTP bit is 0 (LOCO is operating).

Figure 11.5 shows the operating voltages and frequencies in low-speed operating mode.

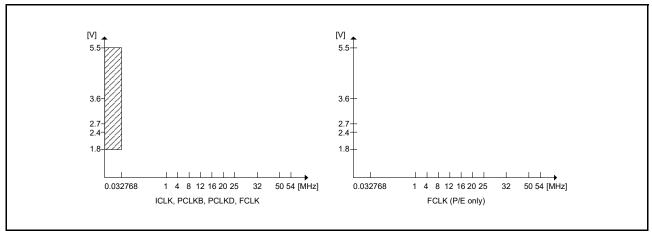


Figure 11.5 Operating Voltages and Frequencies in Low-Speed Operating Mode

11.2.8 Sleep Mode Return Clock Source Switching Register (RSTCKCR)

Address(es): 0008 00A1h

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	RSTCKSEL [2:0]	Sleep Mode Return Clock Source Select	b2 b0 0 0 0: LOCO is selected 0 0 1: HOCO is selected*1 0 1 0: Main clock oscillator is selected Settings other than above are prohibited when the RSTCKEN bit is 1.	R/W
b6 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b7	RSTCKEN	Sleep Mode Return Clock Source Switching Enable	Clock source switching at exit from sleep mode is disabled Clock source switching at exit from sleep mode is enabled	R/W

Note: Set the PRCR.PRC1 bit to 1 (write enabled) before rewriting this register.

Note 1. HOCO can only be selected when entering high-speed operating mode.

RSTCKCR is used to control clock source switching at exit from sleep mode.

When exit from sleep mode is initiated by setting RSTCKCR, the main clock oscillator stop bit in the main clock oscillator control register (MOSCCR.MOSTP), the HOCO stop bit in the high-speed on-chip oscillator control register (HOCOCR.HCSTP), and the LOCO stop bit in the low-speed on-chip oscillator control register (LOCOCR.LCSTP) are automatically modified to the operating state corresponding to the clock source to be used after transition. The value of the RSTCKSEL[2:0] bits is automatically reloaded to the clock source select bits in system clock control register 3 (SCKCR3.CKSEL[2:0]).

RSTCKSEL[2:0] Bits (Sleep Mode Return Clock Source Select)

The RSTCKSEL[2:0] bits select the clock source to be used at exit from sleep mode.

The clock source selected by the RSTCKSEL[2:0] bits is enabled only when the RSTCKEN bit is 1.

As shown in Figure 11.2, Operating Modes, when returning from sleep mode to high-speed operating mode, the LOCO, HOCO, or main clock oscillator can be selected. When returning from sleep mode to middle-speed operating mode, the LOCO or main clock oscillator can be selected. However, in this case, the frequency of each clock (ICLK, FCLK, PCLKD, and PCLKB) must be lower than 12 MHz when the power supply voltage is 2.4 V or above, and lower than 8 MHz when the voltage is below 2.4 V.

Table 11.5 When Exiting Sleep Mode to High-Speed Operating Mode and Middle-Speed Operating Mode

Operating Mode during Sleep	Clock Source during Sleep	RSTCKSEL	Operating Mode after Exiting	Clock Source after Exiting
High-speed operating mode or	Sub-clock oscillator	000b (LOCO)	High-speed	LOCO
low-speed operating mode after exit from high-speed		001b (HOCO)	 operating mode 	НОСО
operating mode		010b (main clock oscillator)	_	Main clock oscillator
Middle-speed operating mode	Sub-clock oscillator	000b (LOCO)	Middle-speed	LOCO
or low-speed operating mode after exit from middle-speed operating mode		010b (main clock oscillator)	─ operating mode	Main clock oscillator*1

Note 1. The frequency of each clock (ICLK, FCLKD, and PCLKB) must be lower than 12 MHz when the power supply voltage is 2.4 V or above, and lower than 8 MHz when the voltage is below 2.4 V.

RSTCKEN Bit (Sleep Mode Return Clock Source Switching Enable)

The RSTCKEN bit enables or disables clock source switching when sleep mode is exited.

The clock source can be switched when exiting sleep mode only while the sub-clock oscillator is selected as the clock for entering sleep mode. Do not enable this bit when entering sleep mode while the HOCO, LOCO, main clock oscillator, or PLL is selected as the clock source.

When returning from sleep mode while this bit is enabled, the SOPCM bit in the SOPCCR register is automatically rewritten to 0 (middle-speed operating mode or high-speed operating mode).

The value of the frequency division setting (in the SCKCR register) is retained.

To exit sleep mode to middle-speed operating mode when the main clock oscillator is selected, the frequency of each clock must be lower than 12 MHz when the power supply voltage is 2.4 V or above, and lower than 8 MHz when the voltage is below 2.4 V.

11.3 Reducing Power Consumption by Switching Clock Signals

The clock frequency can change by setting the SCKCR.FCK[3:0], ICK[3:0], PCKB[3:0], and PCKD[3:0] bits. The CPU, DTC, ROM, and RAM clocks can be set by the ICK[3:0] bits. The peripheral module clocks can be set by the PCKB[3:0] and PCKD[3:0] bits.

The flash memory clock can be set by the FCK[3:0] bits.

For details, refer to section 9, Clock Generation Circuit.

11.4 Module Stop Function

The module stop function can be set for each on-chip peripheral module.

When the MSTPmi bit (m = A to D; i = 0 to 31) in MSTPCRA to MSTPCRD is set to 1, the specified module stops operating and enters the module stop state, but the CPU continues to operate independently. When the corresponding MSTPmi bit is set to 0, the module exits the module state and restarts operating at the end of the bus cycle. The internal states of modules are retained in the module stop state.

After a reset is canceled, all modules other than the DTC, and on-chip RAM are in the module stop state. Basically the registers in the module stop state cannot be read or written. However, note that data may be written to these registers if write access is made immediately after the setting of the module stop state. To avoid this, always write to the module stop registers after confirming that the last register setting is done.

Function for Lower Operating Power Consumption 11.5

By selecting an appropriate operating power control mode according to the operating frequency and operating voltage, power consumption can be reduced in normal mode, sleep mode, and deep sleep mode.

11.5.1 Setting Operating Power Control Mode

Examples of the procedures for switching operating power control modes are shown below:

- (1) Switching from Normal Power Consumption Mode to Low Power Consumption Mode
- Example 1: From high-speed operating mode to middle-speed operating mode

(High-speed operation in high-speed operating mode)

Set the frequency of each clock to lower than the maximum operating frequency for middle-speed operating mode

Confirm that the OPCCR.OPCMTSF flag is 0 (transition completed)

Set the OPCCR.OPCM[2:0] bits to 010b (middle-speed operating mode)

Confirm that the OPCCR.OPCMTSF flag is 0 (transition completed)

(Middle-speed operation in middle-speed operating mode)

• Example 2: From high-speed/middle-speed operating mode to low-speed operating mode

(High-speed operation in high-speed operating mode/middle-speed operation in middle-speed operating mode)

 \downarrow

Set the frequency of each clock to lower than the maximum operating frequency for low-speed operating mode

 \downarrow

Confirm that all clock sources but the sub-clock oscillator are stopped

1

Confirm that the SOPCCR.SOPCMTSF flag is 0 (transition completed)

1

Set the SOPCCR.SOPCM bit to 1 (low-speed operating mode)

 \downarrow

Confirm that the SOPCCR.SOPCMTSF flag is 0 (transition completed)

1

Low-speed operation in low-speed operating mode

- (2) Switching from Low Power Consumption Mode to Normal Power Consumption Mode
- Example 1: From low-speed operating mode to high-speed/middle-speed operating mode

Low-speed operation in low-speed operating mode

 \downarrow

Confirm that the SOPCCR.SOPCMTSF flag is 0 (transition completed)

1

Set the SOPCCR.SOPCM bit to 0 (high-speed operating mode or middle-speed operating mode)

 \downarrow

Confirm that the SOPCCR.SOPCMTSF flag is 0 (transition completed)

1

Set the frequency of each clock to lower than the maximum operating frequency for high-speed/middle-speed operating mode

(High-speed operation in high-speed operating mode/middle-speed operation in middle-speed operating mode)

• Example 2: From middle-speed operating mode to high-speed operating mode

Middle-speed operation in middle-speed operating mode

.

Confirm that the OPCCR.OPCMTSF flag is 0 (transition completed)

1

Set the OPCCR.OPCM[2:0] bit to 0 (high-speed operating mode)

,

Confirm that the OPCCR.OPCMTSF flag is 0 (transition completed)

 \downarrow

Set the frequency of each clock to lower than the maximum operating frequency for high-speed operating mode

High-speed operation in high-speed operating mode

11.6 Low Power Consumption Modes

11.6.1 Sleep Mode

11.6.1.1 Entry to Sleep Mode

When the WAIT instruction is executed while the SBYCR.SSBY bit is 0, the CPU enters sleep mode. In sleep mode, the CPU stops operating but the contents of its internal registers are retained. Other peripheral functions do not stop. Counting by the IWDT stops if a transition to sleep mode is made while the IWDT is being used in auto-start mode and the OFS0.IWDTSLCSTP bit is 1. In the same way, counting by the IWDT stops if a transition to sleep mode is made while the IWDT is being used in register start mode and the IWDTCSTPR.SLCSTP bit is 1.

Furthermore, counting by the IWDT continues if a transition to sleep mode is made while the IWDT is being used in auto-start mode and the OFS0.IWDTSLCSTP bit is 0 (counting by the IWDT continues through transitions to low power consumption modes). In the same way, counting by the IWDT continues if a transition to sleep mode is made while the IWDT is being used in register start mode and the IWDTCSTPR.SLCSTP bit is 0.

To use sleep mode, make the following settings and then execute a WAIT instruction.

- (1) Set the PSW.I bit*1 of the CPU to 0.
- (2) Set the interrupt request destination*2 to be used for exit from sleep mode.
- (3) Set the priority*3 of the interrupt to be used for exit from sleep mode to a level higher than the setting of the PSW.IPL[3:0] bits*1 of the CPU.
- (4) Set the IERm.IENj bit*3 to 1 for the interrupt.
- (5) Read the I/O register that is written last and confirm that the written value has been reflected.
- (6) Execute the WAIT instruction (this automatically sets the I bit*1 in the PSW of the CPU to 1).
- Note 1. For details, refer to section 2, CPU.
- Note 2. For details, refer to section 14.4.3, Selecting Interrupt Request Destinations.
- Note 3. For details, refer to section 14, Interrupt Controller (ICUb).

11.6.1.2 Exit from Sleep Mode

Exit from sleep mode is initiated by any interrupt, a RES# pin reset, a power-on reset, a voltage monitoring reset, or a reset caused by an IWDT underflow.

- Initiated by an interrupt
 - An interrupt initiates exit from sleep mode and the interrupt exception handling starts. If a maskable interrupt has been masked by the CPU (the priority level*1 of the interrupt has been set to a value lower than that of the PSW.IPL[3:0] bits*2 of the CPU), sleep mode is not exited.
- Initiated by a RES# pin reset
 - When the RES# pin is driven low, the MCU enters the reset state. When the RES# pin is driven high after the reset signal is input for a predetermined time period, the CPU starts the reset exception handling.
- Initiated by a power-on reset
 - A power-on reset asserts a reset to the MCU.
 - When a power-on reset is negated by a rise in the supply voltage, the CPU starts the reset exception handling.
- Initiated by a voltage monitoring reset
 - A voltage monitoring reset asserts a reset to the MCU.
 - When a voltage monitoring reset is negated by a rise in the supply voltage, the CPU starts the reset exception handling.
- Initiated by an independent watchdog timer reset
 - An internal reset generated by an IWDT underflow asserts a reset to the MCU. However, when IWDT counting is stopped in sleep mode by setting OFS0.IWDTSTRT = 0 and OFS0.IWDTSLCSTP = 1, or OFS0.IWDTSTRT = 1 and IWDTCSTPR.SLCSTP = 1, the IWDT is stopped in sleep mode and sleep mode is not exited by the independent watchdog timer reset.
- Note 1. For details, refer to section 14, Interrupt Controller (ICUb).
- Note 2. For details, refer to section 2, CPU.

11.6.1.3 Sleep Mode Return Clock Source Switching Function

To switch the clock source used for exit from sleep mode, set the sleep mode return clock source switching register (RSTCKCR) and the wait control register for each clock. When the return interrupt is generated, after oscillation settling of the oscillator specified as the return clock, the clock source is automatically switched, and then operation exits sleep mode. At this time, the registers related to clock source switching are automatically rewritten.

For details, refer to section 11.2.8, Sleep Mode Return Clock Source Switching Register (RSTCKCR). For details on settings the oscillation stabilization wait time, refer to section 9.2.14, Main Clock Oscillator Wait Control Register (MOSCWTCR).

11.6.2 Deep Sleep Mode

11.6.2.1 Entry to Deep Sleep Mode

When a WAIT instruction is executed with the MSTPCRC.DSLPE bit set to 1, the MSTPCRA.MSTPA28 bit set to 1, and the SBYCR.SSBY bit cleared to 0, a transition to deep sleep mode is made.

In deep sleep mode, the CPU and the DTC, ROM, and RAM clocks stop. Peripheral functions do not stop.

Counting by the IWDT stops if a transition to deep sleep mode is made while the IWDT is being used in auto-start mode and the OFS0.IWDTSLCSTP bit is 1. In the same way, counting by the IWDT stops if a transition to deep sleep mode is made while the IWDT is being used in register start mode and the IWDTCSTPR.SLCSTP bit is 1.

Furthermore, counting by the IWDT continues if a transition to deep sleep mode is made while the IWDT is being used in auto-start mode and the OFS0.IWDTSLCSTP bit is 0 (counting by the IWDT continues through transitions to low power consumption modes). In the same way, counting by the IWDT continues if a transition to deep sleep mode is made while the IWDT is being used in register start mode and the IWDTCSTPR.SLCSTP bit is 0.

To use deep sleep mode, make the following settings and then execute a WAIT instruction.

- (1) Set the PSW.I bit*1 of the CPU to 0.
- (2) Set the interrupt request destination*2 to be used for exit from deep sleep mode.
- (3) Set the priority*3 of the interrupt to be used for exit from deep sleep mode to a level higher than the setting of the PSW.IPL[3:0] bits*1 of the CPU.
- (4) Set the IERm.IENj bit*3 to 1 for the interrupt.
- (5) Read the I/O register that is written last and confirm that the written value has been reflected.
- (6) Execute a WAIT instruction (executing a WAIT instruction causes automatic setting of the PSW.I bit*1 of the CPU to 1).
- Note 1. For details, refer to section 2, CPU.
- Note 2. For details, refer to section 14.4.3, Selecting Interrupt Request Destinations.
- Note 3. For details, refer to section 14, Interrupt Controller (ICUb).

11.6.2.2 Exit from Deep Sleep Mode

Exit from deep sleep mode is initiated by any interrupt, a RES# pin reset, a power-on reset, a voltage monitoring reset, or a reset caused by an IWDT underflow.

• Initiated by an interrupt

An interrupt initiates exit from deep sleep mode and the interrupt exception handling starts. If a maskable interrupt has been masked by the CPU (the priority level*1 of the interrupt has been set to a value lower than that of the PSW.IPL[3:0] bits*2 of the CPU), deep sleep mode is not exited.

• Initiated by the RES# pin reset

When the RES# pin is driven low, the MCU enters the reset state. When the RES# pin is driven high after the reset signal is input for a predetermined time period, the CPU starts the reset exception handling.

• Initiated by a power-on reset

A power-on reset asserts a reset to the MCU.

When a power-on reset is negated by a rise in the supply voltage, the CPU starts the reset exception handling.

• Initiated by a voltage monitoring reset

A voltage monitoring reset asserts a reset to the MCU.

When a voltage monitoring reset is negated by a rise in the supply voltage, the CPU starts the reset exception handling.

• Initiated by the independent watchdog timer

An internal reset generated by an IWDT underflow asserts a reset to the MCU. However, when IWDT counting is stopped in deep sleep mode by setting OFS0.IWDTSTRT = 0 and OFS0.IWDTSLCSTP = 1, or OFS0.IWDTSTRT = 1 and IWDTCSTPR.SLCSTP = 1, the IWDT is stopped in deep sleep mode and deep sleep mode is not exited by the independent watchdog timer reset.

Note 1. For details, refer to section 14, Interrupt Controller (ICUb).

Note 2. For details, refer to section 2, CPU.

11.6.3 Software Standby Mode

11.6.3.1 Entry to Software Standby Mode

When a WAIT instruction is executed with the SBYCR.SSBY bit set to 1, a transition to software standby mode is made. In this mode, the CPU, on-chip peripheral functions*4, and all the other functions except the sub-clock oscillator stop. However, the contents of the CPU internal registers, RAM data, the states of on-chip peripheral functions, the I/O ports, and the sub-clock oscillator are retained. Software standby mode allows significant reduction in power consumption because the oscillator stops in this mode.

Set the DTCST.DTCST bit of the DTC to 0 before executing the WAIT instruction.

Counting by the IWDT stops if a transition to software standby mode is made while the IWDT is being used in auto-start mode and the OFS0.IWDTSLCSTP bit is 1. In the same way, counting by the IWDT stops if a transition to software standby mode is made while the IWDT is being used in register start mode and the IWDTCSTPR.SLCSTP bit is 1.

Furthermore, counting by the IWDT continues if a transition to software standby mode is made while the IWDT is being used in auto-start mode and the OFS0.IWDTSLCSTP bit is 0 (counting by the IWDT continues through transitions to low power consumption modes). In the same way, counting by the IWDT continues if a transition to software standby mode is made while the IWDT is being used in register start mode and the IWDTCSTPR.SLCSTP bit is 0. To use software standby mode, make the following settings and then execute a WAIT instruction.

- (1) Set the PSW.I bit*1 of the CPU to 0.
- (2) Set the interrupt request destination*2 to be used for recovery from software standby mode to the CPU.
- (3) Set the priority*3 of the interrupt to be used for recovery from software standby mode to a level higher than the setting of the PSW.IPL[3:0] bits*1 of the CPU.
- (4) Set the IERm.IENj bit*3 to 1 for the interrupt.
- (5) Read the I/O register that is written last and confirm that the written value has been reflected.
- (6) Execute a WAIT instruction (executing a WAIT instruction causes automatic setting of the PSW.I bit*1 of the CPU to 1).
- Note 1. For details, refer to section 2, CPU.
- Note 2. For details, refer to section 14.4.3, Selecting Interrupt Request Destinations.
- Note 3. For details, refer to section 14, Interrupt Controller (ICUb).
- Note 4. Operation of the REMC is possible when the clock source of the operating clock is the sub clock, HOCO clock, or IWDT-dedicated on-chip oscillator clock.

11.6.3.2 Exit from Software Standby Mode

Exit from software standby mode is initiated by an external pin interrupt (the NMI or IRQ0 to IRQ7), peripheral function interrupts (the RTC alarm, RTC interval, IWDT, REMC, and voltage monitoring interrupts), a RES# pin reset, a power-on reset, a voltage monitoring reset, or an independent watchdog timer reset. When any trigger which initiates exit from software standby mode is asserted, the oscillators which were operating before entry to software standby mode restart operation. After the oscillation of all these oscillators has been stabilized, operation returns from software standby mode.

- Initiated by an interrupt
 - When an interrupt request from among the NMI, IRQ0 to IRQ7, RTC alarm, RTC interval, IWDT, REMC, and voltage monitoring interrupts is generated, each of the oscillators which was operating before the transition to software standby mode resumes oscillation. After the oscillation stabilization wait time of each oscillator set by the MOSCWTCR.MSTS[4:0] bits has elapsed, the MCU exits software standby mode and interrupt exception processing starts.
- Initiated by a RES# pin reset
 - Clock oscillation starts when the low level is applied to the RES# pin. Clock supply for the MCU starts at the same time. Keep the level on the RES# pin low over the time required for oscillation of the clocks to become stable. Reset exception processing starts when the high level is applied to the RES# pin.
- Initiated by a power-on reset
 - A power-on reset asserts a reset to the MCU.
 - When a power-on reset is negated by a rise in the supply voltage, the CPU starts the reset exception handling.
- Initiated by a voltage monitoring reset
 - A voltage monitoring reset asserts a reset to the MCU.
 - When a voltage monitoring reset is negated by a rise in the supply voltage, the CPU starts the reset exception handling.
- Initiated by an independent watchdog timer reset
 - An internal reset generated by an IWDT underflow asserts a reset to the MCU.
 - Note that the independent watchdog timer is stopped in software standby mode due to the register settings (OFS0.IWDTSTRT = 0 and OFS0.IWDTSLCSTP = 1, or OFS0.IWDTSTRT = 1 and IWDTCSTPR.SLCSTP = 1) in software standby mode. In that case, exit from software standby mode by the independent watchdog timer reset cannot be done.

11.6.3.3 Example of Software Standby Mode Application

Figure 11.6 shows an example of entry to software standby mode by the falling edge of the IRQn pin, and exit from software standby mode by the rising edge of the IRQn pin.

In this example, an IRQn interrupt is accepted with the IRQCRi.IRQMD[1:0] bits of the ICU set to 01b (falling edge), and then the IRQCRi.IRQMD[1:0] bits are set to 10b (rising edge). After that, the SBYCR.SSBY bit is set to 1 and the WAIT instruction is executed. Thus entry to software standby mode is completed. After that, exit from software standby mode is initiated by the rising edge of the IRQn pin.

To exit software standby mode, settings of the interrupt controller (ICU) are also necessary. For details, refer to section 14, Interrupt Controller (ICUb).

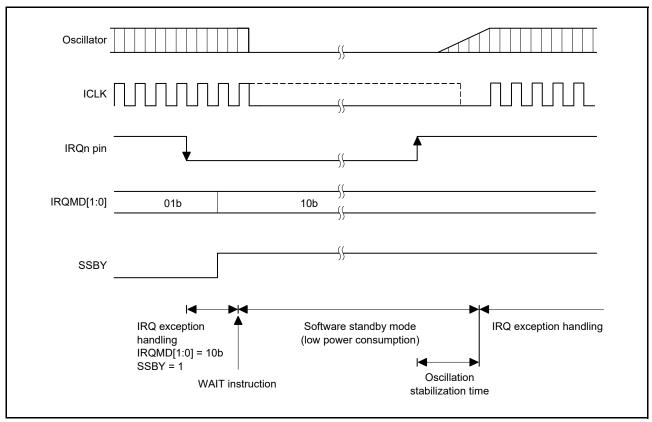


Figure 11.6 Example of Software Standby Mode Application

11.7 Usage Notes

11.7.1 I/O Port States

I/O port states are retained in software standby mode. Therefore, the supply current is not reduced if output signals are high level.

11.7.2 Module Stop State of DTC

Before setting the MSTPCRA.MSTPA28 bit to 1, set the DTCST.DTCST bit of the DTC to 0 to avoid activating the DTC.

For details, refer to section 16, Data Transfer Controller (DTCa).

11.7.3 On-Chip Peripheral Module Interrupts

Interrupts do not operate in the module stop state. Therefore, if the module stop state is made after an interrupt request is generated, a CPU interrupt source or a DTC startup source cannot be cleared. For this reason, disable interrupts before entering the module stop state.

11.7.4 Write Access to MSTPCRA, MSTPCRB, MSTPCRC, and MSTPCRD

Write accesses to MSTPCRA, MSTPCRB, MSTPCRC, and MSTPCRD should be made only by the CPU.

11.7.5 Timing of WAIT Instructions

The WAIT instruction is executed before completion of the preceding register write. The WAIT instruction being executed before the register setting is modified may cause unintended operation. To avoid this, always execute the WAIT instruction after confirming that the last register setting is done.

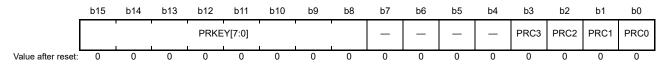
11.7.6 Rewrite the Register by DTC in Sleep Mode

Depending on the settings of the OFS0.IWDTSLCSTP bit and IWDTCSTPR.SLCSTP bit, the IWDT may also stop in sleep mode. To avoid this, do not set up the DTC to rewrite any registers related to the IWDT in sleep mode. The RSTCKCR register is a register that switches the clock source at exit from sleep mode. Changing the RSTCKCR register in sleep mode causes unintended operation, so do not write to this register in sleep mode.

12. Register Write Protection Function

The register write protection function protects important registers from being overwritten for in case a program runs out of control. The registers to be protected are set with the protect register (PRCR).

Table 12.1 lists the association between the PRCR bits and the registers to be protected.


Table 12.1 Association between PRCR Bits and Registers to be Protected

PRCR Bit	Register to be Protected
PRC0	Registers related to the clock generation circuit: SCKCR, SCKCR3, PLLCR, PLLCR2, MOSCCR, SOSCCR, LOCOCR, ILOCOCR, HOCOCR, HOFCR, OSTDCR, OSTDSR, CKOCR, LOCOTRR, ILOCOTRR, HOCOTRR0
PRC1	 Register related to the operating modes: SYSCR1 Registers related to low power consumption functions: SBYCR, MSTPCRA, MSTPCRB, MSTPCRC, MSTPCRD, OPCCR, RSTCKCR, SOPCCR Registers related to the clock generation circuit: MOFCR, MOSCWTCR Software reset register: SWRR
PRC2	Registers related to the low power timer: LPTCR1, LPTCR2, LPTCR3, LPTPRD, LPCMR0, LPWUCR
PRC3	Registers related to the LVD: LVCMPCR, LVD1CR0, LVD1CR1, LVD1SR, LVD2CR0, LVD2CR1, LVD2SR

12.1 Register Descriptions

12.1.1 Protect Register (PRCR)

Address(es): 0008 03FEh

Bit	Symbol	Bit Name	Function	R/W
b0	PRC0	Protect Bit 0	Enables writing to the register related to the clock generation circuit. 0: Write disabled 1: Write enabled	R/W
b1	PRC1	Protect Bit 1	Enables writing to the registers related to operating modes, low power consumption functions, the clock generation circuit, and software reset. 0: Write disabled 1: Write enabled	R/W
b2	PRC2	Protect Bit 2	Enables writing to the registers related to the low power timer. 0: Write disabled 1: Write enabled	R/W
b3	PRC3	Protect Bit 3	Enables writing to the registers related to the LVD. 0: Write disabled 1: Write enabled	R/W
b7 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b15 to b8	PRKEY[7:0]	PRC Key Code	These bits control permission and prohibition of writing to the PRCR register. To modify the PRCR register, write A5h to the 8 higher-order bits and the desired value to the 8 lower-order bits as a 16-bit unit.	R/W*1

Note 1. Write data is not retained.

PRCi Bits (Protect Bit i)

These bits enable or disable writing to the corresponding registers to be protected.

Setting the PRCi bits to 1 and 0 enable and disable writing to the corresponding registers to be protected, respectively.

13. Exception Handling

13.1 Exception Events

During execution of a program by the CPU, the occurrence of a certain event may cause execution of that program to be suspended and execution of another program to be started. Such kinds of events are called exception events.

The RX CPU supports six types of exceptions. The types of exception events are shown in Figure 13.1.

The occurrence of an exception causes the processor mode to switch to supervisor mode.

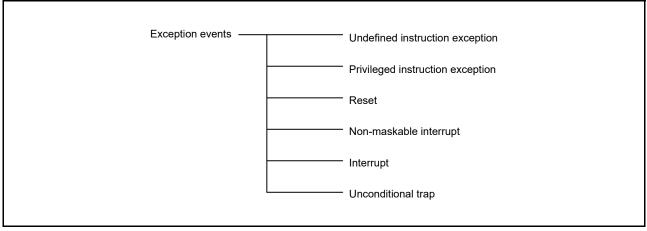


Figure 13.1 Types of Exception Events

13.1.1 Undefined Instruction Exception

An undefined instruction exception occurs when execution of an undefined instruction (an instruction not implemented) is detected.

13.1.2 Privileged Instruction Exception

A privileged instruction exception occurs when execution of a privileged instruction is detected in user mode. Privileged instructions can be executed only in supervisor mode.

13.1.3 Reset

A reset is generated by input of a reset signal to the CPU. This has the highest priority of any exception and is always accepted.

13.1.4 Non-Maskable Interrupt

A non-maskable interrupt is generated by input of a non-maskable interrupt signal to the CPU and is only used when a fatal fault is considered to have occurred in the system. Never use the non-maskable interrupt with an attempt to return to the program that was being executed at the time of interrupt generation after the exception handling routine is ended.

13.1.5 Interrupts

Interrupts are generated by the input of interrupt signals to the CPU. A fast interrupt can be selected as the interrupt with the highest priority. In the case of the fast interrupt, hardware pre-processing and hardware post-processing are handled fast. The priority level of the fast interrupt is 15 (the highest). The exception handling of interrupts is masked when the I bit in PSW is 0.

13.1.6 Unconditional Trap

An unconditional trap is generated when the INT or BRK instruction is executed.

13.2 Exception Handling Procedure

In the exception handling, part of the processing is handled automatically by hardware and part of it is handled by a program (exception handling routine) that has been written by the user. Figure 13.2 shows the processing procedure when an exception other than a reset is accepted.

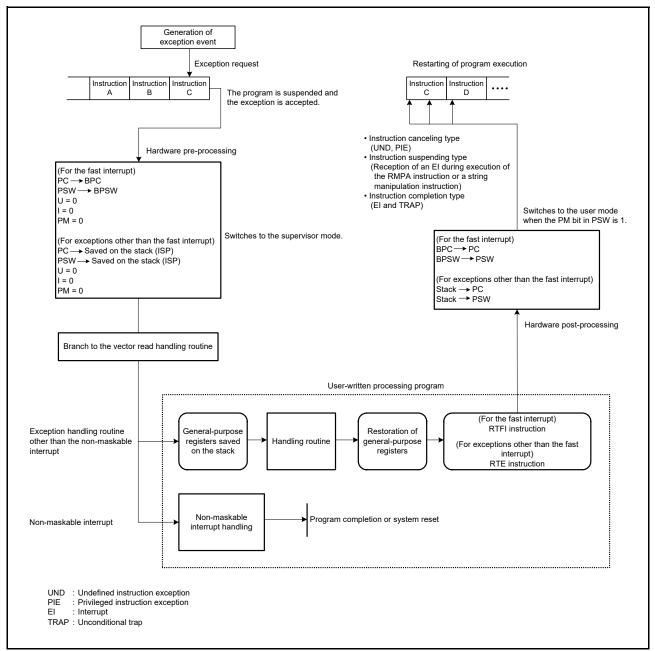


Figure 13.2 Outline of Exception Handling Procedure

When an exception is accepted, hardware processing by the RX CPU is followed by access to the vector to acquire the address of the branch destination. In the vector, a vector address is allocated to each exception, and the branch destination address of the exception handling routine is written to each vector address.

Hardware pre-processing by the RX CPU handles saving of the contents of the program counter (PC) and processor status word (PSW). In the case of a fast interrupt, the contents are saved in the backup PC (BPC) and the backup PSW (BPSW), respectively. In the case of exceptions other than a fast interrupt, the contents are saved in the stack area. General purpose registers and control registers other than the PC and PSW that are to be used within the exception handling routine must be saved on the stack by a user program at the start of the exception handling routine. On completion of processing by an exception handling routine, execution is restored from the exception handling routine to the original program by saving the registers saved on the stack and executing the RTE instruction. For return from a fast interrupt, the RTFI instruction is used instead. In the case of a non-maskable interrupt, however, finish the program or reset the system without returning to the original program.

Hardware post-processing by the RX CPU handles restoration of the contents of PC and PSW. In the case of a fast interrupt, the values of BPC and BPSW are restored to PC and PSW, respectively. In the case of exceptions other than a fast interrupt, the values are restored from the stack to PC and PSW.

13.3 Acceptance of Exception Events

When an exception occurs, the CPU suspends the execution of the program and processing branches to the exception handling routine.

13.3.1 Acceptance Timing and Saved PC Value

Table 13.1 lists the timing of acceptance and the program counter (PC) value to be saved for each exception event.

Table 13.1 Acceptance Timing and Saved PC Value

Exception Event Undefined instruction exception		Type of Handling	Acceptance Timing	Value Saved in BPC or on the Stack	
		Instruction canceling type	During instruction execution	PC value of the instruction that generated the exception	
Privileged instru	uction exception	Instruction canceling type	During instruction execution	PC value of the instruction that generated the exception	
Reset		Instruction abandonment type	Any machine cycle	None	
Non-maskable interrupt	During execution of the RMPA, SCMPU, SMOVB, SMOVF, SMOVU, SSTR, SUNTIL, and SWHILE instructions	Instruction suspending type	During instruction execution	PC value of the instruction being executed	
	Other than above	Instruction completion type	At the next break between instructions	PC value of the next instruction	
Interrupt	During execution of the RMPA, SCMPU, SMOVB, SMOVF, SMOVU, SSTR, SUNTIL, and SWHILE instructions	Instruction suspending type	During instruction execution	PC value of the instruction being executed	
	Other than above	Instruction completion type	At the next break between instructions	PC value of the next instruction	
Unconditional trap		Instruction completion type	At the next break between instructions	PC value of the next instruction	

13.3.2 Vector and Site for Saving the Values in the PC and PSW

The vector for each type of exception and the site for saving the values of the program counter (PC) and processor status word (PSW) are listed in Table 13.2.

Table 13.2 Vector and Site for Saving the Values in the PC and PSW

Exception Undefined instruction exception		Vector	Site for Saving the Values in the PC and PSW	
		Fixed vector table	Stack	
Privileged instruc	tion exception	Fixed vector table	Stack	
Reset		Fixed vector table	Nowhere	
Non-maskable int	terrupt	Fixed vector table	Stack	
Interrupt	Fast interrupt	FINTV	BPC and BPSW	
	Other than above	Relocatable vector table (INTB)	Stack	
Unconditional tra	p	Relocatable vector table (INTB)	Stack	

13.4 Hardware Processing for Accepting and Returning from Exceptions

This section describes the hardware processing for accepting and returning from exceptions other than a reset.

(1) Hardware Pre-Processing for Accepting an Exception

(a) Saving PSW

• For a fast interrupt

 $PSW \rightarrow BPSW$

 For exceptions other than a fast interrupt PSW → Stack

(b) Updating PM, U, and I Bits in PSW

I: Set to 0

U: Set to 0

PM: Set to 0

(c) Saving PC

• For a fast interrupt

 $PC \rightarrow BPC$

• For exceptions other than a fast interrupt

PC → Stack

(d) Setting Branch Destination Address of Exception Handling Routine in PC

Processing is shifted to the exception handling routine by acquiring the vector corresponding to the exception and then branching accordingly.

(2) Hardware Post-Processing for Execution of RTE and RTFI Instructions

(a) Restoring PSW

• For a fast interrupt

 $BPSW \rightarrow PSW$

• For exceptions other than a fast interrupt

 $Stack \rightarrow PSW$

(b) Restoring PC

• For a fast interrupt

 $BPC \rightarrow PC$

• For exceptions other than a fast interrupt

 $Stack \rightarrow PC$

13.5 Hardware Pre-Processing

The hardware pre-processing from reception of each exception request to execution of the associated exception handling routine are explained below.

13.5.1 Undefined Instruction Exception

- 1. The value of the processor status word (PSW) is saved on the stack (ISP).
- 2. The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in PSW are set to 0.
- 3. The value of the program counter (PC) is saved on the stack (ISP).
- 4. The vector is fetched from address FFFF FFDCh.
- 5. The fetched vector is set to the PC and processing branches to the exception handling routine.

13.5.2 Privileged Instruction Exception

- 1. The value in the processor status word (PSW) is saved on the stack (ISP).
- 2. The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in PSW are set to 0.
- 3. The value of the program counter (PC) is saved on the stack (ISP).
- 4. The vector is fetched from address FFFF FFD0h.
- 5. The fetched vector is set to the PC and processing branches to the exception handling routine.

13.5.3 Reset

- 1. The control registers are initialized.
- 2. The vector is fetched from address FFFF FFFCh.
- 3. The fetched vector is set to the PC.

13.5.4 Non-Maskable Interrupt

- 1. The value of the processor status word (PSW) is saved on the stack (ISP).
- 2. The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in PSW are set to 0.
- 3. If the interrupt was generated during the execution of an RMPA, SCMPU, SMOVB, SMOVF, SMOVU, SSTR, SUNTIL, or SWHILE instruction, the value of the program counter (PC) for that instruction is saved on the stack (ISP). For other instructions, the PC value of the next instruction is saved.
- 4. The processor interrupt priority level bits (IPL[3:0]) in PSW are set to Fh.
- 5. The vector is fetched from address FFFF FFF8h.
- 6. The fetched vector is set to the PC and processing branches to the exception handling routine.

13.5.5 Interrupt

1. The value of the processor status word (PSW) is saved on the stack (ISP) or, for the fast interrupt, in the backup PSW (BPSW).

- 2. The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in PSW are set to 0
- 3. If the interrupt was generated during the execution of an RMPA, SCMPU, SMOVB, SMOVF, SMOVU, SSTR, SUNTIL, or SWHILE instruction, the value of the program counter (PC) for that instruction is saved. For other instructions, the PC value of the next instruction is saved. Saving of the PC is in the backup PC (BPC) for fast interrupts.
- 4. The processor interrupt priority level bits (IPL[3:0]) in PSW indicate the interrupt priority level of the interrupt.
- 5. The vector for an interrupt source other than the fast interrupt is fetched from the relocatable vector table. For the fast interrupt, the address is fetched from the fast interrupt vector register (FINTV).
- 6. The fetched vector is set to the PC and processing branches to the exception handling routine.

13.5.6 Unconditional Trap

- 1. The value in the processor status word (PSW) is saved on the stack (ISP).
- 2. The processor mode select bit (PM), the stack pointer select bit (U), and the interrupt enable bit (I) in PSW are set to 0.
- 3. The value of the program counter (PC) for the next instruction is saved on the stack (ISP).
- 4. For the INT instruction, the value at the vector corresponding to the INT instruction number is fetched from the relocatable vector table.
 - For the BRK instruction, the value at the vector from the start address is fetched from the relocatable vector table.
- 5. The fetched vector is set to the PC and processing branches to the exception handling routine.

13.6 Return from Exception Handling Routine

Executing the instruction listed in Table 13.3 at the end of the corresponding exception handling routine restores the values of the program counter (PC) and processor status word (PSW) that were saved on the stack or in the control registers (BPC and BPSW) immediately before the exception handling sequence.

Table 13.3 Return from Exception Handling Routine

Exception		Instruction for Return
Undefined instruction exc	ception	RTE
Privileged instruction exc	eption	RTE
Reset		Return is impossible
Non-maskable interrupt		Return is impossible
Interrupt	Fast interrupt	RTFI
	Other than above	RTE
Unconditional trap		RTE

13.7 Priority of Exception Events

The priority of exception events is listed in Table 13.4. When multiple exceptions are generated at the same time, the exception with the highest priority is accepted first.

Table 13.4 Priority of Exception Events

Priority		Exception Event
High	1	Reset
↑	2	Non-maskable interrupt
	3	Interrupt
	4	Undefined instruction exception Privileged instruction exception
Low	5	Unconditional trap

14. Interrupt Controller (ICUb)

14.1 Overview

The interrupt controller receives interrupt requests from peripheral modules and external pins, and generates an interrupt request to the CPU and a transfer request to the DTC.

Table 14.1 lists the specifications of the interrupt controller, and Figure 14.1 shows a block diagram of the interrupt controller.

Table 14.1 Specifications of Interrupt Controller

Item		Description
Interrupts	 Peripheral function interrupts Interrupt detection: Edge detection/level detection Edge detection or level detection is fixed for each source of connected peripheral 	
	External pin interrupts	Interrupts from pins IRQ0 to IRQ7 Number of sources: 8 Interrupt detection: Low level/falling edge/rising edge/rising and falling edges One of these detection methods can be set for each source. Digital filter function: Supported
	Software interrupt	Interrupt generated by writing to a registerOne interrupt source
	Event link interrupt	The ELSR8I or ELSR18I interrupt is generated by an ELC event
	Interrupt priority	Specified by registers.
	Fast interrupt function	Faster interrupt processing of the CPU can be set only for a single interrupt source.
	DTC control	Interrupt sources can be used to start the DTC.*1
Non- maskable interrupts	NMI pin interrupt	Interrupt from the NMI pin Interrupt detection: Falling edge/rising edge Digital filter function: Supported
	Oscillation stop detection interrupt	Interrupt on detection of oscillation having stopped
	IWDT underflow/ refresh error	Interrupt on an underflow of the down counter or occurrence of a refresh error
	Voltage monitoring 1 interrupt	Voltage monitoring interrupt of voltage monitoring circuit 1 (LVD1)
	Voltage monitoring 2 interrupt	Voltage monitoring interrupt of voltage monitoring circuit 2 (LVD2)
Return fron	n power-down modes	Sleep mode, deep sleep mode: Return is initiated by non-maskable interrupts or any other interrupt source. Software standby mode: Return is initiated by non-maskable interrupts, IRQ0 to IRQ7 interrupts, or RTC alarm/periodic interrupts.

Note 1. For the DTC trigger, refer to Table 14.3, Interrupt Vector Table.

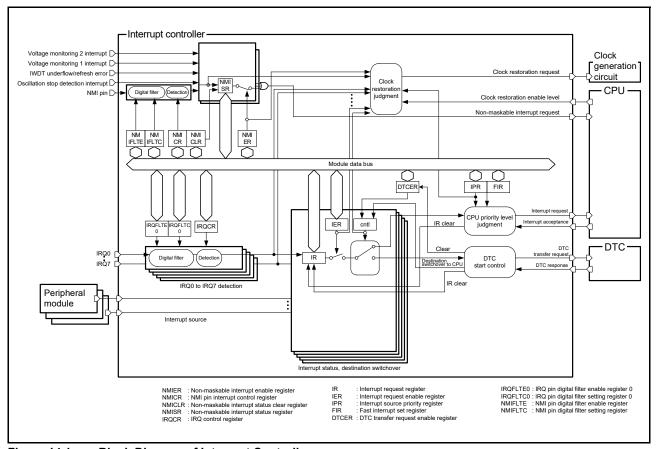
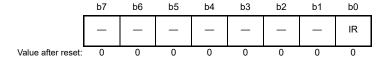


Figure 14.1 Block Diagram of Interrupt Controller

Table 14.2 lists the input/output pins of the interrupt controller.


Table 14.2 Pin Configuration of Interrupt Controller

Pin Name	I/O	Description
NMI	Input	Non-maskable interrupt request pin
IRQ0 to IRQ7	Input	External interrupt request pins

14.2 Register Descriptions

14.2.1 Interrupt Request Register n (IRn) (n = interrupt vector number)

Address(es): ICU.IR016 0008 7010h to ICU.IR255 0008 70FFh

Bit	Symbol	Bit Name	Description	R/W
b0	IR	Interrupt Status Flag	No interrupt request is generated An interrupt request is generated	R/(W) *1
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. For an edge detection interrupt, only 0 can be written to this bit; do not write 1. For a level detection interrupt, neither 0 nor 1 can be written.

IRn is provided for each interrupt source, where "n" indicates the interrupt vector number.

For the correspondence between interrupt sources and interrupt vector numbers, see Table 14.3, Interrupt Vector Table.

IR Flag (Interrupt Status Flag)

This flag is the status flag of an individual interrupt request. This flag is set to 1 when the corresponding interrupt request is generated. To detect an interrupt request, the interrupt request output should be enabled by the corresponding peripheral module interrupt enable bit.

There are two interrupt request detection methods: edge detection and level detection. For interrupts from peripheral modules, either edge detection or level detection is determined per interrupt source. For interrupts from IRQi (i = 0 to 7) pins, edge detection or level detection is selected by setting the corresponding IRQCRi.IRQMD[1:0] bits. For detection of the various interrupt sources, see Table 14.3, Interrupt Vector Table.

(1) Edge detection

[Setting condition]

• The flag is set to 1 in response to the generation of an interrupt request from the corresponding peripheral module or IRQi pin. For interrupt generation by the various peripheral modules, refer to the sections describing the modules.

[Clearing conditions]

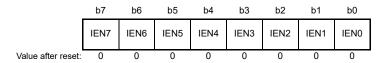
- The flag is cleared to 0 when the interrupt request destination accepts the interrupt request.
- The IR flag is cleared to 0 by writing 0 to it. Note, however, that writing 0 to the IR flag is prohibited if the destination of the interrupt request is the DTC.

(2) Level detection

[Setting condition]

• The flag remains set to 1 while an interrupt request is being sent from the corresponding peripheral module or IRQi pin. For interrupt generation by the various peripheral modules, refer to the sections describing the modules.

[Clearing condition]


• The flag is cleared to 0 when the source of the interrupt request is cleared (it is not cleared when the interrupt request destination accepts the interrupt request). For clearing interrupts from the various peripheral modules, refer to the sections describing the modules.

When level detection has been selected for an IRQi pin, the interrupt request is withdrawn by driving the IRQi pin high. Do not write 0 or 1 to the IR flag while level detection is selected.

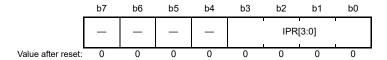
14.2.2 Interrupt Request Enable Register m (IERm) (m = 02h to 1Fh)

Address(es): ICU.IER02 0008 7202h to ICU.IER1F 0008 721Fh

Bit	Symbol	Bit Name	Description	R/W
b0	IEN0	Interrupt Request Enable 0	0: Interrupt request is disabled	R/W
b1	IEN1	Interrupt Request Enable 1	1: Interrupt request is enabled	R/W
b2	IEN2	Interrupt Request Enable 2	- -	R/W
b3	IEN3	Interrupt Request Enable 3		R/W
b4	IEN4	Interrupt Request Enable 4		R/W
b5	IEN5	Interrupt Request Enable 5		R/W
b6	IEN6	Interrupt Request Enable 6		R/W
b7	IEN7	Interrupt Request Enable 7		R/W

Note: Write 0 to the bit that corresponds to the vector number for reservation. These bits are read as 0.

IENj Bit (Interrupt Request Enable j) (j = 0 to 7)


When an IENj bit is 1, the corresponding interrupt request will be output to the destination selected for the request. When an IENj bit is 0, the corresponding interrupt request will not be output to the destination selected for the request. The setting of an IENj bit does not affect the IRn.IR flag (n = interrupt vector number). Even if the corresponding IENj bit is 0, the IR flag value changes according to the descriptions in section 14.2.1, Interrupt Request Register n (IRn) (n = interrupt vector number).

The IERm.IENj bit is set for each request source (vector number).

For the correspondence between interrupt sources and IERm.IENj bits, see Table 14.3, Interrupt Vector Table. For the procedure for setting IERm.IENj bits during the selection of destinations for interrupt requests, refer to section 14.4.3, Selecting Interrupt Request Destinations.

14.2.3 Interrupt Source Priority Register n (IPRn) (n = interrupt vector number)

Address(es): ICU.IPR000 0008 7300h to ICU.IPR255 0008 73FFh

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	IPR[3:0]	Interrupt Priority Level Select	b3 b0 0 0 0: Level 0 (interrupt disabled)*1 0 0 0 1: Level 1 0 0 1 0: Level 2 0 0 1 1: Level 3 0 1 0 0: Level 4 0 1 0 1: Level 5 0 1 1 0: Level 6 0 1 1 1: Level 7 1 0 0 0: Level 8 1 0 0 1: Level 9 1 0 1 0: Level 10 1 0 1: Level 10 1 0 1: Level 11 1 1 0 0: Level 12 1 1 0 1: Level 13	R/W
			1	
b7 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. When the interrupt is specified as a fast interrupt, it can be issued even if the priority level is level 0.

For the correspondence between interrupt sources and IPRn registers, see Table 14.3, Interrupt Vector Table.

IPR[3:0] Bits (Interrupt Priority Level Select)

These bits specify the priority level of the corresponding interrupt source.

Priority levels specified by the IPR[3:0] bits are used only to determine the priority of interrupt requests to be transferred to the CPU, and do not affect transfer requests to the DTC.


The CPU accepts only interrupt requests higher than the priority level specified by the IPL[3:0] bits in PSW, and handles accepted interrupts.

If two or more interrupt requests are generated at the same time, their priority levels are compared with the value of the IPR[3:0] bits. If interrupt requests of the same priority level are generated at the same time, an interrupt source with a smaller vector number takes precedence.

These bits should be written to while an interrupt request is disabled (IERm.IENj bit = 0 (m = 02h to 1Fh, j = 0 to 7)).

14.2.4 Fast Interrupt Set Register (FIR)

Address(es): ICU.FIR 0008 72F0h

Bit	Symbol	Bit Name	Description	R/W
b7 to b0	FVCT[7:0]	Fast Interrupt Vector Number	Specify the vector number of an interrupt source to be a fast interrupt.	R/W
b14 to b8	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b15	FIEN	Fast Interrupt Enable	0: Fast interrupt is disabled 1: Fast interrupt is enabled	R/W

The fast interrupt function based on the FIR register setting is applicable only to interrupts to the CPU. It will not affect any transfer request to the DTC.

Before writing to this register, be sure to disable interrupt requests (IERm.IENj bit = 0 (m = 02 h to 1Fh, j = 0 to 7)).

FVCT[7:0] Bits (Fast Interrupt Vector Number)

The FVCT[7:0] bits specify the vector number of an interrupt source that uses the fast interrupt function.

FIEN Bit (Fast Interrupt Enable)

This bit enables the fast interrupt.

Setting this bit to 1 makes the interrupt request of the vector number specified by the FVCT[7:0] bits a fast interrupt. When an interrupt request of the vector number specified by the FVCT[7:0] bits is generated and the interrupt request destination is the CPU while the FIEN bit is 1, the interrupt request is output to the CPU as a fast interrupt regardless of the setting of the IPRn register (n = interrupt vector number). When using the fast interrupt for returning from the software standby mode, see section 14.6.2, Return from Software Standby Mode.

If the setting of the IERm.IENj bit has disabled interrupt requests from the interrupt source with the vector number in this register, fast interrupt requests are not output to the CPU.

For settable vector numbers, see Table 14.3, Interrupt Vector Table.

Do not write any reserved vector numbers to the FVCT[7:0] bits.

For details on the fast interrupt, see section 13, Exception Handling, and section 14.4.6, Fast Interrupt.

14.2.5 Software Interrupt Generation Register (SWINTR)

Address(es): ICU.SWINTR 0008 72E0h

Bit	Symbol	Bit Name	Description	R/W
b0	SWINT	Software Interrupt Generation	This bit is read as 0. Writing 1 issues a software interrupt request. Writing 0 to this bit has no effect.	R/(W) *1
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. Only 1 can be written.

SWINT Bit (Software Interrupt Generation)

When 1 is written to the SWINT bit, the interrupt request register 027 (IR027) is set to 1.

If 1 is written to the SWINT bit when the DTC transfer request enable register 027 (DTCER027) is set to 0, an interrupt to the CPU is generated.

If 1 is written to the SWINT bit when the DTC transfer request enable register 027 (DTCER027) is set to 1, a DTC transfer request is issued.

14.2.6 DTC Transfer Request Enable Register n (DTCERn) (n = interrupt vector number)

Address(es): ICU.DTCER027 0008 711Bh to ICU.DTCER255 0008 71FFh

Bit	Symbol	Bit Name	Description	R/W
b0	DTCE	DTC Transfer Request Enable	O: The corresponding interrupt source is not selected as the DTC trigger. 1: The corresponding interrupt source is selected as the DTC trigger.	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

See Table 14.3, Interrupt Vector Table, for the interrupt sources that are selectable as the DTC trigger.

DTCE Bit (DTC Transfer Request Enable)

When the DTCE bit is set to 1, the corresponding interrupt source is selected as the DTC trigger. [Setting condition]

• When 1 is written to the DTCE bit

[Clearing conditions]

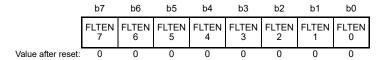
- When the specified number of transfers is completed (for the chain transfer, the number of transfers for the last chain transfer is completed)
- When 0 is written to the DTCE bit

14.2.7 IRQ Control Register i (IRQCRi) (i = 0 to 7)

Address(es): ICU.IRQCR0 0008 7500h to ICU.IRQCR7 0008 7507h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b3, b2	IRQMD[1:0]	IRQ Detection Sense Select	b3 b2 0 0: Low level 0 1: Falling edge 1 0: Rising edge 1 1: Rising and falling edges	R/W
b7 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Only change the settings of this register while the corresponding interrupt request enable bit is prohibiting the interrupt request (IENj bit in IERm (m = 02h to 1Fh, j = 0 to 7) is 0). After changing the setting, clear the IR flag in IRn before setting the interrupt enable bit. However, when the change is to the low level, the IR flag does not require clearing.


IRQMD[1:0] Bits (IRQ Detection Sense Select)

These bits select the interrupt detection sensing method of IRQi pin.

For the external pin interrupt detection setting, see section 14.4.8, External Pin Interrupts.

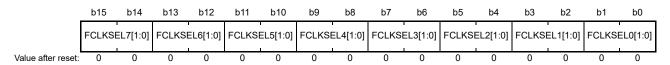
14.2.8 IRQ Pin Digital Filter Enable Register 0 (IRQFLTE0)

Address(es): ICU.IRQFLTE0 0008 7510h

Bit	Symbol	Bit Name	Description	R/W
b0	FLTEN0	IRQ0 Digital Filter Enable	0: Digital filter is disabled	R/W
b1	FLTEN1	IRQ1 Digital Filter Enable	1: Digital filter is enabled	R/W
b2	FLTEN2	IRQ2 Digital Filter Enable		R/W
b3	FLTEN3	IRQ3 Digital Filter Enable		R/W
b4	FLTEN4	IRQ4 Digital Filter Enable		R/W
b5	FLTEN5	IRQ5 Digital Filter Enable		R/W
b6	FLTEN6	IRQ6 Digital Filter Enable		R/W
b7	FLTEN7	IRQ7 Digital Filter Enable		R/W

FLTENi Bit (IRQi Digital Filter Enable) (i = 0 to 7)

This bit enables the digital filter used for the IRQi pin.


The digital filter is enabled when the FLTENi bit is 1, and disabled when the FLTENi bit is 0.

The IRQi pin level is sampled at the sampling clock cycle specified with the IRQFLTC0.FCLKSELi[1:0] bits. When the sampled level matches three times, the output level from the digital filter changes.

For details of the digital filter, see section 14.4.7, Digital Filter.

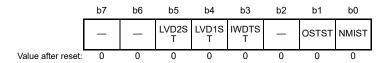
14.2.9 IRQ Pin Digital Filter Setting Register 0 (IRQFLTC0)

Address(es): ICU.IRQFLTC0 0008 7514h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	FCLKSEL0[1:0]	IRQ0 Digital Filter Sampling Clock	0 0: PCLK	R/W
b3, b2	FCLKSEL1[1:0]	IRQ1 Digital Filter Sampling Clock	─ 0 1: PCLK/8 1 0: PCLK/32	R/W
b5, b4	FCLKSEL2[1:0]	IRQ2 Digital Filter Sampling Clock	1 1: PCLK/64	R/W
b7, b6	FCLKSEL3[1:0]	IRQ3 Digital Filter Sampling Clock	_	R/W
b9, b8	FCLKSEL4[1:0]	IRQ4 Digital Filter Sampling Clock	_	R/W
b11, b10	FCLKSEL5[1:0]	IRQ5 Digital Filter Sampling Clock	_	R/W
b13, b12	FCLKSEL6[1:0]	IRQ6 Digital Filter Sampling Clock	_	R/W
b15, b14	FCLKSEL7[1:0]	IRQ7 Digital Filter Sampling Clock	_	R/W

FCLKSELi[1:0] Bits (IRQi Digital Filter Sampling Clock) (i = 0 to 7)

These bits select the cycle of the digital filter sampling clock for the IRQi pin.


The sampling clock cycle can be selected from among the PCLK (every cycle), PCLK/8 (once every eight cycles), PCLK/32 (once every 32 cycles), and PCLK/64 (once every 64 cycles).

- 1 CERTS 22 (GREEN CVC) 32 Cyclos), and 1 CERTS 1 (GREEN CVC) 0 1 Cyclos

For details of the digital filter, see section 14.4.7, Digital Filter.

14.2.10 Non-Maskable Interrupt Status Register (NMISR)

Address(es): ICU.NMISR 0008 7580h

Bit	Symbol	Bit Name	Description	R/W
b0	NMIST	NMI Status Flag	O: NMI pin interrupt is not requested 1: NMI pin interrupt is requested	R
b1	OSTST	Oscillation Stop Detection Interrupt Status Flag	Oscillation stop detection interrupt is not requested Secillation stop detection interrupt is requested	R
b2	_	Reserved	This bit is read as 0. Writing to this bit has no effect.	R
b3	IWDTST	IWDT Underflow/Refresh Error Status Flag	0: IWDT underflow/refresh error interrupt is not requested 1: IWDT underflow/refresh error interrupt is requested	R
b4	LVD1ST	Voltage Monitoring 1 Interrupt Status Flag	Voltage monitoring 1 interrupt is not requested Voltage monitoring 1 interrupt is requested	R
b5	LVD2ST	Voltage Monitoring 2 Interrupt Status Flag	Voltage monitoring 2 interrupt is not requested Voltage monitoring 2 interrupt is requested	R
b7, b6	_	Reserved	These bits are read as 0. Writing to these bits has no effect.	R

The NMISR register monitors the status of a non-maskable interrupt source. Writing to the NMISR register is ignored. The setting in the non-maskable interrupt enable register (NMIER) does not affect the status flags in NMISR. Before the end of the non-maskable interrupt handler, read the NMISR register and confirm the generation status of other non-maskable interrupts. Be sure to confirm that all of the bits in the NMISR register are set to 0 before the end of the handler.

NMIST Flag (NMI Status Flag)

This flag indicates the NMI pin interrupt request.

The NMIST flag is read-only, and cleared by the NMICLR.NMICLR bit. [Setting condition]

- When an edge specified by the NMICR.NMIMD bit is input to the NMI pin [Clearing condition]
 - When 1 is written to the NMICLR.NMICLR bit

OSTST Flag (Oscillation Stop Detection Interrupt Status Flag)

This flag indicates the oscillation stop detection interrupt request.

The OSTST flag is read-only, and cleared by the NMICLR.OSTCLR bit.

[Setting condition]

- When the oscillation stop detection interrupt is generated [Clearing condition]
 - When 1 is written to the NMICLR.OSTCLR bit

IWDTST Flag (IWDT Underflow/Refresh Error Status Flag)

This flag indicates the IWDT underflow/refresh error interrupt request.

The IWDTST flag is read-only, and cleared by the NMICLR.IWDTCLR bit.

[Setting condition]

- When the IWDT underflow/refresh error interrupt is generated while this interrupt is enabled at its source. [Clearing condition]
- When 1 is written to the NMICLR.IWDTCLR bit

LVD1ST Flag (Voltage Monitoring 1 Interrupt Status Flag)

This flag indicates the request for voltage monitoring 1 interrupt.

The LVD1ST flag is read-only, and cleared by the NMICLR.LVD1CLR bit.

[Setting condition]

• When the voltage monitoring 1 interrupt is generated while this interrupt is enabled at its source.

[Clearing condition]

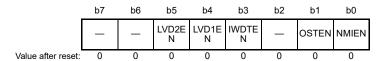
• When 1 is written to the NMICLR.LVD1CLR bit

LVD2ST Flag (Voltage Monitoring 2 Interrupt Status Flag)

This flag indicates the request for voltage monitoring 2 interrupt.

The LVD2ST flag is read-only, and cleared by the NMICLR.LVD2CLR bit.

[Setting condition]


• When the voltage monitoring 2 interrupt is generated while this interrupt is enabled at its source.

[Clearing condition]

• When 1 is written to the NMICLR.LVD2CLR bit

14.2.11 Non-Maskable Interrupt Enable Register (NMIER)

Address(es): ICU.NMIER 0008 7581h

Bit	Symbol	Bit Name	Description	R/W
b0	NMIEN	NMI Pin Interrupt Enable	0: NMI pin interrupt is disabled 1: NMI pin interrupt is enabled	R/(W) *1
b1	OSTEN	Oscillation Stop Detection Interrupt Enable	Oscillation stop detection interrupt is disabled Socillation stop detection interrupt is enabled	R/(W) *1
b2	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b3	IWDTEN	IWDT Underflow/Refresh Error Enable	IWDT underflow/refresh error interrupt is disabled I: IWDT underflow/refresh error interrupt is enabled	R/(W) *1
b4	LVD1EN	Voltage Monitoring 1 Interrupt Enable	Voltage monitoring 1 interrupt is disabled Voltage monitoring 1 interrupt is enabled	R/(W) *1
b5	LVD2EN	Voltage Monitoring 2 Interrupt Enable	Voltage monitoring 2 interrupt is disabled Voltage monitoring 2 interrupt is enabled	R/(W) *1
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. A 1 can be written to this bit only once, and subsequent write accesses are no longer enabled.

NMIEN Bit (NMI Pin Interrupt Enable)

This bit enables the NMI pin interrupt.

A 1 can be written to this bit only once, and subsequent write accesses are no longer enabled. Writing 0 to this bit is disabled.

OSTEN Bit (Oscillation Stop Detection Interrupt Enable)

This bit enables the oscillation stop detection interrupt.

A 1 can be written to this bit only once, and subsequent write accesses are no longer enabled. Writing 0 to this bit is disabled.

IWDTEN Bit (IWDT Underflow/Refresh Error Enable)

This bit enables the IWDT underflow/refresh error interrupt.

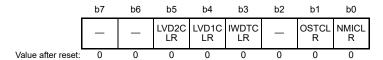
A 1 can be written to this bit only once, and subsequent write accesses are no longer enabled. Writing 0 to this bit is disabled.

LVD1EN Bit (Voltage Monitoring 1 Interrupt Enable)

This bit enables the voltage monitoring 1 interrupt.

A 1 can be written to this bit only once, and subsequent write accesses are no longer enabled. Writing 0 to this bit is disabled.

LVD2EN Bit (Voltage Monitoring 2 Interrupt Enable)


This bit enables the voltage monitoring 2 interrupt.

A 1 can be written to this bit only once, and subsequent write accesses are no longer enabled. Writing 0 to this bit is disabled.

14.2.12 Non-Maskable Interrupt Status Clear Register (NMICLR)

Address(es): ICU.NMICLR 0008 7582h

Bit	Symbol	Bit Name	Description	R/W
b0	NMICLR	NMI Clear	This bit is read as 0. Writing 1 to this bit clears the NMISR.NMIST flag. Writing 0 to this bit has no effect.	R/(W) *1
b1	OSTCLR	OST Clear	This bit is read as 0. Writing 1 to this bit clears the NMISR.OSTST flag. Writing 0 to this bit has no effect.	R/(W) *1
b2	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b3	IWDTCLR	IWDT Clear	This bit is read as 0. Writing 1 to this bit clears the NMISR.IWDTST flag. Writing 0 to this bit has no effect.	R/(W) *1
b4	LVD1CLR	LVD1 Clear	This bit is read as 0. Writing 1 to this bit clears the NMISR.LVD1ST flag. Writing 0 to this bit has no effect.	R/(W) *1
b5	LVD2CLR	LVD2 Clear	This bit is read as 0. Writing 1 to this bit clears the NMISR.LVD2ST flag. Writing 0 to this bit has no effect.	R/(W) *1
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. Only 1 can be written to this bit.

NMICLR Bit (NMI Clear)

Writing 1 to the NMICLR bit clears the NMISR.NMIST flag. This bit is read as 0.

OSTCLR Bit (OST Clear)

Writing 1 to the OSTCLR bit clears the NMISR.OSTST flag. This bit is read as 0.

IWDTCLR Bit (IWDT Clear)

Writing 1 to the IWDTCLR bit clears the NMISR.IWDTST flag. This bit is read as 0.

LVD1CLR Bit (LVD1 Clear)

Writing 1 to the LVD1CLR bit clears the NMISR.LVD1ST flag. This bit is read as 0.

LVD2CLR Bit (LVD2 Clear)

Writing 1 to the LVD2CLR bit clears the NMISR.LVD2ST flag. This bit is read as 0.

14.2.13 NMI Pin Interrupt Control Register (NMICR)

Address(es): ICU.NMICR 0008 7583h

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b3	NMIMD	NMI Detection Set	0: Falling edge 1: Rising edge	R/W
b7 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Change the setting of the NMICR register before the NMI pin interrupt is enabled (before setting the NMIER.NMIEN bit to 1).

NMIMD Bit (NMI Detection Set)

This bit specifies the detection edge of the NMI pin interrupt.

14.2.14 NMI Pin Digital Filter Enable Register (NMIFLTE)

Address(es): ICU.NMIFLTE 0008 7590h

Bit	Symbol	Bit Name	Description	R/W
b0	NFLTEN	NMI Digital Filter Enable	Digital filter is disabled Digital filter is enabled	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

NFLTEN Bit (NMI Digital Filter Enable)

This bit enables the digital filter used for the NMI pin interrupt.

The digital filter is enabled when the NFLTEN bit is 1, and disabled when the NFLTEN bit is 0.

The NMI pin level is sampled at the sampling clock cycle specified with the NMIFLTC.NFCLKSEL[1:0] bits. When the sampled level matches three times, the output level from the digital filter changes.

For details of the digital filter, see section 14.4.7, Digital Filter.

14.2.15 NMI Pin Digital Filter Setting Register (NMIFLTC)

Address(es): ICU.NMIFLTC 0008 7594h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	NFCLKSEL[1:0]	NMI Digital Filter Sampling Clock	b1 b0 0 0: PCLK 0 1: PCLK/8 1 0: PCLK/32 1 1: PCLK/64	R/W
b7 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

NFCLKSEL[1:0] Bits (NMI Digital Filter Sampling Clock)

These bits select the cycle of the digital filter sampling clock for the NMI pin interrupt.

The sampling clock cycle can be selected from among the PCLK (every cycle), PCLK/8 (once every eight cycles),

PCLK/32 (once every 32 cycles), and PCLK/64 (once every 64 cycles).

For details of the digital filter, see section 14.4.7, Digital Filter.

14.3 Vector Table

There are two types of interrupts detected by the interrupt controller: maskable interrupts and non-maskable interrupts. When the CPU accepts an interrupt or non-maskable interrupt, it acquires a 4-byte vector address from the vector table.

14.3.1 Interrupt Vector Table

The interrupt vector table is placed in the 1024-byte range (4 bytes \times 256 sources) beginning at the address specified in the interrupt table register (INTB) of the CPU. Write a value to the INTB register before enabling interrupts. The value written to the INTB register should be a multiple of 4.

Executing an INT instruction or BRK instruction leads to the generation of an unconditional trap. The same range of memory as shown in Table 14.3, Interrupt Vector Table, is used for the vectors for unconditional traps. The vector for BRK instructions is vector 0 while the vector numbers for INT instructions are specifiable as numbers in the range from 0 to 255.

Table 14.3 lists details of the interrupt vectors. Details of the headings in Table 14.3 are listed below.

Item	Description
Source of interrupt request generation	Name of the source for generation of the interrupt request
Name	Name of the interrupt
Vector no.	Vector number for the interrupt
Vector address offset	Value of the offset from the base address for the vector table
Form of interrupt detection	"Edge" or "level" as the method for detection of the interrupt
CPU interrupt	"✓" in this column indicates usability as a CPU interrupt.
Start the DTC	"✓" in this column indicates usability as a request for DTC transfer.
sstb return	"" in this column indicates usability as a request for return from software-standby mode.
IER	Name of the IER register and bit corresponding to the vector number
IPR	Name of the IPR register corresponding to the interrupt source
DTCER	Name of the DTCER register corresponding to the DTC trigger

Table 14.3 Interrupt Vector Table (1/6)

Source of Interrupt Request Generation	Name	Vector No.*1	Vector Address Offset	Form of Interrupt Detection	CPU	DTC	sstb Return	IER	IPR	DTCER
_	For an unconditional trap	0	0000h	_	N/A	N/A	N/A	_	_	_
_	For an unconditional trap	1	0004h	_	N/A	N/A	N/A	_	_	_
_	For an unconditional trap	2	0008h	_	N/A	N/A	N/A	_	_	_
_	For an unconditional trap	3	000Ch	_	N/A	N/A	N/A	_	_	_
_	For an unconditional trap	4	0010h	_	N/A	N/A	N/A	_	_	_
_	For an unconditional trap	5	0014h	_	N/A	N/A	N/A	_	_	_
_	For an unconditional trap	6	0018h	_	N/A	N/A	N/A	_	_	_
_	For an unconditional trap	7	001Ch	_	N/A	N/A	N/A	_	_	_
_	For an unconditional trap	8	0020h	_	N/A	N/A	N/A	_	_	_
_	For an unconditional trap	9	0024h	_	N/A	N/A	N/A	_	_	_
_	For an unconditional trap	10	0028h	_	N/A	N/A	N/A	_	_	_
	For an unconditional trap	11	002Ch	_	N/A	N/A	N/A	_	_	_
_	For an unconditional trap	12	0030h	_	N/A	N/A	N/A	_	_	_
_	For an unconditional trap	13	0034h	_	N/A	N/A	N/A	_	_	_
_	For an unconditional trap	14	0038h	_	N/A	N/A	N/A	_	_	_
	For an unconditional trap	15	003Ch	_	N/A	N/A	N/A	_	_	_
BSC	BUSERR	16	0040h	Level	√ ×	N/A	N/A	IER02.IEN0	IPR000	
	Reserved	17	0044h	Level	N/A	N/A	N/A		—	
	Reserved	18	0044h		N/A	N/A	N/A			
	Reserved	19	004Ch		N/A	N/A	N/A	_	_	
	Reserved	20	0050h	_	N/A	N/A	N/A	_		
		21	0050H	_	N/A	N/A	N/A	_	_	
	Reserved	<u> </u>			-			_		
	Reserved	22	0058h	_	N/A	N/A	N/A		— IDD000	
FCU	FRDYI	23	005Ch	Edge		N/A	N/A	IER02.IEN7	IPR002	_
_	Reserved	24	0060h	_	N/A	N/A	N/A	_	_	_
_	Reserved	25	0064h	_	N/A	N/A	N/A	_	_	_
	Reserved	26	0068h	-	N/A	N/A	N/A		-	
ICU	SWINT	27	006Ch	Edge	√	√	N/A	IER03.IEN3	IPR003	DTCER02
CMT0	CMI0	28	0070h	Edge	√	√	N/A	IER03.IEN4	IPR004	DTCER02
CMT1	CMI1	29	0074h	Edge	√	√	N/A	IER03.IEN5	IPR005	DTCER02
_	Reserved	30	0078h	_	N/A	N/A	N/A	_	_	_
	Reserved	31	007Ch	_	N/A	N/A	N/A	_	_	<u> </u>
CAC	FERRF	32	0080h	Level	✓	N/A	N/A	IER04.IEN0	IPR032	_
	MENDF	33	0084h	Level	✓	N/A	N/A	IER04.IEN1	IPR033	_
	OVFF	34	0088h	Level	✓	N/A	N/A	IER04.IEN2	IPR034	_
_	Reserved	35	008Ch	_	N/A	N/A	N/A	_	_	_
_	Reserved	36	0090h	_	N/A	N/A	N/A	_	_	_
_	Reserved	37	0094h	_	N/A	N/A	N/A	_	_	_
_	Reserved	38	0098h	_	N/A	N/A	N/A	_	_	_
_	Reserved	39	009Ch	_	N/A	N/A	N/A	_	_	_
_	Reserved	40	00A0h	_	N/A	N/A	N/A	_	_	_
_	Reserved	41	00A4h	_	N/A	N/A	N/A	_	_	_
_	Reserved	42	00A8h	_	N/A	N/A	N/A	_	_	_
	Reserved	43	00ACh	_	N/A	N/A	N/A	_	_	_
RSPI0	SPEI0	44	00B0h	Level	✓	N/A	N/A	IER05.IEN4	IPR044	_
	SPRI0	45	00B4h	Edge	✓	✓	N/A	IER05.IEN5		DTCER04
	SPTI0	46	00B8h	Edge	✓	✓	N/A	IER05.IEN6	1	DTCER04
	SPII0	47	00BCh	Level	✓	N/A	N/A	IER05.IEN7	1	_
_	Reserved	48	00C0h	_	N/A	N/A	N/A	_	_	_
_	Reserved	49	00C4h	_	N/A	N/A	N/A	_	_	_
_	Reserved	50	00C8h	_	N/A	N/A	N/A	_	_	_

Table 14.3 Interrupt Vector Table (2/6)

Source of Interrupt Request Generation	Name	Vector No.*1	Vector Address Offset	Form of Interrupt Detection	CPU	ртс	sstb Return	IER	IPR	DTCER
_	Reserved	51	00CCh	_	N/A	N/A	N/A	_	_	_
_	Reserved	52	00D0h	_	N/A	N/A	N/A	_	_	_
_	Reserved	53	00D4h	_	N/A	N/A	N/A	_	_	_
_	Reserved	54	00D8h	_	N/A	N/A	N/A	_	_	_
_	Reserved	55	00DCh	_	N/A	N/A	N/A	_	_	_
_	Reserved	56	00E0h	_	N/A	N/A	N/A	_	_	_
OOC	DOPCF	57	00E4h	Level	✓	N/A	N/A	IER07.IEN1	IPR057	_
СМРВ	CMPB0	58	00E8h	Edge	✓	✓	N/A	IER07.IEN2	IPR058	DTCER058
	CMPB1	59	00ECh	Edge	✓	✓	N/A	IER07.IEN3	IPR059	DTCER059
CTSU	CTSUWR	60	00F0h	Edge	✓	✓	N/A	IER07.IEN4	IPR060	DTCER060
	CTSURD	61	00F4h	Edge	√	✓	N/A	IER07.IEN5	1	DTCER061
	CTSUFN	62	00F8h	Edge	√	N/A	N/A	IER07.IEN6	-	_
RTC	CUP	63	00FCh	Edge	✓	N/A	N/A	IER07.IEN7	IPR063	_
CU	IRQ0	64	0100h	Edge/Level	✓	✓	✓ · · · · ·	IER08.IEN0	IPR064	DTCER064
	IRQ1	65	0104h	Edge/Level	✓	✓	✓	IER08.IEN1	IPR065	DTCER065
	IRQ2	66	0108h	Edge/Level	✓	√	✓	IER08.IEN2	IPR066	DTCER066
	IRQ3	67	010Ch	Edge/Level	✓	√	✓	IER08.IEN3	IPR067	DTCER067
	IRQ4	68	0110h	Edge/Level	✓	√	✓	IER08.IEN4	IPR068	DTCER068
	IRQ5	69	0114h	Edge/Level	✓	✓	✓	IER08.IEN5	IPR069	DTCER069
	IRQ6	70	0118h	Edge/Level	✓	✓	✓	IER08.IEN6	IPR070	DTCER070
	IRQ7	71	011Ch	Edge/Level	✓	✓	✓	IER08.IEN7	IPR071	DTCER071
	Reserved	72	0120h		N/A	N/A	N/A	—	_	_
_	Reserved	73	0124h	_	N/A	N/A	N/A	_	_	<u> </u>
	Reserved	74	0124H		N/A	N/A	N/A			
	Reserved	75	0120H	_	N/A	N/A	N/A		_	_
	Reserved	76	0120H	-	N/A	N/A	N/A		_	
	Reserved	77	0134h	_	N/A	N/A	N/A	_		
	Reserved	78	0134H 0138h	_	N/A	N/A	N/A	_		
_								-	_	_
	Reserved	79	013Ch	-	N/A	N/A	N/A	—	— IPR080	_
ELC	ELSR8I	80	0140h	Edge	✓ •	N/A	✓ •	IER0A.IEN0		_
_	Reserved	81	0144h	_	N/A	N/A	N/A	_	_	_
	Reserved	82	0148h	-	N/A	N/A	N/A	_	_	_
_	Reserved	83	014Ch	_	N/A	N/A	N/A	_	_	_
_	Reserved	84	0150h	_	N/A	N/A	N/A	_	_	_
_	Reserved	85	0154h	_	N/A	N/A	N/A	_	_	_
	Reserved	86	0158h	_	N/A	N/A	N/A	_	_	<u> </u>
	Reserved	87	015Ch	_	N/A	N/A	N/A		_	<u> </u>
_VD/CMPA	LVD1	88	0160h	Edge	✓	N/A	✓	IER0B.IEN0	IPR088	_
	LVD2/CMPA2	89	0164h	Edge	√	N/A	√	IER0B.IEN1	IPR089	_
_	Reserved	90	0168h	_	N/A	N/A	N/A	_	_	_
_	Reserved	91	016Ch	_	N/A	N/A	N/A	_	_	_
RTC	ALM	92	0170h	Edge	✓	N/A	✓	IER0B.IEN4	IPR092	_
	PRD	93	0174h	Edge	✓	N/A	✓	IER0B.IEN5	IPR093	_
REMC0	REMCI0	94	0178h	Edge	✓	N/A	✓	IER0B.IEN6	IPR094	_
REMC1	REMCI1	95	017Ch	Edge	✓	N/A	✓	IER0B.IEN7	IPR095	_
_	Reserved	96	0180h	_	N/A	N/A	N/A	_	_	_
	Reserved	97	0184h	_	N/A	N/A	N/A	_	_	_
_	Reserved	98	0188h	_	N/A	N/A	N/A	_	_	_
_	Reserved	99	018Ch	_	N/A	N/A	N/A	_	_	_
	Reserved	100	0190h	_	N/A	N/A	N/A	_	_	_
_	Reserved	101	0194h	_	N/A	N/A	N/A	_	_	_

Table 14.3 Interrupt Vector Table (3/6)

Source of Interrupt Request Generation	Name	Vector No.*1	Vector Address Offset	Form of Interrupt Detection	CPU	DTC	sstb Return	IER	IPR	DTCER
S12AD	S12ADI0	102	0198h	Edge	✓	✓	N/A	IER0C.IEN6	IPR102	DTCER10:
	GBADI	103	019Ch	Edge	√	✓	N/A	IER0C.IEN7	IPR103	DTCER10
_	Reserved	104	01A0h		N/A	N/A	N/A	_	_	_
_	Reserved	105	01A4h	_	N/A	N/A	N/A	_	_	
ELC	ELSR18I	106	01A8h	Edge	\ \ \	√ · · · · ·	N/A	IER0D.IEN2	IPR106	DTCER10
	Reserved	107	01ACh	Lago	N/A	N/A	N/A	_	—	_
	Reserved	108	01B0h		N/A	N/A	N/A			+-
	Reserved	109	01B4h	_	N/A	N/A	N/A	_	-	+-
	Reserved	110	01B8h	_	N/A	N/A	N/A	_	-	+
	Reserved	111	01BCh		N/A	N/A	N/A			+
				_	-			_	_	
_	Reserved	112	01C0h	_	N/A	N/A	N/A	_	_	
	Reserved	113	01C4h		N/A	N/A	N/A	_	_	_
MTU0	TGIA0	114	01C8h	Edge	√	✓	N/A	IER0E.IEN2	IPR114	DTCER11
	TGIB0	115	01CCh	Edge	✓	√	N/A	IER0E.IEN3	4	DTCER11
	TGIC0	116	01D0h	Edge	✓	✓	N/A	IER0E.IEN4	1	DTCER11
	TGID0	117	01D4h	Edge	✓	✓	N/A	IER0E.IEN5		DTCER11
	TCIV0	118	01D8h	Edge	✓	N/A	N/A	IER0E.IEN6	IPR118	_
	TGIE0	119	01DCh	Edge	✓	N/A	N/A	IER0E.IEN7		_
	TGIF0	120	01E0h	Edge	✓	N/A	N/A	IER0F.IEN0		
MTU1	TGIA1	121	01E4h	Edge	✓	✓	N/A	IER0F.IEN1	IPR121	DTCER12
	TGIB1	122	01E8h	Edge	✓	✓	N/A	IER0F.IEN2		DTCER12
	TCIV1	123	01ECh	Edge	✓	N/A	N/A	IER0F.IEN3	IPR123	_
	TCIU1	124	01F0h	Edge	✓	N/A	N/A	IER0F.IEN4		_
MTU2	TGIA2	125	01F4h	Edge	✓	✓	N/A	IER0F.IEN5	IPR125	DTCER12
	TGIB2	126	01F8h	Edge	✓	✓	N/A	IER0F.IEN6		DTCER12
	TCIV2	127	01FCh	Edge	✓	N/A	N/A	IER0F.IEN7	IPR127	_
	TCIU2	128	0200h	Edge	✓	N/A	N/A	IER10.IEN0		_
MTU3	TGIA3	129	0204h	Edge	✓	✓	N/A	IER10.IEN1	IPR129	DTCER12
	TGIB3	130	0208h	Edge	✓	✓	N/A	IER10.IEN2		DTCER13
	TGIC3	131	020Ch	Edge	✓	✓	N/A	IER10.IEN3		DTCER13
	TGID3	132	0210h	Edge	✓	✓	N/A	IER10.IEN4		DTCER13
	TCIV3	133	0214h	Edge	✓	N/A	N/A	IER10.IEN5	IPR133	_
MTU4	TGIA4	134	0218h	Edge	✓	✓	N/A	IER10.IEN6	IPR134	DTCER13
	TGIB4	135	021Ch	Edge	✓	✓	N/A	IER10.IEN7		DTCER13
	TGIC4	136	0220h	Edge	✓	✓	N/A	IER11.IEN0		DTCER13
	TGID4	137	0224h	Edge	✓	✓	N/A	IER11.IEN1		DTCER13
	TCIV4	138	0228h	Edge	✓	√	N/A	IER11.IEN2	IPR138	DTCER13
MTU5	TGIU5	139	022Ch	Edge	✓	✓	N/A	IER11.IEN3	IPR139	DTCER13
	TGIV5	140	0230h	Edge	✓	✓	N/A	IER11.IEN4	1	DTCER14
	TGIW5	141	0234h	Edge	✓	✓	N/A	IER11.IEN5	1	DTCER14
_	Reserved	142	0238h	_	N/A	N/A	N/A	_	_	_
	Reserved	143	023Ch	_	N/A	N/A	N/A	_	_	_
	Reserved	144	0240h	_	N/A	N/A	N/A	_	_	_
	Reserved	145	0244h	_	N/A	N/A	N/A	_	<u> </u>	
	Reserved	146	0248h		N/A	N/A	N/A	_	_	+-
	Reserved	147	024Ch	_	N/A	N/A	N/A		-	+-
	Reserved	148	0250h	_	N/A	N/A	N/A	_	-	+=-
		149	0254h	_	N/A	N/A				+-
_	Reserved	-			-		N/A	_	_	+
	Reserved	150	0258h	_	N/A	N/A	N/A	_	_	
	Reserved	151	025Ch	_	N/A	N/A	N/A	_	_	

Table 14.3 Interrupt Vector Table (4/6)

Source of Interrupt Request Generation	Name	Vector No.*1	Vector Address Offset	Form of Interrupt Detection	CPU	отс	sstb Return	IER	IPR	DTCER
_	Reserved	153	0264h	_	N/A	N/A	N/A	_	_	
	Reserved	154	0268h	_	N/A	N/A	N/A	_		-
_	Reserved		026Ch			N/A		_		
_		155		_	N/A		N/A		_	<u> </u>
_	Reserved	156	0270h	_	N/A	N/A	N/A	_		_
	Reserved	157	0274h	_	N/A	N/A	N/A	_	_	_
_	Reserved	158	0278h	_	N/A	N/A	N/A	_	_	_
_	Reserved	159	027Ch	_	N/A	N/A	N/A	_	_	_
_	Reserved	160	0280h	_	N/A	N/A	N/A	_	_	_
_	Reserved	161	0284h	_	N/A	N/A	N/A	_	_	_
_	Reserved	162	0288h	_	N/A	N/A	N/A	_	_	_
	Reserved	163	028Ch	_	N/A	N/A	N/A	_	_	_
_	Reserved	164	0290h	_	N/A	N/A	N/A	_	_	_
_	Reserved	165	0294h	_	N/A	N/A	N/A	_	_	_
_	Reserved	166	0298h	_	N/A	N/A	N/A	_	_	_
_	Reserved	167	029Ch	_	N/A	N/A	N/A	_	_	_
_	Reserved	168	02A0h	_	N/A	N/A	N/A	_	_	_
_	Reserved	169	02A4h	_	N/A	N/A	N/A	_	_	_
POE	OEI1	170	02A8h	Level	✓	N/A	N/A	IER15.IEN2	IPR170	_
	OEI2	171	02ACh	Level	✓	N/A	N/A	IER15.IEN3	IPR171	_
_	Reserved	172	02B0h	_	N/A	N/A	N/A	_	_	_
_	Reserved	173	02B4h	_	N/A	N/A	N/A	_	_	_
TMR0	CMIA0	174	02B8h	Edge	✓	✓	N/A	IER15.IEN6	IPR174	DTCER174
	CMIB0	175	02BCh	Edge	✓	✓	N/A	IER15.IEN7		DTCER175
	OVI0	176	02C0h	Edge	✓	N/A	N/A	IER16.IEN0		_
TMR1	CMIA1	177	02C4h	Edge	✓	✓	N/A	IER16.IEN1	IPR177	DTCER177
	CMIB1	178	02C8h	Edge	✓	✓	N/A	IER16.IEN2		DTCER178
	OVI1	179	02CCh	Edge	✓	N/A	N/A	IER16.IEN3		_
TMR2	CMIA2	180	02D0h	Edge	✓	✓	N/A	IER16.IEN4	IPR180	DTCER180
	CMIB2	181	02D4h	Edge	✓	✓	N/A	IER16.IEN5		DTCER181
	OVI2	182	02D8h	Edge	✓	N/A	N/A	IER16.IEN6		_
TMR3	CMIA3	183	02DCh	Edge	✓	✓	N/A	IER16.IEN7	IPR183	DTCER183
	CMIB3	184	02E0h	Edge	✓	✓	N/A	IER17.IEN0		DTCER184
	OVI3	185	02E4h	Edge	✓	N/A	N/A	IER17.IEN1		_
_	Reserved	186	02E8h	_	N/A	N/A	N/A	_	_	_
_	Reserved	187	02ECh	_	N/A	N/A	N/A	_	_	_
_	Reserved	188	02F0h	_	N/A	N/A	N/A	_	_	_
_	Reserved	189	02F4h	_	N/A	N/A	N/A	_	_	_
_	Reserved	190	02F8h	_	N/A	N/A	N/A	_	_	_
_	Reserved	191	02FCh	_	N/A	N/A	N/A	_	_	_
_	Reserved	192	0300h	_	N/A	N/A	N/A	_	_	_
	Reserved	193	0304h	_	N/A	N/A	N/A	_	_	_
	Reserved	194	0308h	_	N/A	N/A	N/A	_		
	Reserved	195	030Ch		N/A	N/A	N/A	_	_	
	Reserved	196	030CH	-	N/A	N/A	N/A	_	_	_
_		196	0310h	_	N/A	N/A N/A	N/A N/A			<u> </u>
_	Reserved	 						_	_	_
_	Reserved	198	0318h	_	N/A	N/A	N/A	_	_	_
_	Reserved	199	031Ch	_	N/A	N/A	N/A	_	_	_
_	Reserved	200	0320h	_	N/A	N/A	N/A	_	_	_
_	Reserved	201	0324h	_	N/A	N/A	N/A	_	_	_
_	Reserved	202	0328h	_	N/A	N/A	N/A	_	_	_
_	Reserved	203	032Ch	_	N/A	N/A	N/A	_	_	_

Table 14.3 Interrupt Vector Table (5/6)

Source of Interrupt Request Generation	Name	Vector No.*1	Vector Address Offset	Form of Interrupt Detection	CPU	DTC	sstb Return	IER	IPR	DTCER
_	Reserved	204	0330h	1_	N/A	N/A	N/A	_	_	_
_	Reserved	205	0334h	_	N/A	N/A	N/A	_	_	_
_	Reserved	206	0338h	_	N/A	N/A	N/A	_	_	_
_	Reserved	207	033Ch	_	N/A	N/A	N/A	_	_	_
_	Reserved	208	0340h	_	N/A	N/A	N/A	_	_	_
_	Reserved	209	0344h	_	N/A	N/A	N/A	_	_	_
	Reserved	210	0348h	_	N/A	N/A	N/A	_	_	_
	Reserved	211	034Ch	_	N/A	N/A	N/A	_	_	_
	Reserved	212	0350h	_	N/A	N/A	N/A	_	_	_
	Reserved	213	0354h	_	N/A	N/A	N/A	_	_	
SCI0	ERI0	214	0358h	Level	√ ×	N/A	N/A	IER1A.IEN6	IPR214	_
3010	RXI0	215	035Ch	Edge	· ·	N/A ✓	N/A	IER1A.IEN7	1610214	DTCER215
	TXIO	216	0360h	Edge	· ·	· ·	N/A	IER1B.IEN0		DTCER216
	TEI0	217	0364h	Level	· ·	N/A	N/A	IER1B.IEN1		DICENZIO
SCI1	ERI1	217	0368h	Level	· ·	N/A	N/A N/A	IER1B.IEN1	IPR218	
3011	RXI1	218	0368h		· ·	N/A	N/A N/A	IER1B.IEN2	IFRZ 10	DTCER219
				Edge	· ·	√				
	TXI1	220	0370h	Edge			N/A	IER1B.IEN4		DTCER220
2015	TEI1	221	0374h	Level	V	N/A	N/A	IER1B.IEN5	IDDOOG	_
SCI5	ERI5	222	0378h	Level	V	N/A	N/A	IER1B.IEN6	IPR222	_
	RXI5	223	037Ch	Edge	✓	✓	N/A	IER1B.IEN7		DTCER223
	TXI5	224	0380h	Edge	√	✓	N/A	IER1C.IEN0		DTCER224
	TEI5	225	0384h	Level	✓	N/A	N/A	IER1C.IEN1		_
SCI6	ERI6	226	0388h	Level	√	N/A	N/A	IER1C.IEN2	IPR226	_
	RXI6	227	038Ch	Edge	√	✓	N/A	IER1C.IEN3		DTCER227
	TXI6	228	0390h	Edge	✓	✓	N/A	IER1C.IEN4		DTCER228
	TEI6	229	0394h	Level	✓	N/A	N/A	IER1C.IEN5		_
SCI8	ERI8	230	0398h	Level	✓	N/A	N/A	IER1C.IEN6	IPR230	_
	RXI8	231	039Ch	Edge	✓	✓	N/A	IER1C.IEN7		DTCER231
	TXI8	232	03A0h	Edge	✓	✓	N/A	IER1D.IEN0		DTCER232
	TEI8	233	03A4h	Level	✓	N/A	N/A	IER1D.IEN1		_
SCI9	ERI9	234	03A8h	Level	✓	N/A	N/A	IER1D.IEN2	IPR234	_
	RXI9	235	03ACh	Edge	✓	✓	N/A	IER1D.IEN3		DTCER235
	TXI9	236	03B0h	Edge	✓	✓	N/A	IER1D.IEN4		DTCER236
	TEI9	237	03B4h	Level	✓	N/A	N/A	IER1D.IEN5		_
SCI12	ERI12	238	03B8h	Level	✓	N/A	N/A	IER1D.IEN6	IPR238	_
	RXI12	239	03BCh	Edge	✓	✓	N/A	IER1D.IEN7		DTCER239
	TXI12	240	03C0h	Edge	✓	✓	N/A	IER1E.IEN0		DTCER240
	TEI12	241	03C4h	Level	✓	N/A	N/A	IER1E.IEN1		_
	SCIX0	242	03C8h	Level	✓	N/A	N/A	IER1E.IEN2	IPR242	_
	SCIX1	243	03CCh	Level	✓	N/A	N/A	IER1E.IEN3	IPR243	_
	SCIX2	244	03D0h	Level	√	N/A	N/A	IER1E.IEN4	IPR244	_
	SCIX3	245	03D4h	Level	✓	N/A	N/A	IER1E.IEN5	IPR245	_
RIIC0	EEI0	246	03D8h	Level	√	N/A	N/A	IER1E.IEN6	IPR246	_
	RXI0	247	03DCh	Edge	✓	✓	N/A	IER1E.IEN7	IPR247	DTCER247
	TXI0	248	03E0h	Edge	✓	✓	N/A	IER1F.IEN0	IPR248	DTCER248
	TEI0	249	03E4h	Level	✓	N/A	N/A	IER1F.IEN1	IPR249	_
	Reserved	250	03E8h	_	N/A	N/A	N/A	_	_	_
	Reserved	251	03ECh	_	N/A	N/A	N/A	_	_	_
_	Reserved	252	03F0h	_	N/A	N/A	N/A	_	_	1_
_	Reserved	253	03F4h	_	N/A	N/A	N/A	_	_	1_
_	Reserved	254	03F8h	_	N/A	N/A	N/A	_	_	_

Table 14.3 Interrupt Vector Table (6/6)

Source of Interrupt Request Generation	Name	Vector No.*1	Vector Address Offset	Form of Interrupt Detection	СРՍ	ртс	sstb Return	IER	IPR	DTCER
_	Reserved	255	03FCh	_	N/A	N/A	N/A	ı	ı	_

Note 1. An interrupt source with a smaller vector number takes precedence.

14.3.2 Fast Interrupt Vector Table

The address of the entry in the interrupt vector table that corresponds to the vector number of the fast interrupt is placed in the fast interrupt vector register (FINTV) of the CPU.

14.3.3 Non-maskable Interrupt Vector Table

The non-maskable interrupt vector table is at FFFF FFF8h.

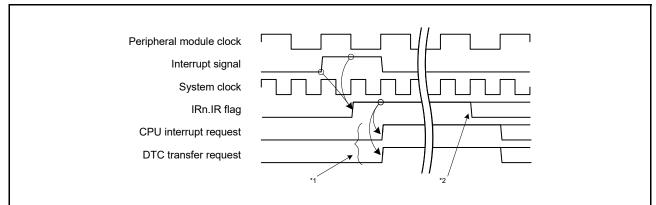
14.4 Interrupt Operation

The interrupt controller performs the following processing.

- Detecting interrupts
- Enabling and disabling interrupts
- Selecting interrupt request destinations (CPU interrupt or DTC trigger)
- Determining priority

14.4.1 Detecting Interrupts

Interrupt requests are detected in either of two ways: the detection of edges of the interrupt signal or the detection of a level of the interrupt signal.


Edge detection or level detection is selected for the IRQi pins (i = 0 to 7) as external interrupt requests by the setting of the IRQMD[1:0] bits in IRQCRi.

For interrupts from peripheral modules, either edge detection or level detection is determined per interrupt source. For the correspondence between interrupt sources and methods of detection, see Table 14.3, Interrupt Vector Table.

14.4.1.1 Operation of Status Flags for Edge-Detected Interrupts

Figure 14.2 shows the operation of the IR flag in IRn (n = interrupt vector number) in the case of edge detection of an interrupt from a peripheral module or on an external pin.

The IR flag in IRn is set to 1 immediately after the transition of the interrupt signal due to generation of the interrupt. If the CPU is the request destination for the interrupt, the IR flag is automatically cleared to 0 on acceptance of the interrupt. If the DTC is the request destination for the interrupt, the IRn.IR flag operation differs according to the DTC transfer settings and transfer count. For details, see Table 14.4, Operation When Starting the DTC.

- Note 1. One of the following requests is issued: CPU interrupt request, DTC transfer request. For details of the setting, see section 14.4.3, Selecting Interrupt Request Destinations.
- Note 2. When the CPU interrupt request is specified, this flag is set to 0 on acceptance of a CPU interrupt. For the timing of 0 setting at the DTC transfer request, see Table 14.4, Operation When Starting the DTC.

Figure 14.2 IRn.IR Flag Operation for Edge Detection Interrupts

Figure 14.3 to Figure 14.5 show the interrupt signals of the interrupt controller. Note that the timings of the interrupts with interrupt vector numbers 64 to 95 are different from those of other interrupts. For the IRQ pin interrupts with interrupt vector numbers 64 to 79, "internal delay + 2 PCLK cycles" of delay is added after the IRQ pin input. For the interrupts with interrupt vector numbers 80 to 95, "2 PCLK cycles" of delay is added.

If an interrupt signal is generated every clock cycle, the subsequent interrupts cannot be detected; secure two or more clock cycles of the system clock between issuance of continuous interrupt requests.

While the IRn.IR flag is 1 after an interrupt request is generated, the interrupt request that is generated again will be ignored.*1

Figure 14.3 shows the timing for IRn.IR flag re-setting.

Note 1. When the transmission or reception interrupt of the SCI, RSPI, or RIIC is generated with the IRn.IR flag being 1, the interrupt request is retained. After the IRn.IR flag is cleared to 0, the IRn.IR flag is set to 1 again by the retained request. For details, see descriptions of the interrupts in section 27, Serial Communications Interface (SCIg, SCIh), section 29, I²C-bus Interface (RIICa), and section 30, Serial Peripheral Interface (RSPIa).

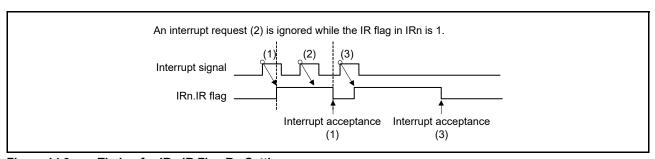


Figure 14.3 Timing for IRn.IR Flag Re-Setting

If an interrupt is disabled after the IRn.IR flag is set to 1 (output of the interrupt request is disabled by the interrupt enable bit of the relevant peripheral module), the IRn.IR flag is not affected but retains its state. Figure 14.4 shows operation when the interrupt is disabled.

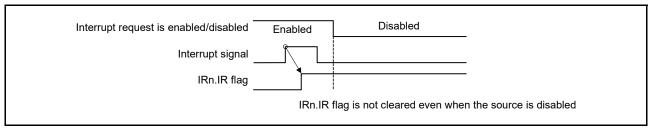


Figure 14.4 Relationship between IRn.IR Flag Operation and Disabling of Interrupt Request

14.4.1.2 Operation of Status Flags for Level-Detected Interrupts

Figure 14.5 shows the operation of the interrupt status flag (IR flag) in IRn (n = interrupt vector number) in the case of level detection of an interrupt from a peripheral module or an external pin.

The IR flag in IRn remains set to 1 as long as the interrupt signal is asserted. To clear the IRn.IR flag to 0, clear the interrupt request in the source generating the interrupt. Confirm that the interrupt request flag in the source generating the interrupt has been cleared to 0 and that the IRn.IR flag has been cleared to 0, and then complete the interrupt handling.

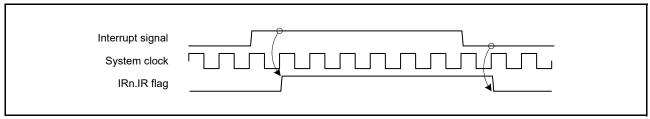


Figure 14.5 IRn.IR Flag Operation for Level Detection Interrupts

Figure 14.6 shows the procedure for handling level detection interrupts.

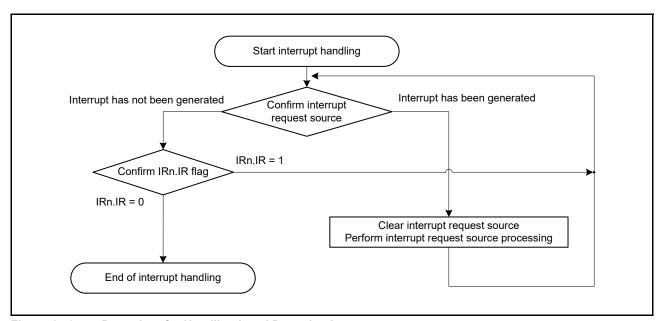


Figure 14.6 Procedure for Handling Level Detection Interrupts

14.4.2 Enabling and Disabling Interrupt Sources

Enabling requests from a given interrupt source requires the following settings.

- 1. In the case of interrupt requests from peripheral modules, setting the interrupt enable bit for the peripheral module to permit the output of interrupt requests from the source
- 2. Enabling of the interrupt by the IERm.IENj bit (m = 02h to 1Fh, j = 0 to 7)

When an interrupt request that is enabled at the corresponding source is generated, the corresponding IRn.IR flag (n = interrupt vector number) is set to 1.

Setting the IERm.IENj bit to enable an interrupt request allows the interrupt request for which the corresponding IRn.IR is 1 to be output to the interrupt request destination. Setting the IERm.IENj bit to disable an interrupt request suspends the output of the interrupt request for which the corresponding IRn.IR is 1.

The IRn.IR flag is not affected by the IERm.IENj bit.

Use the following procedure to disable interrupt requests.

- 1. Set the IERm.IENj bit to disable interrupt requests.
- 2. Set the peripheral module interrupt output enable bit to disable the output. Read the last written register and confirm that writing is completed.
- 3. Check the IRn.IR flag, and clear the IRn.IR flag if necessary.*1
- Note 1. To disable the transmission or reception interrupt of the SCI, RSPI, or RIIC from the enabled state, clear the IRn.IR flag to 0 using the above procedure. For details, see descriptions of the interrupts in section 27, Serial Communications Interface (SCIg, SCIh), section 29, I²C-bus Interface (RIICa), and section 30, Serial Peripheral Interface (RSPIa).

14.4.3 Selecting Interrupt Request Destinations

Possible settings for the request destination of each interrupt are fixed. That is, settings for request destination other than those indicated in Table 14.3, Interrupt Vector Table, are not possible. Do not make an interrupt request destination setting that is not indicated by a "✓" in Table 14.3.

If the DTC is selected as the destination for requests from an IRQi pin (i = 0 to 7), be sure to set the IRQMD[1:0] bits in IRQCRi for that interrupt to select edge detection.

The following describes how to specify the destinations of interrupt requests.

(1) DTC Trigger

Make the following settings for each source while the IERm.IENj bit (m = 02h to 1Fh, j = 0 to 7) is 0.

1. Set the DTC transfer request enable bit in the DTC transfer request enable register (DTCERn.DTCE (n = interrupt vector number)) for the pertinent source to 1.

After making the above settings, set the IERm.IENj bit to 1.

In addition, set the DTC module start bit (DTCST.DTCST) to 1. The order of making settings for each interrupt and enabling the DTC module start bit does not matter.

For the DTC setting procedure, refer to section 16.5, DTC Setting Procedure, in section 16, Data Transfer Controller (DTCa).

(2) CPU Interrupt Request

If the interrupt request destination is the DTC, the interrupt request is sent to the CPU. Set the IERm.IENj bit (m = 02h to 1Fh, j = 0 to 7) to 1 while the DTC trigger settings described above are in place.

Table 14.4 shows operation when the DTC is the request destination.

Table 14.4 Operation When Starting the DTC

Interrupt Request Destination	DISEL *1	Remaining Number of Transfer Operations	Operation per Request	IR*²	Interrupt Request Destination after Transfer
DTC*3	1	≠ 0	DTC transfer → CPU interrupt	Cleared on interrupt acceptance by the CPU	DTC
		= 0	DTC transfer → CPU interrupt	Cleared on interrupt acceptance by the CPU	The DTCERn.DTCE bit is cleared and the CPU becomes the destination.
	0	≠ 0	DTC transfer	Cleared at the start of DTC data transfer after reading DTC transfer information	DTC
		= 0	DTC transfer → CPU interrupt	Cleared on interrupt acceptance by the CPU	The DTCERn.DTCE bit is cleared and the CPU becomes the destination.

Note 1. DISEL for the DTC is set by the DTC.MRB.DISEL bit.

Note 2. When the IRn.IR flag is 1, an interrupt request (DTC transfer request) that is generated again will be ignored.

Note 3. For chain transfer, DTC transfer continues until the last chain transfer ends. Whether a CPU interrupt is generated at the end of chain transfer, the IRn.IR flag clear timing, and the interrupt request destination after transfer are determined by the state of DISEL and the remaining transfer count at the end of chain transfer. For the chain transfer, see Table 16.3, Chain Transfer Conditions in section 16, Data Transfer Controller (DTCa).

The request destination for an interrupt should be changed while the IERm.IENj bit is 0.

When a source is to be changed to an interrupt request or the DTC transfer information is to be changed while a transfer is not complete (i.e. while the DTCERn.DTCE bit (n = interrupt vector number) has not been cleared) after the settings described under (1) DTC Trigger have been made, follow the procedure below.

- 1. For both the source to be withdrawn and the source that will have a new trigger, clear the IENj bits in IERm to 0.
- 2. Check the state of transfer by the DTC. If transfer is in progress, wait for its completion.
- 3. Make the settings described under (1) DTC Trigger.

14.4.4 Determining Priority

Interrupt priority is determined for each interrupt request destination.

The priority for each interrupt request destination is determined as follows.

(1) Determining Priority when the CPU is the Request Destination of the Interrupt

A source selected for the fast interrupt has the highest priority. After that, an interrupt source with a larger value of the interrupt priority level select bits (IPR[3:0]) in IPRn takes priority. If interrupts with the same priority level are generated by multiple sources, the source with the smallest vector number takes precedence.

(2) Determining Priority when the DTC is the Request Destination of the Interrupt

The IPR[3:0] bits in IPRn (n = interrupt vector number) have no effect. An interrupt source with a smaller vector number takes precedence.

14.4.5 Multiple Interrupts

To enable multiple interrupts of the CPU, set the PSW.I bit to 1 (interrupt enabled) in the handling routine of accepted interrupts.

The PSW.IPL[3:0] bits immediately after processing branches to the interrupt handling routine are set to the same value as the interrupt priority level of the accepted interrupt request. If an interrupt request which has an interrupt level higher than that of the PSW.IPL[3:0] bits is generated at this time, this interrupt request (for multiple interrupts) is accepted. If the interrupt priority level of the accepted interrupt request is 15 (fast interrupt or interrupt when IPR[3:0] are set to 1111b), multiple interrupts are not generated.

14.4.6 Fast Interrupt

The fast interrupt is an interrupt for executing a faster interrupt response by the CPU, so only one of the interrupt sources can be assigned.

The interrupt priority level of the fast interrupt is 15 (highest) regardless of the setting of the IPR[3:0] bits in IPRn (n = interrupt vector number). In addition, the fast interrupt is accepted with precedence over other interrupt sources with level 15. However, when the value of the PSW.IPL[3:0] bits are 1111b (priority level 15), even the fast interrupt cannot be accepted.

To assign an interrupt source to the fast interrupt, specify the vector number of the source in the FIR.FVCT[7:0] bits, and set the FIR.FIEN bit to 1 (fast interrupt is enabled).

For details on the fast interrupt, see section 2, CPU and section 13, Exception Handling.

14.4.7 Digital Filter

The digital filter function is provided for the external interrupt request IRQi pins (i = 0 to 7) and NMI pin interrupt.

The digital filter samples input signals at the filter sampling clock (PCLK) and removes the pulses of which length is less than three sampling cycles.

To use the digital filter for the IRQi pin, set the sampling clock cycle (PCLK, PCLK/8, PCLK/32, or PCLK/64) with the IRQFLTC0.FCLKSELi[1:0] bits and set the IRQFLTE0.FLTENi bit to 1 (digital filter enabled).

To use the digital filter for the NMI pin, set the sampling clock cycle (PCLK, PCLK/8, PCLK/32, or PCLK/64) with the NMIFLTC.NFCLKSEL[1:0] bits and set the NMIFLTE.NFLTEN bit to 1 (digital filter enabled).

Figure 14.7 shows an example of digital filter operation.

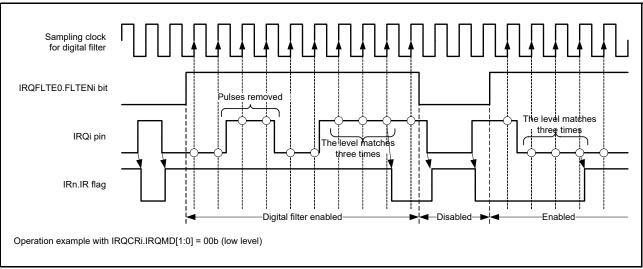


Figure 14.7 Digital Filter Operation Example

Before software standby mode is entered, set the IRQFLTE0.FLTENi and NMIFLTE.NFLTEN bits to 0 (digital filter disabled). To use the digital filter again after return from software standby mode, set the IRQFLTE0.FLTENi or NMIFLTE.NFLTEN bit to 1 (digital filter enabled).

14.4.8 External Pin Interrupts

The procedure for using the signal on an external pin as an interrupt is as follows.

- 1. Clear the IERm.IENj bit (m = 02h to 1Fh, j = 0 to 7) to 0 (interrupt request disabled).
- 2. Clear the IRQFLTE0.FLTENi bit (i = 0 to 7) to 0 (digital filter disabled).*1
- 3. Set the digital filter sampling clock with the IRQFLTC0.FCLKSELi[1:0] bits.*1
- 4. Make or confirm the I/O port settings.
- 5. Set the method of detection for the interrupt in the IRQCRi.IRQMD[1:0] bits.
- 6. Clear the corresponding IRn.IR flag (n = interrupt vector number) to 0 (if edge detection is in use).
- 7. Set the IRQFLTE0.FLTENi bit to 1 (digital filter enabled).*1
- 8. If the interrupt is to be used for DTC trigger, set the DTCERn.DTCE bit. The interrupt will be a CPU interrupt if the setting not is made.
- 9. Set the IERm.IENj bit to 1 (interrupt request enabled).

Note 1. To use the digital filter function, settings must be made beforehand.

14.5 Non-maskable Interrupt Operation

There are six types of non-maskable interrupt: the NMI pin interrupt, oscillation stop detection interrupt, IWDT underflow/refresh error, voltage monitoring 1 interrupt, and voltage monitoring 2 interrupt. Non-maskable interrupts are only usable as interrupts for the CPU; that is, they are not capable of DTC trigger. Non-maskable interrupts take precedence over all interrupts, including the fast interrupt.

Non-maskable interrupt requests are accepted regardless of the states of the I (interrupt enable) bit and IPL[3:0] (processor interrupt priority level) bits in the PSW of the CPU. The current states of the non-maskable interrupts can be checked in the non-maskable interrupt status register (NMISR).

Confirm that all bits in the NMISR have returned to 0 from within the handler for the non-maskable interrupt, before ending the handler.

Non-maskable interrupts are disabled by default. If a system is to use non-maskable interrupts, the following procedure must be followed at the beginning of program processing.

Non-maskable interrupt usage procedure:

- 1. Set the stack pointer (SP).
- 2. To use the NMI pin, clear the NMIFLTE.NFLTEN bit to 0 (digital filter disabled).*1
- 3. To use the NMI pin, set the digital filter sampling clock with the NMIFLTC.NFCLKSEL[1:0] bits.*1
- 4. To use the NMI pin, set the NMI pin detection sense with the NMICR.NMIMD bit.
- 5. To use the NMI pin, write 1 to the NMICLR.NMICLR bit to clear the NMISR.NMIST flag to 0.
- 6. To use the NMI pin, set the NMIFLTE.NFLTEN bit to 1 (digital filter enabled).*1
- 7. Enable the non-maskable interrupt by writing 1 to the corresponding bit in the non-maskable interrupt enable register (NMIER).

Note 1. To use the digital filter function, settings must be made beforehand.

After 1 is written to the NMIER register, subsequent write access to the NMIEN bit in NMIER is ignored. The NMI interrupt cannot be disabled. It can be disabled only by a reset.

For the flow of non-maskable interrupt processing, see section 13, Exception Handling.

Writing 1 to the NMICLR.NMICLR bit clears the NMI status flag (NMISR.NMIST) to 0.

Writing 1 to the NMICLR.OSTCLR bit clears the oscillation stop detection interrupt status flag (NMISR.OSTST) to 0.

Writing 1 to the NMICLR.IWDTCLR bit clears the IWDT underflow/refresh error status flag (NMISR.IWDTST) to 0.

Writing 1 to the NMICLR.LVD1CLR bit clears the voltage monitoring 1 interrupt status flag (NMISR.LVD1ST) to 0.

Writing 1 to the NMICLR.LVD2CLR bit clears the voltage monitoring 2 interrupt status flag (NMISR.LVD2ST) to 0.

14.6 Return from Power-Down States

The interrupt sources that can be used to return operation from sleep mode, deep sleep mode, or software standby mode are listed in Table 14.3, Interrupt Vector Table.

For details, refer to section 11, Low Power Consumption. The following describes how to use an interrupt to return operation from each low power consumption mode.

14.6.1 Return from Sleep Mode or Deep Sleep Mode

If the interrupt controller is to return operation from sleep mode in response to an interrupt or non-maskable interrupt, make the following settings for the interrupt.

- Interrupts
- 1. Select the CPU as the interrupt request destination.
- 2. Use the IENj bit in IERm (m = 02h to 1Fh, j = 0 to 7) to enable the given interrupt request.
- 3. Set a priority level higher than that set by the IPL[3:0] bits in the PSW of CPU.
- Non-maskable interrupts

Use the NMIER register to enable the given interrupt request.

14.6.2 Return from Software Standby Mode

The interrupt controller can return operation from a non-maskable interrupt or an interrupt that enables the return from the software standby mode.

The conditions for the return are listed below.

- Interrupts
- 1. Select the interrupt source that enables the return from the software standby mode.
- 2. Select the CPU as the interrupt request destination.
- 3. Use the IENj bit in IERm (m = 02h to 1Fh, j = 0 to 7) to enable the given interrupt request.
- 4. Set a priority level higher than that set by the IPL[3:0] bits in the PSW of CPU. (For the interrupt source specified as a fast interrupt, as well as setting the fast interrupt set register (FIR), the interrupt priority level (IPRn (n = interrupt vector number)) should be set above the level set by IPL in the PSW of the CPU.)

Interrupt requests through the IRQ pins that do not satisfy the above conditions are not detected while the clock is stopped in software standby mode.

• Non-maskable interrupts

Use the NMIER register to enable the given interrupt request.

- Procedure to make a transition to/from software standby mode
- 1. Before software standby mode is entered, disable the digital filter for the interrupt source as a return target (IRQFLTE0.FLTENi = 0, NMIFLTE.NFLTEN = 0).
- 2. To use the digital filter again after return from software standby mode, enable the digital filter (IRQFLTE0.FLTENi = 1, NMIFLTE.NFLTEN = 1).

14.7 Usage Note

14.7.1 Note on WAIT Instruction Used with Non-Maskable Interrupt

Before executing the WAIT instruction, check to see that all the status flags in NMISR are 0.

15. Buses

15.1 Overview

Table 15.1 lists the bus specifications, Figure 15.1 shows the bus configuration, and Table 15.2 lists the addresses assigned to each bus.

Table 15.1 Bus Specifications

Bus Type		Description
CPU bus	Instruction bus	 Connected to the CPU for instructions Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)
	Operand bus	 Connected to the CPU (for operands) Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)
Memory bus	Memory bus 1	Connected to RAM
	Memory bus 2	Connected to ROM
Internal main buses	Internal main bus 1	Connected to the CPU Operates in synchronization with the system clock (ICLK)
	Internal main bus 2	 Connected to the DTC Connected to on-chip memory (RAM, ROM) Operates in synchronization with the system clock (ICLK)
Internal peripheral	Internal peripheral bus 1	 Connected to peripheral modules (DTC, interrupt controller, and bus error monitoring section) Operates in synchronization with the system clock (ICLK)
buses	Internal peripheral bus 2	 Connected to peripheral modules Operates in synchronization with the peripheral module clock (PCLKB, PCLKD)
	Internal peripheral bus 3	 Connected to peripheral modules (Touch) Operates in synchronization with the peripheral module clock (PCLKB)
	Internal peripheral bus 6	Connected to ROM (P/E) and E2 DataFlash Operates in synchronization with the FlashIF clock (FCLK)

P/E: Programming/Erasure

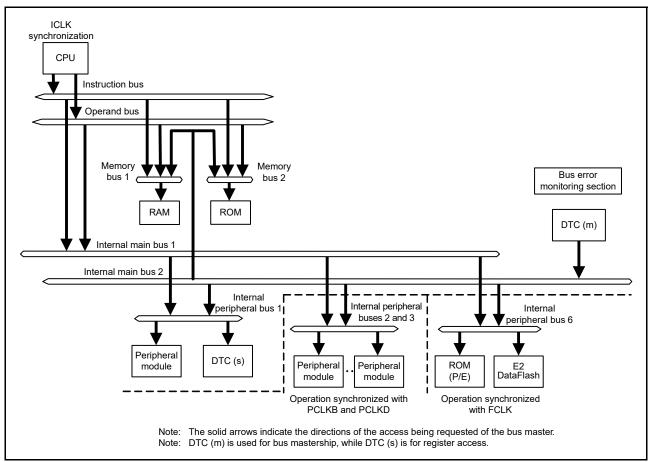


Figure 15.1 Bus Configuration

Table 15.2 Addresses Assigned for Each Bus

Address	Bus	Area
0000 0000h to 0000 FFFFh	Memory bus 1	RAM
0008 0000h to 0008 7FFFh	Internal peripheral bus 1	Peripheral I/O registers
0008 8000h to 0009 FFFFh	Internal peripheral bus 2	
000A 0000h to 000B FFFFh	Internal peripheral bus 3	
0010 0000h to 00FF FFFFh	Internal peripheral bus 6	E2 DataFlash memory and ROM (for programming/erasure)
8000 0000h to FEFF FFFFh	Memory bus 2	ROM
FF00 0000h to FFFF FFFFh		(for reading only)

15.2 Description of Buses

15.2.1 CPU Buses

The CPU buses consist of the instruction and operand buses, which are connected to internal main bus 1. As the names suggest, the instruction bus is used to fetch instructions for the CPU, while the operand bus is used for operand access. Connection of the instruction and operand buses to RAM and ROM provides the CPU with direct access to these areas, i.e. access is not via internal main bus 1. However, only reading is possible in direct access to ROM by the CPU; programming and erasure are handled via an internal peripheral bus.

Bus requests for instruction fetching and operand access are arbitrated through internal main bus 1. The order of priority is operand access then instruction fetching.

If instruction fetching and operand access are requested for different buses (memory bus 1, memory bus 2, and internal main bus 1), the bus-access operations can proceed simultaneously. For example, parallel access to ROM and RAM is possible.

15.2.2 Memory Buses

The memory buses consist of memory bus 1 and memory bus 2. RAM is connected to memory bus 1 and ROM is connected to memory bus 2. Requests for bus mastership from the CPU buses (instruction fetching and operand) and internal main bus 2 are arbitrated through memory buses 1 and 2.

The priority order of CPU bus and internal main bus 2 can be set using the memory bus 1 (RAM) priority control bits (BPRA[1:0]) and memory bus 2 (ROM) priority control bits (BPRO[1:0]) in the bus priority control register (BUSPRI) for the corresponding memory buses. When the priority order is fixed, internal main bus 2 has priority over the CPU bus (operand over instruction fetching). When the priority order is toggled, the bus for which a request has been accepted has lower priority.

15.2.3 Internal Main Buses

The internal main buses consist of a bus for use by the CPU (internal main bus 1) and a bus for use by the other bus-master modules, i.e. the DTC (internal main bus 2).

Bus requests for instruction fetching and operand access are arbitrated through internal main bus 1. The order of priority is operand access then instruction fetching.

Requests for bus mastership from the DTC is arbitrated by internal main bus 2. The order of priority is as shown in Table 15.3.

If the CPU and another bus master are requesting access to different buses (on-chip memory, internal peripheral buses 1 to 3 and 6), the respective bus-access operations can proceed simultaneously.

However, when the CPU executes the XCHG instruction, requests for bus access from masters other than the CPU are not accepted until data transfer for the XCHG instruction is completed regardless of the bus priority control register (BUSPRI) setting. Furthermore, requests for bus access from masters other than the DTC are not accepted during reading and writing-back of transfer control information for the DTC.

Table 15.3 Order of Priority for Bus Masters

Priority	Bus Master
High	DTC
T Low	CPU

15.2.4 Internal Peripheral Buses

Connection of peripheral modules to the internal peripheral buses is as described in Table 15.4.

Table 15.4 Connection of Peripheral Modules to the Internal Peripheral Buses

Type of Bus	Peripheral Modules
Internal peripheral bus 1	DTC, interrupt controller, and bus error monitoring section
Internal peripheral bus 2	Peripheral modules other than those connected to internal peripheral buses 1 and 3
Internal peripheral bus 3	Touch
Internal peripheral bus 6	ROM (P/E)/E2 DataFlash

Requests for bus mastership from the CPU (internal main bus 1) and other bus masters (internal main bus 2) are arbitrated through internal peripheral buses 1 to 3 and 6.

The priority order of the two internal main buses can be set using the bus priority control register (BUSPRI). The priority order can be set with the internal peripheral bus 1 priority control bits (BUSPRI.BPIB[1:0]), internal peripheral buses 2 and 3 priority control bits (BUSPRI.BPGB[1:0]), and internal peripheral bus 6 priority control bits (BUSPRI.BPFB[1:0]) for the corresponding internal peripheral buses. When the priority order is fixed, internal main bus 2 has priority over internal main bus 1. When the priority order is toggled, a bus has a lower priority when the request of that bus is accepted.

The order of accepting requests may change depending on the BUSPRI setting (see Figure 15.2).

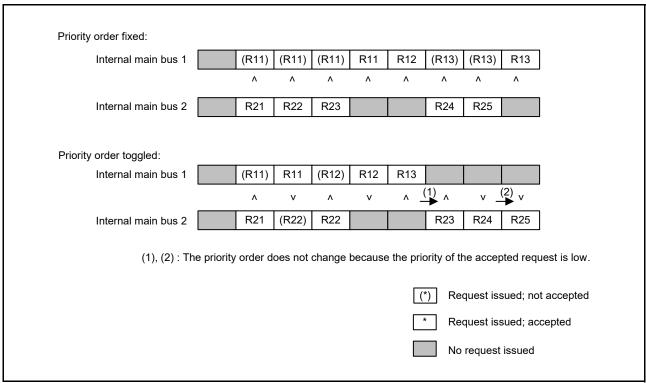


Figure 15.2 Priority Order Between Internal Peripheral Bus Accesses

15.2.5 Write Buffer Function (Internal Peripheral Bus)

The internal peripheral bus has the write buffer function, which allows the next round of bus access to start, before the current write access is completed, in write access. However, if the following round of bus access is from the same bus master but to the different internal peripheral bus, it is suspended until the bus operations already in progress are completed. When read access to the internal memory is scheduled after the write access to the internal peripheral bus from the CPU, the following round of bus access can be started before the current bus operation is completed and thus the order of accesses may be changed (see Figure 15.3).

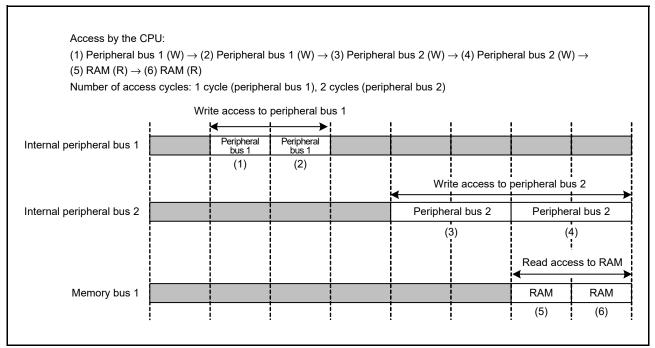


Figure 15.3 Write Buffer Function

15.2.6 Parallel Operation

Parallel operation is possible when different bus-master modules are requesting access to different slave modules. For example, if the CPU is fetching an instruction from ROM and an operand from RAM, the DTC is able to handle transfer between a peripheral bus and peripheral bus at the same time.

An example of parallel operations is shown in Figure 15.4. In this example, the CPU is able to employ the instruction and operand buses for simultaneous access to ROM and RAM, respectively. Furthermore, the DTC simultaneously employs internal main bus 2 for access to a peripheral bus during access to RAM and ROM by the CPU.

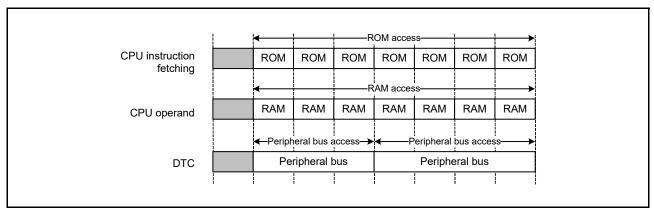
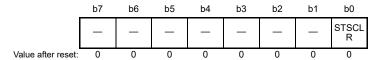


Figure 15.4 Example of Parallel Operations

15.2.7 Restrictions

(1) Prohibition of Access that Spans Multiple Areas of Address Space

Single access that spans two areas of the address space is prohibited, and operation of such an access is not guaranteed. Ensure that a single word or longword access does not span across two areas by crossing address space area boundaries.


(2) Restrictions on RMPA and String-Manipulation Instructions

(a) The allocation of data to be handled by RMPA or string-manipulation instructions to I/O registers is prohibited, and operation is not guaranteed if this restriction is not observed.

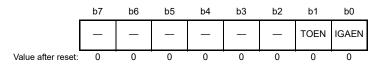
15.3 Register Descriptions

15.3.1 Bus Error Status Clear Register (BERCLR)

Address(es): 0008 1300h

Bit	Symbol	Bit Name	Description	R/W
b0	STSCLR	Status Clear	0: Invalid 1: Bus error status register cleared	(W)*1
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. Only writing 1 is effective; i.e. writing 0 has no effect.


STSCLR Bit (Status Clear)

Writing 1 to this bit clears the bus error status registers 1 and 2 (BERSR1 and BERSR2).

Writing 0 has no effect. It is read as 0.

15.3.2 Bus Error Monitoring Enable Register (BEREN)

Address(es): 0008 1304h

Bit	Symbol	Bit Name	Description	R/W
b0	IGAEN	Illegal Address Access Detection Enable	Illegal address access detection is disabled. Illegal address access detection is enabled.	R/W
b1	TOEN	Timeout Detection Enable*1, *2	Bus timeout detection is disabled. Bus timeout detection is enabled.	R/W
b7 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. When detection is disabled (the TOEN bit is cleared to 0), bus access can cause the bus to freeze.

Note 2. Do not set the TOEN bit to 0 (bus timeout detection disabled) while timeout errors are being detected.

15.3.3 Bus Error Status Register 1 (BERSR1)

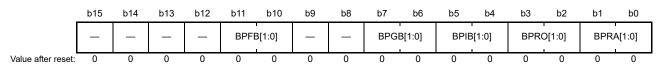
Address(es): 0008 1308h

Bit	Symbol	Bit Name	Description	R/W
b0	IA	Illegal Address Access	Illegal address access not made Illegal address access made	
b1	ТО	Timeout	Timeout not generated Timeout generated	
b3, b2	_	Reserved	These bits are read as 0. Writing to these bits has no effect.	R
b6 to b4	MST[2:0]	Bus Master Code	1 nese bits are read as 0. Writing to these bits has no effect. b6	
b7	_	Reserved	This bit is read as 0. Writing to this bit has no effect.	R

MST[2:0] Bits (Bus Master Code)

These bits indicate the bus master that accessed a bus when a bus error occurred.

15.3.4 Bus Error Status Register 2 (BERSR2)


Address(es): 0008 130Ah

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	_	Reserved	These bits are read as 0. Writing to these bits has no effect.	R
b15 to b3	ADDR[12:0]	Bus Error Occurrence Address	The upper 13 bits of an address that was accessed when a bus error occurred (in units of 512 Kbytes).	R

15.3.5 Bus Priority Control Register (BUSPRI)

Address(es): 0008 1310h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	BPRA[1:0]	Memory Bus 1 (RAM) Priority Control	b1 b0 0 0: The order of priority is fixed. 0 1: The order of priority is toggled. 1 0: Setting prohibited 1 1: Setting prohibited	R/(W) *1
b3, b2	BPRO[1:0]	Memory Bus 2 (ROM) Priority Control	b3 b2 0 0: The order of priority is fixed. 0 1: The order of priority is toggled. 1 0: Setting prohibited 1 1: Setting prohibited	R/(W) *1
b5, b4	BPIB[1:0]	Internal Peripheral Bus 1 Priority Control	 b5 b4 0 0: The order of priority is fixed. 0 1: The order of priority is toggled. 1 0: Setting prohibited 1 1: Setting prohibited 	R/(W) *1
b7, b6	BPGB[1:0]	Internal Peripheral Buses 2 and 3 Priority Control	b7 b6 0 0: The order of priority is fixed. 0 1: The order of priority is toggled. 1 0: Setting prohibited 1 1: Setting prohibited	R/(W) *1
b9, b8	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b11, b10	BPFB[1:0]	Internal Peripheral Bus 6 Priority Control	b11 b10 0 0: The order of priority is fixed. 0 1: The order of priority is toggled. 1 0: Setting prohibited 1 1: Setting prohibited	R/(W) *1
b15 to b12	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. These bits can be written to only once while the DTC is stopped. When they are written to more than one time, the operation is not guaranteed.

BPRA[1:0] Bits (Memory Bus 1 (RAM) Priority Control)

These bits specify the priority order for memory bus 1 (RAM).

When the priority order is fixed, internal main bus 2 has priority over the CPU bus.

When the priority order is toggled, a bus has a lower priority when the request of that bus is accepted.

BPRO[1:0] Bits (Memory Bus 2 (ROM) Priority Control)

These bits specify the priority order for memory bus 2 (ROM).

When the priority order is fixed, internal main bus 2 has priority over the CPU bus.

When the priority order is toggled, a bus has a lower priority when the request of that bus is accepted.

BPIB[1:0] Bits (Internal Peripheral Bus 1 Priority Control)

These bits specify the priority order for internal peripheral bus 1.

When the priority order is fixed, internal main bus 2 has priority over internal main bus 1.

When the priority order is toggled, a bus has a lower priority when the request of that bus is accepted.

BPGB[1:0] Bits (Internal Peripheral Buses 2 and 3 Priority Control)

These bits specify the priority order for internal peripheral buses 2 and 3.

When the priority order is fixed, internal main bus 2 has priority over internal main bus 1.

When the priority order is toggled, a bus has a lower priority when the request of that bus is accepted.

BPFB[1:0] Bits (Internal Peripheral Bus 6 Priority Control)

These bits specify the priority order for internal peripheral bus 6.

When the priority order is fixed, internal main bus 2 has priority over internal main bus 1.

When the priority order is toggled, a bus has a lower priority when the request of that bus is accepted.

15.4 Bus Error Monitoring Section

The bus error monitoring section monitors the individual areas for bus errors, and when a bus error occurs, the error is indicated to the bus master.

15.4.1 Type of Bus Error

There is a illegal address access bus error.

Illegal address access is the detection of access to an illegal area.

15.4.1.1 Illegal Address Access

When the illegal address access detection enable bit (IGAEN) in the bus error monitoring enable register (BEREN) is set to 1, access to an illegal address area leads to illegal address access errors.

The address ranges where access will lead to illegal address access errors are listed in Table 15.5.

15.4.1.2 Timeout

When the timeout detection enable bit in the bus error monitoring enable register is enabled (BEREN.TOEN = 1), bus access that is not completed within 768 cycles leads to a timeout error.

- Internal peripheral buses (2 and 3): Bus access is not completed within 768 peripheral module clock (PCLKB) cycles from the start of the access.
 - If a timeout error occurs, accesses from the bus master are not accepted for 256 PCLKB cycles.
- Internal peripheral bus (6): Bus access is not completed within 768 FlashIF clock (FCLK) cycles from the start of the access.

If a timeout error occurs, accesses from the bus master are not accepted for 256 FCLK cycles.

15.4.2 Operations When a Bus Error Occurs

When a bus error occurs, the error is indicated to the CPU. Operation is not guaranteed when a bus error occurs.

Bus error indication to the CPU
 An interrupt is generated. The ICU.IERn register can specify whether to generate an interrupt in the case of a bus error.

15.4.3 Conditions Leading to Bus Errors

Table 15.5 lists the type of bus errors for each area in the respective address space.

If an illegal address access error is detected when no bus error has occurred (bus error status register n (BERSRn; n = 1, 2) is cleared), the detected error is reflected in the BERSRn register. Once a bus error occurs, no subsequent bus errors are reflected in the register unless the register is cleared.

If bus errors are simultaneously caused by two or more bus masters, error information of only one bus master is reflected. Once a bus error occurs, the status is retained until the BERSRn register is cleared.

Table 15.5 Type of Bus Errors

		Type of Error	
Address	Type of Area	Illegal Address Access	Timeout
0000 0000h to 0007 FFFFh	Memory bus 1	_	_
0008 0000h to 0008 7FFFh	Internal peripheral bus 1	_	_
0008 8000h to 0009 FFFFh	Internal peripheral bus 2	Δ	_
000A 0000h to 000B FFFFh	Internal peripheral bus 3	Δ	_
000C 0000h to 000F FFFFh	Reserved area	0	_
0010 0000h to 00FF FFFFh	Internal peripheral bus 6	Δ	_
0100 0000h to 07FF FFFFh	Reserved area	0	_
0800 0000h to 0FFF FFFFh	Reserved area	_	_
1000 0000h to 7FFF FFFFh	Reserved area	0	_
8000 0000h to FFFF FFFFh	Memory bus 2	_	_

^{—:} A bus error does not result.

Note: The capacity of the RAM, data flash, and ROM differs depending on the product. For details, refer to section 38, RAM, and section 39, Flash Memory.

Δ: A bus error may or may not result.

o: A bus error results.

16. Data Transfer Controller (DTCa)

This MCU incorporates a data transfer controller (DTC).

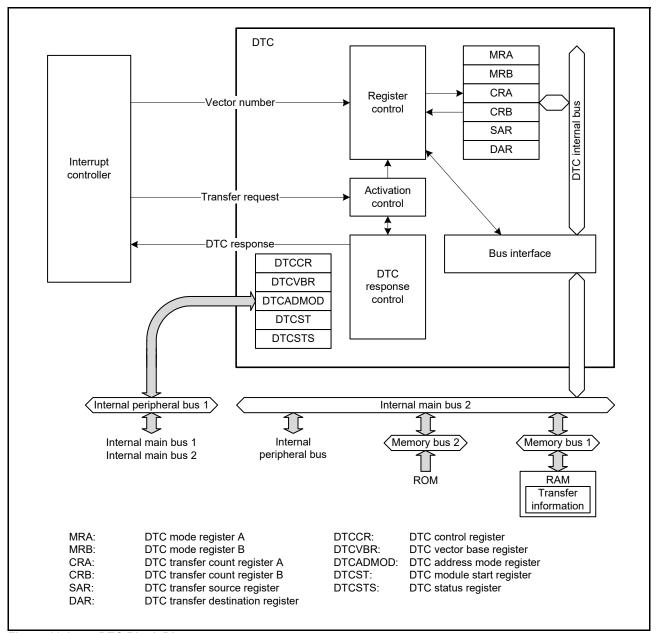
The DTC is triggered by an interrupt request to perform data transfers.

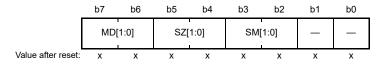
16.1 Overview

Table 16.1 lists the specifications of the DTC, and Figure 16.1 shows a block diagram of the DTC.

Table 16.1 DTC Specifications

Item	Description
Number of transfer channels	The same number as all interrupt sources that can start the DTC transfer.
Transfer modes	 Normal transfer mode A single transfer request leads to a single data transfer. Repeat transfer mode A single transfer request leads to a single data transfer. The transfer address is returned to the transfer start address after the number of data transfers corresponding to "repeat size". The maximum number of repeat transfers is 256, and the maximum data transfer size is 256 × 32 bits, 1024 bytes. Block transfer mode A single transfer request leads to the transfer of a single block. The maximum block size is 256 × 32 bits = 1024 bytes.
Chain transfer	 Multiple types of data transfers can sequentially be executed in response to a single request. Either "performed only when the transfer counter becomes 0" or "every time" can be selected.
Transfer space	 In short-address mode: 16 Mbytes (Areas from 0000 0000h to 007F FFFFh and FF80 0000h to FFFF FFFFh except reserved areas) In full-address mode: 4 Gbytes (Area from 0000 0000h to FFFF FFFFh except reserved areas)
Data transfer units	 Single data: 1 byte (8 bits), 1 word (16 bits), 1 longword (32 bits) Single block size: 1 to 256 data
CPU interrupt source	 An interrupt request can be generated to the CPU on a request source for a data transfer. An interrupt request can be generated to the CPU after a single data transfer. An interrupt request can be generated to the CPU after data transfer of specified volume.
Event link function	An event link request is generated after one data transfer (for block, after one block transfer).
Read skip	Reading of the transfer information can be skipped when the same transfer is repeated.
Write-back skip	Write-back of the transferred data that is not updated can be skipped when the address of the transfer source or destination is fixed.
Low power consumption function	Module stop state can be set.



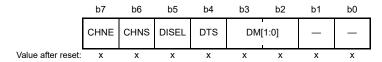

Figure 16.1 DTC Block Diagram

16.2 Register Descriptions

Registers MRA, MRB, SAR, DAR, CRA, and CRB are DTC internal registers, which cannot be directly accessed from the CPU. Values to be set in these DTC internal registers are placed in the RAM area as transfer information. When accepting a transfer request, the DTC reads the transfer information from the RAM area and sets it in the internal registers. After the data transfer ends, the values of the updated internal register are written back to the RAM area as transfer information.

16.2.1 DTC Mode Register A (MRA)

Address(es): (inaccessible directly from the CPU)


x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b1, b0	_	Reserved	Set these bits to 0.	_
b3, b2	SM[1:0]	Transfer Source Address Addressing Mode	b3 b2 0 0: The address in the SAR register is fixed. (write-back to SAR is skipped.) 0 1: The address in the SAR register is fixed. (write-back to SAR is skipped.) 1 0: The SAR value is incremented after a data transfer. (+1 when the SZ[1:0] bits are 00b, +2 when 01b, +4 when 10b) 1 1: The SAR value is decremented after a data transfer. (-1 when the SZ[1:0] bits are 00b, -2 when 01b, -4 when 10b)	_
b5, b4	SZ[1:0]	DTC Data Transfer Size	 b5 b4 0 0: Byte (8-bit) transfer 0 1: Word (16-bit) transfer 1 0: Longword (32-bit) transfer 1 1: Setting prohibited 	_
b7, b6	MD[1:0]	DTC Transfer Mode Select	b7 b6 0 0: Normal transfer mode 0 1: Repeat transfer mode 1 0: Block transfer mode 1 1: Setting prohibited	_

MRA register is used to select the DTC operating mode and cannot be accessed directly from the CPU.

16.2.2 DTC Mode Register B (MRB)

Address(es): (inaccessible directly from the CPU)

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b1, b0	_	Reserved	Set these bits to 0.	_
b3, b2	DM[1:0]	Transfer Destination Address Addressing Mode	 b3 b2 0 0: The address in the DAR register is fixed. (Write-back to DAR is skipped.) 0 1: The address in the DAR register is fixed. (Write-back to DAR is skipped.) 1 0: The DAR value is incremented after data transfer. (+1 when the MRA.SZ[1:0] bits are 00b, +2 when 01b, +4 when 10b) 1 1: The DAR value is decremented after data transfer. (-1 when the SZ[1:0] bits are 00b, -2 when 01b, -4 when 10b) 	_
b4	DTS	DTC Transfer Mode Select	O: Transfer destination side is repeat area or block area. 1: Transfer source side is repeat area or block area.	_
b5	DISEL	DTC Interrupt Select	O: An interrupt request to the CPU is generated on completion of the specified number of data transfers. 1: An interrupt request to the CPU is generated for each data transfer.	_
b6	CHNS	DTC Chain Transfer Select	O: Chain transfer is performed on completion of each transfer. 1: Chain transfer is performed only when the transfer counter is changed from 1 to 0 or 1 to CRAH.	_
b7	CHNE	DTC Chain Transfer Enable	Chain transfer is disabled. Chain transfer is enabled.	_

MRB register is used to select the DTC operating mode and cannot be accessed directly from the CPU.

DTS Bit (DTC Transfer Mode Select)

The DTS bit specifies the side (transfer source or destination) to be a repeat area or block area in repeat transfer mode or block transfer mode.

CHNS Bit (DTC Chain Transfer Select)

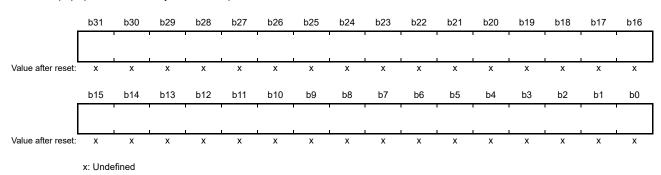
The CHNS bit selects the chain transfer condition.

When the CHNE bit is 0, setting of the CHNS bit is ignored. For details on the conditions to select the chain transfer, refer to Table 16.3, Chain Transfer Conditions.

When the next transfer is chain transfer, completion of the specified number of transfers is not determined, the interrupt status flag for the request source is not cleared, and an interrupt request to the CPU is not generated.

CHNE Bit (DTC Chain Transfer Enable)

The CHNE bit enables or disables chain transfer.

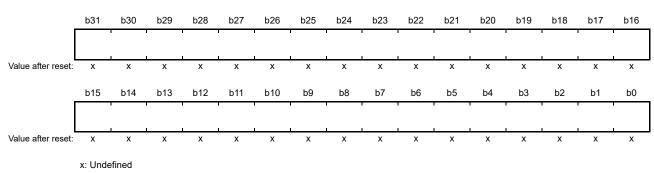

The chain transfer condition is selected by the CHNS bit.

For details of chain transfer, refer to section 16.4.6, Chain Transfer.

16.2.3 DTC Transfer Source Register (SAR)

Address(es): (inaccessible directly from the CPU)

SAR register is used to set the transfer source start address.


In full-address mode, 32 bits are valid.

In short-address mode, lower 24 bits are valid and upper 8 bits (b31 to b24) are ignored. The address of this register is extended by the value specified by b23.

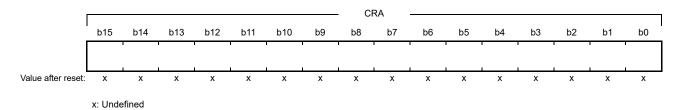
SAR register cannot be accessed directly from the CPU.

16.2.4 DTC Transfer Destination Register (DAR)

Address(es): (inaccessible directly from the CPU)

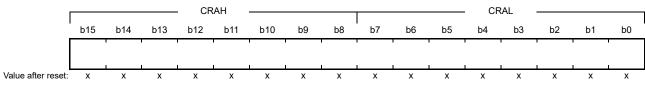
DAR register is used to set the transfer destination start address.

In full-address mode, 32 bits are valid.


In short-address mode, lower 24 bits are valid and upper 8 bits (b31 to b24) are ignored. The address of this register is extended by the value specified by b23.

DAR register cannot be accessed directly from the CPU.

16.2.5 DTC Transfer Count Register A (CRA)


• Normal transfer mode

Address(es): (inaccessible directly from the CPU)

Repeat transfer mode/block transfer mode

Address(es): (inaccessible directly from the CPU)

x:	H	nd	۵f	in	۵	d
х.	u	HU	чı	ш	ᆫ	u

Symbol	Register Name	Description	R/W
CRAL	Transfer Counter A Lower Register	Set transfer count. This register functions as a transfer counter during data transfer.	_
CRAH	Transfer Counter A Upper Register	Set transfer count. This register functions as a reload register during data transfer.	_

Note: The function depends on transfer mode.

Note: Set CRAH and CRAL to the same value in repeat transfer mode and block transfer mode.

This register is for counting the number of transfers and cannot be accessed directly from the CPU.

(1) Normal transfer mode (MRA.MD[1:0] bits = 00b)

CRA register functions as a 16-bit transfer counter in normal transfer mode.

The transfer count is 1, 65535, and 65536 when the set value is 0001h, FFFFh, and 0000h, respectively.

The CRA value is decremented (-1) at each data transfer.

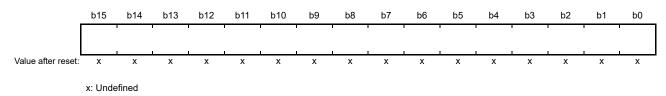
(2) Repeat transfer mode (MRA.MD[1:0] bits = 01b)

The CRAH register retains the transfer count and the CRAL register functions as an 8-bit transfer counter.

The transfer count is 1, 255, and 256 when the set value is 01h, FFh, and 00h, respectively.

The CRAL value is decremented (-1) at each data transfer. When it reaches 00h, the CRAH value is reloaded to the CRAL register.

(3) Block transfer mode (MRA.MD[1:0] bits = 10b)


The CRAH register retains the block size and the CRAL register functions as an 8-bit block size counter.

The transfer count is 1, 255, and 256 when the set value is 01h, FFh, and 00h, respectively.

The CRAL value is decremented (-1) at each data transfer. When it reaches 00h, the CRAH value is reloaded to the CRAL register.

16.2.6 DTC Transfer Count Register B (CRB)

Address(es): (inaccessible directly from the CPU)

CRB register is used to set the block transfer count for block transfer mode and cannot be accessed directly from the CPU.

The transfer count is 1, 65535, and 65536 when the set value is 0001h, FFFFh, and 0000h, respectively.

The CRB value is decremented (-1) when the final data of a single block size is transferred.

When normal transfer mode or repeat transfer mode is selected, this register is not used and the set value is ignored.

16.2.7 DTC Control Register (DTCCR)

Address(es): DTC.DTCCR 0008 2400h

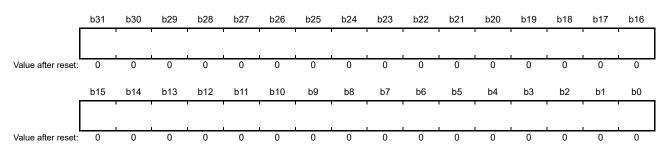
_	b7	b6	b5	b4	b3	b2	b1	b0
	1	_	1	RRS	_	ı	ı	1
alue after recet:	0	0	0	0	1	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b3	_	Reserved	This bit is read as 1. The write value should be 1.	R/W
b4	RRS	DTC Transfer Information Read Skip Enable	Transfer information read is not skipped. Transfer information read is skipped when vector numbers match.	R/W
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

DTCCR register is used to control the DTC operation.

RRS Bit (DTC Transfer Information Read Skip Enable)

The DTC vector number is compared with the vector number in the previous data transfer.


When these vector numbers match and the RRS bit is set to 1, DTC data transfer is performed without reading the transferred information. However, when the previous transfer was chain transfer, the transferred information is read regardless of the value of the RRS bit.

Furthermore, when the transfer counter (CRA register) became 0 during the previous normal transfer and when the transfer counter (CRB register) became 0 during the previous block transfer, the transferred information is read regardless of the RRS bit value.

16.2.8 DTC Vector Base Register (DTCVBR)

Address(es): DTC.DTCVBR 0008 2404h

The DTCVBR register is used to set the base address for calculating the address to which the DTC vector is allocated. Writing to the upper 4 bits (b31 to b28) is ignored, and the address of this register is extended by the value specified by b27. The lower 10 bits are reserved and the values are fixed to 0. Write 0 to the lower 10 bits if necessary. It can be set in the range of 0000 0000h to 07FF FC00h and F800 0000h to FFFF FC00h in 1-Kbyte units.

16.2.9 DTC Address Mode Register (DTCADMOD)

Address(es): DTC.DTCADMOD 0008 2408h

Bit	Symbol	Bit Name	Description	R/W
b0	SHORT	Short-Address Mode Set	0: Full-address mode 1: Short-address mode	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

DTCADMOD register is used to specify the area accessible by the DTC.

SHORT Bit (Short-Address Mode Set)

This bit is used to select address mode of registers SAR and DAR.

Full-address mode allows the DTC to access to a 4-Gbyte space (0000 0000h to FFFF FFFFh).

Short-address mode allows the DTC to access to a 16-Mbyte space (0000 0000h to 007F FFFFh and FF80 0000h to FFFF FFFFh).

16.2.10 DTC Module Start Register (DTCST)

Address(es): DTC.DTCST 0008 240Ch

Bit	Symbol	Bit Name	Description	R/W
b0	DTCST	DTC Module Start	0: DTC module stop 1: DTC module start	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

DTCST Bit (DTC Module Start)

Set the DTCST bit to 1 to enable the DTC to accept transfer requests. When this bit is set to 0, transfer requests are no longer accepted.

If this bit is set to 0 during data transfer, the accepted transfer request is active until the processing is completed. Set the DTCST bit to 0 before making a transition to the module stop state, deep sleep mode, or software standby mode. Set the DTCST bit to 1 to resume the data transfer after returning from the module stop state, deep sleep mode, or software standby mode.

For details on transitions to the module stop state, deep sleep mode, and software standby mode, refer to section 16.9, Low Power Consumption Function, and section 11, Low Power Consumption.

16.2.11 DTC Status Register (DTCSTS)

Address(es): DTC.DTCSTS 0008 240Eh

Bit	Symbol	Bit Name	Description	R/W
b7 to b0	VECN[7:0]	DTC Active Vector Number Monitoring Flag	These bits indicate the vector number for the request source when data transfer is in progress. The value is only valid if data transfer is in progress (the value of the ACT flag is 1).	R
b14 to b8	_	Reserved	These bits are read as 0. Writing to these bits has no effect.	R
b15	ACT	DTC Active Flag	Data transfer is not in progress. Data transfer is in progress.	R

VECN[7:0] Flags (DTC Active Vector Number Monitoring Flag)

While data transfer is in progress, these bits indicate the vector number corresponding to the request source for the transfer.

When the DTCSTS register is read, the value of the VECN[7:0] flags is valid if the value of the ACT flag was 1 (data transfer is in progress) and invalid if the value of the ACT flag was 0 (data transfer is not in progress).

For the correspondence between the DTC request sources and the vector addresses, refer to section 14.3.1, Interrupt Vector Table in section 14, Interrupt Controller (ICUb).

ACT Flag (DTC Active Flag)

This flag indicates the state of data transfer operation.

[Setting condition]

• When the data transfer is started by a transfer request.

[Clearing condition]

• When the data transfer is completed in response to a transfer request.

16.3 Request Sources

The DTC data transfer is triggered by an interrupt request. Setting the ICU.DTCERn.DTCE bit (n = interrupt vector number) to 1 selects the corresponding interrupt request as a request source for the DTC.

For the correspondence between the DTC request sources and the vector addresses, refer to section 14.3.1, Interrupt Vector Table in section 14, Interrupt Controller (ICUb). For request by software, refer to section 14.2.5, Software Interrupt Generation Register (SWINTR) in section 14, Interrupt Controller (ICUb).

Once the DTC has accepted a transfer request, it does not accept another transfer request until transfer for that single request is completed, regardless of the priority of the requests.

When multiple transfer requests are generated during data transfer by the DTC, the request with the highest priority on completion of the current transfer is accepted. When multiple transfer requests are generated while the DTCST.DTCST bit is 0 (DTC module stop), the request with the highest priority at the moment when the bit is subsequently set to 1 (DTC module start) is accepted.

The DTC performs the following operations at the start of a single data transfer (or the last of the consecutive transfers in the case of a chain transfer).

- On completion of a specified number of data transfer, the ICU.DTCERn.DTCE bit is set to 0 and an interrupt is requested to the CPU.
- If the MRB.DISEL bit is 1, an interrupt is requested to the CPU on completion of data transfer.
- For the other transfers, the interrupt status flag of the request source is set to 0 at the start of data transfer.

16.3.1 Allocating Transfer Information and DTC Vector Table

The DTC reads the start address of the transfer information corresponding to each request source from the vector table and reads the transfer information starting at that address.

The vector table should be located so that the lower 10 bits of the base address (start address) are 0. Use the DTC vector base register (DTCVBR) to set the base address of the DTC vector table.

Transfer information is allocated in the RAM area. The start address of the transfer information n with vector number n should be allocated at DTCVBR + 4n.

Transfer information should be aligned on a 4-byte boundary. The size of a transfer information is 12 bytes in short-address mode or 16 bytes in full-address mode. Use the DTCADMOD.SHORT bit to select short-address mode (SHORT bit = 1) or full-address mode (SHORT bit = 0).

Figure 16.2 shows the relationship between the DTC vector table and transfer information.

Figure 16.3 shows the allocation of transfer information in the RAM area. The lower addresses vary according to the endian of the corresponding allocation area. For details, refer to section 16.10.2, Allocating Transfer Information.

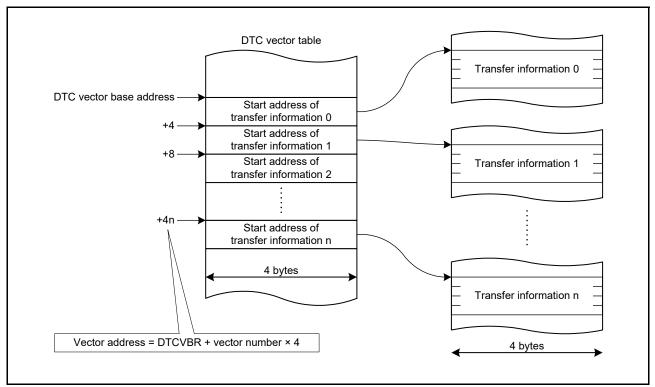


Figure 16.2 DTC Vector Table and Transfer Information

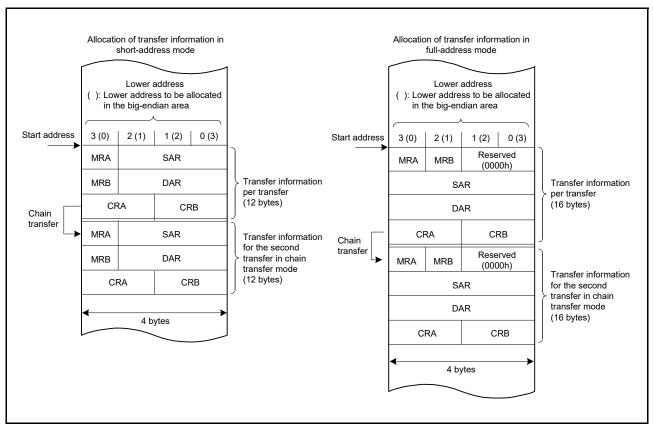


Figure 16.3 Allocation of Transfer Information in the RAM Area

16.4 Operation

The DTC transfers data in accordance with the transfer information. Storage of the transfer information in the RAM area is required before DTC operation.

When the DTC accepts a transfer request, it reads the DTC vector corresponding to the vector number. Next, the DTC reads transfer information from the address pointed by the DTC vector, transfers data, and then writes back the transfer information after the data transfer. Allocating transfer information in the RAM area allows data transfer of arbitrary number of channels.

There are three transfer modes: normal transfer mode, repeat transfer mode, and block transfer mode.

Set a transfer source address in the SAR register and a transfer destination address in the DAR register. The SAR and DAR registers are updated after the transfer according to the respective settings (increment, decrement, or fixed). Table 16.2 lists transfer modes of the DTC.

Table 16.2 Transfer Modes of the DTC

Transfer Mode	Data Size Transferred on Single Transfer Request	Increment/Decrement of Memory Address	Settable Transfer Count
Normal transfer mode	1 byte/1 word/1 longword	Incremented/decremented by 1, 2, or 4 or address fixed	1 to 65536
Repeat transfer mode*1	1 byte/1 word/1 longword	Incremented/decremented by 1, 2, or 4 or address fixed	1 to 256*3
Block transfer mode*2	Block size specified in CRAH (1 to 256 bytes/1 to 256 words/1 to 256 longwords)	Incremented/decremented by 1, 2, or 4 or address fixed	1 to 65536

Note 1. Set transfer source or transfer destination in the repeat area.

Setting the MRB.CHNE bit to 1 allows multiple transfers (chain transfer) on a single transfer request. The setting in combination with the MRB.CHNS bit enables a chain transfer when the specified number of data transfers is completed. Figure 16.4 shows the operation flowchart of the DTC. Table 16.3 lists chain transfer conditions.

Note 2. Set transfer source or transfer destination in the block area.

Note 3. After data transfer of the specified count, the initial state is restored and the operation is continued (repeated).

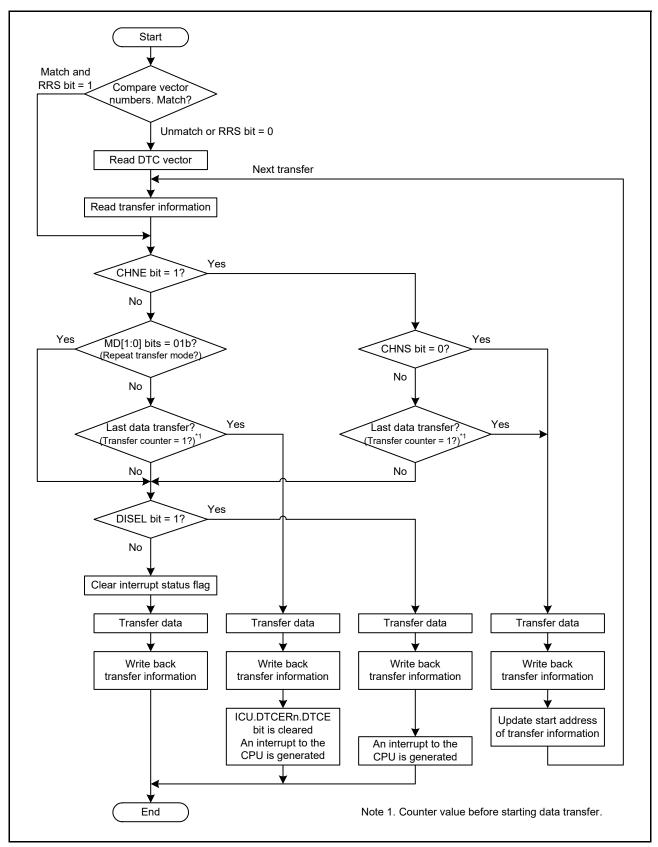


Figure 16.4 Operation Flowchart of the DTC

Table 16.3 Chain Transfer Conditions

	First Transfer				Se	cond Trai	nsfer* ³	
CHNE Bit	CHNS Bit	DISEL Bit	Transfer Counter* ^{1,*2}	CHNE Bit	CHNS Bit	DISEL Bit	Transfer Counter* ^{1,*2}	Data Transfer
0	_	0	Other than $(1 \rightarrow 0)$	_	_	_	_	Ends after the first transfer
0	_	0	(1 → 0)	_	_	_	_	Ends after the first
0	_	1	_	_	_	_	_	transfer with an interrupt request to the CPU
1	0	_	_	0	_	0	Other than (1 → 0)	Ends after the second transfer
				0	_	0	(1 → 0)	Ends after the second
				0	_	1	_	transfer with an interrupt request to the CPU
1	1	0	Other than (1 → *)	_	_	_	_	Ends after the first transfer
1	1	_	(1 → *)	0	_	0	Other than $(1 \rightarrow 0)$	Ends after the second transfer
				0	_	0	(1 → 0)	Ends after the second
				0	_	1	_	transfer with an interrupt request to the CPU
1	1	1	Other than (1 → *)	_	_	_	_	Ends after the first transfer with an interrupt request to the CPU

Note 1. The transfer counters used depend on transfer modes as follows:

Normal transfer mode: CRA register Repeat transfer mode: CRAL register Block transfer mode: CRB register

Note 2. On completion of data transfer, the counters operate as follows:

 $1 \rightarrow 0$ in normal and block transfer modes

 $1 \rightarrow CRAH$ in repeat transfer mode

 $(1 \rightarrow *)$ in the table indicates both of the two operations above.

Note 3. Chain transfer can be selected for the second or subsequent transfers. The condition combination of "second transfer and the CHNE bit is 1" is omitted.

16.4.1 Transfer Information Read Skip Function

Reading of DTC vector and transfer information can be skipped by the setting of the DTCCR.RRS bit.

When a DTC transfer request is accepted, the current DTC vector number is compared with the DTC vector number in the previous data transfer. When these vector numbers match and the RRS bit is 1, the DTC does not read the DTC vector and transfer information, and transfers data according to the transfer information remained in the DTC.

However, when the previous transfer was chain transfer, the DTC vector and transfer information are read. Furthermore, when the transfer counter (CRA register) became 0 during the previous normal transfer and when the transfer counter (CRB register) became 0 during the previous block transfer, transfer information is read regardless of the value of the RRS bit. Figure 16.13 shows an example of transfer information read skip.

When updating the vector table and transfer information, set the RRS bit to 0, update the vector table and transfer information, and then set the RRS bit to 1. Setting the RRS bit to 0 discards the vector numbers retained in the DTC. The updated DTC vector table and transfer information are read in the next data transfer.

16.4.2 Transfer Information Write-Back Skip Function

When the MRA.SM[1:0] bits or the MRB.DM[1:0] bits are set to "address is fixed" (00b or 01b), a part of transfer information is not written back. This function is performed independently of the setting of short-address mode or full-address mode.

Table 16.4 lists transfer information write-back skip conditions and applicable registers. The CRA and CRB registers are written back independently of the setting of short-address mode or full-address mode.

Furthermore, in full-address mode, write-back of registers MRA and MRB is skipped.

Table 16.4 Transfer Information Write-Back Skip Conditions and Applicable Registers

MRA.SM[1:0] Bits		MRB.DM	[1:0] Bits	<u> </u>	
b3	b2	b3	b2	SAR Register	DAR Register
0	0	0	0	Skip	Skip
0	0	0	1		
0	1	0	0		
0	1	0	1		
0	0	1	0	Skip	Write-back
0	0	1	1		
0	1	1	0		
0	1	1	1		
1	0	0	0	Write-back	Skip
1	0	0	1		
1	1	0	0		
1	1	0	1		
1	0	1	0	Write-back	Write-back
1	0	1	1		
1	1	1	0		
1	1	1	1		

16.4.3 Normal Transfer Mode

This mode allows 1-byte, 1-word, or 1-longword data transfer on a single transfer request. The transfer count can be set to 1 to 65536.

Transfer source addresses and transfer destination addresses can be set to increment, decrement, or fixed independently. This mode enables an interrupt request to the CPU to be generated at the end of specified-count transfer.

Table 16.5 lists register functions in normal transfer mode, and Figure 16.5 shows the memory map of normal transfer mode.

Table 16.5 Register Functions in Normal Transfer Mode

Register Description		Value Written Back by Writing Transfer Information
SAR	Transfer source address	Increment/decrement/fixed*1
DAR	Transfer destination address	Increment/decrement/fixed*1
CRA	Transfer counter A	CRA – 1
CRB	Transfer counter B	Not updated

Note 1. Write-back operation is skipped when address is fixed.

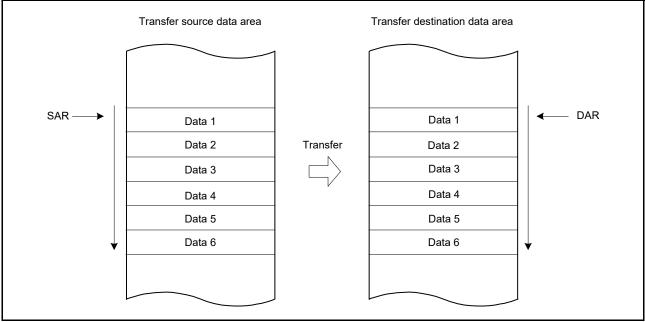


Figure 16.5 Memory Map of Normal Transfer Mode

16.4.4 Repeat Transfer Mode

This mode allows 1-byte, 1-word, or 1-longword data transfer on a single transfer request.

Specify either transfer source or transfer destination for the repeat area by the MRB.DTS bit. The transfer count can be set to 1 to 256. When the specified-count transfer is completed, the initial value of the address register specified in the transfer counter and the repeat area is restored and transfer is repeated. The other address register is incremented or decremented continuously or remains unchanged.

When the transfer counter CRAL is decreased to 00h in repeat transfer mode, the CRAL value is updated to the value set in the CRAH register. Thus the transfer counter does not become 00h, which disables an interrupt request to be generated to the CPU when the MRB.DISEL bit is set to 0 (an interrupt request to the CPU is generated on completion of the specified number of data transfers).

Table 16.6 lists the register functions in repeat transfer mode, and Figure 16.6 shows the memory map of repeat transfer mode.

Table 16.6 Register Functions in Repeat Transfer Mode

•	_	Value Written Back by Writing Transfer Information					
			When CRAL = 1				
Register	Description	When CRAL ≠ 1	When the MRB.DTS Bit is 0	When the MRB.DTS Bit is 1			
SAR	Transfer source address	Increment/decrement/fixed*1	Increment/decrement/fixed*1	SAR register initial value			
DAR	Transfer destination address	Increment/decrement/fixed*1	DAR register initial value	Increment/decrement/fixed*1			
CRAH	Retains initial value of transfer counter	CRAH	CRAH				
CRAL	Transfer counter A	CRAL – 1	CRAH				
CRB	Transfer counter B	Not updated	Not updated				

Note 1. Write-back operation is skipped when address is fixed.

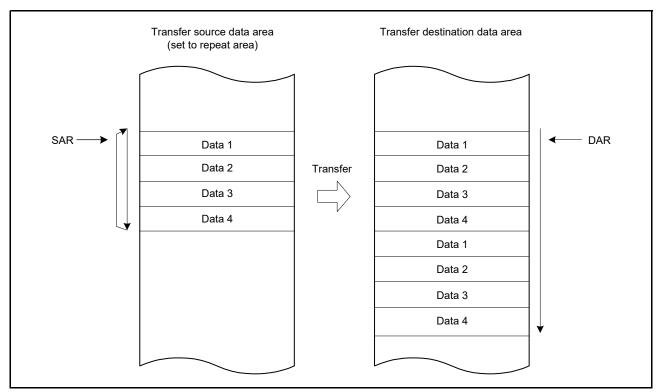


Figure 16.6 Memory Map of Repeat Transfer Mode (Transfer Source: Repeat Area)

16.4.5 Block Transfer Mode

This mode allows single-block data transfer on a single transfer request.

Specify either transfer source or transfer destination for the block area by the MRB.DTS bit. The block size can be set to 1 to 256 bytes, 1 to 256 words, or 1 to 256 longwords.

When transfer of the specified one block is completed, the initial values of the block size counter CRAL and the address register (the SAR register when the MRB.DTS bit is 1 or the DAR register when the DTS bit is 0) specified in the block area are restored. The other address register is incremented or decremented continuously or remains unchanged.

The transfer count (block count) can be set to 1 to 65536. This mode enables an interrupt request to the CPU to be generated at the end of specified-count block transfer.

Table 16.7 lists register functions in block transfer mode, and Figure 16.7 shows the memory map of block transfer mode.

Table 16.7 Register Functions in Block Transfer Mode

		Value Written Back by Writing T	ransfer Information
Register	Description	When MRB.DTS Bit is 0	When MRB.DTS Bit is 1
SAR	Transfer source address	Increment/decrement/fixed*1	SAR register initial value
DAR	Transfer destination address	DAR register initial value	Increment/decrement/fixed*1
CRAH	Retains initial value of block size	CRAH	
CRAL	Block size counter	CRAH	
CRB	Block transfer counter	CRB – 1	

Note 1. Write-back operation is skipped when address is fixed.

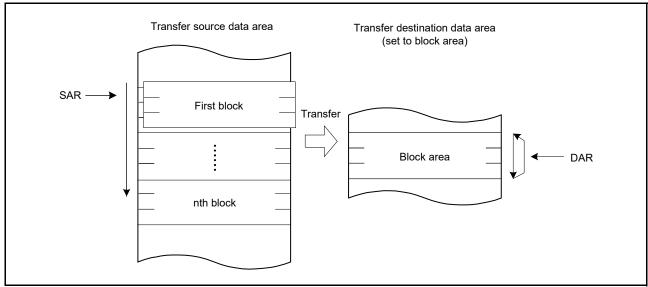


Figure 16.7 Memory Map of Block Transfer Mode (Transfer Destination: Block Area)

16.4.6 Chain Transfer

Setting the MRB.CHNE bit to 1 allows chain transfer to be performed continuously on a single transfer request. If the MRB.CHNE bit is 1 and the MRB.CHNS bit is 0, an interrupt request to the CPU is not generated when the specified number of data transfers is completed, or while the MRB.DISEL bit is 1 (an interrupt request to the CPU is generated for every data transfer). Data transfer has no effect on the interrupt status flag, which is the request source. The transfer information (SAR, DAR, CRA, CRB, MRA, and MRB) that define a data transfer can be specified independently of each other. Figure 16.8 shows chain transfer operation.

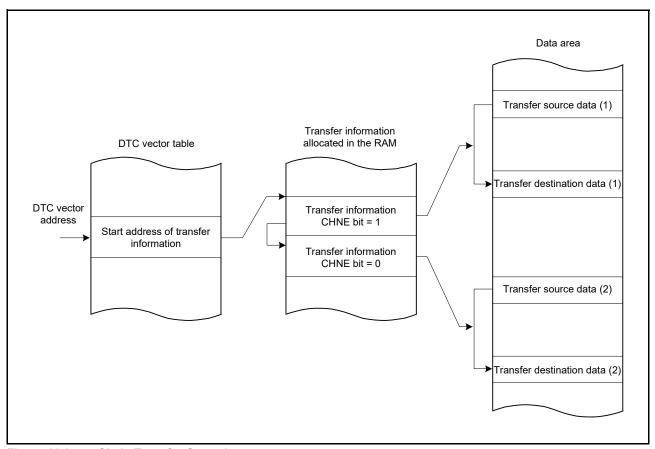


Figure 16.8 Chain Transfer Operation

If the MRB.CHNE bit is 1 and the CHNS bit is 1, chain transfer is performed only after completion of specified number of data transfers. In repeat transfer mode, chain transfer is performed after completion of specified number of data transfers.

For details on chain transfer conditions, refer to Table 16.3, Chain Transfer Conditions.

16.4.7 Operation Timing

Figure 16.9 to Figure 16.13 show examples of DTC operation timing.

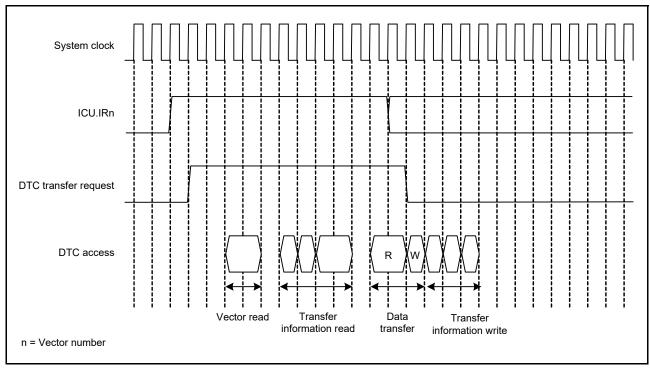


Figure 16.9 Example (1) of DTC Operation Timing (Short-Address Mode, Normal Transfer Mode, Repeat Transfer Mode)

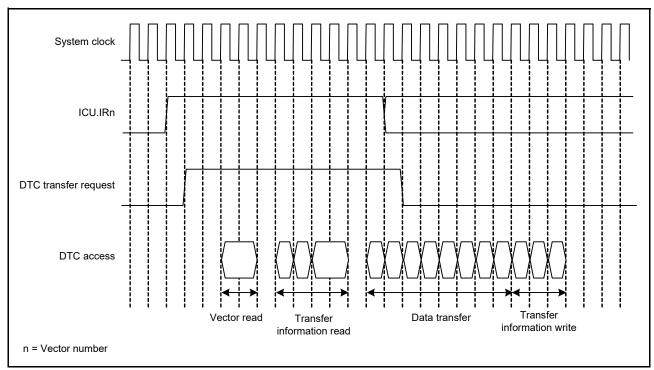


Figure 16.10 Example (2) of DTC Operation Timing (Short-Address Mode, Block Transfer Mode, Block Size = 4)

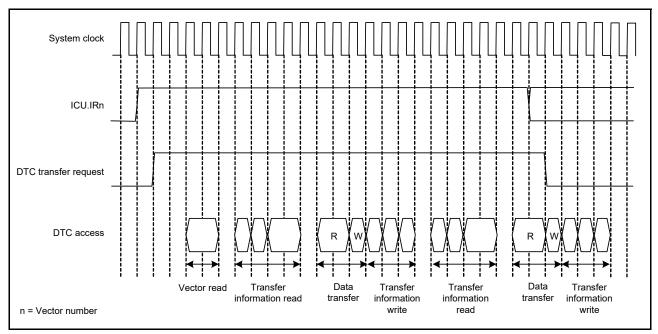


Figure 16.11 Example (3) of DTC Operation Timing (Short-Address Mode, Chain Transfer)



Figure 16.12 Example (4) of DTC Operation Timing (Full-Address Mode, Normal Transfer Mode, Repeat Transfer Mode)

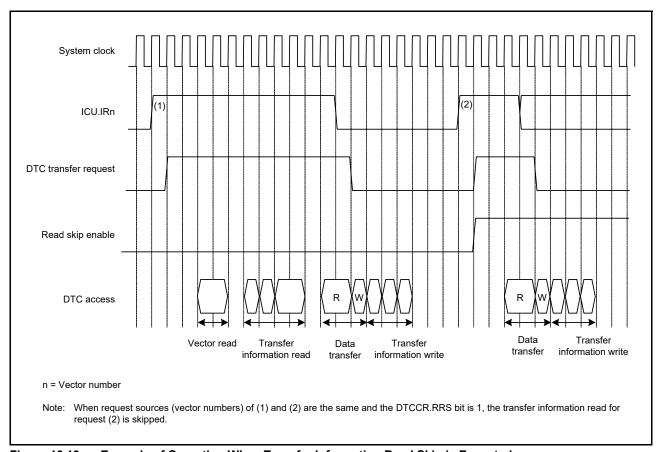


Figure 16.13 Example of Operation When Transfer Information Read Skip is Executed (Vector, Transfer Information, and Transfer Destination Data on the RAM, and Transfer Source Data on the Peripheral Module)

16.4.8 Execution Cycles of the DTC

Table 16.8 lists the execution cycles of single data transfer of the DTC.

For the order of the execution states, refer to section 16.4.7, Operation Timing.

Table 16.8 Execution Cycles of the DTC

Transfer						Transfer	Informati	on	Data T	ransfer	Interna	al
Mode	Vector I	Read	Transfer Info	rmation Read		Write			Read	Write	Opera	tion
Normal	Cv + 1	0*1	4 × Ci + 1*2	3 × Ci + 1*3	0*1	3 × Ci*4	2 × Ci*5	Ci*6	Cr + 1	Cw	2	0*1
Repeat									Cr + 1	Cw		
Block*7									P × Cr	P × Cw		

- Note 1. When transfer information read is skipped
- Note 2. In full-address mode
- Note 3. In short-address mode
- Note 4. When neither SAR nor DAR is set to address-fixed
- Note 5. When SAR or DAR is set to address-fixed
- Note 6. When SAR and DAR are set to address-fixed
- Note 7. When the block size is 2 or more. If the block size is 1, the cycle number for normal transfer is applied.
- P: Block size (initial settings of CRAH and CRAL)
- Cv: Cycles for access to vector transfer information storage destination
- Ci: Cycles for access to transfer information storage destination address
- Cr: Cycles for access to data read destination
- Cw: Cycles for access to data write destination

(The unit is system clocks (ICLK) for "+ 1" in the Vector Read, Transfer Information Read, and Data Transfer Read columns and "2" in the Internal Operation column.)

(Cv, Ci, Cr, and Cw vary depending on the corresponding access destination. For the number of cycles for respective access destinations, refer to section 38, RAM, section 39, Flash Memory, and section 5, I/O Registers.)

16.4.9 DTC Bus Mastership Release Timing

The DTC does not release the bus mastership during transfer information read and transfer information write. While transfer information is not read or written, bus arbitration is made according to the priority determined by the bus master arbitrator.

For bus arbitration, refer to section 15, Buses.

16.5 DTC Setting Procedure

Before using the DTC, set the DTC vector base register (DTCVBR).

Figure 16.14 shows the procedure to set the DTC.

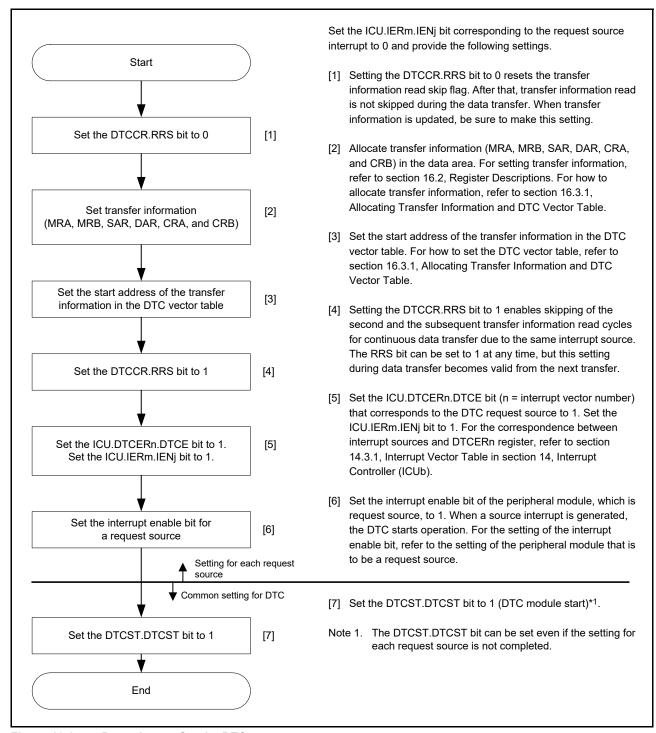


Figure 16.14 Procedure to Set the DTC

16.6 Examples of DTC Usage

16.6.1 Normal Transfer

As an example of DTC usage, its employment in the reception of 128 bytes of data by an SCI is described below.

(1) Transfer Information Setting

Set the MRA.MD[1:0] bits to 00b (normal transfer mode), the MRA.SZ[1:0] bits to 00b (byte transfer), and the MRA.SM[1:0] bits to 00b (source address is fixed). Set the MRB.CHNE bit to 0 (chain transfer is disabled), the MRB.DISEL bit to 0 (an interrupt request to the CPU is generated on completion of the specified number of data transfers), and the MRB.DM[1:0] bits to 10b (DAR is incremented after data transfer). The MRB.DTS bit can be set to any value. Set the RDR register address of the SCI in the SAR register, the start address of the RAM area for data storage in the DAR register, and 128 (0080h) in the CRA register. The CRB register can be set to any value.

(2) DTC Vector Table Setting

The start address of the transfer information for the RXI interrupt is set in the vector table for the DTC.

(3) ICU Setting and DTC Module Activation

Set the corresponding ICU.DTCERn.DTCE bit to 1 and the ICU.IERm.IENj bit to 1. Set the DTCST.DTCST bit to 1.

(4) SCI Setting

Enable the RXI interrupt by setting the SCR.RIE bit in the SCI to 1. If a reception error occurs during the SCI receive operation, further reception is not performed. Accordingly, make settings so that the CPU can accept receive error interrupts.

(5) DTC Transfer

Every time the reception of 1 byte by the SCI is completed, an RXI interrupt is generated to start the data transfer. The DTC transfers the received byte from the RDR of the SCI to RAM, after which the DAR register is incremented and the CRA register is decremented.

(6) Interrupt Handling

After 128 times of data transfers have been completed and the value in the CRA register becomes 0, an RXI interrupt request is output to the CPU. Complete the process in the handling routine for this interrupt.

16.6.2 Chain Transfer When the Counter is 0

The second data transfer is performed only when the transfer counter is set to 0 in the first data transfer, and the first data transfer information is repeatedly changed in the second data transfer. Repeating this chain transfer enables transfers to be repeated more than 256 times.

The following shows an example of configuring a 128-Kbyte input buffer to addresses 20 0000h to 21 FFFFh (where the input buffer is set so that its lower address starts with 0000h). Figure 16.15 shows a chain transfer when the counter is 0.

- (1) Set normal transfer mode for input data for the first data transfer. Set the following:

 Transfer source address: Fixed, the CRA register is 0000h (65,536 times), the MRB.CHNE bit is 1 (chain transfer is enabled), the MRB.CHNS bit is 1 (chain transfer is performed only when the transfer counter becomes 0), and the MRB.DISEL bit is 0 (an interrupt request to the CPU is generated on completion of the specified number of data transfers).
- (2) Prepare the upper 8 bits (in this case, 21h and 20h) of the start address at every 65,536 times of the transfer destination address for the first data transfer in another area (such as ROM).
- (3) For the second data transfer, set repeat transfer mode (source is repeat area) for rewriting the transfer destination address of the first data transfer. The transfer destination is the address where the upper 8 bits of the DAR register in the first transfer information is allocated. In this case, set the MRB.CHNE bit to 0 (chain transfer is disabled) and the MRB.DISEL bit to 0 (an interrupt request to the CPU is generated on completion of the specified number of data transfers). In this case, set the transfer counter to 2.
- (4) When a transfer request is accepted, the first data transfer is executed. When transfer is executed 65,536 times and the transfer counter of the first data transfer becomes 0, the second data transfer is started and the upper 8 bits of the transfer destination address of the first data transfer is set to 21h. At this time, the lower 16 bits of the transfer destination address and the transfer counter of the first data transfer have become 0000h.
- (5) In succession, when another transfer request is accepted, the first data transfer is executed. When transfer is executed 65,536 times and the transfer counter of the first data transfer becomes 0, the second data transfer is started and the upper 8 bits of the transfer destination address of the first data transfer is set to 20h. At this time, the lower 16 bits of the transfer destination address and the transfer counter of the first data transfer have become 0000h.
- (6) Steps (4) and (5) above are repeated infinitely. Because the second data transfer is in repeat transfer mode, no interrupt request to the CPU is generated.

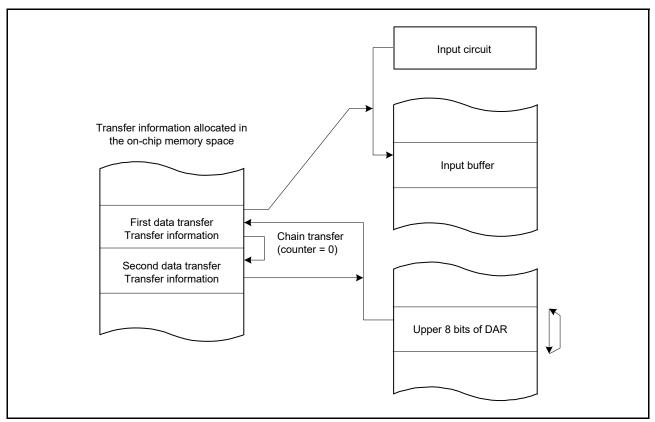


Figure 16.15 Chain Transfer When the Counter is 0

16.7 Interrupt Source

When the DTC has finished data transfer of specified count or when data transfer with the MRB.DISEL bit set to 1 (an interrupt request to the CPU is generated each time the data transfer is performed) has been completed, an interrupt to the CPU is generated by the DTC trigger source. Such interrupts to the CPU are controlled according to the PSW.I bit (interrupt enable) of the CPU, the PSW.IPL[3:0] bits (processor interrupt priority level), and the priority level of the interrupt controller.

16.8 Event Link

The DTC outputs an event signal on completing data transfer in response to one request.

16.9 Low Power Consumption Function

Before making a transition to the module stop state, deep sleep mode, or software standby mode, set the DTCST.DTCST bit to 0 (DTC module stop), and then perform the following.

(1) Module Stop Function

Writing 1 (transition to the module-stop state is made) to the MSTPCRA.MSTPA28 bit enables the module stop function of the DTC. If data transfer is in progress at the time 1 is written to the MSTPCRA.MSTPA28 bit, the transition to the module stop state proceeds after data transfer has ended. While the MSTPCRA.MSTPA28 bit is 1, accessing the DTC registers is prohibited.

Writing 0 (release from the module-stop state) to the MSTPCRA.MSTPA28 bit releases the DTC from the module stop state.

(2) Deep Sleep Mode

Make settings according to the procedure under section 11.6.2.1, Entry to Deep Sleep Mode, in section 11, Low Power Consumption.

If any data transfer is in progress at the time the WAIT instruction is executed, the transition to deep sleep mode follows the completion of the data transfer.

The DTC is released from the module stop state by writing 0 to the MSTPCRA.MSTPA28 bit following recovery from deep sleep mode.

(3) Software Standby Mode

Make settings according to the procedure under section 11.6.3.1, Entry to Software Standby Mode, in section 11, Low Power Consumption.

If any data transfer is in progress at the time the WAIT instruction is executed, the transition to software standby mode follows the completion of the data transfer.

(4) Notes on Low Power Consumption Function

For the WAIT instruction and the register setting procedure, refer to section 11.7.5, Timing of WAIT Instructions in section 11, Low Power Consumption.

To perform data transfer after returning from a low power consumption mode, set the DTCST.DTCST bit to 1 again. To use a request that is generated in deep sleep mode or software standby mode as an interrupt request to the CPU but not as a DTC transfer request, specify the CPU as the interrupt request destination according to the description in section 14.4.3, Selecting Interrupt Request Destinations in section 14, Interrupt Controller (ICUb), and then execute the WAIT instruction.

16.10 Usage Notes

16.10.1 Start Address of Transfer Information

Set multiples of 4 for the start addresses of the transfer information to be specified in the DTC vector table. If any value other than a multiple of 4 is specified, access still proceeds with the lower 2 bits of the address regarded as 00b.

16.10.2 Allocating Transfer Information

Allocate transfer information in the memory area according to the endian of the area as shown in Figure 16.16. For example, when writing CRA and CRB settings in 16-bit units in big endian, write the CRA setting to the address plus 8h (Ch) and the CRB setting to the address plus Ah (Eh). In little endian, write the CRB setting to the address plus 8h (Ch) and the CRA setting to the address plus Ah (Eh). When writing CRA and CRB settings in 32-bit units, allocate the CRA setting at the MSB side of the 32 bits and the CRB setting at the LSB side, and write the settings to the address plus 8h (Ch), regardless of endian.

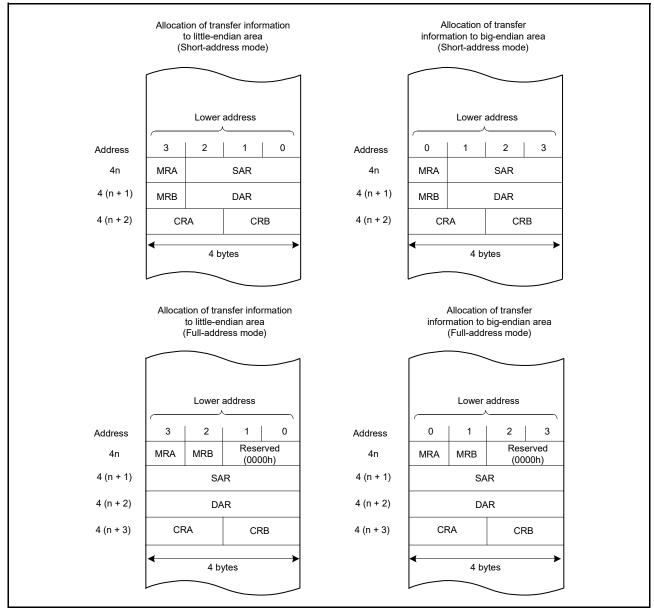


Figure 16.16 Allocation of Transfer Information

17. Event Link Controller (ELC)

17.1 Overview

The event link controller (ELC) uses the interrupt requests generated by various peripheral modules as event signals, and interconnects (links) peripheral modules. As a result, peripheral modules can directly perform interlinked operation among them without using software.

Event signals can be output regardless of the settings of the corresponding interrupt request enable bits.

Table 17.1 lists the specifications of the ELC, and Figure 17.1 shows a block diagram of the ELC.

Table 17.1 ELC Specifications

Item	Description
Event link function	 47 types of event signals can be directly interconnected to modules. Operation for timer modules when inputting an event signal can be selected. Event linkage operation is possible for port B. Single port*1: Event linkage operation can be set in a single specified port. Port group*1: Event linkage operation can be set by grouping multiple specified ports among total of eight ports.
Low power consumption function	Module stop state can be set.

Note 1. When an input signal to a corresponding pin changes, an event is generated in a single port or in a port group specified as the input. In products with 64-pin packages, an event linkage operation for PB6 and PB7 becomes impossible when PC0 and PC1 are selected by the port switching register A (PSRA). In products with 48-pin packages, an event linkage operation for PB0, PB1, PB3, and PB5 becomes impossible when PC0 to PC3 are selected by the port switching register B (PSRB).

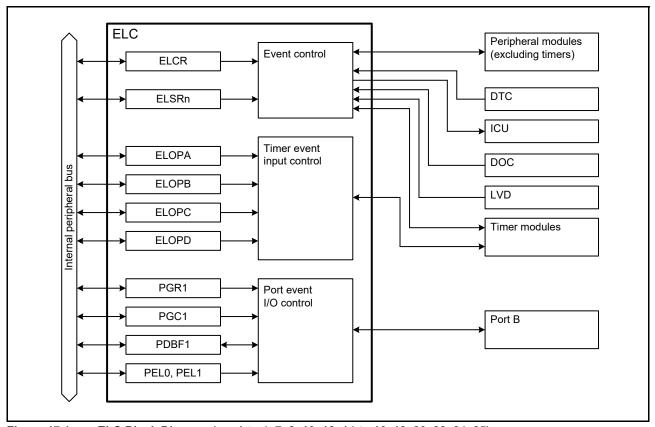
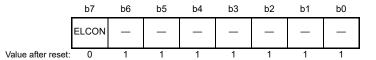
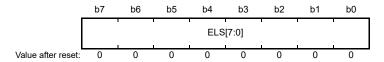



Figure 17.1 ELC Block Diagram (n = 1 to 4, 7, 8, 10, 12, 14 to 16, 18, 20, 22, 24, 25)

17.2 Register Descriptions

17.2.1 Event Link Control Register (ELCR)

Address(es): ELC.ELCR 0008 B100h



Bit	Symbol	Bit Name	Description	R/W
b6 to b0	_	Reserved	These bits are read as 1. The write value should be 1.	R/W
b7	ELCON	All Event Link Enable	0: ELC function is disabled. 1: ELC function is enabled.	R/W

The ELCR register controls operation of the ELC.

17.2.2 Event Link Setting Register n (ELSRn) (n = 1 to 4, 7, 8, 10, 12, 14 to 16, 18, 20, 22, 24, 25)

Address(es): ELC.ELSR1 0008 B102h, ELC.ELSR2 0008 B103h, ELC.ELSR3 0008 B104h, ELC.ELSR4 0008 B105h, ELC.ELSR7 0008 B108h, ELC.ELSR8 0008 B109h, ELC.ELSR10 0008 B108h, ELC.ELSR12 0008 B100h, ELC.ELSR14 0008 B107h, ELC.ELSR15 0008 B110h, ELC.ELSR16 0008 B111h, ELC.ELSR18 0008 B113h, ELC.ELSR20 0008 B115h, ELC.ELSR22 0008 B117h, ELC.ELSR24 0008 B119h, ELC.ELSR25 0008 B11Ah

Bit	Symbol	Bit Name	Description	R/W
b7 to b0	ELS[7:0]	Event Link Select	00h: Event signal output to the corresponding peripheral module is disabled.08h to 6Ah: Set the number for the event signal to be linked.Settings other than above are prohibited.	R/W

The ELSRn register specifies an event signal to be linked to for each peripheral module. Table 17.2 shows the correspondence between the ELSRn register and the peripheral modules. Table 17.3 shows the correspondence between values set in the ELSRn register and event signals.

Table 17.2 Correspondence between the ELSRn Register and the Peripheral Modules

Register Name	Peripheral Module	
ELSR1	MTU1	
ELSR2	MTU2	
ELSR3	MTU3	
ELSR4	MTU4	
ELSR7	CMT1	
ELSR8	ICU (LPT dedicated interrupt)*1	
ELSR10	TMR0	
ELSR12	TMR2	
ELSR14	CTSU	
ELSR15	S12AD	
ELSR16	DA0	
ELSR18	ICU (Interrupt 1)*2	
ELSR20	Output port group 1	
ELSR22	Input port group 1	
ELSR24	Single port 0*3	
ELSR25	Single port 1*3	

Note 1. Specify an event number to 32h (LPT compare match).

Note 2. Specify an event number from among 63h to 6Ah. Do not set other values.

Note 3. Do not set the DOC data operation condition met signal (6Ah) in the ELSR24 and ELSR25 registers.

Table 17.3 Correspondence between Values Set in ELSRn.ELS[7:0] Bits and Event Signals (1/2)

ELS[7:0] Bit Value	Peripheral Modules	Event Signal Set in ELSRn
08h	Multifunction timer pulse unit 2	MTU1 compare match 1A
09h		MTU1 compare match 1B
0Ah		MTU1 overflow
0Bh		MTU1 underflow
0Ch		MTU2 compare match 2A
0Dh		MTU2 compare match 2B
0Eh		MTU2 overflow
0Fh		MTU2 underflow
10h		MTU3 compare match 3A
11h		MTU3 compare match 3B
12h		MTU3 compare match 3C
13h		MTU3 compare match 3D
14h		MTU3 overflow
15h		MTU4 compare match 4A
16h		MTU4 compare match 4B
17h		MTU4 compare match 4C
18h		MTU4 compare match 4D
19h	_	MTU4 overflow
1Ah		MTU4 underflow
1Fh	Compare match timer	CMT1 compare match 1
22h	8-bit timers	TMR0 compare match A0
23h		TMR0 compare match B0
24h		TMR0 overflow
28h		TMR2 compare match A2
29h		TMR2 compare match B2
2Ah	_	TMR2 overflow
32h	Low power timer	LPT compare match
34h	12-bit A/D converter	S12AD comparison conditions are met
35h	-	S12AD comparison conditions are not met
3Ah	Serial communications interfaces	SCI5 error (receive error or error signal detection)
3Bh	_	SCI5 receive data full
3Ch	_	SCI5 transmit data empty
3Dh	-	SCI5 transmit end
4Eh	I ² C bus interface	RIIC0 communication error or event generation
4Fh	_	RIIC0 receive data full
50h	1	RIIC0 transmit data empty
51h	-	RIIC0 transmit end
58h	12-bit A/D converter	S12AD A/D conversion end
59h	Comparator B0	Comparison result change of comparator B0
5Ah	Comparator B0/B1	Comparison result change of comparator B0/B1
5Bh	Voltage detection circuit	LVD1 voltage detection
61h	Data transfer controller	DTC transfer end
63h	I/O ports	Input edge detection of input port group 1
65h	-	Input edge detection of single input port 0
66h	-	Input edge detection of single input port 1

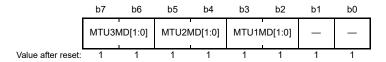


Table 17.3 Correspondence between Values Set in ELSRn.ELS[7:0] Bits and Event Signals (2/2)

ELS[7:0] Bit Value	Peripheral Modules	Event Signal Set in ELSRn		
69h	Event link controller	Software event		
6Ah	Data operation circuit	DOC data operation condition met		
Settings other than above are prohibited.				

17.2.3 Event Link Option Setting Register A (ELOPA)

Address(es): ELC.ELOPA 0008 B11Fh

Bit	Symbol	Bit Name	Description	R/W
b1, b0	_	Reserved	These bits are read as 1. The write value should be 1.	R/W
b3, b2	MTU1MD[1:0]	MTU1 Operation Select	b3 b2 0 0: Counting is started. 0 1: Counting is restarted. 1 0: Input capture*1 1 1: Event output is disabled.	R/W
b5, b4	MTU2MD[1:0]	MTU2 Operation Select	b5 b4 0 0: Counting is started. 0 1: Counting is restarted. 1 0: Input capture*2 1 1: Event output is disabled.	R/W
b7, b6	MTU3MD[1:0]	MTU3 Operation Select	b7 b6 0 0: Counting is started. 0 1: Counting is restarted. 1 0: Input capture*3 1 1: Event output is disabled.	R/W

Note 1. The MTU1.TCNT value is captured into the MTU1.TGRA register.

Note 2. The MTU2.TCNT value is captured into the MTU2.TGRA register.

Note 3. The MTU3.TCNT value is captured into the MTU3.TGRA register.

The ELOPA register specifies the operations of MTU1 to MTU3 when an event signal is input. Set 11b (event output is disabled) when the ELC function is not used.

17.2.4 Event Link Option Setting Register B (ELOPB)

Address(es): ELC.ELOPB 0008 B120h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	MTU4MD[1:0]	MTU4 Operation Select	 b1 b0 0 0: Counting is started. 0 1: Counting is restarted. 1 0: Input capture*1 1 1: Event output is disabled. 	R/W
b7 to b2	_	Reserved	These bits are read as 1. The write value should be 1.	R/W

Note 1. The MTU4.TCNT value is captured into the MTU4.TGRA register.

The ELOPB register specifies the operation of MTU4 when an event signal is input. Set 11b (event output is disabled) when the ELC function is not used.

17.2.5 Event Link Option Setting Register C (ELOPC)

Address(es): ELC.ELOPC 0008 B121h

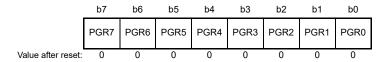


Bit	Symbol	Bit Name	Description	R/W
b1, b0	_	Reserved	These bits are read as 1. The write value should be 1.	R/W
b3, b2	CMT1MD[1:0]	CMT1 Operation Select	b3 b2 0 0: Counting is started. 0 1: Counting is restarted. 1 0: Event counter 1 1: Event output is disabled.	R/W
b5, b4	LPTMD[1:0]	LPT Operation Select	 b5 b4 0 0: Output the compare match event to ICU as an interrupt request 1 1: Event output is disabled. Settings other than above are prohibited. 	R/W
b7, b6	_	Reserved	These bits are read as 1. The write value should be 1.	R/W

The ELOPC register specifies the operations of CMT1 and LPT when an event signal is input. Set 11b (event output is disabled) when the ELC function is not used.

17.2.6 Event Link Option Setting Register D (ELOPD)

Address(es): ELC.ELOPD 0008 B122h



Bit	Symbol	Bit Name	Description	R/W
b1, b0	TMR0MD[1:0]	TMR0 Operation Select	b1 b0 0 0: Counting is started. 0 1: Counting is restarted. 1 0: Event counter 1 1: Event output is disabled.	R/W
b3, b2	_	Reserved	These bits are read as 1. The write value should be 1.	R/W
b5, b4	TMR2MD[1:0]	TMR2 Operation Select	b5 b4 0 0: Counting is started. 0 1: Counting is restarted. 1 0: Event counter 1 1: Event output is disabled.	R/W
b7, b6	_	Reserved	These bits are read as 1. The write value should be 1.	R/W

The ELOPD register specifies the operations of TMR0 and TMR2 when an event signal is input. Set 11b (event output is disabled) when the ELC function is not used.

17.2.7 Port Group Setting Register 1 (PGR1)

Address(es): ELC.PGR1 0008 B123h

Bit	Symbol	Bit Name	Description	R/W
b0	PGR0	Port Group Setting 0	0: Does not specify the port as a member of the port group.	R/W
b1	PGR1	Port Group Setting 1	1: Specifies the port as a member of the port group.	R/W
b2	PGR2	Port Group Setting 2		R/W
b3	PGR3	Port Group Setting 3	•	R/W
b4	PGR4	Port Group Setting 4		R/W
b5	PGR5	Port Group Setting 5		R/W
b6	PGR6	Port Group Setting 6		R/W
b7	PGR7	Port Group Setting 7		R/W

The PGR1 register specifies a group of I/O ports. Among the ports, ports corresponding to bits set to 1 in the register are selected for a port group.

For example, when the PGR6 and PGR3 bits in the PGR1 register are set to 1, the PB6 and PB3 pins are selected to a port group.

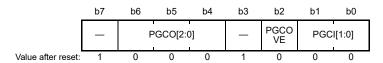

Table 17.4 shows the PGR1 register and corresponding port.

Table 17.4 Registers Related to Port Groups and Corresponding Port Numbers

Port Number	Port Group Setting Register (PGR)	Port Group Control Register (PGC)	Port Buffer Register (PDBF)
Port B	PGR1 register	PGC1 register	PDBF1 register

17.2.8 Port Group Control Register 1 (PGC1)

Address(es): ELC.PGC1 0008 B125h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	PGCI[1:0]	Event Output Edge Select	 b1 b0 0 0: Event signal is output upon detection of the rising edge of the input signal to the port. 0 1: Event signal is output upon detection of the falling edge of the input signal to the port. 1 x: Event signal is output upon detection of both the rising and falling edges of the input signal to the port. 	R/W
b2	PGCOVE	PDBF Overwrite	Overwriting the PDBF1 register is disabled. Overwriting the PDBF1 register is enabled.	R/W
b3	_	Reserved	This bit is read as 1. The write value should be 1.	R/W
b6 to b4			 b6 b4 0 0 0: Low is output when an event signal is input. 0 0 1: High is output when an event signal is input. 0 1 0: The output is toggled (inverted) when an event signal is input. 0 1 1: The buffer value is output when an event signal is input. 1 x x: The output data is rotated (from MSB to LSB) in the port group when an event signal is input. 	R/W
b7	_	Reserved	This bit is read as 1. The write value should be 1.	R/W

x: Don't care

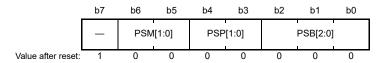
For the port group set as an output, the PGC1 register specifies the form of outputting the signal from the port when an event signal is input. For the port group set as an input, the PGC1 register enables/disables overwriting of the PDBF1 register and specifies the conditions of event generation (edge of the input signal).

Specify the I/O direction of the port by the corresponding bit in the PDR register.

Refer to Table 17.4 for the PGC1 register and corresponding port.

17.2.9 Port Buffer Register 1 (PDBF1)

Address(es): ELC.PDBF1 0008 B127h



Bit	Symbol	Bit Name	Description	R/W
b0	PDBF0	Port Buffer 0	Specify the data to be transferred to the PODR register when	R/W
b1	PDBF1	Port Buffer 1	an event signal is input. The setting value is valid when the PGC1.PGC0[2:0] bits are 011b or 1xxb. Write access to the	R/W
b2	PDBF2	Port Buffer 2	bit specified as a member of the input port group is disabled.	R/W
b3	PDBF3	Port Buffer 3	For details, refer to section 17.3, Operation.	R/W
b4	PDBF4	Port Buffer 4		R/W
b5	PDBF5	Port Buffer 5		R/W
b6	PDBF6	Port Buffer 6		R/W
b7	PDBF7	Port Buffer 7		R/W

The PDBF1 register is an 8-bit readable/writable register used in combination with the PGR1 register. Refer to section 17.3.5, I/O Port Operation When Event Signal is Input and Event Generation for the PDBF1 register operations. Refer to Table 17.4 for the PDBF1 register and corresponding port.

17.2.10 Event Link Port Setting Register n (PELn) (n = 0, 1)

Address(es): ELC.PEL0 0008 B129h, ELC.PEL1 0008 B12Ah

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	PSB[2:0]	Bit Number Specification	Set a bit number for a port to be specified as a single port.	R/W
b4, b3	PSP[1:0]	Port Number Specification	 b4 b3 0 0: Setting disabled 0 1: Port B (corresponding to PGR1) 1 0: Setting prohibited 1 1: Setting prohibited 	R/W
b6, b5	PSM[1:0]	Event Link Specification	 For the output port, specify the data to be output from the port. b6 b5 0 0: Low is output when an event signal is input. 0 1: High is output when an event signal is input. 1 x: The output is toggled (inverted) when an event signal is input. For the input port, select the edge on which the event signal is to be output. b6 b5 0 0: Event signal is output upon detection of the rising edge. 0 1: Event signal is output upon detection of the falling edge. 1 x: Event signal is output upon detection of both the rising and falling edges. 	R/W
b7	_	Reserved	This bit is read as 1. The write value should be 1.	R/W

x: Don't care

The PELn register specifies the single port, the operation upon an event signal input, and the conditions of event generation. This MCU can specify a total of two bits in port B to respective single ports. Specify the I/O direction of the port by the corresponding bit in the PDR register.

17.2.11 Event Link Software Event Generation Register (ELSEGR)

Address(es): ELC.ELSEGR 0008 B12Dh

Bit	Symbol	Bit Name	Description	R/W		
b0	SEG	Software Event Generation	Normal operation Software event is generated.	W		
b5 to b1	_	Reserved	These bits are read as 1. The write value should be 1.	R/W		
b6	WE	SEG Bit Write Enable	O: Write to SEG bit is disabled. T: Write to SEG bit is enabled.	R/W		
b7	WI	ELSEGR Register Write Disable	Write to ELSEGR register is enabled. Write to ELSEGR register is disabled.	W		

The MOV instruction must be used to write to this register.

SEG Bit (Software Event Generation)

When 1 is written to this bit while the WE bit is 1, a software event is generated.

This bit is read as 0. Even if 1 is written to this bit, this bit does not become 1.

WE Bit (SEG Bit Write Enable)

The SEG bit can be written to only when the WE bit is 1.

To set this bit to 1, write 0 to the WI bit and write 1 to this bit simultaneously.

To set this bit to 0, write 0 to the WI bit and write 0 to this bit simultaneously.

WI Bit (ELSEGR Register Write Disable)

The ELSEGR register can be written to only when the value to be written to the WI bit is 0.

This bit is read as 1.

17.3 Operation

17.3.1 Relation between Interrupt Handling and Event Linking

The peripheral modules incorporated in the MCU are provided with the interrupt request status flags and the interrupt enable bits to enable/disable these interrupt requests. When an interrupt request is generated in a peripheral module, the corresponding interrupt request status flag becomes 1. If the corresponding interrupt request is enabled then, the interrupt is requested to the CPU.

In contrast, the event link controller (ELC) uses the interrupt requests generated by various peripheral modules as event signals, interconnects (links) peripheral modules, and then, makes peripheral modules perform direct interlinked operation among them without using software. Event signals can be output regardless of the setting of the corresponding interrupt enable bit.

Figure 17.2 shows the relation between the interrupt handling and ELC.

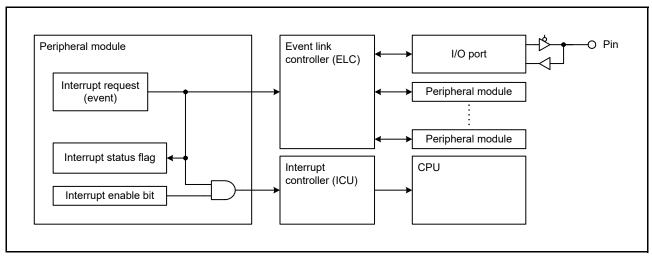


Figure 17.2 Relation between Interrupt Handling and ELC

17.3.2 Event Linkage

When events are specified in the ELSRn registers, the corresponding peripheral modules can be operated at generation of the specified events. A single peripheral module can link only with a single event. Set the ELSRn register after completing the initialization of the peripheral module to operate by an event. Table 17.5 lists the operations of peripheral modules when an event signal is input.

Table 17.5 Operations of Peripheral Modules When Event Signal is Input

Peripheral Module	Operations When Event Signal is I	nput					
MTU CMT TMR	 Starts counting when an event sign Restarts counting when an event s Counts the input events (CMT, TM 	The following operations can be selected by setting the ELOPA to ELOPD registers: • Starts counting when an event signal is input. • Restarts counting when an event signal is input. • Counts the input events (CMT, TMR). • Performs input-capture operation when an event signal is input (MTU).					
A/D converter	Starts A/D conversion when an even	t signal is input.					
D/A converter	Starts D/A conversion when an even	t signal is input.					
I/O ports (output)	The value of PODR register (port output data register) changes when an event signal is input (The level output from the corresponding pin changes).	Port group	 Changes the PODR register value to the specified value. Transfers the PDBF1 register value to the PODR register. Rotates the PODR register. 				
		Single port	Changes the PODR register value to the specified value.				
I/O ports (input)	When the signal level of the input	Port group	Generates an event.				
	pin changes	Single port					
	When an event signal is input	Port group	Transfers the signal level of the input pin to the PDBF1 register.				
		Single port	This combination cannot be used.				
Interrupt controller	Request an interrupt to the CPU or s	tarts DTC transfer w	rhen an event signal is input.				

17.3.3 Operation of Peripheral Timer Modules When Event Signal is Input

Set the ELOPA to ELOPD register to specify the operation for when an event signal is input.

(1) Count Start Operation

When an event signal is input, the timer starts counting and the count start bit*1 in each timer control register becomes 1. An event signal that is input while the count start bit is 1 is ignored.

(2) Count Restart Operation

When an event signal is input, the timer counter is cleared. Since the count start bit*1 in each timer control register is retained, counting is restarted when an event signal is input while the count start bit is 1.

(3) Event Counter Operation

Event signal is selected as the timer count source. When an event signal is input, the timer counter is incremented.

(4) Input Capture Operation

When an event signal is input, the timer performs input-capture operation.

Note 1. Refer to the register descriptions on starting the timer in the relevant peripheral timer module section.

17.3.4 Operation of A/D and D/A Converters When Event Signal is Input

When an event signal is input, the ADCSR.ADST bit and the DACR.DAOE0 bit*1 are set to 1 and the A/D and D/A converter start A/D and D/A conversion, respectively.

Note 1. Refer to the bit descriptions in the A/D converter and D/A converter sections.

17.3.5 I/O Port Operation When Event Signal is Input and Event Generation

The I/O port operation at an event signal input and conditions for event generation are set by the registers in ELC. The I/O port that is used to set an event linkage is port B.

(1) Single Ports and Port Groups

There are two event link modes: event link to single ports and event link to port groups. In the former mode, events can be interconnected to any one of the I/O ports. In the latter mode, events can be interconnected to port groups consisting of any two or more bits in the same I/O ports.

A single port can be set by the PELm.PSP[1:0] and PSB[1:0] bits (m = 0, 1). A port group can be specified by setting two or more bits in the PGR1 register to 1. Among the ports corresponding to the bits set to 1 in the PGR1 register, a port set as output becomes an output port group member, and a port set as input becomes an input port group member. If an I/O port is specified as both a single port and a member of a port group, both functions are enabled when the corresponding port is input, whereas only the port group function is enabled when the corresponding port is output. Set the PDR register to select the direction of the I/O ports.

(2) Event Generation in Single Input Ports

A single port that is set as input generates an event signal when the input signal to the corresponding pin changes. The event generation condition is specified using the PELm.PSM[1:0] bits (m = 0, 1). An example of operation is shown in Figure 17.3 (1).

(3) Single Output Ports Operation When Event Signal is Input

When an event signal is input to a single port set as output, the output level (the PODR register value) of the corresponding pin changes as specified by the PELm.PSM[1:0] bits. An example of operation is shown in Figure 17.3 (2).

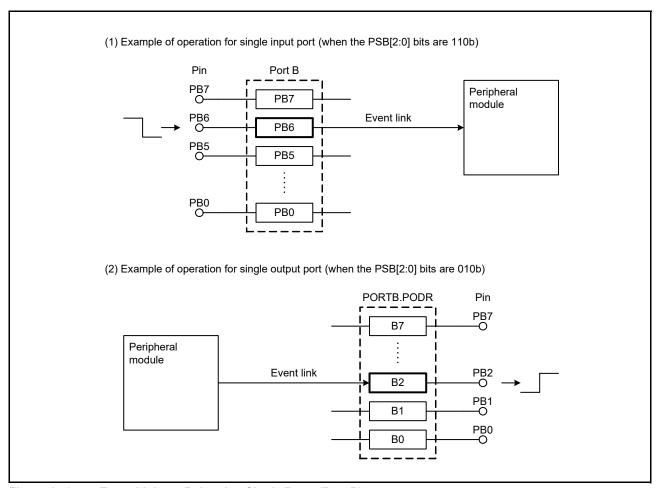


Figure 17.3 Event Linkage Related to Single Ports (Port B)

(4) Event Generation in Input Port Group

An input port group generates an event signal when any of input signals to the corresponding pins change. The event generation condition is specified using the PGC1.PGCI[1:0] bits.

(5) Input Port Group Operation When Event Signal is Input

When an event signal is input to an input port group, the level of the corresponding pins is transferred to the PDBF1 register. Values of the bits corresponding to ports that are not specified as members of the input port group do not change. An example of operation is shown in Figure 17.4.

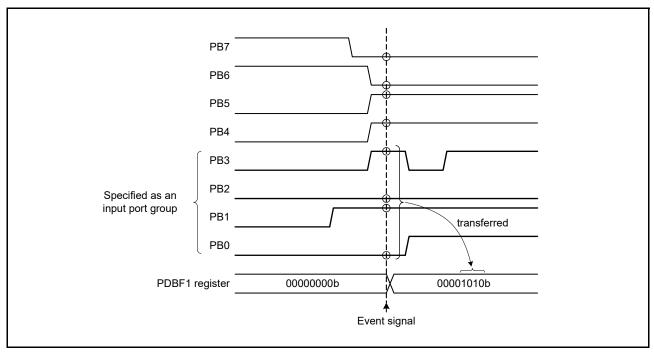


Figure 17.4 Event Linkage Related to Input Port Groups (Port B)

(6) Output Port Group Operation When Event Signal is Input

When an event signal is input to an output port group, the value of the corresponding PODR register changes according to a setting of the PGC1.PGC0[2:0] bits. An example of operation is shown in Figure 17.5.

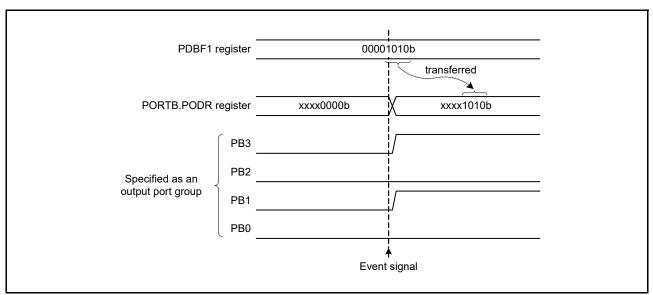


Figure 17.5 Event Linkage Related to Output Port Groups (Port B)

(7) Operation of the PDBF1 Register

(a) Input Port Groups

When an event signal is input to an input port group, the level of the corresponding pins is transferred to the PDBF1 register. When another event signal is input to the input port group in this condition, different operations are performed depending on the PGC1.PGCOVE bit setting described as below.

- When the PGC1.PGCOVE bit is 0 (overwriting is disabled)
 When the value transferred to the PDBF1 register after an input of the last event signal has already been read by the CPU or DTC, the level of the corresponding pins at the time is transferred to the PDBF1 register. When the value has not been read, the level of the pins is not transferred to the PDBF1 register, and the input event signal is ignored.
- When the PGC1.PGCOVE bit is 1 (overwriting is enabled)
 When another event signal is input to the input port group, the level of the corresponding pins is transferred to the PDBF1 register.

(b) Output Port Groups

Examples of operation are shown in Figure 17.6.

When an output port group is specified to output the PDBF1 register value (PGC1.PGCO[2:0] bits = 011b), the PDBF1 register value is transferred to the PODR register following an input of an event signal to the output port group. Data is not transferred to the bits corresponding to the ports that are not specified as members of the output port group. When output data is specified to rotate in an output port group (PGC1.PGCO[2:0] bits = 1xxb), the data is transferred from the PDBF1 register to the PODR register at first event signal, and the PODR register value is rotated from MSB to LSB within the relevant group at second and subsequent signals.

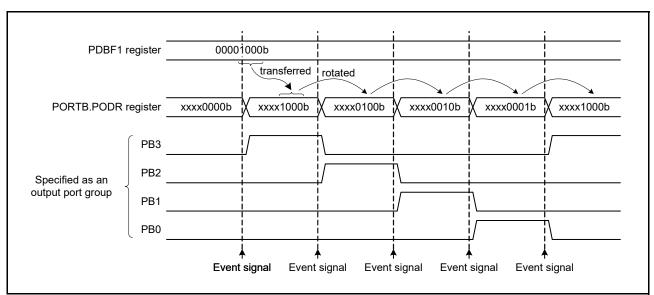


Figure 17.6 Bit-Rotating Operation of Output Port Groups (Port B)

(8) Restrictions on Writing to PODR and PDBF Registers

When the ELCR.ELCON bit is 1 (ELC function is enabled), write access to the PODR and PDBF1 registers becomes disabled at the following conditions.

- When a port is specified as a member of the input port group and when the event linkage is set, write access to the corresponding bit in the PDBF1 register becomes disabled. However, when the DOC is selected for event signal, write access is enabled.
- When a port is specified as a member of the output port group, write access to the corresponding bit in the PODR register becomes disabled.
- When a port is specified as a single output port and when the event linkage for the port is set by the ELSRn register, write access to the corresponding bit in the PODR register becomes disabled. However, when the DOC is selected for event signal, write access is enabled.

17.3.6 Example of Procedure for Linking Events

The following describes the procedure for linking events.

- (1) Initialize the peripheral module (destination) that operates based on an event signal.
- (2) When event linkage is set to a port, set the following registers corresponding to the port.

PODR register: Set the initial values of the output ports.

PDR register: Set the I/O direction of the ports.

PGR1 register: To operate ports for a port group, select ports to be specified as port group members.

PGC1 register: Set the operation of the port group.

PELm register: When a port is operated as a single port, specify the port to be used, an operation of the port at an

input of event signal, and the event generation condition (m = 0, 1).

- (3) Set the number of the event signal to the ELSRn register corresponding to the destination peripheral module.
- (4) To link an event to a timer module, set any of the ELOPA to ELOPD registers corresponding to the timer as required.
- (5) Set the ELCR.ELCON bit to 1, which enables linkage of all the events.
- (6) Set the operation of the peripheral module (source) from which an event signal is output, and activate the module. The preset operation of the destination peripheral module is started by the event signal that is output from the source peripheral module.
- (7) To stop event linkage of independent peripheral module, set 00h to the ELSRn register corresponding to the peripheral module. To stop linkage of all the events, set the ELCR.ELCON bit to 0.

Note: When using event signal output from the LVD, set the LVD and then the ELC. Set the corresponding ELSRn register to 00h and then disable the LVD.

17.4 Usage Notes

17.4.1 Setting ELSRn Register

(1) Setting ELSR8 Register

Set this register to 32h (LPT compare match).

(2) Setting ELSR18 Register

Specify an event number from among 63h to 6Ah. Do not set the value other than preceding numbers.

(3) Setting ELSR24 and ELSR25 Registers

Do not set the DOC data operation condition met signal (6Ah).

17.4.2 Setting Bit-Rotating Operation of Output Port Groups

When the values of the PDBF1 register are changed in the bit-rotating operation mode of the output port group, set the ELSRn register again. Set intervals for generating the event as at least one PCLKB cycle when using it for bit-rotating operation.

17.4.3 Linking DTC Transfer End Signal as Event

When linking the DTC transfer end signal as an event signal, do not set the same peripheral module as the DTC transfer destination and event link destination. If set, the peripheral module might be started before DTC transfer to the peripheral module is completed.

17.4.4 Clock Settings

To link events, make sure that the ELC and the related peripheral modules are in an operational condition. The peripheral modules cannot operate if they are in the module stop state or in mode which they stop (software standby mode).

17.4.5 Module Stop Function Setting

ELC operation can be disabled or enabled using module stop control register B (MSTPCRB). After reset is released, the ELC function is disabled. Register access is enabled by releasing the module stop state. For details, refer to section 11, Low Power Consumption.

18. I/O Ports

18.1 Overview

The I/O ports function as a general I/O port, an I/O pin of a peripheral module, an input pin for an interrupt. Some of the pins are also configurable as an I/O pin of a peripheral module or an input pin for an interrupt. All pins function as input pins immediately after a reset, and pin functions are switched by register settings. The setting of each pin is specified by the registers for the corresponding I/O port and on-chip peripheral modules.

Each port has the port direction register (PDR) that selects input or output direction, the port output data register (PODR) that holds data for output, the port input data register (PIDR) that indicates the pin states, the open drain control register y (ODRy, y = 0, 1) that selects the output type of each pin, the pull-up control register (PCR) that controls on/off of the input pull-up MOS, the drive capacity control register (DSCR) that selects the drive capacity, and the port mode register (PMR) that specifies the pin function of each port.

For details on the PMR register, see section 19, Multi-Function Pin Controller (MPC).

In 80-pin, 64-pin and 48-pin packages, port switching register A (PSRA) and port switching register B (PSRB) respectively are individually provided to use PORTC as an 8-bit port by switching the general I/O function of some pins. The configuration of the I/O ports differs depending on the package. Table 18.1 lists the specifications of I/O ports, and Table 18.2, Table 18.3 list the port functions.

Table 18.1 Specifications of I/O Ports

	Package		Package		Package		Package	
Port	100 Pins	Number of Pin	80 Pins	Number of Pin	64 Pins	Number of Pin	48 Pins	Number of Pin
PORT0	P03 to P07	5	P03 to P07	5	P03, P05	2	Not provided	0
PORT1	P12 to P17	6	P12 to P17	6	P14 to P17	4	P14 to P17	4
PORT2	P20 to P27	8	P20, P21, P26, P27	4	P26, P27	2	P26, P27	2
PORT3	P30 to P37	8	P30 to P32, P34 to P37	7	P30 to P32, P35 to P37	6	P30, P31, P35 to P37	5
PORT4	P40 to P47	8	P40 to P47	8	P40 to P47	8	P40 to P42, P45 to P47	6
PORT5	P50 to P55	6	P54, P55	2	P54, P55	2	Not provided	0
PORTA	PA0 to PA7	8	PA0 to PA6	7	PA0, PA1, PA3, PA4, PA6	5	PA1, PA3, PA4, PA6	4
PORTB	PB0 to PB7	8	PB0 to PB7	8	PB0, PB1, PB3, PB5 to PB7	6	PB0, PB1, PB3, PB5	4
PORTC	PC0 to PC7	8	PC2 to PC7*1	6* ³	PC2 to PC7*1	6* ³	PC4 to PC7*2	4*3
PORTD	PD0 to PD7	8	PD0 to PD2	3	Not provided	0	Not provided	0
PORTE	PE0 to PE7	8	PE0 to PE5	6	PE0 to PE5	6	PE1 to PE4	4
PORTH	PH0 to PH3	4	PH0 to PH3	4	PH0 to PH3	4	PH0 to PH3	4
PORTJ	PJ1, PJ3, PJ6, PJ7	4	PJ1, PJ6, PJ7	3	PJ6, PJ7	2	PJ6, PJ7	2
	Total of Pins	89	Total of Pins	69	Total of Pins	53	Total of Pins	39

Note 1. PC0 and PC1 are valid only when switching by the port switching register A.

Note 2. PC0 to PC3 are valid only when switching by the port switching register B.

Note 3. The number of the multiplexed pin functions with PB is not included.

Table 18.2 Port Functions (100 pins)

Port	Pin	Input Pull-up	Open Drain Output	Drive Capacity Switching	5-V Tolerant	IO Level
PORT0	P03 to P07	0	_	Fixed to normal output	_	AVCC0
PORT1	P12, P13, P16, P17	0	0	0	0	VCC
	P14, P15	0	0	0	_	
PORT2	P20, P21 to P23, P26, P27	0	0	0	_	
	P24, P25	0	_	0	_	
PORT3	P30 to P34	0	0	0	_	
	P35	_	_	_	_	
	P36, P37	0	0	Fixed to normal output	_	
PORT4	P40 to P47	0	_	Fixed to normal output	_	AVCC0
PORT5	P50 to P52, P54	0	_	0	_	VCC
	P53, P55	0	_	0	_	
PORTA	PA0 to PA7	0	0	0	_	
PORTB	PB0 to PB7	0	0	0	_	
PORTC	PC2 to PC7	0	0	0	_	
PORTD	PD0 to PD2	0	0	0	_	
	PD3 to PD7	0	_	0	_	
PORTE	PE0 to PE3	0	0	0	_	
	PE4 to PE7	0	_	0	_	
PORTH	PH0 to PH3	0	_	0	_	
PORTJ	PJ1	0	_	0	_	
	PJ3	0	0	0	_	
	PJ6, PJ7	0	_	Fixed to normal output	_	AVCC0

o: Supported

^{—:} Unsupported

Table 18.3 Port Functions (48 to 80 pins)

Port	Pin	Input Pull-up	Open Drain Output	Drive Capacity Switching	5-V Tolerant	IO Level
PORT0	P03 to P07	0	_	Fixed to normal output	_	AVCC0
PORT1	P12, P13, P16, P17	0	0	0	0	VCC
	P14, P15	0	0	0	_	
PORT2	P20, P21	0	_	0	_	
	P26, P27	0	0	0	_	
PORT3	P30 to P32, P34	0	0	0	_	
	P35	_	_	_	_	
	P36, P37	0	0	Fixed to normal output	_	
PORT4	P40 to P47	0	_	Fixed to normal output	_	AVCC0
PORT5	P54	0	_	0	_	VCC
	P55	0	_	0	_	
PORTA	PA0 to PA6	0	0	0	_	
PORTB	PB0 to PB3	0	0	0	_	
	PB4 to PB7	0	_	0	_	
PORTC	PC0 to PC7*1	0	0	0	_	
PORTD	PD0 to PD2	0	0	0	_	
PORTE	PE0 to PE3	0	0	0	_	
	PE4, PE5	0	_	0	_	
PORTH	PH0 to PH3	0	_	0	_	
PORTJ	PJ1	0	_	0	_	
	PJ6, PJ7	0	_	Fixed to normal output	_	AVCC0

 $[\]circ \hbox{: Supported}$

Note 1. PC0 and PC1 are valid only when switching by the port switching register A or B.

Specifying input pull-up, open-drain output, switching of drive capacity, or 5-V tolerance is available for other signals on pins that also function as general I/O pins.

^{—:} Unsupported

18.2 I/O Port Configuration

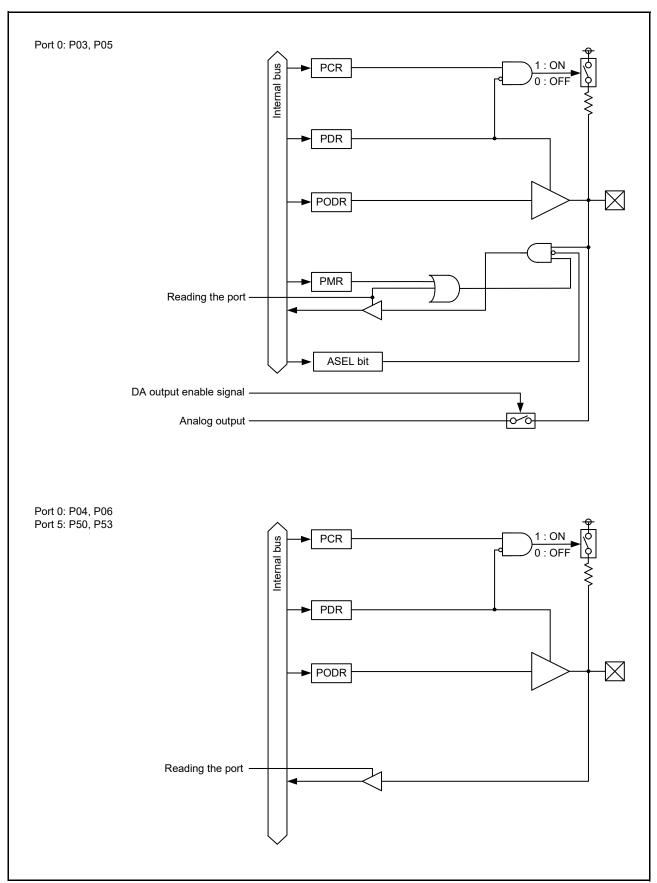


Figure 18.1 I/O Port Configuration (1)

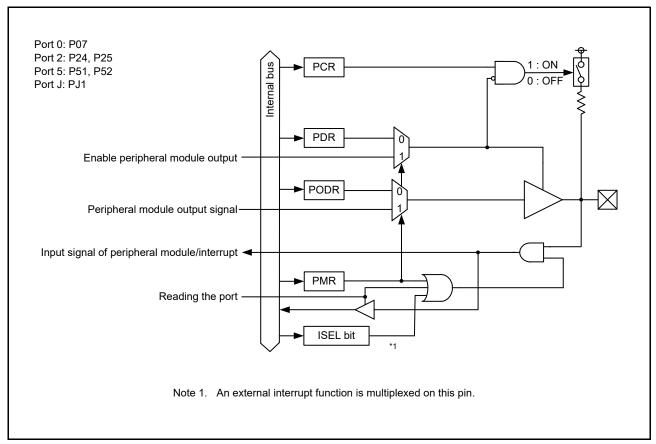


Figure 18.2 I/O Port Configuration (2)

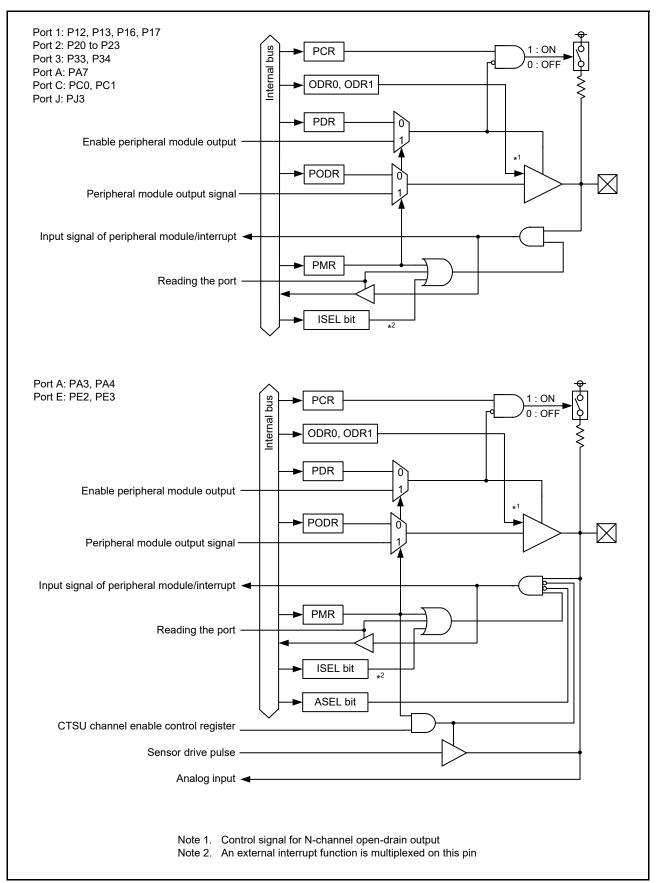


Figure 18.3 I/O Port Configuration (3)

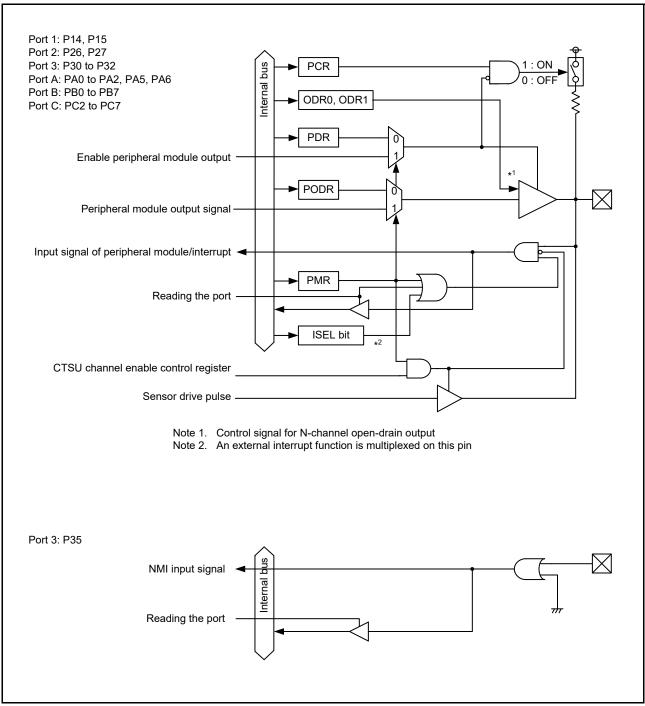


Figure 18.4 I/O Port Configuration (4)

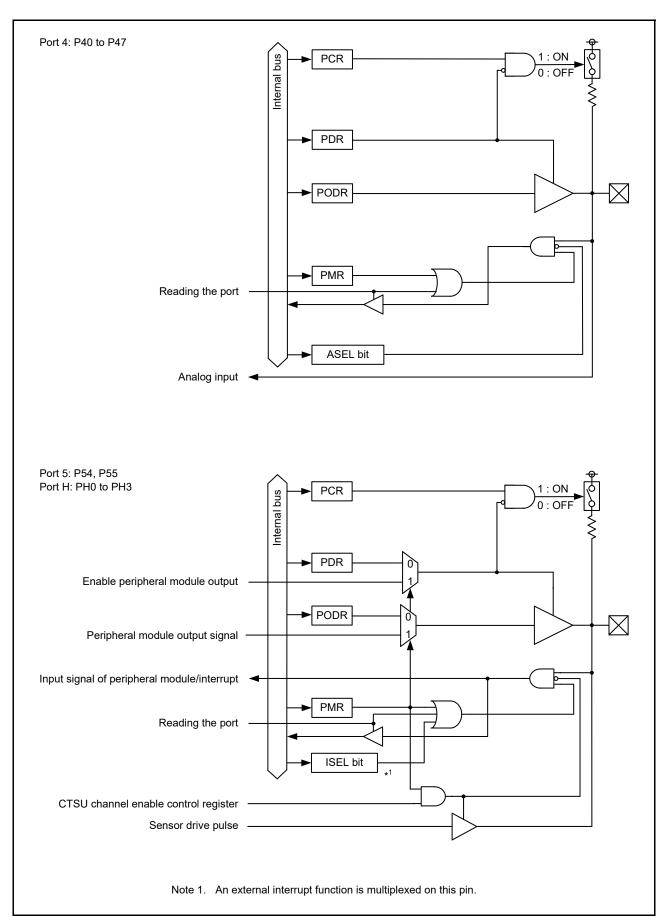


Figure 18.5 I/O Port Configuration (5)

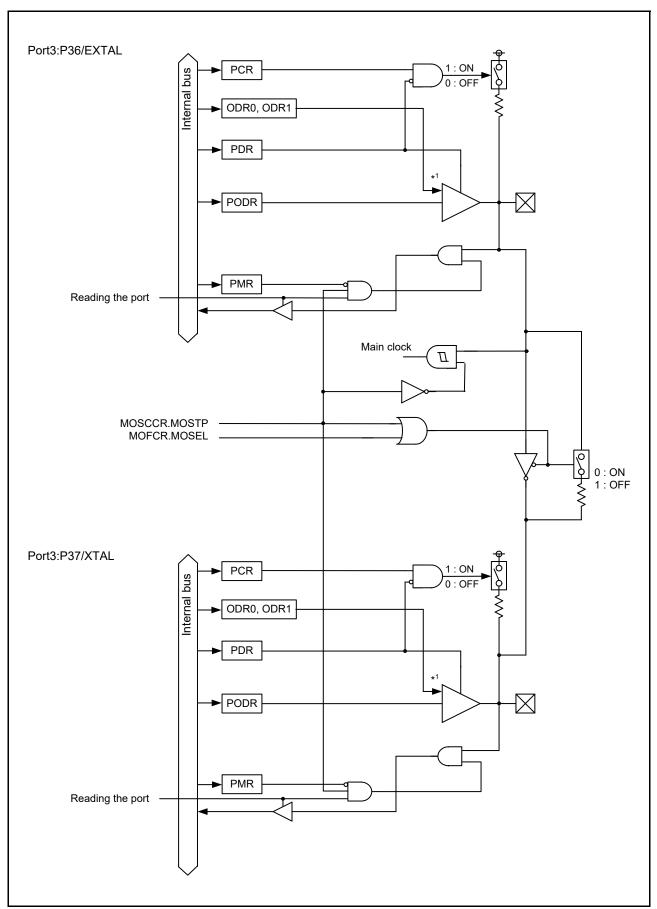


Figure 18.6 I/O Port Configuration (6)

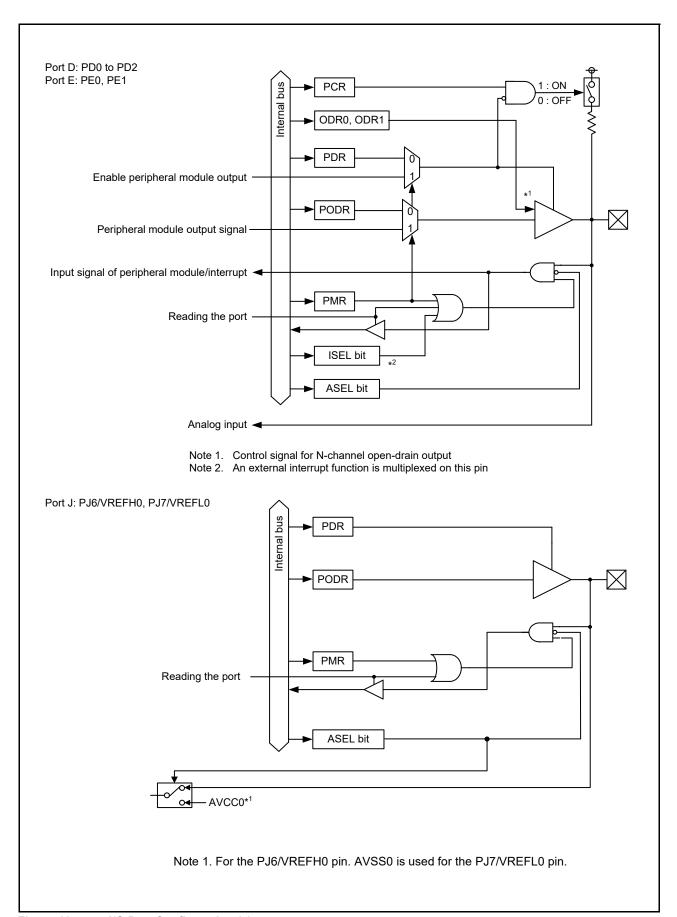


Figure 18.7 I/O Port Configuration (7)

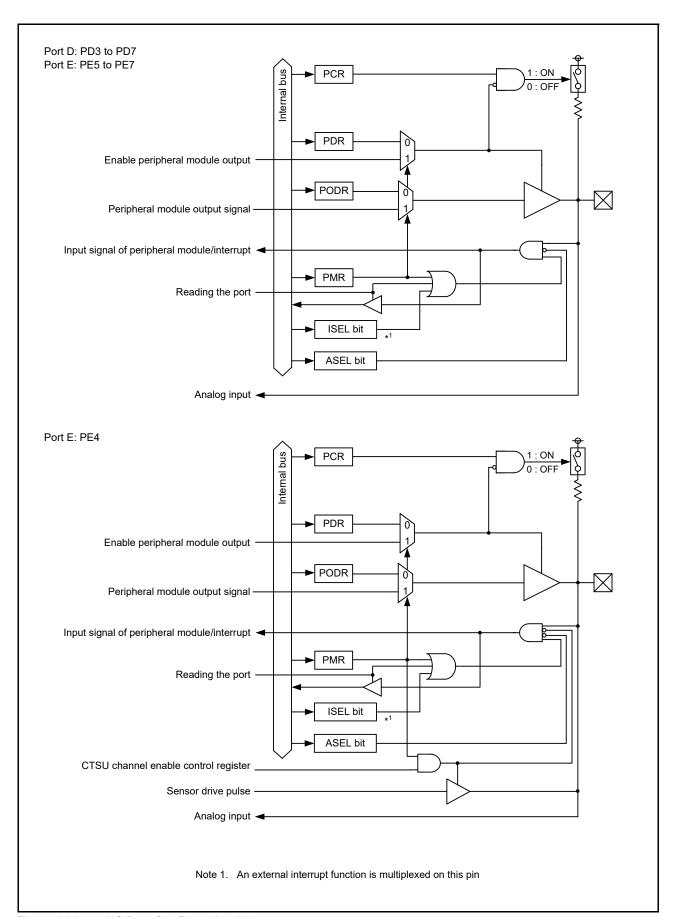


Figure 18.8 I/O Port Configuration (8)

18.3 **Register Descriptions**

18.3.1 Port Direction Register (PDR)

PORT0.PDR 0008 C000h, PORT1.PDR 0008 C001h, PORT2.PDR 0008 C002h, PORT3.PDR 0008 C003h, PORT4.PDR 0008 C004h, PORT5.PDR 0008 C005h, PORTA.PDR 0008 C00Ah, PORTB.PDR 0008 C00Bh, PORTC.PDR 0008 C00Ch, PORTD.PDR 0008 C00Dh, PORTE.PDR 0008 C00Eh, PORTH.PDR 0008 C011h, PORTJ.PDR 0008 C012h Address(es):

b7 b5 b4 b3 b2 b0 b6 b1 В7 B6 B5 В4 В3 B2 В1 В0 Value after reset: 0 0 0 0 0 0 0 0

Bit	Symbol	Bit Name	Description	R/W
b0	В0	Pm0 I/O Select	0: Input (Functions as an input pin.)	R/W
b1	B1	Pm1 I/O Select	1: Output (Functions as an output pin.)	
b2	B2	Pm2 I/O Select		R/W
b3	В3	Pm3 I/O Select		R/W
b4	B4	Pm4 I/O Select		R/W
b5	B5	Pm5 I/O Select		R/W
b6	В6	Pm6 I/O Select		R/W
b7	B7	Pm7 I/O Select		R/W

m = 0 to 5, A to E, H, J

PDR is used to select the input or output direction for individual pins of the corresponding port m when the pins are configured as the general I/O pins.

Each bit of PORTm.PDR corresponds to each pin of port m; I/O direction can be specified in 1-bit units.

Write 1 (output) to each bit of PDR corresponding to port m that does not exist.

The PORT3.PDR.B5 bit is reserved, because the P35 pin is input only. A reserved bit is read as 0. The write value should be 0.

18.3.2 Port Output Data Register (PODR)

Address(es): PORT0.PODR 0008 C020h, PORT1.PODR 0008 C021h, PORT2.PODR 0008 C022h, PORT3.PODR 0008 C023h, PORT4.PODR 0008 C024h, PORT5.PODR 0008 C025h, PORTA.PODR 0008 C02Ah, PORTB.PODR 0008 C02Bh, PORTC.PODR 0008 C02Ch, PORTD.PODR 0008 C02Dh, PORTE.PODR 0008 C02Eh, PORTH.PODR 0008 C031h, PORTJ.PODR 0008 C032h

_	b7	b6	b5	b4	b3	b2	b1	b0
	В7	В6	B5	B4	В3	B2	B1	В0
Value after reset:	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	В0	Pm0 Output Data Store	Holds output data.	R/W
b1	B1	Pm1 Output Data Store		R/W
b2	B2	Pm2 Output Data Store		R/W
b3	В3	Pm3 Output Data Store		R/W
b4	B4	Pm4 Output Data Store		R/W
b5	B5	Pm5 Output Data Store		R/W
b6	B6	Pm6 Output Data Store		R/W
b7	B7	Pm7 Output Data Store		R/W

m = 0 to 5, A to E, H, J

PODR holds the data to be output from the pins used for general output ports.

Bits corresponding to port m on the 100 pin-product but which do not exist on a product with fewer than 100 pins are reserved. Write 0 to these bits.

The PORT3.PODR.B5 bit is reserved, because the P35 pin is input only. The bit corresponding to a pin that does not exist is reserved. A reserved bit is read as 0. The write value should be 0.

18.3.3 Port Input Data Register (PIDR)

PORT0.PIDR 0008 C040h, PORT1.PIDR 0008 C041h, PORT2.PIDR 0008 C042h, PORT3.PIDR 0008 C043h, PORT4.PIDR 0008 C044h, PORT5.PIDR 0008 C045h, PORT4.PIDR 0008 C044h, PORT5.PIDR 0008 C046h, PORT6.PIDR 0008 C046h, PORT6.PIDR 0008 C046h, PORT6.PIDR 0008 C046h, PORT6.PIDR 0008 C051h, PORT9.PIDR 0008 C052h Address(es):

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b0	В0	Pm0	Indicates individual pin states of the	R
b1	B1	Pm1	corresponding port.	R
b2	B2	Pm2		R
b3	В3	Pm3		R
b4	B4	Pm4		R
b5	B5	Pm5		R
b6	B6	Pm6		R
b7	В7	Pm7		R

m = 0 to 5, A to E, H, J

PIDR indicates individual pin states of port m.

The pin states of port m can be read with the PORTm.PIDR, regardless of the values of PORTm.PDR and PORTm.PMR. The NMI pin state is reflected in the P35 bit.

The bit corresponding to a pin that does not exist is reserved. A reserved bit is read as undefined, and cannot be modified.

Note: When using P36 and P37 as general I/O ports, set the MOSCCR.MOSTP bit to 1 (main clock oscillator is stopped) and the P36 and P37 control bits in the PORT3.PMR register to 0 (use pin as general I/O port).

18.3.4 Port Mode Register (PMR)

Address(es): PORT0.PMR 0008 C060h, PORT1.PMR 0008 C061h, PORT2.PMR 0008 C062h, PORT3.PMR 0008 C063h, PORT4.PMR 0008 C064h, PORT5.PMR 0008 C065h, PORTA.PMR 0008 C06Ah, PORTB.PMR 0008 C06Bh, PORTC.PMR 0008 C06Ch, PORTD.PMR 0008 C06Dh, PORTE.PMR 0008 C06Eh, PORTH.PMR 0008 C071h, PORTJ.PMR 0008 C072h

_	b7	b6	b5	b4	b3	b2	b1	b0
	В7	В6	B5	B4	В3	B2	B1	В0
Value after reset:	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	В0	Pm0 Pin Mode Control	0: Use pin as general I/O port.	R/W
b1	B1	Pm1 Pin Mode Control	1: Use pin as I/O port for peripheral functions.	R/W
b2	B2	Pm2 Pin Mode Control		R/W
b3	В3	Pm3 Pin Mode Control		R/W
b4	B4	Pm4 Pin Mode Control		R/W
b5	B5	Pm5 Pin Mode Control		R/W
b6	В6	Pm6 Pin Mode Control		R/W
b7	B7	Pm7 Pin Mode Control		R/W

m = 0 to 5, A to E, H, J

Each bit of PORTm.PMR corresponds to each pin of port m; pin function can be specified in 1-bit units.

Bits corresponding to port m on the 100 pin-product but which do not exist on a product with fewer than 100 pins are reserved. Write 0 to these bits.

The bit corresponding to a pin that does not exist is reserved. A reserved bit is read as 0. The write value should be 0.

18.3.5 Open Drain Control Register 0 (ODR0)

Address(es): PORT1.ODR0 0008 C082h, PORT2.ODR0 0008 C084h, PORT3.ODR0 0008 C086h, PORTA.ODR0 0008 C094h, PORTB.ODR0 0008 C096h, PORTC.ODR0 0008 C098h, PORTD.ODR0 0008 C09Ah, PORTE.ODR0 0008 C09Ch, PORTJ.ODR0 0008 C0A4h

_	b7	b6	b5	b4	b3	b2	b1	b0
	В7	В6	B5	B4	В3	B2	B1	В0
Value after reset:	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	В0	Pm0 Output Type Select	0: CMOS output 1: N-channel open-drain	R/W
b1	B1	Reserved	This bit is read as 0. The write value should be 0.	R/W
b2	B2	Pm1 Output Type Select	• P21, P31, PA1, PB1, PC1, PD1	R/W
b3	В3		b2 0: CMOS output 1: N-channel open-drain b3 This bit is read as 0. The write value should be 0. • PE1 b3 b2 0 0: CMOS output 0 1: N-channel open-drain 1 0: P-channel open-drain 1 1: Hi-Z	R/W
b4	B4	Pm2 Output Type Select	0: CMOS output 1: N-channel open-drain	R/W
b5	B5	Reserved	This bit is read as 0. The write value should be 0.	R/W
b6	B6	Pm3 Output Type Select	0: CMOS output 1: N-channel open-drain	R/W
b7	В7	Reserved	This bit is read as 0. The write value should be 0.	R/W

m = 1 to 3, A to E, J

Bits corresponding to port m on the 100 pin-product but which do not exist on a product with fewer than 100 pins are reserved. Write 0 to these bits.

The bits corresponding to a pin that does not exist or pins with no open-drain output allocation are reserved. A reserved bit is read as 0. The write value should be 0.

18.3.6 Open Drain Control Register 1 (ODR1)

Address(es): PORT1.ODR1 0008 C083h, PORT2.ODR1 0008 C085h, PORT3.ODR1 0008 C087h, PORTA.ODR1 0008 C095h, PORTB.ODR1 0008 C097h, PORTC.ODR1 0008 C099h

Bit	Symbol	Bit Name	Description	R/W
b0	В0	Pm4 Output Type Select	0: CMOS output 1: N-channel open-drain	R/W
b1	B1	Reserved	This bit is read as 0. The write value should be 0.	R/W
b2	B2	Pm5 Output Type Select	0: CMOS output 1: N-channel open-drain	R/W
b3	В3	Reserved	This bit is read as 0. The write value should be 0.	R/W
b4	B4	Pm6 Output Type Select	0: CMOS output 1: N-channel open-drain	R/W
b5	B5	Reserved	This bit is read as 0. The write value should be 0.	R/W
b6	В6	Pm7 Output Type Select	0: CMOS output 1: N-channel open-drain	R/W
b7	В7	Reserved	This bit is read as 0. The write value should be 0.	R/W

m = 1 to 3, A to C

Bits corresponding to port m on the 100 pin-product but which do not exist on a product with fewer than 100 pins are reserved. Write 0 to these bits.

The PORT3.ODR1.B2 bit is reserved, because the P35 pin is input only.

The bits corresponding to a pin that does not exist or pins with no open-drain output allocation are reserved. A reserved bit is read as 0. The write value should be 0.

18.3.7 Pull-Up Control Register (PCR)

PORT0.PCR 0008 C0C0h, PORT1.PCR 0008 C0C1h, PORT2.PCR 0008 C0C2h, PORT3.PCR 0008 C0C3h, PORT4.PCR 0008 C0C4h, PORT5.PCR 0008 C0C5h, PORTA.PCR 0008 C0CAh, PORTB.PCR 0008 C0CBh, PORTC.PCR 0008 C0CCh, PORTD.PCR 0008 C0CDh, PORTE.PCR 0008 C0CEh, PORTH.PCR 0008 C0D1h, PORTJ.PCR 0008 C0D2h Address(es):

_	b7	b6	b5	b4	b3	b2	b1	b0
	В7	В6	B5	B4	В3	B2	B1	В0
Value after reset:	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	В0	Pm0 Input Pull-Up Resistor Control	0: Disables an input pull-up resistor.	R/W
b1	B1	Pm1 Input Pull-Up Resistor Control	1: Enables an input pull-up resistor.	R/W
b2	B2	Pm2 Input Pull-Up Resistor Control		R/W
b3	В3	Pm3 Input Pull-Up Resistor Control		R/W
b4	B4	Pm4 Input Pull-Up Resistor Control		R/W
b5	B5	Pm5 Input Pull-Up Resistor Control		R/W
b6	B6	Pm6 Input Pull-Up Resistor Control		R/W
b7	B7	Pm7 Input Pull-Up Resistor Control		R/W

m = 0 to 5, A to E, H, J

While a pin is in the input state with the corresponding bit in PORTm.PCR set to 1, the pull-up resistor connected to the pin is enabled.

When a pin is used as a general port output pin, or a peripheral function output pin, the pull-up resistor for the pin is disabled regardless of the settings of the PCR register.

The pull-up resistor is also disabled in the reset state.

The B5 bit in PORT3.PCR is reserved. The bit corresponding to a pin that does not exist is also reserved. A reserved bit is read as 0. The write value should be 0.

18.3.8 Port Switching Register A (PSRA)

Address(es): PORT.PSRA 0008 C121h

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b6	PSEL6	PB6/PC0 Switching	0: PB6 general I/O port function is selected 1: PC0 general I/O port function is selected	R/W
b7	PSEL7	PB7/PC1 Switching	0: PB7 general I/O port function is selected 1: PC1 general I/O port function is selected	R/W

Note: The PSRA register is for 80-pin and 64-pin packages.

The PSRA register is used to select either the general I/O functions of PB6 and PB7 or those of PC0 and PC1. When 1 is written to the PSEL6 and PSEL7 bits, port C can be used as an 8-bit port. Figure 18.9 shows the switching general-purpose I/O port by the PSRA register.

As for the I/O functions of the peripheral functions, functions multiplexed with PB6 and PB7 are enabled. To enable the peripheral functions, write 1 to the corresponding pin mode control bit of the PORTB.PMR register.

Rewriting this register must be performed when the PMR, PDR, and PCR registers for the corresponding pins are 0.

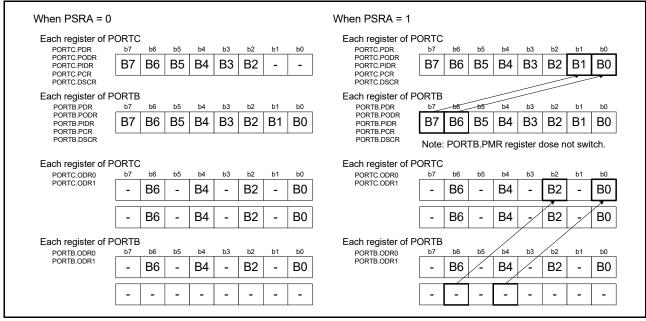
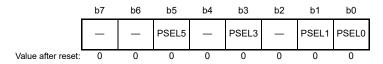



Figure 18.9 Switching General-Purpose I/O Port by the PSRA Register

18.3.9 Port Switching Register B (PSRB)

Address(es): PORT.PSRB 0008 C120h

Bit	Symbol	Bit Name	Description	R/W
b0	PSEL0	PB0/PC0 Switching	0: PB0 general I/O port function is selected 1: PC0 general I/O port function is selected	R/W
b1	PSEL1	PB1/PC1 Switching	0: PB1 general I/O port function is selected 1: PC1 general I/O port function is selected	R/W
b2	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b3	PSEL3	PB3/PC2 Switching	0: PB3 general I/O port function is selected 1: PC2 general I/O port function is selected	R/W
b4	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b5	PSEL5	PB5/PC3 Switching	0: PB5 general I/O port function is selected 1: PC3 general I/O port function is selected	R/W
b6, b7	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: The PSRB register is for 48-pin packages.

The PSRB register is used to select either the general I/O functions of PB0, PB1, PB3, and PB5 and those of PC0 to PC3. When 1 is written to the PSEL0, PSEL1, PSEL3, and PSEL5 bits, port C can be used as an 8-bit port. Figure 18.10 show the switching general-purpose I/O port by the PSRA register.

As for the I/O functions of the peripheral functions, functions multiplexed with PB0, PB1, PB3, and PB5 are enabled. To enable the peripheral functions, write 1 to the corresponding pin mode control bit of the PORTB.PMR register. Rewriting this register must be performed when the PMR, PDR, and PCR registers for the corresponding pins are 0.

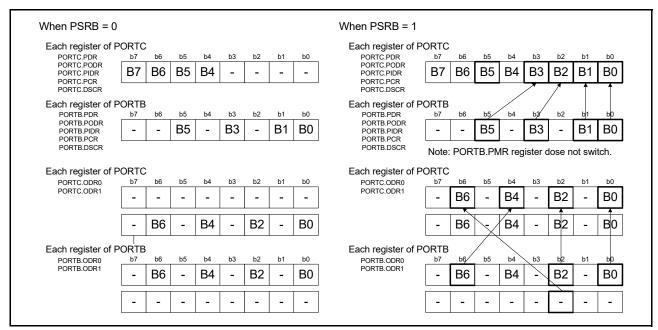


Figure 18.10 Switching General-Purpose I/O Port by the PSRA Register

18.3.10 Drive Capacity Control Register (DSCR)

Address(es): PORT1.DSCR 0008 C0E1h, PORT2.DSCR 0008 C0E2h, PORT3.DSCR 0008 C0E3h, PORT5.DSCR 0008 C0E5h, PORTA.DSCR 0008 C0EAh, PORTB.DSCR 0008 C0EBh, PORTC.DSCR 0008 C0ECh, PORTD.DSCR 0008 C0EDh, PORTE.DSCR 0008 C0EEh, PORTH.DSCR 0008 C0F1h, PORTJ.DSCR 0008 C0F2h

_	b7	b6	b5	b4	b3	b2	b1	b0
	В7	В6	B5	B4	В3	B2	B1	В0
Value after reset:	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	В0	Pm0 Drive Capacity Control	0: Normal drive output	R/W
b1	B1	Pm1 Drive Capacity Control	1: High-drive output	R/W
b2	B2	Pm2 Drive Capacity Control		R/W
b3	В3	Pm3 Drive Capacity Control		R/W
b4	B4	Pm4 Drive Capacity Control		R/W
b5	B5	Pm5 Drive Capacity Control		R/W
b6	B6	Pm6 Drive Capacity Control		R/W
b7	B7	Pm7 Drive Capacity Control		R/W

m = 1 to 3, 5, A to E, H, J

The bit corresponding to a pin with the fixed drive capacity can be read from or written to. However, the drive capacity cannot be changed.

When high-drive output is selected, switching noise increases compared to when normal output is selected. Carefully evaluate the effect of noise on the MCU caused by adjacent pins before selecting high-drive output.

The bit corresponding to a pin that does not exist is reserved. A reserved bit is read as 0. The write value should be 0.

18.4 Initialization of the Port Direction Register (PDR)

Initialize reserved bits in the PDR register according to Table 18.4 to Table 18.7.

• The blank columns in Table 18.4 to Table 18.7 indicate the bits corresponding to the pins listed in Table 18.1, Specifications of I/O Ports.

The corresponding bits should be set to 1 (output) or 0 (input) depending on the user system.

However, the PORT3.PDR.B5 bit of the input-only P35 pin is reserved.

This bit should be set to 0 (input).

• The columns other than the blank columns in Table 18.4 to Table 18.7 indicate reserved bits. A reserved bit should be set to 0 (input) or 1 (output) according to Table 18.4 to Table 18.7. When setting a value to a reserved bit, access in byte units.

Table 18.4 PDR Register Settings in 100-Pin Packages

	PDR Re	gister										
Port Symbol	b7	b6	b5	b4	b3	b2	b1	b0				
PORT0						1	1	1				
PORT1							1	1				
PORT2												
PORT3			0									
PORT4												
PORT5	1	1										
PORTA												
PORTB												
PORTC												
PORTD												
PORTE												
PORTH	1	1	1	1								
PORTJ			1	1		1		1				

Table 18.5 PDR Register Settings in 80-Pin Packages

	PDR Register								
Port Symbol	b7	b6	b5	b4	b3	b2	b1	b0	
PORT0						1	1	1	
PORT1							1	1	
PORT2			1	1	1	1			
PORT3			0		1				
PORT4									
PORT5	1	1			1	1	1	1	
PORTA	1								
PORTB									
PORTC							1	1	
PORTD	1	1	1	1	1				
PORTE	1	1							
PORTH	1	1	1	1					
PORTJ			1	1	1	1		1	

Table 18.6 PDR Register Settings in 64-Pin Packages

_	PDR Register									
Port Symbol	b7 b6		b5	b4	b3	b2	b1	b0		
PORT0	1	1		1		1	1	1		
PORT1					1	1	1	1		
PORT2			1	1	1	1	1	1		
PORT3			0	1	1					
PORT4										
PORT5	1	1			1	1	1	1		
PORTA	1		1			1				
PORTB				1		1				
PORTC							1	1		
PORTD	1	1	1	1	1	1	1	1		
PORTE	1	1								
PORTH	1	1	1	1						
PORTJ			1	1	1	1	1	1		

Table 18.7 PDR Register Settings in 48-Pin Packages

	PDR Re	gister						
Port Symbol	b7	b6	b5	b4	b3	b2	b1	b0
PORT0	1	1	1	1	1	1	1	1
PORT1					1	1	1	1
PORT2			1	1	1	1	1	1
PORT3			0	1	1	1		
PORT4				1	1			
PORT5	1	1	1	1	1	1	1	1
PORTA	1		1			1		1
PORTB	1	1		1		1		
PORTC					1	1	1	1
PORTD	1	1	1	1	1	1	1	1
PORTE	1	1	1					1
PORTH	1	1	1	1				
PORTJ			1	1	1	1	1	1

18.5 Handling of Unused Pins

The configuration of unused pins is listed in Table 18.8.

Table 18.8 Unused Pin Configuration

Pin Name	Description
MD	(Always used as mode pins)
RES#	Connect this pin to VCC via a pull-up resistor.
P35/NMI	Connect this pin to VCC via a pull-up resistor.
P36/EXTAL	When the main clock is not used, set the MOSCCR.MOSTP bit to 1 (general port P36). When this pin is not used as port P36 either, it is configured in the same way as port 1 to port 3, port 5, port A to port E, port H, port J.
P37/XTAL	When the main clock is not used, set the MOSCCR.MOSTP bit to 1 (general port P37). When this pin is not used as port P37 either, it is configured in the same way as port 1 to port 3, port 5, port A to port E, port H, port J. When the external clock is input to the EXTAL pin, leave this pin open.
XCIN	Connect this pin to VSS via a pull-down resistor.
XCOUT	Leave this pin open.
Ports 1 to 3, 5 Ports A to E, H, J (except for J6, J7)	 If the direction setting is for input (PORTn.PDR = 0), the corresponding pin is connected to VCC (pulled up) via a resistor or to VSS (pulled down) via a resistor.*1 If the direction setting is for output (PORTn.PDR = 1), the pin is released.*1, *2
Ports 0, 4, J (J6, J7)	 If the direction setting is for input (PORTn.PDR = 0), the corresponding pin is connected to AVCC0 (pulled up) via a resistor or to AVSS0 (pulled down) via a resistor.*1 If the direction setting is for output (PORTn.PDR = 1), the pin is released.*1, *2
PJ6/VREFH0	When this pin is not used as VREFH0, set the PJ6PFS.ASEL bit to 0 (general port PJ6). When this pin is not also used as port PJ6, handle it in the same way as the handling of Ports 1 to 3, 5, A to E, H, J (except for J6, J7).
PJ7/VREFL0	When this pin is not used as VREFL0, set the PJ7PFS.ASEL bit to 0 (general port PJ7). When this pin is not also used as port PJ7, handle it in the same way as the handling of Ports 1 to 3, 5, A to E, H, J (except for J6, J7).

Note 1. Clear the PORTn.PMR bit, the PmnPFS.ISEL bit and the PmnPFS.ASEL bit to 0.

Note 2. In the case of release when the setting is for output, the port is an input over the period from release from the reset state to the pin becoming an output. Since the voltage on the pin is undefined while it is an input, this may lead to an increase in the current drawn.

19. Multi-Function Pin Controller (MPC)

19.1 Overview

The multi-function pin controller (MPC) is used to allocate input and output signals for peripheral modules and input interrupt signals to pins from among multiple ports.

Table 19.1 shows the allocation of pin functions to multiple pins. The symbols \circ and \times in the table indicate whether the pins are or are not present on the given package. Allocating the same function to more than one pin is prohibited.

Table 19.1 Allocation of Pin Functions to Multiple Pins (1 / 10)

Module/Function	Channel	Pin Functions	Allocation Port	Package			
				100-pin	80-pin	64-pin	48-pin
Interrupt		NMI (input)	P35	0	0	0	0
Interrupt	IRQ0	IRQ0 (input)	P30	0	0	0	0
			PD0	0	0	×	×
			PH1	0	0	0	0
	IRQ1	IRQ1 (input)	P31	0	0	0	0
			PD1	0	0	×	×
			PH2	0	0	0	0
	IRQ2	IRQ2 (input)	P32	0	0	0	×
			P12	0	0	×	×
			PD2	0	0	×	×
	IRQ3	IRQ3 (input)	P13	0	0	×	×
			P33	0	×	×	×
			PD3	0	×	×	×
	IRQ4	IRQ4 (input)	PB1	0	0	0	0
			P14	0	0	0	0
			P34	0	0	×	×
			PD4	0	×	×	×
	IRQ5	IRQ5 (input)	PA4	0	0	0	0
			P15	0	0	0	0
			PD5	0	×	×	×
			PE5	0	0	0	×
	IRQ6	IRQ6 (input)	PA3	0	0	0	0
			P16	0	0	0	0
			PD6	0	×	×	×
			PE6	0	×	×	×
	IRQ7	IRQ7 (input)	PE2	0	0	0	0
			P17	0	0	0	0
			PD7	0	×	×	×
			PE7	0	×	×	×
Clock generation circuit		CLKOUT (output)	PE3	0	0	0	0
			PE4	0	0	0	0

Table 19.1 Allocation of Pin Functions to Multiple Pins (2 / 10)

			Allocation	Package			
Module/Function	Channel	Pin Functions	Port	100-pin	80-pin	64-pin	48-pin
Multi-function timer unit 2	MTU0	MTIOC0A (input/output)	P34	0	0	×	×
			PB3	0	0	0	0
		MTIOC0B (input/output)	P13	0	0	×	×
			P15	0	0	0	0
			PA1	0	0	0	0
		MTIOC0C (input/output)	P32	0	0	0	×
			PB1	0	0	0	0
		MTIOC0D (input/output)	P33	0	×	×	×
			PA3	0	0	0	0
	MTU1	MTIOC1A (input/output)	P20	0	0	×	×
			PE4	0	0	0	0
		MTIOC1B (input/output)	P21	0	0	×	×
			PB5	0	0	0	0
	MTU2	MTIOC2A (input/output)	P26	0	0	0	0
			PB5	0	0	0	0
		MTIOC2B (input/output)	P27	0	0	0	0
			PE5	0	0	0	×
	MTU3	MTIOC3A (input/output)	P14	0	0	0	0
			P17	0	0	0	0
			PC1	0	×	×	×
			PC7	0	0	0	0
			PJ1	0	0	×	×
		MTIOC3B (input/output)	P17	0	0	0	0
			P22	0	×	×	×
			PB7	0	0	0	×
			PC5	0	0	0	0
		MTIOC3C (input/output)	P16	0	0	0	0
			PC0	0	×	×	×
			PC6	0	0	0	0
			PJ3	0	×	×	×
		MTIOC3D (input/output)	P16	0	0	0	0
			P23	0	×	×	×
			PB6	0	0	0	×
			PC4	0	0	0	0

Table 19.1 Allocation of Pin Functions to Multiple Pins (3 / 10)

	Channel		Allocation	Package			
Module/Function		Pin Functions	Port	100-pin	80-pin	64-pin	48-pin
Multi-function timer unit 2	MTU4	MTIOC4A (input/output)	P24	0	×	×	×
			PA0	0	0	0	×
			PB3	0	0	0	0
			PE2	0	0	0	0
		MTIOC4B (input/output)	P30	0	0	0	0
			P54	0	0	0	×
			PC2	0	0	0	×
			PD1	0	0	×	×
			PE3	0	0	0	0
		MTIOC4C (input/output)	P25	0	×	×	×
			PB1	0	0	0	0
			PE1	0	0	0	0
			PE5	0	0	0	×
		MTIOC4D (input/output)	P31	0	0	0	0
			P55	0	0	0	×
			PC3	0	0	0	×
			PD2	0	0	×	×
			PE4	0	0	0	0
	MTU5	MTIC5U (input)	PA4	0	0	0	0
			PD7	0	×	×	×
		MTIC5V (input)	PA6	0	0	0	0
			PD6	0	×	×	×
		MTIC5W (input)	PB0	0	0	0	0
			PD5	0	×	×	×
	MTU	MTCLKA (input)	P14	0	0	0	0
			P24	0	×	×	×
			PA4	0	0	0	0
			PC6	0	0	0	0
		MTCLKB (input)	P15	0	0	0	0
			P25	0	×	×	×
			PA6	0	0	0	0
			PC7	0	0	0	0
		MTCLKC (input)	P22	0	×	×	×
			PA1	0	0	0	0
			PC4	0	0	0	0
		MTCLKD (input)	P23	0	×	×	×
			PA3	0	0	0	0
			PC5	0	0	0	0

Table 19.1 Allocation of Pin Functions to Multiple Pins (4 / 10)

			Allocation	Package			
Module/Function	Channel	Pin Functions	Port	100-pin	80-pin	64-pin	48-pin
Port output enable 2	POE0	POE0# (input)	PC4	0	0	0	0
			PD7	0	×	×	×
	POE1	POE1# (input)	PB5	0	0	0	0
			PD6	0	×	×	×
	POE2	POE2# (input)	P34	0	0	×	×
			PA6	0	0	0	0
			PD5	0	×	×	×
	POE3	POE3# (input)	P33	0	×	×	×
			PB3	0	0	0	0
			PD4	0	×	×	×
	POE8	POE8# (input)	P17	0	0	0	0
			P30	0	0	0	0
			PD3	0	×	×	×
			PE3	0	0	0	0

Table 19.1 Allocation of Pin Functions to Multiple Pins (5 / 10)

			Allocation	Package			
Module/Function	Channel	Pin Functions	Port	100-pin	80-pin	64-pin	48-pin
8-bit timer	TMR0	TMO0 (output)	P22	0	×	×	×
			PB3	0	0	0	0
			PH1	0	0	0	0
		TMCI0 (input)	P21	0	0	×	×
			PB1	0	0	0	0
			PH3	0	0	0	0
		TMRI0 (input)	P20	0	0	×	×
			PA4	0	0	0	0
			PH2	0	0	0	0
	TMR1	TMO1 (output)	P17	0	0	0	0
			P26	0	0	0	0
		TMCI1 (input)	P12	0	0	×	×
			P54	0	0	0	×
			PC4	0	0	0	0
		TMRI1 (input)	P24	0	×	×	×
			PB5	0	0	0	0
	TMR2	TMO2 (output)	P16	0	0	0	0
			PC7	0	0	0	0
		TMCI2 (input)	P15	0	0	0	0
			P31	0	0	0	0
			PC6	0	0	0	0
		TMRI2 (input)	P14	0	0	0	0
			PC5	0	0	0	0
	TMR3	TMO3 (output)	P13	0	0	×	×
			P32	0	0	0	×
			P55	0	0	0	×
		TMCI3 (input)	P27	0	0	0	0
			P34	0	0	×	×
			PA6	0	0	0	0
		TMRI3 (input)	P30	0	0	0	0
			P33	0	×	×	×

Table 19.1 Allocation of Pin Functions to Multiple Pins (6 / 10)

			Allocation	Package			
Module/Function	Channel	Pin Functions	Port	100-pin	80-pin	64-pin	48-pin
Serial communications interface	SCI0	RXD0 (input)/ SMISO0 (input/output)/ SSCL0 (input/output)	P21	0	×	×	×
		TXD0 (output)/ SMOSI0 (input/output)/ SSDA0 (input/output)	P20	0	×	×	×
		SCK0 (input/output)	P22	0	×	×	×
		CTS0# (input)/ RTS0# (output)/ SS0# (input)	P23	0	×	×	×
	SCI1	RXD1 (input)/	P15	0	0	0	0
		SMISO1 (input/output)/ SSCL1 (input/output)	P30	0	0	0	0
		TXD1 (output)/	P16	0	0	0	0
		SMOSI1 (input/output)/ SSDA1 (input/output)	P26	0	0	0	0
		SCK1 (input/output)	P17	0	0	0	0
			P27	0	0	0	0
		CTS1# (input)/ RTS1# (output)/ SS1# (input)	P14	0	0	0	0
			P31	0	0	0	0
	SCI5	RXD5 (input)/	PA2	0	0	×	×
		SMISO5 (input/output)/ SSCL5 (input/output)	PA3	0	0	0	0
		2222 (mpadaatpat)	PC2	0	0	0	×
		TXD5 (output)/	PA4	0	0	0	0
		SMOSI5 (input/output)/ SSDA5 (input/output)	PC3	0	0	0	×
		SCK5 (input/output)	PA1	0	0	0	0
			PC1	0	×	×	×
			PC4	0	0	0	0
		CTS5# (input)/	PA6	0	0	0	0
		RTS5# (output)/ SS5# (input)	PC0	0	×	×	×

Table 19.1 Allocation of Pin Functions to Multiple Pins (7 / 10)

			Allocation	Package			
Module/Function	Channel	Pin Functions	Port	100-pin	80-pin	64-pin	48-pin
Serial communications	SCI6	RXD6 (input)/	P33	0	×	×	×
nterface		SMISO6 (input/output)/ SSCL6 (input/output)	PB0	0	0	0	0
		ooolo (iiiparoatpat)	PD1	0	0	×	×
		TXD6 (output)/	PB1	0	0	0	0
		SMOSI6 (input/output)/ SSDA6 (input/output)	PD0	0	0	×	×
		0027 to (pagoatpat)	P32	0	0	0	×
		SCK6 (input/output)	P34	0	0	×	×
			PB3	0	0	0	0
			PD2	0	0	×	×
		CTS6# (input)/	PB2	0	0	×	×
		RTS6# (output)/ SS6# (input)	PJ3	0	×	×	×
	SCI8	RXD8 (input)/ SMISO8 (input/output)/ SSCL8 (input/output)	PC6	0	×	×	×
		TXD8 (output)/ SMOSI8 (input/output)/ SSDA8 (input/output)	PC7	0	×	×	×
		SCK8 (input/output)	PC5	0	×	×	×
		CTS8# (input)/ RTS8# (output)/ SS8# (input)	PC4	0	×	×	×
	SCI9	RXD9 (input)/ SMISO9 (input/output)/ SSCL9 (input/output)	PB6	0	×	×	×
		TXD9 (output)/ SMOSI9 (input/output)/ SSDA9 (input/output)	PB7	0	×	×	×
		SCK9 (input/output)	PB5	0	×	×	×
		CTS9# (input)/ RTS9# (output)/ SS9# (input)	PB4	0	×	×	×
Serial communications interface	SCI12	RXD12 (input)/ SMISO12 (input/output)/ SSCL12 (input/output)/ RXDX12 (input)	PE2	0	0	0	o (SMISO1 function i not available
		TXD12 (output)/ SMOSI12 (input/output)/ SSDA12 (input/output)/ TXDX12 (output)/ SIOX12 (input/output)	PE1	0	0	0	o (SMOSI1 function i not available
		SCK12 (input/output)	PE0	0	0	0	×
		CTS12# (input)/ RTS12# (output)/ SS12# (input)	PE3	0	0	0	o (SS12# function i not available
² C bus interface	RIIC0	SCL (input/output)	P16	0	0	0	0
			P12	0	0	×	×
		SDA (input/output)	P17	0	0	0	0
		•	P13	0	0	×	×

Table 19.1 Allocation of Pin Functions to Multiple Pins (8 / 10)

	_		Allocation	Package			
Module/Function	Channel	Pin Functions	Port	100-pin	80-pin	64-pin	48-pin
Serial peripheral interface	RSPI0	RSPCKA (input/output)	PA5	0	0	×	×
			PB0	0	0	0	0
			PC5	0	0	0	0
		MOSIA (input/output)	P16	0	0	0	0
			PA6	0	0	0	0
			PC6	0	0	0	0
		MISOA (input/output)	P17	0	0	0	0
			PA7	0	×	×	×
			PC7	0	0	0	0
		SSLA0 (input/output)	PA4	0	0	0	0
			PC4	0	0	0	0
		SSLA1 (output)	PA0	0	0	0	×
			PC0	0	×	×	×
		SSLA2 (output)	PA1	0	0	0	0
			PC1	0	×	×	×
		SSLA3 (output)	PA2	0	0	×	×
			PC2	0	0	0	×
Realtime clock		RTCOUT (output)	P16	0	0	0	×
			P32	0	0	0	×

Table 19.1 Allocation of Pin Functions to Multiple Pins (9 / 10)

			Allocation	Package			
Module/Function	Channel	Pin Functions	Port	100-pin	80-pin	64-pin	48-pin
2-bit A/D converter		AN000 (input) *1	P40	0	0	0	0
		AN001 (input) *1	P41	0	0	0	0
		AN002 (input) *1	P42	0	0	0	0
		AN003 (input) *1	P43	0	0	0	×
		AN004 (input) *1	P44	0	0	0	×
		AN005 (input) *1	P45	0	0	0	0
		AN006 (input) *1	P46	0	0	0	0
		AN007 (input) *1	P47	0	0	0	0
		AN016 (input) *1	PE0	0	0	0	×
		AN017 (input) *1	PE1	0	0	0	0
		AN018 (input) *1	PE2	0	0	0	0
		AN019 (input) *1	PE3	0	0	0	0
		AN020 (input) *1	PE4	0	0	0	0
		AN021 (input) *1	PE5	0	0	0	×
		AN022 (input) *1	PE6	0	×	×	×
		AN023 (input) *1	PE7	0	×	×	×
		AN024 (input) *1	PD0	0	0	×	×
		AN025 (input) *1	PD1	0	0	×	×
		AN026 (input) *1	PD2	0	0	×	×
		AN027 (input) *1	PD3	0	×	×	×
		AN028 (input) *1	PD4	0	×	×	×
		AN029 (input) *1	PD5	0	×	×	×
		AN030 (input) *1	PD6	0	×	×	×
		AN031 (input) *1	PD7	0	×	×	×
		ADTRG0# (input)	P07	0	0	×	×
			P16	0	0	0	0
			P25	0	×	×	×
D/A converter		DA0 (output) *1	P03	0	0	0	×
		DA1 (output) *1	P05	0	0	0	×
Clock frequency accurac	у	CACREF (input)	PA0	0	0	0	×
measurement circuit			PC7	0	0	0	0
			PH0	0	0	0	0
LVD voltage detection input		CMPA2 (input) *1	PE4	0	0	0	0
Comparator B		CMPB0 (input) *1	PE1	0	0	0	0
		CVREFB0 (input) *1	PE2	0	0	0	0
		CMPOB0 (output)	PE5	0	0	0	×
		CMPB1 (input) *1	PA3	0	0	0	0
		CVREFB1 (input) *1	PA4	0	0	0	0
		CMPOB1 (output)	PB1	0	0	0	0

Table 19.1 Allocation of Pin Functions to Multiple Pins (10 / 10)

			Allocation	Package			
Module/Function	Channel	Pin Functions	Port	100-pin	80-pin	64-pin	48-pin
Capacitive touch sensing		TSCAP (—)	PC4	0	0	0	0
unit (CTSU)		TS0 (input/output)	P32	0	0	0	×
		TS1 (input/output)	P31	0	0	0	0
		TS2 (output)	P30	0	0	0	0
		TS3 (output)	P27	0	0	0	0
		TS4 (output)	P26	0	0	0	0
		TS5 (output)	P15	0	0	0	0
		TS6 (output)	P14	0	0	0	0
		TS7 (output)	PH3	0	0	0	0
		TS8 (output)	PH2	0	0	0	0
		TS9 (output)	PH1	0	0	0	0
		TS10 (output)	PH0	0	0	0	0
		TS11 (output)	P55	0	0	0	×
		TS12 (output)	P54	0	0	0	×
		TS13 (output)	PC7	0	0	0	0
		TS14 (output)	PC6	0	0	0	0
		TS15 (output)	PC5	0	0	0	0
		TS16 (output)	PC3	0	0	0	×
		TS17 (output)	PC2	0	0	0	×
		TS18 (output)	PB7	0	0	0	×
		TS19 (output)	PB6	0	0	0	×
		TS20 (output)	PB5	0	0	0	0
		TS21 (output)	PB4	0	0	×	×
		TS22 (output)	PB3	0	0	0	0
		TS23 (output)	PB2	0	0	×	×
		TS24 (output)	PB1	0	0	0	0
		TS25 (output)	PB0	0	0	0	0
		TS26 (output)	PA6	0	0	0	0
		TS27 (output)	PA5	0	0	×	×
		TS28 (output)	PA4	0	0	0	0
		TS29 (output)	PA3	0	0	0	0
		TS30 (output)	PA2	0	0	×	×
		TS31 (output)	PA1	0	0	0	0
		TS32 (output)	PA0	0	0	0	×
		TS33 (output)	PE4	0	0	0	0
		TS34 (output)	PE3	0	0	0	0
		TS35 (output)	PE2	0	0	0	0
Remote control signal	REMC0	PMC0	P51	0	×	×	×
receiver (REMC)	REMC1	PMC1	P52	0	×	×	×

Note 1. Select general input (by setting the Bm bits for the given pin in the PDR and PMR for the given port to 0) for the pin if this pin function is to be used.

19.2 Register Descriptions

Registers and bits for pins that are not present due to differences according to the package are reserved. Write the value after a reset when writing to such bits.

19.2.1 Write-Protect Register (PWPR)

Address(es): 0008 C11Fh

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b6	PFSWE	PFS Register Write Enable	Writing to the PFS register is disabled Writing to the PFS register is enabled	R/W
b7	B0WI	PFSWE Bit Write Disable	Writing to the PFSWE bit is enabled Writing to the PFSWE bit is disabled	R/W

PFSWE Bit (PFS Register Write Enable)

Writing to PmnPFS register is enabled only when the PFSWE bit is set to 1.

To write to the PFSWE bit after writing 0 to the B0WI bit.

B0WI Bit (PFSWE Bit Write Disable)

Writing to the PFSWE bit is enabled only when the B0WI bit is set to 0.

19.2.2 P0n Pin Function Control Register (P0nPFS) (n = 3, 5, 7)

Address(es): P03PFS 0008 C143h, P05PFS 0008 C145h, P07PFS 0008 C147h

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	PSEL[4:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see the tables below.	R/W
b6, b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b7	ASEL	Analog Function Select	0: Used other than as analog pin 1: Used as analog pin P03: DA0 (100/80/64 pins) P05: DA1 (100/80/64 pins)	R/W

The Pmn pin function control register (PmnPFS) selects the pin function.

Bits PSEL[4:0] select the peripheral function assigned to each port pin.

The ISEL bit is set when a pin is used as an IRQ input pin. This setting can be used with the combination of the peripheral function, though IRQn (external pin interrupt) of the same number should not be enabled by two or more pins. The ASEL bit is set when a pin is used as an analog pin. When switching a pin to analog using the ASEL bit, set the corresponding port mode register bit (PORTm.PMR) to "general I/O port" and the port direction register bit (PORTm.PDR) to "input". The pin state cannot be read at this point. The PmnPFS register is protected by the write-protect register (PWPR). Modify the register after releasing the protection.

The ISEL bit to which IRQn is not specified is reserved. The ASEL bit to which analog input/output is not specified is reserved.

Table 19.2 Register Settings for Input/Output Pin Function in 100-Pin and 80-Pin

DSEL [4:0]	Pin			
PSEL[4:0] Settings	P03	P05	P07	
00000b (initial value)	Hi-Z			
01001b	_	_	ADTRG0#	

—: Do not specify this value.

19.2.3 P1n Pin Function Control Registers (P1nPFS) (n = 2 to 7)

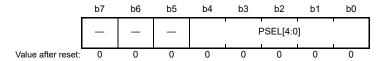
Address(es): P12PFS 0008 C14Ah, P13PFS 0008 C14Bh, P14PFS 0008 C14Ch, P15PFS 0008 C14Dh, P16PFS 0008 C14Eh, P17PFS 0008 C14Fh

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	PSEL[4:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see the tables below.	R/W
b5	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b6	ISEL	Interrupt Function Select	0: Not used as IRQn input pin 1: Used as IRQn input pin P12: IRQ2 input switch (100/80 pins) P13: IRQ3 input switch (100/80 pins) P14: IRQ4 input switch (100/80/64/48 pins) P15: IRQ5 input switch (100/80/64/48 pins) P16: IRQ6 input switch (100/80/64/48 pins) P17: IRQ7 input switch (100/80/64/48 pins)	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

Table 19.3 Register Settings for Input/Output Pin Function in 100-Pin and 80-Pin

PSEL[4:0]	Pin								
Settings	P12	P13	P14	P15	P16	P17			
00000b (initial value)	Hi-Z								
00001b	_	MTIOC0B	MTIOC3A	MTIOC0B	MTIOC3C	MTIOC3A			
00010b	_	_	MTCLKA	MTCLKB	MTIOC3D	MTIOC3B			
00101b	TMCI1	TMO3	TMRI2	TMCI2	TMO2	TMO1			
00111b	_	_	_	_	RTCOUT	POE8#			
01001b	_	_	_	_	ADTRG0#	_			
01010b	_	_	_	RXD1 SMISO1 SSCL1	TXD1 SMOSI1 SSDA1	SCK1			
01011b	_	_	CTS1# RTS1# SS1#	_	_	_			
01101b	_	_	_	_	MOSIA	MISOA			
01111b	SCL	SDA	_	_	SCL	SDA			
11001b	_	_	TS6	TS5	_	_			

^{—:} Do not specify this value.


Table 19.4 Register Settings for Input/Output Pin Function in 64-Pin and 48-Pin

PSEL[4:0]	Pin							
Settings	P14	P15	P16	P17				
00000b (initial value)	Hi-Z							
00001b	MTIOC3A	MTIOC0B	MTIOC3C	MTIOC3A				
00010b	MTCLKA	MTCLKB	MTIOC3D	MTIOC3B				
00101b	TMRI2	TMCI2	TMO2	TMO1				
00111b	_	_	RTCOUT	POE8#				
01001b	_	_	ADTRG0#	_				
01010b	_	RXD1 SMISO1 SSCL1	TXD1 SMOSI1 SSDA1	SCK1				
01011b	CTS1# RTS1# SS1#	_	_	_				
01101b	_	_	MOSIA	MISOA				
01111b	_	_	SCL	SDA				
11001b	TS6	TS5	_	_				

^{—:} Do not specify this value.

19.2.4 P2n Pin Function Control Register (P2nPFS) (n = 0 to 7)

Address(es): P20PFS 0008 C150h, P21PFS 0008 C151h, P22PFS 0008 C152h, P23PFS 0008 C153h, P24PFS 0008 C154h, P25PFS 0008 C155h, P26PFS 0008 C156h, P27PFS 0008 C157h

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	PSEL[4:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see the tables below.	R/W
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Table 19.5 Register Settings for Input/Output Pin Function in 100-Pin

PSEL[4:0] Settings	Pin							
	P20	P21	P22	P23	P24	P25	P26	P27
00000b (initial value)	Hi-Z							
00001b	MTIOC1A	MTIOC1B	MTIOC3B	MTIOC3D	MTIOC4A	MTIOC4C	MTIOC2A	MTIOC2B
00010b	_	_	MTCLKC	MTCLKD	MTCLKA	MTCLKB	_	_
00101b	TMRI0	TMCI0	TMO0	_	TMRI1	_	TMO1	TMCI3
01001b	_	_	_	_	_	ADTRG0#	_	_
01010b	TXD0 SMOSI0 SSDA0	RXD0 SMISO0 SSCL0	SCK0	_	_	_	TXD1 SMOSI1 SSDA1	SCK1
01011b	_	_	_	CTS0# RTS0# SS0#	_	_	_	_
11001b	_	_	_	_	_	_	TS4	TS3

^{—:} Do not specify this value.

Table 19.6 Register Settings for Input/Output Pin Function in 80-Pin

PSEL[4:0]	Pin						
Settings	P20	P21	P26	P27			
00000b (initial value)	Hi-Z						
00001b	MTIOC1A	MTIOC1B	MTIOC2A	MTIOC2B			
00101b	TMRI0	TMCI0	TMO1	TMCI3			
01010b	_	_	TXD1 SMOSI1 SSDA1	SCK1			
11001b	_	— .	TS4	TS3			

^{—:} Do not specify this value.

Table 19.7 Register Settings for Input/Output Pin Function in 64-Pin and 48-Pin

PSEL[4:0]	Pin				
Settings	P26	P27			
00000b (initial value)	Hi-Z				
00001b	MTIOC2A	MTIOC2B			
00101b	TMO1	TMCI3			
01010b	TXD1 SMOSI1 SSDA1	SCK1			
11001b	TS4	TS3			

19.2.5 P3n Pin Function Control Registers (P3nPFS) (n = 0 to 4)

Address(es): P30PFS 0008 C158h, P31PFS 0008 C159h, P32PFS 0008 C15Ah, P33PFS 0008 C15Bh, P34PFS 0008 C15Ch

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	PSEL[4:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see the tables below.	R/W
b5	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b6	ISEL	Interrupt Input Function Select	0: Not used as IRQn input pin 1: Used as IRQn input pin P30: IRQ0 input switch (100/80/64/48 pins) P31: IRQ1 input switch (100/80/64/48 pins) P32: IRQ2 input switch (100/80/64 pins) P33: IRQ3 input switch (100 pins) P34: IRQ4 input switch (100/80 pins)	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

Table 19.8 Register Settings for Input/Output Pin Function in 100-Pin

PSEL[4:0] Settings	Pin				
	P30	P31	P32	P33	P34
00000b (initial value)	Hi-Z				
00001b	MTIOC4B	MTIOC4D	MTIOC0C	MTIOC0D	MTIOC0A
00101b	TMRI3	TMCI2	TMO3	TMRI3	TMCI3
00111b	POE8#	_	RTCOUT	POE3#	POE2#
01010b	RXD1 SMISO1 SSCL1	_	_	_	_
01011b	_	CTS1# RTS1# SS1#	TXD6 SMOSI6 SSDA6	RXD6 SMISO6 SSCL6	SCK6
11001b	TS2	TS1	TS0	_	_

^{—:} Do not specify this value.

Table 19.9 Register Settings for Input/Output Pin Function in 80-Pin

PSEL[4:0]	Pin						
Settings	P30	P31	P32	P34			
00000b (initial value)	Hi-Z						
00001b	MTIOC4B	MTIOC4D	MTIOC0C	MTIOC0A			
00101b	TMRI3	TMCI2	TMO3	TMCI3			
00111b	POE8#	_	RTCOUT	POE2#			
01010b	RXD1 SMISO1 SSCL1	_	_	_			
01011b	_	CTS1# RTS1# SS1#	TXD6 SMOSI6 SSDA6	SCK6			
11001b	TS2	TS1	TS0	_			

^{—:} Do not specify this value.

Table 19.10 Register Settings for Input/Output Pin Function in 64-Pin

PSEL[4:0]	Pin						
Settings	P30	P31	P32				
00000b (initial value)	Hi-Z						
00001b	MTIOC4B	MTIOC4D	MTIOC0C				
00101b	TMRI3	TMCI2	TMO3				
00111b	POE8#	_	RTCOUT				
01010b	RXD1 SMISO1 SSCL1	_	_				
01011b	_	CTS1# RTS1# SS1#	TXD6 SMOSI6 SSDA6				
11001b	TS2	TS1	TS0				

^{—:} Do not specify this value.

Table 19.11 Register Settings for Input/Output Pin Function in 48-Pin

PSEL[4:0]	Pin					
Settings	P30	P31				
00000b (initial value)	Hi-Z					
00001b	MTIOC4B	MTIOC4D				
00101b	TMRI3	TMCI2				
00111b	POE8#	_				
01010b	RXD1 SMISO1 SSCL1	_				
01011b	-	CTS1# RTS1# SS1#				
11001b	TS2	TS1				

^{—:} Do not specify this value.

19.2.6 P4n Pin Function Control Registers (P4nPFS) (n = 0 to 7)

Address(es): P40PFS 0008 C160h, P41PFS 0008 C161h, P42PFS 0008 C162h, P43PFS 0008 C163h, P44PFS 0008 C164h, P45PFS 0008 C165h, P46PFS 0008 C166h, P47PFS 0008 C167h

	b7	b6	b5	b4	b3	b2	b1	b0
	ASEL							_
Value after reset:	0	0	0	0	0	0	0	0

Symbol R/W Bit **Bit Name** Description b6 to b0 Reserved These bits are read as 0. The write value should be 0. R/W R/W b7 **ASEL Analog Function Select** 0: Not used as an analog pin 1: Used as an analog pin P40: AN000 (100/80/64/48 pins) P41: AN001 (100/80/64/48 pins) P42: AN002 (100/80/64/48 pins) P43: AN003 (100/80/64 pins)

P44: AN004 (100/80/64 pins) P45: AN005 (100/80/64/48 pins) P46: AN006 (100/80/64/48 pins) P47: AN007 (100/80/64/48 pins)

19.2.7 P5n Pin Function Control Registers (P5nPFS) (n = 1, 2, 4, 5)

Address(es): P51PFS 0008 C169h, P52PFS 0008 C16Ah, P54PFS 0008 C16Ch, P55PFS 0008 C16Dh

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	PSEL[4:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see the tables below.	R/W
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Table 19.12 Register Settings for Input/Output Pin Function in 100-Pin

PSEL[4:0]	Pin				
Settings	P51	P52	P54	P55	
00000b (initial value)	Hi-Z				
00001b	_	_	MTIOC4B	MTIOC4D	
00101b	_	_	TMCI1	TMO3	
11001b	_	_	TS12	TS11	
11100b	PMC0	PMC1	_	_	

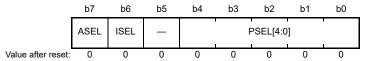

^{—:} Do not specify this value.

Table 19.13 Register Settings for Input/Output Pin Function in 80-Pin and 64-Pin

DSEL [4:0]	Pin						
PSEL[4:0] Settings	P54	P55					
00000b (initial value)	Hi-Z						
00001b	MTIOC4B	MTIOC4D					
00101b	TMCI1	TMO3					
11001b	TS12	TS11					

19.2.8 PAn Pin Function Control Registers (PAnPFS) (n = 0 to 7)

Address(es): PA0PFS 0008 C190h, PA1PFS 0008 C191h, PA2PFS 0008 C192h, PA3PFS 0008 C193h, PA4PFS 0008 C194h, PA5PFS 0008 C195h, PA6PFS 0008 C196h, PA7PFS 0008 C197h

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	PSEL[4:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see the tables below.	R/W
b5	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b6	ISEL	Interrupt Input Function Select	0: Not used as IRQn input pin 1: Used as IRQn input pin PA3: IRQ6 input switch (100/80/64/48 pins) PA4: IRQ5 input switch (100/80/64/48 pins)	R/W
b7	ASEL	Analog Function Select	0: Not used as an analog pin 1: Used as an analog pin PA3: CMPB1 (100/80/64/48 pins) PA4: CVREFB1 (100/80/64/48 pins)	R/W

Table 19.14 Register Settings for Input/Output Pin Function in 100-Pin

PSEL[4:0]	Pin							
Settings	PA0	PA1	PA2	PA3	PA4	PA5	PA6	PA7
00000b (initial value)	Hi-Z							
00001b	MTIOC4A	MTIOC0B	_	MTIOC0D	MTIC5U	_	MTIC5V	_
00010b	_	MTCLKC	_	MTCLKD	MTCLKA	_	MTCLKB	_
00101b	_	_	_	_	TMRI0	_	TMCI3	_
00111b	CACREF	_	_	_	_	_	POE2#	_
01010b	_	SCK5	RXD5 SMISO5 SSCL5	RXD5 SMISO5 SSCL5	TXD5 SMOSI5 SSDA5	_	_	_
01011b	_	_	_	_	_	_	CTS5# RTS5# SS5#	_
01101b	SSLA1	SSLA2	SSLA3	_	SSLA0	RSPCKA	MOSIA	MISOA
11001b	TS32	TS31	TS30	TS29	TS28	TS27	TS26	_

^{—:} Do not specify this value.

Table 19.15 Register Settings for Input/Output Pin Function in 80-Pin

PSEL[4:0]	Pin						
Settings	PA0	PA1	PA2	PA3	PA4	PA5	PA6
00000b (initial value)	Hi-Z						
00001b	MTIOC4A	MTIOC0B	_	MTIOC0D	MTIC5U	_	MTIC5V
00010b	_	MTCLKC	_	MTCLKD	MTCLKA	_	MTCLKB
00101b	_	_	_	_	TMRI0	_	TMCI3
00111b	CACREF	_	_	_	_	_	POE2#
01010b	_	SCK5	RXD5 SMISO5 SSCL5	RXD5 SMISO5 SSCL5	TXD5 SMOSI5 SSDA5	_	_
01011b	_	_	_	_	_	_	CTS5# RTS5# SS5#
01101b	SSLA1	SSLA2	SSLA3	_	SSLA0	RSPCKA	MOSIA
11001b	TS32	TS31	TS30	TS29	TS28	TS27	TS26

^{—:} Do not specify this value.

Table 19.16 Register Settings for Input/Output Pin Function in 64-Pin

PSEL[4:0]	Pin				
Settings	PA0	PA1	PA3	PA4	PA6
00000b (initial value)	Hi-Z				
00001b	MTIOC4A	MTIOC0B	MTIOC0D	MTIC5U	MTIC5V
00010b	_	MTCLKC	MTCLKD	MTCLKA	MTCLKB
00101b	_	_	_	TMRI0	TMCI3
00111b	CACREF	_	_	_	POE2#
01010b	_	SCK5	RXD5 SMISO5 SSCL5	TXD5 SMOSI5 SSDA5	_
01011b	_	_	_	_	CTS5# RTS5# SS5#
01101b	SSLA1	SSLA2	_	SSLA0	MOSIA
11001b	TS32	TS31	TS29	TS28	TS26

^{—:} Do not specify this value.

Table 19.17 Register Settings for Input/Output Pin Function in 48-Pin

PSEL[4:0]	Pin			
Settings	PA1	PA3	PA4	PA6
00000b (initial value)	Hi-Z			
00001b	MTIOC0B	MTIOC0D	MTIC5U	MTIC5V
00010b	MTCLKC	MTCLKD	MTCLKA	MTCLKB
00101b	_	_	TMRI0	TMCI3
00111b	_	_	_	POE2#
01010b	SCK5	RXD5 SMISO5 SSCL5	TXD5 SMOSI5 SSDA5	_
01011b	_	_	_	CTS5# RTS5# SS5#
01101b	SSLA2	_	SSLA0	MOSIA
11001b	TS31	TS29	TS28	TS26

^{—:} Do not specify this value.

19.2.9 PBn Pin Function Control Registers (PBnPFS) (n = 0 to 7)

Address(es): PB0PFS 0008 C198h, PB1PFS 0008 C199h, PB2PFS 0008 C19Ah, PB3PFS 0008 C19Bh, PB4PFS 0008 C19Ch, PB5PFS 0008 C19Dh, PB6PFS 0008 C19Eh, PB7PFS 0008 C19Fh

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	PSEL[4:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see the tables below.	R/W
b5	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b6	ISEL	Interrupt Input Function Select	0: Not used as IRQn input pin 1: Used as IRQn input pin PB1: IRQ4 (100/80/64/48 pins)	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

Table 19.18 Register Settings for Input/Output Pin Function in 100-Pin

PSEL[4:0]	Pin							
Settings	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7
00000b (initial value)	Hi-Z							
00001b	MTIC5W	MTIOC0C	_	MTIOC0A	_	MTIOC2A	MTIOC3D	MTIOC3B
00010b	_	MTIOC4C	_	MTIOC4A	_	MTIOC1B	_	_
00101b	_	TMCI0	_	TMO0	_	TMRI1	_	_
00111b	_	_	_	POE3#	_	POE1#	_	_
01010b	_	_	_	_	_	SCK9	RXD9 SMISO9 SSCL9	TXD9 SMOSI9 SSDA9
01011b	RXD6 SMISO6 SSCL6	TXD6 SMOSI6 SSDA6	CTS6# RTS6# SS6#	SCK6	CTS9# RTS9# SS9#	_	_	_
01101b	RSPCKA	_	_	_	_	_	_	_
10000b	_	CMPOB1	_	_	_	_	_	_
11001b	TS25	TS24	TS23	TS22	TS21	TS20	TS19	TS18

^{—:} Do not specify this value.

Table 19.19 Register Settings for Input/Output Pin Function in 80-Pin

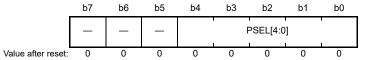
	•	•	•					
PSEL[4:0]	Pin							
Settings	PB0	PB1	PB2	PB3	PB4	PB5	PB6	PB7
00000b (initial value)	Hi-Z							
00001b	MTIC5W	MTIOC0C	_	MTIOC0A	_	MTIOC2A	MTIOC3D	MTIOC3B
00010b	_	MTIOC4C	_	MTIOC4A	_	MTIOC1B	_	_
00101b	_	TMCI0	_	TMO0	-	TMRI1	_	_
00111b	_	_	_	POE3#	_	POE1#	_	_
01011b	RXD6 SMISO6 SSCL6	TXD6 SMOSI6 SSDA6	CTS6# RTS6# SS6#	SCK6	_	_	_	_
01101b	RSPCKA	_	_	_	_	_	_	_
10000b	_	CMPOB1	_	_	_	_	_	_
11001b	TS25	TS24	TS23	TS22	TS21	TS20	TS19	TS18

—: Do not specify this value.

Table 19.20 Register Settings for Input/Output Pin Function in 64-Pin

PSEL[4:0]	Pin					
Settings	РВ0	PB1	PB3	PB5	PB6	PB7
00000b (initial value)	Hi-Z					
00001b	MTIC5W	MTIOC0C	MTIOC0A	MTIOC2A	MTIOC3D	MTIOC3B
00010b	_	MTIOC4C	MTIOC4A	MTIOC1B	_	_
00101b	_	TMCI0	TMO0	TMRI1	_	_
00111b	_	_	POE3#	POE1#	_	_
01011b	RXD6 SMISO6 SSCL6	TXD6 SMOSI6 SSDA6	SCK6	_	_	_
01101b	RSPCKA	_	_	_	_	_
10000b	_	CMPOB1	_	_	_	_
11001b	TS25	TS24	TS22	TS20	TS19	TS18

^{—:} Do not specify this value.


Table 19.21 Register Settings for Input/Output Pin Function in 48-Pin

PSEL[4:0]	Pin			
Settings	PB0	PB1	PB3	PB5
00000b (initial value)	Hi-Z			
00001b	MTIC5W	MTIOC0C	MTIOC0A	MTIOC2A
00010b	_	MTIOC4C	MTIOC4A	MTIOC1B
00101b	_	TMCI0	TMO0	TMRI1
00111b	_	_	POE3#	POE1#
01011b	RXD6 SMISO6 SSCL6	TXD6 SMOSI6 SSDA6	SCK6	_
01101b	RSPCKA	_	_	_
10000b	_	CMPOB1	_	_
11001b	TS25	TS24	TS22	TS20

^{—:} Do not specify this value.

19.2.10 PCn Pin Function Control Registers (PCnPFS) (n = 0 to 7)

Address(es): PC0PFS 0008 C1A0h, PC1PFS 0008 C1A1h, PC2PFS 0008 C1A2h, PC3PFS 0008 C1A3h, PC4PFS 0008 C1A4h, PC5PFS 0008 C1A5h, PC6PFS 0008 C1A6h, PC7PFS 0008 C1A7h

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	PSEL[4:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see the tables below.	R/W
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Table 19.22 Register Settings for Input/Output Pin Function in 100-Pin

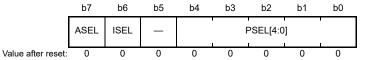
PSEL[4:0] Settings	Pin							
	PC0	PC1	PC2	PC3	PC4	PC5	PC6	PC7
00000b (initial value)	Hi-Z							
00001b	MTIOC3C	MTIOC3A	MTIOC4B	MTIOC4D	MTIOC3D	MTIOC3B	MTIOC3C	MTIOC3A
00010b	_	_	_	_	MTCLKC	MTCLKD	MTCLKA	MTCLKB
00101b	_	_	_	_	TMCI1	TMRI2	TMCI2	TMO2
00111b	_	_	_	_	POE0#	_	_	CACREF
01010b	_	SCK5	RXD5 SMISO5 SSCL5	TXD5 SMOSI5 SSDA5	SCK5	SCK8	RXD8 SMISO8 SSCL8	TXD8 SMOSI8 SSDA8
01011b	CTS5# RTS5# SS5#	_	_	_	CTS8# RTS8# SS8#	_	_	_
01101b	SSLA1	SSLA2	SSLA3	_	SSLA0	RSPCKA	MOSIA	MISOA
11001b	_	_	TS17	TS16	TSCAP	TS15	TS14	TS13

^{—:} Do not specify this value.

Table 19.23 Register Settings for Input/Output Pin Function in 80-Pin and 64-Pin

PSEL[4:0]	Pin					
Settings	PC2	PC3	PC4	PC5	PC6	PC7
00000b (initial value)	Hi-Z					
00001b	MTIOC4B	MTIOC4D	MTIOC3D	MTIOC3B	MTIOC3C	MTIOC3A
00010b	_	_	MTCLKC	MTCLKD	MTCLKA	MTCLKB
00101b	_	_	TMCI1	TMRI2	TMCI2	TMO2
00111b	_	_	POE0#	_	_	CACREF
01010b	RXD5 SMISO5 SSCL5	TXD5 SMOSI5 SSDA5	SCK5	_	_	_
01101b	SSLA3	_	SSLA0	RSPCKA	MOSIA	MISOA
11001b	TS17	TS16	TSCAP	TS15	TS14	TS13

^{—:} Do not specify this value.


Table 19.24 Register Settings for Input/Output Pin Function in 48-Pin

PSEL[4:0]	Pin							
Settings	PC4	PC5	PC6	PC7				
00000b (initial value)	Hi-Z							
00001b	MTIOC3D	MTIOC3B	MTIOC3C	MTIOC3A				
00010b	MTCLKC	MTCLKD	MTCLKA	MTCLKB				
00101b	TMCI1	TMRI2	TMCI2	TMO2				
00111b	POE0#	_	_	CACREF				
01010b	SCK5	_	_	_				
01101b	SSLA0	RSPCKA	MOSIA	MISOA				
11001b	TSCAP	TS15	TS14	TS13				

^{—:} Do not specify this value.

19.2.11 PDn Pin Function Control Registers (PDnPFS) (n = 0 to 7)

Address(es): PD0PFS 0008 C1A8h, PD1PFS 0008 C1A9h, PD2PFS 0008 C1AAh, PD3PFS 0008 C1ABh, PD4PFS 0008 C1ACh, PD5PFS 0008 C1ADh, PD6PFS 0008 C1AEh, PD7PFS 0008 C1AFh

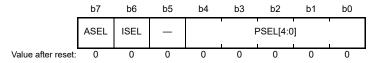
Bit	Symbol	Bit Name	Description	R/W
b4 to b0	PSEL[4:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see the tables below.	R/W
b5	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b6	ISEL	Interrupt Input Function Select	0: Not used as IRQn input pin 1: Used as IRQn input pin PD0: IRQ0 input switch (100/80 pins) PD1: IRQ1 input switch (100/80 pins) PD2: IRQ2 input switch (100/80 pins) PD3: IRQ3 input switch (100 pins) PD4: IRQ4 input switch (100 pins) PD5: IRQ5 input switch (100 pins) PD6: IRQ6 input switch (100 pins) PD7: IRQ7 input switch (100 pins)	R/W
b7	ASEL	Analog Function Select	0: Used other than as analog pin 1: Used as analog pin PD0: AN024 (100/80 pins) PD1: AN025 (100/80 pins) PD2: AN026 (100/80 pins) PD3: AN027 (100 pins) PD4: AN028 (100 pins) PD5: AN029 (100 pins) PD6: AN030 (100 pins) PD7: AN031 (100 pins)	R/W

Table 19.25 Register Settings for Input/Output Pin Function in 100-Pin

PSEL[4:0] Settings	Pin								
	PD0	PD1	PD2	PD3	PD4	PD5	PD6	PD7	
00000b (initial value)	Hi-Z								
00001b	_	MTIOC4B	MTIOC4D	_	_	MTIC5W	MTIC5V	MTIC5U	
00111b	_	_	_	POE8#	POE3#	POE2#	POE1#	POE0#	
01011b	TXD6 SMOSI6 SSDA6	RXD6 SMISO6 SSCL6	SCK6	_	_	_	_	_	

^{—:} Do not specify this value.

Table 19.26 Register Settings for Input/Output Pin Function in 80-Pin


PSEL[4:0]	Pin						
Settings	PD0	PD1	PD2				
00000b (initial value)	Hi-Z						
00001b	_	MTIOC4B	MTIOC4D				
01011b	TXD6 SMOSI6 SSDA6	RXD6 SMISO6 SSCL6	SCK6				

^{—:} Do not specify this value.

19.2.12 PEn Pin Function Control Registers (PEnPFS) (n = 0 to 7)

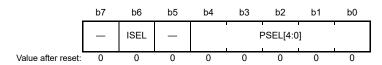
Address(es): PE0PFS 0008 C1B0h, PE1PFS 0008 C1B1h, PE2PFS 0008 C1B2h, PE3PFS 0008 C1B3h, PE4PFS 0008 C1B4h, PE5PFS 0008 C1B5h, PE6PFS 0008 C1B6h, PE7PFS 0008 C1B7h

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	PSEL[4:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see the tables below.	R/W
b5	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b6	ISEL	Interrupt Input Function Select	0: Not used as IRQn input pin 1: Used as IRQn input pin PE2: IRQ7 input switch (100/80/64/48 pins) PE5: IRQ5 input switch (100/80/64 pins) PE6: IRQ6 input switch (100 pins) PE7: IRQ7 input switch (100 pins)	R/W
b7	ASEL	Analog Function Select	0: Not used as an analog pin 1: Used as an analog pin PE0:AN016 (100/80/64 pins) PE1:AN017 or CMPB0 (100/80/64/48 pins) PE2:AN018 or CVREFB0 (100/80/64/48 pins) PE3:AN019 (100/80/64/48 pins) PE4:AN020 or CMPA2 (100/80/64/48 pins) PE5:AN021 (100/80/64 pins) PE6:AN022 (100 pins) PE7:AN023 (100 pins)	R/W

Table 19.27 Register Settings for Input/Output Pin Function in 100-Pin, 80-Pin, and 64-Pin

PSEL[4:0]	Pin								
Settings	PE0	PE1	PE2	PE3	PE4	PE5			
00000b (initial value)	Hi-Z								
00001b	_	MTIOC4C	MTIOC4A	MTIOC4B	MTIOC4D	MTIOC4C			
00010b	_	_	_	_	MTIOC1A	MTIOC2B			
00111b	_	_	_	POE8#	_	_			
01001b	_	_	_	CLKOUT	CLKOUT				
01100b	SCK12	TXD12 TXDX12 SIOX12 SMOSI12 SSDA12	RXD12 RXDX12 SMISO12 SSCL12	CTS12# RTS12# SS12#	_	_			
10000b	_	_	_	_	_	СМРОВ0			
11001b	_	_	TS35	TS34	TS33	_			

^{—:} Do not specify this value.


Table 19.28 Register Settings for Input/Output Pin Function in 48-Pin

PSEL[4:0]	Pin			
Settings	PE1	PE2	PE3	PE4
00000b (initial value)	Hi-Z			
00001b	MTIOC4C	MTIOC4A	MTIOC4B	MTIOC4D
00010b	_	_	_	MTIOC1A
00111b	_	_	POE8#	_
01001b	_	_	CLKOUT	CLKOUT
01100b	TXD12 TXDX12 SIOX12 SSDA12	RXD12 RXDX12 SSCL12	CTS12# RTS12#	_
11001b	_	TS35	TS34	TS33

^{—:} Do not specify this value.

19.2.13 PHn Pin Function Control Registers (PHnPFS) (n = 0 to 3)

Address(es): MPC.PH0PFS 0008 C1C8h, MPC.PH1PFS 0008 C1C9h, MPC.PH2PFS 0008 C1CAh, MPC.PH3PFS 0008 C1CBh

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	PSEL[4:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see the tables below.	R/W
b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b6	ISEL	Interrupt Input Function Select	0: Not used as IRQn input pin 1: Used as IRQn input pin PH1: IRQ0 input switch (100/80/64/48 pins) PH2: IRQ1 input switch (100/80/64/48 pins)	R/W
b7	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Table 19.29 Register Settings for Input/Output Pin Function in 100-Pin, 80-Pin, 64-Pin, and 48-Pin

DSEI [4:0]	Pin							
PSEL[4:0] Settings	PH0	PH1	PH2	PH3				
00000b (initial value)	Hi-Z							
00101b	_	TMO0	TMRI0	TMCI0				
00111b	CACREF	_	_	_				
11001b	TS10	TS9	TS8	TS7				

^{—:} Do not specify this value.

19.2.14 PJn Pin Function Control Registers (PJnPFS) (n = 1, 3, 6, 7)

Address(es): MPC.PJ1PFS 0008 C1D1h, MPC.PJ3PFS 0008 C1D3h, MPC.PJ6PFS 0008 C1D6h, MPC.PJ7PFS 0008 C1D7h

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	PSEL[4:0]	Pin Function Select	These bits select the peripheral function. For individual pin functions, see the tables below.	R/W
b6 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b7	ASEL	Analog Function Select	0: Used as a pin other than an analog pin 1: Used as an analog pin PJ6: VREFH0 PJ7:VREFL0	R/W

Table 19.30 Register Settings for Input/Output Pin Function in 100-Pin

DSEL [4:0]	Pin						
PSEL[4:0] Settings	PJ1	PJ3					
00000b (initial value)	Hi-Z						
00001b	MTIOC3A	MTIOC3C					
01011b	_	CTS6# RTS6# SS6#					

^{—:} Do not specify this value.

Table 19.31 Register Settings for Input/Output Pin Function in 80-Pin

PSFI [4:0]	Pin
PSEL[4:0] Settings	PJ1
00000b (initial value)	Hi-Z
00001b	MTIOC3A

19.3 Usage Notes

19.3.1 Procedure for Specifying Input/Output Pin Function

Use the following procedure to specify the input/output pin functions.

- (1) Clear the port mode register (PMR) to 0 to select the general I/O port function.
- (2) Specify the assignments of input/output signals for peripheral functions to the desired pins.
- (3) Enable writing to the Pmn pin function control register (PmnPFS) through the write-protect register (PWPR) setting. (m = 0 to 5, A to E, H, J; n = 0 to 7)
- (4) Specify the input/output function for the pin through the PSEL[4:0] bit settings in the PmnPFS register.
- (5) Clear the PFSWE bit in the PWPR register to 0 to disable writing to the PmnPFS register.
- (6) Set the PMR to 1 as necessary to switch to the selected input/output function for the pin.

19.3.2 Notes on MPC Register Setting

- (1) Settings of the Pmn pin function control register (PmnPFS) should be made only while the PMR register for the target pin is cleared to 0. If a Pmn pin function control register is set while the PMR register is 1, unexpected edges may be input through the input pin or unexpected pulses are output through the output pin.
- (2) Only the allowed values (functions) should be specified in the Pmn pin function control registers. If a value that is not allowed for the register is specified, correct operation is not guaranteed.
- (3) Do not assign a single function to multiple pins through the MPC settings.
- (4) Analog input functions for the A/D converter are multiplexed with pins of ports 4, D, and E. If a pin is to be used as an analog input, avoid loss of resolution by setting the given bits of the port mode register (PMR) and of the port direction register (PDR) to 0, i.e. configuring the pin as a general-purpose input, and setting the PmnPFS.ASEL bit to 1
- (5) Points to note regarding the port mode register (PMR), port direction register (PDR), and Pmn pin function control register (PmnPFS) settings for pins that have multiplexed pin functions are listed in Table 19.32.

Table 19.32 Register Settings

			PmnPF	s				
Item	PMR.Bn	PDR.Bn	ASEL	ISEL	PSEL[4:0]	Point to Note		
After a reset	0	0	0	0	00000b	Pins function as general input port pins after release from the reset state.		
General input ports	0	0	0	0/1	х	Set the ISEL bit to 1 if these are multiplexed with interrupt inputs.		
General output ports	0	1	0	0	х			
Peripheral functions	1	х	0	0/1	Peripheral functions (see Table 19.2 to Table 19.31)	Set the ISEL bit to 1 if these are multiplexed with interrupt inputs.		
Interrupt inputs	0	0	0	1	х	PCR.Bn = 0		
NMI	х	х	Х	x*1	х	Register settings are not required.		
Analog inputs and outputs	0	0	1	x*1	х	Set these as general input port pins so that the output buffers are turned off.		
CTSU	1	0	0	0	11001b	Set these as general input port pins so that the output buffers are turned off.		
EXTAL/XTAL	0	0	Х	x*1	Х	Set these as general input port pins so that the output buffers are turned off.		
XCIN/XCOUT	0	0	х	x*1	х	Set these as general input port pins so that the output buffers are turned off.		

x: Setting not required.

Note 1. The pin does not function as the IRQn input pin even if the PmnPFS.ISEL bit is set to 1.

Note: The pin state is readable when the PmnPFS.ASEL bit is 0.

- If the value of the PmnPFS.PSEL[4:0] bits is to be changed, do so while the PMR.Bn bit is 0.
- If an RIIC function is assigned to a port pin, clear the PCR.Bn (to 0); pulling up is automatically turned off for outputs from peripheral modules other than the RIIC.

19.3.3 Note on Using Analog Functions

When an analog function is in use, configure the pin as a general-purpose input by setting the given bits of the port mode register (PMR), of the port direction register (PDR), and the pull-up control register (PCR) to 0, and then set the ASEL bit in the Pmn pin function control register (PmnPFS) to 1.

19.3.4 Notes on Using the CTSU Function of the Capacitive Touch Sensing Unit

When using the CTSU function (TSn (n=0 to 35), TSCAP) of the capacitive touch sensing unit, set the given bits of the port mode register (PMR), the port direction register (PDR), and the pull-up control register (PCR) to 0. Then, use the PmnPFS.PSEL[4:0] bits to select the CTSU function and set the PMR register to 1. When a pin function of the capacitive touch sensing unit, do not use the pin as the IRQ input pin regardless of the ISEL setting of the corresponding bit.

^{0/1:} Setting the PmnPFS.ISEL bit to 0 makes the pin incapable of functioning as an IRQ pin.

Setting the PmnPFS.ISEL bit to 1 makes the pin capable of functioning as an IRQ pin (if the IRQ is selected from the multiplexed

20. Multi-Function Timer Pulse Unit 2 (MTU2a)

In this section, "PCLK" is used to refer to PCLKB.

20.1 Overview

This MCU has an on-chip multi-function timer pulse unit 2 (MTU). Each unit comprises a 16-bit timer with six channels (MTU0 to MTU5).

Table 20.1 lists the specifications of the MTU, and Table 20.2 lists the functions of the MTU. Figure 20.1 shows a block diagram of the MTU.

Table 20.1 MTU Specifications

Item	Description
Pulse input/output	16 lines max.
Pulse input	3 lines
Count clocks	Eight clocks or seven clocks for each channel (four clocks for MTU5)
Available operations	 [MTU0 to MTU4] Waveform output at compare match Input capture function (noise filter set function) Counter clear operation Simultaneous writing to multiple timer counters (TCNT) Simultaneous clearing by compare match or input capture Simultaneous register input/output by synchronous counter operation A maximum of 12-phase PWM output is available in combination with synchronous operation
	 [MTU0, MTU3, MTU4] Buffer operation specifiable AC synchronous motor (brushless DC motor) drive mode using complementary PWM output and reset-synchronized PWM output is settable and the selection of two types of waveform outputs (chopping and level) is possible.
	[MTU1, MTU2]Phase counting mode specifiable independentlyCascade connection operation
	 [MTU3, MTU4] A total of 6-phase waveform output, which includes three phases each for positive and negative complementary PWM or reset PWM output, by interlocking operation
	 [MTU5] Dead time compensation counter Input capture function (noise filter set function) Counter clear operation
Complementary PWM mode	Interrupts at the crest and trough of the counter valueA/D converter start triggers can be skipped
Interrupt sources	28 sources
Buffer operation	Automatic transfer of register data
Trigger generation	A/D converter start trigger can be generated
Low power consumption function	Module stop state can be set.

Table 20.2 MTU Functions (1/2)

Item		MTU0	MTU1	MTU2	MTU3	MTU4	MTU5
Count clo	cks	PCLK/1 PCLK/4 PCLK/16 PCLK/64 MTCLKA MTCLKB MTCLKC MTCLKD	PCLK/1 PCLK/4 PCLK/16 PCLK/64 PCLK/256 MTCLKA MTCLKB	PCLK/1 PCLK/4 PCLK/16 PCLK/64 PCLK/1024 MTCLKA MTCLKB MTCLKC	PCLK/1 PCLK/4 PCLK/16 PCLK/64 PCLK/256 PCLK/1024 MTCLKA MTCLKB	PCLK/1 PCLK/4 PCLK/16 PCLK/64 PCLK/256 PCLK/1024 MTCLKA MTCLKB	PCLK/1 PCLK/4 PCLK/16 PCLK/64
External o	clocks for unting mode	_	MTCLKA MTCLKB	MTCLKC MTCLKD	_	_	_
General r (TGR)	egisters	TGRA TGRB TGRE	TGRA TGRB	TGRA TGRB	TGRA TGRB	TGRA TGRB	TGRU TGRV TGRW
General r buffer reg	-	TGRC TGRD TGRF	_	_	TGRC TGRD	TGRC TGRD	_
I/O pins		MTIOCOA MTIOCOB MTIOCOC MTIOCOD	MTIOC1A MTIOC1B	MTIOC2A MTIOC2B	MTIOC3A MTIOC3B MTIOC3C MTIOC3D	MTIOC4A MTIOC4B MTIOC4C MTIOC4D	Input pins MTIC5U MTIC5V MTIC5W
Counter of	clear function	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture
Compare	Low output	✓	✓	✓	✓	✓	_
match output	High output	√	√	√	✓	√	_
	Toggle output	√	√	√	✓	√	_
Input cap	ture function	✓	✓	✓	✓	✓	✓
Synchron	ous operation	✓	✓	✓	✓	✓	_
PWM mo	de 1	✓	✓	✓	✓	✓	_
PWM mo	de 2	✓	✓	✓	_	_	_
Complem mode	entary PWM	_	_	_	√	√	_
Reset-syr PWM	nchronized	_	_	_	√	√	_
AC synch drive mod	ronous motor le	√	_	_	√	√	_
Phase co	unting mode	_	✓	✓	_	_	_
Buffer ope	eration	✓	_	_	✓	✓	_
Dead time compensation counter function		_	_	_	_	_	√
DTC activation		TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture	TGR compare match or input capture and TCNT overflow or underflow	TGR compare match or input capture
A/D converter start trigger		TGRA compare match or input capture TGRB compare match or input capture TGRE compare match TGRF compare match	TGRA compare match or input capture	TGRA compare match or input capture	TGRA compare match or input capture	TGRA compare match or input capture TCNT underflow (trough) in complementary PWM mode	_

Table 20.2 MTU Functions (2/2)

Item	MTU0	MTU1	MTU2	MTU3	MTU4	MTU5
Interrupt sources	7 sources Compare match or input capture 0A Compare match or input capture 0B Compare match or input capture 0C Compare match or input capture 0C Compare match or input capture 0D Compare match 0E Compare match 0E	4 sources Compare match or input capture 1A Compare match or input capture 1B	4 sources Compare match or input capture 2A Compare match or input capture 2B	5 sources Compare match or input capture 3A Compare match or input capture 3B Compare match or input capture 3C Compare match or input capture 3C	5 sources Compare match or input capture 4A Compare match or input capture 4B Compare match or input capture 4C Compare match or input capture 4C	3 sources Compare match or input capture 5U Compare match or input capture 5V Compare match or input capture 5V Compare match or input capture 5W
	Overflow	OverflowUnderflow	OverflowUnderflow	Overflow	 Overflow or underflow 	
Event link function (output)	_	4 sourcesCompare match 1ACompare match 1B	4 sourcesCompare match 2ACompare match 2B	 6 sources Compare match 3A Compare match 3B Compare match 3C Compare match 3D 	 6 sources Compare match 4A Compare match 4B Compare match 4C Compare match 4D 	_
		OverflowUnderflow	OverflowUnderflow	OverflowUnderflow	OverflowUnderflow	
Event link function (input)	_	(1) Count start operation (2) Input capture operation (TRGA capture) (3) Count restart operation	(1) Count start operation (2) Input capture operation (TRGA capture) (3) Count restart operation	(1) Count start operation (2) Input capture operation (TRGA capture) (3) Count restart operation	(1) Count start operation (2) Input capture operation (TRGA capture) (3) Count restart operation	_
A/D converter start request delaying function	_	_	_	_	A/D converter start request at a match between TADCORA and TCNT or A/D converter start request at a match between TADCORB and TCNT	_
Interrupt skipping function	_	_	_	Skips TGRA compare match interrupts	Skips TCIV interrupts	_

^{√:} Possible

Note 1. For details on the module stop function, refer to section 11, Low Power Consumption.

^{—:} Not possible

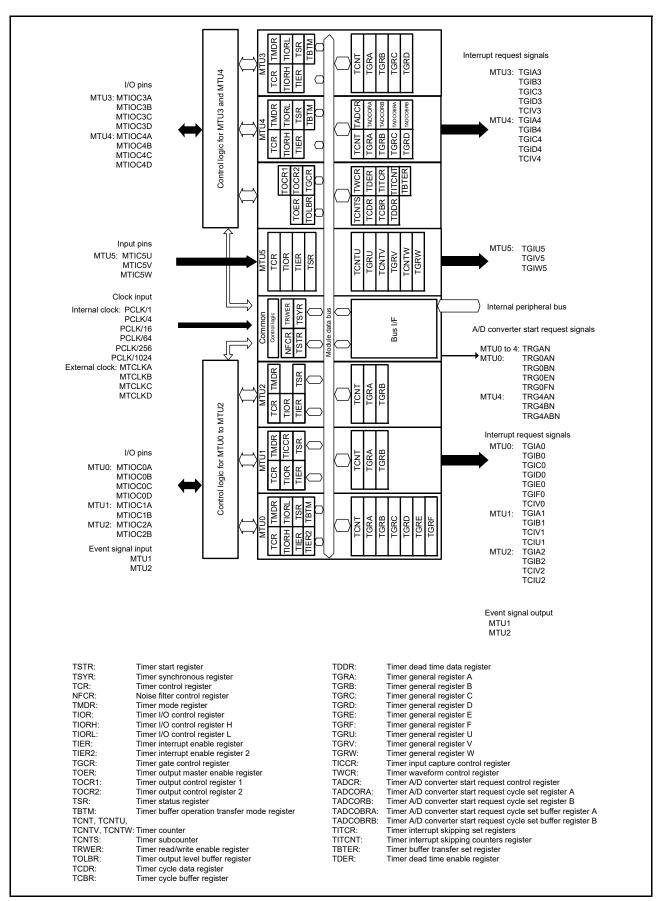
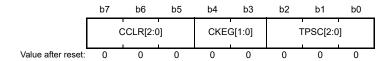


Figure 20.1 MTU Block Diagram

Table 20.3 lists the I/O pins to be used by the MTU.

Table 20.3 MTU I/O Pins

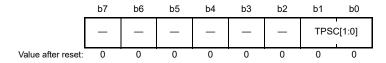

Module Symbol	Pin Name	I/O	Function
MTU	MTCLKA	Input	External clock A input pin (MTU1 phase counting mode A phase input)
	MTCLKB	Input	External clock B input pin (MTU1 phase counting mode B phase input)
	MTCLKC	Input	External clock C input pin (MTU2 phase counting mode A phase input)
	MTCLKD	Input	External clock D input pin (MTU2 phase counting mode B phase input)
MTU0	MTIOC0A	I/O	MTU0.TGRA input capture input/output compare output/PWM output pin
	MTIOC0B	I/O	MTU0.TGRB input capture input/output compare output/PWM output pin
	MTIOC0C	I/O	MTU0.TGRC input capture input/output compare output/PWM output pin
	MTIOC0D	I/O	MTU0.TGRD input capture input/output compare output/PWM output pin
MTU1	MTIOC1A	I/O	MTU1.TGRA input capture input/output compare output/PWM output pin
	MTIOC1B	I/O	MTU1.TGRB input capture input/output compare output/PWM output pin
MTU2	MTIOC2A	I/O	MTU2.TGRA input capture input/output compare output/PWM output pin
	MTIOC2B	I/O	MTU2.TGRB input capture input/output compare output/PWM output pin
MTU3	MTIOC3A	I/O	MTU3.TGRA input capture input/output compare output/PWM output pin
	MTIOC3B	I/O	MTU3.TGRB input capture input/output compare output/PWM output pin
	MTIOC3C	I/O	MTU3.TGRC input capture input/output compare output/PWM output pin
	MTIOC3D	I/O	MTU3.TGRD input capture input/output compare output/PWM output pin
MTU4	MTIOC4A	I/O	MTU4.TGRA input capture input/output compare output/PWM output pin
	MTIOC4B	I/O	MTU4.TGRB input capture input/output compare output/PWM output pin
	MTIOC4C	I/O	MTU4.TGRC input capture input/output compare output/PWM output pin
	MTIOC4D	I/O	MTU4.TGRD input capture input/output compare output/PWM output pin
MTU5	MTIC5U	Input	MTU5.TGRU input capture input/external pulse input pin
	MTIC5V	Input	MTU5.TGRV input capture input/external pulse input pin
	MTIC5W	Input	MTU5.TGRW input capture input/external pulse input pin

20.2 Register Descriptions

20.2.1 Timer Control Register (TCR)

• MTU0.TCR, MTU1.TCR, MTU2.TCR, MTU3.TCR, MTU4.TCR

Address(es): MTU0.TCR 0008 8700h, MTU1.TCR 0008 8780h, MTU2.TCR 0008 8800h, MTU3.TCR 0008 8600h, MTU4.TCR 0008 8601h



Bit	Symbol	Bit Name	Description	R/W
b2 to b0	TPSC[2:0]	Time Prescaler Select	Refer to Table 20.6 to Table 20.9.	R/W
b4, b3	CKEG[1:0]	Clock Edge Select	 b4 b3 0 0: Count at rising edge 0 1: Count at falling edge 1 x: Count at both edges 	R/W
b7 to b5	CCLR[2:0]	Counter Clear	Refer to Table 20.4 and Table 20.5.	R/W

x: Don't care

• MTU5.TCRU, MTU5.TCRV, MTU5.TCRW

Address(es): MTU5.TCRU 0008 8884h, MTU5.TCRV 0008 8894h, MTU5.TCRW 0008 88A4h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	TPSC[1:0]	Time Prescaler Select	Refer to Table 20.10.	R/W
b7 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The MTU has a total of eight TCR registers, one each for MTU0 to MTU4 and three (TCRU, TCRV, and TCRW) for MTU5

The TCR register controls the TCNT operation for each channel. The TCR register values should be specified only while the TCNT operation is stopped.

TPSC[2:0] Bits (Time Prescaler Select)

These bits select the TCNT count clock source. The count clock source can be selected independently for each channel. Refer to Table 20.6 to Table 20.10 for details.

CKEG[1:0] Bits (Clock Edge Select)

These bits select the clock edge. When the internal clock is counted at both edges, the count clock period is halved (e.g. PCLK/4 at both edges = PCLK/2 at rising edge). If phase counting mode is used on MTU1 and MTU2, the setting of these bits is ignored and the phase counting mode setting has priority. Internal clock edge selection is valid when the count clock source is PCLK/4 or slower. When PCLK/1 or the overflow/underflow in another channel is selected for the count clock source, a value can be written to these bits but counter operation compiles with the initial value.

CCLR[2:0] Bits (Counter Clear)

These bits select the TCNT counter clearing source. Refer to Table 20.4 and Table 20.5 for details.

Table 20.4 CCLR[2:0] (MTU0, MTU3, and MTU4)

	Bit 7	Bit 6	Bit 5				
Channel	CCLR[2]	CCLR[1]	CCLR[0]	Description			
MTU0,	0	0	0	TCNT clearing disabled			
MTU3, MTU4	0	0	1	TCNT cleared by TGRA compare match/input capture			
WITOT	0	1	0	TCNT cleared by TGRB compare match/input capture			
	0	1	1	TCNT cleared by counter clearing in another channel performing synchronous clearing/synchronous operation*1			
	1	0	0	TCNT clearing disabled			
	1	0	1	TCNT cleared by TGRC compare match/input capture*2			
	1	1	0	TCNT cleared by TGRD compare match/input capture*2			
	1	1	1	TCNT cleared by counter clearing in another channel performing synchronous clearing/synchronous operation*1			

Note 1. Synchronous operation is selected by setting the TSYR.SYNCn bit (n = 0, 3, 4) to 1.

Table 20.5 CCLR[2:0] (MTU1 and MTU2)

	Bit 7	Bit 6	Bit 5	
Channel	Reserved*2	CCLR[1]	CCLR[0]	Description
MTU1, MTU2	0	0	0	TCNT clearing disabled
	0	0	1	TCNT cleared by TGRA compare match/input capture
	0	1	0	TCNT cleared by TGRB compare match/input capture
	0	1	1	TCNT cleared by counter clearing in another channel performing synchronous clearing/synchronous operation*1

Note 1. Synchronous operation is selected by setting the TSYR.SYNCn bit (n = 1, 2) to 1.

Table 20.6 TPSC[2:0] (MTU0)

	Bit 2	Bit 1	Bit 0	
Channel	TPSC[2]	TPSC[1]	TPSC[0]	Description
MTU0	0	0	0	Internal clock: counts on PCLK/1
	0	0	1	Internal clock: counts on PCLK/4
	0	1	0	Internal clock: counts on PCLK/16
	0	1	1	Internal clock: counts on PCLK/64
	1	0	0	External clock: counts on MTCLKA pin input
	1	0	1	External clock: counts on MTCLKB pin input
	1	1	0	External clock: counts on MTCLKC pin input
	1	1	1	External clock: counts on MTCLKD pin input

Note 2. When TGRC or TGRD is used as a buffer register, TCNT is not cleared because the buffer register setting has priority and compare match/input capture does not occur.

Note 2. Bit 7 is reserved in MTU1 and MTU2. This bit is read as 0. The write value should be 0.

Table 20.7 TPSC[2:0] (MTU1)

	Bit 2	Bit 1	Bit 0	
Channel	TPSC[2]	TPSC[1]	TPSC[0]	Description
MTU1	0	0	0	Internal clock: counts on PCLK/1
	0	0	1	Internal clock: counts on PCLK/4
	0	1	0	Internal clock: counts on PCLK/16
	0	1	1	Internal clock: counts on PCLK/64
	1	0	0	External clock: counts on MTCLKA pin input
	1	0	1	External clock: counts on MTCLKB pin input
	1	1	0	Internal clock: counts on PCLK/256
	1	1	1	Counts on MTU2.TCNT overflow/underflow

Note: This setting is ignored when MTU1 is in phase counting mode.

Table 20.8 TPSC[2:0] (MTU2)

	Bit 2	Bit 1	Bit 0	
Channel	TPSC[2]	TPSC[1]	TPSC[0]	Description
MTU2	0	0	0	Internal clock: counts on PCLK/1
	0	0	1	Internal clock: counts on PCLK/4
	0	1	0	Internal clock: counts on PCLK/16
	0	1	1	Internal clock: counts on PCLK/64
	1	0	0	External clock: counts on MTCLKA pin input
	1	0	1	External clock: counts on MTCLKB pin input
	1	1	0	External clock: counts on MTCLKC pin input
	1	1	1	Internal clock: counts on PCLK/1024

Note: This setting is ignored when MTU2 is in phase counting mode.

Table 20.9 TPSC[2:0] (MTU3 and MTU4)

	Bit 2	Bit 1	Bit 0	
Channel	TPSC[2]	TPSC[1]	TPSC[0]	Description
MTU3,	0	0	0	Internal clock: counts on PCLK/1
MTU4	0	0	1	Internal clock: counts on PCLK/4
	0	1	0	Internal clock: counts on PCLK/16
	0	1	1	Internal clock: counts on PCLK/64
	1	0	0	Internal clock: counts on PCLK/256
	1	0	1	Internal clock: counts on PCLK/1024
	1	1	0	External clock: counts on MTCLKA pin input
	1	1	1	External clock: counts on MTCLKB pin input

Table 20.10 TPSC[1:0] (MTU5)

	Bit 1	Bit 0	
Channel	TPSC[1]	TPSC[0]	Description
MTU5	0	0	Internal clock: counts on PCLK/1
	0	1	Internal clock: counts on PCLK/4
	1	0	Internal clock: counts on PCLK/16
	1	1	Internal clock: counts on PCLK/64

20.2.2 Timer Mode Register (TMDR)

Address(es): MTU0.TMDR 0008 8701h, MTU1.TMDR 0008 8781h, MTU2.TMDR 0008 8801h, MTU3.TMDR 0008 8602h, MTU4.TMDR 0008 8603h

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	MD[3:0]	Mode Select	These bits specify the timer operating mode. Refer to Table 20.11 for details.	R/W
b4	BFA	Buffer Operation A	TGRA and TGRC operate normally TGRA and TGRC used together for buffer operation	R/W
b5	BFB	Buffer Operation B	TGRB and TGRD operate normally TGRB and TGRD used together for buffer operation	R/W
b6	BFE	Buffer Operation E	MTU0.TGRE and MTU0.TGRF operate normally HTU0.TGRE and MTU0.TGRF used together for buffer operation	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

The TMDR register specifies the operating mode of each channel. The TMDR register values should be specified only while the TCNT operation is stopped.

Table 20.11 Operating Mode Setting by MD[3:0] Bits

Bit 3	Bit 2	Bit 1	Bit 0						
MD[3]	MD[2]	MD[1]	MD[0]	Description	MTU0	MTU1	MTU2	MTU3	MTU4
0	0	0	0	Normal mode	✓	✓	✓	✓	✓
0	0	0	1	Setting prohibited					
0	0	1	0	PWM mode 1	✓	✓	✓	✓	✓
0	0	1	1	PWM mode 2	✓	✓	✓		
0	1	0	0	Phase counting mode 1		✓	✓		
0	1	0	1	Phase counting mode 2		✓	✓		
0	1	1	0	Phase counting mode 3		✓	✓		
0	1	1	1	Phase counting mode 4		✓	✓		
1	0	0	0	Reset-synchronized PWM mode*1				✓	
1	0	0	1	Setting prohibited					
1	0	1	х	Setting prohibited					
1	1	0	0	Setting prohibited					
1	1	0	1	Complementary PWM mode 1 (transfer at crest)*1			✓		
1	1	1	0	Complementary PWM mode 2 (transfer at trough)*1		✓			
1	1	1	1	Complementary PWM mode 3 (transfer at crest and trough)*1				✓	

x: Don't care

Note: Only set the corresponding operating mode listed above for each channel.

Note 1. Reset-synchronized PWM mode and complementary PWM mode can only be set for MTU3.

When MTU3 is set to reset-synchronized PWM mode or complementary PWM mode, the MTU4 settings become ineffective and conform to the MTU3 setting, respectively. MTU4 should be set to normal mode.

BFA Bit (Buffer Operation A)

This bit specifies normal operation for the TGRA register or buffered operation of the combination of registers TGRA and TGRC. When the TGRC register is used as a buffer register, the TGRC input capture/output compare does not take place in modes other than complementary PWM mode, but compare match with the TGRC register occurs in complementary PWM mode. If a compare match occurs on MTU4 in the Tb interval in complementary PWM mode, the MTU4.TIER.TGIEC bit should be set to 0.

When MTU3 or MTU4 is set to reset-synchronized PWM mode or complementary PWM mode, the buffer operation conforms to the MTU3 setting. Set the MTU4.TMDR.BFA bit to 0.

In MTU1 and MTU2, which have no TGRC register, this bit is reserved. It is read as 0. The write value should be 0. Refer to Figure 20.40 for an illustration of the Tb interval in complementary PWM mode.

BFB Bit (Buffer Operation B)

This bit specifies normal operation for the TGRB register or buffered operation of the combination of registers TGRB and TGRD. When the TGRD register is used as a buffer register, the TGRD input capture/output compare does not take place in modes other than complementary PWM mode, but compare match with the TGRD register occurs in complementary PWM mode. If a compare match occurs in the Tb interval in complementary PWM mode, the MTU3.TIER.TGIED or MTU4.TIER.TGIED bit should be set to 0.

When MTU3 or MTU4 is set to reset-synchronized PWM mode or complementary PWM mode, the buffer operation conforms to the MTU3 setting. Set the MTU4.TMDR.BFB bit to 0.

In MTU1 and MTU2, which have no TGRD register, this bit is reserved. It is read as 0. The write value should be 0. Refer to Figure 20.40 for an illustration of the Tb interval in complementary PWM mode.

BFE Bit (Buffer Operation E)

This bit specifies normal operation or buffered operation for registers MTU0.TGRE and MTU0.TGRF. Compare match with the TGRF register occurs even when the TGRF register is used as a buffer register.

In MTU1 to MTU4, this bit is reserved. It is read as 0. The write value should be 0.

20.2.3 Timer I/O Control Register (TIOR)

• MTU0.TIORH, MTU1.TIOR, MTU2.TIOR, MTU3.TIORH, MTU4.TIORH

Address(es): MTU0.TIORH 0008 8702h, MTU1.TIOR 0008 8782h, MTU2.TIOR 0008 8802h, MTU3.TIORH 0008 8604h, MTU4.TIORH 0008 8606h

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	IOA[3:0]	I/O Control A	Refer to the following tables.*1 MTU0.TIORH: Table 20.20 MTU1.TIOR: Table 20.22 MTU2.TIOR: Table 20.23 MTU3.TIORH: Table 20.24 MTU4.TIORH: Table 20.26	R/W
b7 to b4	IOB[3:0]	I/O Control B	Refer to the following tables.*1 MTU0.TIORH: Table 20.12 MTU1.TIOR: Table 20.14 MTU2.TIOR: Table 20.15 MTU3.TIORH: Table 20.16 MTU4.TIORH: Table 20.18	R/W

Note 1. If the IOm[3:0] (m = A, B) bits are changed to an "output prohibited" setting (0000b or 0100b) while output of the low or high level or toggling of the output in response to compare matches is in progress, the output becomes high-impedance.

• MTU0.TIORL, MTU3.TIORL, MTU4.TIORL

Address(es): MTU0.TIORL 0008 8703h, MTU3.TIORL 0008 8605h, MTU4.TIORL 0008 8607h

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	IOC[3:0]	I/O Control C	Refer to the following tables.*1 MTU0.TIORL: Table 20.21 MTU3.TIORL: Table 20.25 MTU4.TIORL: Table 20.27	R/W
b7 to b4	IOD[3:0]	I/O Control D	Refer to the following tables.*1 MTU0.TIORL: Table 20.13 MTU3.TIORL: Table 20.17 MTU4.TIORL: Table 20.19	R/W

Note 1. If the IOm[3:0] (m = C, D) bits are changed to an "output prohibited" setting (0000b or 0100b) while output of the low or high level or toggling of the output in response to compare matches is in progress, the output becomes high-impedance.

MTU5.TIORU, MTU5.TIORV, MTU5.TIORW

Address(es): MTU5.TIORU 0008 8886h, MTU5.TIORV 0008 8896h, MTU5.TIORW 0008 88A6h

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	IOC[4:0]	I/O Control C	Refer to the following table. MTU5.TIORU, MTU5.TIORV, MTU5.TIORW: Table 20.28	R/W
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The MTU has a total of 11 TIOR registers, two each for MTU0, MTU3, and MTU4, one each for MTU1 and MTU2, and three (MTU5.TIORU/TIORV/TIORW) for MTU5.

The TIOR register should be set when the TMDR register is set to select normal mode, PWM mode, or phase counting mode.

The initial output specified by the TIOR register is valid when the counter is stopped (the TSTR.CSTn bit is set to 0). Note also that, in PWM mode 2, the output at the point at which the counter is set to 0 is specified.

When the TGRC or TGRD register is designated for buffer operation, this setting is invalid and the register operates as a buffer register.

Table 20.12 TIORH (MTU0)

Bit 7	Bit 6	Bit 5	Bit 4	Description	
IOB[3]	IOB[2]	IOB[1]	IOB[0]	MTU0.TGRB Function	MTIOC0B Pin Function
0	0	0	0	Output compare register	Output prohibited
0	0	0	1	_	Initial output is low. Low output at compare match.
0	0	1	0	_	Initial output is low. High output at compare match.
0	0	1	1	_	Initial output is low. Toggle output at compare match.
0	1	0	0	_	Output prohibited
0	1	0	1	_	Initial output is high. Low output at compare match.
0	1	1	0	_	Initial output is high. High output at compare match.
0	1	1	1	_	Initial output is high. Toggle output at compare match.
1	0	0	0	Input capture register	Input capture at rising edge.
1	0	0	1	_	Input capture at falling edge.
1	0	1	Х	_	Input capture at both edges.
1	1	Х	Х	_	Capture input source is count clock in MTU1. Input capture at MTU1.TCNT up-count/down-count.*1

x: Don't care

Note 1. When PCLK/1 is selected as the count clock for MTU1, MTU0 input capture is not generated. Do not select PCLK/1 as the count clock for MTU1.

Table 20.13 TIORL (MTU0)

Bit 7	Bit 6	Bit 5	Bit 4	Description	
IOD[3]	IOD[2]	IOD[1]	IOD[0]	MTU0.TGRD Function	MTIOC0D Pin Function
0	0	0	0	Output compare register*1	Output prohibited
0	0	0	1	_	Initial output is low. Low output at compare match.
0	0	1	0	_	Initial output is low. High output at compare match.
0	0	1	1	_	Initial output is low. Toggle output at compare match.
0	1	0	0	_	Output prohibited
0	1	0	1	_	Initial output is high. Low output at compare match.
0	1	1	0	_	Initial output is high. High output at compare match.
0	1	1	1	_	Initial output is high. Toggle output at compare match.
1	0	0	0	Input capture register*1	Input capture at rising edge.
1	0	0	1	_	Input capture at falling edge.
1	0	1	Х	_	Input capture at both edges.
1	1	х	х	_	Capture input source is count clock in MTU1. Input capture at MTU1.TCNT up-count/down-count.*2

x: Don't care

Table 20.14 TIOR (MTU1)

Bit 7	Bit 6	Bit 5	Bit 4	Description	
IOB[3]	IOB[2]	IOB[1]	IOB[0]	MTU1.TGRB Function	MTIOC1B Pin Function
0	0	0	0	Output compare register	Output prohibited
0	0	0	1	_	Initial output is low. Low output at compare match.
0	0	1	0	_	Initial output is low. High output at compare match.
0	0	1	1	_	Initial output is low. Toggle output at compare match.
0	1	0	0	_	Output prohibited
0	1	0	1	_	Initial output is high. Low output at compare match.
0	1	1	0	_	Initial output is high. High output at compare match.
0	1	1	1	_	Initial output is high. Toggle output at compare match.
1	0	0	0	Input capture register	Input capture at rising edge.
1	0	0	1	_	Input capture at falling edge.
1	0	1	х	_	Input capture at both edges.
1	1	х	х	_	Input capture at generation of MTU0.TGRC compare match/input capture.

x: Don't care

Note 1. When the MTU0.TMDR.BFB is set to 1 and the MTU0.TGRD register is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Note 2. When PCLK/1 is selected as the count clock for MTU1, MTU0 input capture is not generated. Do not select PCLK/1 as the count clock for MTU1.

Table 20.15 TIOR (MTU2)

Bit 7	Bit 6	Bit 5	Bit 4	Description	
IOB[3]	IOB[2]	IOB[1]	IOB[0]	MTU2.TGRB Function	MTIOC2B Pin Function
0	0	0	0	Output compare register	Output prohibited
0	0	0	1	_	Initial output is low. Low output at compare match.
0	0	1	0	_	Initial output is low. High output at compare match.
0	0	1	1	_	Initial output is low. Toggle output at compare match.
0	1	0	0	_	Output prohibited
0	1	0	1	_	Initial output is high. Low output at compare match.
0	1	1	0	_	Initial output is high. High output at compare match.
0	1	1	1	_	Initial output is high. Toggle output at compare match.
1	Х	0	0	Input capture register	Input capture at rising edge.
1	Х	0	1	_	Input capture at falling edge.
1	Х	1	х	_	Input capture at both edges.

x: Don't care

Table 20.16 TIORH (MTU3)

Bit 7	Bit 6	Bit 5	Bit 4	Description	
IOB[3]	IOB[2]	IOB[1]	IOB[0]	MTU3.TGRB Function	MTIOC3B Pin Function
0	0	0	0	Output compare register	Output prohibited
0	0	0	1	_	Initial output is low. Low output at compare match.
0	0	1	0	_	Initial output is low. High output at compare match.
0	0	1	1	_	Initial output is low. Toggle output at compare match.
0	1	0	0	-	Output prohibited
0	1	0	1	_	Initial output is high. Low output at compare match.
0	1	1	0	_	Initial output is high. High output at compare match.
0	1	1	1	_	Initial output is high. Toggle output at compare match.
1	х	0	0	Input capture register	Input capture at rising edge.
1	х	0	1	_	Input capture at falling edge.
1	х	1	Х	_	Input capture at both edges.

x: Don't care

Table 20.17 TIORL (MTU3)

Bit 7	Bit 6	Bit 5	Bit 4	Description	
IOD[3]	IOD[2]	IOD[1]	IOD[0]	MTU3.TGRD Function	MTIOC3D Pin Function
0	0	0	0	Output compare register*1	Output prohibited
0	0	0	1	_	Initial output is low. Low output at compare match.
0	0	1	0	_	Initial output is low. High output at compare match.
0	0	1	1	_	Initial output is low. Toggle output at compare match.
0	1	0	0	_	Output prohibited
0	1	0	1	_	Initial output is high. Low output at compare match.
0	1	1	0	_	Initial output is high. High output at compare match.
0	1	1	1	_	Initial output is high. Toggle output at compare match.
1	Х	0	0	Input capture register*1	Input capture at rising edge.
1	х	0	1	_	Input capture at falling edge.
1	Х	1	Х	_	Input capture at both edges.

x: Don't care

Note 1. When the MTU3.TMDR.BFB bit is set to 1 and the MTU3.TGRD register is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Table 20.18 TIORH (MTU4)

Bit 7	Bit 6	Bit 5	Bit 4	Description	
IOB[3]	IOB[2]	IOB[1]	IOB[0]	MTU4.TGRB Function	MTIOC4B Pin Function
0	0	0	0	Output compare register	Output prohibited
0	0	0	1	_	Initial output is low. Low output at compare match.
0	0	1	0	_	Initial output is low. High output at compare match.
0	0	1	1	_	Initial output is low. Toggle output at compare match.
0	1	0	0	_	Output prohibited
0	1	0	1	_	Initial output is high. Low output at compare match.
0	1	1	0	_	Initial output is high. High output at compare match.
0	1	1	1	_	Initial output is high. Toggle output at compare match.
1	х	0	0	Input capture register	Input capture at rising edge.
1	х	0	1	_	Input capture at falling edge.
1	х	1	х		Input capture at both edges.

x: Don't care

Table 20.19 TIORL (MTU4)

Bit 7	Bit 6	Bit 5	Bit 4	Description	
IOD[3]	IOD[2]	IOD[1]	IOD[0]	MTU4.TGRD Function	MTIOC4D Pin Function
0	0	0	0	Output compare register*1	Output prohibited
0	0	0	1	_	Initial output is low. Low output at compare match.
0	0	1	0	_	Initial output is low. High output at compare match.
0	0	1	1	_	Initial output is low. Toggle output at compare match.
0	1	0	0	_	Output prohibited
0	1	0	1	_	Initial output is high. Low output at compare match.
0	1	1	0	_	Initial output is high. High output at compare match.
0	1	1	1	_	Initial output is high. Toggle output at compare match.
1	х	0	0	Input capture register*1	Input capture at rising edge.
1	Х	0	1	_	Input capture at falling edge.
1	х	1	х	_	Input capture at both edges.

x: Don't care

Note 1. When the MTU4.TMDR.BFB bit is set to 1 and the MTU4.TGRD register is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Table 20.20 TIORH (MTU0)

Bit 3	Bit 2	Bit 1	Bit 0	Description	
IOA[3]	IOA[2]	IOA[1]	IOA[0]	MTU0.TGRA Function	MTIOC0A Pin Function
0	0	0	0	Output compare register	Output prohibited
0	0	0	1	_	Initial output is low. Low output at compare match.
0	0	1	0	_	Initial output is low. High output at compare match.
0	0	1	1	_	Initial output is low. Toggle output at compare match.
0	1	0	0	_	Output prohibited
0	1	0	1	_	Initial output is high. Low output at compare match.
0	1	1	0	_	Initial output is high. High output at compare match.
0	1	1	1	_	Initial output is high. Toggle output at compare match.
1	0	0	0	Input capture register	Input capture at rising edge.
1	0	0	1	_	Input capture at falling edge.
1	0	1	Х	_	Input capture at both edges.
1	1	х	х	_	Capture input source is count clock in MTU1. Input capture at MTU1.TCNT up-count/down-count.*1

x: Don't care

Note 1. When PCLK/1 is selected as the count clock for MTU1, MTU0 input capture is not generated. Do not select PCLK/1 as the count clock for MTU1.

Table 20.21 TIORL (MTU0)

Bit 3	Bit 2	Bit 1	Bit 0	Description	
IOC[3]	IOC[2]	IOC[1]	IOC[0]	MTU0.TGRC Function	MTIOC0C Pin Function
0	0	0	0	Output compare register*1	Output prohibited
0	0	0	1	_	Initial output is low. Low output at compare match.
0	0	1	0	_	Initial output is low. High output at compare match.
0	0	1	1	_	Initial output is low. Toggle output at compare match.
0	1	0	0	_	Output prohibited
0	1	0	1	_	Initial output is high. Low output at compare match.
0	1	1	0	_	Initial output is high. High output at compare match.
0	1	1	1	_	Initial output is high. Toggle output at compare match.
1	0	0	0	Input capture register*1	Input capture at rising edge.
1	0	0	1	_	Input capture at falling edge.
1	0	1	Х	_	Input capture at both edges.
1	1	Х	х	_	Capture input source is count clock in MTU1. Input capture at MTU1.TCNT up-count/down-count.*2

x: Don't care

Note 1. When the MTU0.TMDR.BFA bit is set to 1 and the MTU0.TGRC register is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Note 2. When PCLK/1 is selected as the count clock for MTU1, MTU0 input capture is not generated. Do not select PCLK/1 as the count clock for MTU1.

Table 20.22 TIOR (MTU1)

Bit 3	Bit 2	Bit 1	Bit 0	Description	
IOA[3]	IOA[2]	IOA[1]	IOA[0]	MTU1.TGRA Function	MTIOC1A Pin Function
0	0	0	0	Output compare register	Output prohibited
0	0	0	1	_	Initial output is low. Low output at compare match.
0	0	1	0	_	Initial output is low. High output at compare match.
0	0	1	1	_	Initial output is low. Toggle output at compare match.
0	1	0	0	-	Output prohibited
0	1	0	1	_	Initial output is high. Low output at compare match.
0	1	1	0	_	Initial output is high. High output at compare match.
0	1	1	1	_	Initial output is high. Toggle output at compare match.
1	0	0	0	Input capture register	Input capture at rising edge.
1	0	0	1	_	Input capture at falling edge.
1	0	1	Х	_	Input capture at both edges.
1	1	х	х	_	Input capture at generation of MTU0.TGRA compare match/input capture.

x: Don't care

Table 20.23 TIOR (MTU2)

Bit 3	Bit 2	Bit 1	Bit 0	Description	
IOA[3]	IOA[2]	IOA[1]	IOA[0]	MTU2.TGRA Function	MTIOC2A Pin Function
0	0	0	0	Output compare register	Output prohibited
0	0	0	1	_	Initial output is low. Low output at compare match.
0	0	1	0	_	Initial output is low. High output at compare match.
0	0	1	1	_	Initial output is low. Toggle output at compare match.
0	1	0	0	_	Output prohibited
0	1	0	1	_	Initial output is high. Low output at compare match.
0	1	1	0	_	Initial output is high. High output at compare match.
0	1	1	1	_	Initial output is high. Toggle output at compare match.
1	Х	0	0	Input capture register	Input capture at rising edge.
1	х	0	1	_	Input capture at falling edge.
1	х	1	х	_	Input capture at both edges.

x: Don't care

Table 20.24 TIORH (MTU3)

Bit 3	Bit 2	Bit 1	Bit 0	Description	
IOA[3]	IOA[2]	IOA[1]	IOA[0]	MTU3.TGRA Function	MTIOC3A Pin Function
0	0	0	0	Output compare register	Output prohibited
0	0	0	1	_	Initial output is low. Low output at compare match.
0	0	1	0	_	Initial output is low. High output at compare match.
0	0	1	1	_	Initial output is low. Toggle output at compare match.
0	1	0	0	-	Output prohibited
0	1	0	1	_	Initial output is high. Low output at compare match.
0	1	1	0	_	Initial output is high. High output at compare match.
0	1	1	1	_	Initial output is high. Toggle output at compare match.
1	х	0	0	Input capture register	Input capture at rising edge.
1	х	0	1	_	Input capture at falling edge.
1	х	1	Х	_	Input capture at both edges.

x: Don't care

Table 20.25 TIORL (MTU3)

Bit 3	Bit 2	Bit 1	Bit 0	Description	
IOC[3]	IOC[2]	IOC[1]	IOC[0]	MTU3.TGRC Function	MTIOC3C Pin Function
0	0	0	0	Output compare register*1	Output prohibited
0	0	0	1	_	Initial output is low. Low output at compare match.
0	0	1	0	_	Initial output is low. High output at compare match.
0	0	1	1	_	Initial output is low. Toggle output at compare match.
0	1	0	0	_	Output prohibited
0	1	0	1	_	Initial output is high. Low output at compare match.
0	1	1	0	_	Initial output is high. High output at compare match.
0	1	1	1	_	Initial output is high. Toggle output at compare match.
1	Х	0	0	Input capture register*1	Input capture at rising edge.
1	х	0	1	_	Input capture at falling edge.
1	х	1	х	_	Input capture at both edges.

x: Don't care

Note 1. When the MTU3.TMDR.BFA bit is set to 1 and the MTU3.TGRC register is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Table 20.26 TIORH (MTU4)

Bit 3	Bit 2	Bit 1	Bit 0	Description	
IOA[3]	IOA[2]	IOA[1]	IOA[0]	MTU4.TGRA Function	MTIOC4A Pin Function
0	0	0	0	Output compare register	Output prohibited
0	0	0	1	_	Initial output is low. Low output at compare match.
0	0	1	0	_	Initial output is low. High output at compare match.
0	0	1	1	_	Initial output is low. Toggle output at compare match.
0	1	0	0	_	Output prohibited
0	1	0	1	_	Initial output is high. Low output at compare match.
0	1	1	0	_	Initial output is high. High output at compare match.
0	1	1	1	_	Initial output is high. Toggle output at compare match.
1	Х	0	0	Input capture register	Input capture at rising edge.
1	х	0	1	_	Input capture at falling edge.
1	х	1	х		Input capture at both edges.

x: Don't care

Table 20.27 TIORL (MTU4)

Bit 3	Bit 2	Bit 1	Bit 0	Description	
IOC[3]	IOC[2]	IOC[1]	IOC[0]	MTU4.TGRC Function	MTIOC4C Pin Function
0	0	0	0	Output compare register*1	Output prohibited
0	0	0	1	_	Initial output is low. Low output at compare match.
0	0	1	0	_	Initial output is low. High output at compare match.
0	0	1	1	_	Initial output is low. Toggle output at compare match.
0	1	0	0	_	Output prohibited
0	1	0	1	_	Initial output is high. Low output at compare match.
0	1	1	0	_	Initial output is high. High output at compare match.
0	1	1	1	_	Initial output is high. Toggle output at compare match.
1	х	0	0	Input capture register*1	Input capture at rising edge.
1	х	0	1	_	Input capture at falling edge.
1	х	1	х	_	Input capture at both edges.

x: Don't care

Note 1. When the MTU4.TMDR.BFA bit is set to 1 and the MTU4.TGRC register is used as a buffer register, this setting is invalid and input capture/output compare is not generated.

Table 20.28 TIORU, TIORV, and TIORW (MTU5)

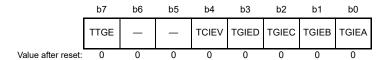
Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Description	
IOC[4]	100[3]	IOC[2]	IOC[1]	100[0]	MTU5.TGRU, MTU5.TGRV, MTU5.TGRW Function	MTIC5U, MTIC5V, MTIC5W Pin Function
0	0	0	0	0	Compare match register	Compare match
0	0	0	0	1	•	Setting prohibited
0	0	0	1	х	•	Setting prohibited
0	0	1	х	х	•	Setting prohibited
0	1	х	х	х	•	Setting prohibited
1	0	0	0	0	Input capture register*1	Setting prohibited
1	0	0	0	1	•	Input capture at rising edge.
1	0	0	1	0	•	Input capture at falling edge.
1	0	0	1	1	•	Input capture at both edges.
1	0	1	х	х	•	Setting prohibited
1	1	0	0	0	•	Setting prohibited
1	1	0	0	1	.	Measurement of low pulse width of external input signal. Capture at trough in complementary PWM mode.
1	1	0	1	0	•	Measurement of low pulse width of external input signal. Capture at crest in complementary PWM mode.
1	1	0	1	1	•	Measurement of low pulse width of external input signal. Capture at crest and trough in complementary PWM mode.
1	1	1	0	0	•	Setting prohibited
1	1	1	0	1	•	Measurement of high pulse width of external input signal. Capture at trough in complementary PWM mode.
1	1	1	1	0	•	Measurement of high pulse width of external input signal. Capture at crest in complementary PWM mode.
1	1	1	1	1	•	Measurement of high pulse width of external input signal. Capture at crest and trough in complementary PWM mode.

x: Don't care

Note 1. Set the IOC[4:0] bits to 19h, 1Ah, 1Bh, 1Dh, 1Eh, or 1Fh only when using external pulse width measurement or only when using dead time compensation linked with MTU3 and MTU4. For details, refer to section 20.3.10, External Pulse Width Measurement and section 20.3.11, Dead Time Compensation.

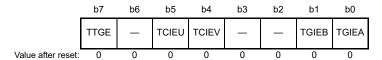
20.2.4 Timer Compare Match Clear Register (TCNTCMPCLR)

Address(es): MTU5.TCNTCMPCLR 0008 88B6h


Bit	Symbol	Bit Name	Description	R/W
b0	CMPCLR5W	TCNT Compare Clear 5W	0: Disables MTU5.TCNTW to be cleared to 0000h at MTU5.TCNTW and MTU5.TGRW compare match or input capture 1: Enables MTU5.TCNTW to be cleared to 0000h at MTU5.TCNTW and MTU5.TGRW compare match or input capture	R/W
b1	CMPCLR5V	TCNT Compare Clear 5V	0: Disables MTU5.TCNTV to be cleared to 0000h at MTU5.TCNTV and MTU5.TGRV compare match or input capture 1: Enables MTU5.TCNTV to be cleared to 0000h at MTU5.TCNTV and MTU5.TGRV compare match or input capture	R/W
b2	CMPCLR5U	TCNT Compare Clear 5U	O: Disables MTU5.TCNTU to be cleared to 0000h at MTU5.TCNTU and MTU5.TGRU compare match or input capture 1: Enables MTU5.TCNTU to be cleared to 0000h at MTU5.TCNTU and MTU5.TGRU compare match or input capture	R/W
b7 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The TCNTCMPCLR register specifies requests to clear counters MTU5.TCNTU, MTU5.TCNTV, and MTU5.TCNTW.

20.2.5 Timer Interrupt Enable Register (TIER)


• MTU0.TIER, MTU3.TIER

Address(es): MTU0.TIER 0008 8704h, MTU3.TIER 0008 8608h

• MTU1.TIER, MTU2.TIER

Address(es): MTU1.TIER 0008 8784h, MTU2.TIER 0008 8804h

• MTU4.TIER

Address(es): MTU4.TIER 0008 8609h

	b7	b6	b5	b4	b3	b2	b1	b0
	TTGE	TTGE2	_	TCIEV	TGIED	TGIEC	TGIEB	TGIEA
Value after reset:	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	TGIEA	TGR Interrupt Enable A	0: Interrupt requests (TGIA) disabled 1: Interrupt requests (TGIA) enabled	R/W
b1	TGIEB	TGR Interrupt Enable B	0: Interrupt requests (TGIB) disabled 1: Interrupt requests (TGIB) enabled	R/W
b2	TGIEC	TGR Interrupt Enable C	0: Interrupt requests (TGIC) disabled 1: Interrupt requests (TGIC) enabled	R/W
b3	TGIED	TGR Interrupt Enable D	0: Interrupt requests (TGID) disabled 1: Interrupt requests (TGID) enabled	R/W
b4	TCIEV	Overflow Interrupt Enable	0: Interrupt requests (TCIV) disabled 1: Interrupt requests (TCIV) enabled	R/W
b5	TCIEU	Underflow Interrupt Enable	0: Interrupt requests (TCIU) disabled 1: Interrupt requests (TCIU) enabled	R/W
b6	TTGE2	A/D Converter Start Request Enable 2	A/D converter start request generation by MTU4.TCNT underflow (trough) disabled A/D converter start request generation by MTU4.TCNT underflow (trough) enabled	R/W
b7	TTGE	A/D Converter Start Request Enable	A/D converter start request generation disabled A/D converter start request generation enabled	R/W

The MTU has a total of seven TIER registers, two each for MTU0 and one each for MTU1 to MTU5. The TIER register enables or disables interrupt requests in each channel.

TGIEA and TGIEB Bits (TGR Interrupt Enable A and B)

Each bit enables or disables interrupt requests (TGIm) (m = A, B).

TGIEC and TGIED Bits (TGR Interrupt Enable C and D)

Each bit enables or disables interrupt requests (TGIm) in MTU0, MTU3, and MTU4 (m = C, D). In MTU1 and MTU2, these bits are reserved. They are read as 0. The write value should be 0.

TCIEV Bit (Overflow Interrupt Enable)

This bit enables or disables interrupt requests (TCIV).

TCIEU Bit (Underflow Interrupt Enable)

This bit enables or disables interrupt requests (TCIU) in MTU1 and MTU2.

In MTU0, MTU3, and MTU4, this bit is reserved. It is read as 0. The write value should be 0.

TTGE2 Bit (A/D Converter Start Request Enable 2)

This bit enables or disables generation of A/D converter start requests by MTU4.TCNT underflow (trough) in complementary PWM mode.

In MTU0 to MTU3, this bit is reserved. It is read as 0. The write value should be 0.

TTGE Bit (A/D Converter Start Request Enable)

This bit enables or disables generation of A/D converter start requests by the TGRA input capture/compare match.

• MTU0.TIER2

Address(es): MTU0.TIER2 0008 8724h

Bit	Symbol	Bit Name	Description	R/W
b0	TGIEE	TGR Interrupt Enable E	Interrupt requests (TGIE) disabled Interrupt requests (TGIE) enabled	R/W
b1	TGIEF	TGR Interrupt Enable F	Interrupt requests (TGIF) disabled Interrupt requests (TGIF) enabled	R/W
b7 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

TGIEE and TGIEF Bits (TGR Interrupt Enable E and F)

Each bit enables or disables interrupt requests by compare match between the MTU0.TCNT counter and the MTU0.TGRm register (m = E, F).

• MTU5.TIER

Address(es): MTU5.TIER 0008 88B2h

Bit	Symbol	Bit Name	Description	R/W
b0	TGIE5W	TGR Interrupt Enable 5W	Interrupt requests TGI5W disabled Interrupt requests TGI5W enabled	R/W
b1	TGIE5V	TGR Interrupt Enable 5V	Interrupt requests TGI5V disabled Interrupt requests TGI5V enabled	R/W
b2	TGIE5U	TGR Interrupt Enable 5U	Interrupt requests TGI5U disabled Interrupt requests TGI5U enabled	R/W
b7 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

TGIE5W, TGIE5V, and TGIE5U Bits (TGR Interrupt Enable 5m)

Each bit enables or disables interrupt requests (TGI5m) (m = W, V, U).

20.2.6 Timer Status Register (TSR)

Address(es): MTU0.TSR 0008 8705h, MTU1.TSR 0008 8785h, MTU2.TSR 0008 8805h, MTU3.TSR 0008 862Ch, MTU4.TSR 0008 862Dh

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	_	Reserved	These bits are read as undefined. The write value should be 1.	R/W
b6	_	Reserved	This bit is read as 1. The write value should be 1.	R/W
b7	TCFD	Count Direction Flag	0: TCNT counts down 1: TCNT counts up	R

The MTU has a total of five TSR registers, one each for MTU0 to MTU4.

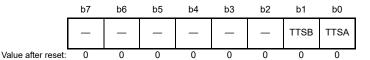
The TSR register indicates the status of each channel.

TCFD Flag (Count Direction Flag)

Status flag that shows the direction in which the TCNT counter counts in MTU1 to MTU4.

In MTU0, this bit is reserved. It is read as 1. The write value should be 1.

20.2.7 Timer Buffer Operation Transfer Mode Register (TBTM)


MTU0.TBTM

Address(es): MTU0.TBTM 0008 8726h

• MTU3.TBTM, MTU4.TBTM

Address(es): MTU3.TBTM 0008 8638h, MTU4.TBTM 0008 8639h

Bit	Symbol	Bit Name	Description	R/W
b0	TTSA	Timing Select A	When compare match A occurs in each channel, data is transferred from TGRC to TGRA When TCNT is cleared in each channel, data is transferred from TGRC to TGRA	R/W
b1	TTSB	Timing Select B	When compare match B occurs in each channel, data is transferred from TGRD to TGRB When TCNT is cleared in each channel, data is transferred from TGRD to TGRB	R/W
b2	TTSE	Timing Select E	When compare match E occurs in MTU0, data is transferred from MTU0.TGRF to MTU0.TGRE When MTU0.TCNT is cleared in MTU0, data is transferred from MTU0.TGRF to MTU0.TGRE	R/W
b7 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The MTU has a total of three TBTM registers, one each for MTU0, MTU3, and MTU4.

The TBTM register specifies the timing for transferring data from the buffer register to the timer general register in PWM mode.

TTSA Bit (Timing Select A)

This bit specifies the timing for transferring data from the TGRC register to the TGRA register in each channel when they are used together for buffer operation. When a channel is not set to PWM mode, do not set the TTSA bit in the channel to 1.

TTSB Bit (Timing Select B)

This bit specifies the timing for transferring data from the TGRD register to the TGRB register in each channel when they are used together for buffer operation. When a channel is not set to PWM mode, do not set the TTSB bit in the channel to 1.

TTSE Bit (Timing Select E)

This bit specifies the timing for transferring data from the MTU0.TGRF register to the MTU0.TGRE register when they are used together for buffer operation. In MTU3 and MTU4, this bit is reserved and read as 0. The write value should be 0. When MTU0 is not set to PWM mode, do not set the TTSE bit to 1.

20.2.8 Timer Input Capture Control Register (TICCR)

Address(es): MTU1.TICCR 0008 8790h

Bit	Symbol	Bit Name	Description	R/W
b0	I1AE	Input Capture Enable	Does not include the MTIOC1A pin in the MTU2.TGRA input capture conditions Includes the MTIOC1A pin in the MTU2.TGRA input capture conditions	R/W
b1	I1BE	Input Capture Enable	0: Does not include the MTIOC1B pin in the MTU2.TGRB input capture conditions 1: Includes the MTIOC1B pin in the MTU2.TGRB input capture conditions	R/W
b2	I2AE	Input Capture Enable	Does not include the MTIOC2A pin in the MTU1.TGRA input capture conditions Includes the MTIOC2A pin in the MTU1.TGRA input capture conditions	R/W
b3	I2BE	Input Capture Enable	0: Does not include the MTIOC2B pin in the MTU1.TGRB input capture conditions 1: Includes the MTIOC2B pin in the MTU1.TGRB input capture conditions	
b7 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The MTU has one TICCR register for MTU1.

The TICCR register specifies input capture conditions when counters MTU1.TCNT and MTU2.TCNT are cascaded.

20.2.9 Timer A/D Converter Start Request Control Register (TADCR)

Address(es): MTU4.TADCR 0008 8640h

Bit	Symbol	Bit Name	Description	R/W
b0	ITB4VE	TCIV4 Interrupt Skipping Link Enable*1, *2, *3	0: TCl4V interrupt skipping is not linked 1: TCl4V interrupt skipping is linked	R/W
b1	ITB3AE	TGIA3 Interrupt Skipping Link Enable*1, *2, *3	0: TGI3A interrupt skipping is not linked 1: TGI3A interrupt skipping is linked	R/W
b2	ITA4VE	TCIV4 Interrupt Skipping Link Enable*1, *2, *3	0: TCl4V interrupt skipping is not linked 1: TCl4V interrupt skipping is linked	R/W
b3	ITA3AE	TGIA3 Interrupt Skipping Link Enable*1, *2, *3	0: TGI3A interrupt skipping is not linked 1: TGI3A interrupt skipping is linked	R/W
b4	DT4BE	Down-Count TRG4BN Enable*3	A/D converter start requests (TRG4BN) disabled during MTU4.TCNT down-count operation A/D converter start requests (TRG4BN) enabled during MTU4.TCNT down-count operation	R/W
b5	UT4BE	Up-Count TRG4BN Enable	A/D converter start requests (TRG4BN) disabled during MTU4.TCNT up-count operation A/D converter start requests (TRG4BN) enabled during MTU4.TCNT up-count operation	R/W
b6	DT4AE	Down-Count TRG4AN Enable*3	A/D converter start requests (TRG4AN) disabled during MTU4.TCNT down-count operation A/D converter start requests (TRG4AN) enabled during MTU4.TCNT down-count operation	R/W
b7	UT4AE	Up-Count TRG4AN Enable	A/D converter start requests (TRG4AN) disabled during MTU4.TCNT up-count operation A/D converter start requests (TRG4AN) enabled during MTU4.TCNT up-count operation	R/W
b13 to b8	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b15, b14	BF[1:0]	MTU4.TADCOBRA/TADCOBRB Transfer Timing Select	Refer to Table 20.29 for details.	R/W

Note: The TADCR register must not be accessed in 8-bit units; it should be accessed in 16-bit units.

The TADCR register enables or disables A/D converter start requests and specifies whether to link A/D converter start requests with interrupt skipping operation.

Note 1. When interrupt skipping is disabled (the TITCR.T3AEN and T4VEN bits are set to 0 or the interrupt skipping count setting bits (T3ACOR[2:0] and T4VCOR[2:0]) in the TITCR register are set to 000b), do not link A/D converter start requests with interrupt skipping operation (set the TADCR.ITA3AE, ITA4VE, ITB3AE, and ITB4VE bits to 0).

Note 2. If link with interrupt skipping is enabled while interrupt skipping is disabled, A/D converter start requests will not be issued.

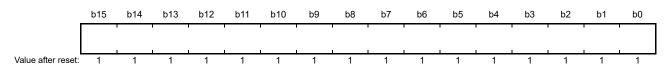
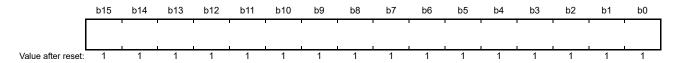

Note 3. Set b6 and b4 to b0 to 0 when complementary PWM mode is not selected.

Table 20.29 Setting of Transfer Timing by TADCR.BF[1:0] Bits

Bit 15	Bit 14	Description			
BF[1]	BF[0]	In Complementary PWM Mode	In Reset-Synchronized PWM Mode	In PWM Mode 1	In Normal Mode
0	0	Data is not transferred from the cycle set buffer register (MTU4.TADCOBRA, MTU4.TADCOBRB) to the cycle set register (MTU4.TADCORA, MTU4.TADCORA, MTU4.TADCORB).	Data is not transferred from the cycle set buffer register (MTU4.TADCOBRA, MTU4.TADCOBRB) to the cycle set register (MTU4.TADCORA, MTU4.TADCORA, MTU4.TADCORB).	Data is not transferred from the cycle set buffer register (MTU4.TADCOBRA, MTU4.TADCOBRB) to the cycle set register (MTU4.TADCORA, MTU4.TADCORA, MTU4.TADCORB).	Data is not transferred from the cycle set buffer register (MTU4.TADCOBRA, MTU4.TADCOBRB) to the cycle set register (MTU4.TADCORA, MTU4.TADCORA, MTU4.TADCORB).
0	1	Data is transferred from the cycle set buffer register (MTU4.TADCOBRA, MTU4.TADCOBRB) to the cycle set register (MTU4.TADCORA, MTU4.TADCORB) at the crest of the MTU4.TCNT.	Data is transferred from the cycle set buffer register (MTU4.TADCOBRA, MTU4.TADCOBRB) to the cycle set register (MTU4.TADCORA, MTU4.TADCORA, MTU4.TADCORB) when a compare match occurs between MTU3.TCNT and MTU3.TGRA.	Data is transferred from the cycle set buffer register (MTU4.TADCOBRA, MTU4.TADCOBRB) to the cycle set register (MTU4.TADCORA, MTU4.TADCORA, MTU4.TADCORB) when a compare match occurs between MTU4.TCNT and MTU4.TGRA.	Data is transferred from the cycle set buffer register (MTU4.TADCOBRA, MTU4.TADCOBRB) to the cycle set register (MTU4.TADCORA, MTU4.TADCORA, MTU4.TADCORB) when a compare match occurs between MTU4.TCNT and MTU4.TGRA.
1	0	Data is transferred from the cycle set buffer register (MTU4.TADCOBRA, MTU4.TADCOBRB) to the cycle set register (MTU4.TADCORA, MTU4.TADCORB) at the trough of the MTU4.TCNT.	Setting prohibited	Setting prohibited	Setting prohibited
1	1	Data is transferred from the cycle set buffer register (MTU4.TADCOBRA, MTU4.TADCOBRB) to the cycle set register (MTU4.TADCORA, MTU4.TADCORA, MTU4.TADCORB) at the crest and trough of the MTU4.TCNT.	Setting prohibited	Setting prohibited	Setting prohibited

20.2.10 Timer A/D Converter Start Request Cycle Set Registers A and B (TADCORA and TADCORB)

Address(es): MTU4.TADCORA 0008 8644h, MTU4.TADCORB 0008 8646h



Note: MTU4.TADCORA and MTU4.TADCORB must not be accessed in 8-bit units; they should be accessed in 16-bit

The TADCOBRA and TADCOBRB registers specify the A/D converter start request cycle. When the MTU4.TCNT count reaches the value in TADCORA or TADCORB, a corresponding A/D converter start request will be issued.

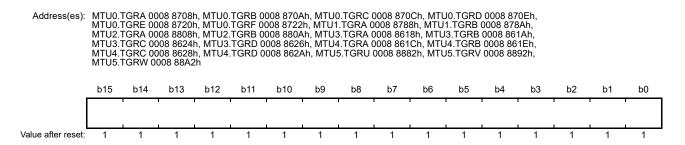
20.2.11 Timer A/D Converter Start Request Cycle Set Buffer Registers A and B (TADCOBRA and TADCOBRB)

Address(es): MTU4.TADCOBRA 0008 8648h, MTU4.TADCOBRB 0008 864Ah

Note: MTU4.TADCORA and MTU4.TADCORB must not be accessed in 8-bit units; they should be accessed in 16-bit units.

The TADCOBRA and TADCOBRB registers function as buffer registers for registers TADCORA and TADCORB, respectively. These registers specify the A/D converter start request cycle. When the crest or trough of the MTU4.TCNT count is reached, these register values are transferred to registers TADCORA and TADCORB, respectively.

20.2.12 Timer Counter (TCNT)


Address(es): MTU0.TCNT 0008 8706h, MTU1.TCNT 0008 8786h, MTU2.TCNT 0008 8806h, MTU3.TCNT 0008 8610h, MTU4.TCNT 0008 8612h, MTU5.TCNTU 0008 8880h, MTU5.TCNTV 0008 8890h. MTU5.TCNTW 0008 88A0h

Note: The TCNT counters must not be accessed in 8-bit units; they should be accessed in 16-bit units.

The MTU has a total of eight TCNT counters, one each for MTU0 to MTU4 and three (MTU5.TCNTU, TCNTV, and TCNTW) for MTU5. TCNT is a readable/writable counter.

20.2.13 Timer General Register (TGR)

Note: The TGR registers must not be accessed in 8-bit units; they should be accessed in 16-bit units.

The MTU has a total of 21 TGR registers, six for MTU0, two each for MTU1 and MTU2, four each for MTU3 and MTU4, and three for MTU5.

Registers TGRA, TGRB, TGRC, and TGRD function as either output compare or input capture registers. Registers TGRC and TGRD for MTU0, MTU3, and MTU4 can also be designated for operation as buffer registers. TGR buffer register combinations are TGRA and TGRC, and TGRB and TGRD.

Registers MTU0.TGRE and MTU0.TGRF function as compare registers. When the MTU0.TCNT count matches the MTU0.TGRE register value, an A/D converter start request can be issued. The TGRF register can also be designated for operation as a buffer register. TGR buffer register combination is TGRE and TGRF.

Registers MTU5.TGRU, MTU5.TGRV, and MTU5.TGRW function as compare match, input capture, or external pulse width measurement registers.

20.2.14 Timer Start Registers (TSTR)

• MTU.TSTR (MTU0 to MTU4)

Address(es): MTU.TSTR 0008 8680h

Bit	Symbol	Bit Name	Description	R/W
b0	CST0	Counter Start 0	MTU0.TCNT performs count stop MTU0.TCNT performs count operation	R/W
b1	CST1	Counter Start 1	MTU1.TCNT performs count stop MTU1.TCNT performs count operation	R/W
b2	CST2	Counter Start 2	MTU2.TCNT performs count stop MTU2.TCNT performs count operation	R/W
b5 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b6	CST3	Counter Start 3	MTU3.TCNT performs count stop MTU3.TCNT performs count operation	R/W
b7	CST4	Counter Start 4	0: MTU4.TCNT performs count stop 1: MTU4.TCNT performs count operation	R/W

The TSTR registers start or stop the TCNT operation in MTU0 to MTU4.

Before setting the operating mode in the TMDR register or setting the TCNT count clock in the TCR register, be sure to stop the TCNT counter.

CSTn Bits (Counter Start n) (n = 0 to 4)

Each bit starts or stops the TCNT counter in the corresponding channel.

If 0 is written to the CSTn bit during operation with the MTIOC pin designated for output, the counter stops but the output compare signal level from the MTIOC pin is retained. If the TIOR register is written to while the CSTn bit is 0, the pin output level will be changed to the specified initial output value.

• MTU5.TSTR (MTU5)

Address(es): MTU5.TSTR 0008 88B4h

Bit	Symbol	Bit Name	Description	R/W
b0	CSTW5	Counter Start W5	MTU5.TCNTW count operation is stopped HTU5.TCNTW performs count operation	R/W
b1	CSTV5	Counter Start V5	MTU5.TCNTV count operation is stopped HTU5.TCNTV performs count operation	R/W
b2	CSTU5	Counter Start U5	MTU5.TCNTU count operation is stopped HTU5.TCNTU performs count operation	R/W
b7 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

20.2.15 Timer Synchronous Registers (TSYR)

Address(es): MTU.TSYR 0008 8681h

Bit	Symbol	Bit Name	Description	R/W
b0	SYNC0	Timer Synchronous Operation 0	O: MTU0.TCNT operates independently (TCNT setting/clearing is not related to other channels) HTU0.TCNT performs synchronous operation. TCNT synchronous setting/synchronous clearing is enabled	R/W
b1	SYNC1	Timer Synchronous Operation 1	O: MTU1.TCNT operates independently (TCNT setting/clearing is not related to other channels) HTU1.TCNT performs synchronous operation. TCNT synchronous setting/synchronous clearing is enabled	R/W
b2	SYNC2	Timer Synchronous Operation 2	O: MTU2.TCNT operates independently (TCNT setting/clearing is not related to other channels) HTU2.TCNT performs synchronous operation. TCNT synchronous setting/synchronous clearing is enabled	R/W
b5 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b6	SYNC3	Timer Synchronous Operation 3	O: MTU3.TCNT operates independently (TCNT setting/clearing is not related to other channels). HTU3.TCNT performs synchronous operation. TCNT synchronous setting/synchronous clearing is enabled.	R/W
b7	SYNC4	Timer Synchronous Operation 4	O: MTU4.TCNT operates independently (TCNT setting/clearing is not related to other channels). HTU4.TCNT performs synchronous operation. TCNT synchronous setting/synchronous clearing is enabled.	R/W

The TSYR registers select independent operation or synchronous operation of the TCNT counter in MTU0 to MTU4. A channel performs synchronous operation when the corresponding bit in the TSYR register is set to 1.

SYNCn Bits (Timer Synchronous n Operation) (n = 0 to 4)

Each bit selects whether operation is independent of or synchronized with other channels.

When synchronous operation is selected, the TCNT synchronous setting of multiple channels and synchronous clearing by counter clearing on another channel are possible.

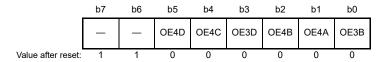
To set synchronous operation, the SYNCn bits for at least two channels must be set to 1. To set synchronous clearing, in addition to the SYNCn bit, the TCNT clearing source must also be set the TCR.CCLR[2:0] bits.

20.2.16 Timer Read/Write Enable Registers (TRWER)

Address(es): MTU.TRWER 0008 8684h

Bit	Symbol	Bit Name	Description	R/W
b0	RWE	Read/Write Enable	Read/write access to the registers is disabled Read/write access to the registers is enabled	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The TRWER registers enable or disable access to the registers and counters that have write-protection capability against accidental modification in MTU3 and MTU4.


RWE Bit (Read/Write Enable)

This bit enables or disables access to the registers that have write-protection capability against accidental modification. [Clearing condition]

- When 0 is written to the RWE bit after reading the RWE bit = 1
- Registers and Counters having Write-Protection Capability against Accidental Modification 22 registers: MTUn.TCR, MTUn.TMDR, MTUn.TIORH, MTUn.TIORL, MTUn.TIER, MTUn.TGRA, MTUn.TGRB, MTU.TOER, MTU.TOCR1, MTU.TOCR2, MTU.TGCR, MTU.TCDR, MTU.TDDR, and MTUn.TCNT (n = 3, 4)

20.2.17 Timer Output Master Enable Registers (TOER)

Address(es): MTU.TOER 0008 860Ah

Bit	Symbol	Bit Name	Description	R/W
b0	OE3B	Master Enable MTIOC3B	0: MTU output is disabled* ¹ 1: MTU output is enabled	R/W
b1	OE4A	Master Enable MTIOC4A	0: MTU output is disabled* ¹ 1: MTU output is enabled	R/W
b2	OE4B	Master Enable MTIOC4B	0: MTU output is disabled* ¹ 1: MTU output is enabled	R/W
b3	OE3D	Master Enable MTIOC3D	0: MTU output is disabled* ¹ 1: MTU output is enabled	R/W
b4	OE4C	Master Enable MTIOC4C	0: MTU output is disabled* ¹ 1: MTU output is enabled	R/W
b5	OE4D	Master Enable MTIOC4D	0: MTU output is disabled* ¹ 1: MTU output is enabled	R/W
b7, b6	_	Reserved	These bits are read as 1. The write value should be 1.	R/W

Note 1. To output a non-active level from each pin when MTU output is disabled, make necessary settings for non-active level output from general I/O ports in the data direction registers (PDR), port output data registers (PODR), and port mode register (PMR) in advance. For details, refer to the I/O Ports section.

The TOER registers enable or disable output settings for output pins MTIOC4D, MTIOC4C, MTIOC3D, MTIOC4B, MTIOC4A, and MTIOC3B.

These pins do not output correctly if the bits in the TOER register have not been set. In MTU3 and MTU4, set the TOER register prior to setting the TIOR register.

Set the TOER register after setting the TSTR.CST3 and CST4 bits to 0 (refer to Figure 20.35 and Figure 20.38).

20.2.18 Timer Output Control Registers 1 (TOCR1)

Address(es): MTU.TOCR1 0008 860Eh

Bit	Symbol	Bit Name	Description	R/W
b0	OLSP	Output Level Select P*2,*3	Refer to Table 20.30.	R/W
b1	OLSN	Output Level Select N*2,*3	Refer to Table 20.31.	R/W
b2	TOCS	TOC Select	0: TOCR1 setting is selected 1: TOCR2 setting is selected	R/W
b3	TOCL	TOC Register Write Protection*1	O: Write access to the TOCS, OLSN, and OLSP bits is enabled 1: Write access to the TOCS, OLSN, and OLSP bits is disabled	R/W*4
b5, b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b6	PSYE	PWM Synchronous Output Enable	Toggle output is disabled Toggle output is enabled	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

- Note 1. Setting the TOCR1.TOCL bit to 1 prevents accidental modification when the CPU goes out of control.
- Note 2. Setting the TOCR1.TOCS bit to 0 makes this bit setting valid.
- Note 3. If dead-time is not generated, the negative-phase output is always the exact inverse of the positive-phase output. In this case, only the OLSP bit is valid.
- Note 4. This bit can be set to 1 only once after a power-on reset. After 1 is written, 0 cannot be written to the bit.

The TOCR1 registers enable or disable PWM-synchronized toggle output in complementary PWM mode and resetsynchronized PWM mode, and control inversion of PWM output level.

OLSP Bit (Output Level Select P)

This bit selects the positive-phase output level in reset-synchronized PWM mode and complementary PWM mode.

OLSN Bit (Output Level Select N)

This bit selects the negative-phase output level in reset-synchronized PWM mode and complementary PWM mode.

TOCS Bit (TOC Select)

This bit selects either the TOCR1 or TOCR2 register setting to be used for the output level in complementary PWM mode and reset-synchronized PWM mode.

TOCL Bit (TOC Register Write Protection)

This bit enables or disables write access to the TOCS, OLSN, and OLSP bits in the TOCR1 register.

PSYE Bit (PWM Synchronous Output Enable)

This bit enables or disables toggle output synchronized with the PWM cycle.

Table 20.30 Output Level Select Function

Bit 0	Function	Function				
			Compare Match Output			
OLSP	Initial Output	Active Level	Up-Counting	Down-Counting		
0	High	Low	Low	High		
1	Low	High	High	Low		

Table 20.31 Output Level Select Function

Bit 1	Function					
			Compare Match Output			
OLSN	Initial Output	Active Level	Up-Counting	Down-Counting		
0	High	Low	High	Low		
1	Low	High	Low	High		

Note: The initial output value of negative-phase waveform changes to an active level after the dead time has passed since counting starts.

Figure 20.2 shows an example of output in complementary PWM mode (one phase) when OLSN = 1 and OLSP = 1.

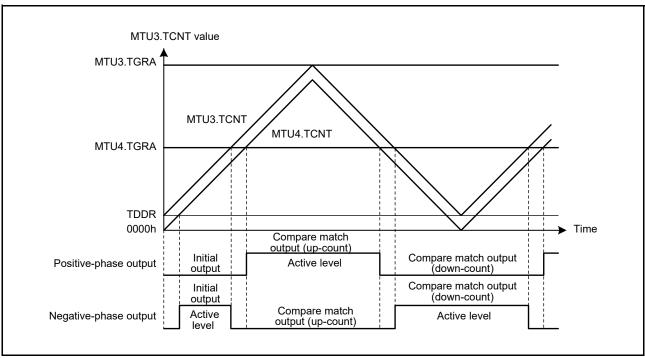
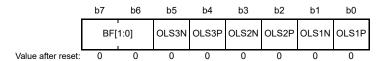



Figure 20.2 Example of Output in Complementary PWM Mode

20.2.19 Timer Output Control Registers 2 (TOCR2)

Address(es): MTU.TOCR2 0008 860Fh

Bit	Symbol	Bit Name	Description	R/W
b0	OLS1P	Output Level Select 1P*1, *2	This bit selects the output level on MTIOC3B in reset-synchronized PWM mode and complementary PWM mode. Refer to Table 20.32.	R/W
b1	OLS1N	Output Level Select 1N*1, *2	Level Select 1N*1, *2 This bit selects the output level on MTIOC3D in reset-synchronized PWM mode and complementary PWM mode. Refer to Table 20.33.	
b2	OLS2P	Output Level Select 2P*1, *2	This bit selects the output level on MTIOC4A in reset-synchronized PWM mode and complementary PWM mode. Refer to Table 20.34.	R/W
b3	OLS2N	Output Level Select 2N*1, *2	This bit selects the output level on MTIOC4C in reset-synchronized PWM mode and complementary PWM mode. Refer to Table 20.35.	R/W
b4	OLS3P	Output Level Select 3P*1, *2	This bit selects the output level on MTIOC4B in reset-synchronized PWM mode and complementary PWM mode. Refer to Table 20.36.	R/W
b5	OLS3N	Output Level Select 3N*1, *2	This bit selects the output level on MTIOC4D in reset-synchronized PWM mode and complementary PWM mode. Refer to Table 20.37.	R/W
b7, b6	BF[1:0]	TOLBR Buffer Transfer Timing Select	These bits select the timing for transferring data from TOLBR to TOCR2. Refer to Table 20.38 for details.	R/W

Note 1. Setting the TOCR1.TOCS bit to 1 makes this bit setting valid.

Note 2. If dead-time is not generated, the negative-phase output is always the exact inverse of the positive-phase output. In these cases, only the OLSiP bits are valid (i = 1 to 3).

The TOCR2 registers control inversion of PWM output level in complementary PWM mode and reset-synchronized PWM mode.

Table 20.32 MTIOC3B Output Level Select Function

Bit 0	Function				
	Compare Match Output				
OLS1P	Initial Output	Active Level	Up-Counting	Down-Counting	
0	High	Low	Low	High	
1	Low	High	High	Low	

Table 20.33 MTIOC3D Output Level Select Function

Bit 1	Function				
			Compare Match Output		
OLS1N	Initial Output	Active Level	Up-Counting	Down-Counting	
0	High	Low	High	Low	
1	Low	High	Low	High	

Note: The initial output value of negative-phase waveform changes to an active level after the dead time has passed since counting starts.

Table 20.34 MTIOC4A Output Level Select Function

Bit 2	Function				
			Compare Match Output		
OLS2P	Initial Output	Active Level	Up-Counting	Down-Counting	
0	High	Low	Low	High	
1	Low	High	High	Low	

Table 20.35 MTIOC4C Output Level Select Function

Bit 3	Function				
			Compare Match Output		
OLS2N	Initial Output	Active Level	Up-Counting	Down-Counting	
0	High	Low	High	Low	
1	Low	High	Low	High	

Note: The initial output value of negative-phase waveform changes to an active level after the dead time has passed since counting starts.

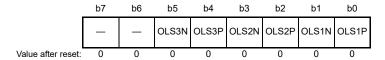
Table 20.36 MTIOC4B Output Level Select Function

Bit 4	Function				
			Compare Match Output		
OLS3P	Initial Output	Active Level	Up-Counting	Down-Counting	
0	High	Low	Low	High	
1	Low	High	High	Low	

Table 20.37 MTIOC4D Output Level Select Function

Bit 5	Function				
			Compare Match Output		
OLS3N	Initial Output	Active Level	Up-Counting	Down-Counting	
0	High	Low	High	Low	
1	Low	High	Low	High	

Note: The initial output value of negative-phase waveform changes to an active level after the dead time has passed since counting starts.


Table 20.38 Setting of TOCR2.BF[1:0] Bits

Bit 7	Bit 6	Description			
BF[1]	BF[1] BF[0] Complementary PWM Mode F		Reset-Synchronized PWM Mode		
0	0	Does not transfer data from TOLBR to TOCR2.	Does not transfer data from TOLBR to TOCR2.		
0	1	Transfers data from TOLBR to TOCR2 at the crest of the MTU4.TCNT count.	Transfers data from TOLBR to TOCR2 when MTU4.TCNT or MTU3.TCNT is cleared.		
1	0	Transfers data from TOLBR to TOCR2 at the trough of the MTU4.TCNT count.	Setting prohibited		
1	1	Transfers data from TOLBR to TOCR2 at the crest and trough of the MTU4.TCNT count.	Setting prohibited		

20.2.20 Timer Output Level Buffer Registers (TOLBR)

Address(es): MTU.TOLBR 0008 8636h

Bit	Symbol	Bit Name	Description	R/W
b0	OLS1P	Output Level Select 1P	Specify the buffer value to be transferred to the OLS1P bit in TOCR2.	R/W
b1	OLS1N	Output Level Select 1N	Specify the buffer value to be transferred to the OLS1N bit in TOCR2.	R/W
b2	OLS2P	Output Level Select 2P	Specify the buffer value to be transferred to the OLS2P bit in TOCR2.	R/W
b3	OLS2N	Output Level Select 2N	Specify the buffer value to be transferred to the OLS2N bit in TOCR2.	R/W
b4	OLS3P	Output Level Select 3P	Specify the buffer value to be transferred to the OLS3P bit in TOCR2.	R/W
b5	OLS3N	Output Level Select 3N	Specify the buffer value to be transferred to the OLS3N bit in TOCR2.	R/W
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The TOLBR registers function as buffer registers for the TOCR2 register and specify the PWM output level in complementary PWM mode and reset-synchronized PWM mode.

Figure 20.3 shows an example of the PWM output level setting procedure in buffer operation.

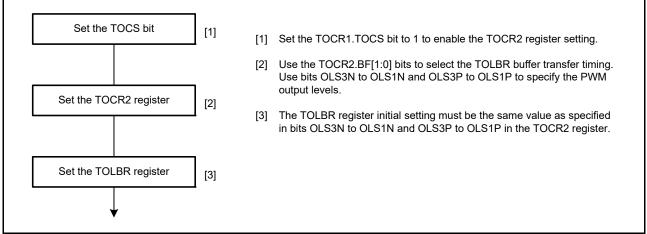
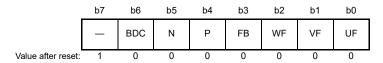



Figure 20.3 Example of PWM Output Level Setting Procedure in Buffer Operation

20.2.21 Timer Gate Control Registers (TGCR)

Address(es): MTU.TGCR 0008 860Dh

Bit	Symbol	Bit Name	Description	R/W
b0	UF	Output Phase Switch	These bits turn on or off the positive-phase/negative-phase output.	R/W
b1	VF	-	The setting of these bits is valid only when the TGCR.FB bit is set to 1. In this case, the setting of b0 to b2 is used instead of the external	R/W
b2	WF	-	input. Refer to Table 20.39.	R/W
b3	FB	External Feedback Signal Enable	O: Output is switched by external input (input sources are TGRA, TGRB, and TGRC input capture signals in MTU0) Output is switched by software (TGCR's UF, VF, and WF settings)	R/W
b4	Р	Positive-Phase Output (P) Control	0: Level output 1: Reset-synchronized PWM or complementary PWM output	R/W
b5	N	Negative-Phase Output (N) Control	0: Level output 1: Reset-synchronized PWM or complementary PWM output	R/W
b6	BDC	Brushless DC Motor	Ordinary output Functions of this register are made effective	R/W
b7	_	Reserved	This bit is read as 1. The write value should be 1.	R/W

The TGCR registers control the output waveform necessary for brushless DC motor control in reset-synchronized PWM mode and complementary PWM mode. These register settings are ineffective for anything other than complementary PWM mode and reset-synchronized PWM mode.

UF, VF, and WF Bits (Output Phase Switch)

The setting of these bits is valid only when the TGCR.FB bit is set to 1. In this case, the setting of b0 to b2 is used instead of the external input. Refer to Table 20.39.

FB Bit (External Feedback Signal Enable)

This bit selects whether the positive-/negative-phase output is switched automatically with the TGRA, TGRB, and TGRC input capture signals in MTU0 or by writing 0 or 1 to bits 2 to 0 in TGCR.

P Bit (Positive-Phase Output (P) Control)

This bit selects the level output or the reset-synchronized PWM/complementary PWM output for the positive-phase output pins (MTIOC3B, MTIOC4A, and MTIOC4B pins).

N Bit (Negative-Phase Output (N) Control)

This bit selects the level output or the reset-synchronized PWM/complementary PWM output for the negative-phase output pins (MTIOC3D, MTIOC4C, and MTIOC4D pins).

BDC Bit (Brushless DC Motor)

This bit selects whether to make the functions of the TGCR register effective or ineffective.

Table 20.39 Output Level Select Function

Bit 2	Bit 1	Bit 0	Function					
			MTIOC3B	MTIOC4A	MTIOC4B	MTIOC3D	MTIOC4C	MTIOC4D
WF	VF	UF	U Phase	V Phase	W Phase	U Phase	V Phase	W Phase
0	0	0	OFF	OFF	OFF	OFF	OFF	OFF
0	0	1	ON	OFF	OFF	OFF	OFF	ON
0	1	0	OFF	ON	OFF	ON	OFF	OFF
0	1	1	OFF	ON	OFF	OFF	OFF	ON
1	0	0	OFF	OFF	ON	OFF	ON	OFF
1	0	1	ON	OFF	OFF	OFF	ON	OFF
1	1	0	OFF	OFF	ON	ON	OFF	OFF
1	1	1	OFF	OFF	OFF	OFF	OFF	OFF

20.2.22 Timer Subcounters (TCNTS)

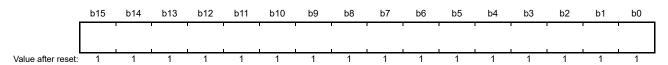
Address(es): MTU.TCNTS 0008 8620h

Note: The TCNTS counters must not be accessed in 8-bit units; they should be accessed in 16-bit units.

The TCNTS counters are read-only counters that are used only in complementary PWM mode.

20.2.23 Timer Dead Time Data Registers (TDDR)

Address(es): MTU.TDDR 0008 8616h

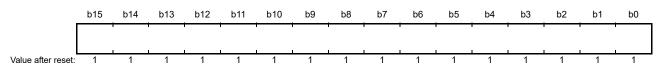


Note: The TDDR registers must not be accessed in 8-bit units; they should be accessed in 16-bit units.

The TDDR registers specify the MTU3.TCNT and MTU4.TCNT counter offset value in complementary PWM mode. In complementary PWM mode, when the MTU3.TCNT and MTU4.TCNT counters are cleared and then restarted, the TDDR register value is loaded into the MTU3.TCNT counter and the count operation starts.

20.2.24 Timer Cycle Data Registers (TCDR)

Address(es): MTU.TCDR 0008 8614h

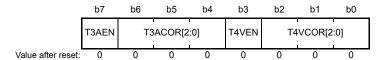


Note: The TCDR registers must not be accessed in 8-bit units; they should be accessed in 16-bit units.

The TCDR registers specify the count value to switch the count direction of the TCNTS counter. These registers are used only in complementary PWM mode. Set half the PWM cycle as the TCDR register value. The TCDR register is constantly compared with the TCNTS counter in complementary PWM mode, and when a match occurs, the TCNTS counter switches direction (down-count to up-count).

20.2.25 Timer Cycle Buffer Registers (TCBR)

Address(es): MTU.TCBR 0008 8622h



Note: The TCBR registers must not be accessed in 8-bit units; they should be accessed in 16-bit units.

The TCBR registers function as buffer registers for the TCDR register, and specify the count value to switch the count direction of the TCNTS counter. These registers are used only in complementary PWM mode. The TCBR register value is transferred to the TCDR register with the transfer timing set in the TMDR register.

20.2.26 Timer Interrupt Skipping Set Registers (TITCR)

Address(es): MTU.TITCR 0008 8630h

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	T4VCOR[2:0]	TCIV4 Interrupt Skipping Count Setting	These bits specify the TCIV4 interrupt skipping count within the range from 0 to 7.*1 For details, refer to Table 20.40.	R/W
b3	T4VEN	T4VEN	0: TCIV4 interrupt skipping disabled 1: TCIV4 interrupt skipping enabled	R/W
b6 to b4	T3ACOR[2:0]	TGIA3 Interrupt Skipping Count Setting	These bits specify the TGIA3 interrupt skipping count within the range from 0 to 7.*1 For details, refer to Table 20.41.	R/W
b7	T3AEN	T3AEN	0: TGIA3 interrupt skipping disabled 1: TGIA3 interrupt skipping enabled	R/W

Note 1. When 0 is specified for the interrupt skipping count, no interrupt skipping will be performed.

Before changing the interrupt skipping count, be sure to set the TITCR.T3AEN and TITCR.T4VEN bits to 0 to clear the TITCNT counter.

Table 20.40 Setting of Interrupt Skipping Count by T4VCOR[2:0] Bits

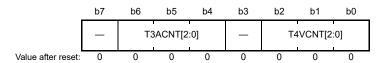

Bit 2	Bit 1	Bit 0	
T4VCOR[2]	T4VCOR[1]	T4VCOR[0]	Description
0	0	0	Does not perform TCIV4 interrupt skipping.
0	0	1	Sets the TCIV4 interrupt skipping count to 1.
0	1	0	Sets the TCIV4 interrupt skipping count to 2.
0	1	1	Sets the TCIV4 interrupt skipping count to 3.
1	0	0	Sets the TCIV4 interrupt skipping count to 4.
1	0	1	Sets the TCIV4 interrupt skipping count to 5.
1	1	0	Sets the TCIV4 interrupt skipping count to 6.
1	1	1	Sets the TCIV4 interrupt skipping count to 7.

Table 20.41 Setting of Interrupt Skipping Count by T3ACOR[2:0] Bits

Bit 6	Bit 5	Bit 4	
T3ACOR[2]	T3ACOR[1]	T3ACOR[0]	Description
0	0	0	Does not perform TGIA3 interrupt skipping.
0	0	1	Sets the TGIA3 interrupt skipping count to 1.
0	1	0	Sets the TGIA3 interrupt skipping count to 2.
0	1	1	Sets the TGIA3 interrupt skipping count to 3.
1	0	0	Sets the TGIA3 interrupt skipping count to 4.
1	0	1	Sets the TGIA3 interrupt skipping count to 5.
1	1	0	Sets the TGIA3 interrupt skipping count to 6.
1	1	1	Sets the TGIA3 interrupt skipping count to 7.

20.2.27 Timer Interrupt Skipping Counters (TITCNT)

Address(es): MTU.TITCNT 0008 8631h

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	T4VCNT[2:0]	TCIV4 Interrupt Counter	While the T4VEN bit in TITCR is set to 1, the count in these bits is incremented every time a TCIV4 interrupt source occurs.	R
b3	_	Reserved	This bit is read as 0.	R
b6 to b4	T3ACNT[2:0]	TGIA3 Interrupt Counter	While the T3AEN bit in TITCR is set to 1, the count in these bits is incremented every time a TGIA3 interrupt source occurs.	R
b7	_	Reserved	This bit is read as 0.	R

Note: To clear the TITCNT counter, set the T3AEN and T4VEN bits in the TITCR register to 0.

The TITCNT counters count the number of interrupt source occurrences for interrupt skipping. The TITCNT counter retain their values even after stopping the count operation of counters MTU4.TCNT and MTU3.TCNT.

T4VCNT[2:0] Bits (TCIV4 Interrupt Counter)

[Clearing conditions]

- When the TITCNT.T4VCNT[2:0] bits match the TITCR.T4VCOR[2:0] bits
- When the TITCR.T4VEN bit is set to 0
- When the TITCR.T4VCOR[2:0] bits are set to 000b

T3ACNT[2:0] Bits (TGIA3 Interrupt Counter)

[Clearing conditions]

- When the TITCNT.T3ACNT[2:0] bits match the TITCR.T3ACOR[2:0] bits
- When the TITCR.T3AEN bit is set to 0
- When the TITCR.T3ACOR[2:0] bits are set to 000b

20.2.28 Timer Buffer Transfer Set Registers (TBTER)

Address(es): MTU.TBTER 0008 8632h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	BTE[1:0]	Buffer Transfer Disable and Interrupt Skipping Link Setting	These bits enable or disable transfer from the buffer registers used in complementary PWM mode to the temporary registers and specify whether to link the transfer with interrupt skipping operation. Refer to Table 20.42 for details.	R/W
b7 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The TBTER registers enable or disable transfer from the buffer registers used in complementary PWM mode to the temporary registers and specify whether to link the transfer with interrupt skipping operation.

Table 20.42 Setting of TBTER.BTE[1:0] Bits

Bit 1	Bit 0	
BTE[1]	BTE[0]	Description
0	0	Enables transfer from the buffer registers to the temporary registers*1 and does not link the transfer with interrupt skipping operation.
0	1	Disables transfer from the buffer registers to the temporary registers.
1	0	Links transfer from the buffer registers to the temporary registers with interrupt skipping operation.*2
1	1	Setting prohibited

Note: Target buffer registers: MTU3.TGRC, MTU3.TGRD, MTU4.TGRC, MTU4.TGRD, and MTU.TCBR

Note 1. Data is transferred in accordance with the TMDR.MD[3:0] bit setting. For details, refer to section 20.3.8, Complementary PWM Mode.

Note 2. When interrupt skipping is disabled (the TITCR.T3AEN and T4VEN bits or the interrupt skipping count setting bits (T3ACOR[2:0] and T4VCOR[2:0]) in the TITCR register are set to 000b), be sure to disable link of buffer transfer with interrupt skipping (set the TBTER.BTE[1] bit to 0).

If link with interrupt skipping is enabled while interrupt skipping is disabled, buffer transfer will not be performed.

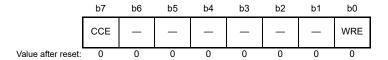
20.2.29 Timer Dead Time Enable Registers (TDER)

Address(es): MTU.TDER 0008 8634h

Bit	Symbol	Bit Name	Description	R/W
b0	TDER	Dead Time Enable	0: No dead time is generated 1: Dead time is generated*1	R/(W)
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. TDDR must be set to 1 or a larger value.

The TDER register specifies dead time generation in complementary PWM mode. The MTU3 has one TDER register. The TDER register should be modified only while the TCNT counter stops.


TDER Bit (Dead Time Enable)

This bit specifies whether to generate dead time. [Clearing condition]

• When 0 is written to the TDER bit after reading the TDER bit = 1

20.2.30 Timer Waveform Control Registers (TWCR)

Address(es): MTU.TWCR 0008 8660h

Bit	Symbol	Bit Name	Description	R/W
b0	WRE	Initial Output Inhibition Enable	Initial value specified in TOCR is output Initial output is inhibited	R/(W) *1
b6 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b7	CCE	Compare Match Clear Enable	Counters are not cleared at MTU3.TGRA compare match Counters are cleared at MTU3.TGRA compare match	R/(W) *2

Note 1. Do not set this bit to 1 unless complementary PWM mode is selected.

Note 2. Do not set this bit to 1 unless complementary PWM mode 1 is selected.

The TWCR registers control the output waveform when synchronous counter clearing occurs in counters MTU3.TCNT and MTU4.TCNT in complementary PWM mode and specifies whether to clear the counters at the MTU3.TGRA compare match.

The TWCR.CCE bit and TWCR.WRE bit should be modified only while the TCNT counter stops.

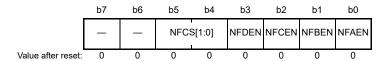
WRE Bit (Initial Output Inhibition Enable)

This bit selects the waveform output when synchronous counter clearing occurs in complementary PWM mode. The initial output is prohibited only when synchronous clearing occurs within the Tb interval at the trough in complementary PWM mode. When synchronous clearing occurs outside this interval, the initial value specified in the TOCR register is output regardless of the WRE bit setting. The initial value specified in the TOCR register is also output when synchronous clearing occurs in the Tb interval at the trough immediately after counters MTU3.TCNT and MTU4.TCNT start operation.

For the Tb interval at the trough in complementary PWM mode, refer to Figure 20.40. [Setting condition]

• When 1 is written to the WRE bit after reading the WRE bit = 0

CCE Bit (Compare Match Clear Enable)


This bit specifies whether to clear counters at the MTU3.TGRA compare match in complementary PWM mode 1. [Setting condition]

• When 1 is written to the CCE bit after reading the CCE bit = 0

20.2.31 Noise Filter Control Registers (NFCR)

• MTU0.NFCR, MTU1.NFCR, MTU2.NFCR, MTU3.NFCR, MTU4.NFCR

Address(es): MTU0.NFCR 0008 8690h, MTU1.NFCR 0008 8691h, MTU2.NFCR 0008 8692h, MTU3.NFCR 0008 8693h, MTU4.NFCR 0008 8694h

Bit	Symbol	Bit Name	Description	R/W
b0	NFAEN	Noise Filter A Enable	The noise filter for the MTIOCnA pin is disabled The noise filter for the MTIOCnA pin is enabled	R/W
b1	NFBEN	Noise Filter B Enable	The noise filter for the MTIOCnB pin is disabled The noise filter for the MTIOCnB pin is enabled	R/W
b2	NFCEN	Noise Filter C Enable	The noise filter for the MTIOCnC pin is disabled The noise filter for the MTIOCnC pin is enabled	R/W*1
b3	NFDEN	Noise Filter D Enable	The noise filter for the MTIOCnD pin is disabled The noise filter for the MTIOCnD pin is enabled	R/W*1
b5, b4	NFCS[1:0]	Noise Filter Clock Select	b5 b4 0 0: PCLK/1 0 1: PCLK/8 1 0: PCLK/32 1 1: The clock source for counting is the external clock	R/W
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. These bits are reserved in MTU1 and MTU2. These bits are read as 0, and writing to them is not possible.

The MTUn.NFCR registers (n = 0 to 4) enable and disable the noise filters for the MTIOCnm (n = 0 to 4; m = A to D) pins and sets the sampling clocks for the noise filters.

NFAEN Bit (Noise Filter A Enable)

This bit disables or enables the noise filter for input from the MTIOCnA pin. Since unexpected edges may be internally generated when the value of the NFAEN bit is changed, select the output compare function in the timer I/O control register and set the TMDR.MD[3:0] bits to a value other than 0000b (normal mode) before changing the value.

NFBEN Bit (Noise Filter B Enable)

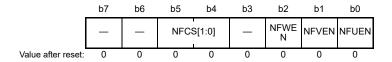
This bit disables or enables the noise filter for input from the MTIOCnB pin. Since unexpected edges may be internally generated when the value of the NFBEN bit is changed, select the output compare function in the timer I/O control register and set the TMDR.MD[3:0] bits to a value other than 0000b (normal mode) before changing the value.

NFCEN Bit (Noise Filter C Enable)

This bit disables or enables the noise filter for input from the MTIOCnC pin. Since unexpected edges may be internally generated when the value of the NFCEN bit is changed, select the output compare function in the timer I/O control register and set the TMDR.MD[3:0] bits to a value other than 0000b (normal mode) before changing the value.

NFDEN Bit (Noise Filter D Enable)

This bit disables or enables the noise filter for input from the MTIOCnD pin. Since unexpected edges may be internally generated when the value of the NFDEN bit is changed, select the output compare function in the timer I/O control register and set the TMDR.MD[3:0] bits to a value other than 0000b (normal mode) before changing the value.



NFCS[1:0] Bits (Noise Filter Clock Select)

These bits set the sampling interval for the noise filters. When setting the NFCS[1:0] bits, wait for two cycles of the selected sampling interval before setting the input-capture function. When the NFCS[1:0] bits are set to 11b, selecting the external clock as the source to drive counting, wait for two cycles of the external clock before setting the input-capture function.

MTU5.NFCR

Address(es): MTU5.NFCR 0008 8695h

Bit	Symbol	Bit Name	Description	R/W
b0	NFUEN	Noise Filter U Enable	O: The noise filter for the MTIC5U pin is disabled. The noise filter for the MTIC5U pin is enabled.	R/W
b1	NFVEN	Noise Filter V Enable	O: The noise filter for the MTIC5V pin is disabled. The noise filter for the MTIC5V pin is enabled.	R/W
b2	NFWEN	Noise Filter W Enable	O: The noise filter for the MTIC5W pin is disabled. The noise filter for the MTIC5W pin is enabled.	R/W
b3	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b5, b4	NFCS[1:0]	Noise Filter Clock Select	b5 b4 0 0: PCLK/1 0 1: PCLK/8 1 0: PCLK/32 1 1: The clock source for counting is the external clock.	R/W
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The MTU5.NFCR register is 8-bit readable and writable register. This register controls enabling and disabling of the noise filters for the MTIC5m (m = U, V, W) pins and sets the sampling clock for the noise filters.

NFUEN Bit (Noise Filter U Enable)

This bit disables or enables the noise filter for input from the MTIC5U pin. Since unexpected edges may be internally generated when the value of the NFUEN bit is changed, select the compare-match function in the timer I/O control register before changing the value.

NFVEN Bit (Noise Filter V Enable)

This bit disables or enables the noise filter for input from the MTIC5V pin. Since unexpected edges may be internally generated when the value of the NFVEN bit is changed, select the compare-match function in the timer I/O control register before changing the value.

NFWEN Bit (Noise Filter W Enable)

This bit disables or enables the noise filter for input from the MTIC5W pin. Since unexpected edges may be internally generated when the value of the NFWEN bit is changed, select the compare-match function in the timer I/O control register before changing the value.

NFCS[1:0] Bits (Noise Filter Clock Select)

These bits set the sampling interval for the noise filters. When setting the NFCS[1:0] bits, wait for two cycles of the selected sampling interval before setting the input-capture function.

20.2.32 Bus Master Interface

The timer counters (TCNT), timer general registers (TGR), timer subcounter (TCNTS), timer cycle buffer register (TCBR), timer dead time data register (TDDR), timer cycle data register (TCDR), timer A/D converter start request control register (TADCR), timer A/D converter start request cycle set registers (TADCORA/TADCORB), and timer A/D converter start request cycle set buffer registers (TADCORA/TADCORB) are 16-bit registers. A 16-bit data bus to the bus master enables 16-bit read/write access. 8-bit read/write is not allowed. Access the registers in 16-bit units. All registers other than the above registers are 8-bit registers, so read/write access should be performed in 8-bit units.

20.3 Operation

20.3.1 Basic Functions

Each channel has the TCNT counter and the TGR register. The TCNT counter performs up-counting, and is also capable of free-running operation, periodic counting, and external event counting.

Each TGR register can be used as an input capture register or an output compare register.

(1) Counter Operation

When one of bits CST0 to CST4 in the TSTR register or bits CSTU5, CSTV5, and CSTW5 in the MTU5.TSTR register is set to 1, the TCNT counter for the corresponding channel begins counting. The TCNT counter can operate as a free-running counter, periodic counter, for example.

(a) Example of Count Operation Setting Procedure

Figure 20.4 shows an example of the count operation setting procedure.

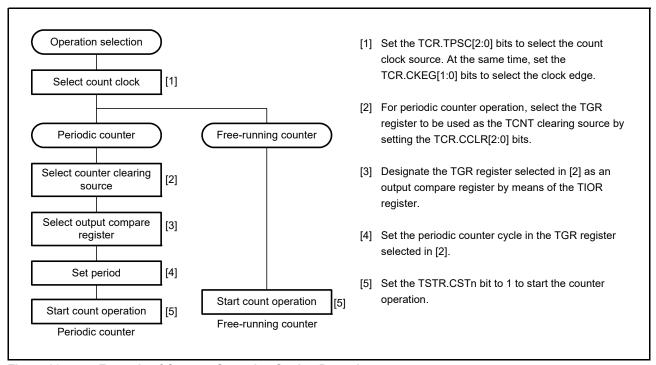


Figure 20.4 Example of Counter Operation Setting Procedure

(b) Free-Running Count Operation and Periodic Count Operation

Immediately after a reset, the MTU's TCNT counters are all designated as free-running counters. When the relevant CSTn bit in the TSTR register is set to 1, the corresponding TCNT counter starts up-count operation as a free-running counter. When TCNT overflows (from FFFFh to 0000h), the MTU requests an interrupt if the corresponding TCIEV bit in the TIER register is 1. After an overflow, the TCNT counter starts counting up again from 0000h. Figure 20.5 illustrates free-running counter operation.

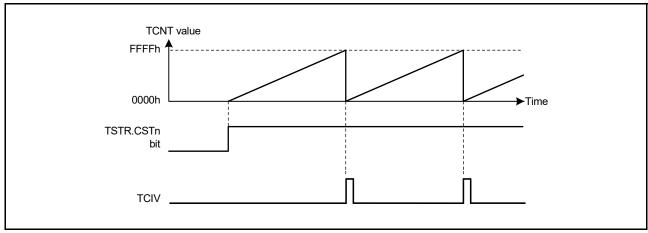


Figure 20.5 Free-Running Counter Operation

When compare match is selected as the TCNT clearing source, the TCNT counter for the relevant channel performs periodic count operation. The TGR register for setting the cycle is designated as an output compare register, and counter clearing by compare match is selected by means of the TCR.CCLR[2:0] bits. After the settings have been made, the TCNT counter starts up-count operation as a periodic counter when the corresponding bit in the TSTR register is set to 1. When the count matches the value in the TGR register, the TCNT counter is set to 0000h.

If the value of the corresponding TIER.TGIE bit is 1 at this point, the MTU requests an interrupt. After a compare match, the TCNT counter starts counting up again from 0000h.

Figure 20.6 illustrates periodic counter operation.

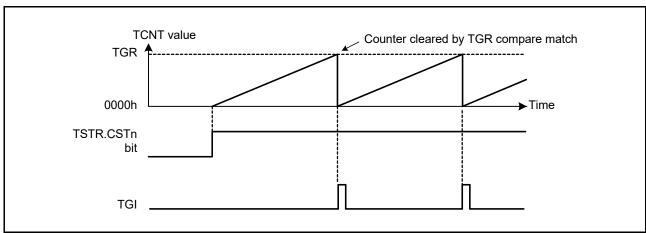


Figure 20.6 Periodic Counter Operation

(2) Waveform Output by Compare Match

The MTU can output low or high or toggle output from the corresponding output pin using compare match.

(a) Example of Procedure for Setting Waveform Output by Compare Match

Figure 20.7 shows an example of the procedure for setting waveform output by compare match.

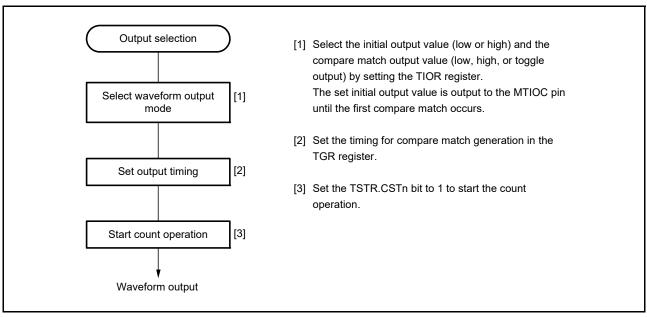


Figure 20.7 Example of Procedure for Setting Waveform Output by Compare Match

(b) Examples of Waveform Output Operation

Figure 20.8 shows an example of low output and high output.

In this example, the TCNT counter has been designated as a free-running counter, and settings have been made so that high is output by compare match A and low is output by compare match B. When the pin level is the same as the specified level, the pin level does not change.

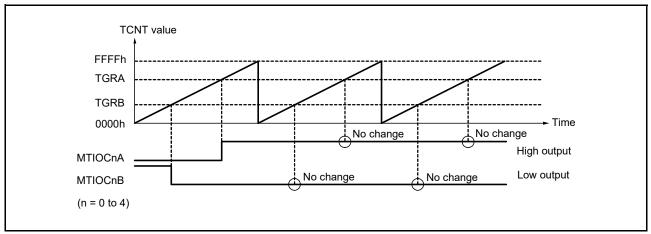


Figure 20.8 Example of Low Output and High Output Operation

Figure 20.9 shows an example of toggle output.

In this example, the TCNT counter has been designated as a periodic counter (with counter clearing on compare match B), and settings have been made so that the output is toggled by both compare match A and compare match B.

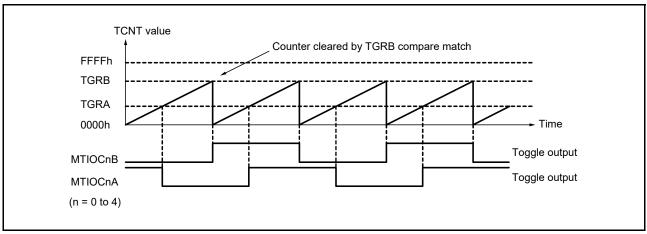


Figure 20.9 Example of Toggle Output Operation

(3) Input Capture Function

The TCNT value can be transferred to the TGR register on detection of the input edge of the MTIOCnm (n = 0 to 4; m = A to D) pin and MTIC5m (m = W, V, U) pin.

The rising edge, falling edge, or both edges can be selected as the detection edge. For MTU0 and MTU1, another channel's count clock or compare match signal can also be specified as the input capture source.

Note: When another channel's count clock is used as the input capture input for MTU0 and MTU1, PCLK/1 should not be selected as the count clock used for input capture input. Input capture will not be generated if PCLK/1 is selected.

(a) Example of Input Capture Operation Setting Procedure

Figure 20.10 shows an example of the input capture operation setting procedure.

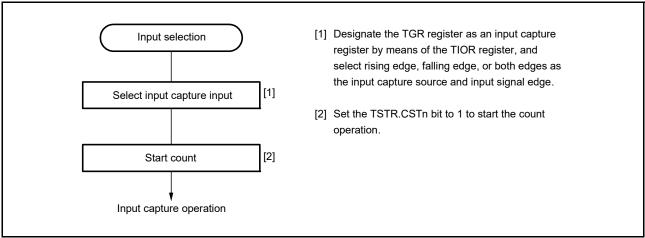


Figure 20.10 Example of Input Capture Operation Setting Procedure

(b) Example of Input Capture Operation

Figure 20.11 shows an example of input capture operation.

In this example, both rising and falling edges have been selected as the MTIOCnA pin input capture input edge, the falling edge has been selected as the MTIOCnB pin input capture input edge, and counter clearing by the TGRB input capture has been designated for the TCNT counter.

Figure 20.11 Example of Input Capture Operation

20.3.2 Synchronous Operation

In synchronous operation, the values in multiple TCNT counters can be modified simultaneously (synchronous setting). In addition, multiple TCNT counters can be cleared simultaneously (synchronous clearing) by making the appropriate setting in the TCR register.

Synchronous operation increases the number of the TGR registers assigned to a single time base.

MTU0 to MTU4 can all be designated for synchronous operation.

MTU5 cannot be used for synchronous operation.

(1) Example of Synchronous Operation Setting Procedure

Figure 20.12 shows an example of the synchronous operation setting procedure.

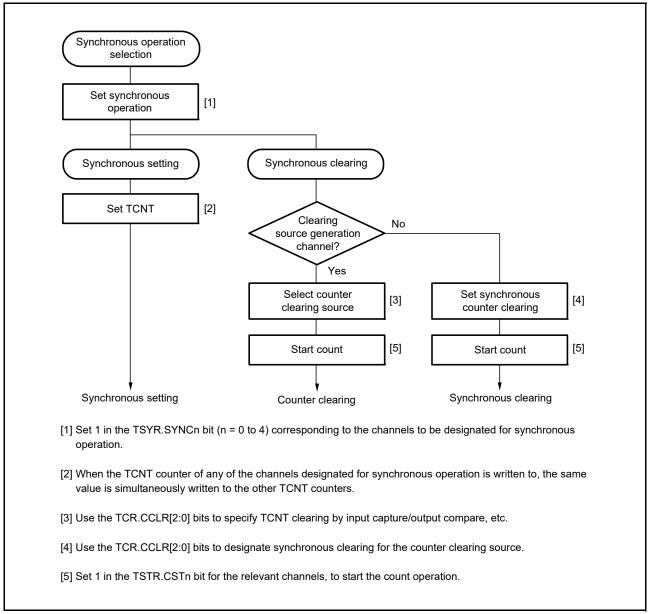


Figure 20.12 Example of Synchronous Operation Setting Procedure

(2) Example of Synchronous Operation

Figure 20.13 shows an example of synchronous operation.

In this example, synchronous operation and PWM mode 1 have been designated for MTU0 to MTU2, compare match of the MTU0.TGRB register has been set as the counter clearing source in MTU0, and synchronous clearing has been set for the counter clearing source in MTU1 and MTU2.

Three-phase PWM waveforms are output from pins MTIOC0A, MTIOC1A, and MTIOC2A. At this time, synchronous setting and synchronous clearing by MTU0.TGRB compare match are performed for the TCNT counters in MTU0 to MTU2, and the data set in the MTU0.TGRB register is used as the PWM cycle.

For details of PWM modes, refer to section 20.3.5, PWM Modes.

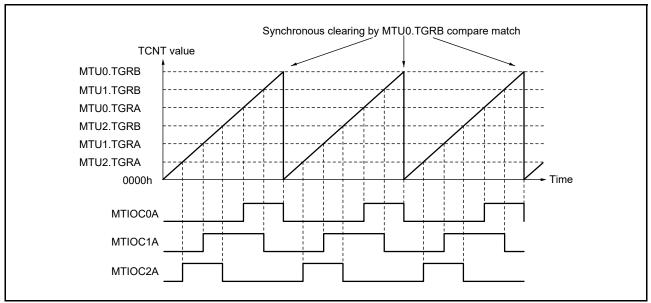


Figure 20.13 Example of Synchronous Operation

20.3.3 Buffer Operation

Buffer operation, provided for MTU0, MTU3, and MTU4, enables registers TGRC and TGRD to be used as buffer registers. In MTU0, TGRF register can also be used as a buffer register.

Buffer operation differs depending on whether TGR has been designated as an input capture register or as a compare match register.

Note: MTU0.TGRE register cannot be designated as an input capture register and can only operate as a compare match register.

Table 20.43 shows the register combinations used in buffer operation.

Table 20.43 Register Combinations in Buffer Operation

Channel	Timer General Register	Buffer Register	
MTU0	TGRA	TGRC	
	TGRB	TGRD	
	TGRE	TGRF	
MTU3	TGRA	TGRC	
	TGRB	TGRD	
MTU4	TGRA	TGRC	
	TGRB	TGRD	

When TGR register is an output compare register

When a compare match occurs, the value in the buffer register for the corresponding channel is transferred to the timer general register.

This operation is illustrated in Figure 20.14.

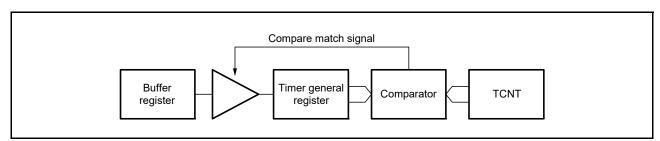


Figure 20.14 Compare Match Buffer Operation

• When TGR register is an input capture register

When an input capture occurs, the value in the TCNT counter is transferred to the TGR register and the value previously held in the TGR register is transferred to the buffer register.

This operation is illustrated in Figure 20.15.

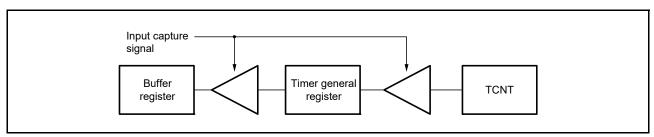


Figure 20.15 Input Capture Buffer Operation

(1) Example of Buffer Operation Setting Procedure

Figure 20.16 shows an example of the buffer operation setting procedure.

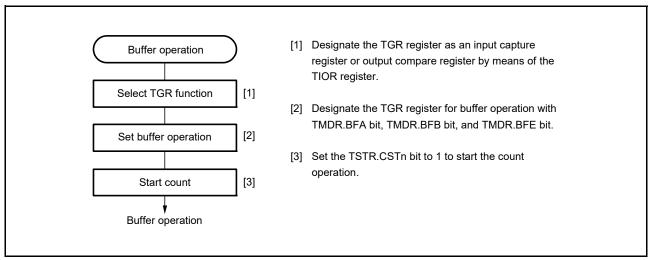


Figure 20.16 Example of Buffer Operation Setting Procedure

(2) Examples of Buffer Operation

(a) When TGR register is an Output Compare Register

Figure 20.17 shows an operation example in which PWM mode 1 has been designated for MTU0, and buffer operation has been designated for registers TGRA and TGRC. The settings used in this example are TCNT clearing by compare match B, high output at compare match B. In this example, the TBTM.TTSA bit is set to 0.

As buffer operation has been set, when compare match A occurs, the output changes and the value in buffer register TGRC is simultaneously transferred to timer general register TGRA. This operation is repeated each time compare match A occurs.

For details of PWM modes, refer to section 20.3.5, PWM Modes.

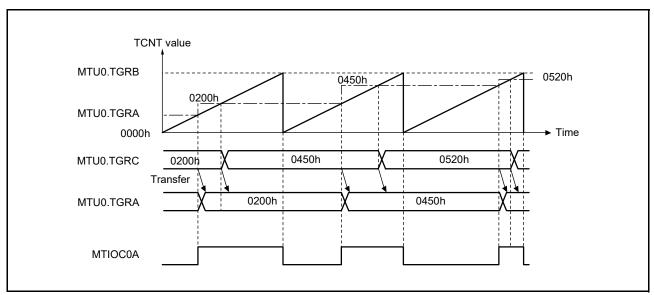


Figure 20.17 Example of Buffer Operation (1)

(b) When TGR register is an Input Capture Register

Figure 20.18 shows an operation example in which the TGRA register has been designated as an input capture register, and buffer operation has been designated for registers TGRA and TGRC.

Counter clearing by TGRA input capture has been set for the TCNT counter, and both rising and falling edges have been selected as the MTIOCnA pin input capture input edge.

As buffer operation has been set, when the TCNT value is transferred to the TGRA register upon occurrence of input capture A, the value previously stored in the TGRA register is simultaneously transferred to the TGRC register.

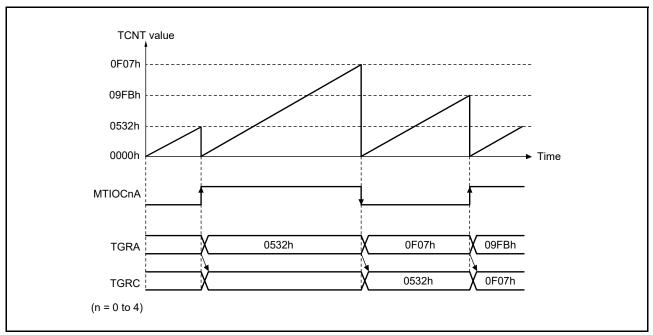


Figure 20.18 Example of Buffer Operation (2)

(3) Selecting Timing for Transfer from Buffer Registers to Timer General Registers in Buffer Operation

The timing for transfer from buffer registers to timer general registers can be selected in PWM mode 1 or 2 for MTU0 or in PWM mode 1 for MTU3 and MTU4 by setting the timer buffer operation transfer mode registers (MTU0.TBTM, MTU3.TBTM, and MTU4.TBTM). Either compare match (initial setting) or TCNT clearing can be selected for the transfer timing. TCNT clearing as transfer timing is one of the following cases.

- When the TCNT counter overflows (FFFFh \rightarrow 0000h)
- When 0000h is written to the TCNT counter during counting
- When the TCNT counter is set to 0000h under the condition specified in the TCR.CCLR[2:0] bits

Note: The TBTM register must be modified only while the TCNT counter stops.

Figure 20.19 shows an operation example in which PWM mode 1 is designated for MTU0 and buffer operation is designated for registers MTU0.TGRA and MTU0.TGRC. The settings used in this example are MTU0.TCNT clearing by compare match B, high output at compare match A, and low output at compare match B. The MTU0.TBTM.TTSA bit is set to 1.

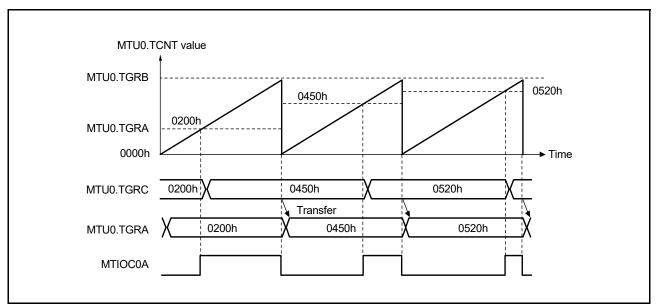


Figure 20.19 Example of Buffer Operation When MTU0.TCNT Clearing is Selected for MTU0.TGRC-to-MTU0.TGRA Transfer Timing

20.3.4 Cascaded Operation

In cascaded operation, 16-bit counters in different two channels are used together as a 32-bit counter.

This function works when overflow/underflow of the MTU2.TCNT counter is selected as the count clock for MTU1 through the TCR.TPSC[2:0] bits.

Underflow occurs only when the lower 16 bits of the TCNT counter is in phase counting mode.

Table 20.44 lists the register combinations used in cascaded operation.

Note: When phase counting mode is set for MTU1 or MTU2, the count clock setting is invalid and the counters operate independently in phase counting mode.

Table 20.44 Cascaded Combinations

Combination	Upper 16 Bits	Lower 16 Bits
MTU1 and MTU2	MTU1.TCNT	MTU2.TCNT

For simultaneous input capture of MTU1.TCNT and MTU2.TCNT during cascaded operation, additional input capture input pins can be specified by the TICCR register. The input-capture condition is of edges in the signal produced by taking the logical OR of the input level on the main input pin and the input level on the added input pin. Accordingly, if either is at the high, a change in the level of the other will not produce an edge for detection. For details, refer to (4) Cascaded Operation Example (c). For input capture in cascade connection, refer to section 20.6.22, Simultaneous Input Capture in MTU1.TCNT and MTU2.TCNT in Cascade Connection.

Table 20.45 lists the TICCR setting and input capture input pins.

Table 20.45 TICCR Setting and Input Capture Input Pins

Target Input Capture	TICCR Setting	Input Capture Input Pin
Input capture from MTU1.TCNT to MTU1.TGRA	I2AE bit = 0 (initial value)	MTIOC1A
	12AE bit = 1	MTIOC1A, MTIOC2A
Input capture from MTU1.TCNT to MTU1.TGRB	I2BE bit = 0 (initial value)	MTIOC1B
	I2BE bit = 1	MTIOC1B, MTIOC2B
Input capture from MTU2.TCNT to MTU2.TGRA	I1AE bit = 0 (initial value)	MTIOC2A
	I1AE bit = 1	MTIOC2A, MTIOC1A
Input capture from MTU2.TCNT to MTU2.TGRB	I1BE bit = 0 (initial value)	MTIOC2B
	I1BE bit = 1	MTIOC2B, MTIOC1B

(1) Example of Cascaded Operation Setting Procedure

Figure 20.20 shows an example of the cascaded operation setting procedure.

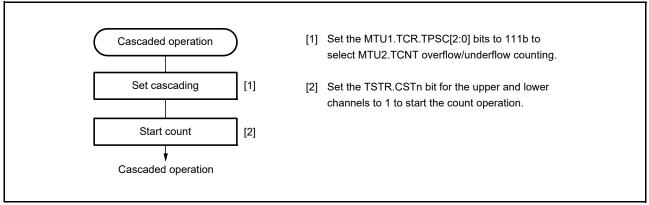


Figure 20.20 Cascaded Operation Setting Procedure

(2) Cascaded Operation Example (a)

Figure 20.21 shows the operation when the MTU1.TCNT counter is set for counting at MTU2.TCNT overflow/underflow and MTU2 is set for phase counting mode 1 while counters MTU1.TCNT and MTU2.TCNT are cascaded. The MTU1.TCNT counter is incremented by MTU2.TCNT overflow and decremented by MTU2.TCNT underflow.

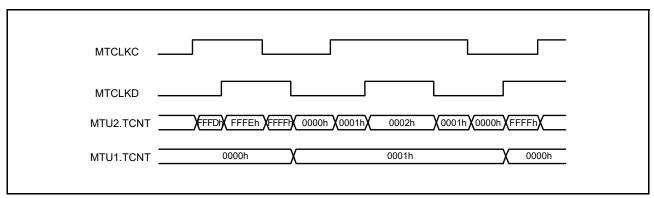


Figure 20.21 Cascaded Operation Example (a)

(3) Cascaded Operation Example (b)

Figure 20.22 illustrates the operation when counters MTU1.TCNT and MTU2.TCNT have been cascaded and the TICCR.I2AE bit has been set to 1 to include the MTIOC2A pin in the MTU1.TGRA input capture conditions. In this example, the MTU1.TIOR.IOA[3:0] bits have selected the MTIOC1A rising edge for the input capture timing while the MTU2.TIOR.IOA[3:0] bits have selected the MTIOC2A rising edge for the input capture timing. Under these conditions, the rising edge of both MTIOC1A and MTIOC2A is used for the MTU1.TGRA input capture condition. For the MTU2.TGRA input capture condition, the MTIOC2A rising edge is used.

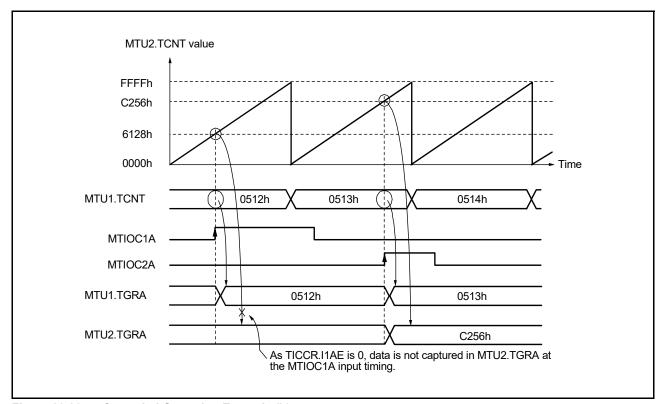


Figure 20.22 Cascaded Operation Example (b)

(4) Cascaded Operation Example (c)

Figure 20.23 illustrates the operation when counters MTU1.TCNT and MTU2.TCNT have been cascaded and the I2AE and I1AE bits in TICCR register have been set to 1 to include the MTIOC2A and MTIOC1A pins in the MTU1.TGRA and MTU2.TGRA input capture conditions, respectively. In this example, the IOA[3:0] bits in both MTU1.TIOR and MTU2.TIOR registers have selected both the rising and falling edges for the input capture timing. Under these conditions, the OR result of MTIOC1A and MTIOC2A input is used for the MTU1.TGRA and MTU2.TGRA input capture conditions.

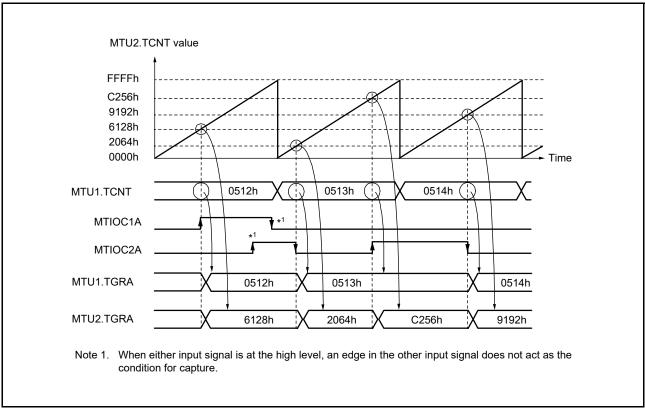


Figure 20.23 Cascaded Operation Example (c)

(5) Cascaded Operation Example (d)

Figure 20.24 illustrates the operation when counters MTU1.TCNT and MTU2.TCNT have been cascaded and the TICCR.I2AE bit has been set to 1 to include the MTIOC2A pin in the MTU1.TGRA input capture conditions. In this example, the MTU1.TIOR.IOA[3:0] bits have selected occurrence of MTU0.TGRA compare match or input capture for the input capture timing while the MTU2.TIOR.IOA[3:0] bits have selected the MTIOC2A rising edge for the input capture timing.

Under these conditions, as the MTU1.TIOR register has selected occurrence of MTU0.TGRA compare match or input capture for the input capture timing, the MTIOC2A edge is not used for MTU1.TGRA input capture condition although the TICCR.I2AE bit has been set to 1.

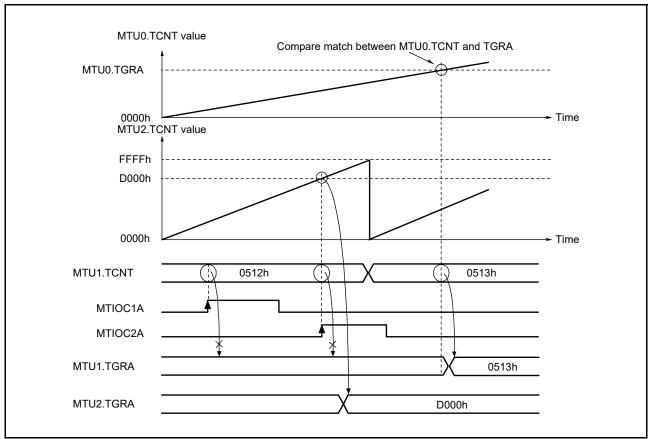


Figure 20.24 Cascaded Operation Example (d)

20.3.5 PWM Modes

PWM modes are provided to output PWM waveforms from the external pins. The output level can be selected as low, high, or toggle output in response to a compare match of each TGR register.

PWM waveforms in the range of 0% to 100% duty cycle can be output according to the TGR settings.

By designating TGR compare match as the counter clearing source, the PWM cycle can be specified in that register. Every channel can be set to PWM mode independently. Channels set to PWM mode can perform synchronous operation with each other or other channels set to any other mode.

There are two PWM modes as described below.

(a) PWM Mode 1

PWM waveforms are output from the MTIOCnA and MTIOCnC pins by pairing the TGRA register with the TGRB register and the TGRC register with the TGRD register. The levels specified by the TIOR.IOA[3:0] and IOC[3:0] bits are output from the MTIOCnA and MTIOCnC pins at compare matches A and C, and the levels specified by the TIOR.IOB[3:0] and IOD[3:0] bits are output at compare matches B and D. The initial output value is set in the TGRA register or the TGRC register. If the values set in paired TGRs are identical, the output value does not change even when a compare match occurs.

In PWM mode 1, up to eight phases of PWM waveforms can be output.

(b) PWM Mode 2

PWM output is generated using one TGR register as the cycle register and the others as duty registers. The level specified in the TIOR register is output at compare matches. Upon counter clearing by a cycle register compare match, the initial value set in the TIOR register is output from each pin. If the values set in the cycle and duty registers are identical, the output value does not change even when a compare match occurs.

In PWM mode 2, up to eight phases of PWM waveforms can be output when using synchronous operation in combination.

The correspondence between PWM output pins and registers is listed in Table 20.46.

Table 20.46 PWM Output Registers and Output Pins

		Output Pins	
Channel	Register	PWM Mode 1	PWM Mode 2
MTU0	MTU0.TGRA MTIOC0A	MTIOC0A	MTIOC0A
	MTU0.TGRB		MTIOC0B
	MTU0.TGRC	MTIOC0C	MTIOC0C
	MTU0.TGRD		MTIOC0D
MTU1	MTU1.TGRA	MTIOC1A	MTIOC1A
	MTU1.TGRB		MTIOC1B
MTU2	TU2 MTU2.TGRA MTIOC	MTIOC2A	MTIOC2A
	MTU2.TGRB		MTIOC2B
MTU3	3 MTU3.TGRA MTIOC3A	MTIOC3A	Setting prohibited
	MTU3.TGRB		
	MTU3.TGRC	MTIOC3C	
	MTU3.TGRD		
MTU4	MTU4.TGRA	MTIOC4A	
	MTU4.TGRB		
	MTU4.TGRC	MTIOC4C	
	MTU4.TGRD		

Note: In PWM mode 2, PWM output is not possible for the TGR register in which the PWM cycle is set.

(1) Example of PWM Mode Setting Procedure

Figure 20.25 shows an example of the PWM mode setting procedure.

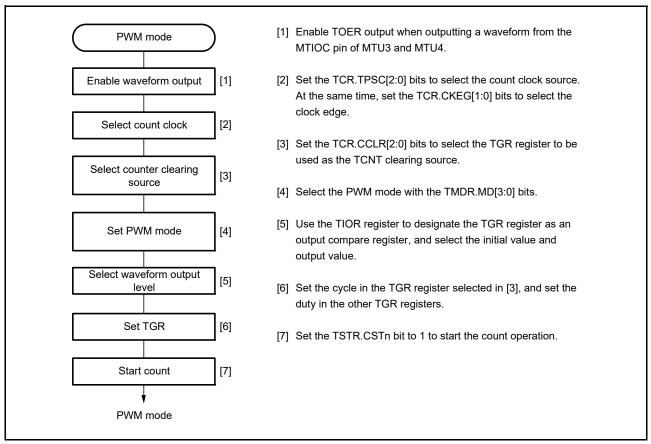


Figure 20.25 Example of PWM Mode Setting Procedure

(2) Examples of PWM Mode Operation

Figure 20.26 shows an example of operation in PWM mode 1.

In this example, TGRA compare match is set as the TCNT clearing source, a low level is set as the initial output value and output value for the TGRA register, and a high level is set as the output value for the TGRB register.

In this case, the value set in the TGRA register is used as the cycle, and the value set in the TGRB register is used as the duty.

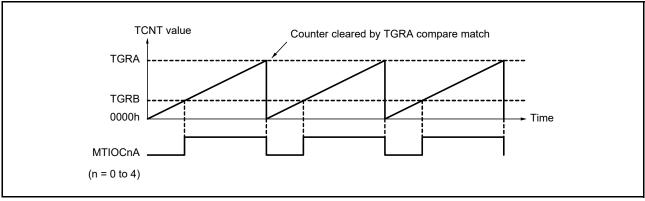


Figure 20.26 Example of PWM Mode Operation

Figure 20.27 shows an example of operation in PWM mode 2.

In this example, synchronous operation is designated for MTU0 and MTU1, MTU1.TGRB compare match is set as the TCNT clearing source, and a low level is set as the initial output value and a high level as the output value for the other TGR registers (MTU0.TGRA to MTU0.TGRD and MTU1.TGRA), outputting 5-phase PWM waveforms.

In this case, the value set in the MTU1.TGRB register is used as the cycle, and the values set in the other TGR registers are used as the duty.

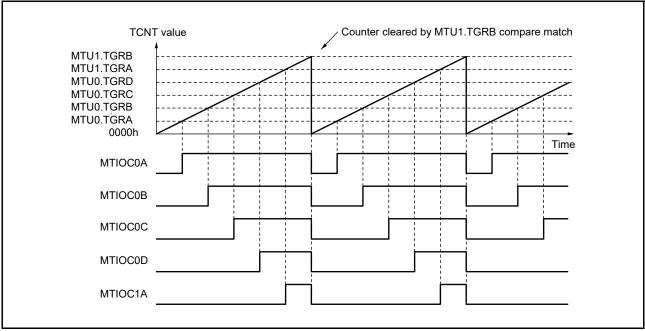


Figure 20.27 Example of PWM Mode Operation

Figure 20.28 shows examples of PWM waveform output with 0% duty and 100% duty in PWM mode 1. In this example, TGRA compare match is set as the TCNT clearing source, a low level is set as the initial output value and output value for the TGRA register, and a high level is set as the output value for the TGRB register.

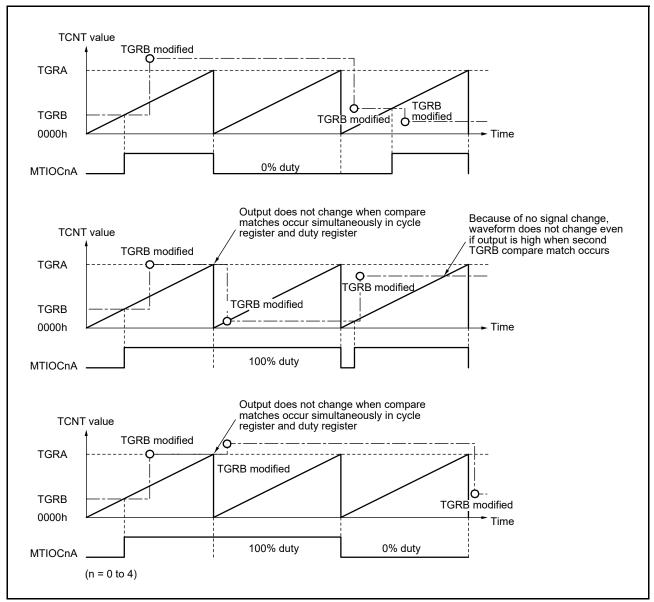


Figure 20.28 Examples of PWM Mode Operation

20.3.6 Phase Counting Mode

When phase counting mode is specified, an external clock is selected as the count clock and the TCNT counter operates as an up-counter/down-counter regardless of the setting of the TCR.TPSC[2:0] bits and TCR.CKEG[1:0] bits. However, the functions of the TCR.CCLR[2:0] bits and of registers TIOR, TIER, and TGR are valid, and input capture/compare match and interrupt functions can be used.

This can be used for 2-phase encoder pulse input.

If an overflow occurs while the TCNT counter is counting up, a TCIV interrupt is generated while the corresponding TIER.TCIEV bit is 1. If an underflow occurs while the TCNT counter is counting down, a TCIU interrupt is generated while the corresponding TIER.TCIEU bit is 1.

The TSR.TCFD flag is the count direction flag. Read the TCFD flag to check whether the TCNT counter is counting up or down.

In phase counting mode, the external clock pins MTCLKA, MTCLKB, MTCLKC, and MTCLKD can be used as 2-phase encoder pulse input pins. Table 20.47 lists the correspondence between external clock pins and channels.

Table 20.47 Clock Input Pins in Phase Counting Mode

	External Clock Input	External Clock Input Pins	
Channel	A-Phase	B-Phase	
MTU1	MTCLKA	MTCLKB	
MTU2	MTCLKC	MTCLKD	

(1) Example of Phase Counting Mode Setting Procedure

Figure 20.29 shows an example of the phase counting mode setting procedure.

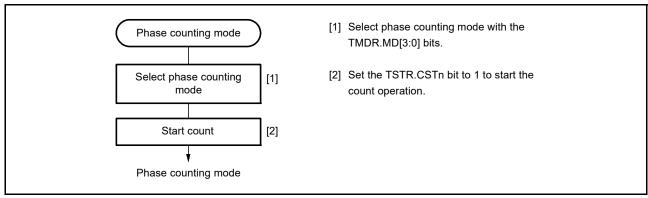


Figure 20.29 Example of Phase Counting Mode Setting Procedure

(2) Examples of Phase Counting Mode Operation

In phase counting mode, the TCNT counter is incremented or decremented according to the phase difference between two external clocks. There are four modes according to the count conditions.

(a) Phase Counting Mode 1

Figure 20.30 shows an example of operation in phase counting mode 1, and Table 20.48 lists the TCNT up-counting and down-counting conditions.

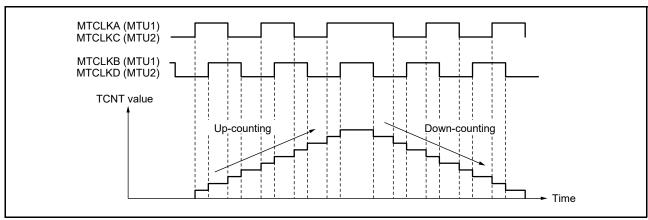


Figure 20.30 Example of Operation in Phase Counting Mode 1

Table 20.48 Up-Counting and Down-Counting Conditions in Phase Counting Mode 1

MTCLKA (MTU1) MTCLKC (MTU2)	MTCLKB (MTU1) MTCLKD (MTU2)	Operation
High		Up-counting
Low		
	Low	
₹	High	
High		Down-counting
Low		
	High	
	Low	

∴ Rising edge : Falling edge

(b) Phase Counting Mode 2

Figure 20.31 shows an example of operation in phase counting mode 2, and Table 20.49 lists the TCNT up-counting and down-counting conditions.

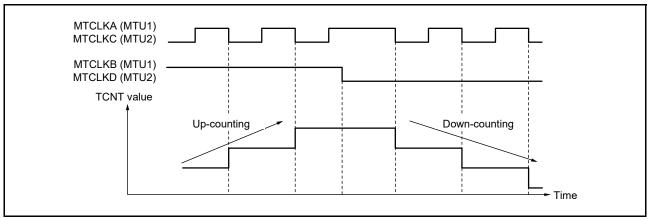


Figure 20.31 Example of Operation in Phase Counting Mode 2

Table 20.49 Up-Counting and Down-Counting Conditions in Phase Counting Mode 2

MTCLKA (MTU1) MTCLKC (MTU2)	MTCLKB (MTU1) MTCLKD (MTU2)	Operation
High		None (Don't care)
Low		None (Don't care)
<u>_</u>	Low	None (Don't care)
▼	High	Up-counting Up-counting
High		None (Don't care)
Low		None (Don't care)
	High	None (Don't care)
	Low	Down-counting

(c) Phase Counting Mode 3

Figure 20.32 shows an example of operation in phase counting mode 3, and Table 20.50 lists the TCNT up-counting and down-counting conditions.

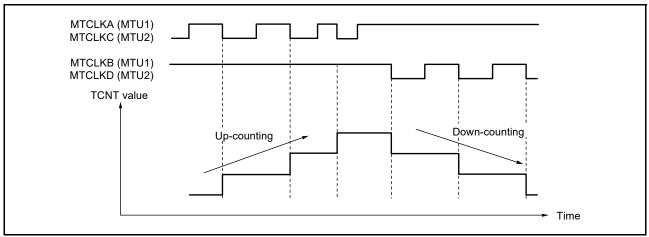


Figure 20.32 Example of Operation in Phase Counting Mode 3

Table 20.50 Up-Counting and Down-Counting Conditions in Phase Counting Mode 3

MTCLKA (MTU1) MTCLKC (MTU2)	MTCLKB (MTU1) MTCLKD (MTU2)	Operation
High		None (Don't care)
Low		None (Don't care)
	Low	None (Don't care)
	High	Up-counting
High		Down-counting
Low		None (Don't care)
	High	None (Don't care)
	Low	None (Don't care)

: Rising edge : Falling edge

(d) Phase Counting Mode 4

Figure 20.33 shows an example of operation in phase counting mode 4, and Table 20.51 lists the TCNT up-counting and down-counting conditions.

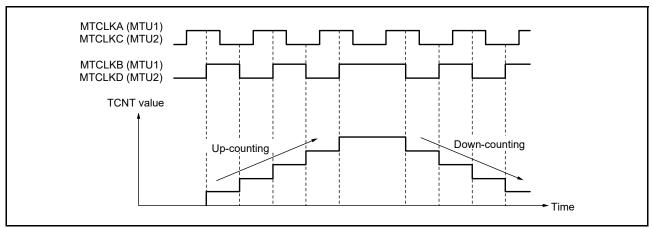


Figure 20.33 Example of Operation in Phase Counting Mode 4

Table 20.51 Up-Counting and Down-Counting Conditions in Phase Counting Mode 4

MTCLKA (MTU1) MTCLKC (MTU2)	MTCLKB (MTU1) MTCLKD (MTU2)	Operation
High		Up-counting
Low	₹_	
	Low	None (Don't care)
₹_	High	
High		Down-counting
Low		
	High	None (Don't care)
T	Low	

: Rising edge

(3) Phase Counting Mode Application Example

Figure 20.34 shows an example in which MTU1 is in phase counting mode, and MTU1 is coupled with MTU0 to input 2-phase encoder pulses of a servo motor in order to detect position or speed.

MTU1 is set to phase counting mode 1, and the encoder pulse A-phase and B-phase are input to MTCLKA and MTCLKB.

MTU0.TGRC compare match is specified as the MTU0.TCNT clearing source and registers MTU0.TGRA and MTU0.TGRC are used for the compare match function and are set with the speed control cycle and position control cycle. The MTU0.TGRB register is used for input capture, with registers MTU0.TGRB and MTU0.TGRD operating in buffer mode. The MTU1 count clock is designated as the MTU0.TGRB input capture source, and the widths of 2-phase encoder 4-multiplication pulses are detected.

Registers MTU1.TGRA and MTU1.TGRB are designated for the input capture function and the MTU0.TGRA and MTU0.TGRC compare matches are selected as the input capture sources to store the up-counter/down-counter values for the control cycles.

This procedure enables the accurate detection of position and speed.

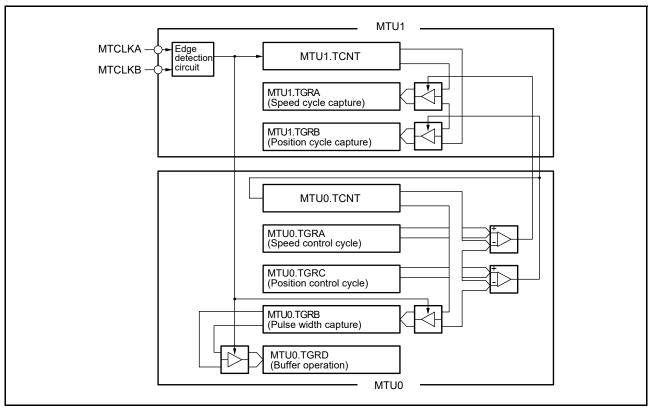


Figure 20.34 Phase Counting Mode Application Example

20.3.7 Reset-Synchronized PWM Mode

In the reset-synchronized PWM mode, six phases of positive and negative PWM waveforms that share a common wave transition point can be output by combining MTU3 and MTU4.

When set for reset-synchronized PWM mode, the MTIOC3B, MTIOC3D, MTIOC4A, MTIOC4C, MTIOC4B, and MTIOC4D pins function as PWM output pins and the MTU3.TCNT counter functions as an up-counter. Table 20.52 lists the PWM output pins. Table 20.53 lists the settings of the registers.

Table 20.52 Output Pins for Reset-Synchronized PWM Mode

Channel	Output Pin	Description
MTU3	MTIOC3B	PWM output pin 1
	MTIOC3D	PWM output pin 1' (negative-phase waveform of PWM output 1)
MTU4	MTIOC4A	PWM output pin 2
	MTIOC4C	PWM output pin 2' (negative-phase waveform of PWM output 2)
	MTIOC4B	PWM output pin 3
	MTIOC4D	PWM output pin 3' (negative-phase waveform of PWM output 3)

Table 20.53 Register Settings for Reset-Synchronized PWM Mode

Register	Setting
MTU3.TCNT	Initial setting (0000h)
MTU4.TCNT	Initial setting (0000h)
MTU3.TGRA	Set the count cycle for MTU3.TCNT
MTU3.TGRB	Set the transition point of the PWM waveform to be output from the MTIOC3B and MTIOC3D pins
MTU4.TGRA	Set the transition point of the PWM waveform to be output from the MTIOC4A and MTIOC4C pins
MTU4.TGRB	Set the transition point of the PWM waveform to be output from the MTIOC4B and MTIOC4D pins

(1) Example of Procedure for Setting Reset-Synchronized PWM Mode

Figure 20.35 shows an example of procedure for setting the reset-synchronized PWM mode.

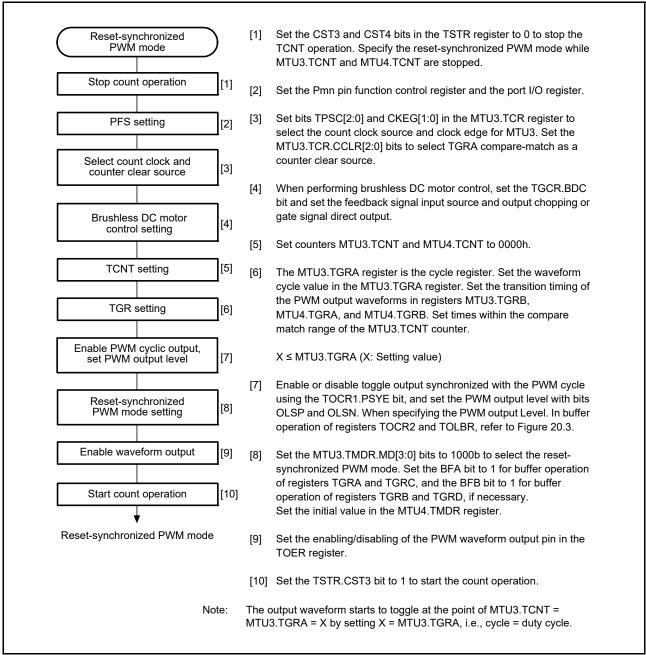


Figure 20.35 Procedure for Selecting Reset-Synchronized PWM Mode

(2) Example of Reset-Synchronized PWM Mode Operation

Figure 20.36 shows an example of operation in the reset-synchronized PWM mode.

Counters MTU3.TCNT and MTU4.TCNT operate as up-counters. The counters are cleared when a compare match occurs between the MTU3.TCNT counter and the MTU3.TGRA register, and then begin incrementing from 0000h. The output from the PWM pins toggles every time a compare match occurs in registers MTU3.TGRB, MTU4.TGRA, and MTU4.TGRB and the counters are cleared.

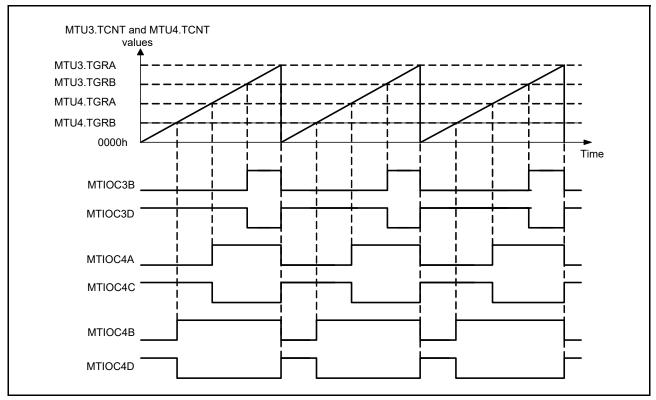


Figure 20.36 Example of Reset-Synchronized PWM Mode Operation (When TOCR1.OLSN = 1 and OLSP = 1)

20.3.8 Complementary PWM Mode

In complementary PWM mode, dead time can be set for PWM waveforms to be output. The dead time is the period during which the upper and lower arm transistors are set to the inactive level in order to prevent short-circuiting of the arms. Six phases of positive and negative PWM waveforms with dead time can be output by combining MTU3 and MTU4. PWM waveforms without dead time can also be output.

In complementary PWM mode, MTIOC3B, MTIOC3D, MTIOC4A, MTIOC4B, MTIOC4C, and MTIOC4D pins function as PWM output pins, and the MTIOC3A pin can be set for toggle output synchronized with the PWM cycle. Counters MTU3.TCNT and MTU4.TCNT function as up/down-counters.

Table 20.54 lists the PWM output pins used. Table 20.55 lists the settings of the registers used.

A function to directly cut off the PWM output by using an external signal is supported as a port function.

Table 20.54 Output Pins for Complementary PWM Mode

Channel	Output Pin	Description
MTU3	MTIOC3A	Toggle output synchronized with PWM cycle (or I/O port)
	MTIOC3B	PWM output pin 1
	MTIOC3C	I/O port*1
	MTIOC3D	PWM output pin 1' (negative-phase waveform output of PWM output 1)
MTU4	MTIOC4A	PWM output pin 2
	MTIOC4C	PWM output pin 2' (negative-phase waveform output of PWM output 2)
	MTIOC4B	PWM output pin 3
	MTIOC4D	PWM output pin 3' (negative-phase waveform output of PWM output 3)

Note 1. Avoid setting the MTIOC3C pin as a timer I/O pin in complementary PWM mode.

Table 20.55 Register Settings for Complementary PWM Mode

Channel	Counter/	Decembring	Read/Write from CPU
Channel	Register	Description	
MTU3	MTU3.TCNT	Starts up-counting from the value set in the dead time register	Maskable by TRWER setting*1
	MTU3.TGRA	Set MTU3.TCNT upper limit value (1/2 carrier cycle + dead time)	Maskable by TRWER setting*1
	MTU3.TGRB	PWM output 1 compare register	Maskable by TRWER setting*1
	MTU3.TGRC	MTU3.TGRA buffer register	Readable/writable
	MTU3.TGRD	PWM output 1/MTU3.TGRB buffer register	Readable/writable
MTU4	MTU4.TCNT	Starts up-counting after being initialized to 0000h	Maskable by TRWER setting*1
	MTU4.TGRA	PWM output 2 compare register	Maskable by TRWER setting*1
	MTU4.TGRB	PWM output 3 compare register	Maskable by TRWER setting*1
	MTU4.TGRC	PWM output 2/MTU4.TGRA buffer register	Readable/writable
	MTU4.TGRD	PWM output 3/MTU4.TGRB buffer register	Readable/writable
Timer dead time data register (TDDR)		Set MTU4.TCNT and MTU3.TCNT offset value (dead time value)	Maskable by TRWER setting*1
Timer cycle data register (TCDR)		Set MTU4.TCNT upper limit value (1/2 carrier cycle)	Maskable by TRWER setting*1
Timer cycle buffer register (TCBR)		TCDR buffer register	Readable/writable
Subcounter (TCNTS)		Subcounter for dead time generation	Read-only
Temporary register 1 (TEMP1)		PWM output 1/MTU3.TGRB temporary register	Not readable/writable
Temporary register 2 (TEMP2)		PWM output 2/MTU4.TGRA temporary register	Not readable/writable
Temporary register 3 (TEMP3)		PWM output 3/MTU4.TGRB temporary register	Not readable/writable

Note 1. Access can be enabled or disabled according to the setting in the TRWER register (timer read/write enable register).

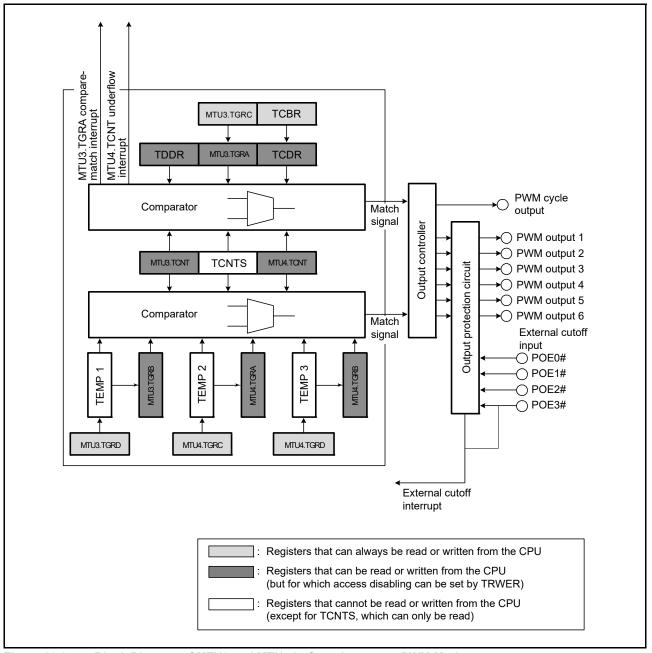


Figure 20.37 Block Diagram of MTU3 and MTU4 in Complementary PWM Mode

(1) Example of Complementary PWM Mode Setting Procedure

Figure 20.38 shows an example of the complementary PWM mode setting procedure.

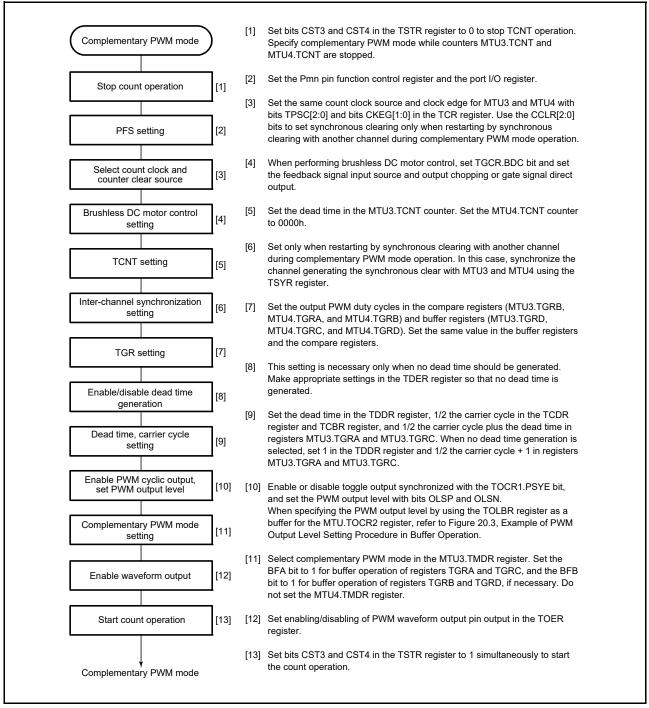


Figure 20.38 Example of Complementary PWM Mode Setting Procedure

(2) Outline of Complementary PWM Mode Operation

In complementary PWM mode, six phases (three positive and three negative) of PWM waveforms can be output. Figure 20.39 illustrates counter operation in complementary PWM mode, and Figure 20.40 shows an example of operation in complementary PWM mode.

(a) Counter Operation

In complementary PWM mode, three counters —MTU3.TCNT, MTU4.TCNT, and TCNTS— perform up-/down-count operations.

The MTU3.TCNT counter is automatically initialized to the value set in the TDDR register when complementary PWM mode is selected and the TSTR.CST3 bit is 0.

When the CST3 bit is set to 1, the MTU3.TCNT counter counts up to the value set in the MTU3.TGRA register, then switches to down-counting when it matches the MTU3.TGRA register. When the MTU3.TCNT value matches the TDDR register, the counter switches to up-counting, and the operation is repeated in this way.

The MTU4.TCNT counter should be initialized to 0000h.

When the CST4 bit is set to 1, the MTU4.TCNT counter counts up in synchronization with the MTU3.TCNT counter, and switches to down-counting when it matches the TCDR register. On reaching 0000h, the MTU4.TCNT counter switches to up-counting, and the operation is repeated in this way.

The TCNTS counter is a read-only counter. It does not need to be initialized.

When the MTU3.TCNT counter matches the TCDR register during up-/down-counting of the TCNT counter in MTU3 and MTU4, the TCNTS counter starts down-counting, and when the TCNTS counter matches the TCDR register, the operation switches to up-counting. When the TCNTS counter matches the MTU3.TGRA register, it is cleared to 0000h. When the MTU4.TCNT counter matches the TDDR register during down-counting of counters MTU3.TCNT and MTU4.TCNT, the TCNTS counter starts up-counting, and when the TCNTS counter matches the TDDR register, the operation switches to down-counting. When the TCNTS counter reaches 0000h, it is set with the value in the MTU3.TGRA register.

The TCNTS counter is compared with the compare register and temporary register, in which the PWM duty is specified, only during the count operation.

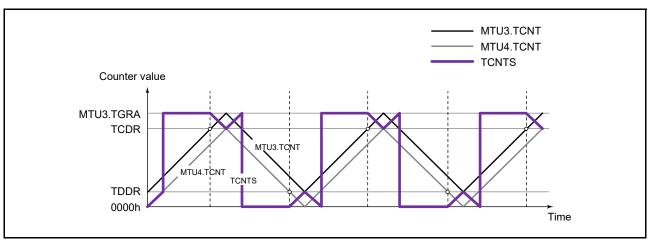


Figure 20.39 Counter Operation in Complementary PWM Mode

(b) Register Operation

In complementary PWM mode, nine registers (compare registers, buffer registers, and temporary registers) are used to control the duty ratio for the PWM output. Figure 20.40 shows an example of operation in complementary PWM mode. Registers MTU3.TGRB, MTU4.TGRA, and MTU4.TGRB are constantly compared with the counters to generate PWM waveforms. When these registers match the counter, the value set in the TOCR1.OLSN and OLSP bits is output from the PWM output pin.

Registers MTU3.TGRD, MTU4.TGRC, and MTU4.TGRD are buffer registers for these compare registers. Between a buffer register and a compare register, there is a temporary register. The temporary registers cannot be accessed by the CPU.

Data in a compare register can be changed by writing new data to the corresponding buffer register. The buffer registers can be read or written at any time.

When modifying data in a buffer register, be sure to write to the MTU4.TGRD register last and enable data transfer from the buffer register to a temporary register. At this time, transfer from registers TCBR and MTU3.TGRC, which operate as buffer registers for the timer cycle registers, to temporary registers is also enabled. Data is transferred to all five temporary registers at the same time. When transfer is enabled in the Ta interval, data written to a buffer register is immediately transferred to the temporary register. Data is not transferred to the temporary register in the Tb1 and Tb2 intervals. Data enabled for transfer in this interval is transferred to the temporary register at the end of this interval. The value transferred to a temporary register is transferred to the compare register at the end of the Tb1 interval (when matches the MTU3.TGRA register while the TCNTS counter is counting up), or at the end of the Tb2 interval (when matches 0000h while the TCNTS counter is counting down). The timing for transfer from the temporary register to the compare register can be selected with the TMDR.MD[3:0] bits. Figure 20.40 shows an example in which the trough is selected for the transfer timing.

In the Tb (Tb2 in Figure 20.40) interval in which data is not transferred to the temporary register, the temporary register has the same function as the compare register and is compared with the counter. In this interval, therefore, there are two compare match registers for one output phase; the compare register contains the pre-change data and the temporary register contains new data. In this interval, three counters (MTU3.TCNT, MTU4.TCNT and TCNTS) and two registers (compare register and temporary register) are compared, and PWM output is controlled accordingly.

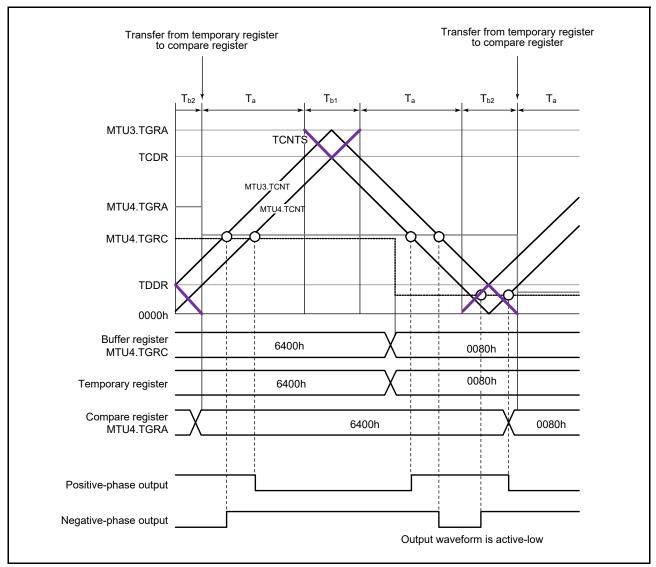


Figure 20.40 Example of Operation in Complementary PWM Mode

Initial Setting (c)

In complementary PWM mode, there are six registers that require initial setting. In addition, there is a register that specifies whether to generate dead time (it should be used only when dead time generation should be disabled). Before setting complementary PWM mode with the TMDR.MD[3:0] bits, initial values should be set in the following registers.

The MTU3.TGRC register operates as the buffer register for the MTU3.TGRA register, and should be set with 1/2 the PWM cycle + dead time Td. The TCBR register operates as the buffer register for the TCDR register, and should be set with 1/2 the PWM cycle. Set dead time Td in the TDDR register.

When dead time is not needed, the TDER.TDER bit should be set to 0, registers MTU3.TGRC and MTU3.TGRA should be set to 1/2 the PWM cycle + 1, and the TDDR register should be set to 1.

Set the respective initial PWM duty values in three buffer registers MTU3.TGRD, MTU4.TGRC, and MTU4.TGRD. The values set in the five buffer registers excluding the TDDR register are transferred to the corresponding compare registers as soon as complementary PWM mode is set.

Set the MTU4.TCNT counter to 0000h before setting complementary PWM mode.

Table 20.56 **Registers and Counters Requiring Initial Setting**

Register and Counter	Setting		
MTU3.TGRC	1/2 PWM cycle + dead time Td (1/2 PWM cycle + 1 when dead time generation is disabled by the TDER register)		
TDDR	Dead time Td (1 when dead time generation is disabled by the TDER register)		
TCBR	1/2 PWM cycle		
MTU3.TGRD, MTU4.TGRC, MTU4.TGRD	Initial PWM duty value for each phase		
MTU4.TCNT	0000h		

Note:

The value set in the MTU3.TGRC register should be the sum of 1/2 the PWM cycle set in the TCBR register and dead time Td set in the TDDR register. When dead time generation is disabled by the TDER register, the TGRC register should be set to 1/2 the PWM cycle + 1.

PWM Output Level Setting

In complementary PWM mode, the PWM output level is set with bits OLSN and OLSP in the TOCR1 register or bits OLS1P to OLS3P and OLS1N to OLS3N in the TOCR2 register.

The output level can be set for each of the three positive phases and three negative phases of 6-phase output. Complementary PWM mode should be cleared before setting or changing output levels.

(e) Dead Time Setting

In complementary PWM mode, dead time can be set for PWM output.

The dead time is set in the TDDR register. The value set in the TDDR register is used as the MTU3.TCNT counter start value and creates a dead time between counters MTU3.TCNT and MTU4.TCNT. Complementary PWM mode should be cleared before changing the contents of the TDDR register.

(f) Dead Time Suppressing

Dead time generation is suppressed by clearing the TDER.TDER bit to 0. The TDER bit can be set to 0 only when 0 is written to it after reading it as 1.

Registers MTU3.TGRA and MTU3.TGRC should be set to 1/2 PWM cycle + 1 and the TDDR register should be set to 1. By the above settings, PWM waveforms without dead time can be obtained. Figure 20.41 shows an example of operation without dead time.

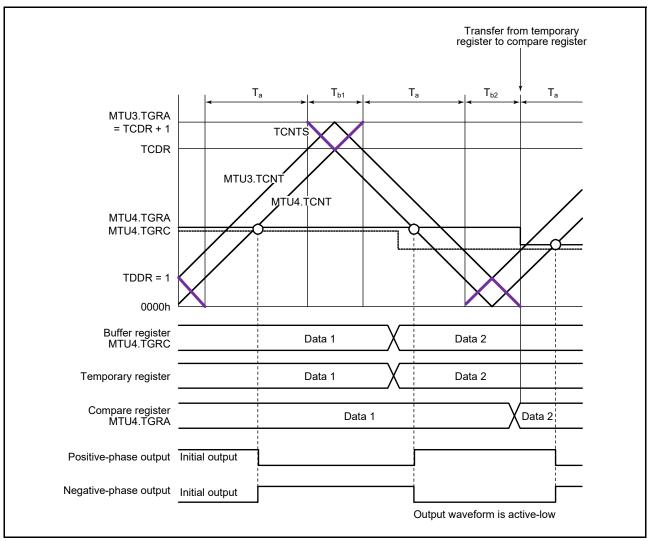


Figure 20.41 Example of Operation without Dead Time

(g) PWM Cycle Setting

In complementary PWM mode, the PWM cycle is set in two registers — the MTU3.TGRA register, in which the MTU3.TCNT counter upper limit value is set, and the TCDR register, in which the MTU4.TCNT counter upper limit value is set. The settings should be made so as to achieve the following relationship between these two registers:

With dead time: MTU3.TGRA setting = TCDR setting + TDDR setting

Without dead time: MTU3.TGRA setting = TCDR setting + 1

The settings should be made so as to achieve the following relationship between registers TCDR and TDDR. TCDR setting > TDDR setting > 2 + 2

The MTU3.TGRA and TCDR settings are made by setting values in buffer registers MTU3.TGRC and TCBR. When data is written to the MTU4.TGRD register to enable transfers, the values set in registers MTU3.TGRC and TCBR are transferred simultaneously to registers MTU3.TGRA and TCDR with the transfer timing selected with the TMDR.MD[3:0] bits.

The new PWM cycle is reflected from the next cycle when data is updated at the crest, or from the current cycle when updated in the trough. Figure 20.42 illustrates the operation when the PWM cycle is updated at the crest.

Refer to the following section (h) Register Data Updating, for the method of updating the data in each buffer register.

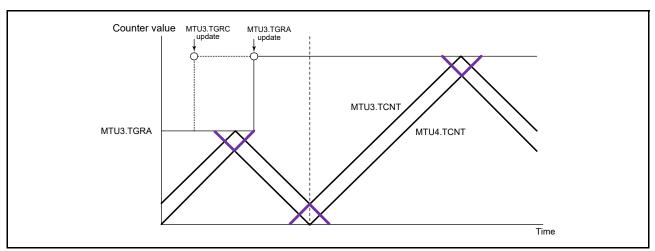


Figure 20.42 Example of PWM Cycle Updating

(h) Register Data Updating

In complementary PWM mode, the buffer register is used to update the data in a compare register. The update data can be written to the buffer register at any time. There are five registers (PWM duty and PWM cycle registers) that have buffer registers and can be updated during operation.

There is a temporary register between each of these registers and its buffer register. While subcounter TCNTS is not counting, if buffer register data is updated, the temporary register value also changes. Data is not transferred from buffer registers to temporary registers while the TCNTS counter is counting; in this case, the value written to a buffer register is transferred after the TCNTS counter halts.

The temporary register value is transferred to the compare register at the data update timing set with the TMDR.MD[3:0] bits. Figure 20.43 shows an example of data updating in complementary PWM mode. This example shows the mode in which data is updated at both the counter crest and trough.

When updating buffer register data, be sure to write to the MTU4.TGRD register at the end of the update. Data is transferred from buffer registers to the temporary registers simultaneously for all five registers after the write to the MTU4.TGRD register.

Even when not updating all five registers or when not updating the MTU4.TGRD data, be sure to write to the

MTU4.TGRD register after writing data to the registers to be updated. In this case, the data written to the MTU4.TGRD register should be the same as the data prior to the write operation.

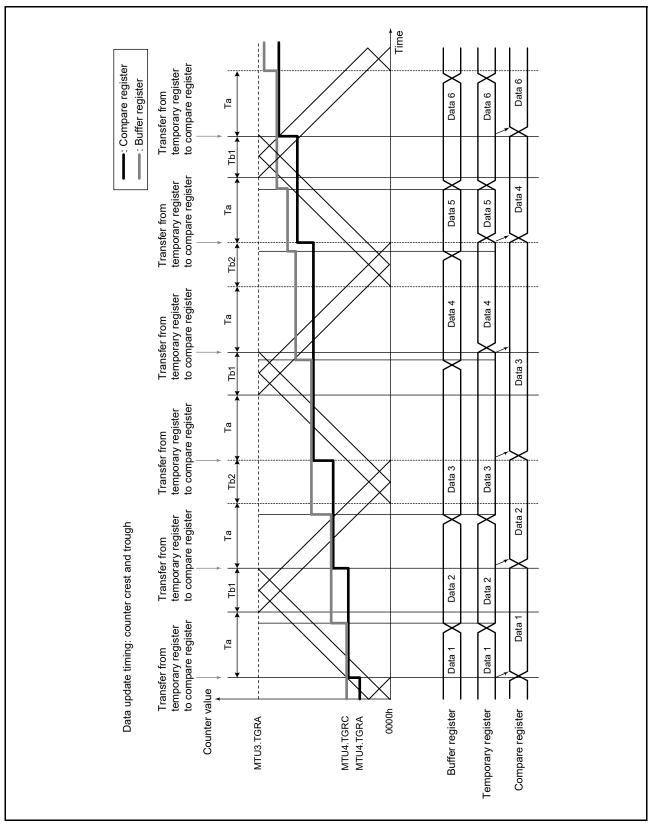


Figure 20.43 Example of Data Updating in Complementary PWM Mode

(i) Initial Output in Complementary PWM Mode

In complementary PWM mode, the initial output is determined by the setting of bits OLSN and OLSP in the TOCR1 register or bits OLS1N to OLS3N and OLS1P to OLS3P in the TOCR2 register.

This initial output is the non-active level of the PWM output and continues from when complementary PWM mode is set with the TMDR register until the MTU4.TCNT counter exceeds the value set in the TDDR register. Figure 20.44 shows an example of the initial output in complementary PWM mode.

An example of the waveform when the initial PWM duty value is smaller than the TDDR value is shown in Figure 20.45.

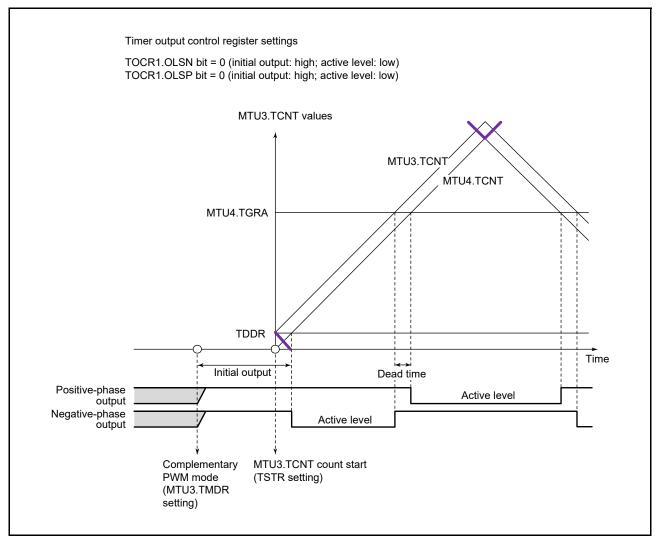


Figure 20.44 Example of Initial Output in Complementary PWM Mode (1)

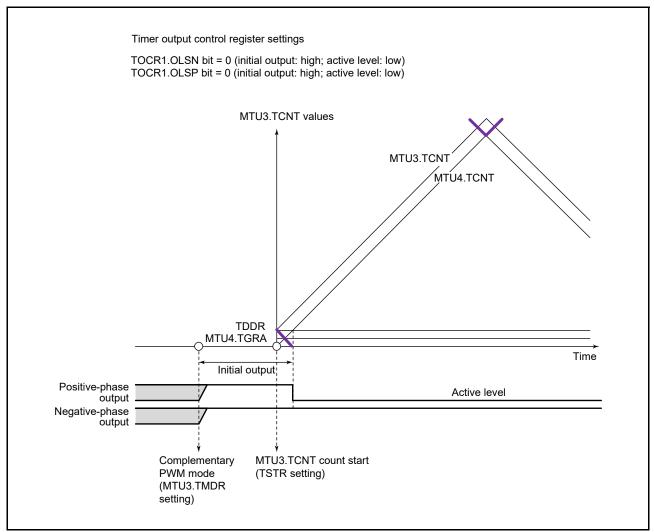


Figure 20.45 Example of Initial Output in Complementary PWM Mode (2)

is not turned on.

(j) Method for Generating PWM Output in Complementary PWM Mode

In complementary PWM mode, six phases (three positive and three negative) of PWM waveforms can be output. Dead time can be set for PWM waveforms to be output.

A PWM waveform is generated by output of the level selected in the timer output control register in the event of a compare match between a counter and a compare register. While the TCNTS counter is counting, the compare register and temporary register values are simultaneously compared to generate consecutive PWM waveforms from 0 to 100% duty cycle. The relative timing of turn-on and turn-off compare match occurrence may vary, but the compare match that turns off each phase takes precedence to secure the dead time and ensure that the positive-phase and negative-phase turn-on times do not overlap. Figure 20.46 to Figure 20.48 show examples of waveform generation in complementary PWM mode.

The positive-phase and negative-phase turn-off timing is generated by a compare match with the counter indicated by a solid line, and the turn-on timing is generated by a compare match with the counter indicated by a dotted line, which operates with a delay equal to the dead time behind the counter indicated by a solid line. In the T1 period, compare match a that turns off the negative phase has the highest priority, and compare matches before a are ignored. In the T2 period, compare match c that turns off the positive phase has the highest priority, and compare matches before c are ignored. In most cases, compare matches occur in the order $a \rightarrow b \rightarrow c \rightarrow d$ (or $c \rightarrow d \rightarrow a' \rightarrow b'$) as shown in Figure 20.46. If compare matches deviate from the $a \rightarrow b \rightarrow c \rightarrow d$ order, since the time for which the negative phase is off is shorter than twice the dead time, the positive phase is not turned on. If compare matches deviate from the $c \rightarrow d \rightarrow a' \rightarrow b'$ order, since the time for which the positive phase is off is shorter than twice the dead time, the negative phase is not turned on. As shown in Figure 20.47, if compare match c follows compare match a before compare match b, compare match b is ignored and the negative phase is turned on by compare match d. This is because turning off the positive phase has higher priority due to the occurrence of compare match c (positive-phase off timing) before compare match b (positive-phase on timing) (consequently, the waveform does not change because the positive phase goes from off to off). Similarly, in the example in Figure 20.48, turning off the negative phase has priority due to the occurrence of compare match d (negative-phase on timing). As a result, the negative phase

Thus, in complementary PWM mode, compare matches at turn-off timings take precedence, and turn-on timing compare matches that occur before a turn-off timing compare match are ignored.

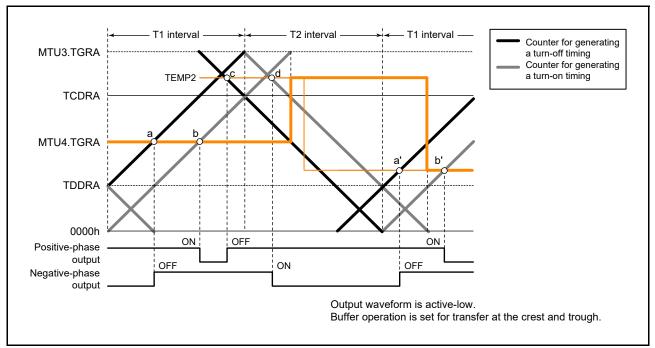


Figure 20.46 Example of Waveform Output in Complementary PWM Mode (1)

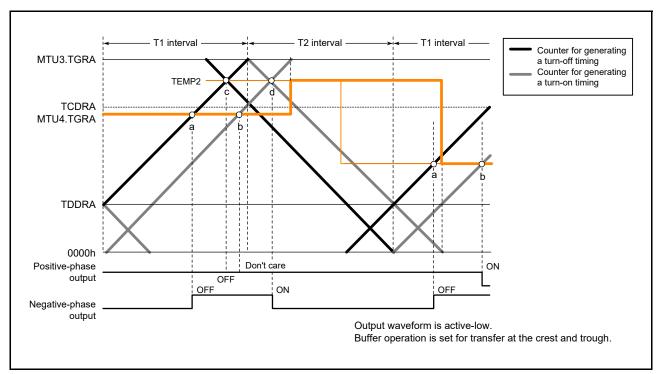


Figure 20.47 Example of Waveform Output in Complementary PWM Mode (2)

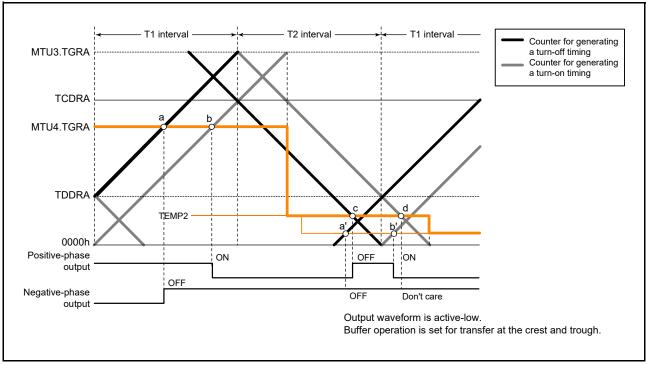


Figure 20.48 Example of Waveform Output in Complementary PWM Mode (3)

(k) 0% and 100% Duty Cycle Output in Complementary PWM Mode

In complementary PWM mode, 0% and 100% duty cycle PWM waveforms can be output as required. Figure 20.49 to Figure 20.53 show output examples.

A 100% duty cycle waveform is output when the data register value is set to 0000h. The waveform in this case has a positive phase with a 100% on-state. A 0% duty cycle waveform is output when the data register value is set to the same value as the MTU3.TGRA register. The waveform in this case has a positive phase with a 100% off-state.

On and off compare matches occur simultaneously, but if a turn-on compare match and turn-off compare match for the same phase occur simultaneously, both compare matches are ignored and the waveform does not change.

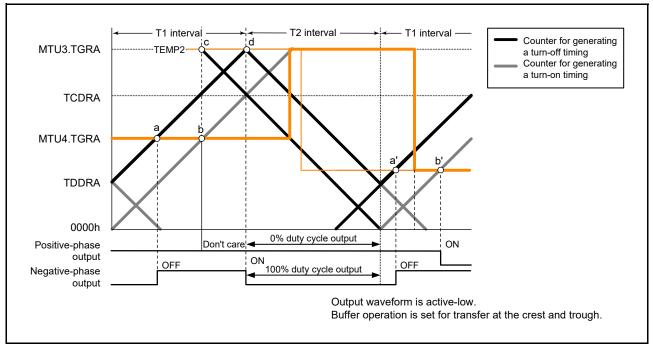


Figure 20.49 Example of 0% and 100% Waveform Output in Complementary PWM Mode (1)

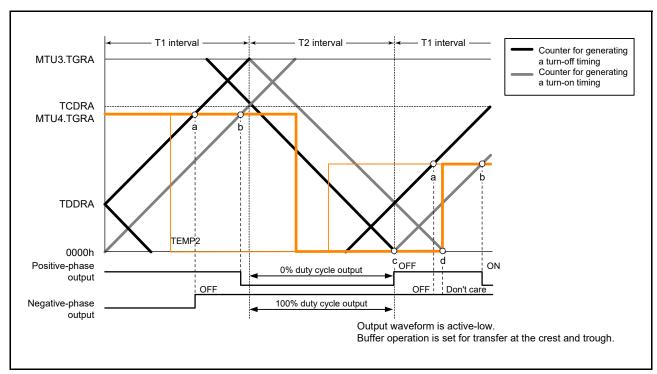


Figure 20.50 Example of 0% and 100% Waveform Output in Complementary PWM Mode (2)

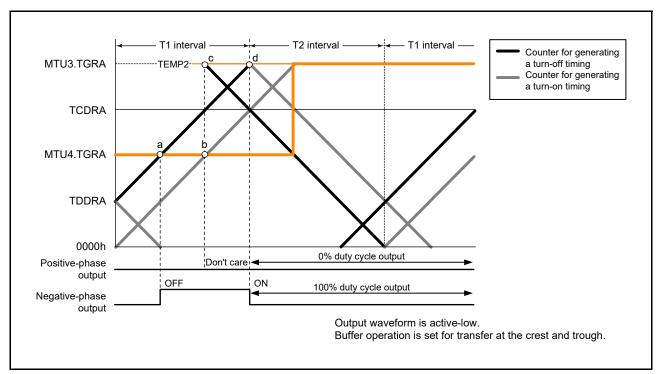


Figure 20.51 Example of 0% and 100% Waveform Output in Complementary PWM Mode (3)

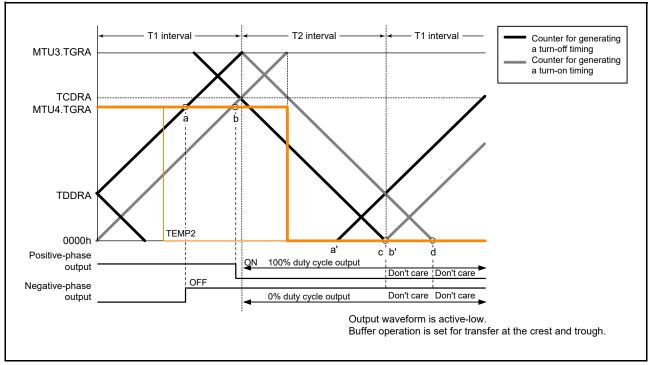


Figure 20.52 Example of 0% and 100% Waveform Output in Complementary PWM Mode (4)

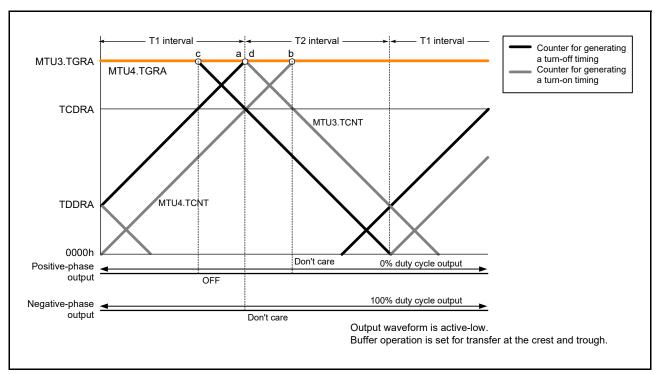


Figure 20.53 Example of 0% and 100% Waveform Output in Complementary PWM Mode (5)

(I) Toggle Output Synchronized with PWM Cycle

In complementary PWM mode, toggle output from the PWM output pin in synchronization with the PWM period can be enabled by setting the TOCR1.PSYE bit to 1. An example of a toggle output waveform is shown in Figure 20.54. This output is toggled by a compare match between the MTU3.TCNT counter and the MTU3.TGRA register and a compare match between the MTU4.TCNT counter and 0000h.

The MTIOC3A pin is assigned for this toggle output. The initial output is a high level.

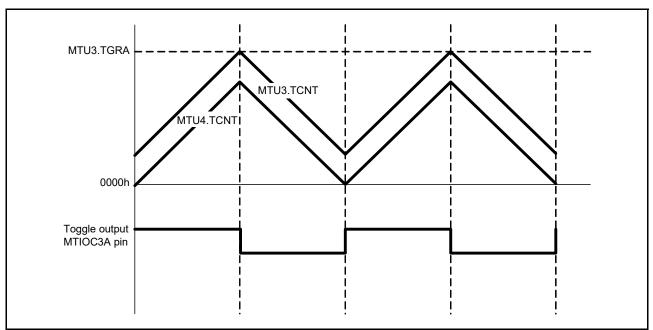


Figure 20.54 Example of Toggle Output Waveform Synchronized with PWM Output

(m) Counter Clearing by Another Channel

In complementary PWM mode, counters MTU3.TCNT, MTU4.TCNT, and TCNTS can be cleared by another channel source when a mode for synchronization with another channel is specified by the TSYR register and synchronous clearing is selected with the MTU3.TCR.CCLR[2:0] bits.

Figure 20.55 illustrates an example of this operation.

Use of this function enables a counter to be cleared and restarted through an external signal.

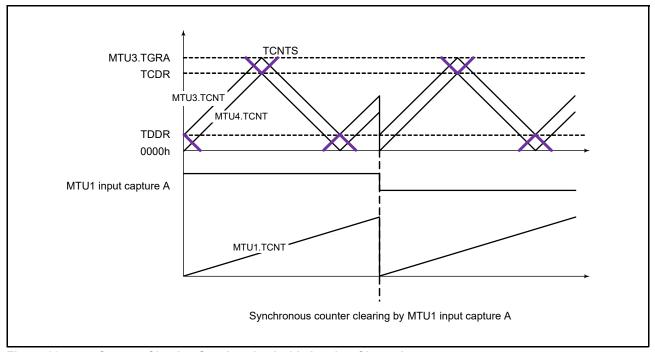


Figure 20.55 Counter Clearing Synchronized with Another Channel

(n) Output Waveform Control at Synchronous Counter Clearing in Complementary PWM Mode

Setting the TWCR.WRE bit to 1 suppresses initial output when synchronous counter clearing occurs in the Tb interval (Tb2 interval) at the trough in complementary PWM mode and controls abrupt change in duty cycle at synchronous counter clearing.

Initial output suppression through setting the TWCR.WRE bit to 1 is applicable only when synchronous clearing occurs in the Tb2 interval as indicated by (10) or (11) in Figure 20.56. When synchronous clearing occurs outside that interval, the initial value specified by the TOCR1.OLSN bit and TOCR1.OLSP bit is output. Even in the Tb2 interval, if synchronous clearing occurs in the initial output period (indicated by (1) in Figure 20.56) immediately after the counters start operation, initial value output is not suppressed.

Synchronous clearing in any of MTU0 to MTU2 can cause counter clearing in MTU3 and MTU4.

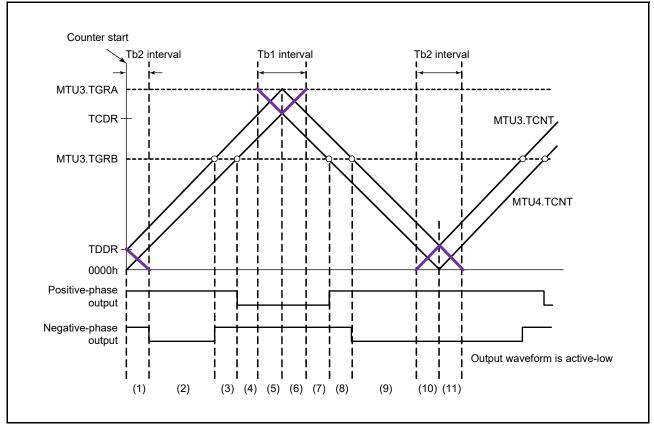


Figure 20.56 Timing for Synchronous Counter Clearing

 Example of Procedure for Setting Output Waveform Control at Synchronous Counter Clearing in Complementary PWM Mode

An example of the procedure for setting output waveform control at synchronous counter clearing in complementary PWM mode is shown in Figure 20.57.

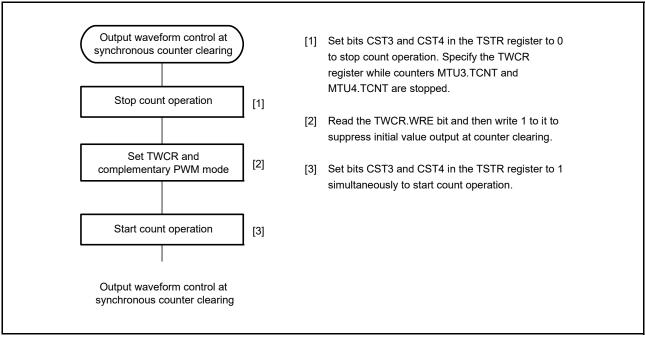


Figure 20.57 Example of Procedure for Setting Output Waveform Control at Synchronous Counter Clearing in Complementary PWM Mode

• Examples of Output Waveform Control at Synchronous Counter Clearing in Complementary PWM Mode Figure 20.58 to Figure 20.61 show examples of output waveform control in which the MTU operates in complementary PWM mode and synchronous counter clearing is generated while the TWCR.WRE bit is set to 1. In the examples shown in Figure 20.58 to Figure 20.61, synchronous counter clearing occurs at timing (3), (6), (8), and (11) shown in Figure 20.56, respectively.

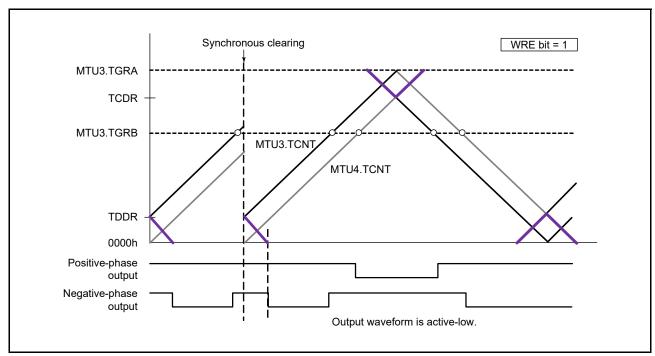


Figure 20.58 Example of Synchronous Clearing in Dead Time during Up-Counting (Timing (3) in Figure 20.56; TWCR.WRE Bit is 1)

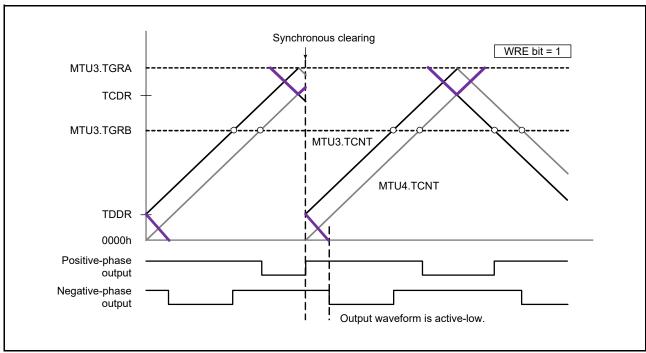


Figure 20.59 Example of Synchronous Clearing in Interval Tb at Crest (Timing (6) in Figure 20.56; TWCR.WRE Bit is 1)

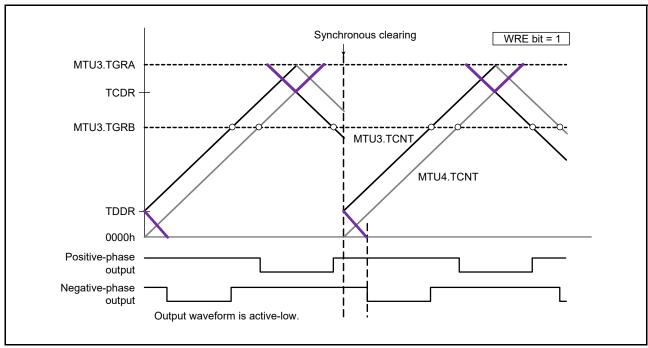


Figure 20.60 Example of Synchronous Clearing in Dead Time during Down-Counting (Timing (8) in Figure 20.56; TWCR.WRE Bit is 1)

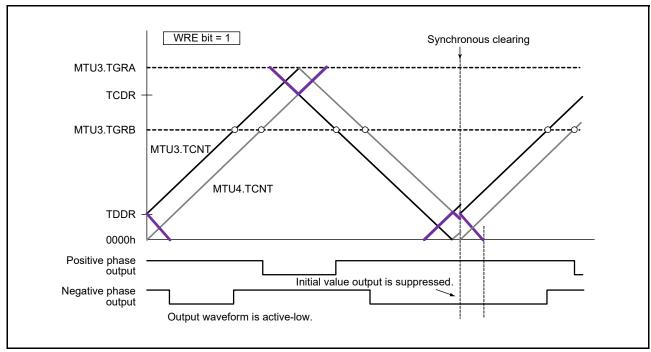


Figure 20.61 Example of Synchronous Clearing in Interval Tb at Trough (Timing (11) in Figure 20.56; TWCR.WRE Bit is 1)

(o) Counter Clearing by MTU3.TGRA Compare Match

In complementary PWM mode, counters MTU3.TCNT, MTU4.TCNT, and TCNTS can be cleared by MTU3.TGRA compare match when the TWCR.CCE bit is set.

Figure 20.62 shows an operation example.

Note: Use this function only in complementary PWM mode 1 (transfer at crest).

Note: Do not specify synchronous clearing by another channel (do not set the TSYR.SYNCn bits (n =0 to 4) to 1).

Note: Do not set the PWM duty cycle value to 0000h.

Note: Do not set the TOCR1.PSYE bit to 1.

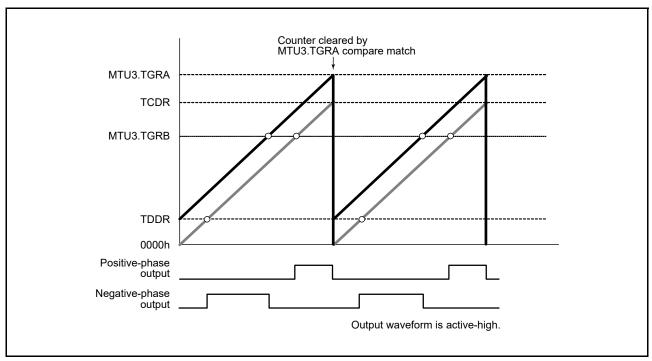


Figure 20.62 Example of Counter Clearing Operation by MTU3.TGRA Compare Match

(p) Example of Waveform Output for Driving AC Synchronous Motor (Brushless DC Motor)

In complementary PWM mode, a brushless DC motor can easily be controlled using the TGCR register. Figure 20.63 to Figure 20.66 show examples of brushless DC motor driving waveforms created using the TGCR register.

To switch the output phases for a 3-phase brushless DC motor by means of external signals detected with a Hall element, etc., set the TGCR.FB bit to 0. In this case, the external signals indicating the magnetic pole position should be input to timer input pins MTIOC0A, MTIOC0B, and MTIOC0C in MTU0. When an edge is detected at pin MTIOC0A, MTIOC0B, or MTIOC0C, the output on/off state is switched automatically.

When the TGCR.FB bit is 1, the output on/off state is switched when the TGCR.UF bit, TGCR.VF bit, or TGCR.WF bit is set to 0 or 1.

The driving waveforms are output from the 6-phase PWM output pins for complementary PWM mode.

With this 6-phase output, while the output is turned on, chopping output is available through complementary PWM mode output function by setting the TGCR.N bit or TGCR.P bit to 1. When the TGCR.N bit or TGCR.P bit is 0, the level output is selected.

The active level of the 6-phase output (on output level) can be set with the TOCR1.OLSN bit and TOCR1.OLSP bit regardless of the setting of the TGCR.N bit and TGCR.P bit.

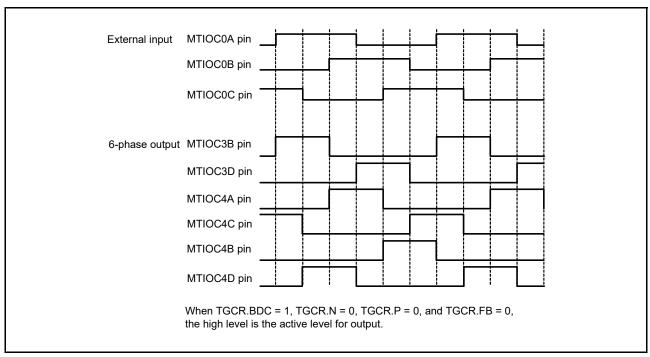


Figure 20.63 Example of Output Phase Switching by External Input (1)

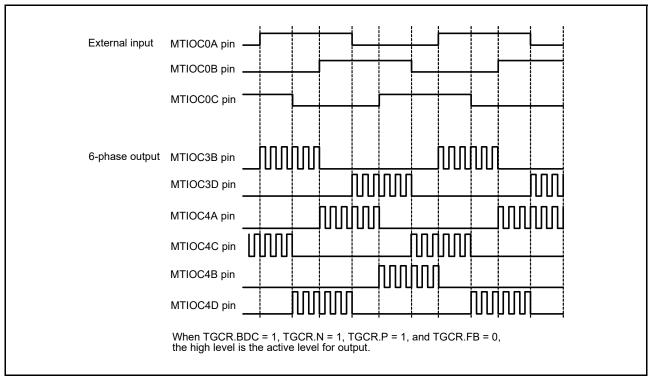


Figure 20.64 Example of Output Phase Switching by External Input (2)

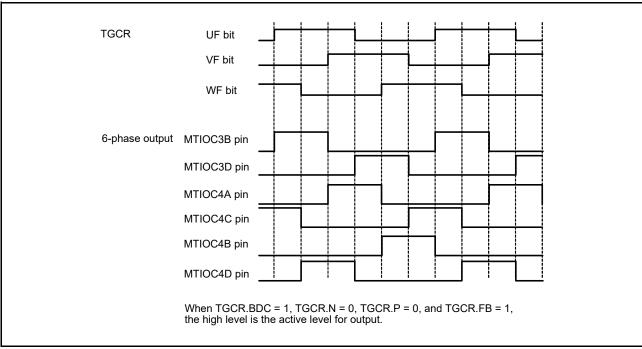


Figure 20.65 Example of Output Phase Switching through UF, VF, and WF Bit Settings (1)

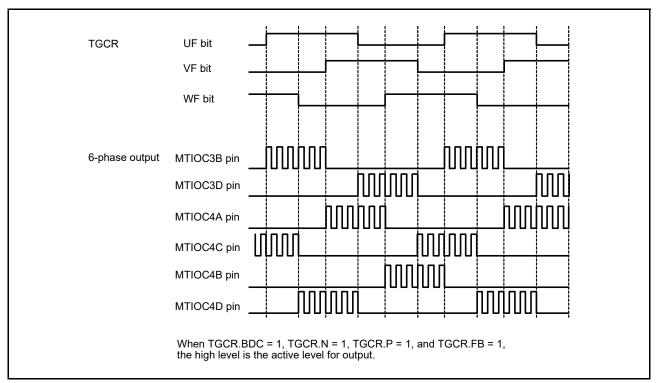


Figure 20.66 Example of Output Phase Switching through UF, VF, and WF Bit Settings (2)

(q) A/D Converter Start Request Setting

In complementary PWM mode, an A/D converter start request can be issued using the MTU3.TGRA compare match, the MTU4.TCNT underflow (trough), or compare match on a channel other than MTU3 and MTU4.

When start requests using the MTU3.TGRA compare match are specified, A/D conversion can be started at the crest of the MTU3.TCNT count.

A/D converter start requests can be specified by setting the TIER.TTGE bit to 1. To issue an A/D converter start request at an MTU4.TCNT underflow (trough), set the MTU4.TIER.TTGE2 bit to 1.

(3) Interrupt Skipping in Complementary PWM Mode

Interrupts TGIA3 (at the crest) and TCIV4 (at the trough) in MTU3 and MTU4 can be skipped up to seven times by setting the TITCR register.

Transfers from a buffer register to a temporary register or a compare register can be skipped in coordination with interrupt skipping by making settings in the TBTER register. For the linkage with buffer registers, refer to description (c) Buffer Transfer Control Linked with Interrupt Skipping, below.

A/D converter start requests generated by the A/D converter start request delaying function can also be skipped in coordination with interrupt skipping by making settings in the TADCR register. For the linkage with the A/D converter start request delaying function, refer to section 20.3.9, A/D Converter Start Request Delaying Function.

The TITCR register should be set while the TGIA3 and TCIV4 interrupt requests are disabled by the settings of registers MTU3.TIER and MTU4.TIER under the conditions in which compare match never occur and TGIA3 and TGIA4 interrupt requests by compare match are never generated. Before changing the skipping count, be sure to set the TITCR.T3AEN and TITCR.T4VEN bits to 0 to clear the skipping counter.

(a) Example of Interrupt Skipping Operation Setting Procedure

Figure 20.67 shows an example of the interrupt skipping operation setting procedure. Figure 20.68 shows the periods during which interrupt skipping count can be changed.

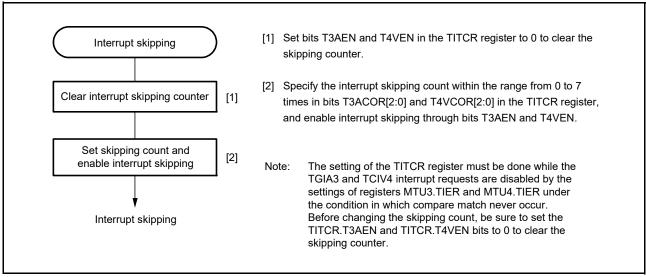


Figure 20.67 Example of Interrupt Skipping Operation Setting Procedure

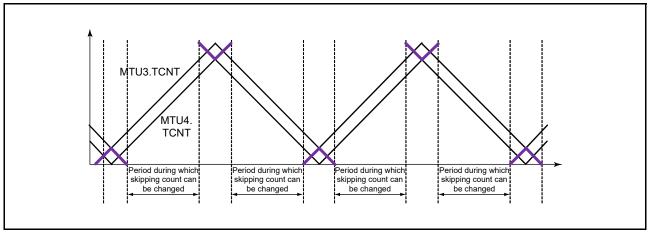


Figure 20.68 Periods during which Interrupt Skipping Count Can be Changed

(b) Example of Interrupt Skipping Operation

Figure 20.69 shows an example of MTU3.TGIA interrupt skipping in which the interrupt skipping count is set to three by the TITCR.T3ACOR[2:0] bits and the TITCR.T3AEN bit is set to 1.

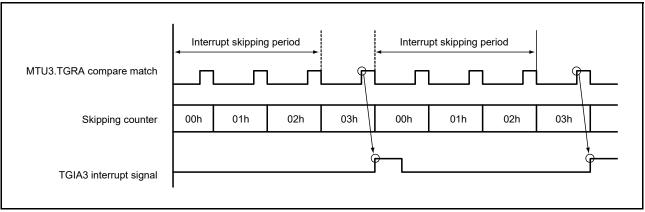


Figure 20.69 Example of Interrupt Skipping Operation

(c) Buffer Transfer Control Linked with Interrupt Skipping

In complementary PWM mode, whether to transfer data from a buffer register to a temporary register and whether to link the transfer with interrupt skipping can be specified with the TBTER.BTE[1:0] bits.

Figure 20.70 shows an example of operation when buffer transfer is disabled (BTE[1:0] = 01b). While this setting is valid, data is not transferred from the buffer register to the temporary register.

Figure 20.71 shows an example of operation when buffer transfer is linked with interrupt skipping (BTE[1:0] = 10b). While this setting is valid, if data is written to the buffer register within the buffer transfer-enabled period, the data is transferred immediately from the buffer register to the temporary register. If data is written to the buffer register outside the buffer transfer-enabled period, the data is transferred from the buffer register to the temporary register at the timing when the next buffer transfer-enabled period starts.

Note that the buffer transfer-enabled period depends on the TITCR.T3AEN bit and TITCR.T4VEN bit settings. Figure 20.72 shows the relationship between the TITCR.T3AEN bit and TITCR.T4VEN bit settings and buffer transferenabled period.

Note: This function must always be used in combination with interrupt skipping.

When interrupt skipping is disabled (the T3AEN and T4VEN bits in the TITCR register are set to 0 or the skipping count setting bits (T3ACOR[2:0] and T4VCOR[2:0]) in the TITCR register are set to 000b), make sure that buffer transfer is not linked with interrupt skipping (set the TBTER.BTE[1] bit to 0).

If buffer transfer is linked with interrupt skipping while interrupt skipping is disabled, buffer transfer is never performed.

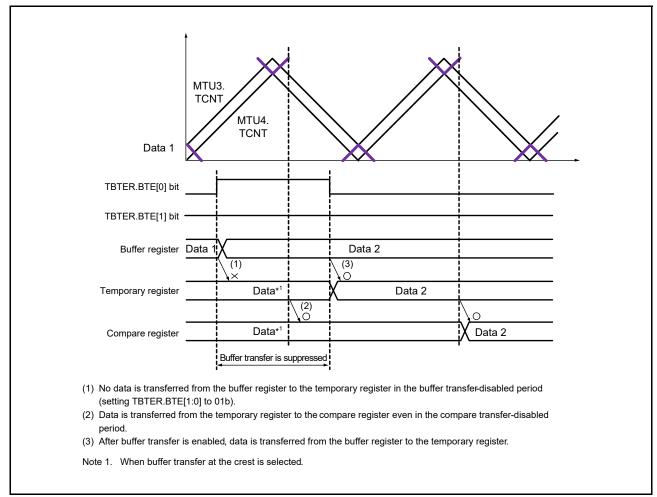


Figure 20.70 Example of Operation When Buffer Transfer is Disabled (TBTER.BTE[1:0] = 01b)

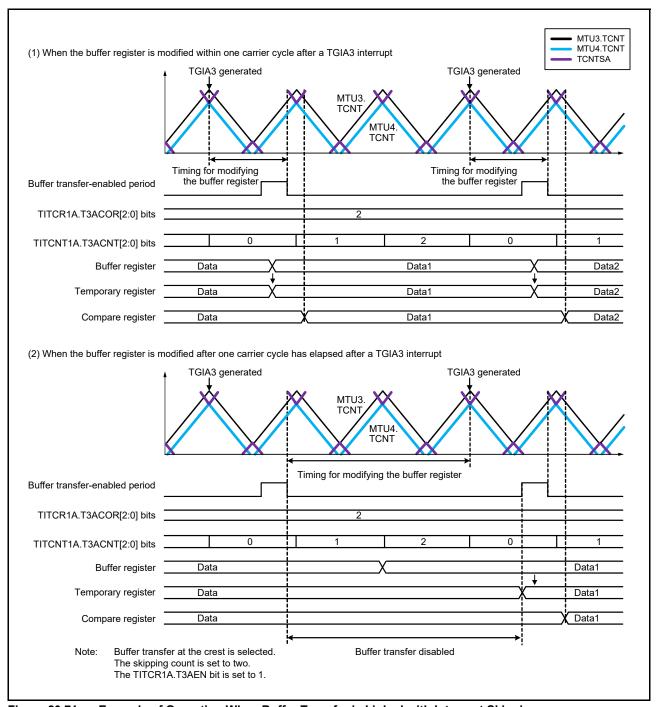


Figure 20.71 Example of Operation When Buffer Transfer is Linked with Interrupt Skipping (TBTER.BTE[1:0] = 10b)

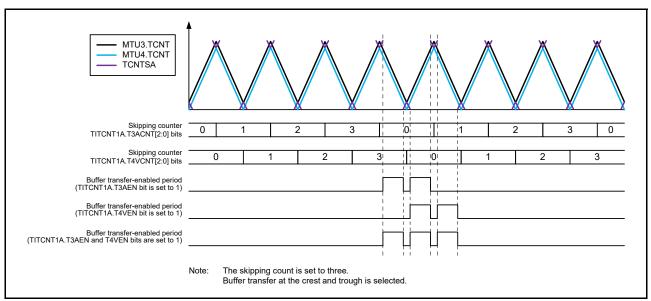


Figure 20.72 Relationship between Bits T3AEN and T4VEN in TITCR and Buffer Transfer-Enabled Period

(4) Complementary PWM Mode Output Protection Functions

The MTU provides the following protection functions for complementary PWM mode output.

(a) Register and Counter Miswrite Prevention Function

Access from the CPU to the mode registers, control registers, compare registers can be enabled or disabled by setting the TRWER.RWE bit. The applicable registers are some of the registers in MTU3 and MTU4 shown below:

22 registers in total

MTU3.TCR and MTU4.TCR, MTU3.TMDR and MTU4.TMDR, MTU3.TIORH and MTU4.TIORH, MTU3.TIORL and MTU4.TIORL, MTU3.TIER and MTU4.TIER, MTU3.TCNT and MTU4.TCNT, MTU3.TGRA and MTU4.TGRA, MTU3.TGRB and MTU4.TGRB, MTU.TOER, MTU.TOCR1, MTU.TOCR2, MTU.TGCR, MTU.TCDR, and MTU.TDDR

This function can disable CPU access to the mode registers, control registers, and counters to prevent miswriting due to CPU runaway. In the access-disabled state, the applicable registers are read as undefined and writing to these registers is ignored.

(b) Halting of PWM Output

The PWM output pins of MTU0, MTU3, and MTU4 can be set to the high-impedance state automatically. Refer to section 21, Port Output Enable 2 (POE2a), for details.

20.3.9 A/D Converter Start Request Delaying Function

A/D converter start requests can be issued in MTU4 by making settings in registers TADCR, TADCORA, TADCORB, TADCOBRA, and TADCOBRB.

The A/D converter start request delaying function compares the MTU4.TCNT counter with the MTU4.TADCORA or MTU4.TADCORB register, and when their values match, the function issues a respective A/D converter start request (TRG4AN or TRG4BN).

A/D converter start requests (TRG4AN and TRG4BN) can be skipped in coordination with interrupt skipping by making settings in the TADCR.ITA3AE bit, TADCR.ITA4VE bit, TADCR.ITB3AE bit, and ITB4VE bit.

(1) Example of Procedure for Specifying A/D Converter Start Request Delaying Function

Figure 20.73 shows an example of procedure for specifying the A/D converter start request delaying function.

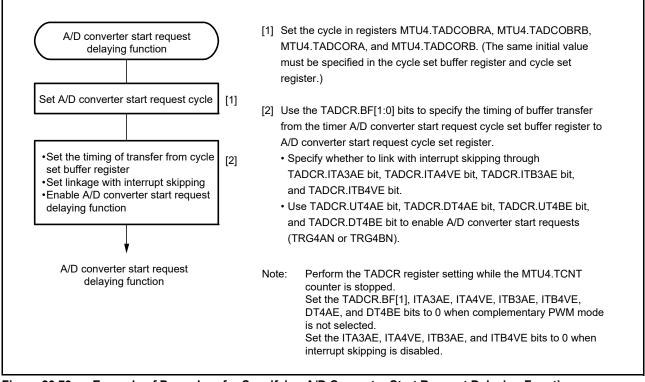


Figure 20.73 Example of Procedure for Specifying A/D Converter Start Request Delaying Function

(2) Basic Example of A/D Converter Start Request Delaying Function Operation

Figure 20.74 shows a basic example of A/D converter start request signal (TRG4AN) operation when the trough of the MTU4.TCNT counter is specified for the buffer transfer timing and an A/D converter start request signal is output during MTU4.TCNT down-counting.

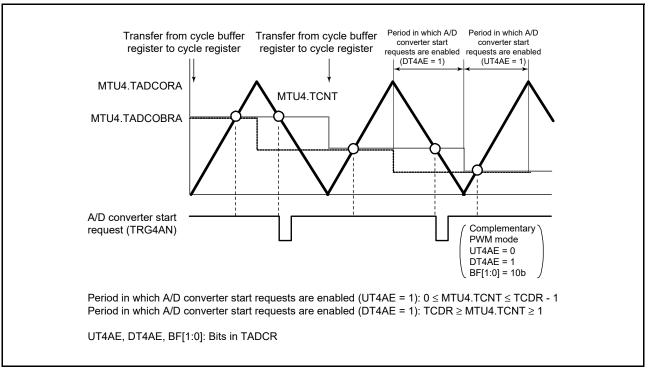


Figure 20.74 Basic Example of A/D Converter Start Request Signal (TRG4AN) Operation

(3) Period in Which A/D Converter Start Requests are Enabled

When the MTU4.TCNT counter and the MTU4.TADCORA or MTU4.TADCORB register match within the period enabled by the UT4AE and UT4BE bits, the corresponding A/D converter start request (TRG4AN or TRG4BN) is issued.

When the UT4AE and UT4BE bits in the MTU4.TADCR register are set to 1 in complementary PWM mode, A/D converter start requests are enabled during the MTU4.TCNT up-counting ($0 \le MTU4.TCNT \le TCDR - 1$). When the DT4AE and DT4BE bits in the MTU4.TADCR register are set to 1, A/D converter start requests are enabled during MTU4.TCNT down-counting (TCDR $\ge MTU4.TCNT \ge 1$). Refer to Figure 20.74.

(4) Buffer Transfer

The data in the timer A/D converter start request cycle set registers (MTU4.TADCORA and MTU4.TADCORB) is updated by writing data to the timer A/D converter start request cycle set buffer registers (MTU4.TADCOBRA and MTU4.TADCOBRB). Data is transferred from the buffer registers to the respective cycle set registers at the timing selected with the MTU4.TADCR.BF[1:0] bits.

There are notes on the timing for transferring data when using buffer transfer in complementary PWM mode. For details, section 20.6.27, Usage Notes on A/D Converter Delaying Function in Complementary PWM Mode. In modes other than complementary PWM mode, set the BF[1] bit in the MTU4.TADCR register to 0.

(5) A/D Converter Start Request Delaying Function Linked with Interrupt Skipping

In complementary PWM mode, A/D converter start requests (TRG4AN and TRG4BN) can be issued in coordination with interrupt skipping by making settings in the TADCR.ITA3AE bit, TADCR.ITA4VE bit, TADCR.ITB3AE bit, and TADCR.ITB4VE bit. Figure 20.75 shows an example of A/D converter start request signal (TRG4AN) operation when TRG4AN output is enabled during MTU4.TCNT up-counting and down-counting and A/D converter start requests are linked with interrupt skipping.

Figure 20.76 shows another example of A/D converter start request signal (TRG4AN) operation when TRG4AN output is enabled during MTU4.TCNT up-counting and A/D converter start requests are linked with interrupt skipping. In modes other than complementary PWM mode, do not use the A/D converter start request delaying function linked with interrupt skipping.

Set the ITA3AE, ITA4VE, ITB3AE, and ITB4VE bits in the MTU4.TADCR register to 0.

Note: This function should be used in combination with interrupt skipping.

When interrupt skipping is disabled (the TITCR.T3AEN bit and TITCR.T4VEN bit are set to 0 or the skipping count setting bits (T3ACOR[2:0] and T4VCOR[2:0]) in the TITCR register are set to 000b), make sure that A/D converter start requests are not linked with interrupt skipping (set the TADCR.ITA3AE bit, TADCR.ITA4VE bit, TADCR.ITB3AE bit, and TADCR.ITB4VE bit to 0).

Note that TRG4ABN (TRG4AN or TRG4BN) is output as the A/D converter start request signal in this case. When this function is used, registers MTU4.TADCORA and MTU4.TADCORB should be set with the value ranging 0002h to the value set in the TCDRA register minus 2.

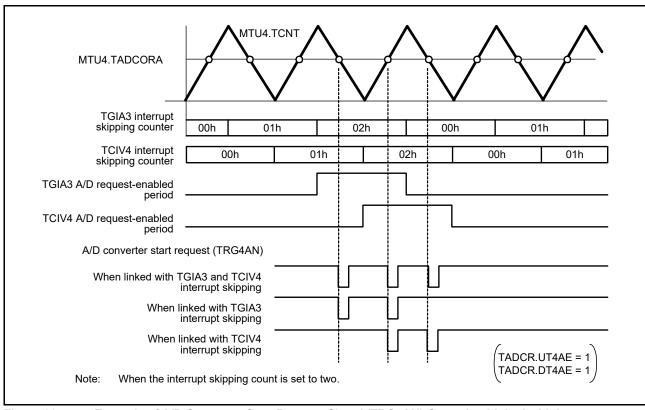


Figure 20.75 Example of A/D Converter Start Request Signal (TRG4AN) Operation Linked with Interrupt Skipping (when the output of TRG4AN in counting up and down by TCNT is enabled)

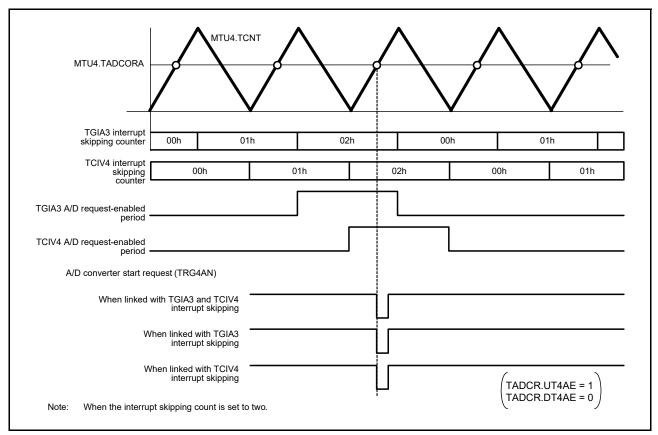


Figure 20.76 Example of A/D Converter Start Request Signal (TRG4AN) Operation Linked with Interrupt Skipping (when the output of TRG4AN in counting up by TCNT is enabled)

20.3.10 External Pulse Width Measurement

Up to three external pulse widths can be measured in MTU5.

When the IOC[4:0] bits in MTU5.TIORU, TIORV, and TIORW are set for pulse width measurement, the pulse width of the signal input to the MTIC5U, MTIC5V, and MTIC5W pins is measured. Counters TCNTU, TCNTV, and TCNTW count up while the level specified by the IOC[4:0] bits is input.

Figure 20.77 shows an example of setting external pulse width measurement, and Figure 20.78 an example of external pulse width measurement.

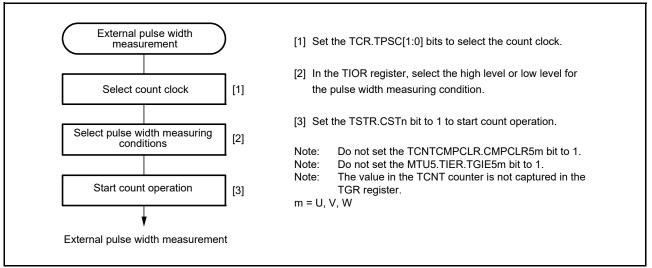


Figure 20.77 Example of External Pulse Width Measurement Setting Procedure

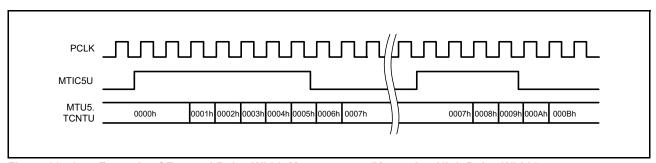


Figure 20.78 Example of External Pulse Width Measurement (Measuring High Pulse Width)

20.3.11 Dead Time Compensation

A dead time delay (a propagation delay of the inverter output from the complementary PWM output) can be compensated by combining MTU5 with MTU3 and MTU4. Figure 20.79 shows an example of the motor control circuit compensating a dead time delay by combining MTU5 with MTU3 and MTU4. A dead time for the PWM output waveform during complementary PWM operation using MTU3 and MTU4 can be compensated by adjusting a duty ratio set in a compare register for the PWM output after measuring a delay of the inverter output from the complementary PWM output by an external pulse measurement function for MTU5 (Figure 20.80). Figure 20.81 shows the procedure for setting dead time compensation using MTU3 to MTU5. For details on MTU5 operation at this time, refer to (2) TCNTU, TCNTV, and TCNTW Capture at Crest and/or Trough in Complementary PWM Mode Operation.

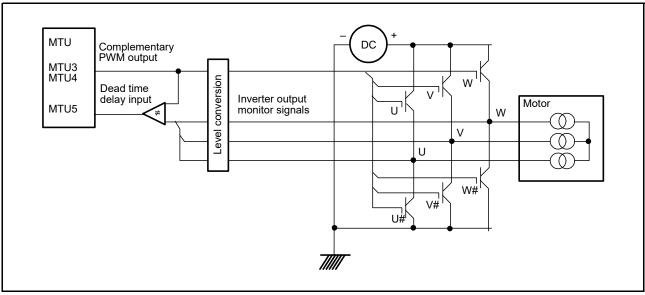


Figure 20.79 Example of Motor Control Circuit Configuration

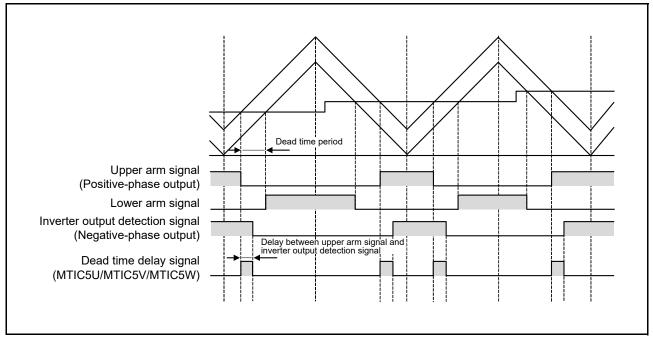


Figure 20.80 Delay in Dead Time in Complementary PWM Mode Operation

(1) Example of Dead Time Compensation Setting Procedure

Figure 20.81 shows an example of dead time compensation setting procedure by using three counters in MTU5.

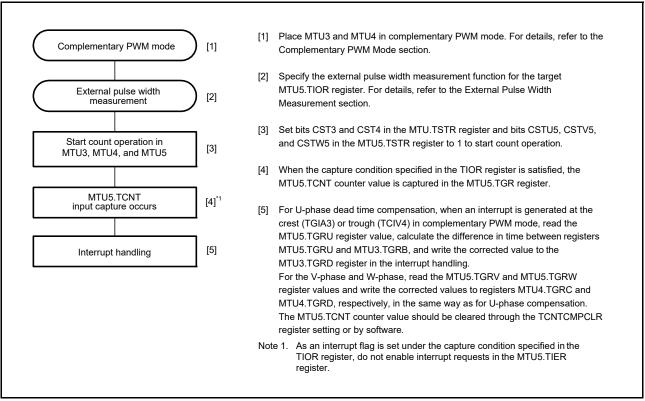


Figure 20.81 Example of Dead Time Compensation Setting Procedure

(2) TCNTU, TCNTV, and TCNTW Capture at Crest and/or Trough in Complementary PWM Mode Operation

The MTU5 external pulse width measurement function allows to transfer the value in counters TCNTU, TCNTV, and TCNTW to registers TGRU, TGRV, and TGRW at the crest, trough, or crest and trough when MTU3 and MTU4 operate in complementary PWM mode. The transfer timing should be set in registers TIORU, TIORV, and TIORW. When the TCNTCMPCLR.CMPCLR5U, CMPCLR5V, and CMPCLR5W bits are set to 1, counters TCNTU, TCNTV, and TCNTW become 0 at the transfer timing for registers TGRU, TGRV, and TGRW.

Figure 20.82 shows an operation example in which the TCNTU counter is used as a free-running counter without being cleared, and the value is captured in the TGRU register at the crest and though in complementary PWM mode.

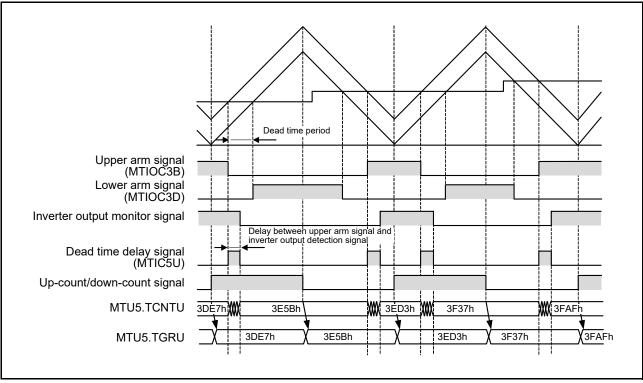


Figure 20.82 MTU5.TCNT Capture at Crest and Trough in Complementary PWM Mode Operation

20.3.12 Noise Filter

Each pin for use in input capture and external pulse input to the MTU is equipped with a noise filter. The noise filter samples input signals at the sampling clock and removes the pulses of which length is less than three sampling cycles. The noise filter functionality includes enabling and disabling of the noise filter for each pin and setting of the sampling clock for each channel. Figure 20.83 shows the timing of noise filtering.

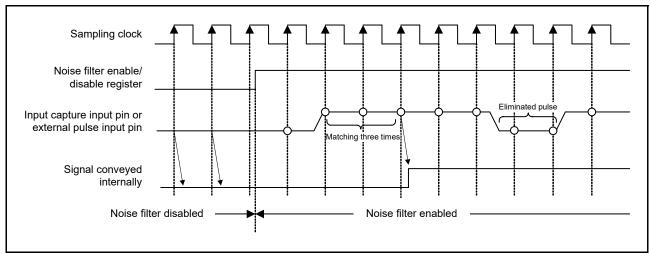


Figure 20.83 Timing of Noise Filtering

20.4 Interrupt Sources

20.4.1 Interrupt Sources and Priorities

There are three interrupt sources; the TGR input capture/compare match, the TCNT counter overflow, and the TCNT counter underflow. Each interrupt source has its own enable/disable bit, allowing the generation of interrupt request signals to be enabled or disabled individually.

When an interrupt source is detected, an interrupt is requested if the corresponding enable/disable bit in the TIER register is set to 1.

Relative channel priorities can be changed by the interrupt controller; however the priority within a channel is fixed. For details, refer to section 14, Interrupt Controller (ICUb).

Table 20.57 lists the MTU interrupt sources.

Table 20.57 MTU Interrupt Sources (1)

Channel	Name	Interrupt Source	DTC Activation	Priority
MTU0	TGIA0	MTU0.TGRA input capture/compare match	Possible	High
	TGIB0	MTU0.TGRB input capture/compare match	Possible	
	TGIC0	MTU0.TGRC input capture/compare match	Possible	_
	TGID0	MTU0.TGRD input capture/compare match	Possible	_
	TCIV0	MTU0.TCNT overflow	Not possible	_
	TGIE0	MTU0.TGRE compare match	Not possible	_
	TGIF0	MTU0.TGRF compare match	Not possible	_
MTU1	TGIA1	MTU1.TGRA input capture/compare match	Possible	_
	TGIB1	MTU1.TGRB input capture/compare match	Possible	_
	TCIV1	MTU1.TCNT overflow	Not possible	_
	TCIU1	MTU1.TCNT underflow	Not possible	_
MTU2	TGIA2	MTU2.TGRA input capture/compare match	Possible	_
	TGIB2	MTU2.TGRB input capture/compare match	Possible	_
	TCIV2	MTU2.TCNT overflow	Not possible	_
	TCIU2	MTU2.TCNT underflow	Not possible	_
MTU3	TGIA3	MTU3.TGRA input capture/compare match	Possible	_
	TGIB3	MTU3.TGRB input capture/compare match	Possible	_
	TGIC3	MTU3.TGRC input capture/compare match	Possible	_
	TGID3	MTU3.TGRD input capture/compare match	Possible	_
	TCIV3	MTU3.TCNT overflow	Not possible	_
MTU4	TGIA4	MTU4.TGRA input capture/compare match	Possible	_
	TGIB4	MTU4.TGRB input capture/compare match	Possible	_
	TGIC4	MTU4.TGRC input capture/compare match	Possible	-
	TGID4	MTU4.TGRD input capture/compare match	Possible	-
	TCIV4	MTU4.TCNT overflow/underflow	Possible	-
MTU5	TGIU5	MTU5.TGRU input capture/compare match	Possible	-
	TGIV5	MTU5.TGRV input capture/compare match	Possible	-
	TGIW5	MTU5.TGRW input capture/compare match	Possible	Low

Note: This table lists the initial state immediately after a reset. The relative channel priorities can be changed by the interrupt controller.

(1) Input Capture/Compare Match Interrupt

An interrupt is requested if the TIER.TGIE bit is set to 1 when a TGR input capture/compare match occurs on a channel. The MTU has 21 input capture/compare match interrupts (six for MTU0, four each for MTU3 and MTU4, two each for MTU1 and MTU2, and three for MTU5).

(2) Overflow Interrupt

An interrupt is requested if the TIER.TGIE bit is set to 1 when a TCNT counter overflow occurs on a channel. The MTU has five overflow interrupts (one for each channel).

(3) Underflow Interrupt

An interrupt is requested if the TIER.TCIEU bit is set to 1 when a TCNT counter underflow occurs on a channel. The MTU has two underflow interrupts (one each for MTU1 and MTU2).

20.4.2 DTC Activation

The DTC can be activated by the TGR input capture/compare match interrupt in each channel or the overflow interrupt in MTU4. For details, refer to section 16, Data Transfer Controller (DTCa).

The MTU provides a total of 20 input capture/compare match interrupts and overflow interrupts that can be used as DTC activation sources: four each for MTU0 and MTU3, two each for MTU1 and MTU2, five for MTU4, and three for MTU5.

20.4.3 A/D Converter Activation

The A/D converter can be activated by one of the following five methods in the MTU. Table 20.58 lists the relationship between interrupt sources and A/D converter start request signals.

A/D Converter Activation by TGRA Input Capture/Compare Match or at MTU4.TCNT Trough in Complementary PWM Mode

The A/D converter can be activated by the occurrence of a TGRA input capture/compare match in each channel. In addition, if complementary PWM mode operation is performed while the MTU4.TIER.TTGE2 bit is set to 1, the A/D converter can be activated at the trough of MTU4.TCNT count (MTU4.TCNT = 0000h).

A/D converter start request signal TRGAN is issued to the A/D converter under either of the following conditions.

- When a TGRA input capture/compare match occurs on a channel while the TIER.TTGE bit is set to 1
- When the MTU4.TCNT count reaches the trough (MTU4.TCNT = 0000h) during complementary PWM mode operation while the MTU4.TIER.TTGE2 bit is set to 1

When either condition is satisfied, if A/D converter start signal TRGAN from the MTU is selected as the trigger in the A/D converter, A/D conversion will start.

(2) A/D Converter Activation by Compare Match between MTU0.TCNT and MTU0.TGRE

A compare match between the MTU0.TCNT counter and the MTU0.TGRE register activates the A/D converter. A/D converter start request signal TRG0EN is issued when a compare match occurs between the MTU0.TCNT counter and the MTU0.TGRE register. If A/D converter start signal TRG0EN from the MTU is selected as the trigger in the A/D converter, A/D conversion will start.

(3) A/D Converter Activation by Compare Match between MTU0.TCNT and MTU0.TGRF

An input capture or compare match between the MTU0.TCNT counter and the MTU0.TGRA or MTU0.TGRB register activates the A/D converter.

A compare match between the MTU0.TCNT counter and the MTU0.TGRF register activates the A/D converter. A/D converter start request signal TRG0FN is issued when a compare match occurs between the MTU0.TCNT counter and the MTU0.TGRF register. If A/D converter start signal TRG0FN from the MTU is selected as the trigger in the A/D converter, A/D conversion will start.

(4) A/D Converter Activation by Input Capture or Compare Match with MTU0.TGRA or TGRB

The A/D converter can be activated when an input capture or compare match occurs between the MTU0.TCNT counter and the MTU0.TGRA or MTU0.TGRB register.

When an input capture or compare match occurs between the MTU0.TCNT counter and the MTU0.TGRA or MTU0.TGRB register. A/D converter start request signal TRG0AN or TRG0BN is issued. If A/D converter start signal TRG0AN or TRG0BN from the MTU is selected as the trigger in the A/D converter, A/D conversion will start.

(5) A/D Converter Activation by A/D Converter Start Request Delaying Function

The A/D converter can be activated by generating A/D converter start request signal TRG4AN or TRG4BN when the MTU4.TCNT count matches the TADCORA or TADCORB register value if the TADCR.UT4AE bit, TADCR.DT4AE bit, TADCR.UT4BE bit, or TADCR.DT4BE bit is set to 1. For details, refer to section 20.3.9, A/D Converter Start Request Delaying Function.

A/D conversion will start if A/D converter start signal TRG4ABN from the MTU is selected as the trigger in the A/D converter when TRG4AN or TRG4BN is generated.

Table 20.58 Interrupt Sources and A/D Converter Start Request Signals

Target Registers	A/D Start Request Source	A/D Converter Start Request Signal	
MTU0.TGRA and MTU0.TCNT	Input capture/compare match	TRGAN	
MTU1.TGRA and MTU1.TCNT			
MTU2.TGRA and MTU2.TCNT			
MTU3.TGRA and MTU3.TCNT			
MTU4.TGRA and MTU4.TCNT			
MTU4.TCNT	MTU4.TCNT trough in complementary PWM mode		
MTU0.TGRA and MTU0.TCNT	Input capture/compare match	TRG0AN	
MTU0.TGRB and MTU0.TCNT		TRG0BN	
MTU0.TGRE and MTU0.TCNT	Compare match	TRG0EN	
MTU0.TGRF and MTU0.TCNT		TRG0FN	
TADCORA and MTU4.TCNT		TRG4AN	
TADCORB and MTU4.TCNT		TRG4BN	
TADCORA and MTU4.TCNT or TADCORB and MTU4.TCNT		TRG4ABN	

20.5 Operation Timing

20.5.1 Input/Output Timing

(1) TCNT Count Timing

Figure 20.84 and Figure 20.85 show the TCNT count timing for TGI interrupt in internal clock operation, Figure 20.86 shows the TCNT count timing in external clock operation (normal mode), and Figure 20.87 shows the TCNT count timing in external clock operation (phase counting mode).

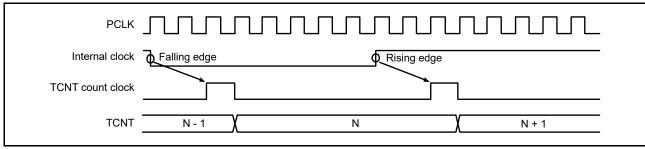


Figure 20.84 Count Timing in Internal Clock Operation (MTU0 to MTU4)

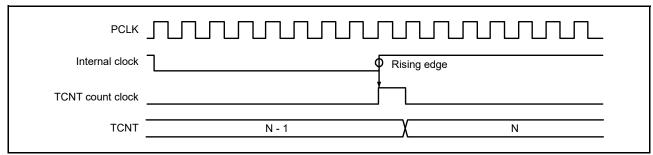


Figure 20.85 Count Timing in Internal Clock Operation (MTU5)

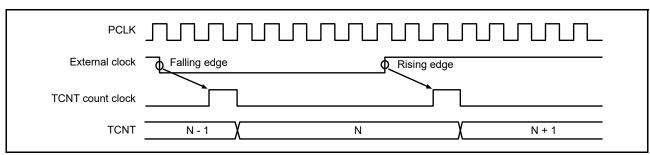


Figure 20.86 Count Timing in External Clock Operation (MTU0 to MTU4)

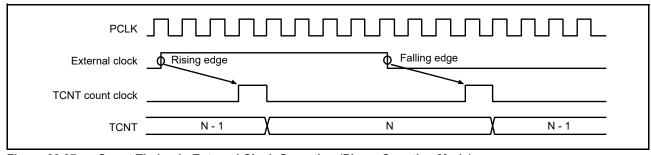


Figure 20.87 Count Timing in External Clock Operation (Phase Counting Mode)

(2) Output Compare Output Timing

A compare match signal is generated in the final state in which the TCNT counter and the TGR register match (the point at which the count value matched is updated by the TCNT counter). When a compare match signal is generated, the value set in the TIOR register is output to the output compare output pin (MTIOC pin). After a match between the TCNT counter and the TGR register, the compare match signal is not generated until the TCNT count clock is generated. Figure 20.88 shows the output compare output timing (normal mode or PWM mode) and Figure 20.89 shows the output compare output timing (complementary PWM mode or reset-synchronized PWM mode).

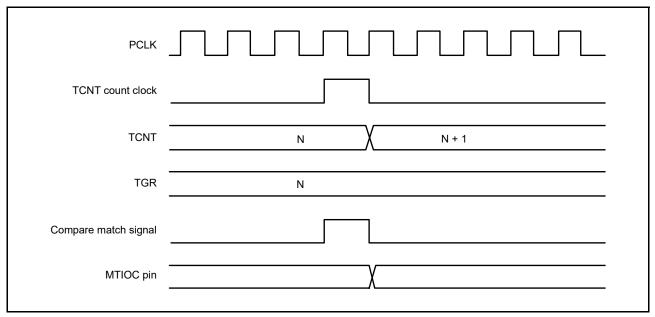


Figure 20.88 Output Compare Output Timing (Normal Mode or PWM Mode)

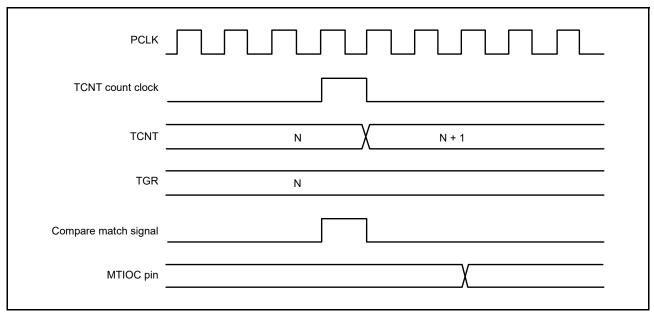


Figure 20.89 Output Compare Output Timing (Complementary PWM Mode or Reset-Synchronized PWM Mode)

(3) Input Capture Signal Timing

Figure 20.90 shows the input capture signal timing.

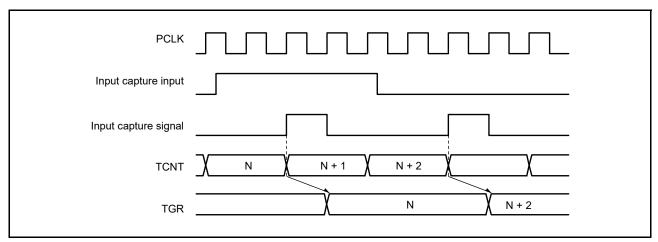


Figure 20.90 Input Capture Input Signal Timing

(4) Timing for Counter Clearing by Compare Match/Input Capture

Figure 20.91 and Figure 20.92 show the timing when counter clearing on compare match is specified, and Figure 20.93 shows the timing when counter clearing on input capture is specified.

Figure 20.91 Counter Clear Timing (Compare Match) (MTU0 to MTU4)

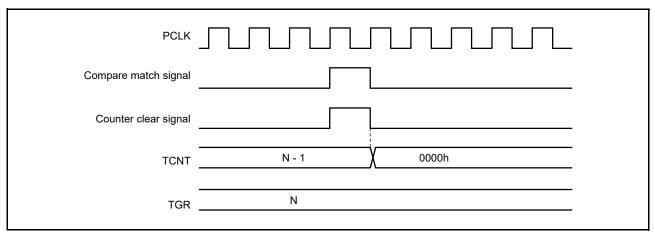


Figure 20.92 Counter Clear Timing (Compare Match) (MTU5)

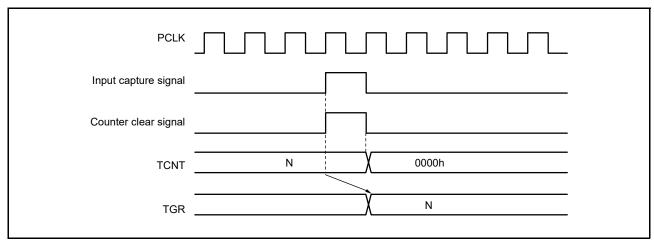


Figure 20.93 Counter Clear Timing (Input Capture) (MTU0 to MTU5)

(5) Buffer Operation Timing

Figure 20.94 to Figure 20.96 show the timing in buffer operation.

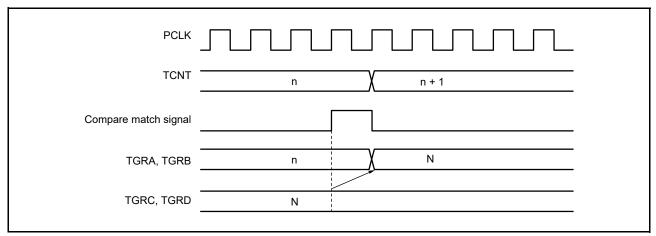


Figure 20.94 Buffer Operation Timing (Compare Match)

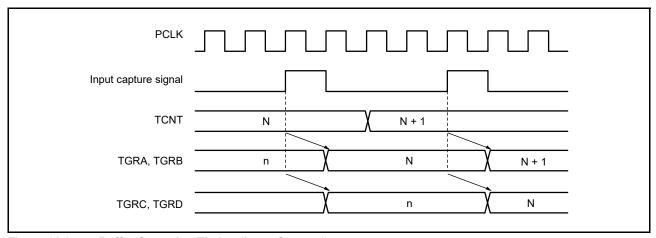


Figure 20.95 Buffer Operation Timing (Input Capture)

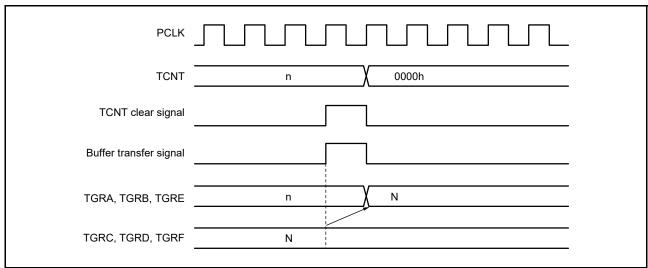


Figure 20.96 Buffer Operation Timing (When TCNT Cleared)

(6) Buffer Transfer Timing (Complementary PWM Mode)

Figure 20.97 to Figure 20.99 show the buffer transfer timing in complementary PWM mode.

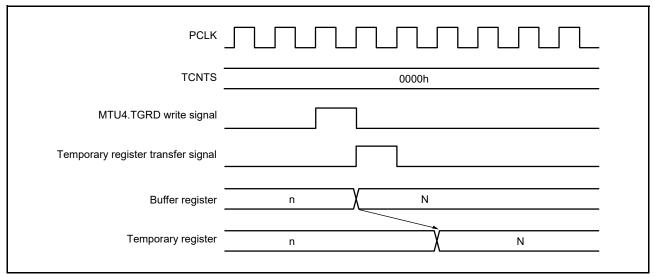


Figure 20.97 Transfer Timing from Buffer Register to Temporary Register (TCNTS Stop)

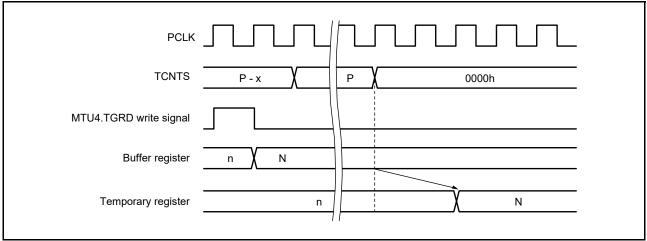


Figure 20.98 Transfer Timing from Buffer Register to Temporary Register (TCNTS Operating)

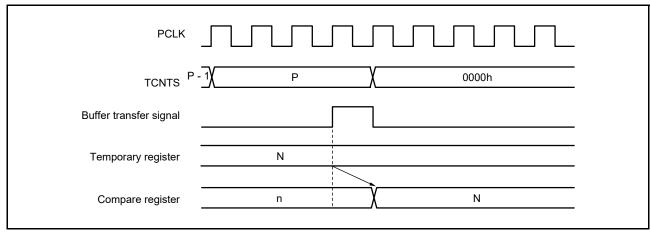


Figure 20.99 Transfer Timing from Temporary Register to Compare Register

20.5.2 Interrupt Signal Timing

(1) Timing for TGI Interrupt by Compare Match

Figure 20.100 and Figure 20.101 show the TGI interrupt request signal timing on compare match.

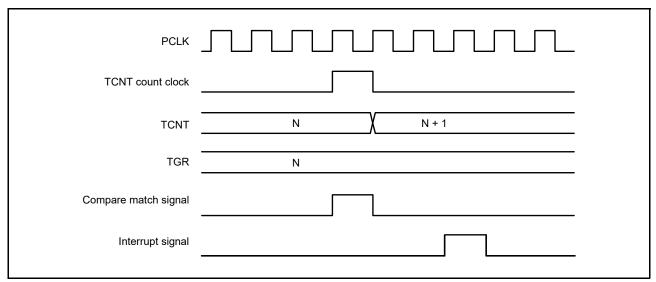


Figure 20.100 TGI Interrupt Timing (Compare Match) (MTU0 to MTU4)



Figure 20.101 TGI Interrupt Timing (Compare Match) (MTU5)

(2) Timing for TGI Interrupt by Input Capture

Figure 20.102 and Figure 20.103 show TGI interrupt request signal timing on input capture.

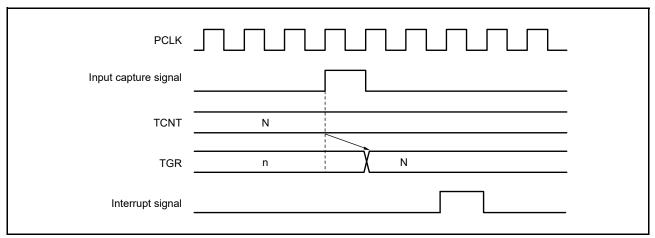


Figure 20.102 TGI Interrupt Timing (Input Capture) (MTU0 to MTU4)

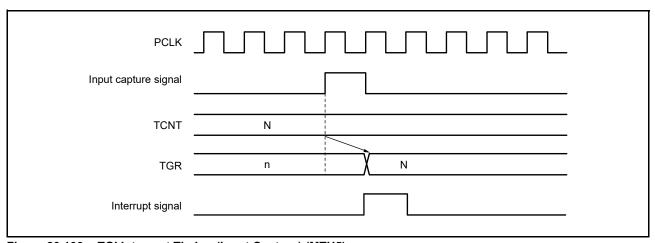


Figure 20.103 TGI Interrupt Timing (Input Capture) (MTU5)

(3) TCIV and TCIU Interrupt Timing

Figure 20.104 shows the TCIV interrupt request signal timing on overflow.

Figure 20.105 shows the TCIU interrupt request signal timing on underflow.

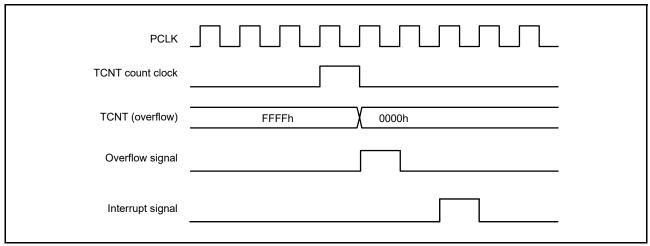


Figure 20.104 TCIV Interrupt Timing

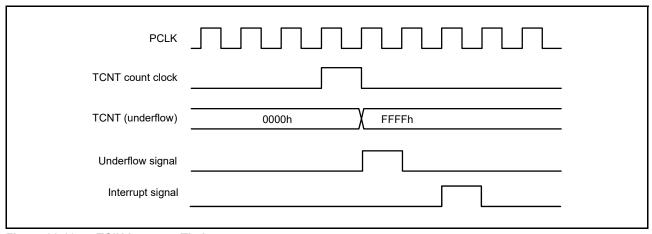


Figure 20.105 TCIU Interrupt Timing

20.6 Usage Notes

20.6.1 Module Clock Stop Mode Setting

MTU operation can be disabled or enabled using the module stop control register. MTU operation is stopped with the initial setting. Register access is enabled by releasing the module clock stop mode. For details, refer to section 11, Low Power Consumption.

20.6.2 Count Clock Restrictions

The count clock source pulse width must be at least 1.5 PCLK cycles for single-edge detection, and at least 2.5 PCLK cycles for both-edge detection. The MTU will not operate properly at narrower pulse widths.

In phase counting mode, the phase difference and overlap between the two input clocks must be at least 1.5 PCLK cycles, and the pulse width must be at least 2.5 PCLK cycles. Figure 20.106 shows the input clock conditions in phase counting mode.

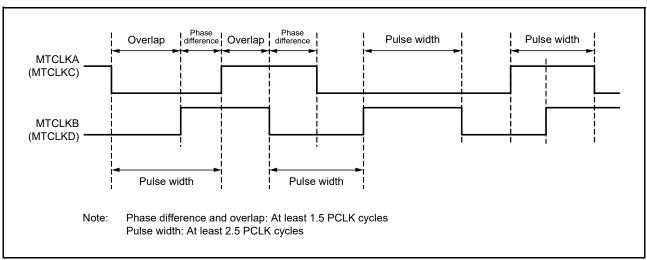


Figure 20.106 Phase Difference, Overlap, and Pulse Width in Phase Counting Mode

20.6.3 Notes on Cycle Setting

When counter clearing on compare match is set, the TCNT counter is cleared in the final state in which it matches the TGR register value (the point at which the TCNT counter updates the matched count value). Consequently, the actual counter frequency is given by the following formula:

• MTU0 to MTU4

$$f = \frac{CNTCLK}{N+1}$$

• MTU5

$$f = \frac{CNTCLK}{N}$$

f: Counter frequency

CNTCLK: The count clock frequency set by the TCR.TPSC[2:0] bits

N: The TGR register setting

20.6.4 Contention between TCNT Write and Clear Operations

If the counter clear signal is generated in a TCNT write cycle, the TCNT counter clearing takes precedence and the TCNT counter write operation is not performed.

Figure 20.107 shows the timing in this case.

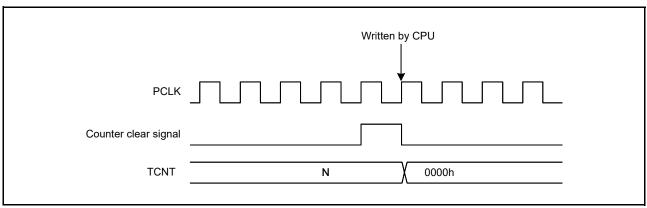


Figure 20.107 Contention between TCNT Write and Counter Clear Operations

20.6.5 Contention between TCNT Write and Increment Operations

If incrementing occurs in a TCNT write cycle, the TCNT counter write operation takes precedence and the TCNT counter is not incremented.

Figure 20.108 shows the timing in this case.

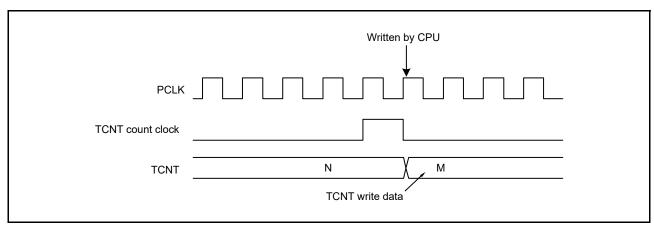


Figure 20.108 Contention between TCNT Write and Increment Operations

20.6.6 Contention between TGR Write Operation and Compare Match

If a compare match occurs in a TGR write cycle, the TGR register write operation is executed and the compare match signal is also generated.

Figure 20.109 shows the timing in this case.

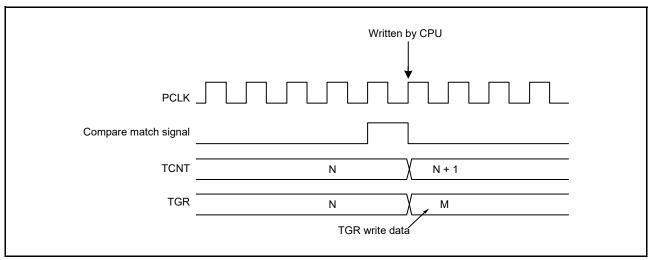


Figure 20.109 Contention between TGR Write Operation and Compare Match

20.6.7 Contention between Buffer Register Write Operation and Compare Match

If a compare match occurs in a TGR write cycle, the data before write operation is transferred to the TGR register by the buffer operation.

Figure 20.110 shows the timing in this case.

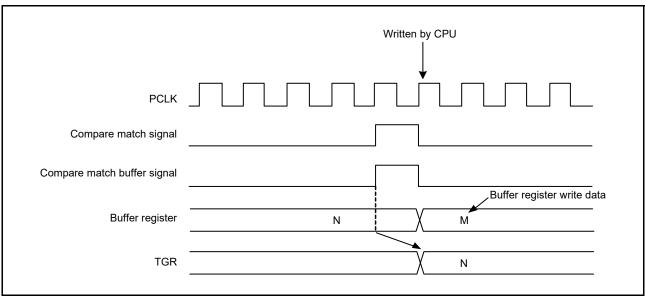


Figure 20.110 Contention between Buffer Register Write Operation and Compare Match

20.6.8 Contention between Buffer Register Write and TCNT Clear Operations

When the buffer transfer timing is set at the TCNT clear timing by the timer buffer operation transfer mode register (TBTM), if TCNT clearing occurs in a TGR write cycle, the data before write operation is transferred to TGR by the buffer operation.

Figure 20.111 shows the timing in this case.

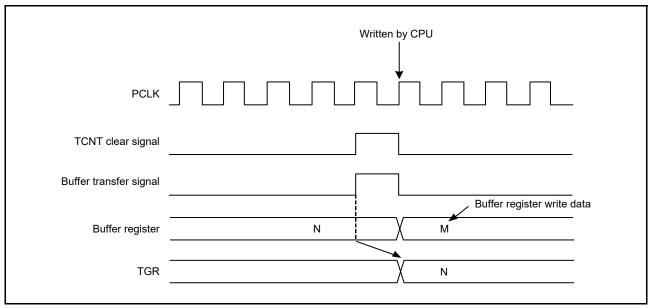


Figure 20.111 Contention between Buffer Register Write and TCNT Clear Operations

20.6.9 Contention between TGR Read Operation and Input Capture

If an input capture signal is generated in a TGR read cycle, the data before input capture transfer is read. Figure 20.112 shows the timing in this case.

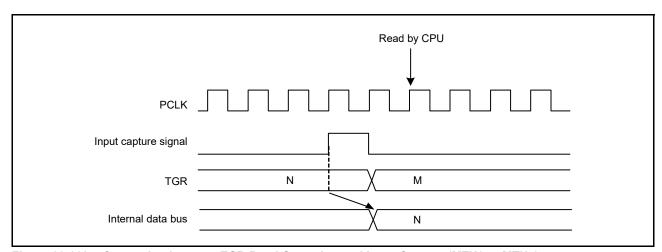


Figure 20.112 Contention between TGR Read Operation and Input Capture (MTU0 to MTU5)

20.6.10 Contention between TGR Write Operation and Input Capture

If an input capture signal is generated in a TGR write cycle, the input capture operation takes precedence and the TGR register write operation is not performed in MTU0 to MTU4. In MTU5, the TGR register write operation is performed and the input capture signal is generated.

Figure 20.113 and Figure 20.114 show the timing in this case.

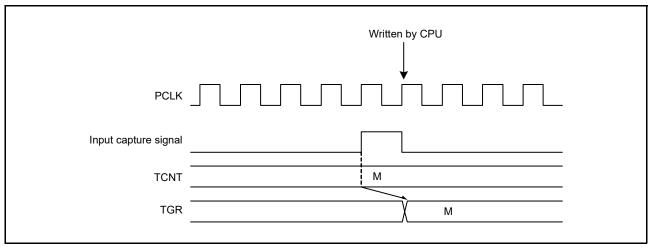


Figure 20.113 Contention between TGR Write Operation and Input Capture (MTU0 to MTU4)

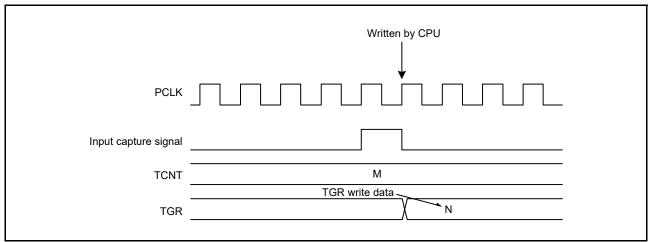


Figure 20.114 Contention between TGR Write Operation and Input Capture (MTU5)

20.6.11 Contention between Buffer Register Write Operation and Input Capture

If an input capture signal is generated in a buffer register write cycle, the buffer operation takes precedence and the buffer register write operation is not performed.

Figure 20.115 shows the timing in this case.

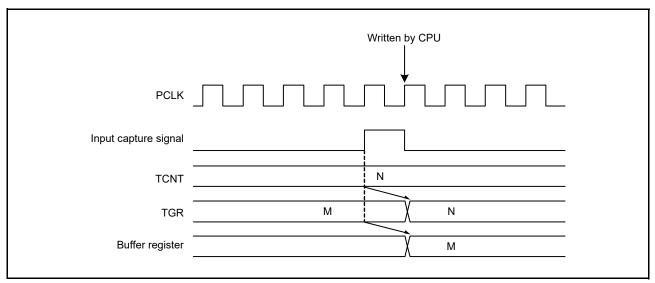


Figure 20.115 Contention between Buffer Register Write Operation and Input Capture

20.6.12 Contention between MTU2.TCNT Write Operation and Overflow/Underflow in Cascaded Operation

With timer counters MTU1.TCNT and MTU2.TCNT in a cascade, when a contention occurs between MTU1.TCNT counting (an MTU2.TCNT counter overflow/underflow) and the MTU2.TCNT write cycle, the MTU2.TCNT write operation is performed and the MTU1.TCNT count signal is disabled. In this case, if the MTU1.TGRA register works as a compare match register and there is a match between the MTU1.TGRA register and the MTU1.TCNT counter values, a compare match signal is issued.

Furthermore, when the MTU1.TCNT count clock is selected as the input capture source of MTU0, registers MTU0.TGRA to MTU0.TGRD work in input capture mode. In addition, when the MTU0.TGRC compare match/input capture is selected as the input capture source of the MTU1.TGRB register, the MTU1.TGRB register works in input capture mode.

Figure 20.116 shows the timing in this case.

When setting the TCNT clearing function in cascaded operation, be sure to synchronize MTU1 and MTU2.

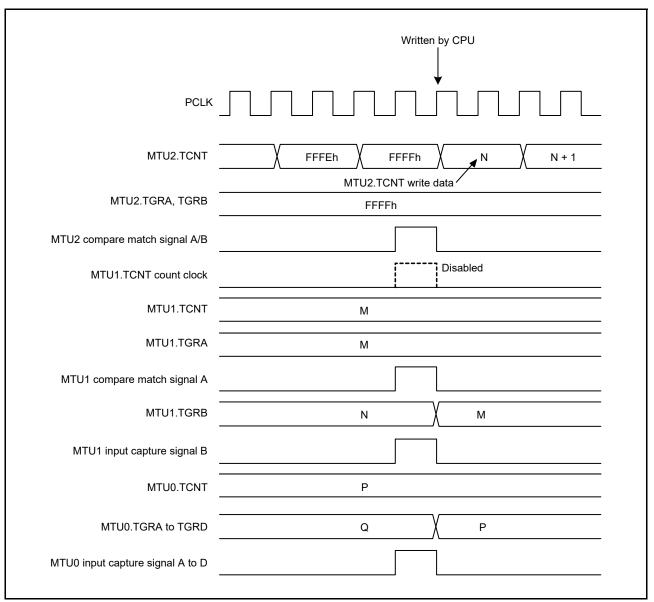


Figure 20.116 Contention between MTU2.TCNT Write Operation and Overflow/Underflow in Cascaded Operation

20.6.13 Counter Value When Count Operation is Stopped in Complementary PWM Mode

When counting operation in counters MTU3.TCNT and MTU4.TCNT is stopped in complementary PWM mode, the MTU3.TCNT counter is set to the TDDR register value and the MTU4.TCNT counter becomes 0000h.

When operation is restarted in complementary PWM mode, counting begins automatically from the initial setting state. Figure 20.117 shows this operation.

When counting begins in another operating mode, be sure to make initial settings in counters MTU3.TCNT and MTU4.TCNT.

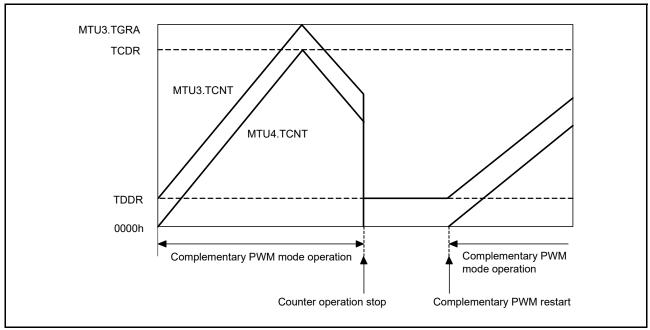


Figure 20.117 Counter Value When Stopped in Complementary PWM Mode (MTU3 and MTU4 Operation)

20.6.14 Buffer Operation Setting in Complementary PWM Mode

When modifying the PWM cycle set register (MTU3.TGRA), timer cycle data register (TCDR), and compare registers (MTU3.TGRB, MTU4.TGRA, and MTU4.TGRB) in complementary PWM mode, be sure to use buffer operation. Also, the MTU4.TMDR.BFA bit and MTU4.TMDR.BFB bit should be set to 0. Setting the MTU4.TMDR.BFA bit to 1 disables MTIOC4C pin waveform output. Setting the MTU4.TMDR.BFB bit to 1 also disables MTIOC4D pin waveform output.

In complementary PWM mode, buffer operation in MTU3 and MTU4 depends on the settings in bits BFA and BFB in the MTU3.TMDR register. When the MTU3.TMDR.BFA bit is set to 1, the MTU3.TGRC register functions as a buffer register for the MTU3.TGRA register. At the same time, the MTU4.TGRC register functions as a buffer register for the MTU4.TGRA register, and the TCBR register functions as a buffer register for the TCDR register.

20.6.15 Buffer Operation and Compare Match Flags in Reset-Synchronized PWM Mode

When setting buffer operation in reset-synchronized PWM mode, set the MTU4.TMDR.BFA bit and MTU4.TMDR.BFB bit to 0. Setting the MTU4.TMDR.BFA bit to 1 disables MTIOC4C pin waveform output. Setting the MTU4.TMDR.BFB bit to 1 also disables MTIOC4D pin waveform output.

In reset-synchronized PWM mode, buffer operation in MTU3 and MTU4 depends on the settings in the MTU3.TMDR.BFA bit and MTU3.TMDR.BFB bit. For example, if the MTU3.TMDR.BFA bit is set to 1, the MTU3.TGRC register functions as a buffer register for the MTU3.TGRA register. At the same time, the MTU4.TGRC register functions as a buffer register for the MTU4.TGRA register.

While the MTU3.TGRC and MTU3.TGRD registers are operating as buffer registers, the corresponding TGIC and TGID interrupt requests are never generated.

Figure 20.118 shows an example of the MTU3.TGR and MTU4.TGR registers, MTIOC3m, and MTIOC4m operation with the MTU3.TMDR.BFA bit and MTU3.TMDR.BFB bit set to 1 and the MTU4.TMDR.BFA bit and MTU4.TMDR.BFB bit set to 0. (m = A to D)

Figure 20.118 Buffer Operation and Compare Match Flags in Reset-Synchronized PWM Mode

20.6.16 Overflow Flags in Reset-Synchronized PWM Mode

After reset-synchronized PWM mode is selected, counters MTU3.TCNT and MTU4.TCNT start counting when the TSTR.CST3 bit is set to 1. In this state, the MTU4.TCNT count clock source and count edge are determined by the MTU3.TCR register setting.

In reset-synchronized PWM mode, with cycle register MTU3.TGRA set to FFFFh and the MTU3.TGRA compare match selected as the counter clearing source, counters MTU3.TCNT and MTU4.TCNT count up to FFFFh, then a compare match occurs with the MTU3.TGRA register, and counters MTU3.TCNT and MTU4.TCNT are both cleared. In this case, the corresponding TCIV interrupt request is not generated.

Figure 20.119 shows an operation example in reset-synchronized PWM mode with cycle register MTU3.TGRA set to FFFFh and the MTU3.TGRA compare match specified for the counter clearing source.

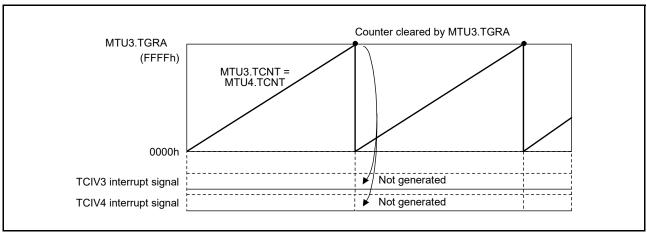


Figure 20.119 Overflow Flags in Reset-Synchronized PWM Mode

20.6.17 Contention between Overflow/Underflow and Counter Clearing

If an overflow/underflow and counter clearing occur simultaneously, the TCNT counter clearing takes precedence and the corresponding TCIV interrupt is not generated. If an overflow and counter clearing due to an input capture occur simultaneously, an input capture interrupt signal is output and an overflow interrupt signal is not output.

Figure 20.120 shows the operation timing when a TGR compare match is specified as the clearing source and the TGR register is set to FFFFh.

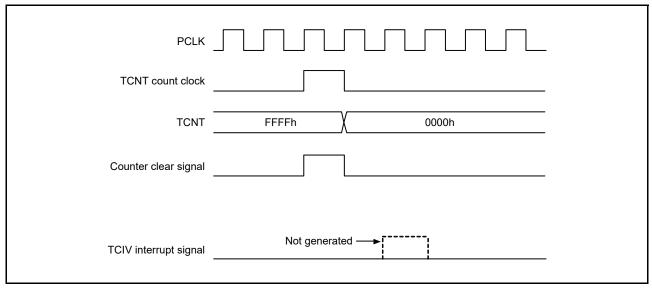


Figure 20.120 Contention between Overflow and Counter Clearing

20.6.18 Contention between TCNT Write Operation and Overflow/Underflow

If TCNT up-count or down-count in a TCNT write cycle and an overflow or an underflow occurs, the TCNT write operation takes precedence. The corresponding interrupt is not generated.

Figure 20.121 shows the operation timing when there is contention between TCNT write operation and overflow.

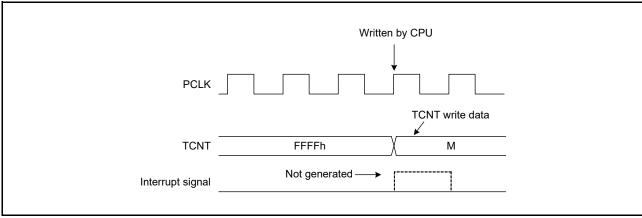


Figure 20.121 Contention between TCNT Write Operation and Overflow

20.6.19 Notes on Transition from Normal Mode or PWM Mode 1 to Reset-Synchronized PWM Mode

When making a transition from normal mode or PWM mode 1 to reset-synchronized PWM mode in MTU3 and MTU4, if the counter is stopped while the output pins (MTIOC3B, MTIOC3D, MTIOC4A, MTIOC4C, MTIOC4B, and MTIOC4D) are held at a high level and then operation is started after a transition to reset-synchronized PWM mode, the initial pin output will not be correct.

When making a transition from normal mode to reset-synchronized PWM mode, write 11h to registers MTU3.TIORH, MTU3.TIORL, MTU4.TIORH, and MTU4.TIORL to initialize the output pin state to a low level, then set the registers to the initial value (00h) before making the mode transition.

When making a transition from PWM mode 1 to reset-synchronized PWM mode, switch to normal mode, initialize the output pin state to a low level, and then set the registers to the initial value (00h) before making the transition to reset-synchronized PWM mode.

20.6.20 Output Level in Complementary PWM Mode or Reset-Synchronized PWM Mode

When complementary PWM mode or reset-synchronized PWM mode is selected for MTU3 or MTU4, use the TOCR1.OLSP bit and TOCR1.OLSN bit to set the levels for PWM waveform output. Also, when either of these modes is in use, set the TIOR register to 00h. The negative-phase output level when the TDER.TDER bit is set to 0 (no dead time is generated) in complementary PWM mode is the inverse of the positive-phase output level according to the TOCR1.OLSP bit setting, not the TOCR1.OLSN bit setting.

20.6.21 Interrupts during Periods in the Module Stop State

When an module that has issued an interrupt request enters the module stop state, clearing the source of the interrupt for the CPU or activation signal for the DTC is not possible.

Accordingly, disable interrupts, etc. before making the settings for the module stop state.

20.6.22 Simultaneous Input Capture in MTU1.TCNT and MTU2.TCNT in Cascade Connection

When counters MTU1.TCNT and MTU2.TCNT operate as a 32-bit counter in cascade connection, the cascaded counter value cannot be captured successfully in some cases even if input-capture input is simultaneously done to MTIOC1A and MTIOC2A or to MTIOC1B and MTIOC2B. This is because the input timing of MTIOC1A and MTIOC2A or of MTIOC1B and MTIOC2B may not be the same when external input-capture signals input into counters MTU1.TCNT and MTU2.TCNT are taken in synchronization with the internal clock.

For example, the MTU1.TCNT counter (the counter for upper 16 bits) does not capture the count-up value by an overflow from the MTU2.TCNT counter (the counter for lower 16 bits) but captures the count value before the upcounting. In this case, the values of MTU1.TCNT = FFF1h and MTU2.TCNT = 0000h should be transferred to registers MTU1.TGRA and MTU2.TGRA or to registers MTU1.TGRB and MTU2.TGRB, but the values of MTU1.TCNT = FFF0h and MTU2.TCNT = 0000h are erroneously transferred.

The MTU has a function that allows simultaneous capture of counters MTU1.TCNT and MTU2.TCNT with a single input capture input. This function can be used to read the 32-bit counter such that counters MTU1.TCNT and MTU2.TCNT are captured at the same time. For details, refer to section 20.2.8, Timer Input Capture Control Register (TICCR).

20.6.23 Notes When Complementary PWM Mode Output Protection Functions are Not Used

The complementary PWM mode output protection functions are initially enabled. Refer to section 21, Port Output Enable 2 (POE2a), for details.

20.6.24 Point for Caution Regarding MTU5.TCNT and MTU5.TGR Registers

Do not set an MTU5.TGRm (m = U, V, W) register to the value of the corresponding MTU5.TCNTm counter value plus one while counting by the MTU5.TCNTm counter is stopped. If an MTU5.TGRm register is set to the value of the corresponding MTU5.TCNTm counter value plus one while counting by the MTU5.TCNTm counter is stopped, a compare-match will be generated even though counting is stopped.

In this case, if the corresponding MTU5.TIER.TGIE5m bit is also set to 1 (interrupt requests enabled), a compare-match interrupt will also be generated. If the value of the timer compare match clear register is also 1 (enabled), the MTU5.TCNTm counter is automatically cleared to 0000h when the compare-match is generated, regardless of whether compare-match interrupt is enabled or disabled.

20.6.25 Points for Caution to Prevent Malfunctions in Synchronous Clearing for Complementary PWM Mode

If control of the output waveform is enabled (TWCR.WRE = 1) at the time of synchronous counter clearing in complementary PWM mode, satisfaction of either condition 1 or 2 below has the following effects.

- Dead time on the PWM output pins is shortened (or disappears).
- The active level is output on the PWM inverse-phase output pins beyond the period for active-level output.
- Condition 1: In portion (10) of the initial output inhibition period in Figure 20.122, synchronous clearing occurs within the dead-time period for PWM output.
- Condition 2: In portions (10) and (11) of the initial output inhibition period in Figure 20.123, synchronous clearing occurs when any condition from among MTU3.TGRB ≤ TDDR, MTU4.TGRA ≤ TDDR, or MTU4.TGRB ≤ TDDR is satisfied.

The following method avoids the above phenomena.

• Ensure that synchronous clearing proceeds with the value of each comparison register (MTU3.TGRB, MTU4.TGRA, and MTU4.TGRB) set to at least double the value of the dead time data register (TDDR).

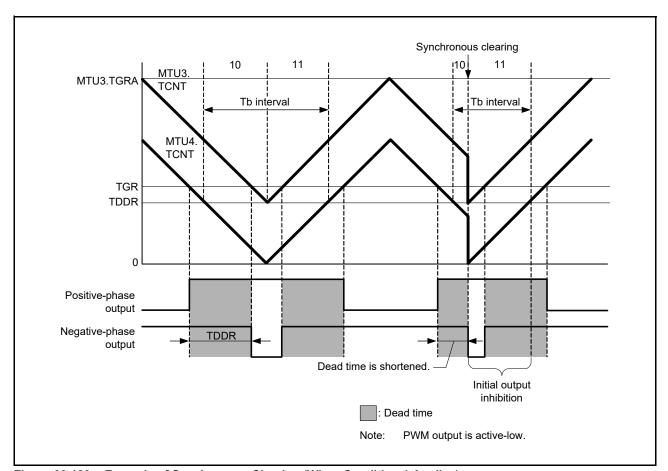


Figure 20.122 Example of Synchronous Clearing (When Condition 1 Applies)

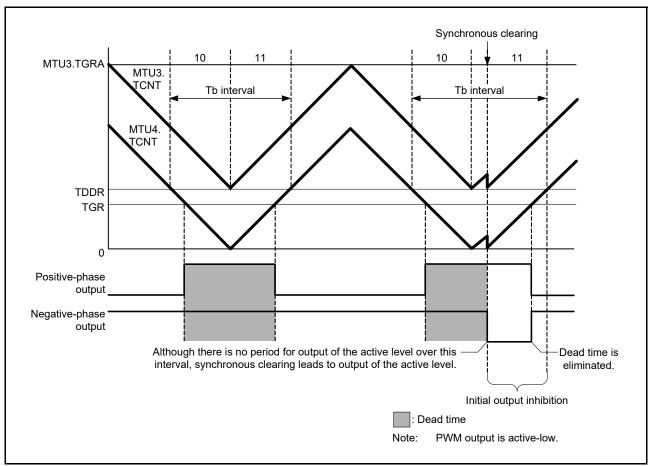


Figure 20.123 Example of Synchronous Clearing (When Condition 2 Applies)

20.6.26 Continuous Output of Interrupt Signal in Response to a Compare Match

When the TGR register is set to 0000h, PCLK/1 is set as the count clock, and compare match is set as the trigger for clearing of the count clock, the value of the TCNT counter remains 0000h, and the interrupt signal will be output continuously (i.e. its level will be flat) rather than output over a single cycle. Consequently, interrupts will not be detected in response to second and subsequent compare matches.

Figure 20.124 shows the timing for continuous output of the interrupt signal in response to a compare match.

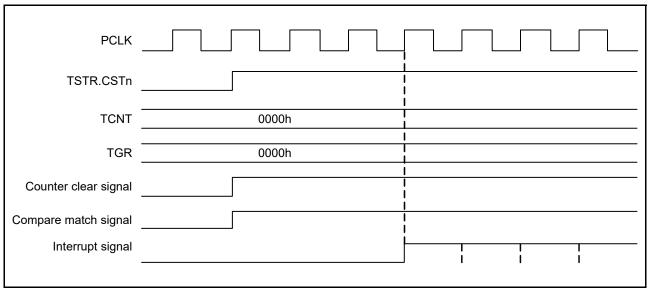


Figure 20.124 Continuous Output of Interrupt Signal in Response to a Compare Match

20.6.27 Usage Notes on A/D Converter Delaying Function in Complementary PWM Mode

- When data is transferred from a buffer register at the trough of the MTU4.TCNT counter while the MTU4.TADCOBRA and MTU4.TADCOBRB registers are set to 0 and the UT4AE and UT4BE bits in the MTU4.TADCR register are set to 1, no A/D converter start request is issued during up-counting immediately after transfer. Refer to Figure 20.125.
- When data is transferred from a buffer register at the crest of the MTU4.TCNT counter while the
 MTU4.TADCOBRA and MTU4.TADCOBRB registers are set to the same value as the TCDR register and the
 UT4AE and UT4BE bits in the MTU4.TADCR register are set to 1, no A/D converter start request is issued during
 down-counting immediately after transfer. Refer to Figure 20.126.
- To issue an A/D converter start request linked with interrupt skipping, set the MTU4.TADCORA and MTU4.TADCORB registers so that 2 ≤ MTU4.TADCORA/TADCORB ≤ TCDR 2 is satisfied.

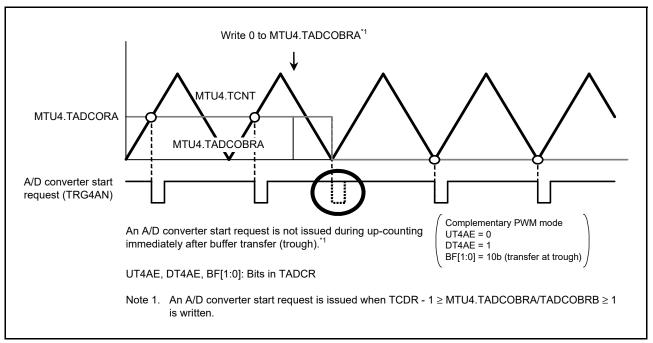


Figure 20.125 A/D Converter Start Request When 0 is Written to MTU4.TADCOBRA

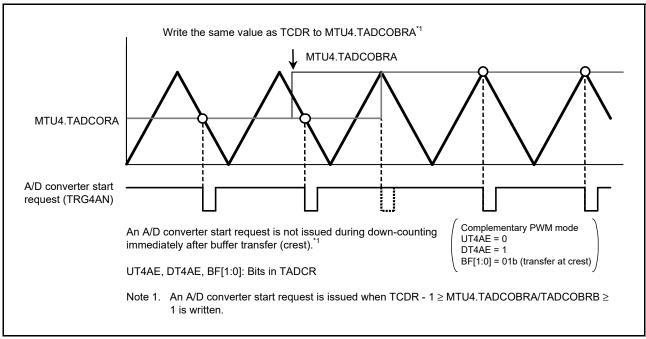


Figure 20.126 A/D Converter Start Request When the Same Value as TCDR is Written to MTU4.TADCOBRA

20.7 MTU Output Pin Initialization

20.7.1 Operating Modes

The MTU has the following six operating modes. Waveforms can be output in any of these modes.

- Normal mode (MTU0 to MTU4)
- PWM mode 1 (MTU0 to MTU4)
- PWM mode 2 (MTU0 to MTU2)
- Phase counting modes 1 to 4 (MTU1 and MTU2)
- Complementary PWM mode (MTU3 and MTU4)
- Reset-synchronized PWM mode (MTU3 and MTU4)

This section describes how to initialize the MTU output pins in each of these modes.

20.7.2 Operation in Case of Re-Setting Due to Error during Operation

If an error occurs during MTU operation, MTU output should be cut off by the system. For an I/O port that is shut down, set the port direction registers (PDR), the port output data register (PODR), and the port mode register (PMR) to switch the port pins to be general output pins and for output of the non-active level. Set the TIOR for the MTU pins to disable output. Set the TOER register for the complementary PWM output pins (MTIOC3B, MTIOC3D, MTIOC4A, MTIOC4B, MTIOC4C, and MTIOC4D). For PWM output pins, output can also be cut by hardware, using port output enable 2(POE). The pin initialization procedures for re-setting due to an error during operation and the procedures for restarting in a different mode after re-setting are described below.

The MTU has six operating modes, as stated above. There are thus 36 mode transition combinations, but some transitions are not available with certain channel and mode combinations. Available mode transition combinations are listed in Table 20.59.

Note that the following notations are used for operating modes.

Normal: Normal mode PWM1: PWM mode 1 PWM2: PWM mode 2

PCM: Phase counting modes 1 to 4 CPWM: Complementary PWM mode RPWM: Reset-synchronized PWM mode

Table 20.59 Mode Transition Combinations

	Normal	PWM1	PWM2	PCM	CPWM	RPWM
Normal	(1)	(2)	(3)	(4)	(5)	(6)
PWM1	(7)	(8)	(9)	(10)	(11)	(12)
PWM2	(13)	(14)	(15)	(16)	Not available	Not available
PCM	(17)	(18)	(19)	(20)	Not available	Not available
CPWM	(21)	(22)	Not available	Not available	(23), (24)	(25)
RPWM	(26)	(27)	Not available	Not available	(28)	(29)

20.7.3 Overview of Pin Initialization Procedures and Mode Transitions in Case of Error during Operation

- When making a transition to a mode (Normal, PWM1, PWM2, or PCM) in which the pin output level is selected by the TIOR register setting, initialize the pins by means of the TIOR register setting.
- In PWM mode 1, waveforms are not output to the MTIOCnB and MTIOCnD (n = 3, 4) pins. When a pin is configured for MTIOCnB or MTIOCnD, it enters high-impedance state. To output a specified level, set the pin to general output port.
- In PWM mode 2, waveforms are not output to the cycle register pins. When a pin is configured for MTIOCnm (n = 0 to 2; m = A to D), it enters high-impedance state. To output a specified level, set the pin to general output port.
- In normal mode or PWM 2 mode, if the TGRC and TGRD register operate as buffer registers, waveforms are not output to the corresponding pins (MTIOCnC or MTIOCnD (n=0, 3, 4)). When a pin is configured for MTIOCnC or MTIOCnD, it enters high-impedance state. To output a specified level, set the pin to general output port.
- In PWM mode 1, if either TGRC or TGRD register operates as a buffer register, waveforms are not output to the corresponding pins (MTIOCnC or MTIOCnD (n=0, 3, 4)). When a pin is configured for MTIOCnC or MTIOCnD, it enter high-impedance state. To output a specified level, set the pin to general output port.
- When making a transition to a mode (CPWM or RPWM) in which the pin output level is selected by the timer output control register (TOCR) setting, temporarily disable output in MTU3 and MTU4 with the TOER register. At this time, when a pin is configured for MTIOCnm (n = 3, 4; m = A to D), it enters high-impedance state. To output a specified level, set the pin to general output port. Switch to normal mode, perform initialization with the TIOR register, and restore the TIOR register to its initial value. After that, operate the MTU in accordance with the mode setting procedure (TOCR setting, TMDR setting, and TOER setting).

Note: Channel number is substituted for "n" indicated in this section unless otherwise specified.

Pin initialization procedures are described below for the numbered combinations in Table 20.59. The active level is assumed to be low.

(1) Operation When Error Occurs in Normal Mode and Operation is Restarted in Normal Mode

Figure 20.127 shows a case in which an error occurs in normal mode and operation is restarted in normal mode after resetting.

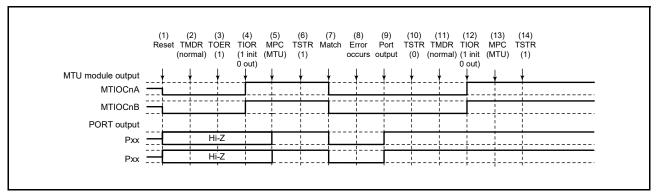


Figure 20.127 Error Occurrence in Normal Mode, Recovery in Normal Mode

- (1) After a reset, the MTU output goes low and the ports enter high-impedance state.
- (2) After a reset, the TMDR setting is for normal mode.
- (3) For MTU3 and MTU4, enable output with the TOER register before initializing the pins with the TIOR register.
- (4) Initialize the pins with the TIOR register. (In the example, the initial output is a high level, and a low level is output on compare match occurrence.)
- (5) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (6) Start count operation by setting the TSTR register.
- (7) Output goes low on compare match occurrence.
- (8) An error occurs.
- (9) Use the port direction register (PDR) and port mode register (PMR) for the input port pin to switch it to operate as a general output port pin, and the port output data register (PODR) to select output of the non-active level.
- (10) Stop count operation by setting the TSTR register.
- (11) This step is not necessary when restarting in normal mode.
- (12) Initialize the pins with the TIOR register.
- (13) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (14) Restart operation by setting the TSTR register.

(2) Operation When Error Occurs in Normal Mode and Operation is Restarted in PWM Mode 1 Figure 20.128 shows a case in which an error occurs in normal mode and operation is restarted in PWM mode 1 after re-setting.

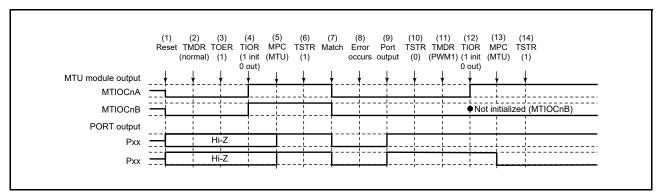


Figure 20.128 Error Occurrence in Normal Mode, Recovery in PWM Mode 1

- (1) to (10) are the same as in Figure 20.127.
- (11)Set PWM mode 1.
- (12)Set the TIOR register to initialize pins, i.e. so that the MTIOCnB (or MTIOCnD) does not produce a waveform in PWM mode 1. If a particular level should be output, set the port direction register (PDR) and the port output data register (PODR) so that the pins of the I/O port operate as general outputs.
- (13) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (14) Restart operation by setting the TSTR register.
- (3) Operation When Error Occurs in Normal Mode and Operation is Restarted in PWM Mode 2 Figure 20.129 shows a case in which an error occurs in normal mode and operation is restarted in PWM mode 2 after re-setting.

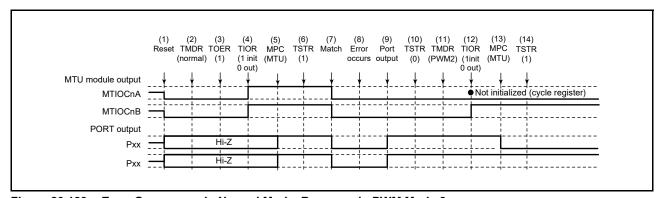


Figure 20.129 Error Occurrence in Normal Mode, Recovery in PWM Mode 2

- (1) to (10) are the same as in Figure 20.127.
- (11) Set PWM mode 2.
- (12) Initialize the pins with the TIOR register. (In PWM mode 2, the cycle register pins are not initialized. If initialization is required, initialize in normal mode, then switch to PWM mode 2.)
- (13) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (14) Restart operation by setting the TSTR register.

Note: PWM mode 2 can only be selected for MTU0 to MTU2, and therefore the TOER register setting is not necessary.

(4) Operation When Error Occurs in Normal Mode and Operation is Restarted in Phase Counting Mode

Figure 20.130 shows a case in which an error occurs in normal mode and operation is restarted in phase counting mode after re-setting.

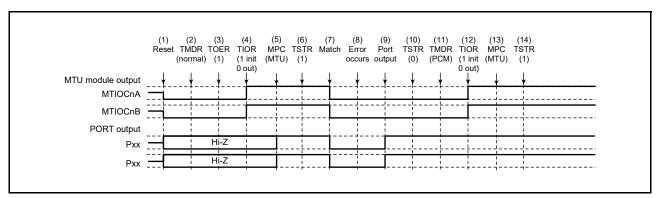


Figure 20.130 Error Occurrence in Normal Mode, Recovery in Phase Counting Mode

- (1) to (10) are the same as in Figure 20.127.
- (11) Set the phase counting mode.
- (12) Initialize the pins with the TIOR register.
- (13) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (14) Restart operation by setting the TSTR register.

Note: The phase counting mode can only be selected for MTU1 and MTU2, and therefore the TOER register setting is not necessary.

(5) Operation When Error Occurs in Normal Mode and Operation is Restarted in Complementary PWM Mode

Figure 20.131 shows a case in which an error occurs in normal mode and operation is restarted in complementary PWM mode after re-setting.

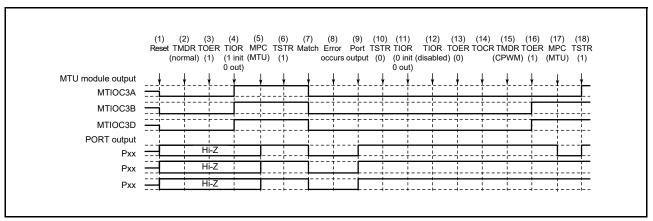


Figure 20.131 Error Occurrence in Normal Mode, Recovery in Complementary PWM Mode

- (1) to (10) are the same as in Figure 20.127.
- (11) Initialize the normal mode waveform generation block with the TIOR register.
- (12) Disable operation of the normal mode waveform generation block with the TIOR register.
- (13) Disable output in MTU3 and MTU4 with the TOER register.
- (14) Select the complementary PWM mode output level and enable or disable cyclic output with the TOCR register.
- (15) Set complementary PWM mode.
- (16) Enable output in MTU3 and MTU4 with the TOER register.
- (17) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (18) Restart operation by setting the TSTR register.

(6) Operation When Error Occurs in Normal Mode and Operation is Restarted in Reset-Synchronized PWM Mode

Figure 20.132 shows a case in which an error occurs in normal mode and operation is restarted in reset-synchronized PWM mode after re-setting.

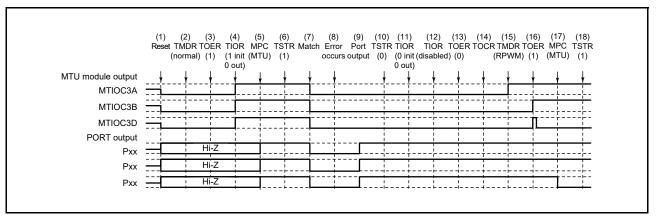


Figure 20.132 Error Occurrence in Normal Mode, Recovery in Reset-Synchronized PWM Mode

- (1) to (13) are the same as in Figure 20.131.
- (14) Select the reset-synchronized PWM mode output level and enable or disable cyclic output with the TOCR register.
- (15) Set reset-synchronized PWM mode.
- (16) Enable output in MTU3 and MTU4 with the TOER register.
- (17) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (18) Restart operation by setting the TSTR register.

(7) Operation When Error Occurs in PWM Mode 1 and Operation is Restarted in Normal Mode Figure 20.133 shows a case in which an error occurs in PWM mode 1 and operation is restarted in normal mode after re-setting.

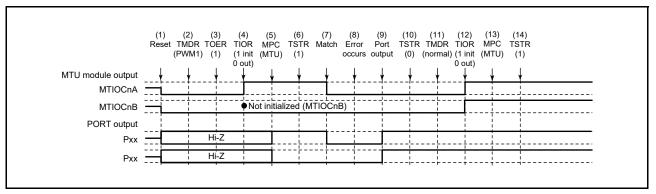


Figure 20.133 Error Occurrence in PWM Mode 1, Recovery in Normal Mode

- (1) After a reset, the MTU output goes low and the ports enter high-impedance state.
- (2) Set PWM mode 1.
- (3) For MTU3 and MTU4, enable output with the TOER register before initializing the pins with the TIOR register.
- (4) Initialize the pins with the TIOR register. (In the example, the initial output is a high level, and a low level is output on compare match occurrence. In PWM mode 1, the MTIOCnB side is not initialized.)
- (5) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (6) Start count operation by setting the TSTR register.
- (7) Output goes low on compare match occurrence.
- (8) An error occurs.
- (9) Use the port direction register (PDR) and port mode register (PMR) for the input port pin to switch it to operate as a general output port pin, and the port output data register (PODR) to select output of the non-active level.
- (10) Stop count operation by setting the TSTR register.
- (11) Set normal mode.
- (12) Initialize the pins with the TIOR register.
- (13) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (14) Restart operation by setting the TSTR register.

(8) Operation When Error Occurs in PWM Mode 1 and Operation is Restarted in PWM mode 1 Figure 20.134 shows a case in which an error occurs in PWM mode 1 and operation is restarted in PWM mode 1 after re-setting.

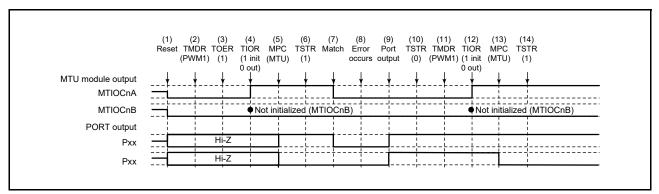


Figure 20.134 Error Occurrence in PWM Mode 1, Recovery in PWM Mode 1

- (1) to (10) are the same as in Figure 20.133.
- (11) This step is not necessary when restarting in PWM mode 1.
- (12) Initialize the pins with the TIOR register. (In PWM mode 1, a waveform is not output on the MTIOCnB (MTIOCnD) pins. If a level is to be output, make the required general output port settings in the I/O port's port direction register (PDR) and port output data register (PODR).)
- (13) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (14) Restart operation by setting the TSTR register.
- (9) Operation When Error Occurs in PWM Mode 1 and Operation is Restarted in PWM mode 2 Figure 20.135 shows a case in which an error occurs in PWM mode 1 and operation is restarted in PWM mode 2 after re-setting.

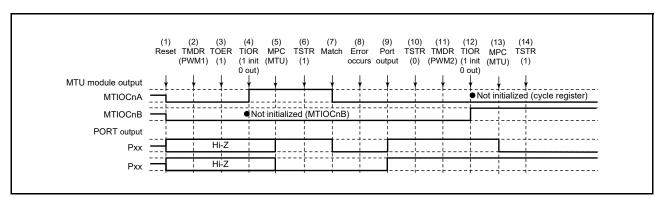


Figure 20.135 Error Occurrence in PWM Mode 1, Recovery in PWM Mode 2

- (1) to (10) are the same as in Figure 20.133.
- (11) Set PWM mode 2.
- (12) Initialize the pins with the TIOR register. (In PWM mode 2, a waveform is not output on the cycle register pins. If a level is to be output, make the required general output port settings in the I/O port's port direction register (PDR) and port output data register (PODR).)
- (13) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (14) Restart operation by setting the TSTR register.

Note: PWM mode 2 can only be selected for MTU0 to MTU2, and therefore the TOER register setting is not necessary.

(10) Operation When Error Occurs in PWM Mode 1 and Operation is Restarted in Phase Counting Mode

Figure 20.136 shows a case in which an error occurs in PWM mode 1 and operation is restarted in phase counting mode after re-setting.

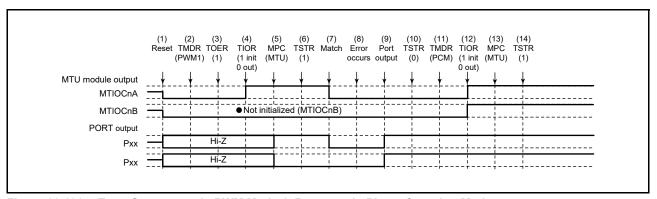


Figure 20.136 Error Occurrence in PWM Mode 1, Recovery in Phase Counting Mode

- (1) to (10) are the same as in Figure 20.133.
- (11) Set the phase counting mode.
- (12) Initialize the pins with the TIOR register.
- (13) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (14)Restart operation by setting the TSTR register.

Note: The phase counting mode can only be selected for MTU1 and MTU2, and therefore the TOER register setting is not necessary.

(11) Operation When Error Occurs in PWM Mode 1 and Operation is Restarted in Complementary PWM Mode

Figure 20.137 shows a case in which an error occurs in PWM mode 1 and operation is restarted in complementary PWM mode after re-setting.

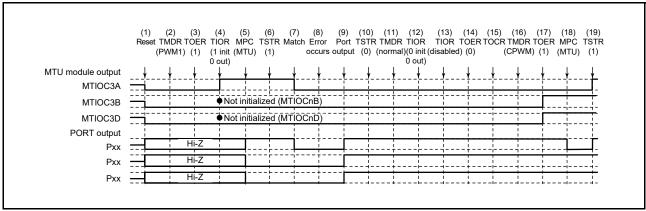


Figure 20.137 Error Occurrence in PWM Mode 1, Recovery in Complementary PWM Mode

- (1) to (10) are the same as in Figure 20.133.
- (11) Set normal mode to initialize the normal mode waveform generation block.
- (12) Initialize the PWM mode 1 waveform generation block with the TIOR register.
- (13) Disable operation of the PWM mode 1 waveform generation block with the TIOR register.
- (14) Disable output in MTU3 and MTU4 with the TOER register.
- (15) Select the complementary PWM mode output level and enable or disable cyclic output with the TOCR register.
- (16) Set complementary PWM mode.
- (17) Enable output in MTU3 and MTU4 with the TOER register.
- (18) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (19) Restart operation by setting the TSTR register.

(12) Operation When Error Occurs in PWM Mode 1 and Operation is Restarted in Reset-Synchronized PWM Mode

Figure 20.138 shows a case in which an error occurs in PWM mode 1 and operation is restarted in reset-synchronized PWM mode after re-setting.

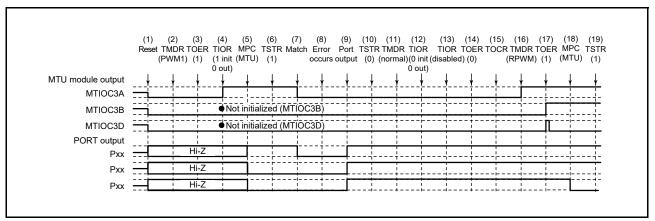


Figure 20.138 Error Occurrence in PWM Mode 1, Recovery in Reset-Synchronized PWM Mode

- (1) to (14) are the same as in Figure 20.137.
- (15) Select the reset-synchronized PWM mode output level and enable or disable cyclic output with the TOCR register.
- (16) Set reset-synchronized PWM mode.
- (17) Enable output in MTU3 and MTU4 with the TOER register.
- (18) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (19) Restart operation by setting the TSTR register.

(13) Operation When Error Occurs in PWM Mode 2 and Operation is Restarted in Normal Mode Figure 20.139 shows a case in which an error occurs in PWM mode 2 and operation is restarted in normal mode after re-setting.

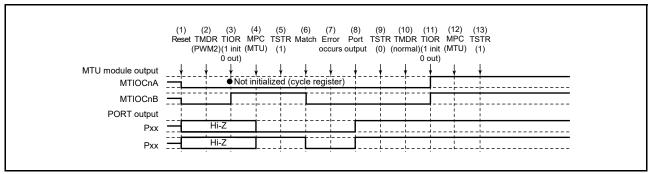


Figure 20.139 Error Occurrence in PWM Mode 2, Recovery in Normal Mode

- (1) After a reset, the MTU output goes low and the ports enter high-impedance state.
- (2) Set PWM mode 2.
- (3) Initialize the pins with the TIOR register. (In the example, the initial output is a high level, and a low level is output on compare match occurrence. In PWM mode 2, the cycle register pins are not initialized. In the example, MTIOCnA is the cycle register.)
- (4) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (5) Start count operation by setting the TSTR register.
- (6) Output goes low on compare match occurrence.
- (7) An error occurs.
- (8) Use the port direction register (PDR) and port mode register (PMR) for the input port pin to switch it to operate as a general output port pin, and the port output data register (PODR) to select output of the non-active level.
- (9) Stop count operation by setting the TSTR register.
- (10) Set normal mode.
- (11) Initialize the pins with the TIOR register.
- (12) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (13) Restart operation by setting the TSTR register.

(14) Operation When Error Occurs in PWM Mode 2 and Operation is Restarted in PWM Mode 1 Figure 20.140 shows a case in which an error occurs in PWM mode 2 and operation is restarted in PWM mode 1 after re-setting.

Figure 20.140 Error Occurrence in PWM Mode 2, Recovery in PWM Mode 1

- (1) to (9) are the same as in Figure 20.139.
- (10) Set PWM mode 1.
- (11) Initialize the pins with the TIOR register. (In PWM mode 1, a waveform is not output on the MTIOCnB (MTIOCnD) pins. If a level is to be output, make the required general output port settings in the I/O port's port direction register (PDR) and port output data register (PODR).)
- (12) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (13) Restart operation by setting the TSTR register.

(15) Operation When Error Occurs in PWM Mode 2 and Operation is Restarted in PWM Mode 2 Figure 20.141 shows a case in which an error occurs in PWM mode 2 and operation is restarted in PWM mode 2 after re-setting.

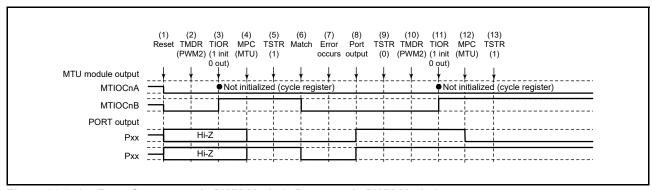


Figure 20.141 Error Occurrence in PWM Mode 2, Recovery in PWM Mode 2

- (1) to (9) are the same as in Figure 20.139.
- (10) This step is not necessary when restarting in PWM mode 2.
- (11) Initialize the pins with the TIOR register. (In PWM mode 2, a waveform is not output on the cycle register pins. If a level is to be output, make the required general output port settings in the I/O port's port direction register (PDR) and port output data register (PODR).)
- (12) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (13) Restart operation by setting the TSTR register.

(16) Operation When Error Occurs in PWM Mode 2 and Operation is Restarted in Phase Counting Mode

Figure 20.142 shows a case in which an error occurs in PWM mode 2 and operation is restarted in phase counting mode after re-setting.

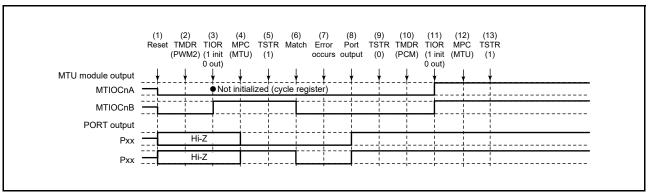


Figure 20.142 Error Occurrence in PWM Mode 2, Recovery in Phase Counting Mode

- (1) to (9) are the same as in Figure 20.139.
- (10) Set the phase counting mode.
- (11) Initialize the pins with the TIOR register.
- (12) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (13) Restart operation by setting the TSTR register.

(17) Operation When Error Occurs in Phase Counting Mode and Operation is Restarted in Normal Mode

Figure 20.143 shows a case in which an error occurs in phase counting mode and operation is restarted in normal mode after re-setting.

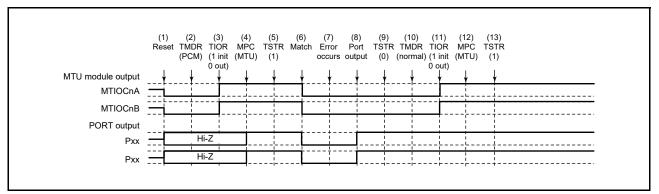


Figure 20.143 Error Occurrence in Phase Counting Mode, Recovery in Normal Mode

- (1) After a reset, the MTU output goes low and the ports enter high-impedance state.
- (2) Set phase counting mode.
- (3) Initialize the pins with the TIOR register. (In the example, the initial output is a high level, and a low level is output on compare match occurrence.)
- (4) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (5) Start count operation by setting the TSTR register.
- (6) Output goes low on compare match occurrence.
- (7) An error occurs.
- (8) Use the port direction register (PDR) and port mode register (PMR) for the input port pin to switch it to operate as a general output port pin, and the port output data register (PODR) to select output of the non-active level.
- (9) Stop count operation by setting the TSTR register.
- (10) Set normal mode.
- (11) Initialize the pins with the TIOR register.
- (12) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (13) Restart operation by setting the TSTR register.

(18) Operation When Error Occurs in Phase Counting Mode and Operation is Restarted in PWM Mode 1

Figure 20.144 shows a case in which an error occurs in phase counting mode and operation is restarted in PWM mode 1 after re-setting.

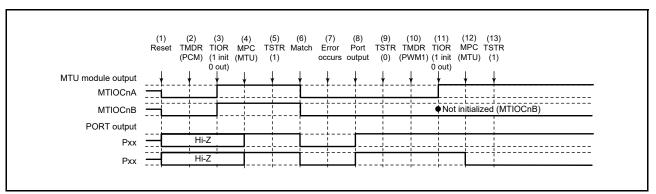


Figure 20.144 Error Occurrence in Phase Counting Mode, Recovery in PWM Mode 1

- (1) to (9) are the same as in Figure 20.143.
- (10) Set PWM mode 1.
- (11) Initialize the pins with the TIOR register. (In PWM mode 1, a waveform is not output on the MTIOCnB (MTIOCnD) pins. If a level is to be output, make the required general output port settings in the I/O port's port direction register (PDR) and port output data register (PODR).)
- (12) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (13) Restart operation by setting the TSTR register.

(19) Operation When Error Occurs in Phase Counting Mode and Operation is Restarted in PWM Mode 2

Figure 20.145 shows a case in which an error occurs in phase counting mode and operation is restarted in PWM mode 2 after re-setting.

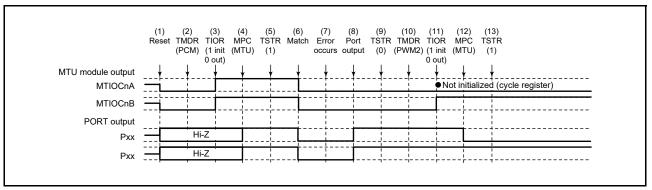


Figure 20.145 Error Occurrence in Phase Counting Mode, Recovery in PWM Mode 2

- (1) to (9) are the same as in Figure 20.143.
- (10) Set PWM mode 2.
- (11) Initialize the pins with the TIOR register. (In PWM mode 1, a waveform is not output on the MTIOCnB (MTIOCnD) pins. If a level is to be output, make the required general output port settings in the I/O port's port direction register (PDR) and port output data register (PODR).)
- (12) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (13) Restart operation by setting the TSTR register.

(20) Operation When Error Occurs in Phase Counting Mode and Operation is Restarted in Phase Counting Mode

Figure 20.146 shows a case in which an error occurs in phase counting mode and operation is restarted in phase counting mode after re-setting.

Figure 20.146 Error Occurrence in Phase Counting Mode, Recovery in Phase Counting Mode

- (1) to (9) are the same as in Figure 20.143.
- (10) This step is not necessary when restarting in phase counting mode.
- (11) Initialize the pins with the TIOR register.
- (12) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (13) Restart operation by setting the TSTR register.

(21) Operation When Error Occurs in Complementary PWM Mode and Operation is Restarted in Normal Mode

Figure 20.147 shows a case in which an error occurs in complementary PWM mode and operation is restarted in normal mode after re-setting.

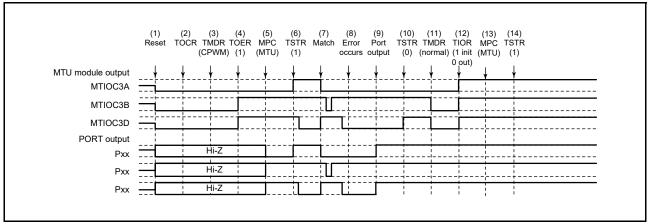


Figure 20.147 Error Occurrence in Complementary PWM Mode, Recovery in Normal Mode

- (1) After a reset, the MTU output goes low and the ports enter high-impedance state.
- (2) Select the complementary PWM mode output level and enable or disable cyclic output with the TOCR register.
- (3) Set complementary PWM mode.
- (4) Enable output in MTU3 and MTU4 with the TOER register.
- (5) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (6) Start count operation by setting the TSTR register.
- (7) The complementary PWM waveform is output on compare match occurrence.
- (8) An error occurs.
- (9) Use the port direction register (PDR) and port mode register (PMR) for the input port pin to switch it to operate as a general output port pin, and the port output data register (PODR) to select output of the non-active level.
- (10) Stop count operation by setting the TSTR register. (MTU output becomes the initial complementary PWM output value).
- (11) Set normal mode (MTU output goes low).
- (12) Initialize the pins with the TIOR register.
- (13) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (14) Restart operation by setting the TSTR register.

(22) Operation When Error Occurs in Complementary PWM Mode and Operation is Restarted in PWM Mode 1

Figure 20.148 shows a case in which an error occurs in complementary PWM mode and operation is restarted in PWM mode 1 after re-setting.

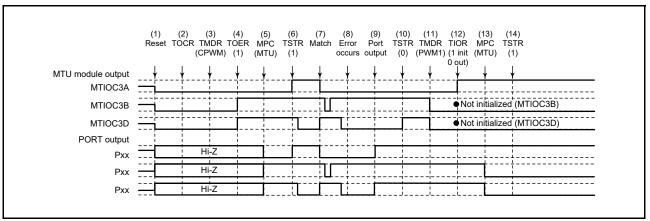


Figure 20.148 Error Occurrence in Complementary PWM Mode, Recovery in PWM Mode 1

- (1) to (10) are the same as in Figure 20.147.
- (11) Set PWM mode 1 (MTU output goes low).
- (12) Initialize the pins with the TIOR register. (In PWM mode 1, a waveform is not output on the MTIOCnB (MTIOCnD) pins. If a level is to be output, make the required general output port settings in the I/O port's port direction register (PDR) and port output data register (PODR).)
- (13) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (14) Restart operation by setting the TSTR register.

(23) Operation When Error Occurs in Complementary PWM Mode and Operation is Restarted in Complementary PWM Mode

Figure 20.149 shows a case in which an error occurs in complementary PWM mode and operation is restarted in complementary PWM mode after re-setting (when operation is restarted using the cycle and duty settings at the time of stopping the counter).

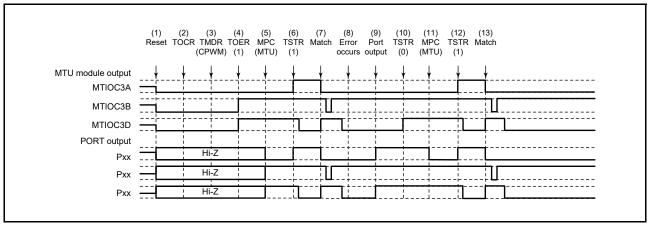


Figure 20.149 Error Occurrence in Complementary PWM Mode, Recovery in Complementary PWM Mode

- (1) to (10) are the same as in Figure 20.147.
- (11) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (12) Restart operation by setting the TSTR register.
- (13) The complementary PWM waveform is output on compare match occurrence.

(24) Operation When Error Occurs in Complementary PWM Mode and Operation is Restarted in Complementary PWM Mode with New Settings

Figure 20.150 shows a case in which an error occurs in complementary PWM mode and operation is restarted in complementary PWM mode after re-setting (operation is restarted using new cycle and duty settings).

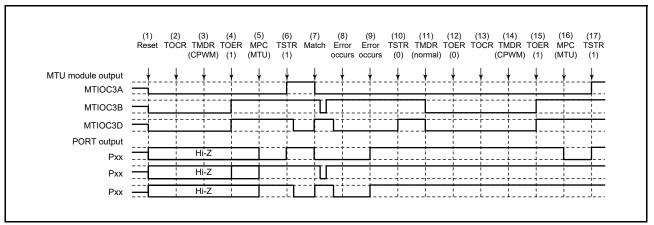


Figure 20.150 Error Occurrence in Complementary PWM Mode, Recovery in Complementary PWM Mode

- (1) to (10) are the same as in Figure 20.147.
- (11) Set normal mode and make new settings (MTU output goes low).
- (12) Disable output in MTU3 and MTU4 with the TOER register.
- (13) Select the complementary PWM mode output level and enable or disable cyclic output with the TOCR register.
- (14) Set complementary PWM mode.
- (15) Enable output in MTU3 and MTU4 with the TOER register.
- (16) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (17) Restart operation by setting the TSTR register.

(25) Operation When Error Occurs in Complementary PWM Mode and Operation is Restarted in Reset-Synchronized PWM Mode

Figure 20.151 shows a case in which an error occurs in complementary PWM mode and operation is restarted in reset-synchronized PWM mode after re-setting.

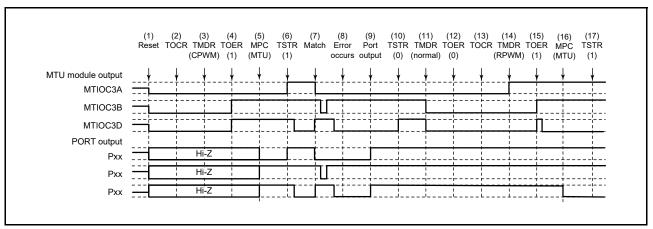


Figure 20.151 Error Occurrence in Complementary PWM Mode, Recovery in Reset-Synchronized PWM Mode

- (1) to (10) are the same as in Figure 20.147.
- (11) Set normal mode (MTU output goes low).
- (12) Disable output in MTU3 and MTU4 with the TOER register.
- (13) Select the reset-synchronized PWM mode output level and enable or disable cyclic output with the TOCR register.
- (14) Set reset-synchronized PWM mode.
- (15) Enable output in MTU3 and MTU4 with the TOER register.
- (16) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (17) Restart operation by setting the TSTR register.

(26) Operation When Error Occurs in Reset-Synchronized PWM Mode and Operation is Restarted in Normal Mode

Figure 20.152 shows a case in which an error occurs in reset-synchronized PWM mode and operation is restarted in normal mode after re-setting.

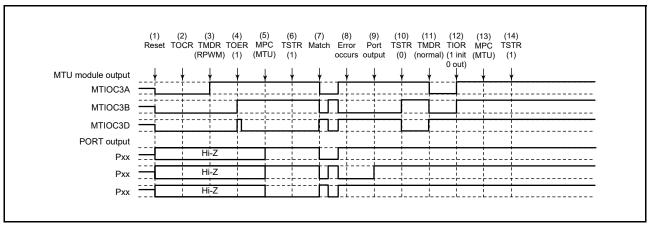


Figure 20.152 Error Occurrence in Reset-Synchronized PWM Mode, Recovery in Normal Mode

- (1) After a reset, the MTU output goes low and the ports enter high-impedance state.
- (2) Select the reset-synchronized PWM mode output level and enable or disable cyclic output with the TOCR register.
- (3) Set reset-synchronized PWM mode.
- (4) Enable output in MTU3 and MTU4 with the TOER register.
- (5) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (6) Start count operation by setting the TSTR register.
- (7) The reset-synchronized PWM waveform is output on compare match occurrence.
- (8) An error occurs.
- (9) Use the port direction register (PDR) and port mode register (PMR) for the input port pin to switch it to operate as a general output port pin, and the port output data register (PODR) to select output of the non-active level.
- (10) Stop count operation by setting the TSTR register. (MTU output becomes the initial reset-synchronized PWM output value.)
- (11) Set normal mode (positive-phase MTU output goes low, and negative-phase output goes high).
- (12) Initialize the pins with the TIOR register.
- (13) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (14) Restart operation by setting the TSTR register.

(27) Operation When Error Occurs in Reset-Synchronized PWM Mode and Operation is Restarted in PWM Mode 1

Figure 20.153 shows a case in which an error occurs in reset-synchronized PWM mode and operation is restarted in PWM mode 1 after re-setting.

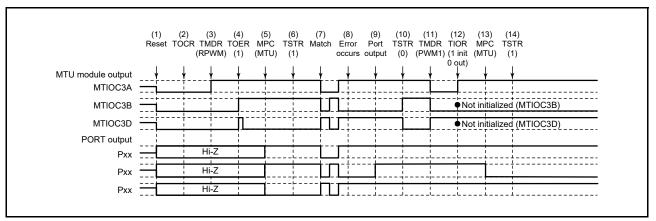


Figure 20.153 Error Occurrence in Reset-Synchronized PWM Mode, Recovery in PWM Mode 1

- (1) to (10) are the same as in Figure 20.152.
- (11) Set PWM mode 1 (positive-phase MTU output goes low, and negative-phase output goes high).
- (12) Initialize the pins with the TIOR register. (In PWM mode 1, a waveform is not output on the MTIOCnB (MTIOCnD) pins. If a level is to be output, make the required general output port settings in the I/O port's port direction register (PDR) and port output data register (PODR).)
- (13) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (14) Restart operation by setting the TSTR register.

(28) Operation When Error Occurs in Reset-Synchronized PWM Mode and Operation is Restarted in Complementary PWM Mode

Figure 20.154 shows a case in which an error occurs in reset-synchronized PWM mode and operation is restarted in complementary PWM mode after re-setting.

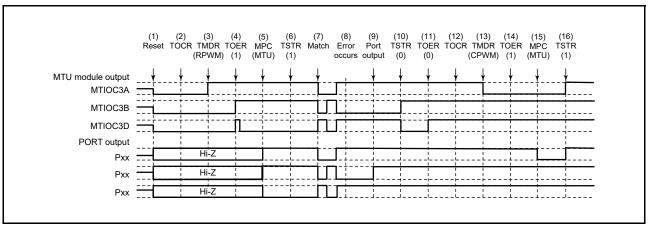


Figure 20.154 Error Occurrence in Reset-Synchronized PWM Mode, Recovery in Complementary PWM Mode

- (1) to (10) are the same as in Figure 20.152.
- (11) Disable output in MTU3 and MTU4 with the TOER register.
- (12) Select the complementary PWM mode output level and enable or disable cyclic output with the TOCR register.
- (13) Set complementary PWM mode (MTU cyclic output pin goes low).
- (14) Enable output in MTU3 and MTU4 with the TOER register.
- (15) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (16) Restart operation by setting the TSTR register.

(29) Operation When Error Occurs in Reset-Synchronized PWM Mode and Operation is Restarted in Reset-Synchronized PWM Mode

Figure 20.155 shows a case in which an error occurs in reset-synchronized PWM mode and operation is restarted in reset-synchronized PWM mode after re-setting.

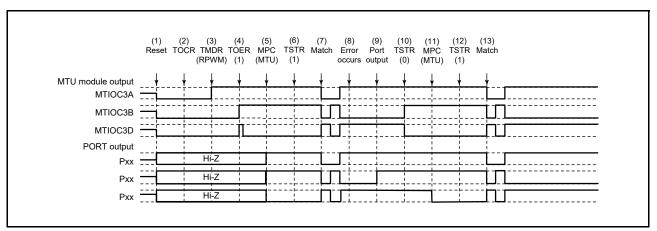


Figure 20.155 Error Occurrence in Reset-Synchronized PWM Mode, Recovery in Reset-Synchronized PWM Mode

- (1) to (10) are the same as in Figure 20.152.
- (11) Use the MPC and the port mode register (PMR) for the I/O port to set up MTU output.
- (12) Restart operation by setting the TSTR register.
- (13) The reset-synchronized PWM waveform is output on compare match occurrence.

20.8 Operations Linked by the ELC

20.8.1 Event Signal Output to the ELC

The MTU is capable of operation linked with another module set in advance when its interrupt request signal is used as an event signal by the event link controller (ELC).

The MTU outputs the event signal regardless of the setting of the corresponding interrupt request enable bit.

20.8.2 MTU Operations in Response to Receiving Event Signals from the ELC

The MTU can perform the following operations in response to the event set in advance in the ELSRn register of the event link controller (ELC).

(1) Count Start Operation

The MTU is selected the count start operation when using the ELOPA and ELOPB registers setting of the ELC. The ELOPA register functions to MTU1 to MTU3, and ELOPB register functions to MTU4. The TMDR register of the channel set by MTU should be set to the value after reset, 00h. When the specified event is generated by the ELSRn register, the TSTR.CSTn bit shown in Table 20.60 is set to 1, then the MTU counter is started.

However, when the specified event is generated while the TSTR.CSTn bit is set to 1, the event is disabled. Table 20.60 lists the TSTR register bits used for each channel.

For details on the count start operation setting, refer to section 20.3.1, (1) Counter Operation.

Table 20.60 Linkage Operating TSTR Register by the ELC

Channel No.	TSTR Register	
MTU1	TSTR.CST1 bit	
MTU2	TSTR.CST2 bit	
MTU3	TSTR.CST3 bit	
MTU4	TSTR.CST4 bit	

(2) Input Capture Operation

The MTU is selected the input capture operation when using the ELOPA and ELOPB registers setting of the ELC. The ELOPA register handles MTU1 to MTU3, and ELOPB register handles MTU4. The TMDR register of the channel set by MTU should be set to the value after reset, 00h. When the specified event is generated by the ELSRn register, then the TCNT counter value capture to TGR register. When using the input capture operation, after setting the bit of the TIOR register to the input capture, the TSTR.CSTn bit should be set to 1, and start the counter.

Then, the TIOCnA pin (input capture pin) input is disabled.

Table 20.61 lists the timer general register and timer I/O control register used in the input capture operation by the ELC. For details on the input capture setting, refer to section 20.3.1, (3) Input Capture Function.

Table 20.61 Timer General Register and Timer I/O Control Register Used in the Input Capture Operation by the ELC

Channel No.	Register Name	Bit Name of TIOR Register
MTU1	MTU1.TGRA register	MTU1.TIOR.IOA[3:0] bits
MTU2	MTU2.TGRA register	MTU2.TIOR.IOA[3:0] bits
MTU3	MTU3.TGRA register	MTU3.TIORH.IOA[3:0] bits
MTU4	MTU4.TGRA register	MTU4.TIORH.IOA[3:0] bits

(3) Counter Restart Operation

The MTU is selected the count start operation when using the ELOPA and ELOPB registers setting of the ELC. The ELOPA register functions MTU1 to MTU3, and ELOPB register functions MTU4. The TMDR register of the channel set by MTU should be set to the value after reset, 00h. When the specified event is generated by the ELSRn register, then the TCNT counter value is rewritten to initial value. When the TSTR.CSTn bit is 1, count operation can be continued. For details on the TSTR.CSTn bit, refer to Table 20.60.

20.8.3 Notes on MTU by Event Signal Reception from the ELC

The following describes usage notes when using MTU by the event link operation.

(1) Count Start Operation

When the specified event is generated by the ELSRn register while write cycle is performed to the TSTR.CSTn bit, the write cycle is not performed to the TSTR.CSTn bit, and the setting to 1 takes precedence by generated event.

(2) Count Restart Operation

When the specified event is generated by the ELSRn register while write cycle is performed to the TCNT counter, the write cycle is not performed to the TCNT counter, and count value initialization takes precedence by generated event.

21. Port Output Enable 2 (POE2a)

The port output enable 2 (POE) module can be used to place the states of the pins for complementary PWM output by the MTU (MTIOC3B, MTIOC3D, MTIOC4A, MTIOC4B, MTIOC4C, and MTIOC4D), and the states of pins for MTU0 (MTIOC0A, MTIOC0B, MTIOC0C, and MTIOC0D) in the high-impedance in response to changes in the input levels on the POE0# to POE3# and POE8# pins, in the output levels on pins for complementary PWM output by the MTU, oscillation stop detection by the clock generation circuit, and changes to register settings (SPOER).

It can also generate simultaneous interrupt requests.

In this section, "PCLK" is used to refer to PCLKB.

21.1 Overview

Table 21.1 lists the specifications of the POE, and Figure 21.1 shows a block diagram of the POE.

Table 21.1 POE Specifications

Item	Description
High-impedance is controlled by the input level detection	 Falling-edge detection or sampling of the low level 16 times at PCLK/8, PCLK/16, or PCLK/128 clock cycles can be set for each of the POE0# to POE3# and POE8# input pins. Pins for complementary PWM output from the MTU can be placed in the high-impedance on detection of falling edges or sampling of the low level on the POE0# to POE3# pins. Pins for output from MTU0 can be placed in the high-impedance on detection of falling edges or sampling of the low level on the POE8# pin.
High-impedance is controlled by the output level comparison	 Levels output on pins for complementary PWM output from the MTU are compared, and when simultaneous output of the active level continues for one or more clock cycles, the pins can be placed in the high-impedance.
High-impedance is controlled by the oscillation stop detection	Pins for complementary PWM output from the MTU and output pins for MTU0 can be placed in the high-impedance when oscillation by the clock generation circuit stops.
High-impedance is controlled by software (registers)	 Pins for complementary PWM output from the MTU and output pins for MTU0 can be placed in the high-impedance by modifying settings of POE registers.
Interrupts	Interrupts can be generated in response to the results of POE0# to POE3# and POE8# input-level detection and MTU complementary PWM output-level comparison.

The POE has input-level detection circuits, output-level comparison circuits, an input for the oscillation stop detection signal from the clock generation circuit, and a high-impedance request/interrupt request generating circuit as shown in Figure 21.1.

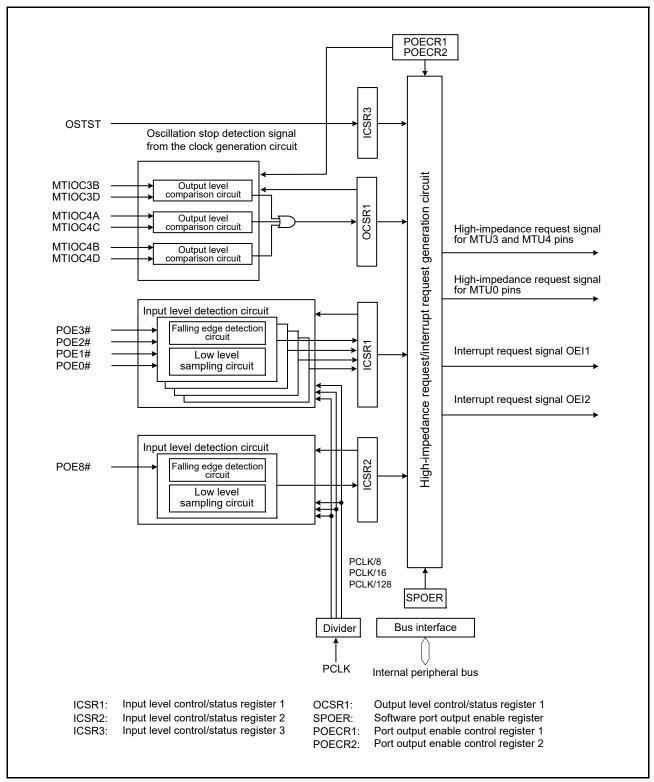


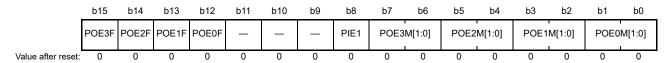
Figure 21.1 POE Block Diagram

Table 21.2 lists I/O pins to be used by the POE.

Table 21.2 POE I/O Pins

Pin Name	I/O	Description
POE0# to POE3#	Input	Request signals to place the pins for MTU complementary PWM output in high-impedance.
POE8#	Input	Request signal to place the MTU0 output pins in high-impedance.
MTIOC3B	Output	MTU3 complementary PWM output pin
MTIOC3D	Output	MTU3 complementary PWM output pin
MTIOC4A	Output	MTU4 complementary PWM output pin
MTIOC4B	Output	MTU4 complementary PWM output pin
MTIOC4C	Output	MTU4 complementary PWM output pin
MTIOC4D	Output	MTU4 complementary PWM output pin
MTIOC0A	Output	MTU0 output pin
MTIOC0B	Output	MTU0 output pin
MTIOC0C	Output	MTU0 output pin
MTIOC0D	Output	MTU0 output pin

Table 21.3 lists output-level comparisons with pin combinations.


Table 21.3 Pin Combinations

Pin Combination	I/O	Description
MTIOC3B and MTIOC3D	Output	Pin combinations for output-level comparison and high-impedance control can be selected
MTIOC4A and MTIOC4C	Output	 by POE registers. The pins for MTU complementary PWM output are placed in high-impedance when the pins
MTIOC4B and MTIOC4D	Output	simultaneously output an active level for one or more PCLK clock cycles. (When the MTU.TOCR1.TOCS bit = 0: The active level is low level if the MTU.TOCR1.OLSP and OLSN bits are 0, and the active level is high level if the MTU.TOCR1.OLSP and OLSN bits are 1. When the MTU.TOCR1.TOCS bit = 1: The active level is low level if the MTU.TOCR2.OLS3N, OLS3P, OLS2N, OLS2P, OLS1N, and OLS1P bits are 0, and the active level is high level if the MTU.TOCR2.OLS3N, OLS3P, OLS2N, OLS2P, OLS1N, and OLS1P bits are 1.)

21.2 Register Descriptions

21.2.1 Input Level Control/Status Register 1 (ICSR1)

Address(es): 0008 8900h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	POE0M[1:0]	POE0 Mode Select	 b1 b0 0 0: Accepts a high-impedance request on the falling edge of the POE0# pin input. 0 1: Accepts a high-impedance request when the POE0# pin input has been sampled 16 times at PCLK/8 clock cycles and all are low level. 1 0: Accepts a high-impedance request when POE0# input has been sampled 16 times at PCLK/16 clock pulses and all are low level. 1 1: Accepts a high-impedance request when POE0# input has been sampled 16 times at PCLK/128 clock pulses and all are low level. 	R/W*1
b3, b2	POE1M[1:0]	POE1 Mode Select	 b3 b2 0 0: Accepts a high-impedance request on the falling edge of the POE1# pin input. 0 1: Accepts a high-impedance request when the POE1# pin input has been sampled 16 times at PCLK/8 clock cycles and all are low level. 1 0: Accepts a high-impedance request when POE1# input has been sampled 16 times at PCLK/16 clock pulses and all are low level. 1 1: Accepts a high-impedance request when POE1# input has been sampled 16 times at PCLK/128 clock pulses and all are low level. 	R/W*1
b5, b4	POE2M[1:0]	POE2 Mode Select	 b5 b4 0 0: Accepts a high-impedance request on the falling edge of the POE2# pin input. 0 1: Accepts a high-impedance request when the POE2# pin input has been sampled 16 times at PCLK/8 clock cycles and all are low level. 1 0: Accepts a high-impedance request when POE2# input has been sampled 16 times at PCLK/16 clock pulses and all are low level. 1 1: Accepts a high-impedance request when POE2# input has been sampled 16 times at PCLK/128 clock pulses and all are low level. 	R/W*1
b7, b6	POE3M[1:0]	POE3 Mode Select	 b7 b6 0 0: Accepts a high-impedance request on the falling edge of the POE3# pin input. 0 1: Accepts a high-impedance request when the POE3# pin input has been sampled 16 times at PCLK/8 clock cycles and all are low level. 1 0: Accepts a high-impedance request when POE3# input has been sampled 16 times at PCLK/16 clock pulses and all are low level. 1 1: Accepts a high-impedance request when POE3# input has been sampled 16 times at PCLK/128 clock pulses and all are low level. 	R/W* ¹
b8	PIE1	Port Interrupt Enable 1	0: OEI1 interrupt requests by the input level detection disabled 1: OEI1 interrupt requests by the input level detection enabled	R/W
b11 to b9	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b12	POE0F	POE0 Flag	0: Indicates that a high-impedance request has not been input to the POE0# pin. 1: Indicates that a high-impedance request has been input to the POE0# pin.	R/(W) *2
b13	POE1F	POE1 Flag	0: Indicates that a high-impedance request has not been input to the POE1# pin. 1: Indicates that a high-impedance request has been input to the POE1# pin.	R/(W) *2
b14	POE2F	POE2 Flag	0: Indicates that a high-impedance request has not been input to the POE2# pin. 1: Indicates that a high-impedance request has been input to the POE2# pin.	R/(W) *2
b15	POE3F	POE3 Flag	0: Indicates that a high-impedance request has not been input to the POE3# pin. 1: Indicates that a high-impedance request has been input to the POE3# pin.	R/(W) *2

Note 1. Can be modified only once after a reset.

Note 2. Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed way.

When low-level sampling has been set by the POE0M[1:0] to POE3M[1:0] bits, writing 0 to the POE0F to POE3F flags requires high-level input on the POE0# to POE3# pins.

For details, refer to section 21.3.5, Release from the High-Impedance.

PIE1 Bit (Port Interrupt Enable 1)

This bit enables or disables OEI1 interrupt requests when any one of the POE0F to POE3F flags is set to 1.

POE0F Flag (POE0 Flag)

This flag indicates that a high-impedance request has been input to the POE0# pin. [Setting condition]

• When the input set by POE0M[1:0] occurs at the POE0# pin

[Clearing condition]

• By writing 0 to POE0F after reading POE0F = 1

POE1F Flag (POE1 Flag)

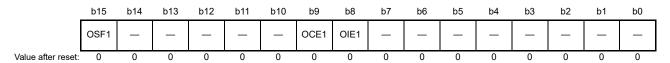
This flag indicates that a high-impedance request has been input to the POE1# pin. [Setting condition]

- When the input set by POE1M[1:0] occurs at the POE1# pin [Clearing condition]
 - By writing 0 to POE1F after reading POE1F = 1

POE2F Flag (POE2 Flag)

This flag indicates that a high-impedance request has been input to the POE2# pin. [Setting condition]

- When the input set by POE2M[1:0] occurs at the POE2# pin [Clearing condition]
 - By writing 0 to POE2F after reading POE2F = 1


POE3F Flag (POE3 Flag)

This flag indicates that a high-impedance request has been input to the POE3# pin. [Setting condition]

- When the input set by POE3M[1:0] occurs at the POE3# pin [Clearing condition]
 - By writing 0 to POE3F after reading POE3F = 1

21.2.2 Output Level Control/Status Register 1 (OCSR1)

Address(es): 0008 8902h

Bit	Symbol	Bit Name	Description	R/W
b7 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b8	OIE1	Output Short Interrupt Enable 1	O: OEI1 interrupt requests by the output level comparison disabled OEI1 interrupt requests by the output level comparison enabled	R/W
b9	OCE1	Output Short High-Impedance Enable 1	Does not place the pins in high-impedance. Places the pins in high-impedance.	R/W*1
b14 to b10	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b15	OSF1	Output Short Flag 1	Indicates that outputs have not simultaneously become an active level. Indicates that outputs have simultaneously become an active level.	R/(W) *2

Note 1. Can be modified only once after a reset.

OIE1 Bit (Output Short Interrupt Enable 1)

This bit enables or disables OEI1 interrupt requests when the OSF1 flag is set to 1.

OCE1 Bit (Output Short High-Impedance Enable 1)

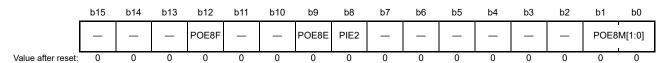
This bit specifies whether to place the MTU complementary PWM output pins in high-impedance when the OSF1 flag is set to 1.

OSF1 Flag (Output Short Flag 1)

This flag indicates that any one of the three pairs of two-phase outputs for MTU complementary PWM output to be compared in Table 21.3 has simultaneously become an active level. If the POECR2.PnCZEA (n = 1, 2, 3) bits are 0 or the output comparison function of the MTU is not enabled, the OSF1 flag will not be set to 1 even if both pins in the corresponding complementary output pair of the MTU are simultaneously active. The active levels are determined by the MTU.TOCR1 and TOCR2 registers.

[Setting condition]

- When any one of the three pairs of two-phase outputs has simultaneously become an active level*¹ [Clearing condition]
 - By writing 0 to OSF1 after reading OSF1 = 1


 The complementary output pins for the MTU must be at the inactive level when 0 is written to the flag. For details, refer to section 21.3.5, Release from the High-Impedance.

Note 1. The setting condition is judged only by the level of the pin regardless the setting of the MPC.PmnPFS register.

Note 2. Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed way.

21.2.3 Input Level Control/Status Register 2 (ICSR2)

Address(es): 0008 8908h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	POE8M[1:0]	POE8 Mode Select	 b1 b0 0 0: Accepts a high-impedance request on the falling edge of the POE8# pin input 1 1: Accepts a high-impedance request when the POE8# pin input has been sampled 16 times at PCLK/8 clock cycles and all are low level. 1 0: Accepts a high-impedance request when the POE8# pin input has been sampled 16 times at PCLK/16 clock cycles and all are low level. 1 1: Accepts a high-impedance request when the POE8# pin input has been sampled 16 times at PCLK/128 clock cycles and all are low level. 	
b7 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	
b8	PIE2	Port Interrupt Enable 2	OEI2 interrupt requests disabled OEI2 interrupt requests enabled	
b9	POE8E	POE8 High- Impedance Enable	O: Does not place the MTIOC0A, MTIOC0B, MTIOC0C, and MTIOC0D pins in high-impedance. 1: Places the MTIOC0A, MTIOC0B, MTIOC0C, and MTIOC0D pins in high-impedance.	R/W*1
b11, b10	_	Reserved	These bits are read as 0. The write value should be 0.	
b12	POE8F	POE8 Flag	0: Indicates that a high-impedance request has not been input to the POE8# pin. 1: Indicates that a high-impedance request has been input to the POE8# pin.	
b15 to b13	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. Can be modified only once after a reset.

PIE2 Bit (Port Interrupt Enable 2)

This bit enables or disables OEI2 interrupt requests when the POE8F flag is set to 1.

POE8E Bit (POE8 High-Impedance Enable)

This bit specifies whether to place the MTU0 pins in high-impedance when the POE8F flag is set to 1.

POE8F Flag (POE8 Flag)

This flag indicates that a high-impedance request has been input to the POE8# pin. [Setting condition]

• When the input set by ICSR2.POE8M[1:0] bits occurs at the POE8# pin [Clearing conditions]

• Writing 0 to POE8F after reading POE8F = 1

When writing 0 to the flag while low-level sampling is selected for the ICSR2.POE8M[1:0] bits, the POE8# pin input must be at the high level.

For details, refer to section 21.3.5, Release from the High-Impedance.

Note 2. Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed way.

21.2.4 Software Port Output Enable Register (SPOER)

Address(es): 0008 890Ah

Bit	Symbol	Bit Name	Description	R/W
b0	CH34HIZ	MTU3 and MTU4 Output High- Impedance Enable	0: Does not place the pins in high-impedance.1: Places the pins in high-impedance.	R/W
b1	CH0HIZ	MTU0 Output High-Impedance Enable	Does not place the pins in high-impedance. Places the pins in high-impedance.	R/W
b7 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

CH34HIZ Bit (MTU3 and MTU4 Output High-Impedance Enable)

This bit selects whether to place the MTU complementary PWM output pins (MTIOC3B, MTIOC3D, MTIOC4A, MTIOC4B, MTIOC4C, MTIOC4D) in high-impedance.

[Setting condition]

• By writing 1 to CH34HIZ

[Clearing condition]

• By writing 0 to CH34HIZ after reading CH34HIZ = 1

CH0HIZ Bit (MTU0 Output High-Impedance Enable)

This bit selects whether to place the MTU0 pins (MTIOC0A, MTIOC0B, MTIOC0C, MTIOC0D) in high-impedance. [Setting condition]

• By writing 1 to CH0HIZ

[Clearing condition]

• By writing 0 to CH0HIZ after reading CH0HIZ = 1

21.2.5 Port Output Enable Control Register 1 (POECR1)

Address(es): 0008 890Bh

Bit	Symbol	Bit Name	Description	R/W
b0	PE0ZE	MTIOC0A High-Impedance Enable	Does not place the pin in high-impedance. Places the pin in high-impedance.	R/W*1
b1	PE1ZE	MTIOC0B High-Impedance Enable	Does not place the pin in high-impedance. Places the pin in high-impedance.	R/W*1
b2	PE2ZE	MTIOC0C High-Impedance Enable	O: Does not place the pin in high-impedance. 1: Places the pin in high-impedance.	R/W*1
b3	PE3ZE	MTIOC0D High-Impedance Enable	O: Does not place the pin in high-impedance. 1: Places the pin in high-impedance.	R/W*1
b7 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. Can be modified only once after a reset.

21.2.6 Port Output Enable Control Register 2 (POECR2)

Address(es): 0008 890Ch

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b4	P3CZEA	MTU Port 3 High-Impedance Enable	Comparison of output levels does not proceed and the pins are not placed in the high-impedance. The pins are placed in the high-impedance.	R/W*1
b5	P2CZEA	MTU Port 2 High-Impedance Enable	Comparison of output levels does not proceed and the pins are not placed in the high-impedance. The pins are placed in the high-impedance.	R/W*1
b6	P1CZEA	MTU Port 1 High-Impedance Enable	Comparison of output levels does not proceed and the pins are not placed in the high-impedance. The pins are placed in the high-impedance.	R/W*1
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

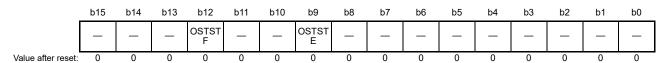
Note 1. Can be modified only once after a reset.

When this function is not used, write 00h to this register.

P3CZEA Bit (MTU Port 3 High-Impedance Enable)

This bit gives permission regarding whether or not the MTIOC4B and MTIOC4D pins for complementary PWM output from the MTU are placed in the high-impedance. It also gives permission regarding whether or not the levels on the MTIOC4B and MTIOC4D pins are compared.

P2CZEA Bit (MTU Port 2 High-Impedance Enable)


This bit gives permission regarding whether or not the MTIOC4A and MTIOC4C pins for complementary PWM output from the MTU are placed in the high-impedance. It also gives permission regarding whether or not the levels on the MTIOC4A and MTIOC4C pins are compared.

P1CZEA Bit (MTU Port 1 High-Impedance Enable)

This bit gives permission regarding whether or not the MTIOC3B and MTIOC3D pins for complementary PWM output from the MTU are placed in the high-impedance. It also gives permission regarding whether or not the levels on the MTIOC3B and MTIOC3D pins are compared.

21.2.7 Input Level Control/Status Register 3 (ICSR3)

Address(es): 0008 890Eh

Bit	Symbol	Bit Name	Description	R/W
b8 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b9	OSTSTE	OSTST High-Impedance Enable	O: Does not place the MTIOC0A, MTIOC0B, MTIOC0C, MTIOC0D, MTIOC3B, MTIOC3D, MTIOC4A, MTIOC4B, MTIOC4C, and MTIOC4D pins in high-impedance. 1: Places the MTIOC0A, MTIOC0B, MTIOC0C, MTIOC0D, MTIOC3B, MTIOC3D, MTIOC4A, MTIOC4B, MTIOC4C, and MTIOC4D pins in high-impedance.	R/W*1
b11, b10	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b12	OSTSTF	OSTST High-Impedance Flag	Oscillation stop is not producing a request to place pins in the high-impedance. Coscillation stop is producing a request to place pins in the high-impedance.	R/(W) *2
b15 to b13	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. Can be modified only once after a reset.

Note 2. Writing 0 to this bit after reading it as 1 clears the flag and is the only allowed way.

OSTSTE Bit (OSTST High-Impedance Enable)

This bit permits or prohibits placement of pins for complementary PWM output from MTU and output pins for MTU0 in the high-impedance on detection that oscillation has stopped.

OSTSTF Flag (OSTST High-Impedance Flag)

The OSTSTF flag is a status flag that indicates the state of requests to place pins in the high-impedance due to oscillation having stopped. The value of the flag becomes 1 when oscillation stops. Ensure that the oscillation-stopped detection signal is negated when clearing the flag by writing 0 to it. Writing 0 to the OSTSTF flag will not clear the flag while the oscillation-stopped detection signal is being asserted; in other words, it will not clear the flag before 10 PCLK clock cycles have elapsed after stopped oscillation was detected.

[Setting condition]

• Detection of the oscillation-stopped state

[Clearing condition]

• Writing 0 to the bit after having read its value as 1.

21.3 Operation

The target pins for high-impedance control and conditions to place the pins in high-impedance are described below.

(1) MTU0 pin (MTIOC0A)

When any of the following conditions is satisfied, the pin is placed to the high-impedance state.

• POE8# input level detection

When the ICSR2.POE8F flag is set to 1 with POECR1.PE0ZE and ICSR2.POE8E set to 1.

SPOER setting

When the SPOER.CH0HIZ bit is set to 1 with POECR1.PE0ZE set to 1.

• Detection of stopped oscillation

When the OSTSTF flag is set to 1 with POECR1.PE0ZE and ICSR3.OSTSTE set to 1.

(2) MTU0 pin (MTIOC0B)

When any of the following conditions is satisfied, the pin is placed to the high-impedance state.

• POE8# input level detection

When the ICSR2.POE8F flag is set to 1 with POECR1.PE1ZE and ICSR2.POE8E set to 1.

SPOER setting

When the SPOER.CH0HIZ bit is set to 1 with POECR1.PE1ZE set to 1.

• Detection of stopped oscillation

When the OSTSTF flag is set to 1 with POECR1.PE1ZE and ICSR3.OSTSTE set to 1.

(3) MTU0 pin (MTIOC0C)

When any of the following conditions is satisfied, the pin is placed to the high-impedance state.

• POE8# input level detection

When the ICSR2.POE8F flag is set to 1 with POECR1.PE2ZE and ICSR2.POE8E set to 1.

SPOER setting

When the SPOER.CH0HIZ bit is set to 1 with POECR1.PE2ZE set to 1.

• Detection of stopped oscillation

When the OSTSTF flag is set to 1 with POECR1.PE2ZE and ICSR3.OSTSTE set to 1.

(4) MTU0 pin (MTIOC0D)

When any of the following conditions is satisfied, the pin is placed to the high-impedance state.

• POE8# input level detection

When the ICSR2.POE8F flag is set to 1 with POECR1.PE3ZE and ICSR2.POE8E set to 1.

SPOER setting

When the SPOER.CH0HIZ bit is set to 1 with POECR1.PE3ZE set to 1.

• Detection of stopped oscillation

When the OSTSTF flag is set to 1 with POECR1.PE3ZE and ICSR3.OSTSTE set to 1.

(5) MTU3 pins (MTIOC3B and MTIOC3D)

When any of the following conditions is satisfied, the pins are placed to the high-impedance state.

• POE0# to POE3# input level detection

When the ICSR1.POE3F, POE2F, POE1F, or POE0F flag is set to 1 with POECR2.P1CZEA set to 1.

• MTIOC3B and MTIOC3D output level comparison

When the OCSR1.OSF1 flag is set to 1 with POECR2.P1CZEA and OCSR1.OCE1 set to 1.

SPOER setting

When the SPOER.CH34HIZ bit is set to 1 with POECR2.P1CZEA set to 1.

• Detection of stopped oscillation

When the ICSR3.OSTSTF flag is set to 1 with POECR2.P1CZEA and ICSR3.OSTSTE set to 1.

(6) MTU4 pins (MTIOC4A and MTIOC4C)

When any of the following conditions is satisfied, the pins are placed to the high-impedance state.

• POE0# to POE3# input level detection

When the ICSR1.POE3F, POE2F, POE1F, or POE0F flag is set to 1 with POECR2.P2CZEA set to 1.

• MTIOC4A and MTIOC4C output level comparison

When the OCSR1.OSF1 flag is set to 1 with POECR2.P2CZEA and OCSR1.OCE1 set to 1.

SPOER setting

When the SPOER.CH34HIZ bit is set to 1 with POECR2.P2CZEA set to 1.

• Detection of stopped oscillation

When the ICSR3.OSTSTF flag is set to 1 with POECR2.P2CZEA and ICSR3.OSTSTE set to 1.

(7) MTU4 pins (MTIOC4B and MTIOC4D)

When any of the following conditions is satisfied, the pins are placed to the high-impedance state.

• POE0# to POE3# input level detection

When the ICSR1.POE3F, POE2F, POE1F, or POE0F flag is set to 1 with POECR2.P3CZEA set to 1.

• MTIOC4B and MTIOC4D output level comparison

When the OCSR1.OSF1 flag is set to 1 with POECR2.P3CZEA and OCSR1.OCE1 set to 1.

SPOER setting

When the SPOER.CH34HIZ bit is set to 1 with POECR2.P3CZEA set to 1.

• Detection of stopped oscillation

When the ICSR3.OSTSTF flag is set to 1 with POECR2.P3CZEA and ICSR3.OSTSTE set to 1.

21.3.1 Input Level Detection Operation

If the input conditions set by the ICSR1 and ICSR2 registers occur on the POE0# to POE3# and POE8# pins, the pins for the MTU complementary PWM output and MTU0 are placed in high-impedance.

(1) Falling Edge Detection

When a change from a high to low level is input to the POE0# to POE3# and POE8# pins, the pins for the MTU complementary PWM output and MTU0 are placed in high-impedance.

A falling edge is detected after PCLK causes sampling to proceed. If the low level is input to the POE0# to POE3# or POE8# pin over less than one PCLK cycle, whether the falling edge will or will not be detected cannot be guaranteed. Figure 21.2 shows the timing of sampling after the level changes in input to the POE0# to POE3# and POE8# pins until the respective pins enter high-impedance.

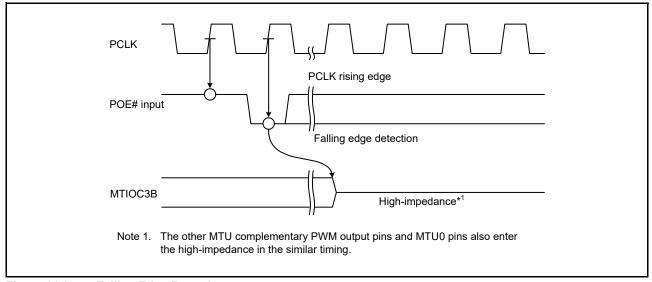


Figure 21.2 Falling Edge Detection

(2) Low-Level Detection

Figure 21.3 shows the low-level detection operation. When a low level is detected 16 times continuously with the sampling clock selected by the ICSR1 and ICSR2 registers, the detected level is recognized as low, and the pins for the MTU complementary PWM output and MTU0 are placed in high-impedance. If even one high level is detected during this interval, the detected level is not recognized as low. Furthermore, in an interval over which the sampling clock is not being output, changes to the levels on the POE0# to POE3# and POE8# pins are ignored.

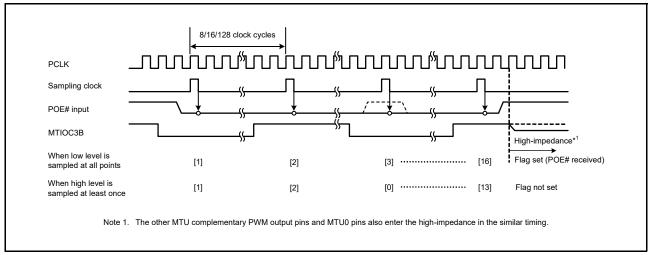


Figure 21.3 Low-Level Detection Operation

21.3.2 Output-Level Compare Operation

Figure 21.4 shows an example of the output-level compare operation for the combination of MTIOC3B and MTIOC3D (MTU complementary PWM output pins). The operation is the same for the other pin combinations.

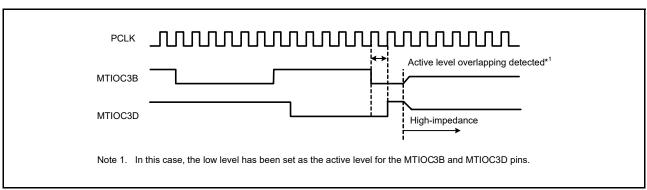


Figure 21.4 Output-Level Compare Operation

21.3.3 High-Impedance Control Using Registers

The high-impedance of the MTU complementary PWM output and MTU0 pins can be directly controlled by writing to the software port output enable register (SPOER).

Setting the SPOER.CH34HIZ bit to 1 places the MTU complementary PWM output pins (MTU3 and MTU4) specified by the POECR2 register in the high-impedance.

Setting the SPOER.CH0HIZ bit to 1 places the MTU0 output pins specified by port output enable control register 1 (POECR1) in the high-impedance.

21.3.4 High-Impedance Control on Detection of Stopped Oscillation

When the oscillation stop detection function in the clock generation circuit detects stopped oscillation while the ICSR3.OSTSTE bit is 1, the MTU complementary PWM output pins specified by the POECR2 register and the MTU0 output pins specified by the POECR1 register are placed in the high-impedance.

21.3.5 Release from the High-Impedance

Pins for complementary PWM output from MTU and pins for MTU0 which have been placed in the high-impedance due to input-level detection can be released from that state by either returning them to their initial state with a reset or clearing all of the ICSR1.POE3F to POE0F flags and the ICSR2.POE8F flag. Note, however, that when low-level sampling is selected by the ICSR1.POE3M[1:0], POE2M[1:0], POE1M[1:0], and POE0M[1:0] bits, and the ICSR2.POE8M[1:0] bits, if a high level is being input to the corresponding pin from among POE0# to POE3# and POE#8 but has not yet been detected, writing 0 to the flag is ignored (the flag is not cleared).

MTU complementary PWM output pins which have been placed in the high-impedance due to output-level comparison can be released from that state by either returning them to their initial state with a reset or clearing the OCSR1.OSF1 flag. Note, however, that if the inactive level is not yet being output from the MTU complementary PWM output pins, writing 0 to the flag is ignored (the flag is not cleared). Inactive-level outputs can be obtained by setting the MTU registers.

For MTU complementary PWM output pins and pins for MTU0 that have been placed in the high-impedance because oscillation by the clock generation circuit has stopped, clearing the ICSR3.OSTSTF or ICSR3.OSTSTE bit releases the pins from the high-impedance.

For MTU complementary PWM output pins and pins for MTU0 that have been placed in the high-impedance by the SPOER.CH34HIZ or SPOER.CH0HIZ bit, clearing the corresponding bits (SPOER.CH34HIZ and SPOER.CH0HIZ) releases the pins from the high-impedance.

21.4 Interrupts

The POE issues a request to generate an interrupt when the corresponding condition below is matched during input-level detection, output-level comparison, or oscillation stop by the clock generation circuit. Table 21.4 lists the interrupt sources and their request conditions. On acceptance of an OEI1 or OEI2 interrupt, the first line of the exception handling routine for the given interrupt should confirm that the flag for the given flag has been set to 1.

Table 21.4 Interrupt Sources and Conditions

Name	Interrupt Source	Interrupt Flag	Condition
OEI1	Output enable interrupt 1	POE0F, POE1F, POE2F, POE3F, OSF1	When ICSR1.POE0F, POE1F, POE2F, or POE3F flag is set to 1 with ICSR1.PIE1 set to 1, or when OCSR1.OSF1 flag is set to 1 with OCSR1.OIE1 set to 1.
OEI2	Output enable interrupt 2	POE8F	When ICSR2.POE8F flag is set to 1 with ICSR2.PIE2 set to 1.

21.5 Usage Notes

21.5.1 Transitions to Software Standby Mode

When the POE is used, do not make a transition to software standby mode. In this mode, the POE stops and thus the high-impedance of pins cannot be controlled.

21.5.2 When the POE Is Not Used

When the POE is not used, write 00h to port output enable control registers 1 and 2 (POECR1 and POECR2), respectively.

21.5.3 Specifying Pins Corresponding to the MTU

The POE controls high-impedance outputs only when a pin has been specified so that the pin corresponds to the MTU by setting the PMR and PmnPFS registers. When the pin has been specified as a general I/O pin, the POE does not control high-impedance outputs.

22. 8-Bit Timer (TMR)

This MCU has two units (unit 0, unit 1) of an on-chip 8-bit timer (TMR) module that comprise two 8-bit counter channels, totaling four channels. The 8-bit timer module can be used to count external events and also be used as a multifunction timer in a variety of applications, such as generation of counter reset signal, interrupt requests, and pulse output with a desired duty cycle using a compare-match signal with two registers.

Unit 0 and unit 1 have the same functions, and can generate a baud rate clock for the SCI and an operating clock for the remote control signal receiver (REMC).

In this section, "PCLK" is used to refer to PCLKB.

22.1 Overview

Table 22.1 lists the specifications of the TMR. Table 22.2 lists the TMR functions.

Figure 22.1 shows a block diagram of the 8-bit timer module (unit 0), and Figure 22.2 shows that of the 8-bit timer module (unit 1).

Table 22.1 Specifications of TMR

Item	Description
Count clock	 Internal clock: PCLK/1, PCLK/2, PCLK/8, PCLK/32, PCLK/64, PCLK/1024, PCLK/8192 External clock: external count clock
Number of channels	(8 bits × 2 channels) × 2 units
Compare match	 8-bit mode (compare match A, compare match B) 16-bit mode (compare match A, compare match B)
Counter clear	Selected by compare match A or B, or an external counter reset signal.
Timer output	Output pulses with a desired duty cycle or PWM output
Cascading of two channels	 16-bit count mode 16-bit timer using TMR0 for the upper 8 bits and TMR1 for the lower 8 bits (TMR2 for the upper 8 bits and TMR3 for the lower 8 bits) Compare match count mode TMR1 can be used to count TMR0 compare matches (TMR3 can be used to count TMR2 compare matches).
Interrupt sources	Compare match A, compare match B, and overflow
Event link function (Output)	Compare match A, compare match B, and overflow (TMR0, TMR2)
Event link function (Input)	One of the following three operations proceeds in response to an event reception: (1) Counting start operation (TMR0, TMR2) (2) Event counting operation (TMR0, TMR2) (3) Counting restart operation (TMR0, TMR2)
DTC activation	DTC can be activated by compare match A interrupts or compare match B interrupts.
Capable of generating baud rate clock for SCI	Generates baud rate clock for SCI.*1
Capable of generating receive clock for REMC	Generates operating clock for remote control signal receiver (REMC)*2
Low power consumption function	Each unit can be placed in a module stop state

Note 1. For details, refer to section 27, Serial Communications Interface (SCIg, SCIh).

Note 2. For details, refer to section 28, Remote Control Signal Receiver (REMC).

Table 22.2 TMR Functions

Item		Unit 0			Unit 1			
Counter m	node	8 Bits		16 Bits	8 Bits		16 Bits	
Channel		TMR0	TMR1	TMR0 + TMR1	TMR2 TMR3		TMR2 + TMR3	
Count clock		PCLK/1 PCLK/2 PCLK/8 PCLK/32 PCLK/64 PCLK/1024 PCLK/8192 TMCI0	PCLK/1 PCLK/2 PCLK/8 PCLK/32 PCLK/64 PCLK/1024 PCLK/8192 TMCI1	PCLK/1 PCLK/2 PCLK/8 PCLK/32 PCLK/64 PCLK/1024 PCLK/8192 TMCI1	PCLK/1 PCLK/2 PCLK/8 PCLK/32 PCLK/64 PCLK/1024 PCLK/8192 TMCI2	PCLK/1 PCLK/2 PCLK/8 PCLK/32 PCLK/64 PCLK/1024 PCLK/8192 TMCI3	PCLK/1 PCLK/2 PCLK/8 PCLK/32 PCLK/64 PCLK/1024 PCLK/8192 TMCI3	
Counter cle	ear	TMR0.TCORA TMR0.TCORB TMRI0	TMR1.TCORA TMR1.TCORB TMRI1	TMR0.TCORA + TMR1.TCORA TMR0.TCORB + TMR1.TCORB TMR10	TMR2.TCORA TMR2.TCORB TMR12	TMR3.TCORA TMR3.TCORB TMRI3	TMR2.TCORA + TMR3.TCORA TMR2.TCORB + TMR3.TCORB TMR12	
Compare	Compare match A	✓	✓	✓	✓	✓	✓	
match	Compare match B	✓	✓	✓	✓	✓	✓	
Timer	Low output	✓	✓	✓	✓	✓	✓	
output	High output	✓	√	✓	√	√	√	
	Toggle output	✓	√	✓	√	√	✓	
DTC	Compare match A	✓	✓	✓	✓	✓	✓	
activation	Compare match B	✓	✓	✓	✓	✓	✓	
	TCNT overflow	_	_	_	_	_	_	
Interrupt	Compare match A	CMIA0	CMIA1	CMIA0	CMIA2	CMIA3	CMIA2	
	Compare match B	CMIB0	CMIB1	CMIB0	CMIB2	CMIB3	CMIB2	
	TCNT overflow	OVI0	OVI1	OVI0	OVI2	OVI3	OVI2	
Cascaded	connection	TMR1 overflow	TMR0 compare match A	_	TMR3 overflow	TMR2 compare match A	_	
SCI baud r generation		·	/	_	•	/	_	
ELC	Compare match A	✓	_	✓	✓	_	✓	
output event	Compare match B	✓	_	✓	✓	_	✓	
	TCNT overflow	✓	_	✓	✓	_	✓	
ELC input	Counting start	✓	_	_	✓	_	_	
event	Event counting	✓	_	_	√	_	_	
	Counting restart	✓	_	_	√	_	_	
Capable of generating receive clock for REMC*2		√	_	_	✓	_	_	
Module sto	pp setting*3	MSTPCRA.MST	ΓΡΑ5 bit (unit 0),	MSTPCRA.MSTP	A4 bit (unit 1)	•	•	

^{√:} Possible

^{—:} Impossible

Note 1. For details, refer to section 27, Serial Communications Interface (SCIg, SCIh).

Note 2. For details, refer to section 28, Remote Control Signal Receiver (REMC). Note 3. For details, refer to section 11, Low Power Consumption.

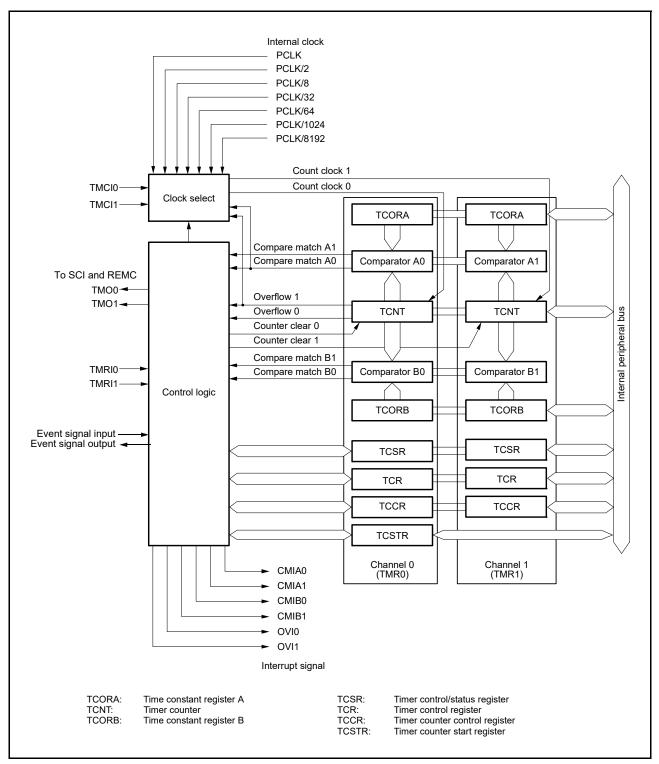


Figure 22.1 Block Diagram of TMR (Unit 0)

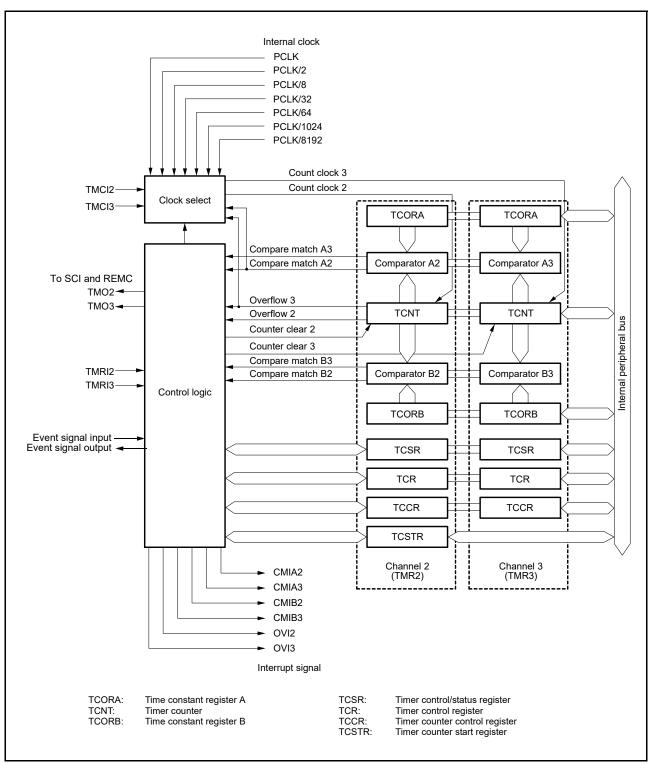


Figure 22.2 Block Diagram of TMR (Unit 1)

Table 22.3 lists the I/O pins of the TMR.

Table 22.3 Pin Configuration of TMR

Unit	Channel	Pin Name	I/O	Description
0	TMR0	TMO0	Output	Outputs compare match
		TMCI0	Input	Inputs external count clock
		TMRI0	Input	Inputs external counter reset
	TMR1	TMO1	Output	Outputs compare match
		TMCI1	Input	Inputs external count clock
		TMRI1	Input	Inputs external counter reset
1	TMR2	TMO2	Output	Outputs compare match
		TMCI2	Input	Inputs external count clock
		TMRI2	Input	Inputs external counter reset
	TMR3	TMO3	Output	Outputs compare match
		TMCI3	Input	Inputs external count clock
		TMRI3	Input	Inputs external counter reset

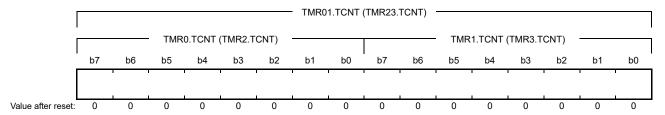

22.2 Register Descriptions

Table 22.4 Register Allocation for 16-Bit Access

Address	Register	Upper 8 Bits	Lower 8 Bits
0008 8208h	TMR01.TCNT	TMR0.TCNT	TMR1.TCNT
0008 8204h	TMR01.TCORA	TMR0.TCORA	TMR1.TCORA
0008 8206h	TMR01.TCORB	TMR0.TCORB	TMR1.TCORB
0008 820Ah	TMR01.TCCR	TMR0.TCCR	TMR1.TCCR
0008 8218h	TMR23.TCNT	TMR2.TCNT	TMR3.TCNT
0008 8214h	TMR23.TCORA	TMR2.TCORA	TMR3.TCORA
0008 8216h	TMR23.TCORB	TMR2.TCORB	TMR3.TCORB
0008 821Ah	TMR23.TCCR	TMR2.TCCR	TMR3.TCCR

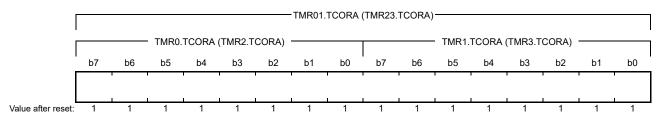
22.2.1 Timer Counter (TCNT)

Address(es): TMR0.TCNT 0008 8208h, TMR1.TCNT 0008 8209h, TMR2.TCNT 0008 8218h, TMR3.TCNT 0008 8219h, TMR01.TCNT 0008 8208h, TMR23.TCNT 0008 8218h

TCNT is an 8-bit readable/writable up-counter.

TMR0.TCNT and TMR1.TCNT (TMR2.TCNT and TMR3.TCNT) comprise a single 16-bit counter (TMR01.TCNT, TMR23.TCNT) so they can be accessed together by a word transfer instruction.

The TCCR.CSS[1:0] and CKS[2:0] bits are used to select a count clock.


TCNT can be cleared by an external counter reset signal, compare match A, or compare match B. Which compare match to be used for clearing is selected by the TCR.CCLR[1:0] bits.

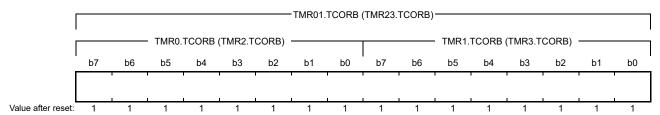
When TCNT overflows (its value changes from FFh to 00h), an overflow interrupt (low-level pulse) is output provided the interrupt request is enabled by the TCR.OVIE bit.

For details on the corresponding interrupt vector number, refer to section 14, Interrupt Controller (ICUb), and Table 22.6, TMR Interrupt Sources.

22.2.2 Time Constant Register A (TCORA)

Address(es): TMR0.TCORA 0008 8204h, TMR1.TCORA 0008 8205h, TMR2.TCORA 0008 8214h, TMR3.TCORA 0008 8215h, TMR01.TCORA 0008 8204h, TMR23.TCORA 0008 8214h

TCORA is an 8-bit readable/writable register.


TMR0.TCORA and TMR1.TCORA (TMR2.TCORA and TMR3.TCORA) comprise a single 16-bit register (TMR01.TCORA, TMR23.TCORA) so they can be accessed together by a word transfer instruction.

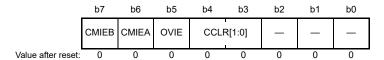
The value in TCORA is continually compared with the value in TCNT. When a match is detected, the corresponding compare match A is generated, and a compare match A interrupt (low-level pulse) is output provided the interrupt request is enabled by the TCR.CMIEA bit.

However, comparison is not performed during writing to TCORA. The timer output from the TMOn pin can be freely controlled by this compare match A and the settings of the TCSR.OSA[1:0] bits.

22.2.3 Time Constant Register B (TCORB)

Address(es): TMR0.TCORB 0008 8206h, TMR1.TCORB 0008 8207h, TMR2.TCORB 0008 8216h, TMR3.TCORB 0008 8217h, TMR01.TCORB 0008 8206h, TMR23.TCORB 0008 8216h

TCORB is an 8-bit readable/writable register.


TMR0.TCORB and TMR1.TCORB (TMR2.TCORB and TMR3.TCORB) comprise a single 16-bit register (TMR01.TCORB, TMR23.TCORB) so they can be accessed together by a word transfer instruction.

The value in TCORB is continually compared with the value in TCNT. When a match is detected, the corresponding compare match B is generated, and a compare match B interrupt (low-level pulse) is output provided the interrupt request is enabled by the TCR.CMIEB bit.

However, comparison is not performed during writing to TCORB. The timer output from the TMOn pin can be freely controlled by this compare match B and the settings of the TCSR.OSB[1:0] bits.

22.2.4 Timer Control Register (TCR)

Address(es): TMR0.TCR 0008 8200h, TMR1.TCR 0008 8201h, TMR2.TCR 0008 8210h, TMR3.TCR 0008 8211h

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b4, b3	CCLR[1:0]	Counter Clear*1	 b4 b3 0 0: Clearing is disabled 1: Cleared by compare match A 0: Cleared by compare match B 1: Cleared by the external counter reset signal (Select edge or level by the TMRIS bit in TCCR.) 	R/W
b5	OVIE	Timer Overflow Interrupt Enable	O: Overflow interrupt requests (OVIn) are disabled Overflow interrupt requests (OVIn) are enabled	R/W
b6	CMIEA	Compare Match Interrupt Enable A	0: Compare match A interrupt requests (CMIAn) are disabled 1: Compare match A interrupt requests (CMIAn) are enabled	R/W
b7	CMIEB	Compare Match Interrupt Enable B	0: Compare match B interrupt requests (CMIBn) are disabled 1: Compare match B interrupt requests (CMIBn) are enabled	R/W

Note 1. To use an external counter reset signal, set the corresponding pin function. For details, refer to section 18, I/O Ports and section 19, Multi-Function Pin Controller (MPC).

CCLR[1:0] Bits (Counter Clear)

Select the condition by which TCNT is cleared.

OVIE Bit (Timer Overflow Interrupt Enable)

Selects whether overflow interrupt requests (OVIn) issued by TCNT are enabled or disabled.

CMIEA Bit (Compare Match Interrupt Enable A)

Selects whether compare match A interrupt requests (CMIAn) that are issued when the value of TCORA corresponds to that of TCNT are enabled or disabled.

CMIEB Bit (Compare Match Interrupt Enable B)

Selects whether compare match B interrupt requests (CMIBn) that are issued when the value of TCORB corresponds to that of TCNT are enabled or disabled.

22.2.5 Timer Counter Control Register (TCCR)

Address(es): TMR0.TCCR 0008 820Ah, TMR1.TCCR 0008 820Bh, TMR2.TCCR 0008 821Ah, TMR3.TCCR 0008 821Bh, TMR01.TCCR 0008 820Ah, TMR23.TCCR 0008 821Ah

Symbol **Bit Name** Description R/W b2 to b0 CKS[2:0] Clock Select*1 See Table 22.5. R/W b4, b3 CSS[1:0] Clock Source Select See Table 22.5. R/W R/W b6, b5 Reserved These bits are read as 0. The write value should be 0. **TMRIS** 0: Cleared at rising edge of the external counter reset R/W Timer Reset Detection Condition Select signal 1: Cleared when the external counter reset signal is high

Note 1. To use an external count clock, set the corresponding pin function. For details, refer to section 18, I/O Ports and section 19, Multi-Function Pin Controller (MPC).

TCCR register is a 8-bit register used to configure the basic operation of the counter. Two TCCR registers can be accessed simultaneously by accessing the address of the even channel TCCR register in 16-bit units.

CKS[2:0] Bits (Clock Select)

CSS[1:0] Bits (Clock Source Select)

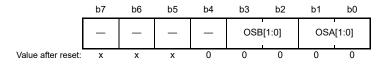
The CKS[2:0] and CSS[1:0] bits select a clock. For details, see Table 22.5.

TMRIS Bit (Timer Reset Detection Condition Select)

This bit is enabled when the TCR.CCLR[1:0] bits are 11b (cleared by external counter reset signal) and selects the condition for detecting counter reset (level or edge).

Table 22.5 Clock Input to TCNT and Count Condition

		TC	CR Regis	ster		
	css	[1:0]		CKS[2:0]	7
Channel	b4	b3	b2	b1	b0	Description
TMR0	0	0	_	0	0	Clock input prohibited
(TMR2)					1	Uses external count clock. Counts at rising edge*1.
				1	0	Uses external count clock. Counts at falling edge*1.
					1	Uses external count clock. Counts at both rising and falling edges*1.
	0	1	0	0	0	Uses internal clock. Counts at PCLK.
					1	Uses internal clock. Counts at PCLK/2.
				1	0	Uses internal clock. Counts at PCLK/8.
					1	Uses internal clock. Counts at PCLK/32.
			1	0	0	Uses internal clock. Counts at PCLK/64.
					1	Uses internal clock. Counts at PCLK/1024.
				1	0	Uses internal clock. Counts at PCLK/8192.
					1	Clock input prohibited
	1	0	_	_	_	Setting prohibited
	1	1	_	_	_	Counts at TMR1.TCNT (TMR3.TCNT) overflow signal*2.
TMR1	0	0	_	0	0	Clock input prohibited
(TMR3)					1	Uses external count clock. Counts at rising edge*1.
				1	0	Uses external count clock. Counts at falling edge*1.
					1	Uses external count clock. Counts at both rising and falling edges*1.
	0	1	0	0	0	Uses internal clock. Counts at PCLK.
					1	Uses internal clock. Counts at PCLK/2.
				1	0	Uses internal clock. Counts at PCLK/8.
					1	Uses internal clock. Counts at PCLK/32.
			1	0	0	Uses internal clock. Counts at PCLK/64.
					1	Uses internal clock. Counts at PCLK/1024.
				1	0	Uses internal clock. Counts at PCLK/8192.
					1	Clock input prohibited
	1	0	_	_	_	Setting prohibited
	1	1	_	_	_	Counts at TMR0.TCNT (TMR2.TCNT) compare match A*2.


Note 1. To use an external count clock, set the corresponding pin function. For details, refer to section 18, I/O Ports and section 19, Multi-Function Pin Controller (MPC).

Note 2. If the clock input of TMR0 (TMR2) is the overflow signal of the TMR1.TCNT (TMR3.TCNT) counter and that of TMR1 (TMR3) is the compare match signal of the TMR0.TCNT (TMR2.TCNT) counter, no TCNT count clock is generated. Do not use this setting.

22.2.6 Timer Control/Status Register (TCSR)

• TMR0.TCSR, TMR2.TCSR

Address(es): TMR0.TCSR 0008 8202h, TMR2.TCSR 0008 8212h

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b1, b0	OSA[1:0]	Output Select A*1	b1 b0 0 0: No change 0 1: Low is output 1 0: High is output 1 1: Output is inverted (toggle output)	R/W
b3, b2	OSB[1:0]	Output Select B*1	b3 b2 0 0: No change 0 1: Low is output 1 0: High is output 1 1: Output is inverted (toggle output)	R/W
b4	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b7 to b5	_	Reserved	These bits are read as an undefined value. The write value should be 1.	R/W

Note 1. When all OSA[1:0] and OSB[1:0] bits are 0, the output enable signal corresponding to the TMOn pin is negated and a request for high-impedance output is issued to the I/O port. Timer output pin is driven low until the first compare-match occurs after a reset when at least one of the OSA[1:0] and OSB[1:0] bits is 1.

OSA[1:0] Bits (Output Select A)

These bits select a method of TMOn pin output when compare match A of TCORA and TCNT occurs.

OSB[1:0] Bits (Output Select B)

These bits select a method of TMOn pin output when compare match B of TCORB and TCNT occurs.

• TMR1.TCSR, TMR3.TCSR

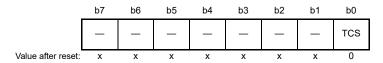
Address(es): TMR1.TCSR 0008 8203h, TMR3.TCSR 0008 8213h

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b1, b0	OSA[1:0]	Output Select A*1	b1 b0 0 0: No change 0 1: Low is output 1 0: High is output 1 1: Output is inverted (toggle output)	R/W
b3, b2	OSB[1:0]	Output Select B*1	b3 b2 0 0: No change 0 1: Low is output 1 0: High is output 1 1: Output is inverted (toggle output)	R/W
b4	_	Reserved	This bit is read as 1. The write value should be 1.	R/W
b7 to b5	_	Reserved	These bits are read as an undefined value. The write value should be 1.	R/W

Note 1. When all OSA[1:0] and OSB[1:0] bits are 0, the output enable signal corresponding to the TMOn pin is negated and a request for high-impedance output is issued to the I/O port. Timer output pin is driven low until the first compare match occurs after a reset when at least one of the OSA[1:0] and OSB[1:0] bits is 1.

OSA[1:0] Bits (Output Select A)


These bits select a method of TMOn pin output when compare match A of TCORA and TCNT occurs.

OSB[1:0] Bits (Output Select B)

These bits select a method of TMOn pin output when compare match B of TCORB and TCNT occurs.

22.2.7 Timer Counter Start Register (TCSTR)

Address(es): TMR0.TCSTR 0008 820Ch, TMR2.TCSTR 0008 821Ch

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b0	TCS	Timer Counter Status	0: Count stopped state in response to ELC. 1: Count start state in response to ELC.	R/W
b7 to b1	_	Reserved	These bits are read as an undefined value. The write value should be 0.	R/W

TCS Bit (Timer Counter Status)

The TCS bit is used to check the state of the timer count in response to ELC.

When this bit is read as 1, it shows the timer start state in response to ELC. When this bit is read as 0, it shows the timer stopped state in response to ELC.

This bit is cleared by writing 0. Do not write 1 to this bit.

The TCS bit is valid only when the count start operation is selected by the ELOPD register of the event controller (ELC). For details, refer to section 22.7, Link Operation by ELC, or section 17, Event Link Controller (ELC).

22.3 Operation

22.3.1 Pulse Output

Figure 22.3 shows an example of the 8-bit timer being used to generate a pulse output with a desired duty cycle.

1. Set the TCR.CCLR[1:0] bits to 01b (cleared by compare match A) so that TCNT is cleared at a compare match of TCORA.

2. Set the TCSR.OSA[1:0] bits to 10b (high is output) and TCSR.OSB[1:0] bits to 01b (low is output), causing the output to change to high at a compare match of TCORA and to low at a compare match of TCORB.

With these settings, the 8-bit timer provides pulses output at a cycle determined by TCORA with a pulse width determined by TCORB. No software intervention is required.

The timer output pin is low after the TCSR.OSA[1:0] or TCSR.OSB[1:0] bits are set until the first compare match occurs after a reset.

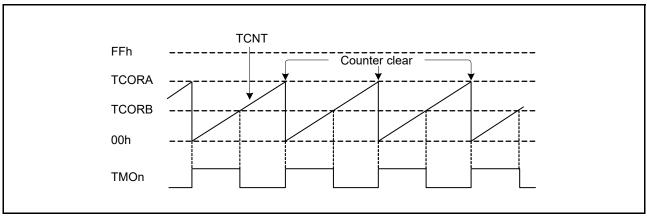


Figure 22.3 Example of Pulse Output (n = 0 to 3)

22.3.2 External Counter Reset Input

Figure 22.4 shows an example of the 8-bit timer being used to generate a pulse which is output after a desired delay time from a TMRIn input.

1. Set the TCR.CCLR[1:0] bits to 11b (cleared by external counter reset signal) and set the TMRIS bit in TCCR to 1 (cleared when the external counter reset signal is high) so that TCNT is cleared at the high level input of the TMRIn signal.

2. Set the TCSR.OSA[1:0] bits to 10b (high output) and the TCSR.OSB[1:0] bits to 01b (low output), causing the output to change to high at a compare match of TCORA and to low at a compare match of TCORB.

With these settings, the 8-bit timer provides pulses output at a desired delay time from a TMRIn input determined by TCORA and with a pulse width determined by TCORA and TCORA.

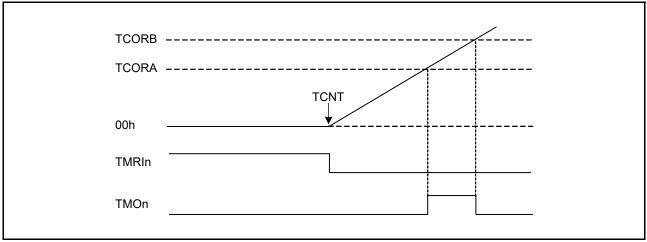


Figure 22.4 Example of External Counter Reset Signal Input (n = 0 to 3)

22.4 Operation Timing

22.4.1 TCNT Count Timing

Figure 22.5 shows the count timing of TCNT for internal clock. Figure 22.6 shows the count timing of TCNT for external clock.

Note that the external clock pulse width must be at least 1.5 PCLK cycles for increment at a single edge, and at least 2.5 PCLK cycles for increment at both edges. The counter will not increment correctly if the pulse width is less than these values.

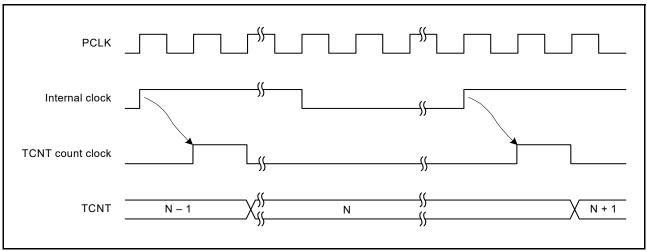


Figure 22.5 Count Timing for Internal Clock



Figure 22.6 Count Timing for External Clock (at Both Edges)

22.4.2 Timing of Interrupt Signal Output on a Compare Match

A compare match refers to a match between the value of the TCORA or TCORB register and the TCNT, and a compare match interrupt signal is output at this time if the interrupt request is enabled. The compare match is generated in the last cycle in which the values match (at the time at which the value counted by TCNT to produce the match is updated). Accordingly, after a match between TCNT and the TCORA or TCORB register is detected, the compare match is not actually generated until the next cycle of the TCNT count clock. Figure 22.7 shows the timing of output of the interrupt signal.

For the corresponding interrupt vector number, refer to section 14, Interrupt Controller (ICUb) and Table 22.6.

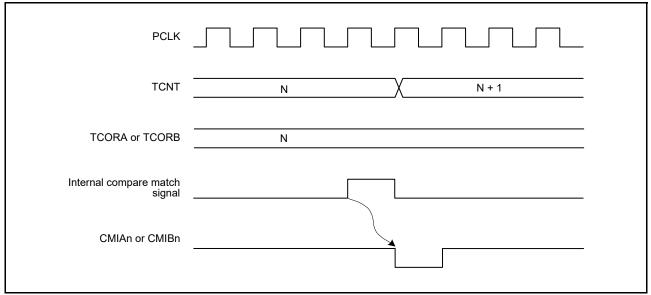


Figure 22.7 Timing of Interrupt Flag Setting to 1 at Compare Match (n = 0 to 3)

22.4.3 Timing of Timer Output Signal at Compare Match

When a compare match signal is generated, the output value specified by the TCSR.OSA[1:0] and OSB[1:0] bits is output on the timer output pin (TMOn).

Figure 22.8 shows the timing when the timer output is toggled by the compare match A signal.

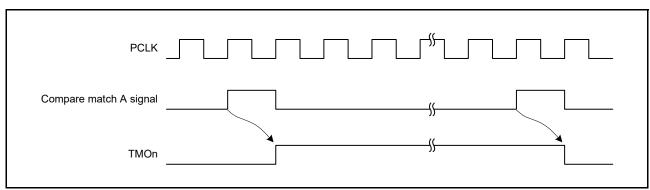


Figure 22.8 Timing of Timer Output Signal at Compare Match A Signal (n = 0 to 3)

22.4.4 Timing of Counter Clear by Compare Match

TCNT is cleared when compare match A or B occurs, depending on the settings of the TCR.CCLR[1:0] bits. Figure 22.9 shows the timing of this operation.

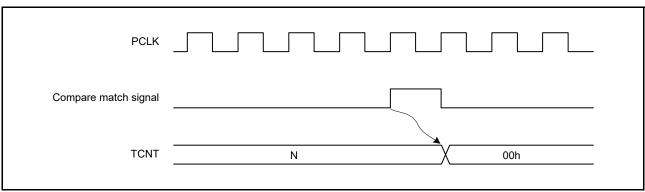


Figure 22.9 Timing of Counter Clear by Compare Match

22.4.5 Timing of the External Reset for TCNT

TCNT is cleared at the rising edge or high level of an external counter reset signal, depending on the settings of the TCR.CCLR[1:0] bits. At least 2 PCLK cycles are required from a reset input to clearing of TCNT. Figure 22.10 and Figure 22.11 show the timing of this operation.

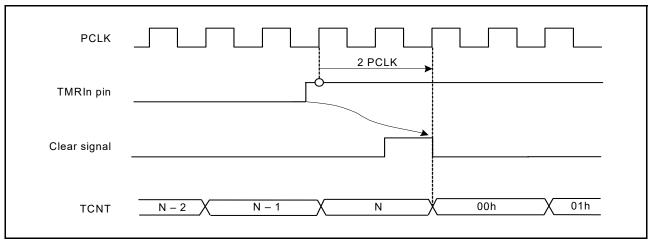


Figure 22.10 Clear Timing by External Counter Reset Signal (Rising Edge)

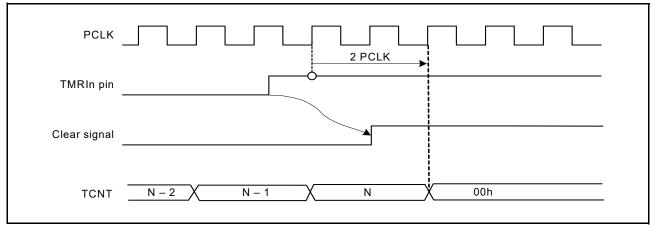


Figure 22.11 Clear Timing by External Counter Reset Signal (High Level)

22.4.6 Timing of Interrupt Signal Output on an Overflow

When TCNT overflows (changes from FFh to 00h), an overflow interrupt signal is output if this interrupt request is enabled.

Figure 22.12 shows the timing of output of the interrupt signal.

For the corresponding interrupt vector number, refer to section 14, Interrupt Controller (ICUb) and Table 22.6.

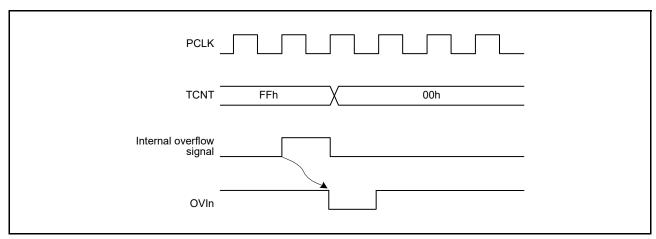


Figure 22.12 Timing of Overflow Interrupt Flag Setting to 1 (n = 0 to 3)

22.5 Operation with Cascaded Connection

If the CSS[1:0] bits in either TMR0.TCCR or TMR1.TCCR are set to 11b, the TMR of the two channels are cascaded. With this configuration, a single 16-bit timer could be used (16-bit counter mode) or compare matches of TMR0 could be counted by TMR1 (compare match count mode).

This section describes unit 0. The operation of unit 1 with cascaded connection is the same as unit 0.

22.5.1 16-Bit Count Mode

When the TMR0.TCCR.CSS[1:0] bits are set to 11b, the timer functions as a single 16-bit timer with TMR0 occupying the upper 8 bits and TMR1 occupying the lower 8 bits.

(1) Counter Clear Specification

- The settings of the TMR0.TCR.CCLR[1:0] bits become effective for the 16-bit counter. If the TMR0.TCR.CCLR[1:0] bits have been set for counter clear at compare match, the 16-bit counter (TMR0.TCNT and TMR1.TCNT together) is cleared when a 16-bit compare match event occurs. The 16-bit counter (TMR0.TCNT and TMR1.TCNT together) is cleared even if counter clear by the TMRI0 pin has been set.
- The settings of the TMR1.TCR.CCLR[1:0] bits are ignored.

(2) Pin Output

- Control of output from the TMO0 pin by the TMR0.TCSR.OSA[1:0] and OSB[1:0] bits is in accordance with the 16-bit compare match conditions.
- Control of output from the TMO1 pin by the TMR1.TCSR.OSA[1:0] and OSB[1:0] bits is in accordance with the lower 8-bit compare match conditions.

22.5.2 Compare Match Count Mode

When the TMR1.TCCR.CSS[1:0] bits are set to 11b, TMR1.TCNT counts the number of occurrences of compare match A for TMR0. TMR0 and TMR1 are controlled independently. Conditions such as generation of interrupts, output from the TMOn pin (n = 0, 1), and counter clear are in accordance with the settings for each channel.

22.6 Interrupt Sources

22.6.1 Interrupt Sources and DTC Activation

There are three interrupt sources for TMRn: CMIAn, CMIBn, and OVIn. Their interrupt sources and priorities are listed in Table 22.6.

It is also possible to activate the DTC by means of CMIAn and CMIBn interrupts.

Table 22.6 TMR Interrupt Sources

Name	Interrupt Sources	DTC Activation	Priority
CMIA0	TMR0.TCORA compare match	Possible	High
CMIB0	TMR0.TCORB compare match	Possible	<u> </u>
OVI0	TMR0.TCNT overflow	Not possible	
CMIA1	TMR1.TCORA compare match	Possible	
CMIB1	TMR1.TCORB compare match	Possible	
OVI1	TMR1.TCNT overflow	Not possible	
CMIA2	TMR2.TCORA compare match	Possible	
CMIB2	TMR2.TCORB compare match	Possible	
OVI2	TMR2.TCNT overflow	Not possible	
CMIA3	TMR3.TCORA compare match	Possible	
CMIB3	TMR3.TCORB compare match	Possible	
OVI3	TMR3.TCNT overflow	Not possible	Low

22.7 Link Operation by ELC

22.7.1 Event Signal Output to ELC

The TMR uses the event link controller (ELC) to perform link operation to the previously specified module using the interrupt request signal as the event signal. The TMR outputs compare match A, compare match B, and overflow signals as event signals. Channels that can be used in this way are TMR0 and TMR2.

The event signal can be output regardless of the setting of the corresponding interrupt request enable bits (TMR0.TCR.OVIE or TMR2.TCR.OVIE, TMR0.TCR.CMIEA or TMR2.TCR.CMIEA, and TMR0.TCR.CMIEB or TMR2.TCR.CMIEB). For details, refer to section 17, Event Link Controller (ELC).

The event output function can be used for the cascaded operation.

22.7.2 TMR Operation when Receiving an Event Signal from ELC

The TMR can perform either of the following operations upon the event previously specified by the ELSRn register of the ELC. However, the ELC does not support the cascaded operation.

(1) Count Start

When the TMR count start operation is selected by the ELOPD register of the ELC and the event specified by ELSRn occurs, the TCSTR.TCS bit is set to 1, starting the TMR count operation. After the TMR count start operation is selected by the ELOPD register of the ELC, use the TCCR.CKS[2:0] and CSS[1:0] bits to select the count source.

If the specified event occurs while the TCS bit is 1, the event is ignored.

Write 0 to the TCSTR.TCS bit to stop counting.

When the count start event is input in the count stopped state, the TMR starts counting again according to the CKS[2:0] and CSS[1:0] bits.

The TCS bit is valid only when the ELOPD.TMR0MD[1:0] and ELOPD.TMR2MD[1:0] bits of the ELC select the count start operation.

(2) Event Count

When the TMR event count operation is selected by the ELOPD register of the ELC and the event specified by ELSRn occurs, the events are counted as the count source regardless of the TCCR.CKS[2:0] and CSS[1:0] bit settings. Reading the counter value returns the number of events that have been actually input.

(3) Count Restart

When the TMR count restart operation is selected by the ELOPD register of the ELC and the event specified by ELSRn occurs, the TCNT counter value is modified to the initial value. If the CKS[2:0] and CSS[1:0] bit settings are not disabling the clock input, the count operation is continued.

22.7.3 Notes on Operating TMR According to an Event Signal from ELC

The following describes the notes on operating the TMR using the event link feature.

(1) Count Start

When the event specified by ELSRn occurs during the write cycle to the TCSTR.TCS bit, the cycle is not completed; setting 1 according to the event occurrence takes priority.

(2) Event Count

When the event specified by ELSRn occurs during the write cycle to the TCNT, the cycle is not completed; event count operation according to the event occurrence takes priority.

(3) Count Restart

When the event specified by ELSRn occurs during the write cycle to the TCNT, the cycle is not completed; count value initialization according to the event occurrence takes priority.

22.8 Usage Notes

22.8.1 Module Stop State Setting

Operation of the TMR can be disabled or enabled by using the module stop control registers. The initial setting is for halting of TMR operation. Register access becomes possible after release from the module stop state. For details, refer to section 11, Low Power Consumption.

22.8.2 Notes on Setting Cycle

If the compare match is selected for counter clear, TCNT is cleared at the last PCLK in the cycle in which the value of TCNT matches with that of TCORA or TCORB. TCNT updates the counter value at this last state. Therefore, the counter frequency is obtained by the following formula (f: Counter frequency, PCLK: Operating frequency, N: TCORA and TCORB register setting value).

$$f = PCLK / (N + 1)$$

22.8.3 Conflict between TCNT Write and Counter Clear

If a counter clear signal is generated concurrently with CPU write to TCNT, the clear takes priority and the write is not performed as shown in Figure 22.13.

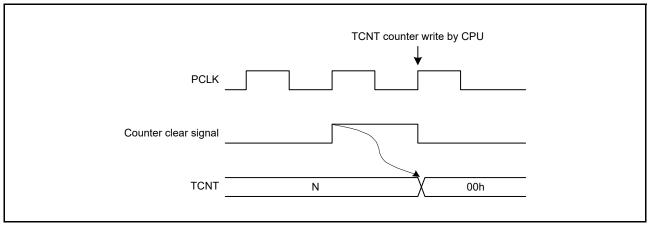


Figure 22.13 Conflict between TCNT Write and Counter Clear

22.8.4 Conflict between TCNT Write and Increment

Even if a counting-up signal is generated concurrently with CPU write to TCNT, the counting-up is not performed and the write takes priority as shown in Figure 22.14.

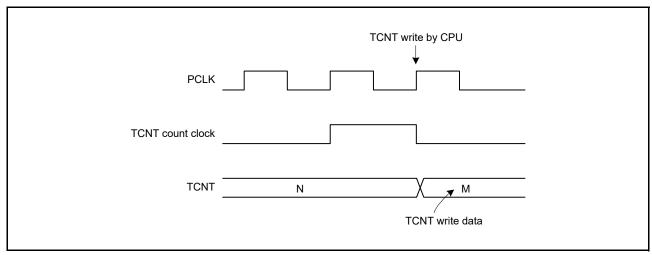


Figure 22.14 Conflict between TCNT Write and Increment

22.8.5 Conflict between TCORA or TCORB Write and Compare Match

Even if a compare match signal is generated simultaneously with CPU write to TCORA or TCORB as shown in Figure 22.15, the write takes priority and the compare match signal does not reach High level.

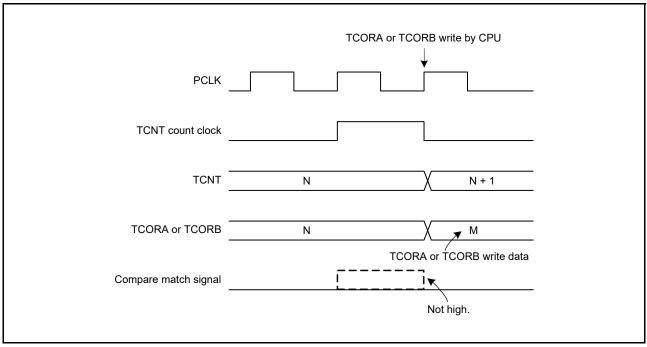


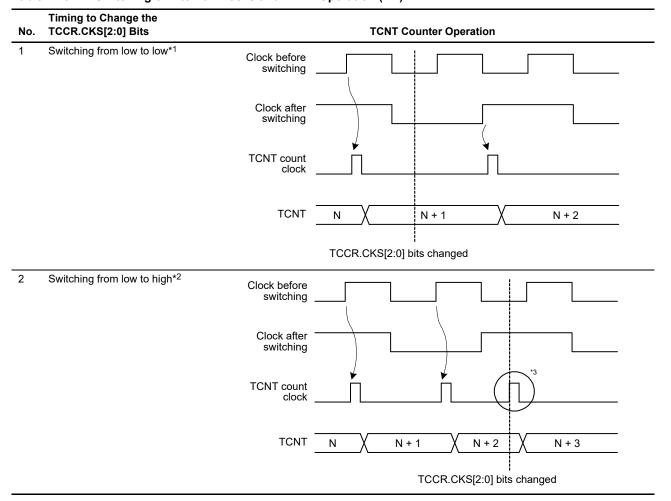
Figure 22.15 Conflict between TCORA or TCORB Write and Compare Match

RX130 Group 22. 8-Bit Timer (TMR)

22.8.6 Conflict between Compare Matches A and B

If compare match events A and B occur at the same time, the 8-bit timer operates in accordance with the priorities for the output methods high for compare match A and compare match B, as listed in Table 22.7.

Table 22.7 Timer Output Priorities


Output Setting	Priority
Toggle output	High
High output	_ ↑
Low output	_
No change	Low

22.8.7 Switching of Internal Clocks and TCNT Operation

TCNT may be incremented erroneously depending on when the internal clock is switched. Table 22.8 lists the relationship between the timing at which the internal clock is switched (by writing to the TCCR.CKS[2:0] bits) and the operation of TCNT.

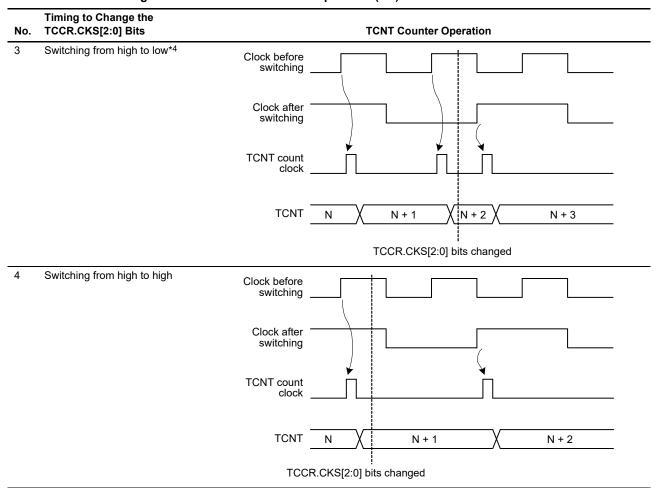

When TCNT count clock is generated from an internal clock, the rising edge of the internal clock pulse are always monitored. If the signal levels of the clocks before and after switching change from low to high as shown in No. 2 in Table 22.8, the change is considered as an edge. Therefore, a TCNT count clock is generated and TCNT is incremented. The erroneous increment of TCNT can also happen when switching between internal and internal clocks.

Table 22.8 Switching of Internal Clocks and TCNT Operation (1/2)

RX130 Group 22. 8-Bit Timer (TMR)

Table 22.8 Switching of Internal Clocks and TCNT Operation (2/2)

Note 1. Includes switching from low to stop, and from stop to low.

Note 2. Includes switching from stop to high.

Note 3. Generated because the change of the signal levels is considered as an edge; TCNT counter is incremented.

Note 4. Includes switching from high to stop.

RX130 Group 22. 8-Bit Timer (TMR)

22.8.8 Clock Source Setting with Cascaded Connection

If 16-bit counter mode and compare match count mode are specified at the same time, count clocks for TMR0.TCNT and TMR1.TCNT (TMR2.TCNT and TMR3.TCNT) are not generated, and the counter stops. Do not specify 16-bit counter mode and compare match count mode simultaneously.

22.8.9 Continuous Output of Compare Match Interrupt Signal

When TCORA or TCORB is set to 00h, PCLK/1 is set as the internal clock, and compare match is set as the counter clear source, the TCNT counter remains 00h and is not updated, and a compare match interrupt signal is output continuously to form a flat signal level.

At this time, the interrupt controller cannot detect the second and subsequent interrupts.

Figure 22.16 shows operation timing when the compare match interrupt signal is continuously output.

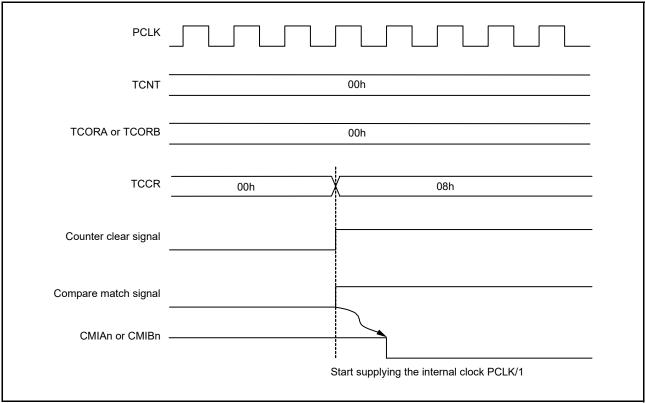


Figure 22.16 Continuous Output of Compare Match Interrupt Signal (n = 0 to 3)

23. Compare Match Timer (CMT)

This MCU has an on-chip compare match timer (CMT) unit (unit 0) consisting of a two-channel 16-bit timer (i.e., a total of two channels). The CMT has a 16-bit counter, and can generate interrupts at set intervals. In this section, "PCLK" is used to refer to PCLKB.

23.1 Overview

Table 23.1 lists the specifications for the CMT.

Figure 23.1 shows a block diagram of the CMT (unit 0). A two-channel CMT constitutes a unit.

Table 23.1 CMT Specifications

Item	Description
Count clocks	Four frequency dividing clocks One clock from PCLK/8, PCLK/32, PCLK/128, and PCLK/512 can be selected for each channel.
Interrupt	A compare match interrupt can be requested for each channel.
Event link function (output)	An event signal is output upon a CMT1 compare match.
Event link function (input)	Linking to the specified module is possible. CMT1 count start, event counter, or count restart operation is possible.
Low power consumption function	Module stop state can be set.

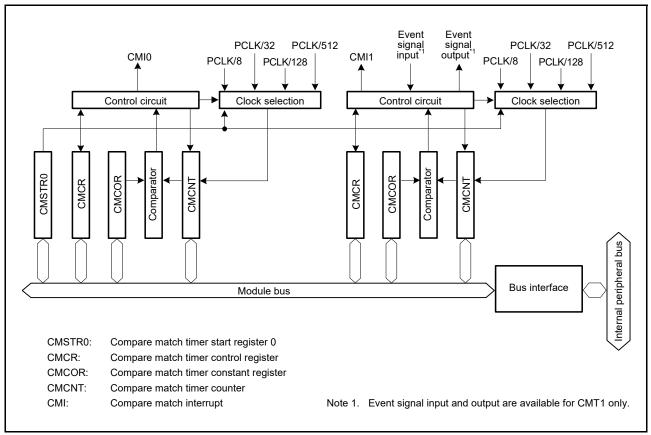
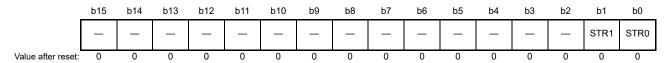
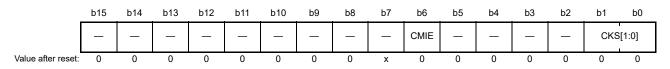



Figure 23.1 CMT (Unit 0) Block Diagram

23.2 Register Descriptions

23.2.1 Compare Match Timer Start Register 0 (CMSTR0)


Address(es): 0008 8000h

Bit	Symbol	Bit Name	Description	R/W
b0	STR0	Count Start 0	0: CMT0.CMCNT count is stopped. 1: CMT0.CMCNT count is started.	R/W
b1	STR1	Count Start 1	0: CMT1.CMCNT count is stopped. 1: CMT1.CMCNT count is started.	R/W
b15 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

23.2.2 Compare Match Timer Control Register (CMCR)

Address(es): CMT0.CMCR 0008 8002h, CMT1.CMCR 0008 8008h

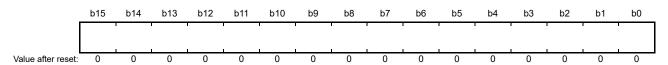
x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b1, b0	CKS[1:0]	Clock Select	b1 b0 0 0: PCLK/8 0 1: PCLK/32 1 0: PCLK/128 1 1: PCLK/512	R/W
b5 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b6	CMIE	Compare Match Interrupt Enable	Compare match interrupt (CMIn) disabled Compare match interrupt (CMIn) enabled	R/W
b7	_	Reserved	This bit is read as undefined. The write value should be 1.	R/W
b15 to b8	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

CKS[1:0] Bits (Clock Select)

These bits select the count source from four frequency dividing clocks obtained by dividing the peripheral module clock (PCLK).

When the CMSTR0.STRn (n = 0, 1) bit is set to 1, the CMCNT counter starts counting up on the clock selected with the CKS[1:0] bits.


CMIE Bit (Compare Match Interrupt Enable)

The CMIE bit enables or disables compare match interrupt (CMIn) (n = 0, 1) generation when the CMCNT counter and the CMCOR register values match.

23.2.3 Compare Match Counter (CMCNT)

Address(es): CMT0.CMCNT 0008 8004h, CMT1.CMCNT 0008 800Ah

The CMCNT counter is a readable/writable up-counter.

When an frequency dividing clock is selected by the CMCR.CKS[1:0] bits and the CMSTR0.STRn (n = 0, 1) bit is set to 1, the CMCNT counter starts counting up using the selected clock.

When the value in the CMCNT counter and the value in the CMCOR register match, the CMCNT counter is set to 0000h. At the same time, a compare match interrupt (CMIn) (n = 0, 1) is generated.

23.2.4 Compare Match Constant Register (CMCOR)

Address(es): CMT0.CMCOR 0008 8006h, CMT1.CMCOR 0008 800Ch

The CMCOR register is a readable/writable register to set a value for compare match with the CMCNT counter.

23.3 Operation

23.3.1 Periodic Count Operation

When an frequency dividing clock is selected by the CMCR.CKS[1:0] bits and the CMSTR0.STRn (n = 0, 1) bit is set to 1, the CMCNT counter starts counting up using the selected clock.

When the value in the counter and the value in the register match, a compare match interrupt (CMIn) (n = 0,1) is generated. The CMCNT counter then starts counting up again from 0000h. Figure 23.2 shows the operation of the CMCNT counter.

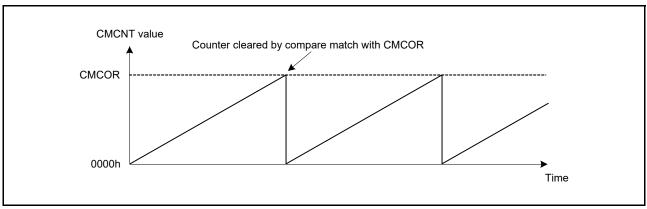


Figure 23.2 CMCNT Counter Operation

23.3.2 CMCNT Count Timing

As the count clock to be input to the CMCNT counter, one of four frequency dividing clocks (PCLK/8, PCLK/32, PCLK/128, and PCLK/512) obtained by dividing the peripheral module clock (PCLK) can be selected with the CMCR.CKS[1:0] bits. Figure 23.3 shows the timing of the CMCNT counter.

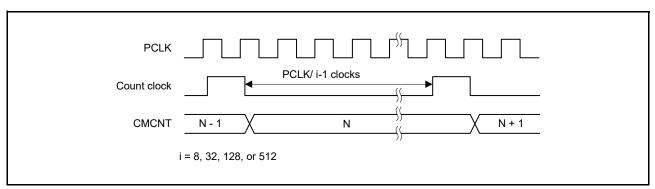


Figure 23.3 CMCNT Count Timing

23.4 Interrupts

23.4.1 Interrupt Sources

The CMT has channels and each of them to which a different vector address is allocated has a compare match interrupt (CMIn) (n = 0, 1). When a compare match interrupt occurs, the corresponding interrupt request is output.

When the interrupt request is used to generate a CPU interrupt, the priority of channels can be changed by the interrupt controller settings. For details, see section 14, Interrupt Controller (ICUb).

Table 23.2 CMT Interrupt Sources

Name Interrupt Sources		DTC Activation
CMI0	Compare match in CMT0	Possible
CMI1	Compare match in CMT1	Possible

23.4.2 Timing of Compare Match Interrupt Generation

When the CMCNT counter and the CMCOR register match, a compare match interrupt (CMIn) (n = 0, 1) is generated. A compare match signal is generated at the last state in which the values match (the timing when the CMCNT counter updates the matched count value). That is, after a match between the CMCOR register and the CMCNT counter, the compare match signal is not generated until the next the CMCNT counter input clock.

Figure 23.4 shows the timing of a compare match interrupt.

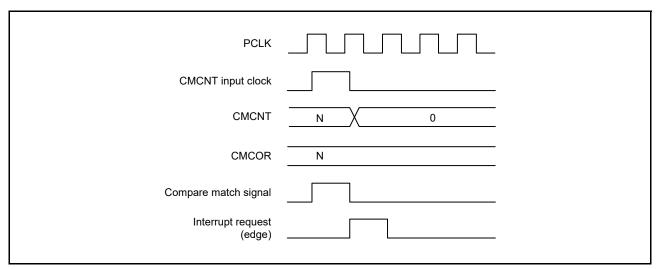


Figure 23.4 Timing of a Compare Match Interrupt

23.5 Link Operations by ELC

23.5.1 Event Signal Output to ELC

The CMT uses the event link controller (ELC) to perform link operation to a preset module using the interrupt request signal as the event signal. The CMT outputs the event signal upon a CMT1 compare match.

The event signal can be output regardless of the setting of the corresponding interrupt request enable bit (CMTn.CMCR.CMIE).

23.5.2 CMT Operation When Receiving an Event Signal from ELC

The CMT can perform either of the following operations upon the event preset by the ELSR7 register of the ELC.

(1) Count Start

When the CMT count start operation is selected by the ELOPC register of the ELC and the event specified by ELSR7 occurs, the CMSTR0.STR1 bit is set to 1, starting the CMT count operation.

However, if the specified event occurs while the CMSTR0.STR1 bit is 1, the event is ignored.

(2) Event Count

When the CMT event count operation is selected by the ELOPC register of the ELC and the event specified by ELSR7 occurs with the CMSTR0.STR1 bit being 1, the events are counted as the count source regardless of the CMT1.CMCR.CKS[1:0] bit setting. Reading the counter value returns the number of events that have been actually input.

(3) Count Restart

When the CMT count restart operation is selected by the ELOPC register of the ELC and the event specified by ELSR7 occurs, the CMT1.CMCNT counter value is modified to the initial value. If the CMSTR0.STR1 bit is 1 here, the count operation can be continued.

23.5.3 Notes on Operating CMT According to an Event Signal from ELC

The following describes the notes on operating the CMT using the event link feature.

(1) Count Start

When the event specified by ELSR7 occurs during the write cycle to the CMSTR0.STR1 bit, the cycle is not completed; setting 1 according to the event occurrence takes priority.

(2) Event Count

When the event specified by ELSR7 occurs during the write cycle to the CMT1.CMCNT, the cycle is not completed; event count operation according to the event occurrence takes priority.

(3) Count Restart

When the event specified by ELSR7 occurs during the write cycle to the CMT1.CMCNT, the cycle is not completed; count value initialization according to the event occurrence takes priority.

23.6 Usage Notes

23.6.1 Setting the Module Stop Function

The CMT can be enabled or disabled using the module stop control register. After a reset, the CMT is in the module stop state. The registers can be accessed by releasing the module stop state. For details, refer to section 11, Low Power Consumption.

23.6.2 Conflict between CMCNT Counter Writing and Compare Match

When the compare match signal is generated while writing to the CMCNT counter, clearing the CMCNT counter has priority over writing to it. In this case, the CMCNT counter is not written to. Figure 23.5 shows the timing to clear the CMCNT counter.

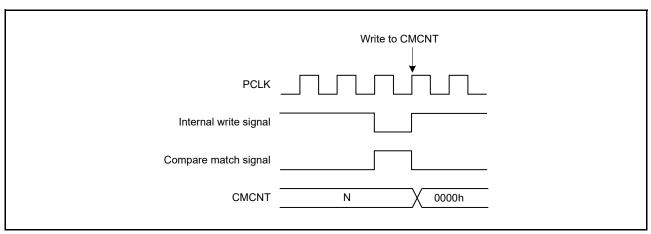


Figure 23.5 Conflict between CMCNT Counter Writing and Compare Match

23.6.3 Conflict between CMCNT Counter Writing and Incrementing

If writing to the counter and the incrementing conflict, the writing has priority over the incrementing. Figure 23.6 shows the timing to write the CMCNT counter.

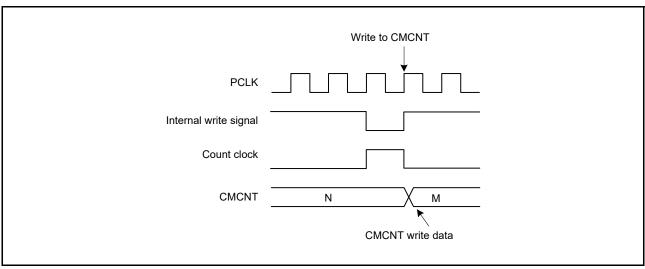


Figure 23.6 Conflict between CMCNT Counter Writing and Incrementing

24. Realtime Clock (RTCc)

In this section, "PCLK" is used to refer to PCLKB.

24.1 Overview

The RTC has two types of counting modes: calendar count mode and binary count mode. They are used by switching the register settings.

For calendar count mode, the RTC has a 100 year calendar from 2000 to 2099 and automatically adjusts dates for leap years.

For binary count mode, the RTC does not count in terms of years, months, dates, day-of-week, hours, or minutes; it counts seconds, and retains the information as a serial value. This mode can be used for calendars other than the Gregorian calendar.

The RTC uses the 128-Hz clock which is acquired by the count source divided by the prescaler as the reference clock. Year, month, date, day-of-week, a.m./p.m. (in 12-hour mode), hour, minute, second, or 32-bit binary is counted in 1/128 second units.

Table 24.1 lists the specifications of the RTC, Figure 24.1 shows a block diagram of the RTC, and Table 24.2 shows the pin configuration of the RTC.

Table 24.1 RTC Specifications

Item	Description
Count mode	Calendar count mode/binary count mode
Count source*1	Sub-clock (XCIN)
Clock and calendar functions	 Calendar count mode Year, month, date, day-of-week, hour, minute, second are counted, BCD display 12 hours/24 hours mode switching function 30 seconds adjustment function (a number less than 30 is rounded down to 00 seconds, and 30 seconds or more are rounded up to one minute) Automatic adjustment function for leap years Binary count mode Count seconds in 32 bits, binary display Common to both modes Start/stop function The sub-second digit is displayed in binary units (1 Hz, 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, or 64 Hz). Clock error correction function Clock (1 Hz/64 Hz) output
Interrupts	 Alarm interrupt (ALM) As an alarm interrupt condition, selectable which of the below is compared with: - Calendar count mode: Year, month, date, day-of-week, hour, minute, or second can be selected - Binary count mode: Each bit of the 32-bit binary counter Periodic interrupt (PRD) 2 seconds, 1 second, 1/2 second, 1/4 second, 1/8 second, 1/16 second, 1/32 second, 1/64 second, 1/128 second, or 1/256 second can be selected as an interrupt period. Carry interrupt (CUP) An interrupt is generated at either of the following timings: - When a carry from the 64-Hz counter to the second counter is generated When the 64-Hz counter is changed and the R64CNT register is read at the same time. Recovery from software standby mode can be performed by an alarm interrupt or periodic interrupt

Note 1. Satisfy the frequency of the peripheral module clock (PCLKB) ≥ the frequency of the count source.

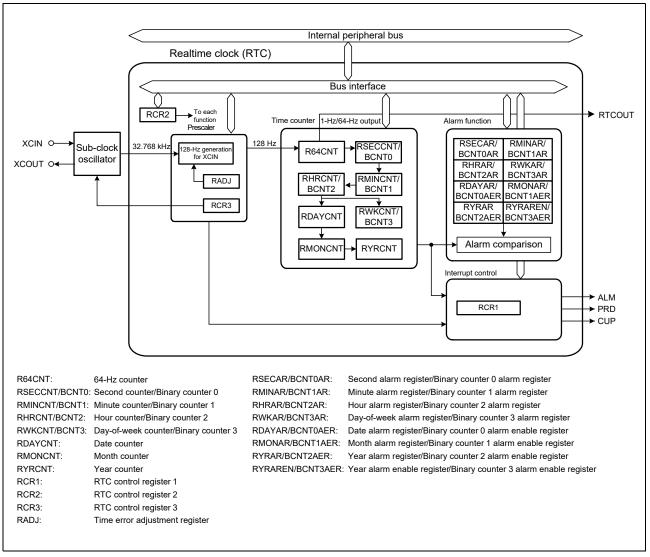
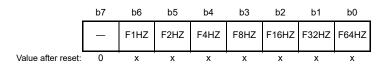


Figure 24.1 Block Diagram of RTC

Table 24.2 Pin Configuration of RTC

Pin Name	I/O	Function
XCIN	Input	Connect a 32.768-kHz crystal to these pins.
XCOUT	Output	_
RTCOUT	Output	This pin is used to output a 1-Hz/64-Hz waveform.


24.2 Register Descriptions

When writing to or reading from RTC registers, do so in accordance with section 24.5.5, Notes When Writing to and Reading from Registers.

If the value in an RTC register after a reset is given as x (undefined bits) in the list, it is not initialized by a reset. When RTC enters the reset state or a low power consumption state during counting operations (i.e. while the RCR2.START bit is 1), the year, month, day of the week, date, hours, minutes, seconds, and 64-Hz counters continue to operate. Note that a reset generated during writing to or updating of a register might destroy the register value. In addition, do not allow the chip to enter software standby mode immediately after setting any of these registers. For details, refer to section 24.5.4, Transitions to Low Power Consumption Modes after Setting Registers.

24.2.1 64-Hz Counter (R64CNT)

Address(es): RTC.R64CNT 0008 C400h

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b0	F64HZ	64 Hz	Indicate the state between 1 Hz and 64 Hz of the sub-second digit.	R
b1	F32HZ	32 Hz		R
b2	F16HZ	16 Hz		R
b3	F8HZ	8 Hz		R
b4	F4HZ	4 Hz		R
b5	F2HZ	2 Hz		R
b6	F1HZ	1 Hz		R
b7	_	Reserved	This bit is read as 0. Writing to this bit has no effect.	R

The R64CNT counter is used in both calendar count mode and in binary count mode.

The 64-Hz counter (R64CNT) generates a period of one second by counting the 128-Hz reference clock.

The state in the sub-second range can be confirmed by reading this counter.

This counter is set to 00h by an RTC software reset or executing 30-second adjustment.

To read this counter, follow the procedure in section 24.3.5, Reading 64-Hz Counter and Time.

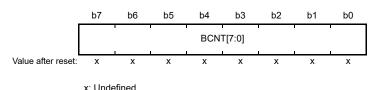
24.2.2 Second Counter (RSECCNT)/Binary Counter 0 (BCNT0)

(1) In calendar count mode:

Address(es): RTC.RSECCNT 0008 C402h

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	SEC1[3:0]	1-Second Count	Counts from 0 to 9 every second. When a carry is generated, 1 is added to the tens place.	R/W
b6 to b4	SEC10[2:0]	10-Second Count	Counts from 0 to 5 for 60-second counting.	R/W
b7	_	Reserved	Set this bit to 0. It is read as the set value.	R/W

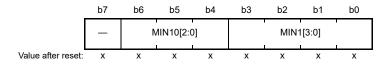

The RSECCNT counter is used for setting and counting the BCD-coded second value. It counts carries generated once per second in the 64-Hz counter.

The setting range is decimal 00 to 59. The RTC will not operate normally if any other value is set. Before writing to this register, be sure to stop the count operation through the setting of the START bit in RCR2.

After writing to the RSECCNT register, confirm that its value has actually changed before proceeding with further processing. Refer to section 24.5.5, Notes When Writing to and Reading from Registers for notes on accessing registers.

(2) In binary count mode:

Address(es): RTC.BCNT0 0008 C402h



The BCNT0 counter is a readable/writable 32-bit binary counter b7 to b0.

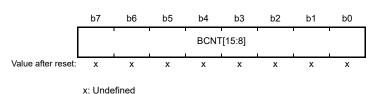
24.2.3 Minute Counter (RMINCNT)/Binary Counter 1 (BCNT1)

(1) In calendar count mode:

Address(es): RTC.RMINCNT 0008 C404h

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	MIN1[3:0]	1-Minute Count	Counts from 0 to 9 every minute. When a carry is generated, 1 is added to the tens place.	R/W
b6 to b4	MIN10[2:0]	10-Minute Count	Counts from 0 to 5 for 60-minute counting.	R/W
b7	_	Reserved	Set this bit to 0. It is read as the set value.	R/W


The RMINCNT counter is used for setting and counting the BCD-coded minute value. It counts carries generated once per minute in the second counter.

A value from 00 through 59 (in BCD) can be specified; if a value outside of this range is specified, the RTC does not operate correctly. Before writing to this register, be sure to stop the count operation through the setting of the START bit in RCR2.

After writing to the RMINCNT counter, confirm that its value has actually changed before proceeding with further processing. Refer to section 24.5.5, Notes When Writing to and Reading from Registers for notes on accessing registers.

(2) In binary count mode:

Address(es): RTC.BCNT1 0008 C404h

The BCNT1 counter is a readable/writable 32-bit binary counter b15 to b8.

24.2.4 Hour Counter (RHRCNT)/Binary Counter 2 (BCNT2)

(1) In calendar count mode:

Address(es): RTC.RHRCNT 0008 C406h

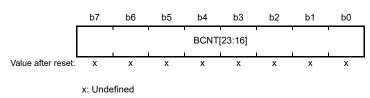
x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	HR1[3:0]	1-Hour Count	Counts from 0 to 9 once per hour. When a carry is generated, 1 is added to the tens place.	R/W
b5, b4	HR10[1:0]	10-Hour Count	Counts from 0 to 2 once per carry from the ones place.	R/W
b6	PM	РМ	Time Counter Setting for a.m./p.m. 0: a.m. 1: p.m.	R/W
b7	_	Reserved	Set this bit to 0. It is read as the set value.	R/W

The RHRCNT counter is used for setting and counting the BCD-coded hour value. It counts carries generated once per hour in the minute counter.

The specifiable time differs according to the setting in the hours mode bit (RCR2.HR24).

When the RCR2.HR24 bit is 0: From 00 to 11 (in BCD)

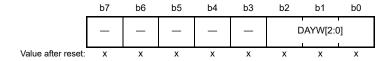

When the RCR2.HR24 bit is 1: From 00 to 23 (in BCD)

If a value outside of this range is specified, the RTC does not operate correctly. Before writing to this register, be sure to stop the count operation through the setting of the START bit in RCR2.

The PM bit is only enabled when the RCR2.HR24 bit is 0. Otherwise, the setting in the PM bit has no effect. After writing to the RHRCNT counter, confirm that its value has actually changed before proceeding with further processing. Refer to section 24.5.5, Notes When Writing to and Reading from Registers for notes on accessing registers.

(2) In binary count mode:

Address(es): RTC.BCNT2 0008 C406h



The BCNT2 counter is a readable/writable 32-bit binary counter b23 to b16.

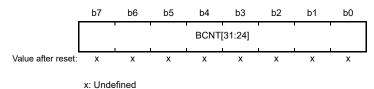
24.2.5 Day-of-Week Counter (RWKCNT)/Binary Counter 3 (BCNT3)

(1) In calendar count mode:

Address(es): RTC.RWKCNT 0008 C408h

x: Undefined

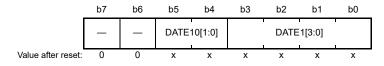
Bit	Symbol	Bit Name	Description	R/W
b2 to b0	DAYW[2:0]	Day-of-Week Counting	b2 b0 0 0 0: Sunday 0 0 1: Monday 0 1 0: Tuesday 0 1 1: Wednesday 1 0 0: Thursday 1 0 1: Friday 1 1 0: Saturday 1 1 1: Setting Prohibited	R/W
b7 to b3	_	Reserved	Set these bits to 0. They are read as the set value.	R/W


The RWKCNT counter is used for setting and counting in the coded day-of-week value. It counts carries generated once per day in the hour counter.

A value from 0 through 6 can be specified; if a value outside of this range is specified, the RTC does not operate correctly. Before writing to this register, be sure to stop the count operation through the setting of the START bit in RCR2

Refer to section 24.5.5, Notes When Writing to and Reading from Registers for notes on accessing registers.

(2) In binary count mode:


Address(es): RTC.BCNT3 0008 C408h

The BCNT3 counter is a readable/writable 32-bit binary counter b31 to b24.

24.2.6 Date Counter (RDAYCNT)

Address(es): RTC.RDAYCNT 0008 C40Ah

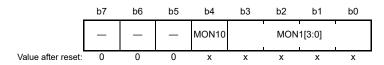
x: Undefined

START bit in RCR2.

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	DATE1[3:0]	1-Day Count	Counts from 0 to 9 once per day. When a carry is generated, 1 is added to the tens place.	R/W
b5, b4	DATE10[1:0]	10-Day Count	Counts from 0 to 3 once per carry from the ones place.	R/W
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The RDAYCNT counter is used in calendar count mode.

The RDAYCNT counter is used for setting and counting the BCD-coded date value. It counts carries generated once per day in the hour counter. The count operation depends on the month and whether the year is a leap year.


Leap years are determined according to whether the year counter (RYRCNT) value is divisible by 400, 100, and 4.

A value from 01 through 31 (in BCD) can be specified; if a value outside of this range is specified, the RTC does not operate correctly. (When specifying a value, note that the range of specifiable days depends on the month and whether the year is a leap year.) Before writing to this register, be sure to stop the count operation through the setting of the

After writing to the RHRCNT counter, confirm that its value has actually changed before proceeding with further processing. Refer to section 24.5.5, Notes When Writing to and Reading from Registers for notes on accessing registers.

24.2.7 Month Counter (RMONCNT)

Address(es): RTC.RMONCNT 0008 C40Ch

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	MON1[3:0]	1-Month Count	Counts from 0 to 9 once per month. When a carry is generated, 1 is added to the tens place.	R/W
b4	MON10	10-Month Count	Counts from 0 to 1 once per carry from the ones place.	R/W
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The RMONCNT counter is used in calendar count mode.

The RMONCNT counter is used for setting and counting the BCD-coded month value. It counts carries generated once per month in the date counter.

A value from 01 through 12 (in BCD) can be specified; if a value outside of this range is specified, the RTC does not operate correctly. Before writing to this register, be sure to stop the count operation through the setting of the START bit in RCR2.

After writing to the RMONCNT counter, confirm that its value has actually changed before proceeding with further processing. Refer to section 24.5.5, Notes When Writing to and Reading from Registers for notes on accessing registers.

24.2.8 Year Counter (RYRCNT)

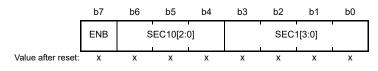
Address(es): RTC.RYRCNT 0008 C40Eh

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	YR1[3:0]	1-Year Count	Counts from 0 to 9 once per year. When a carry is generated, 1 is added to the tens place.	R/W
b7 to b4	YR10[3:0]	10-Year Count	Counts from 0 to 9 once per carry from ones place. When a carry is generated in the tens place, 1 is added to the hundreds place.	R/W
b15 to b8	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The RYRCNT counter is used in calendar count mode.

The RYRCNT counter is used for setting and counting the BCD-coded year value. It counts carries generated once per year in the month counter.


A value from 00 through 99 (in BCD) can be specified; if a value outside of this range is specified, the RTC does not operate correctly. Before writing to this register, be sure to stop the count operation through the setting of the START bit in RCR2.

After writing to the RYRCNT counter, confirm that its value has actually changed before proceeding with further processing. Refer to section 24.5.5, Notes When Writing to and Reading from Registers for notes on accessing registers.

24.2.9 Second Alarm Register (RSECAR)/Binary Counter 0 Alarm Register (BCNT0AR)

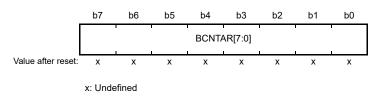
(1) In calendar count mode:

Address(es): RTC.RSECAR 0008 C410h

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	SEC1[3:0]	1 Second	Value for the ones place of seconds	R/W
b6 to b4	SEC10[2:0]	10 Seconds	Value for the tens place of seconds	R/W
b7	ENB	ENB	The register value is not compared with the RSECCNT counter value. The register value is compared with the RSECCNT counter value.	R/W

The RSECAR register is an alarm register corresponding to the BCD-coded second counter RSECCNT. When the ENB bit is set to 1, the RSECAR value is compared with the RSECCNT value. From among the alarm registers (RSECAR, RMINAR, RHRAR, RWKAR, RDAYAR, RMONAR, and RYRAREN), only those selected with the ENB bits set to 1 are compared with the corresponding counters. When the respective values all match, the IR flag corresponding to the ALM interrupt is set to 1.

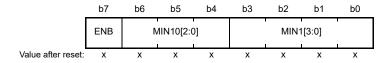

RSECAR values from 00 through 59 (in BCD) can be specified; if a value outside of this range is specified, the RTC does not operate correctly.

After writing to the RSECAR register, confirm that its value has actually changed before proceeding with further processing. Refer to section 24.5.5, Notes When Writing to and Reading from Registers for notes on accessing registers.

This register is set to 00h by an RTC software reset.

(2) In binary count mode:

Address(es): RTC.BCNT0AR 0008 C410h



The BCNT0AR counter is a readable/writable alarm register corresponding to 32-bit binary counter b7 to b0. This register is set to 00h by an RTC software reset.

24.2.10 Minute Alarm Register (RMINAR)/Binary Counter 1 Alarm Register (BCNT1AR)

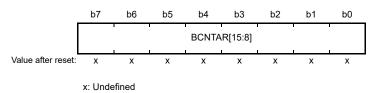
(1) In calendar count mode:

Address(es): RTC.RMINAR 0008 C412h

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	MIN1[3:0]	1 Minute	Value for the ones place of minutes	R/W
b6 to b4	MIN10[2:0]	10 Minutes	Value for the tens place of minutes	R/W
b7	ENB	ENB	The register value is not compared with the RMINCNT counter value. The register value is compared with the RMINCNT counter value.	R/W

The RMINAR register is an alarm register corresponding to the BCD-coded minute counter RMINCNT. When the ENB bit is set to 1, the RMINAR value is compared with the RMINCNT value. From among the alarm registers (RSECAR, RMINAR, RHRAR, RWKAR, RDAYAR, RMONAR, and RYRAREN), only those selected with the ENB bits set to 1 are compared with the corresponding counters. When the respective values all match, the IR flag corresponding to the ALM interrupt is set to 1.

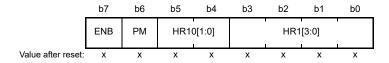

RMINAR values from 00 through 59 (in BCD) can be specified; if a value outside of this range is specified, the RTC does not operate correctly.

After writing to the RMINAR register, confirm that its value has actually changed before proceeding with further processing. Refer to section 24.5.5, Notes When Writing to and Reading from Registers for notes on accessing registers.

This register is set to 00h by an RTC software reset.

(2) In binary count mode:

Address(es): RTC.BCNT1AR 0008 C412h



The BCNT1AR counter is a readable/writable alarm register corresponding to 32-bit binary counter b15 to b8. This register is set to 00h by an RTC software reset.

24.2.11 Hour Alarm Register (RHRAR)/Binary Counter 2 Alarm Register (BCNT2AR)

(1) In calendar count mode:

Address(es): RTC.RHRAR 0008 C414h

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	HR1[3:0]	1 Hour	Value for the ones place of hours	R/W
b5, b4	HR10[1:0]	10 Hours	Value for the tens place of hours	R/W
b6	PM	PM	Time Alarm Setting for a.m./p.m. 0: a.m. 1: p.m.	R/W
b7	ENB	ENB	The register value is not compared with the RHRCNT counter value. The register value is compared with the RHRCNT counter value.	R/W

The RHRAR register is an alarm register corresponding to the BCD-coded hour counter RHRCNT. When the ENB bit is set to 1, the RHRAR value is compared with the RHRCNT value. From among the alarm registers (RSECAR, RMINAR, RHRAR, RWKAR, RDAYAR, RMONAR, and RYRAREN), only those selected with the ENB bits set to 1 are compared with the corresponding counters. When the respective values all match, the IR flag corresponding to the ALM interrupt is set to 1.

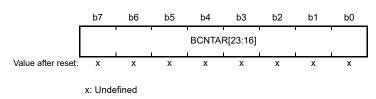
The specifiable time differs according to the setting in the hours mode bit (RCR2.HR24).

When the RCR2.HR24 bit is 0: From 00 to 11 (in BCD)

When the RCR2.HR24 bit is 1: From 00 to 23 (in BCD)

If a value outside of this range is specified, the RTC does not operate correctly.

When the RCR2.HR24 bit is 0, be sure to set the PM bit.

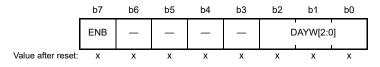

When the RCR2.HR24 bit is 1, the setting in the PM bit has no effect.

After writing to the RHRAR register, confirm that its value has actually changed before proceeding with further processing. Refer to section 24.5.5, Notes When Writing to and Reading from Registers for notes on accessing registers.

This register is set to 00h by an RTC software reset.

(2) In binary count mode:

Address(es): RTC.BCNT2AR 0008 C414h



The BCNT2AR counter is a readable/writable alarm register corresponding to 32-bit binary counter b23 to b16. This register is set to 00h by an RTC software reset.

24.2.12 Day-of-Week Alarm Register (RWKAR)/Binary Counter 3 Alarm Register (BCNT3AR)

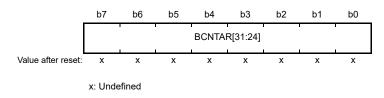
(1) In calendar count mode:

Address(es): RTC.RWKAR 0008 C416h

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	DAYW[2:0]	Day-of-Week Setting	b2 b0 0 0 0: Sunday 0 0 1: Monday 0 1 0: Tuesday 0 1 1: Wednesday 1 0 0: Thursday 1 0 1: Friday 1 1 0: Saturday 1 1 1: Setting Prohibited	R/W
b6 to b3	_	Reserved	Set these bits to 0. They are read as the set value.	R/W
b7	ENB	ENB	O: The register value is not compared with the RWKCNT counter value. 1: The register value is compared with the RWKCNT counter value.	R/W

The RWKAR register is an alarm register corresponding to the coded day-of-week counter RWKCNT. When the ENB bit is set to 1, the RWKAR value is compared with the RWKCNT value. From among the alarm registers (RSECAR, RMINAR, RHRAR, RWKAR, RDAYAR, RMONAR, and RYRAREN), only those selected with the ENB bits set to 1 are compared with the corresponding counters. When the respective values all match, the IR flag corresponding to the ALM interrupt is set to 1.

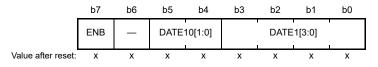

RWKAR values from 0 through 6 (in BCD) can be specified; if a value outside of this range is specified, the RTC does not operate correctly.

After writing to the RWKAR register, confirm that its value has actually changed before proceeding with further processing. Refer to section 24.5.5, Notes When Writing to and Reading from Registers for notes on accessing registers.

This register is set to 00h by an RTC software reset.

(2) In binary count mode:

Address(es): RTC.BCNT3AR 0008 C416h



The BCNT3AR counter is a readable/writable alarm register corresponding to 32-bit binary counter b31 to b24. This register is set to 00h by an RTC software reset.

24.2.13 Date Alarm Register (RDAYAR)/Binary Counter 0 Alarm Enable Register (BCNT0AER)

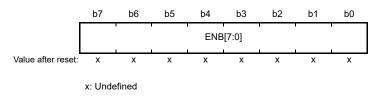
(1) In calendar count mode:

Address(es): RTC.RDAYAR 0008 C418h

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	DATE1[3:0]	1 Day	Value for the ones place of days	R/W
b5, b4	DATE10[1:0]	10 Days	Value for the tens place of days	R/W
b6	_	Reserved	Set this bit to 0. It is read as the set value.	R/W
b7	ENB	ENB	The register value is not compared with the RDAYCNT counter value. The register value is compared with the RDAYCNT counter value.	R/W

The RDAYAR register is an alarm register corresponding to the BCD-coded date counter RDAYCNT. When the ENB bit is set to 1, the RDAYAR value is compared with the RDAYCNT value. From among the alarm registers (RSECAR, RMINAR, RHRAR, RWKAR, RDAYAR, RMONAR, and RYRAREN), only those selected with the ENB bits set to 1 are compared with the corresponding counters. When the respective values all match, the IR flag corresponding to the ALM interrupt is set to 1.

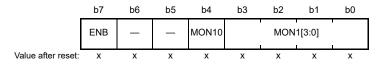

RDAYAR values from 01 through 31 (in BCD) can be specified; if a value outside of this range is specified, the RTC does not operate correctly.

After writing to the RDAYAR register, confirm that its value has actually changed before proceeding with further processing. Refer to section 24.5.5, Notes When Writing to and Reading from Registers for notes on accessing registers.

This register is set to 00h by an RTC software reset.

(2) In binary count mode:

Address(es): RTC.BCNT0AER 0008 C418h


The BCNT0AER register is a readable/writable register for setting the alarm enable corresponding to 32-bit binary counter b7 to b0. Among the ENB[31:0] bits, the binary counter (BCNT[31:0]) corresponding to the bits which are set to 1 and the binary alarm register (BCNTAR[31:0]) are compared, and when all match, the IR flag corresponding to the ALM interrupt becomes 1.

This register is set to 00h by an RTC software reset.

24.2.14 Month Alarm Register (RMONAR)/Binary Counter 1 Alarm Enable Register (BCNT1AER)

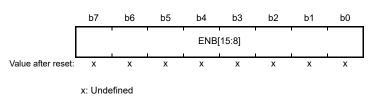
(1) In calendar count mode:

Address(es): RTC.RMONAR 0008 C41Ah

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	MON1[3:0]	1 Month	Value for the ones place of months	R/W
b4	MON10	10 Months	Value for the tens place of months	R/W
b6, b5	_	Reserved	Set these bits to 0. They are read as the set value.	R/W
b7	ENB	ENB	O: The register value is not compared with the RMONCNT counter value. The register value is compared with the RMONCNT counter value.	R/W

The RMONAR register is an alarm register corresponding to the BCD-coded month counter RMONCNT. When the ENB bit is set to 1, the RMONAR value is compared with the RMONCNT value. From among the alarm registers (RSECAR, RMINAR, RHRAR, RWKAR, RDAYAR, RMONAR, and RYRAREN), only those selected with the ENB bits set to 1 are compared with the corresponding counters. When the respective values all match, the IR flag corresponding to the ALM interrupt is set to 1.

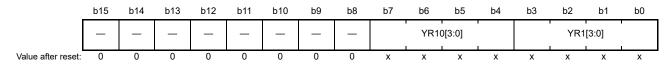

RMONAR values from 01 through 12 (in BCD) can be specified; if a value outside of this range is specified, the RTC does not operate correctly.

After writing to the RMONAR register, confirm that its value has actually changed before proceeding with further processing. Refer to section 24.5.5, Notes When Writing to and Reading from Registers for notes on accessing registers.

This register is set to 00h by an RTC software reset.

(2) In binary count mode:

Address(es): RTC.BCNT1AER 0008 C41Ah


The BCNT1AER register is a readable/writable register for setting the alarm enable corresponding to 32-bit binary counter b15 to b8. Among the ENB[31:0] bits, the binary counter (BCNT[31:0]) corresponding to the bits which are set to 1 and the binary alarm register (BCNTAR[31:0]) are compared, and when all match, the IR flag corresponding to the ALM interrupt becomes 1.

This register is set to 00h by an RTC software reset.

24.2.15 Year Alarm Register (RYRAR)/Binary Counter 2 Alarm Enable Register (BCNT2AER)

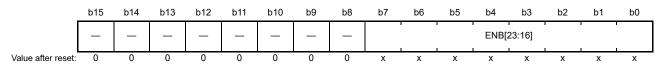
(1) In calendar count mode:

Address(es): RTC.RYRAR 0008 C41Ch

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	YR1[3:0]	1 Year	Value for the ones place of years	R/W
b7 to b4	YR10[3:0]	10 Years	Value for the tens place of years	R/W
b15 to b8	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The RYRAR register is an alarm register corresponding to the BCD-coded year counter RYRCNT.


RYRAR values from 00 through 99 (in BCD) can be specified; if a value outside of this range is specified, the RTC does not operate correctly.

After writing to the RYRAR register, confirm that its value has actually changed before proceeding with further processing. Refer to section 24.5.5, Notes When Writing to and Reading from Registers for notes on accessing registers.

This register is set to 0000h by an RTC software reset.

(2) In binary count mode:

Address(es): RTC.BCNT2AER 0008 C41Ch

x: Undefined

The BCNT2AER register is a readable/writable register for setting the alarm enable corresponding to 32-bit binary counter b23 to b16. Among the ENB[31:0] bits, the binary counter (BCNT[31:0]) corresponding to the bits which are set to 1 and the binary alarm register (BCNTAR[31:0]) are compared, and when all match, the IR flag corresponding to the ALM interrupt becomes 1.

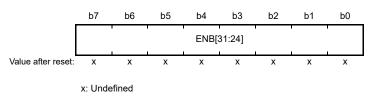
This register is set to 0000h by an RTC software reset.

24.2.16 Year Alarm Enable Register (RYRAREN)/Binary Counter 3 Alarm Enable Register (BCNT3AER)

(1) In calendar count mode:

Address(es): RTC.RYRAREN 0008 C41Eh

x: Undefined

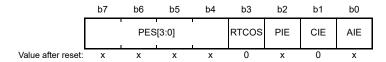

Bit	Symbol	Bit Name	Description	R/W
b6 to b0	_	Reserved	Set these bits to 0. They are read as the set value.	R/W
b7	ENB	ENB	0: The register value is not compared with the RYRCNT counter value. 1: The register value is compared with the RYRCNT counter value.	R/W

When the ENB bit in the RYRAREN register is set to 1, the RYRAR value is compared with the RYRCNT value. From among the alarm registers (RSECAR, RMINAR, RHRAR, RWKAR, RDAYAR, RMONAR, and RYRAREN), only those selected with the ENB bits set to 1 are compared with the corresponding counters. When the respective values all match, the IR flag corresponding to the ALM interrupt is set to 1.

This register is set to 00h by an RTC software reset.

(2) In binary count mode:

Address(es): RTC.BCNT3AER 0008 C41Eh



The BCNT3AER register is a readable/writable register for setting the alarm enable corresponding to 32-bit binary counter b31 to b24. Among the ENB[31:0] bits, the binary counter (BCNT[31:0]) corresponding to the bits which are set to 1 and the binary alarm register (BCNTAR[31:0]) are compared, and when all match, the IR flag corresponding to the ALM interrupt becomes 1.

This register is set to 00h by an RTC software reset.

24.2.17 RTC Control Register 1 (RCR1)

Address(es): RTC.RCR1 0008 C422h

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b0	AIE	Alarm Interrupt Enable	O: An alarm interrupt request is disabled. He alarm interrupt request is enabled.	R/W
b1	CIE	Carry Interrupt Enable	0: A carry interrupt request is disabled. 1: A carry interrupt request is enabled.	R/W
b2	PIE	Periodic Interrupt Enable	O: A periodic interrupt request is disabled. 1: A periodic interrupt request is enabled.	R/W
b3	RTCOS	RTCOUT Output Select	0: RTCOUT outputs 1 Hz. 1: RTCOUT outputs 64 Hz.	R/W
b7 to b4	PES[3:0]	Periodic Interrupt Select	b7 b4 0 1 1 0: A periodic interrupt is generated every 1/256 second. 0 1 1 1: A periodic interrupt is generated every 1/128 second. 1 0 0 0: A periodic interrupt is generated every 1/64 second. 1 0 0 1: A periodic interrupt is generated every 1/32 second. 1 0 1 0: A periodic interrupt is generated every 1/16 second. 1 0 1 1: A periodic interrupt is generated every 1/16 second. 1 0 0: A periodic interrupt is generated every 1/8 second. 1 1 0 1: A periodic interrupt is generated every 1/4 second. 1 1 0 1: A periodic interrupt is generated every 1/2 second. 1 1 1 0: A periodic interrupt is generated every 1 second. 1 1 1: A periodic interrupt is generated every 2 seconds. Other than above: No periodic interrupts are generated.	R/W

The RCR1 register is used in both calendar count mode and in binary count mode.

Bits AIE, PIE, and PES[3:0] are updated synchronously with the count source. When the RCR1 register is modified, check that all the bits have been updated before proceeding to the next processing.

AIE Bit (Alarm Interrupt Enable)

This bit enables or disables alarm interrupt requests.

CIE Bit (Carry Interrupt Enable)

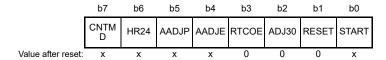
This bit enables and disables interrupt requests when a carry to the RSECCNT/BCNT0 register occurs, or when a carry to the 64-Hz counter (R64CNT) occurs while reading the 64-Hz counter.

PIE Bit (Periodic Interrupt Enable)

This bit enables or disabled a periodic interrupt.

RTCOS Bit (RTCOUT Output Select)

This bit selects the RTCOUT output period. The RTCOS bit must be rewritten while count operation is stopped (the RCR2.START bit is 0) and RTCOUT output is disabled (the RCR2.RTCOE bit is 0). When the RTCOUT is output to an external pin, the RCR2.RTCOE bit must be enabled. For details on controlling I/O ports, refer to section 19.3.1, Procedure for Specifying Input/Output Pin Function.


PES[3:0] Bits (Periodic Interrupt Select)

These bits specify the period for the periodic interrupt. A periodic interrupt is generated with the period specified by these bits.

24.2.18 RTC Control Register 2 (RCR2)

Address(es): RTC.RCR2 0008 C424h

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b0	START	Start	Prescaler and counter are stopped. Prescaler and counter operate normally.	R/W
b1	RESET	RTC Software Reset	 In writing 0: Writing is invalid. 1: The prescaler and the target registers for RTC software reset*1 are initialized In reading 0: In normal time operation, or an RTC software reset has completed. 1: During an RTC software reset 	R/W
b2	ADJ30	30-Second Adjustment* ²	 In writing 0: Writing is invalid. 1: 30-second adjustment is executed. In reading 0: In normal time operation, or 30-second adjustment has completed. 1: During 30-second adjustment 	R/W
b3	RTCOE	RTCOUT Output Enable	0: RTCOUT output disabled. 1: RTCOUT output enabled.	R/W
b4	AADJE	Automatic Adjustment Enable *3	O: Automatic adjustment is disabled. Automatic adjustment is enabled.	R/W
b5	AADJP	Automatic Adjustment Period Select* ³	O: The RADJ.ADJ[5:0] setting value is adjusted from the count value of the prescaler every minute (every 32 seconds in binary counter mode). The RADJ.ADJ[5:0] setting value is adjusted from the count value of the prescaler every 10 seconds (every 8 seconds in binary counter mode).	R/W
b6	HR24	Hours Mode*2, *3	0: The RTC operates in 12-hour mode. 1: The RTC operates in 24-hour mode.	R/W
b7	CNTMD	Count Mode Select	0: The calendar count mode. 1: The binary count mode.	R/W

Note 1. R64CNT, RSECAR/BCNT0AR, RMINAR/BCNT1AR, RHRAR/BCNT2AR, RWKAR/BCNT3AR, RDAYAR/BCNT0AER, RMONAR/BCNT1AER, RYRAR/BCNT2AER, RYRAREN/BCNT3AER, RADJ, RCR2.ADJ30, RCR2.AADJE, RCR2.AADJP

The RCR2 register is related to hours mode, automatic adjustment function, enabling the RTCOUT output, 30-second adjustment, RTC software reset, and controlling count operation.

START Bit (Start)

This bit stops or restarts the prescaler or counter (clock) operation.

The START bit is updated in synchronization with the count source. When the START bit is modified, check that the bit is updated before proceeding to the next processing.

Note 2. This bit is reserved in binary counter mode. The write value should be 0.

Note 3. After writing to this bit, confirm that its value has actually changed before proceeding with further processing. Refer to section 24.5.5, Notes When Writing to and Reading from Registers for notes on accessing registers.

RESET Bit (RTC Software Reset)

This bit initializes the prescaler and registers to be reset by RTC software reset.

When 1 is written to the RESET bit, the initialization starts in synchronization with the count source. When the initialization is completed, the RESET bit is automatically set to 0.

When 1 is written to the RESET bit, check that the bit is set to 0, and then make next settings.

ADJ30 Bit (30-Second Adjustment)

This bit is for 30-second adjustment.

When 1 is written to the ADJ30 bit, the RSECCNT value of 30 seconds or less is rounded down to 00 second and the value of 30 seconds or more is rounded up to 1 minute.

The 30-second adjustment is performed in synchronization with the count source. When 1 is written to this bit, the ADJ30 bit is automatically set to 0 after the 30-second adjustment is completed. In case when 1 is written to the ADJ30 bit, check that the bit is set to 0, and then make next settings.

When the 30-second adjustment is performed, the prescaler and R64CNT are also reset.

The ADJ30 bit is set to 0 by an RTC software reset.

This bit is reserved in binary counter mode. The write value should be 0.

RTCOE Bit (RTCOUT Output Enable)

This bit enables output of a 1-Hz/64-Hz clock signal from the RTCOUT pin.

Use the START bit to stop counting by the counters before changing the value of the RTCOE bit. Do not stop counting (write 0 to the START bit) and change the value of the RTCOE bit at the same time.

When RTCOUT signal is to be output from an external pin, set the RTCOE bit to 1 and set up the port control for the pin.

AADJE Bit (Automatic Adjustment Enable)

This bit controls (enables or disables) automatic adjustment.

Set the plus-minus bits (RADJ.PMADJ[1:0]) to 00b (adjustment is not performed) before changing the value of the AADJE bit.

The AADJE bit is set to 0 by an RTC software reset.

AADJP Bit (Automatic Adjustment Period Select)

This bit selects the automatic-adjustment period.

Set the plus-minus bits (RADJ.PMADJ[1:0]) to 00b (adjustment is not performed) before changing the value of the AADJP bit.

The AADJP bit is set to 0 by an RTC software reset.

HR24 Bit (Hours Mode)

This bit specifies whether the RTC will operate in 12- or 24-hour mode.

Use the START bit to stop counting by the counters before changing the value of the HR24 bit. Do not stop counting (write 0 to the START bit) and change the value of the HR24 bit at the same time.

This bit is reserved in binary counter mode. The write value should be 0.

CNTMD Bit (Count Mode Select)

This bit specifies whether the RTC count mode is operated in calendar count mode or in binary count mode.

When setting the count mode, execute an RTC software reset and start again from the initial settings.

This bit is updated synchronously with the count source, and its value is fixed before the RTC software reset is completed.

For details on initial settings, refer to section 24.3.1, Outline of Initial Settings of Registers after Power On.

24.2.19 RTC Control Register 3 (RCR3)

Address(es): RTC.RCR3 0008 C426h

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b0	RTCEN	Sub-Clock Oscillator Control	Sub-clock oscillator is stopped. Sub-clock oscillator is operating.	R/W
b3 to b1	RTCDV[2:0]	Sub-Clock Oscillator Drive Capacity Control	b3 b1 0 0 0: Setting prohibited 0 0 1: Drive capacity for low CL 0 1 0: Setting prohibited 0 1 1: Setting prohibited 1 0 0: Setting prohibited 1 0 1: Setting prohibited 1 0 1: Setting prohibited 1 1 0: Drive capacity for standard CL 1 1 1: Setting prohibited	R/W
b7 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The RCR3 register is used for controlling the sub-clock oscillator in the clock generation circuit. For details on controlling the sub-clock oscillator, refer to section 9, Clock Generation Circuit.

This register is a function common to calendar count mode and binary count mode.

When this register is modified, check that all the bits have been updated before proceeding to the next processing.

RTCEN Bit (Sub-Clock Oscillator Control)

The RTCEN bit and a clock generation circuit register (the SOSCCR.SOSTP bit) control whether to operate or stop the sub-clock oscillator. If one of the bits is set so as to enable the operation, the sub-clock oscillator runs.

When using the sub-clock as the count source to the RTC, set the sub-clock oscillator using the RTCEN bit.

RTCDV[2:0] Bits (Sub-Clock Oscillator Drive Capacity Control)

These bits control the drive capacity of the sub-clock oscillator. Set the RTCDV[2:0] bits when the SOSCCR.SOSTP bit is 1 and the RCR3.RTCEN bit is 0.

24.2.19.1 Notes on using a low CL crystal unit

When the signal level of any pin near the XCIN or XCOUT pin is changed, the oscillation accuracy of the sub-clock oscillator may be affected. The accuracy is affected differently depending on the board traces and how the signal level of any pin near the XCIN or XCOUT pin is changed. When designing a board using a low CL crystal unit, refer to the application note "Design Guide for Low CL Sub-clock Circuits" (R01AN1830EJ) to reduce the influence from noise.

24.2.20 Time Error Adjustment Register (RADJ)

Address(es): RTC.RADJ 0008 C42Eh

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	ADJ[5:0]	Adjustment Value	These bits specify the adjustment value from the prescaler.	R/W
b7, b6	PMADJ[1:0]	Plus–Minus	 b7 b6 0 0: Adjustment is not performed. 0 1: Adjustment is performed by the addition to the prescaler. 1 0: Adjustment is performed by the subtraction from the prescaler. 1 1: Setting prohibited 	R/W

Adjustment is performed by the addition to or subtraction from the prescaler.

In case when the automatic adjustment enable (RCR2.AADJE) bit is 0, adjustment is performed when writing to the RADI

In case when the RCR2.AADJE bit is 1, adjustment is performed in the interval specified by the automatic adjustment period select (RCR2.AADJP) bit.

The current adjustment by software (disabling automatic adjustment) may be invalid if the following adjustment value is specified within 320 cycles of the count source after the register setting. To perform adjustment consecutively, wait for 320 cycles or more of the count source after the register setting and then specify the next adjustment value.

RADJ is updated in synchronization with the count source. When RADJ is modified, check that all the bits have been updated before continuing with further processing.

This register is set to 00h by an RTC software reset.

ADJ[5:0] Bits (Adjustment Value)

These bits specify the adjustment value (the number of sub-clock cycles) from the prescaler.

PMADJ[1:0] Bits (Plus-Minus)

These bits select whether the clock is set ahead or back depending on the error-adjustment value set in the ADJ[5:0] bits.

24.3 Operation

24.3.1 Outline of Initial Settings of Registers after Power On

After the power is turned on, the initial settings for the clock setting, count mode setting, time error adjustment, time setting, alarm, and interrupt should be performed.

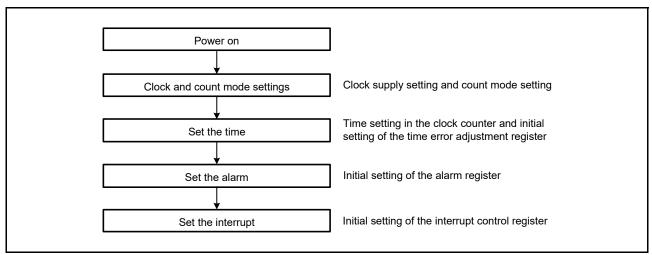


Figure 24.2 Outline of Initial Settings after Power On

24.3.2 Clock and Count Mode Setting Procedure

Figure 24.3 shows how to set the clock and the count mode.

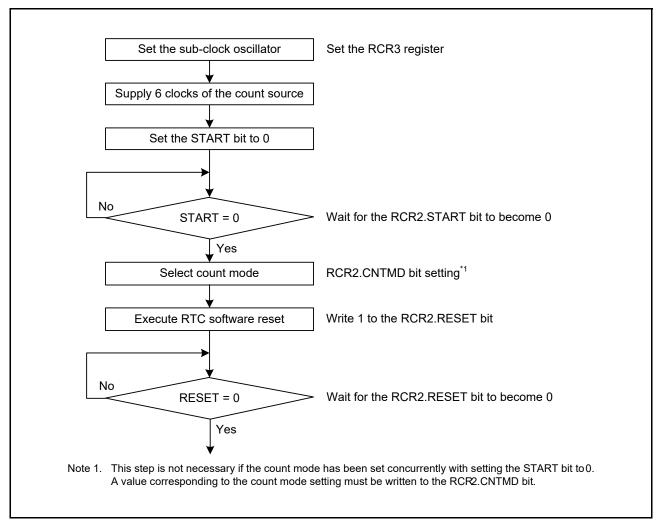


Figure 24.3 Clock and Count Mode Setting Procedure

24.3.3 Setting the Time

Figure 24.4 shows how to set the time.

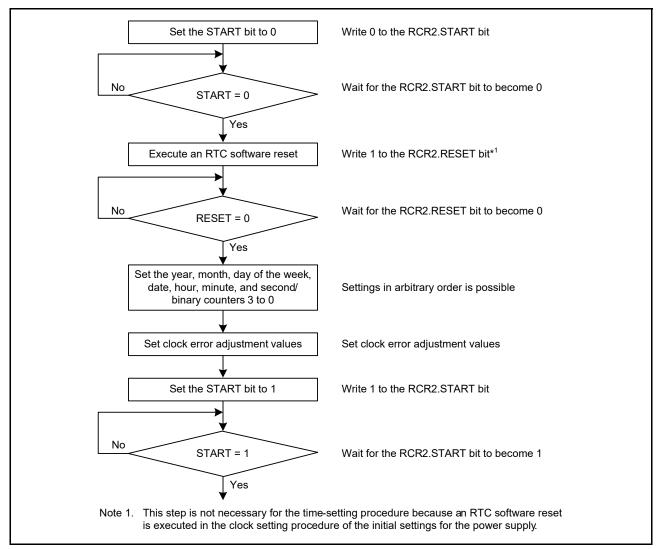


Figure 24.4 Setting the Time

24.3.4 30-Second Adjustment

Figure 24.5 shows how to execute 30-second adjustment.

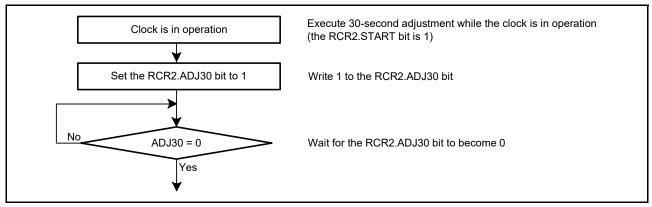


Figure 24.5 30-Second Adjustment

24.3.5 Reading 64-Hz Counter and Time

Figure 24.6 shows how to read the 64-Hz counter and time.

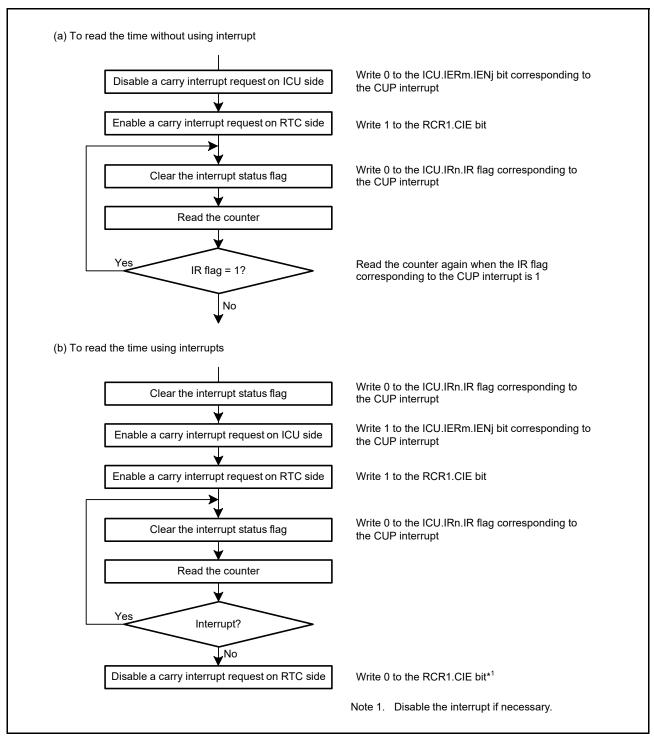


Figure 24.6 Reading Time

If a carry occurs while the 64-Hz counter and time are being read, the correct time will not be obtained, so they must be read again. The procedure for reading the time without using interrupts is shown in (a) in Figure 24.6, and the procedure using carry interrupts in (b). To keep the program simple, method (a) should be used in most cases.

24.3.6 Alarm Function

Figure 24.7 shows how to use the alarm function.

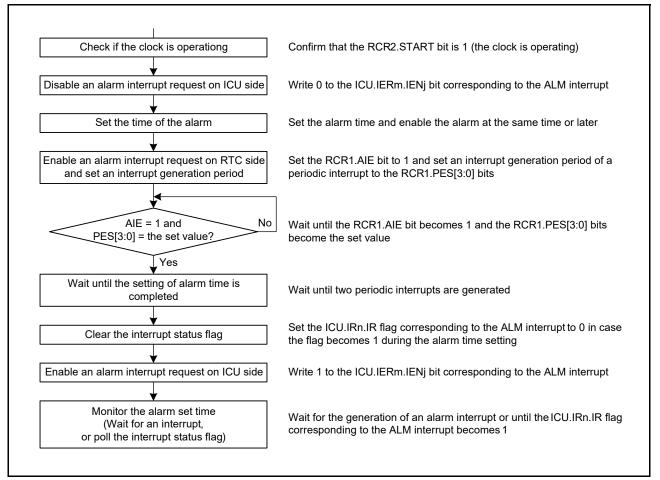


Figure 24.7 Using Alarm Function

In calendar count mode, an alarm can be generated by any one of year, month, date, day-of-week, hour, minute or second, or any combination of those. Write 1 to the ENB bit in the alarm registers involved in the alarm setting, and set the alarm time in the lower bits. Write 0 to the ENB bit in registers not involved in the alarm setting.

In binary count mode, an alarm can be generated in any bit combination of 32 bits. Write 1 to the ENB bit of the alarm enable register corresponding to the target bit of the alarm, and set the alarm time to the alarm register. For bits that are not target of the alarm, write 0 to the ENB bit of the alarm enable register.

When the counter and the alarm time match, the IR flag corresponding to the ALM interrupt is set to 1. Alarm detection can be confirmed by reading this bit, but an interrupt should be used in most cases. If 1 has been set in the interrupt request enable bit corresponding to the ALM interrupt, an alarm interrupt is generated in the event of alarm, enabling the alarm to be detected.

Writing 0 sets the IR flag corresponding to the ALM interrupt to 0.

When the counter and the alarm time match in a low power consumption state, the MCU returns from the low power consumption state.

24.3.7 Procedure for Disabling Alarm Interrupt

Figure 24.8 shows the procedure for disabling the enabled alarm interrupt request.

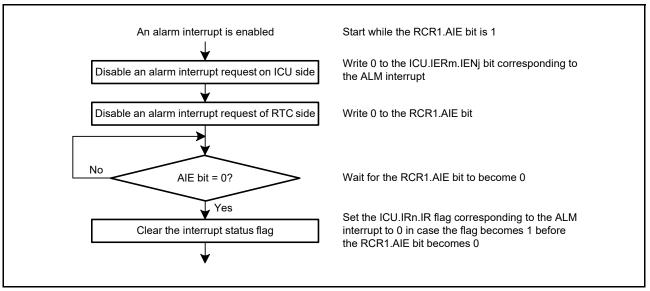


Figure 24.8 Procedure for Disabling Alarm Interrupt Request

24.3.8 Time Error Adjustment Function

The time error adjustment function is used to correct errors (running fast or slow) in the time due to the precision of oscillation by the sub-clock. Since 32,768 cycles of the sub-clock constitute 1 second of operation when the sub-clock is selected, the clock runs fast if the sub-clock frequency is high and slow if the sub-clock frequency is low. This function can be used to correct errors due to the clock running fast or slow.

Two types of time error adjustment functions are provided: automatic adjustment and adjustment by software. Use the RCR2.AADJE bit to select automatic adjustment or adjustment by software.

24.3.8.1 Automatic Adjustment

Enable automatic adjustment by setting the RCR2.AADJE bit to 1.

Automatic adjustment is the addition or subtraction of the value counted by the prescaler to or from the value in the RADJ register every time the adjustment period selected by the RCR2.AADJE bit elapses. Examples are shown below.

[Example 1] Sub-clock running at 32.769 kHz

Adjustment procedure:

When the sub-clock is running at 32.769 kHz, 1 second elapses every 32,769 clock cycles. The RTC is meant to run at 32,768 clock cycles, so the clock runs fast by one clock cycle every second. The time on the clock is fast by 60 clock cycles per minute, so adjustment can take the form of setting the clock back by 60 cycles every minute.

Register settings: (when RCR2.CNTMD = 0)

- RCR2.AADJP = 0 (adjustment every minute)
- RADJ.PMADJ[1:0] = 10b (adjustment is performed by the subtraction from the prescaler.)
- RADJ.ADJ[5:0] = 60 (3Ch)

[Example 2] Sub-clock running at 32.766 kHz

Adjustment procedure:

When the sub-clock is running at 32.766 kHz, 1 second elapses every 32,766 clock cycles. The RTC is meant to run at 32,768 clock cycles, so the clock runs slow by two clock cycles every second. The time on the clock is slow by 20 clock cycles every 10 seconds, so adjustment can take the form of setting the clock forward by 20 cycles every 10 seconds.

Register settings: (when RCR2.CNTMD = 0)

- RCR2.AADJP = 1 (adjustment every 10 seconds)
- RADJ.PMADJ[1:0] = 01b (adjustment is performed by the addition to the prescaler.)
- RADJ.ADJ[5:0] = 20 (14h)

[Example 3] Sub-clock running at 32.764 kHz

Adjustment procedure:

At 32.764 kHz, 1 second elapses on 32,764 clock cycles. Since the RTC operates for 32,768 clock cycles as 1 second, the clock is delayed for four clock cycles per second. In 8 seconds, the delay is 32 clock cycles, so correction can be made by proceeding the clock for 32 clock cycles every 8 seconds.

Register settings when the RCR2.CNTMD bit is 1

- RCR2.AADJP = 1 (adjustment every 8 seconds)
- RADJ.PMADJ[1:0] = 01b (adjustment is performed by the addition to the prescaler.)
- RADJ.ADJ[5:0] = 32 (20h)

24.3.8.2 Adjustment by Software

Enable adjustment by software by setting the RCR2.AADJE bit to 0.

Adjustment by software is the addition or subtraction of the value counted by the prescaler to or from the value in the RADJ register at the time of execution of an instruction for writing to the RADJ register.

An example is shown below.

[Example 1] Sub-clock running at 32.769 kHz

Adjustment procedure:

When the sub-clock is running at 32.769 kHz, 1 second elapses every 32,769 clock cycles. The RTC is meant to run at 32,768 clock cycles, so the clock runs fast by one clock cycle every second. The time on the clock is fast by one clock cycle per second, so adjustment can take the form of setting the clock back by one cycle every second.

Register settings:

- RADJ.PMADJ[1:0] = 10b (adjustment is performed by the subtraction from the prescaler.)
- RADJ.ADJ[5:0] = 1 (01h)

This is written to the RADJ register once per 1-second interrupt.

24.3.8.3 Procedure for Changing the Mode of Adjustment

When changing the mode of adjustment, change the value of the AADJE bit in RCR2 after setting the RADJ.PMADJ[1:0] bits to 00b (adjustment is not performed).

Changing from adjustment by software to automatic adjustment:

- (1) Set the RADJ.PMADJ[1:0] bits to 00b (adjustment is not performed).
- (2) Set the RCR2.AADJE bit to 1 (automatic adjustment is enabled).
- (3) Use the RCR2.AADJP bit to select the period of adjustment.
- (4) In RADJ, set the PMADJ[1:0] bits for addition or subtraction and the ADJ[5:0] bits to the value for use in time error adjustment.

Changing from adjustment by software to automatic adjustment:

- (1) Set the RADJ.PMADJ[1:0] bits to 00b (adjustment is not performed).
- (2) Set the RCR2.AADJE bit to 0 (adjustment by software is enabled).
- (3) Proceed with adjustment by setting the RADJ.PMADJ[1:0] bits for addition or subtraction and the RADJ.ADJ[5:0] bits to the value for use in time error adjustment at the desired time. After that, the time is adjusted every time a value is written to the RADJ register.

24.3.8.4 Procedure for Stopping Adjustment

Stop adjustment by setting the RADJ.PMADJ[1:0] bits to 00b (adjustment is not performed).

24.4 Interrupt Sources

There are three interrupt sources in the realtime clock. Table 24.3 lists interrupt sources for the RTC.

Table 24.3 RTC Interrupt Sources

Name	Interrupt Sources
ALM	Alarm interrupt
PRD	Periodic interrupt
CUP	Carry interrupt

(1) Alarm interrupt (ALM)

This interrupt is generated according to the result of comparison between the alarm registers and realtime clock counters (for details, refer to section 24.3.6, Alarm Function).

Since there is a possibility that the interrupt flag may be set to 1 when the settings of the alarm registers match the clock counters, wait for the alarm time settings to be confirmed and set the IR flag corresponding to the ALM interrupt to 0 again after modifying values of the alarm registers. Once the interrupt flag for the alarm interrupt has been set to 1 and the state has returned to non-matching of the alarm registers and clock counters, the flag will not be set again until there is a further match or the values of the alarm registers are modified again.

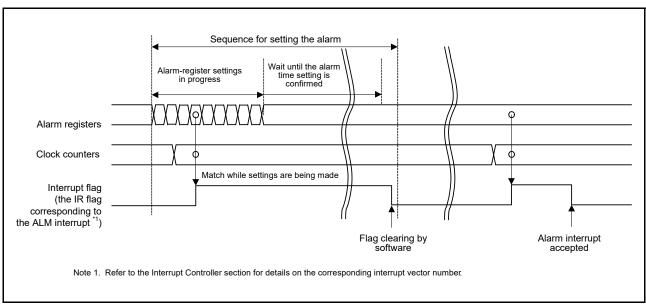


Figure 24.9 Timing Chart for the Alarm Interrupt (ALM)

(2) Periodic interrupt (PRD)

This interrupt is generated at intervals of 2 seconds, 1 second, 1/2 second, 1/4 second, 1/8 second, 1/16 second, 1/32 second, 1/64 second, 1/128 second, or 1/256 second. The interrupt interval can be selected through the RCR1.PES[3:0] bits.

(3) Carry interrupt (CUP)

This interrupt is generated when a carry to the second counter/binary counter 0 occurred or a carry to the R64CNT counter occurred during read access to the 64-Hz counter.

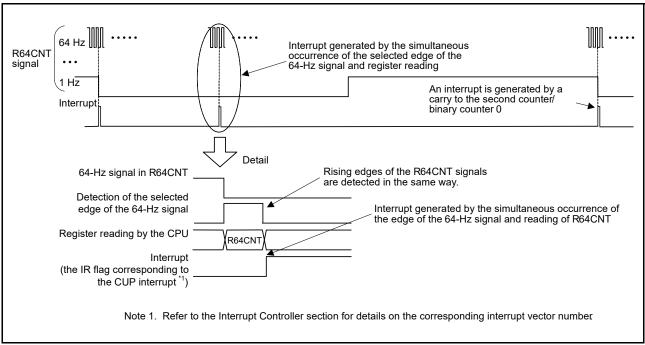


Figure 24.10 Carry Interrupt (CUP) Timing Chart

24.5 Usage Notes

24.5.1 Register Writing during Counting

The following registers should not be written to during counting (while the RCR2.START bit = 1).

RSECCNT/BCNT0, RMINCNT/BCNT1, RHRCNT/BCNT2, RDAYCNT, RWKCNT/BCNT3, RMONCNT, RYRCNT, RCR1.RTCOS, RCR2.RTCOE, RCR2.HR24

The counter must be stopped before writing to any of the above registers.

24.5.2 Use of Periodic Interrupts

The procedure for using periodic interrupts is shown in Figure 24.11.

The generation and period of the periodic interrupt can be changed by the setting of the RCR1.PES[3:0] bits. However, since the prescaler, R64CNT, and RSECCNT/BCNT0 are used to generate interrupts, the interrupt period is not guaranteed immediately after setting of the RCR1.PES[3:0] bits.

Furthermore, stopping/restarting or resetting counter operation, reset by RTC software, and the 30-second adjustment by changing the RCR2 value affects the interrupt period. When the time error adjustment function is used, the interrupt generation period after adjustment is added or subtracted according to the adjustment value.

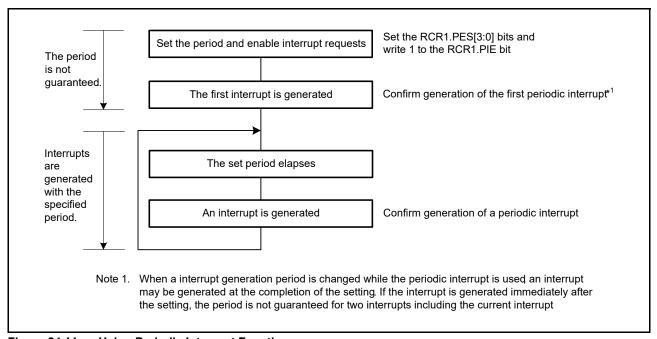


Figure 24.11 Using Periodic Interrupt Function

24.5.3 RTCOUT (1-Hz/64-Hz) Clock Output

Stopping/restarting or resetting counter operation, reset by RTC software, and the 30-second adjustment by changing the RCR2 value affects the period of RTCOUT (1-Hz/64-Hz) output. When the time error adjustment function is used, the period of RTCOUT (1-Hz/64-Hz) output after adjustment is added or subtracted according to the adjustment value.

24.5.4 Transitions to Low Power Consumption Modes after Setting Registers

A transition to a low power consumption state (software standby mode) during writing to or updating of an RTC register might destroy the register's value. After setting a register, confirm that the setting is in place before initiating a transition to a low power consumption state.

24.5.5 Notes When Writing to and Reading from Registers

- When reading a counter register such as the second counter after having written to the counter register, follow the procedure in section 24.3.5, Reading 64-Hz Counter and Time.
- The value written to the count registers, alarm registers, year alarm enable register, bits RCR2.AADJE, AADJP, and HR24, or RCR3 register is reflected when four read operations are performed after writing.
- The values written to the RCR1.CIE, RTCOS, and RCR2.RTCOE bits can be read immediately after writing.
- To read the value from the timer counter after return from a reset or software standby mode, wait for 1/128 second while the clock is operating (RCR2.START bit = 1).
- After a reset is generated, write to the RTC register when six cycles of the count source have elapsed.

24.5.6 Changing the Count Mode

When changing the count mode (calendar/binary), set the RCR2.START bit to 0, stop counting operation, then start again from the initial setting. For details on initial setting, refer to section 24.3.1, Outline of Initial Settings of Registers after Power On.

24.5.7 Initialization Procedure When the Realtime Clock is Not to be Used

Registers in the RTC are not initialized by a reset. Accordingly, depending on the initial state, the generation of an unintentional interrupt request or operation of the counter may lead to increased power consumption.

For products that do not require a realtime clock, initialize the registers by following the initialization procedure shown in Figure 24.12.

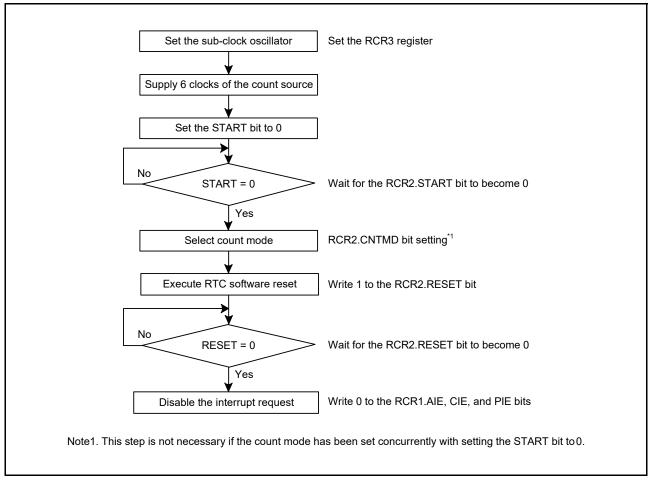


Figure 24.12 Initialization Procedure

25. Low-Power Timer (LPT)

25.1 Overview

This MCU integrates a low-power timer (LPT) that consists of a single-channel 16-bit timer. The LPT uses a sub-clock oscillator or IWDT-dedicated oscillator as the count source, and can continue count operation even in software standby mode. A compare match signal can be used to wake up from software standby mode to normal operating mode. Table 25.1 lists the specifications of the LPT and Figure 25.1 shows a block diagram of the LPT.

Table 25.1 LPT Specifications

Item	Description
Clock source	Sub-clock oscillator or IWDT-dedicated oscillator
Clock division ratio	Divided by 2, 4, 8, 16, or 32
Count operation	 Count up using the 16-bit up-counter Count operation can be continued even in software standby mode
Compare match	Compare match 0 (a compare match signal is generated only in software standby mode)
Event link function (output)	An event signal is output when compare match 0 occurs (a compare match signal is generated only in software standby mode).

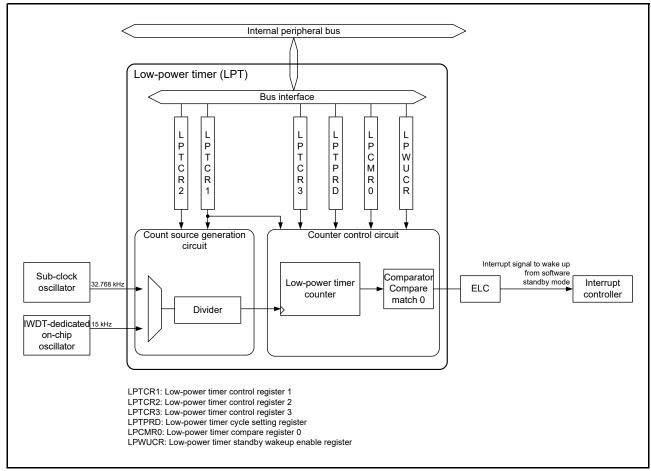
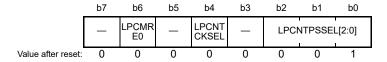



Figure 25.1 LPT Block Diagram

25.2 Register Descriptions

25.2.1 Low-power timer control register 1 (LPTCR1)

Address(es): 0008 00B0h

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	LPCNTPSSE L[2:0]	Low-Power Timer Clock Division Ratio Select	b2 b0 0 0 1: Source clock divided by 2 0 1 0: Source clock divided by 4 0 1 1: Source clock divided by 8 1 0 0: Source clock divided by 16 1 0 1: Source clock divided by 32 Settings other than above are prohibited.	R/W
b3	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b4	LPCNTCKSE L	Low-Power Timer Clock Source Select*1	Sub-clock oscillator is selected I: IWDT-dedicated on-chip oscillator is selected*2	R/W
b5	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b6	LPCMRE0	Low-Power Timer Compare Match 0 Enable	0: Low-power timer compare match 0 is disabled 1: Low-power timer compare match 0 is enabled	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC2 bit to 1 (write enabled) before rewriting this register.

Note 1. Satisfy that the frequency of the system clock (ICLK) and peripheral module clock (PCLKB) ≥ 4 × (the frequency of the low-power timer clock source).

Note 2. The IWDT-dedicated on-chip oscillator is supplied to the low-power timer. When modifying this bit, make sure that the IWDT-dedicated on-chip oscillator is oscillating stably.

When the IWDT-dedicated on-chip oscillator is used as the clock source for the low-power timer, set the OFS0.IWDTSLCSTP bit to 0 (counting stop is disabled) in IWDT auto-start mode operation, and set the IWDTCSTPR.SLCSTP bit to 0 (counting stop is disabled) in other modes. Without this setting, the IWDT-dedicated on-chip oscillator is stopped in software standby mode.

The LPTCR1 register is used to control the low-power timer.

LPCNTPSSEL[2:0] Bit (Low-Power Timer Clock Division Ratio Select)

These bits are used to select the count clock to be input to the low-power timer from among five divided clocks, which are obtained by dividing the clock source for the low-power timer.

Modify these bits while the low-power timer clock is stopped (LPTCR2.LPCNTSTP = 1).

Do not write to these bits while the low-power timer clock is being supplied (LPTCR2.LPCNTSTP = 0).

LPCNTCKSEL Bit (Low-Power Timer Clock Source Select)

This bit is used to select the sub-clock oscillator or IWDT-dedicated on-chip oscillator as the clock source for the low-power timer.

Modify this bit while the low-power timer clock is stopped (LPTCR2.LPCNTSTP = 1).

Do not write to this bit while the low-power timer clock is being supplied (LPTCR2.LPCNTSTP = 0).

LPCMRE0 Bit (Low-Power Timer Compare Match 0 Enable)

This bit enables or disables low-power timer compare match 0.

Set this bit to 1 and permit the low-power timer waking up from standby mode (LPWUCR.LPWKUPEN = 1) to make the low-power timer operate. If the MCU makes a transition to software standby mode with these settings, the ELC causes the MCU to wake up from software standby mode to normal operating mode when the low-power timer counter value matches the set value of the low-power compare register 0 (LPCMR0).

Modify this bit while the low-power timer counter is stopped (LPTCR3.LPCNTEN = 0).

Do not write to this bit while the low-power timer counter is counting (LPTCR3.LPCNTEN = 1).

Settings for the interrupt and ELC to initiate wakeup from software standby mode are required.

See section 17, Event Link Controller (ELC) for details on the ELC settings, and see section 14, Interrupt Controller (ICUb) for details on the interrupt settings.

An interrupt at low-power timer compare match 0 is generated only in software standby mode.

An interrupt at low-power timer compare match 0 is not generated in normal operating mode, sleep mode, and deep sleep mode.

25.2.2 Low-power timer control register 2 (LPTCR2)

Address(es): 0008 00B1h

Bit	Symbol	Bit Name	Description	R/W
b0	LPCNTSTP	Low-Power Timer Clock Supply Control	Low-power timer clock is supplied Low-power timer clock is stopped	R/W
b7 to b1	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

Note: Set the PRCR.PRC2 bit to 1 (write enabled) before rewriting this register.

The LPTCR2 register is used to control supply of the clock to be used for the low-power timer.

LPCNTSTP Bit (Low-Power Timer Clock Supply Control)

This bit is used to supply or stop the clock to be used for the low-power timer. When this bit is set to 0, the clock signal is supplied to the low-power timer counter and divider.

25.2.3 Low-power timer control register 3 (LPTCR3)

Address(es): 0008 00B2h

Bit	Symbol	Bit Name	Description	R/W		
b0	b0 LPCNTEN Low-Power Timer Op Control		Cow-power timer counter stops Low-power timer counter operates	R/W		
b1	LPCNTRST	Low-Power Timer Counter Clear* ¹	 In writing 0: Writing is invalid 1: Divider and counter are cleared In reading 0: Clearing is completed 1: Clearing is in progress 	R/W		
b7 to b2	_	Reserved	This bit is read as 0. The write value should be 0.	R/W		

Note: Set the PRCR.PRC2 bit to 1 (write enabled) before rewriting this register.

Note 1. After writing 1 to the LPCNTRST bit and confirming that its value is 0, wait for at least one cycle of the clock selected by the LPTCR1.LPCNTCKSEL bit before writing to 1 to the LPCNTRST bit again.

The LPTCR3 register controls operations of the low-power timer counter and clears the division counter.

LPCNTEN Bit (Low-Power Timer Operation Control)

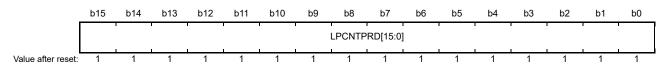
This bit is used to operate or stop the low-power timer counter and divider.

When this bit is set to 1 while the clock to be used for the low-power timer is being supplied (LPTCR2.LPCNTSTP = 0), the low-power timer counter and divider start to operate. Do not write to this bit while the low-power timer clock is stopped (LPTCR2.LPCNTSTP = 1).

Do not write to 1 to the LPCNTRST bit while this bit is set to 1.

LPCNTRST Bit (Low-Power Timer Counter Clear)

This bit is used to clear the low-power timer counter and divider.


When this bit is set to 1 while the clock to be used for the low-power timer is being supplied (LPTCR2.LPCNTSTP = 0), the low-power timer counter and divider are cleared in synchronization with the clock to be used for the low-power timer. Once clearing is complete, this bit is automatically cleared to 0. Do not write to this bit while the low-power timer clock is stopped (LPTCR2.LPCNTSTP = 1).

When 1 is written to this bit, confirm that its value is 0 before executing the next processing.

Write to this bit while the low-power timer counter is stopped (LPCNTEN = 0).

25.2.4 Low-Power Timer Cycle Setting Register (LPTPRD)

Address(es): 0008 00B4h

Bit	Symbol	Bit Name	Description	R/W
b15 to b0	LPCNTPRD[Low-Power Timer	Set the low-power timer cycle.	R/W
	15:0]	Cycle Setting	0000h: Setting prohibited	

Note: Set the PRCR.PRC2 bit to 1 (write enabled) before rewriting this register.

The LPTPRD register is used to set the cycle of the low-power timer.

LPCNTPRD[15:0] Bit (Low-Power Timer Cycle Setting)

These bits are used to set the cycle of the low-power timer.

The cycle of the low-power timer is set to (the value in this register + 1) and calculated by the following formula: Clock source cycle \times division ratio \times (LPCNTPRD[15:0] + 1)

When the timer counter value matches the set value, the counter is cleared to 0000h and continues counting. This register cannot be set to 0000h.

Set this register while the low-power timer counter is stopped (LPTCR3.LPCNTEN = 0). Do not write to this register while the low-power timer counter is counting (LPTCR3.LPCNTEN = 1).

Table 25.2 and Table 25.3 list examples of setting the cycles of the low-power timer. These examples show values most approximate to the cycles.

Table 25.2 Example of Low-Power Timer Cycle Settings for IWDT-Dedicated LOCO

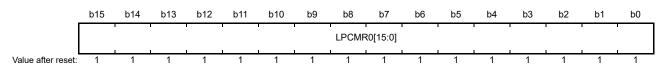

Division Setting		2		4		8			16			32			
Cycle [ms]	Set Value	Value [ms]	Error [%]												
1	0006h	0.93	-6.67	0003h	1.07	6.67	0001h	1.07	6.67	_	_	_	_	_	_
2	000Dh	1.87	-6.67	0006h	1.87	-6.67	0003h	2.13	6.67	0001h	2.13	6.67	_	_	_
5	0024h	4.93	-1.33	0011h	4.80	-4.00	0008h	4.80	-4.00	0004h	5.33	6.67	0001h	4.27	-14.67
10	004Ah	10.00	0.00	0024h	9.87	-1.33	0011h	9.60	-4.00	0008h	9.60	-4.00	0004h	10.67	6.67
20	0095h	20.00	0.00	004Ah	20.00	0.00	0024h	19.73	-1.33	0011h	19.20	-4.00	0008h	19.20	-4.00
50	0176h	50.00	0.00	00BAh	49.87	-0.27	005Ch	49.60	-0.80	002Dh	49.07	-1.87	0016h	49.07	-1.87
100	02EDh	100.00	0.00	0176h	100.00	0.00	00BAh	99.73	-0.27	005Ch	99.20	-0.80	002Dh	98.13	-1.87
200	05DBh	200.00	0.00	02EDh	200.00	0.00	0176h	200.00	0.00	00BAh	199.47	-0.27	005Ch	198.40	-0.80
500	0EA4h	499.87	-0.03	0751h	499.73	-0.05	03A8h	499.73	-0.05	01D3h	499.20	-0.16	00E9h	499.20	-0.16
1000	1D4Ah	999.87	-0.01	0EA4h	999.73	-0.03	0751h	999.47	-0.05	03A8h	999.47	-0.05	01D3h	998.40	-0.16
2000	3A96h	1999.87	-0.01	1D4Ah	1999.73	-0.01	0EA4h	1999.47	-0.03	0751h	1998.93	-0.05	03A8h	1998.93	-0.05
5000	927Bh	5000.00	0.00	493Dh	5000.00	0.00	249Eh	5000.00	0.00	124Eh	4999.47	-0.01	0926h	4998.40	-0.03
10000	_	_	_	_	_	_	493Dh	10000.00	0.00	249Eh	10000.00	0.00	124Eh	9998.93	-0.01
20000	_	_	_	_	_	_	927Bh	20000.00	0.00	493Dh	20000.00	0.00	249Eh	20000.00	0.00
50000	-	_	_	-	_	_	_	_	_	B71Ah	50000.00	0.00	5B8Ch	49998.93	0.00

Table 25.3 Example of Low-Power Timer Cycle Settings for Sub-Clock Oscillator

Division		2		4			8			16			32		
Setting Cycle [ms]	Set Value	Value [ms]	Error [%]												
1	000Fh	0.98	-2.34	0007h	0.98	-2.34	0003h	0.98	-2.34	0001h	0.98	-2.34	_	_	_
2	001Fh	1.95	-2.34	000Fh	1.95	-2.34	0007h	1.95	-2.34	0003h	1.95	-2.34	0001h	1.95	-2.34
5	0050h	4.94	-1.12	0027h	4.88	-2.34	0013h	4.88	-2.34	0009h	4.88	-2.34	0004h	4.88	-2.34
10	00A2h	9.95	-0.51	0050h	9.89	-1.12	0027h	9.77	-2.34	0013h	9.77	-2.34	0009h	9.77	-2.34
20	0146h	19.96	-0.21	00A2h	19.90	-0.51	0050h	19.78	-1.12	0027h	19.53	-2.34	0013h	19.53	-2.34
50	0332h	49.99	-0.02	0198h	49.93	-0.15	00CBh	49.80	-0.39	0065h	49.80	-0.39	0032h	49.80	-0.39
100	0665h	99.98	-0.02	0332h	99.98	-0.02	0198h	99.85	-0.15	00CBh	99.61	-0.39	0065h	99.61	-0.39
200	0CCBh	199.95	-0.02	0665h	199.95	-0.02	0332h	199.95	-0.02	0198h	199.71	-0.15	00CBh	199.22	-0.39
500	1FFFh	500.00	0.00	0FFFh	500.00	0.00	07FFh	500.00	0.00	03FFh	500.00	0.00	01FFh	500.00	0.00
1000	3FFFh	1000.00	0.00	1FFFh	1000.00	0.00	0FFFh	1000.00	0.00	07FFh	1000.00	0.00	03FFh	1000.00	0.00
2000	7FFFh	2000.00	0.00	3FFFh	2000.00	0.00	1FFFh	2000.00	0.00	0FFFh	2000.00	0.00	07FFh	2000.00	0.00
5000	1	1	-	9FFFh	5000.00	0.00	4FFFh	5000.00	0.00	27FFh	5000.00	0.00	13FFh	5000.00	0.00
10000	1	_	_	-	_	1	9FFFh	10000.00	0.00	4FFFh	10000.00	0.00	27FFh	10000.00	0.00
20000	_	_	_	_	_	_	_	_	_	9FFFh	20000.00	0.00	4FFFh	20000.00	0.00
50000	_	_	_	_	_	_	_	_	_	_	_	_	C7FFh	50000.00	0.00

25.2.5 Low-Power Timer Compare Register 0 (LPCMR0)

Address(es): 0008 00B8h

Bit	Symbol	Bit Name	Description	R/W
b15 to b0	LPCMR0[15:	Low-Power Timer	Set the value of compare match 0 for comparison with the low-power timer	R/W
	0]	Compare 0	counter.	

Note: Set the PRCR.PRC2 bit to 1 (write enabled) before rewriting this register.

The LPCMR0 register is used to set the value of compare match 0 for comparison with the low-power timer counter.

LPCMR0[15:0] Bit (Low-Power Timer Compare 0)

These bits are used to set the value of compare match 0 for comparison with the low-power timer counter. Set the LPCMR0[15:0] bits to a value smaller than the value of the LPTPRD.LPCNTPRD[15:0] bits. Set this register while the low-power timer counter is stopped (LPTCR3.LPCNTEN = 0). Do not write to this register while the low-power timer counter is counting (LPTCR3.LPCNTEN = 1).

25.2.6 Low-Power Timer Standby Wakeup Enable Register (LPWUCR)

Address(es): 0008 00BCh

Bit	Symbol	Bit Name	Description	R/W
b14 to b0	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b15	LPWKUPEN	Low-Power Timer Standby Wakeup Enable	Wakeup from software standby mode using low-power timer is disabled Wakeup from software standby mode using low-power timer is enabled	R/W

Note: Set the PRCR.PRC2 bit to 1 (write enabled) before rewriting this register.

The LPWUCR register is used to enable the function that allows wakeup from software standby mode to normal mode when compare match 0 occurs in the low-power timer.

LPWKUPEN Bit (Low-Power Timer Standby Wakeup Enable)

This bit enables or disables the function that allows wakeup from software standby mode to normal mode when compare match 0 occurs in the low-power timer.

Set this bit while the low-power timer counter is stopped (LPTCR3.LPCNTEN = 0). Do not write to this bit while the low-power timer is counting (LPTCR3.LPCNTEN = 1).

25.3 Operation

25.3.1 Periodic Count Operation

The low-power timer is a 16-bit up-counter that operates regardless of the operating state*1.

Set the LPTCR1.LPCNTPSSEL[2:0] bits to select the divided clock and set the LPTCR1.LPCNTCKSEL bit to select the clock source. When the LPTCR2.LPCNTSTP bit is set to 0 and then the LPTCR3.LPCNTEN bit is set to 1, the low-power timer counter starts counting up with the selected clock.

When the low-power timer counter value matches the LPTPRD register value, the counter restarts counting up from 0000h.

After the LPTCR1.LPCMRE0 bit is set to 1 and the LPWUCR.LPWKUPEN bit is set to 1, when the low-power timer counter value matches the LPCMR0 register value in software standby mode, the MCU wakes up from software standby mode to normal operating mode via the ELC.

Figure 25.2 shows operation of the low-power timer and Figure 25.3 shows an example of initial settings.

Note 1. When the LPTCR1.LPCNTCKSEL bit is set to 1 (IWDT-dedicated on-chip oscillator), the counter stops because the selected clock is stopped in the low-power consumption state under the following settings:

"Counting stop is selected by setting the IWDT sleep mode count stop control bit in option function select register 0 (OFS0.IWDTSLCSTP) in IWDT auto-start mode" or "counting stop is selected by setting sleep mode count stop control bit in the IWDT count stop control register (IWDTCSTPR.SLCSTP) in any mode other than IWDT auto-start mode".

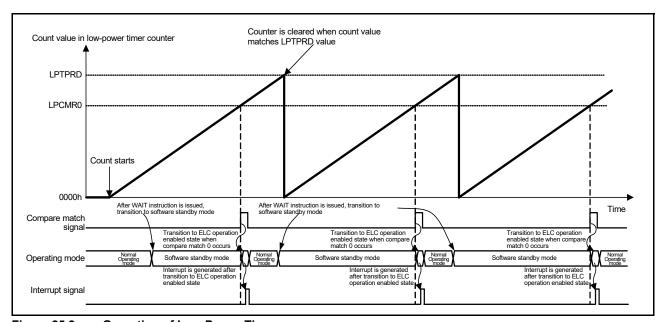


Figure 25.2 Operation of Low-Power Timer

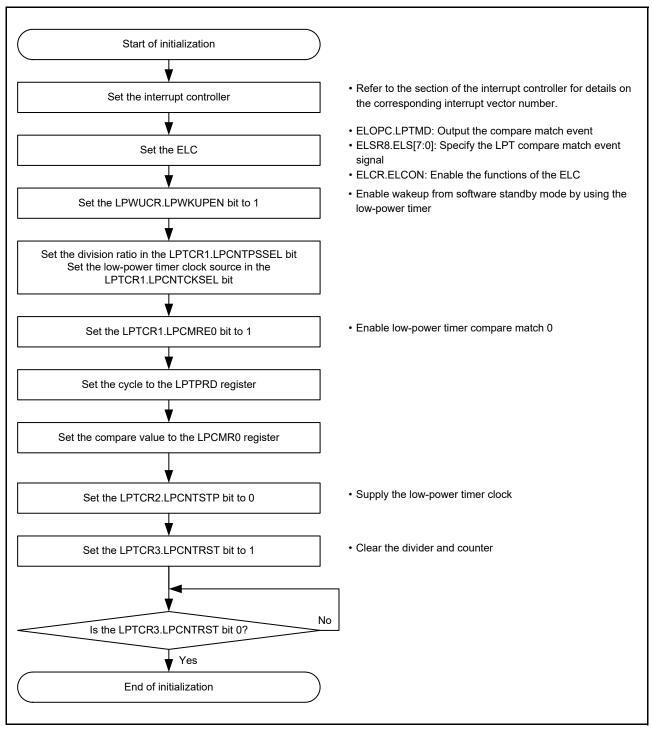


Figure 25.3 Example of Initial Settings

25.3.2 Count Timing of Low-Power Timer Counter

The LPTCR1.LPCNTPSSEL[2:0] bits are used to select the count clock to be input to the low-power timer counter from among five divided clocks (1/2, 1/4, 1/8, 1/16, and 1/32), which are obtained by dividing the clock source for the low-power timer counter.

Figure 25.4 shows the count timing of the low-power timer counter in this case.

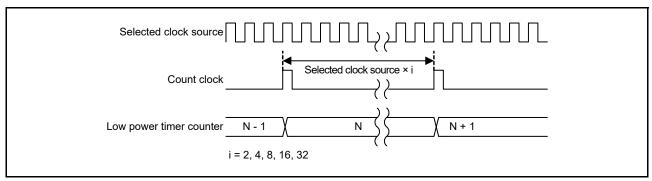


Figure 25.4 Count Timing of Low-Power Timer Counter

25.3.3 Clearing Timing of Low-Power Timer Counter

Writing 1 to the LPTCR3.LPCNTRST bit*1 clears the low-power timer counter.

This bit is automatically set to 0 when the clearing of the counter is completed.

Figure 25.5 shows the clearing timing of the low-power timer counter in this case.

Note 1. Write to the LPTCR3.LPCNTRST bit while the counter is stopped (LPTCR3.LPCNTEN = 0).

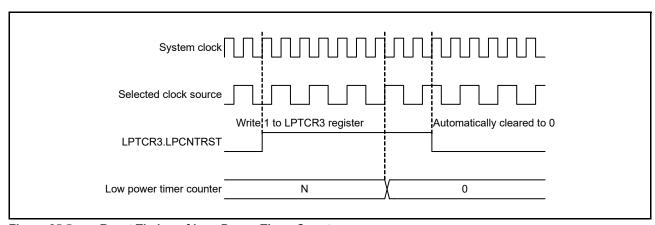


Figure 25.5 Reset Timing of Low-Power Timer Counter

25.4 Release from Software Standby Mode by an Interrupt Signal through the Event Link Controller (ELC)

The low-power timer can be set up to use the event link controller (ELC) to output an event signal upon LPT compare match 0 (only in software standby mode).

This is done by setting compare match event output in the ELOPC register of the event link controller (ELC) and setting LPT compare match in the ELSR8 register, leading to the generation of an interrupt as an event signal that returns the MCU to normal operating mode from software standby mode.

25.5 Usage Notes

25.5.1 Notes on Transition to Software Standby Mode

When the MCU has returned to normal operating mode from software standby mode, and is then to be returned to software standby mode, wait for at least 1 cycle of the clock selected by the LPTCR1.LPCNTCKSEL bit before executing the WAIT instruction.

26. Independent Watchdog Timer (IWDTa)

In this section, "PCLK" is used to refer to PCLKB.

26.1 Overview

The independent watchdog timer (IWDT) can be used to detect programs being out of control.

The user can detect when a program runs out of control if an underflow occurs, by creating a program that refreshes the IWDT counter before it underflows.

The functions of the IWDT are different from those of the WDT in the following respects.

- The divided IWDT-dedicated low-speed clock (IWDTCLK) is used as the count source (not affected by the PCLK).
- When making a transition to sleep mode, software standby mode, or deep sleep mode, the IWDTCSTPR.SLCSTP bit or the OFS0.IWDTSLCSTP bit can be used to select whether to stop the counter or not.

Table 26.1 lists the specifications of the IWDT and Figure 26.1 shows a block diagram of the IWDT.

Table 26.1 IWDT Specifications

Item	Description
Count source*1	IWDT-dedicated clock (IWDTCLK)
Clock divide ratio	Divide by 1, 16, 32, 64, 128, or 256
Counter operation	Counting down using a 14-bit down-counter
Conditions for starting the counter	 Counting automatically starts after a reset (auto-start mode) Counting is started (register start mode) by refreshing the counter (writing 00h and then FFh to the IWDTRR register).
Conditions for stopping the counter	 Reset (the down-counter and other registers return to their initial values) A counter underflows or a refresh error occurs Counting restarts (In auto-start mode, counting automatically restarts after a reset or after a non-maskable interrupt request is output. In register start mode, counting restarts after refreshing.)
Window function	Window start and end positions can be specified (refresh-permitted and refresh-prohibited periods)
Reset output sources	Down-counter underflows Refreshing outside the refresh-permitted period (refresh error)
Non-maskable interrupt sources	Down-counter underflows Refreshing outside the refresh-permitted period (refresh error)
Reading the counter value	The down-counter value can be read by the IWDTSR register.
Output signal (internal signal)	Reset output Interrupt request output Sleep mode count stop control output
Auto-start mode (controlled by option function select register 0 (OFS0))	 Selecting the clock frequency divide ratio after a reset (OFS0.IWDTCKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (OFS0.IWDTTOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (OFS0.IWDTRPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (OFS0.IWDTRPES[1:0] bits) Selecting the reset output or interrupt request output (OFS0.IWDTRSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, or deep sleep mode (OFS0.IWDTSLCSTP bit)
Register start mode (controlled by the IWDT registers)	 Selecting the clock frequency divide ratio after refreshing (IWDTCR.CKS[3:0] bits) Selecting the timeout period of the independent watchdog timer (IWDTCR.TOPS[1:0] bits) Selecting the window start position in the independent watchdog timer (IWDTCR.RPSS[1:0] bits) Selecting the window end position in the independent watchdog timer (IWDTCR.RPES[1:0] bits) Selecting the reset output or interrupt request output (IWDTRCR.RSTIRQS bit) Selecting the down-count stop function at transition to sleep mode, software standby mode, or deep sleep mode (IWDTCSTPR.SLCSTP bit)

Note 1. Satisfy the frequency of the peripheral module clock (PCLK) \geq 4 × (the frequency of the count source after divide).

To use the IWDT, the IWDT-dedicated clock (IWDTCLK) should be supplied so that the IWDT operates even if the peripheral module clock (PCLK) stops. The bus interface and registers operate with PCLK, and the 14-bit counter and control circuits operate with IWDTCLK.

Figure 26.1 is a block diagram of the IWDT.



Figure 26.1 IWDT Block Diagram

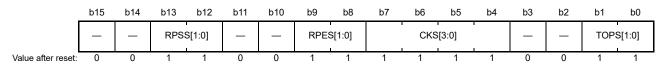
26.2 Register Descriptions

26.2.1 IWDT Refresh Register (IWDTRR)

Address(es): IWDT.IWDTRR 0008 8030h

Bit	Description	R/W
b7 to b0	The counter is refreshed by writing 00h and then writing FFh to this register.	R/W

The IWDTRR register refreshes the counter of the IWDT.


The counter of the IWDT is refreshed by writing 00h and then writing FFh to the IWDTRR register (refresh operation) within the refresh-permitted period.

After the counter has been refreshed, it starts counting down from the value selected by the IWDT timeout period select bits (OFS0.IWDTTOPS[1:0]) in option function select register 0 (OFS0) in auto-start mode. In register start mode, counting down starts from the value selected by setting the timeout period select bits (TOPS[1:0]) in the IWDT control register (IWDTCR) in the first refresh operation after release from the reset state.

When 00h is written, the read value is 00h. When a value other than 00h is written, the read value is FFh. For details of the refresh operation, refer to section 26.3.3, Refresh Operation.

26.2.2 IWDT Control Register (IWDTCR)

Address(es): IWDT.IWDTCR 0008 8032h

Bit	Symbol	Bit Name	Description	R/W
b1, b0 TOPS[1:0] Timeout Period Select		Timeout Period Select	b1 b0 0 0: 128 cycles (007Fh) 0 1: 512 cycles (01FFh) 1 0: 1024 cycles (03FFh) 1 1: 2048 cycles (07FFh)	
b3, b2	_	Reserved	These bits are read as 0. Writing to these bits has no effect.	R
b7 to b4	CKS[3:0]	Clock Divide Ratio Select	b7 b4 0 0 0 0: No division 0 0 1 0: Divide-by-16 0 0 1 1: Divide-by-32 0 1 0 0: Divide-by-64 1 1 1 1: Divide-by-128 0 1 0 1: Divide-by-256 Other settings are prohibited.	R/W
b9, b8	RPES[1:0]	Window End Position Select	b9 b8 0 0: 75% 0 1: 50% 1 0: 25% 1 1: 0% (window end position is not specified.)	R/W
b11, b10	_	Reserved	These bits are read as 0. Writing to these bits has no effect.	R
b13, b12	RPSS[1:0]	Window Start Position Select	b13 b12 0 0: 25% 0 1: 50% 1 0: 75% 1 1: 100% (window start position is not specified.)	R/W
b15, b14	_	Reserved	These bits are read as 0. Writing to these bits has no effect.	R

There are some restrictions on writing to the IWDTCR register. For details, refer to section 26.3.2, Control over Writing to the IWDTCR, IWDTRCR, and IWDTCSTPR Registers.

In auto-start mode, the settings in the IWDTCR register are disabled, and the settings in option function select register 0 (OFS0) are enabled. The bit setting made to the IWDTCR register can also be made in option function select register 0 (OFS0). For details, refer to section 26.3.8, Correspondence between Option Function Select Register 0 (OFS0) and IWDT Registers.

TOPS[1:0] Bits (Timeout Period Select)

These bits select the timeout period (period until the counter underflows) from among 128, 512, 1024, or 2048 cycles, taking the divided clock specified by the CKS[3:0] bits as one cycle.

After the counter is refreshed, the combination of the CKS[3:0] and TOPS[1:0] bits determines the time (number of IWDTCLK cycles) until the counter underflows.

Relations between the CKS[3:0] and TOPS[1:0] bit setting, the timeout period, and the number of IWDTCLK cycles are listed in Table 26.2.

Table 26.2 Settings and Timeout Periods

CKS[3:0] Bits			(S[3:0] Bits TOPS[1:0] Bits				Timeout Period		
b7	b6	b5	b4	b1	b0	Clock Divide Ratio	(Number of Cycles)	Cycles of IWDTCLK	
0 0		0	0	0	0	No division	128	128	
			_	0	1	_	512	512	
			_	1	0	_	1024	1024	
			_	1	1	_	2048	2048	
0	0	1	0	0	0	Divide-by-16	128	2048	
			_	0	1	_	512	8192	
			_	1	0	_	1024	16384	
			_	1	1	_	2048	32768	
0	0	1	1	0	0	Divide-by-32	128	4096	
			_	0	1	_	512	16384	
			_	1	0	_	1024	32768	
			-	1	1	_	2048	65536	
0	1	0	0	0	0	Divide-by-64	128	8192	
			_	0	1	_	512	32768	
			_	1	0	_	1024	65536	
			_	1	1	_	2048	131072	
1	1	1	1	0	0	Divide-by-128	128	16384	
			-	0	1	_	512	65536	
			_	1	0	_	1024	131072	
			_	1	1	_	2048	262144	
0	1	0	1	0	0	Divide-by-256	128	32768	
			_	0	1	_	512	131072	
			_	1	0	_	1024	262144	
			_	1	1	_	2048	524288	

CKS[3:0] Bits (Clock Divide Ratio Select)

These bits select the IWDTCLK clock divide ratio from among divide-by 1, 16, 32, 64, 128, and 256. Combination with the TOPS[1:0] bit setting, a count period between 128 and 524288 cycles of the IWDTCLK clock can be selected for the IWDT.

RPES[1:0] Bits (Window End Position Select)

These bits select 75%, 50%, 25% or 0% of the count period for the window end position of the counter. The window end position should be a value smaller than the window start position (window start position > window end position). If the window end position is greater than the window start position, only the window start position setting is enabled.

The counter values for the window start and end positions selected by setting the RPSS[1:0] and RPES[1:0] bits change depending on the TOPS[1:0] bit setting.

Table 26.3 lists the counter values for the window start and end positions corresponding to TOPS[1:0] bit values.

Table 26.3 Relationship between Timeout Period and Window Start and End Counter Values

TOPS(1:0) Bits Timeout Period Window Start and End Counter Value

TOPS[1:0] Bits		Timeout Period		Window Start and End Counter Value			
b1	b0	Cycles	Counter Value	100%	75%	50%	25%
0	0	128	007Fh	007Fh	005Fh	003Fh	001Fh
0	1	512	01FFh	01FFh	017Fh	00FFh	007Fh
1	0	1024	03FFh	03FFh	02FFh	01FFh	00FFh
1	1	2048	07FFh	07FFh	05FFh	03FFh	01FFh

RPSS[1:0] Bits (Window Start Position Select)

These bits select a counter window start position from 100%, 75%, 50%, or 25% of the count period (100% when the count starts and 0% when the counter underflows). The interval between the window start position and window end position is the refresh-permitted period and the other periods are refresh-prohibited periods.

Figure 26.2 shows the relationship between of the RPSS[1:0] and RPES[1:0] bit setting and the refresh-permitted and refresh-prohibited periods.

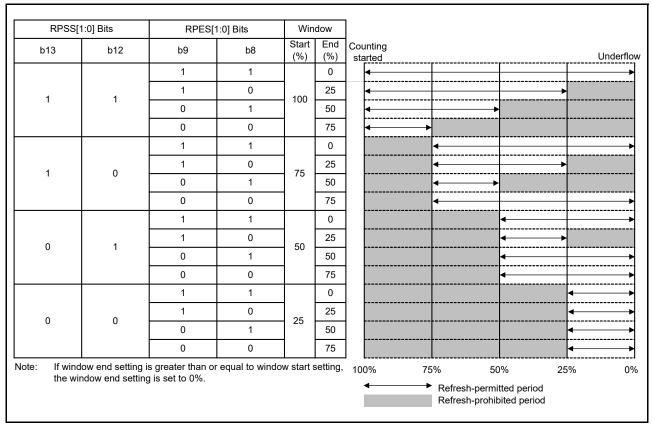



Figure 26.2 RPSS[1:0] and RPES[1:0] Bit Settings and the Refresh-Permitted Period

26.2.3 IWDT Status Register (IWDTSR)

Address(es): IWDT.IWDTSR 0008 8034h

Bit	Symbol	Bit Name	Description	R/W
b13 to b0	CNTVAL[13:0]	Counter Value	Value counted by the counter	R
b14	UNDFF	Underflow Flag	0: No underflow occurred 1: Underflow occurred	R/(W) *1
b15	REFEF	Refresh Error Flag	0: No refresh error occurred 1: Refresh error occurred	R/(W) *1

Note 1. Only 0 can be written to clear the flag.

The IWDTSR register is initialized by the reset source of the IWDT. The IWDTSR register is not initialized by other reset sources.

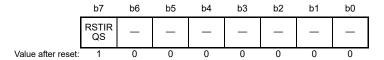
CNTVAL[13:0] Bits (Counter Value)

These bits are used to confirm the counter value of the counter, but note that the read value may differ from the actual count by a value of one count.

UNDFF Flag (Underflow Flag)

This bit is used to confirm whether or not an underflow has occurred in the counter.

The value 1 indicates that the counter has underflowed. The value 0 indicates that the counter has not underflowed. Write 0 to the UNDFF flag to set the value to 0. Writing 1 has no effect.


REFEF Flag (Refresh Error Flag)

This bit is used to confirm whether or not a refresh error (performing a refresh operation during a refresh-prohibited period).

The value 1 indicates that a refresh error has occurred. The value 0 indicates that no refresh error has occurred. Write 0 to the REFEF flag to set the value to 0. Writing 1 has no effect.

26.2.4 IWDT Reset Control Register (IWDTRCR)

Address(es): IWDT.IWDTRCR 0008 8036h

Bit	Symbol	Bit Name	Description	R/W
b6 to b0	_	Reserved	These bits are read as 0. Writing to these bits has no effect.	R
b7	RSTIRQS	Reset Interrupt Request Select	Non-maskable interrupt request output is enabled. Reset output is enabled.	R/W

There are some restrictions on writing to the IWDTRCR register. For details, refer to section 26.3.2, Control over Writing to the IWDTCR, IWDTRCR, and IWDTCSTPR Registers.

In auto-start mode, the IWDTRCR register setting are disabled, and the settings in option function select register 0 (OFS0) are enabled. The bit setting mode to the IWDTRCR register can also be made in option function select register 0. For details, refer to section 26.3.8, Correspondence between Option Function Select Register 0 (OFS0) and IWDT Registers.

26.2.5 IWDT Count Stop Control Register (IWDTCSTPR)

Address(es): IWDT.IWDTCSTPR 0008 8038h

Bit	Symbol	Bit Name	Description	R/W
b6 to b0	_	Reserved	These bits are read as 0. Writing to these bits has no effect.	R
b7	SLCSTP	Sleep Mode Count Stop Control	Count stop is disabled. Count is stopped at a transition to sleep mode, software standby mode, or deep sleep mode.	R/W

The IWDTCSTPR register controls whether to stop the IWDT counter in a low power consumption state. There are some restrictions on writing to the IWDTCSTPR register. For details, refer to section 26.3.2, Control over Writing to the IWDTCR, IWDTRCR, and IWDTCSTPR Registers.

In auto-start mode, the IWDTCSTPR register setting are disabled, and the settings in option function select register 0 (OFS0) are enabled. The bit setting mode to the IWDTCSTPR register can also be made in option function select register 0 (OFS0). For details, refer to section 26.3.8, Correspondence between Option Function Select Register 0 (OFS0) and IWDT Registers.

SLCSTP Bit (Sleep Mode Count Stop Control)

This bit selects whether to stop counting at a transition to sleep mode, software standby mode, or deep sleep mode.

26.2.6 Option Function Select Register 0 (OFS0)

For option function select register 0 (OFS0), refer to section 26.3.8, Correspondence between Option Function Select Register 0 (OFS0) and IWDT Registers.

26.3 Operation

26.3.1 Count Operation in Each Start Mode

Select the IWDT start mode by setting the IWDT start mode select bit (OFS0.IWDTSTRT) in option function select register 0.

When the OFS0.IWDTSTRT bit is 1 (register start mode), the IWDT control register (IWDTCR), IWDT reset control register (IWDTRCR), and IWDT count stop control register (IWDTCSTPR) are enabled, and counting is started by refreshing (writing) the IWDT refresh register (IWDTRR). When the OFS0.IWDTSTRT bit is 0 (auto-start mode), the setting of option function select register 0 (OFS0) is enabled, and counting automatically starts after reset.

26.3.1.1 Register Start Mode

When the IWDT start mode select bit (OFS0.IWDTSTRT) in option function select register 0 is 1, register start mode is selected, and the IWDT control register (IWDTCR), IWDT reset control register (IWDTRCR), and IWDT count stop control register (IWDTCSTPR) are enabled.

After the reset state is released, set the clock divide ratio, window start and end positions, and timeout period in the IWDTCR register, the reset output or interrupt request output in the IWDTRCR register, and the counter stop control at transitions to low power consumption states in the IWDTCSTPR register. Then refresh the counter to start counting down from the value selected by setting the timeout period select bits (IWDTCR.TOPS[1:0]).

Thereafter, as long as the program continues normal operation and the counter is refreshed in the refresh-permitted period, the value in the counter is re-set each time the counter is refreshed and counting down continues. The IWDT does not output the reset signal as long as this continues. However, if the counter underflows because the counter cannot be refreshed due to a program runaway, or if a refresh error occurs because the counter was refreshed outside the refresh-permitted period, the IWDT outputs a reset signal or a non-maskable interrupt request (WUNI). Set the IWDT reset interrupt request select bit (IWDTRCR.RSTIRQS) to select either reset output or interrupt request output.

Figure 26.3 shows an example of operation under the following conditions.

- The IWDT start mode select bit (OFS0.IWDTSTRT) is 1 (register start mode)
- The IWDT reset interrupt request select bit (IWDTRCR.RSTIRQS) is 1 (reset output is enabled)
- The IWDT window start position select bits (IWDTCR.RPSS[1:0]) are 10b (75%)
- The IWDT window end position select bits (IWDTCR.RPES[1:0]) are 10b (25%)

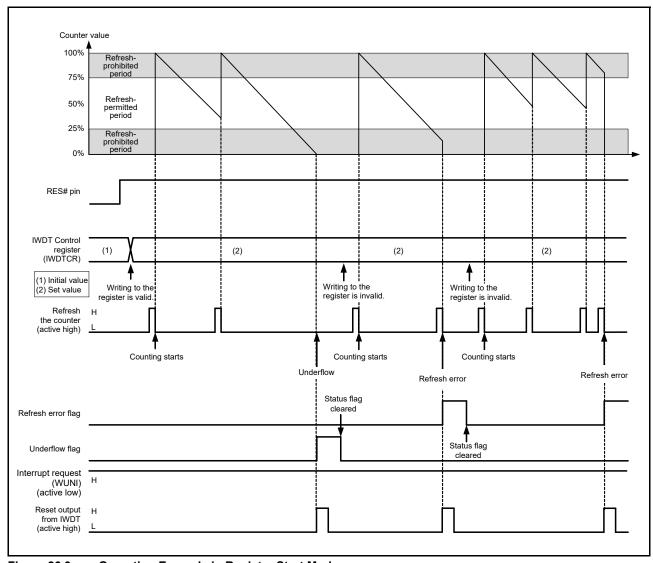


Figure 26.3 Operation Example in Register Start Mode

26.3.1.2 Auto-Start Mode

When the IWDT start mode select bit (OFS0.IWDTSTRT) in option function select register 0 is 0, auto-start mode is selected, and the IWDT control register (IWDTCR), IWDT reset control register (IWDTRCR), and IWDT count stop control register (IWDTCSTPR) are disabled.

Within the reset state, the clock divide ratio, window start and end positions, timeout period, reset output or interrupt request output, and counter stop control at transitions to low power consumption states are set using the values specified in option function select register 0 (OFS0). When the reset state is released, the counter automatically starts counting down from the value selected by the IWDT timeout period select bits (OFS0.IWDTTOPS[1:0]).

After that, as long as the program continues normal operation and the counter is refreshed in the refresh-permitted period, the value in the counter is re-set each time the counter is refreshed and counting down continues. The IWDT does not output the reset signal as long as this continues. However, if the counter underflows because refreshing of the counter is not possible due to the program having entered crashed execution or if a refresh error occurs due to refreshing outside the refresh-permitted period, the IWDT outputs the reset signal or non-maskable interrupt request (WUNI). After the reset signal or non-maskable interrupt request (WUNI) is generated, the counter reloads the timeout period after counting for one cycle, and restarts counting. Set the IWDT reset interrupt request select bit (OFS0.IWDTRSTIRQS) to select either reset output or interrupt request output.

Figure 26.4 shows an example of operation under the following conditions.

- The IWDT start mode select bit (OFS0.IWDTSTRT) is 0 (auto-start mode)
- The IWDT reset interrupt request select bit (OFS0.IWDTRSTIRQS) is 0 (non-maskable interrupt request output is enabled)
- The IWDT window start position select bits (OFS0.IWDTRPSS[1:0]) are 10b (75%)
- The IWDT window end position select bits (OFS0.IWDTRPES[1:0]) are 10b (25%)

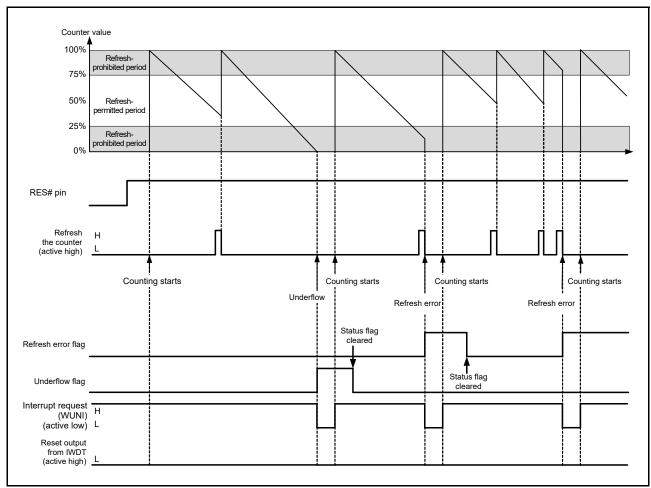


Figure 26.4 Operation Example in Auto-Start Mode

26.3.2 Control over Writing to the IWDTCR, IWDTRCR, and IWDTCSTPR Registers

Writing to the IWDT control register (IWDTCR), IWDT reset control register (IWDTRCR), or IWDT count stop control register (IWDTCSTPR) is only possible once between the release from the reset state and the first refresh operation. After a refresh operation (counting starts) or the IWDTCR, IWDTRCR, or IWDTCSTPR register is written to, the protection signal in the IWDT becomes 1 to protect registers IWDTCR, IWDTRCR, and IWDTCSTPR against subsequent attempts at writing.

This protection is released by the reset source of the IWDT. With other reset sources, the protection is not released. Figure 26.5 shows control waveforms produced in response to writing to the IWDTCR register.

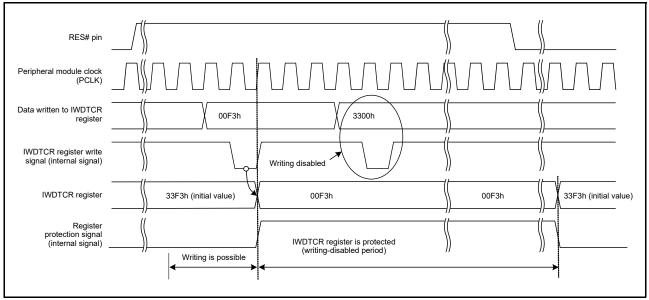


Figure 26.5 Control Waveforms Produced in Response to Writing to the IWDTCR Register

26.3.3 Refresh Operation

The counter is refreshed and starts operation (counting is started by refreshing) by writing the values 00h and then FFh to the IWDT refresh register (IWDTRR). If a value other than FFh is written after 00h, the counter is not refreshed. After such invalid writing, correct refreshing is performed by again writing 00h and then FFh to the IWDT refresh register (IWDTRR).

When writing is done in the order of 00h (first time) \rightarrow 00h (second time), and if FFh is written after that, the writing order $00h \rightarrow FFh$ is satisfied; writing 00h (n-1-th time) \rightarrow 00h (nth time) \rightarrow FFh is valid and correct refreshing will be done. Even when the first value written before 00h is not 00h, correct refreshing will be done if the operation contains the set of writing $00h \rightarrow FFh$. Moreover, even if a register other than the IWDTRR register is accessed or the IWDTRR register is read between writing 00h and writing FFh to the IWDTRR register, correct refreshing will be done.

[Sample sequences of writing that are valid for refreshing the counter]

- $00h \rightarrow FFh$
- $00h (n-1-th time) \rightarrow 00h (nth time) \rightarrow FFh$
- 00h → access to another register or read from the IWDTRR register → FFh

[Sample sequences of writing that are not valid for refreshing the counter]

- 23h (a value other than 00h) → FFh
- $00h \rightarrow 54h$ (a value other than FFh)
- $00h \rightarrow AAh (00h \text{ and a value other than FFh}) \rightarrow FFh$

Even when 00h is written to the IWDTRR register outside the refresh-permitted period, if FFh is written to the IWDTRR register in the refresh-permitted period, the writing sequence is valid and refreshing will be done.

After FFh is written to the IWDTRR register, refreshing the counter requires up to four cycles of the signal for counting (the clock divide ratio selection bits (IWDTCR.CKS[3:0]) determine how many cycles of the IWDT-dedicated clock (IWDTCLK) make up one cycle for counting). Therefore, writing FFh to the IWDTRR register should be completed four-count cycles before the end position of the refresh-permitted period or a counter underflow. The value of the counter can be checked by the counter bits (IWDTSR.CNTVAL[13:0]).

[Sample refreshing timings]

- When the window start position is set to 03FFh, even if 00h is written to the IWDTRR register before 03FFh is reached (0402h, for example), refreshing is done if FFh is written to the IWDTRR register after the value of the IWDTSR.CNTVAL[13:0] bits has reached 03FFh.
- When the window end position is set to 03FFh, refreshing is done if 0403h (four-count cycles before 03FFh) or a
 greater value is read from the IWDTSR.CNTVAL[13:0] bits immediately after writing 00h → FFh to the IWDTRR
 register.
- When the refresh-permitted period continues until count 0000h, refreshing can be done immediately before an
 underflow. In this case, if 0003h (four-count cycles before an underflow) or a greater value is read from the
 IWDTSR.CNTVAL[13:0] bits immediately after writing 00h → FFh to the IWDTRR register, no underflow occurs
 and refreshing is done.

Figure 26.6 shows the IWDT refresh-operation waveforms when PCLK > IWDTCLK and clock divide ratio = IWDTCLK.

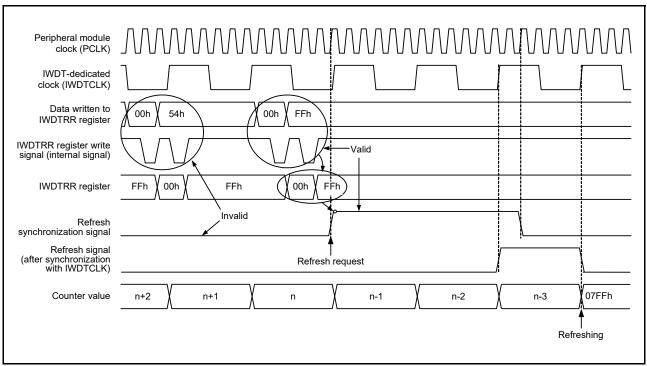


Figure 26.6 IWDT Refresh Operation Waveforms (IWDTCR.CKS[3:0] = 0000b, IWDTCR.TOPS[1:0] = 11b)

26.3.4 Status Flags

The refresh error (IWDTSR.REFEF) and underflow (IWDTSR.UNDFF) flags retain the source of the reset signal output from the IWDT or the source of the interrupt request from the IWDT.

Thus, after release from the reset state or interrupt request generation, read the IWDTSR.REFEF and IWDTSR.UNDFF flags to check for the reset or interrupt source.

For each flag, writing 0 clears the bit and writing 1 has no effect.

Leaving the status flags unchanged does not affect operation. If the flags are not cleared, at the time of the next reset or interrupt request from the IWDT, the earlier reset or interrupt source is cleared and the new reset or interrupt source is written.

After 0 is written to each flag, up to three IWDTCLK cycles and two PCLK cycles are required before the value is reflected.

26.3.5 Reset Output

When the reset interrupt selection bit (IWDTRCR.RSTIRQS) is set to 1 in register start mode or when the IWDT reset interrupt request select bit (OFS0.IWDTRSTIRQS) in option function select register 0 (OFS0) is set to 1 in auto-start mode, a reset signal is output when an underflow in the counter or a refresh error occurs.

In register start mode, the counter is initialized (0000h) and kept in that state after assertion of the reset signal. After the reset is released and the program is restarted, the counter is set up again and counting down is started by refreshing. In auto-start mode, counting down automatically starts after the reset output.

26.3.6 Interrupt Sources

When the reset interrupt selection bit (IWDTRCR.RSTIRQS) is set to 0 in register start mode or when the IWDT reset interrupt request select bit (OFS0.IWDTRSTIRQS) in option function select register 0 (OFS0) is set to 0 in auto-start mode, an interrupt (WUNI) signal is output when an underflow in the counter or a refresh error occurs. This interrupt can be used as a non-maskable interrupt. For details, refer to section 14, Interrupt Controller (ICUb).

Table 26.4 IWDT Interrupt Source

Name	Interrupt Source	DTC Activation
WUNI	Counter underflow	Not possible
	Refresh error	

26.3.7 Reading the Counter Value

As the counter in IWDT-dedicated clock (IWDTCLK), the counter value cannot be read directly. The IWDT synchronizes the counter value with the peripheral module clock (PCLK) and stores it in the counter value bits (IWDTSR.CNTVAL[13:0]) of the IWDT status register. Thus, the counter value can be checked indirectly through the IWDTSR.CNTVAL[13:0] bits.

Reading the counter value requires multiple PCLK clock cycles (up to four clock cycles), and the read counter value may differ from the actual counter value by a value of one count.

Figure 26.7 shows the processing for reading the IWDT counter value when PCLK > IWDTCLK and clock divide ratio = IWDTCLK.

Figure 26.7 Processing for Reading IWDT Counter Value (IWDTCR.CKS[3:0] = 0000b, IWDTCR.TOPS[1:0] = 11b)

26.3.8 Correspondence between Option Function Select Register 0 (OFS0) and IWDT Registers

Table 26.5 lists the correspondence between option function select register 0 (OFS0) used in auto-start mode and the registers used in register start mode.

Do not change the OFS0 register setting during IWDT operation.

For details on option function select register 0 (OFS0), refer to section 7.2.1, Option Function Select Register 0 (OFS0).

Table 26.5 Correspondence between Option Function Select Register 0 (OFS0) and IWDT Registers

Target of Control	Function	OFS0 Register (Enabled in Auto-Start Mode) OFS0.IWDTSTRT = 0	IWDT Registers (Enabled in Register Start Mode) OFS0.IWDTSTRT = 1
Counter	Timeout period selection	OFS0.IWDTTOPS[1:0]	IWDTCR.TOPS[1:0]
	Clock frequency divide ratio selection	OFS0.IWDTCKS[3:0]	IWDTCR.CKS[3:0]
	Window start position selection	OFS0.IWDTRPSS[1:0]	IWDTCR.RPSS[1:0]
	Window end position selection	OFS0.IWDTRPES[1:0]	IWDTCR.RPES[1:0]
Reset output or interrupt request output	Reset output or interrupt request output selection	OFS0.IWDTRSTIRQS	IWDTRCR.RSTIRQS
Count stop	Sleep mode count stop control	OFS0.IWDTSLCSTP	IWDTCSTPR.SLCSTP

26.4 Usage Notes

26.4.1 Refresh Operations

When making the settings to control the timing of refreshing, consider variations in the range of errors due to the accuracy of the PCLK and IWDTCLK and set values which ensure that refreshing is possible.

26.4.2 Clock Divide Ratio Setting

Satisfy the frequency of the peripheral module clock (PCLK) $\geq 4 \times$ (the frequency of the count source after divide).

27. Serial Communications Interface (SCIg, SCIh)

This MCU has seven independent serial communications interface (SCI) channels. The SCI consists of the SCIg module (SCI0, SCI1, SCI5, SCI6, SCI8, and SCI9) and the SCIh module (SCI12).

The SCIg module (SCI0, SCI1, SCI5, SCI6, SCI8, and SCI9) can handle both asynchronous and clock synchronous serial communications.

Asynchronous serial data communications can be carried out with standard asynchronous communications chips such as a Universal Asynchronous Receiver/Transmitter (UART) or Asynchronous Communications Interface Adapter (ACIA). As an extended function in asynchronous communications mode, the SCI also supports smart card (IC card) interfaces conforming to ISO/IEC 7816-3 (standard for Identification Cards). The SCI is also supports simple SPI interfaces, and simple I²C-bus interfaces when configured for single-master systems.

The SCIh module includes the functions of the SCIg module, and supports an extended serial communication protocol formed of Start Frames and Information Frames.

In this section, "PCLK" is used to refer to PCLKB.

27.1 Overview

Table 27.1 lists the specifications of the SCIg module, Table 27.2 lists the specifications of the SCIh module, and Table 27.3 lists the specifications of the individual SCI channels.

Figure 27.1 and Figure 27.2 show the block diagrams of the SCIg module, and Figure 27.3 shows the block diagram of the SCIh module.

Table 27.1 SCIg Specifications (1/2)

Item		Description	
		Asynchronous Clock synchronous Smart card interface Simple I ² C-bus Simple SPI bus	
Transfer speed		Bit rate specifiable with the on-chip baud rate generator.	
Full-duplex communic	ations	Transmitter: Continuous transmission possible using double-buffer structure. Receiver: Continuous reception possible using double-buffer structure.	
I/O pins		Refer to Table 27.4 to Table 27.6.	
Data transfer		Selectable as LSB first or MSB first transfer*1	
Interrupt sources		Transmit end, transmit data empty, receive data full, and receive error Completion of generation of a start condition, restart condition, or stop condition (for simple I ² C mode)	
Low power consumption	on function	Module stop state can be set for each channel.	
Asynchronous mode	Data length	7, 8, or 9 bits	
	Transmission stop bit	1 or 2 bits	
	Parity	Even parity, odd parity, or no parity	
	Receive error detection	Parity, overrun, and framing errors	
	Hardware flow control	CTSn# and RTSn# pins can be used in controlling transmission/reception.	
	Start-bit detection	Low level or falling edge is selectable.	
	Break detection	When a framing error occurs, a break can be detected by reading the RXDn pin level directly.	
	Clock source	An internal or external clock can be selected. Transfer rate clock input from the TMR can be used. (SCI5, SCI6)	
	Double-speed mode	Baud rate generator double-speed mode is selectable.	
	Multi-processor communications function	Serial communication among multiple processors	
	Noise cancellation	The signal paths from input on the RXDn pins incorporate digital noise filters.	

Table 27.1 SCIg Specifications (2/2)

Item		Description
Clock synchronous	Data length	8 bits
mode	Receive error detection	Overrun error
	Hardware flow control	CTSn# and RTSn# pins can be used in controlling transmission/reception.
Smart card interface mode	Error processing	An error signal can be automatically transmitted when detecting a parity error during reception
		Data can be automatically retransmitted when receiving an error signal during transmission
	Data type	Both direct convention and inverse convention are supported.
Simple I ² C mode	Transfer format	I ² C-bus format
	Operating mode	Master (single-master operation only)
	Transfer rate	Fast mode is supported (refer to section 27.2.11, Bit Rate Register (BRR) to set the transfer rate).
	Noise cancellation	The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters, and the interval for noise cancellation is adjustable.
Simple SPI bus	Data length	8 bits
	Detection of errors	Overrun error
	SS input pin function	Applying the high level to the SSn# pin can cause the output pins to enter the high-impedance state.
	Clock settings	Four kinds of settings for clock phase and clock polarity are selectable.
Bit rate modulation function		Correction of outputs from the on-chip baud rate generator can reduce errors.
Event link function (supported by SCI5 only)		Error (receive error or error signal detection) event output
		Receive data full event output
		Transmit data empty event output
		Transmit end event output

Note 1. In simple I²C mode, only MSB first is available.

Table 27.2 SCIh Specifications (1/2)

Item	Description	
Serial communication modes	 Asynchronous Clock synchronous Smart card interface Simple I²C-bus Simple SPI bus 	
Transfer speed	Bit rate specifiable with the on-chip baud rate generator.	
Full-duplex communications	Transmitter: Continuous transmission possible using double-buffer structure. Receiver: Continuous reception possible using double-buffer structure.	
I/O pins	Refer to Table 27.4 to Table 27.7.	
Data transfer	Selectable as LSB first or MSB first transfer*1	
Interrupt sources Transmit end, transmit data empty, receive data full, and receive error Completion of generation of a start condition, restart condition, or stop cor I ² C mode)		
Low power consumption function	Module stop state can be set.	

Table 27.2 SCIh Specifications (2/2)

Item	Description				
Asynchronous	Data length	7, 8, or 9 bits			
mode	Transmission stop bit	1 or 2 bits			
	Parity	Even parity, odd parity, or no parity			
	Receive error detection	Parity, overrun, and framing errors			
	Hardware flow control	CTSn# and RTSn# pins can be used in controlling transmission/reception.			
	Start-bit detection	Low level or falling edge is selectable.			
	Break detection	When a framing error occurs, a break can be detected by reading the RXDn pin level directly.			
	Clock source	An internal or external clock can be selected. Transfer rate clock input from the TMR can be used. (SCI12)			
	Double-speed mode	Baud rate generator double-speed mode is selectable.			
	Multi-processor communications function	Serial communication among multiple processors			
	Noise cancellation	The signal paths from input on the RXDn pins incorporate digital noise filters.			
Clock	Data length	8 bits			
synchronous mode	Receive error detection	Overrun error			
	Hardware flow control	CTSn# and RTSn# pins can be used in controlling transmission/reception.			
Smart card interface mode	Error processing	An error signal can be automatically transmitted when detecting a parity error during reception			
		Data can be automatically retransmitted when receiving an error signal during transmission			
	Data type	Both direct convention and inverse convention are supported.			
Simple I ² C	Transfer format	I ² C-bus format			
mode	Operating mode	Master (single-master operation only)			
	Transfer rate	Fast mode is supported (refer to section 27.2.11, Bit Rate Register (BRR) to set the transfer rate).			
	Noise cancellation	The signal paths from input on the SSCLn and SSDAn pins incorporate digital noise filters, and the interval for noise cancellation is adjustable.			
Simple SPI	Data length	8 bits			
bus	Detection of errors	Overrun error			
	SS input pin function	Applying the high level to the SSn# pin can cause the output pins to enter the high-impedance state.			
	Clock settings	Four kinds of settings for clock phase and clock polarity are selectable.			
Extended serial mode	Start Frame transmission	 Output of a low level as the Break Field over a specified width and generation of interrupts on completion Detection of bus collisions and the generation of interrupts on detection 			
	Start Frame reception	 Detection of the Break Field low width and generation of an interrupt on detection Comparison of Control Fields 0 and 1 and generation of an interrupt when the two match Two kinds of data for comparison (primary and secondary) can be set in Control Field 1. A priority interrupt bit can be set in Control Field 1. Handling of Start Frames that do not include a Break Field Handling of Start Frames that do not include a Control Field 0 Function for measuring bit rates 			
	I/O control function	 Selectable polarity for TXDX12 and RXDX12 signals Selection of a digital filter for the RXDX12 signal Half-duplex operation employing RXDX12 and TXDX12 signals multiplexed on the same pin Selectable timing for the sampling of data received through RXDX12 Signals received on RXDX12 can be passed though to SCIg when the extended serial mode control section is off. 			
	Timer function	Usable as a reloading timer			

Note 1. In simple I²C mode, only MSB first is available.

Table 27.3 Functions of SCI Channels

	SCI0, SCI1, SCI8,				
Item	SCI9	SCI5	SCI6	SCI12	
Asynchronous mode	Available	Available	Available	Available	
Clock synchronous mode	Available	Available	Available	Available	
Smart card interface mode	Available	Available	Available	Available	
Simple I ² C mode	Available	Available	Available	Available	
Simple SPI mode	Available	Available	Available	Available	
Extended serial mode	Not available	Not available	Not available	Available	
TMR clock input	Not available	Available	Available	Available	
Event link function	Not available	Available	Not available	Not available	

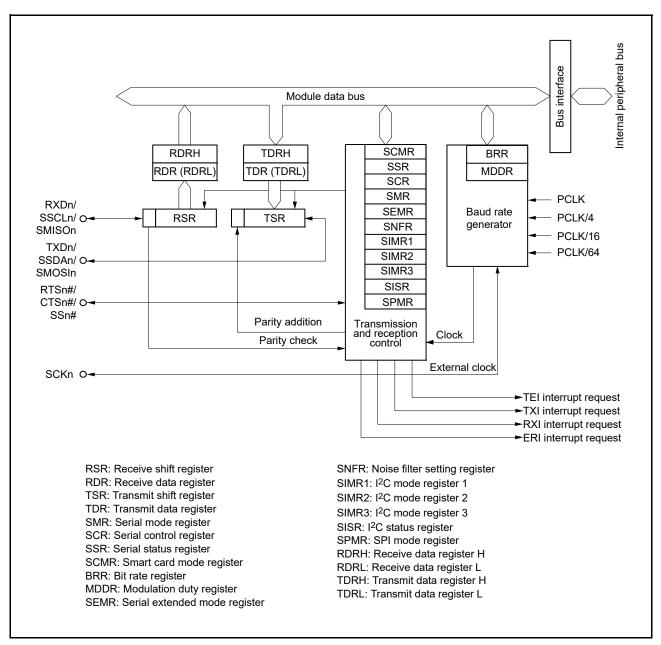


Figure 27.1 Block Diagram of SCIg (SCI0, SCI1, SCI8, and SCI9)

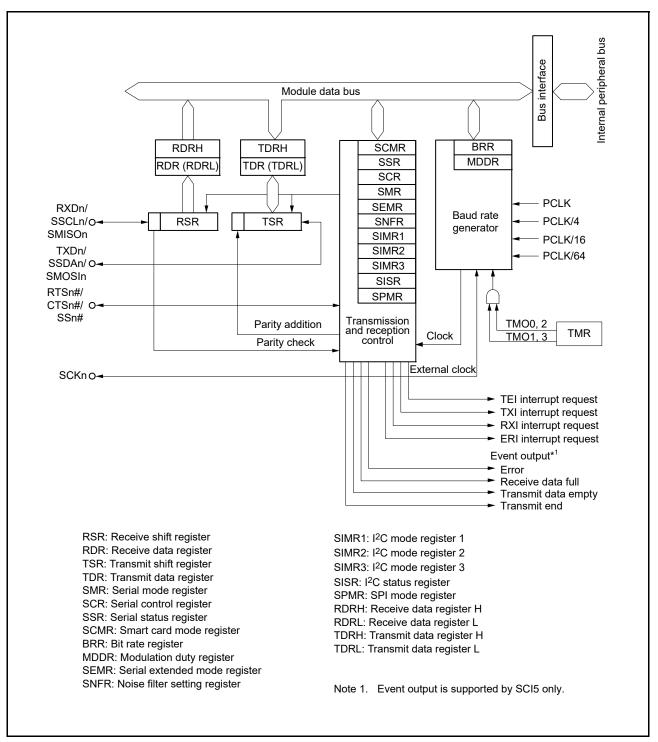


Figure 27.2 Block Diagram of SCIg (SCI5 and SCI6)

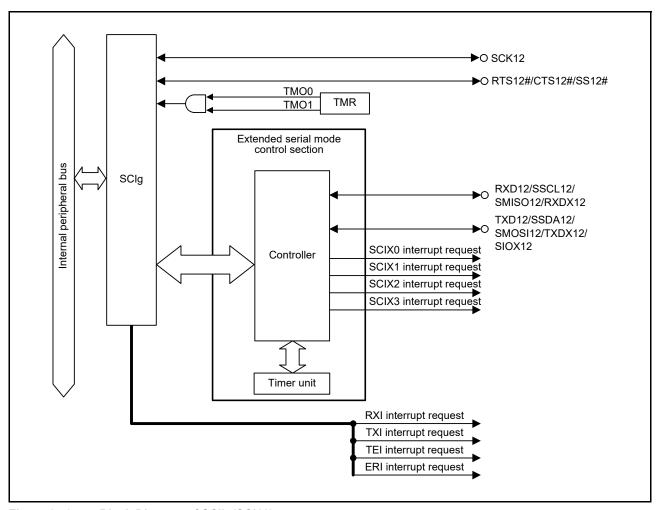


Figure 27.3 Block Diagram of SCIh (SCI12)

Table 27.4 to Table 27.7 list the pin configuration of the SCIs for the individual modes.

Table 27.4 SCI Pin Configuration in Asynchronous Mode and Clock Synchronous Mode

Channel	Pin Name	I/O	Function
SCI0	SCK0	I/O	SCI0 clock input/output
	RXD0	Input	SCI0 receive data input
	TXD0	Output	SCI0 transmit data output
	CTS0#/RTS0#	I/O	SCI0 transfer start control input/output
SCI1	SCK1	I/O	SCI1 clock input/output
	RXD1	Input	SCI1 receive data input
	TXD1	Output	SCI1 transmit data output
	CTS1#/RTS1#	I/O	SCI1 transfer start control input/output
SCI5	SCK5	I/O	SCI5 clock input/output
	RXD5	Input	SCI5 receive data input
	TXD5	Output	SCI5 transmit data output
	CTS5#/RTS5#	I/O	SCI5 transfer start control input/output
SCI6	SCK6	I/O	SCI6 clock input/output
	RXD6	Input	SCI6 receive data input
	TXD6	Output	SCI6 transmit data output
	CTS6#/RTS6#	I/O	SCI6 transfer start control input/output
SCI8	SCK8	I/O	SCI8 clock input/output
	RXD8	Input	SCI8 receive data input
	TXD8	Output	SCI8 transmit data output
	CTS8#/RTS8#	I/O	SCI8 transfer start control input/output
SCI9	SCK9	I/O	SCI9 clock input/output
	RXD9	Input	SCI9 receive data input
	TXD9	Output	SCI9 transmit data output
	CTS9#/RTS9#	I/O	SCI9 transfer start control input/output
SCI12	SCK12	I/O	SCI12 clock input/output
	RXD12	Input	SCI12 receive data input
	TXD12	Output	SCI12 transmit data output
	CTS12#/RTS12#	I/O	SCI12 transfer start control input/output

Table 27.5 SCI Pin Configuration in Simple I²C Mode (1/2)

Channel	Pin Name	I/O	Function	
SCI0	SSCL0	I/O	SCI0 I ² C clock input/output	
	SSDA0	I/O	SCI0 I ² C data input/output	
SCI1	SSCL1	I/O	SCI1 I ² C clock input/output	
	SSDA1	I/O	SCI1 I ² C data input/output	
SCI5	SSCL5	I/O	SCI5 I ² C clock input/output	
	SSDA5	I/O	SCI5 I ² C data input/output	
SCI6	SSCL6	I/O	SCI6 I ² C clock input/output	
	SSDA6	I/O	SCI6 I ² C data input/output	
SCI8	SSCL8	I/O	SCI8 I ² C clock input/output	
	SSDA8	I/O	SCI8 I ² C data input/output	
SCI9	SSCL9	I/O	SCI9 I ² C clock input/output	
	SSDA9	I/O	SCI9 I ² C data input/output	

Table 27.5 SCI Pin Configuration in Simple I²C Mode (2/2)

Channel	Pin Name	I/O	Function
SCI12	SSCL12	I/O	SCI12 I ² C clock input/output
	SSDA12	I/O	SCI12 I ² C data input/output

Table 27.6 SCI Pin Configuration in Simple SPI Mode

Channel	Pin Name	I/O	Function
SCI0	SCK0	I/O	SCI0 clock input/output
	SMISO0	I/O	SCI0 slave transmit data input/output
	SMOSI0	I/O	SCI0 master transmit data input/output
	SS0#	Input	SCI0 chip select input
SCI1	SCK1	I/O	SCI1 clock input/output
	SMISO1	I/O	SCI1 slave transmit data input/output
	SMOSI1	I/O	SCI1 master transmit data input/output
	SS1#	Input	SCI1 chip select input
SCI5	SCK5	I/O	SCI5 clock input/output
	SMISO5	I/O	SCI5 slave transmit data input/output
	SMOSI5	I/O	SCI5 master transmit data input/output
	SS5#	Input	SCI5 chip select input
SCI6	SCK6	I/O	SCI6 clock input/output
	SMISO6	I/O	SCI6 slave transmit data input/output
	SMOSI6	I/O	SCI6 master transmit data input/output
	SS6#	Input	SCI6 chip select input
SCI8	SCK8	I/O	SCI8 clock input/output
	SMISO8	I/O	SCI8 slave transmit data input/output
	SMOSI8	I/O	SCI8 master transmit data input/output
	SS8#	Input	SCI8 chip select input
SCI9	SCK9	I/O	SCI9 clock input/output
	SMISO9	I/O	SCI9 slave transmit data input/output
	SMOSI9	I/O	SCI9 master transmit data input/output
	SS9#	Input	SCI9 chip select input
SCI12	SCK12	I/O	SCI12 clock input/output
	SMISO12	I/O	SCI12 slave transmit data input/output
	SMOSI12	I/O	SCI12 master transmit data input/output
	SS12#	Input	SCI12 chip select input

Table 27.7 SCI Pin Configuration in Extended Serial Mode

Channel	Pin Name	I/O	Function
SCI12	RXDX12	Input	SCI12 receive data input
	TXDX12	Output	SCI12 transmit data output
	SIOX12	I/O	SCI12 transfer data input/output

27.2 Register Descriptions

27.2.1 Receive Shift Register (RSR)

RSR is a shift register which is used to receive serial data input from the RXDn pin and converts it into parallel data.

When one frame of data has been received, it is automatically transferred to the RDR register.

The RSR register cannot be directly accessed by the CPU.

27.2.2 Receive Data Register (RDR)

Address(es): SCI0.RDR 0008 A005h, SCI1.RDR 0008 A025h, SCI5.RDR 0008 A0A5h, SCI6.RDR 0008 A0C5h, SCI8.RDR 0008 A105h, SCI9.RDR 0008 A125h, SCI12.RDR 0008 B305h

RDR is an 8-bit register that stores receive data.

When one frame of serial data has been received, the received serial data is transferred from RSR to RDR. Then the RSR register can receive the next data.

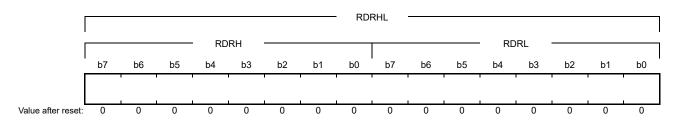
Since RSR and RDR function as a double buffer in this way, continuous receive operations can be performed.

Read RDR only once after a receive data full interrupt (RXI) has occurred. Note that if next one frame of data is received before reading receive data from RDR, an overrun error occurs.

RDR cannot be written to by the CPU.

27.2.3 Receive Data Register H, L, HL (RDRH, RDRL, RDRHL)

• Receive Data Register H (RDRH)


Address(es): SCI0.RDRH 0008 A010h, SCI1.RDRH 0008 A030h, SCI5.RDRH 0008 A0B0h, SCI6.RDRH 0008 A0D0h, SCI8.RDRH 0008 A110h, SCI9.RDRH 0008 A130h, SCI12.RDRH 0008 B310h

Receive Data Register L (RDRL)

Address(es): SCI0.RDRL 0008 A011h, SCI1.RDRL 0008 A031h, SCI5.RDRL 0008 A0B1h, SCI6.RDRL 0008 A0D1h, SCI8.RDRL 0008 A111h, SCI9.RDRL 0008 A131h, SCI12.RDRL 0008 B311h

Receive Data Register HL (RDRHL)

Address(es): SCI0.RDRHL 0008 A010h, SCI1.RDRHL 0008 A030h, SCI5.RDRHL 0008 A0B0h, SCI6.RDRHL 0008 A0D0h, SCI8.RDRHL 0008 A110h, SCI9.RDRHL 0008 A130h, SCI12.RDRHL 0008 B310h

RDRH and RDRL are 8-bit registers that store receive data. Use these registers when asynchronous mode and 9-bit data length are selected.

RDRL is the shadow register of RDR; i.e. access to RDRL is equivalent to access to RDR.

After one frame of data is received, the received data is transferred from the RSR register to these registers, thus allowing the RSR register to receive the next data.

The RSR, RDRH and RDRL registers have a double-buffered construction to enable continuous reception.

Read RDRH and RDRL should be performed only once in the order from RDRH to RDRL when a receive data full interrupt (RXI) request is issued. Note that an overrun error occurs when the next frame of data is received before the received data has been read from RDRL.

The CPU cannot write to the RDRH and RDRL registers. Bits 0 to 7 in RDRH are fixed to 0. These bits are read as 0. The RDRHL register can be accessed in 16-bit units.

27.2.4 Transmit Data Register (TDR)

Address(es): SCI0.TDR 0008 A003h, SCI1.TDR 0008 A023h, SCI5.TDR 0008 A0A3h, SCI6.TDR 0008 A0C3h, SCI8.TDR 0008 A103h, SCI9.TDR 0008 A123h, SCI12.TDR 0008 B303h

TDR is an 8-bit register that stores transmit data.

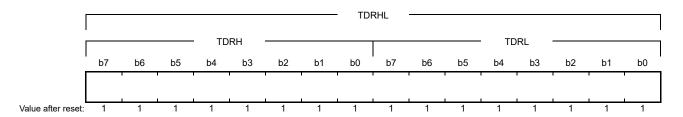
When the SCI detects that the TSR register is empty, it transfers the transmit data written in the TDR register to the TSR register and starts transmission.

The double-buffered structures of the TDR register and the TSR register enable continuous serial transmission. If the next transmit data has already been written to the TDR register when one frame of data is transmitted, the SCI transfers the written data to the TSR register to continue transmission.

The CPU is able to read from or write to the TDR register at any time. Only write transmit data to the TDR register once after each instance of the transmit data empty interrupt (TXI).

27.2.5 Transmit Data Register H, L, HL (TDRH, TDRL, TDRHL)

• Transmit Data Register H (TDRH)


Address(es): SCI0.TDRH 0008 A00Eh, SCI1.TDRH 0008 A02Eh, SCI5.TDRH 0008 A0AEh, SCI6.TDRH 0008 A0CEh, SCI8.TDRH 0008 A10Eh, SCI9.TDRH 0008 A12Eh, SCI12.TDRH 0008 B30Eh

Transmit Data Register L (TDRL)

Address(es): SCI0.TDRL 0008 A00Fh, SCI1.TDRL 0008 A02Fh, SCI5.TDRL 0008 A0AFh, SCI6.TDRL 0008 A0CFh, SCI8.TDRL 0008 A10Fh, SCI9.TDRL 0008 A12Fh, SCI12.TDRL 0008 B30Fh

Transmit Data Register HL (TDRHL)

Address(es): SCI0.TDRHL 0008 A00Eh, SCI1.TDRHL 0008 A02Eh, SCI5.TDRHL 0008 A0AEh, SCI6.TDRHL 0008 A0CEh, SCI8.TDRHL 0008 A10Eh, SCI9.TDRHL 0008 A12Eh, SCI12.TDRHL 0008 B30Eh

TDRH and TDRL are 8-bit registers that store transmit data. Use these registers when asynchronous mode and 9-bit data length are selected.

TDRL is the shadow register of TDR; i.e. access to TDRL is equivalent to access to TDR.

When empty space is detected in the TSR register, the transmit data stored in the TDRH and TDRL registers is transferred to TSR; i.e., transmitting is started.

The TSR, TDRH and TDRL registers have a double-buffered construction to realize continuous reception. When the next data to be transmitted is stored in the TDRL register after one frame of data has been transmitted, the transmitting operation is continued by transfer to the TSR register.

The CPU can read and write to the TDRH and TDRL registers. Bits 0 to 7 in RDRH are fixed to 1. These bits are read as 1. The write value should be 1.

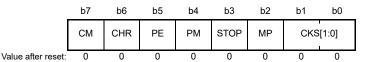
Writing transmit data to the TDRH and TDRL registers should be performed only once in the order from TDRH to TDRL when a transmit data empty interrupt (TXI) request is issued.

The TDRHL register can be accessed in 16-bit units.

27.2.6 Transmit Shift Register (TSR)

TSR is a shift register that transmits serial data.

To perform serial data transmission, the SCI first automatically transfers transmit data from TDR to TSR, and then sends the data to the TXDn pin.


TSR cannot be directly accessed by the CPU.

27.2.7 Serial Mode Register (SMR)

Note: Some bits in SMR have different functions in smart card interface mode and non-smart card interface mode.

(1) Non-Smart Card Interface Mode (SCMR.SMIF = 0)

Address(es): SCI0.SMR 0008 A000h, SCI1.SMR 0008 A020h, SCI5.SMR 0008 A0A0h, SCI6.SMR 0008 A0C0h, SCI8.SMR 0008 A100h, SCI9.SMR 0008 A120h, SCI12.SMR 0008 B300h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	CKS[1:0]	Clock Select	b1 b0 0 0: PCLK (n = 0)*1 0 1: PCLK/4 (n = 1)*1 1 0: PCLK/16 (n = 2)*1 1 1: PCLK/64 (n = 3)*1	
b2	MP	Multi-Processor Mode	(Valid only in asynchronous mode) 0: Multi-processor communications function is disabled 1: Multi-processor communications function is enabled	
b3	STOP	Stop Bit Length	(Valid only in asynchronous mode) 0: 1 stop bit 1: 2 stop bits	
b4	PM	Parity Mode	(Valid only when the PE bit is 1)0: Selects even parity1: Selects odd parity	
b5	PE	Parity Enable	 (Valid only in asynchronous mode) When transmitting 0: Parity bit addition is not performed 1: The parity bit is added When receiving 0: Parity bit checking is not performed 1: The parity bit is checked 	
b6	CHR	Character Length	(Valid only in asynchronous mode*2) Selects in combination with the SCMR.CHR1 bit. CHR1 CHR 0 0: Transmit/receive in 9-bit data length 0 1: Transmit/receive in 9-bit data length 1 0: Transmit/receive in 8-bit data length (initial value) 1 1: Transmit/receive in 7-bit data length*3	
b7	СМ	Communications Mode	0: Asynchronous mode or simple I ² C mode 1: Clock synchronous mode or simple SPI mode	

Note 1. n is the decimal notation of the value of n in the BRR register (refer to section 27.2.11, Bit Rate Register (BRR)).

CKS[1:0] Bits (Clock Select)

These bits select the clock source for the on-chip baud rate generator.

For the relation between the settings of these bits and the baud rate, refer to section 27.2.11, Bit Rate Register (BRR).

MP Bit (Multi-Processor Mode)

Disables/enables the multi-processor communications function. The settings of the PE bit and PM bit are invalid in multi-processor mode.

Note 2. In other than asynchronous mode, this bit setting is invalid and a fixed data length of 8 bits is used.

Note 3. LSB first is fixed and the MSB (bit 7) in the TDR register is not transmitted in transmission.

Note 4. Writable only when TE in SCR = 0 and RE in SCR = 0 (both serial transmission and reception are disabled).

STOP Bit (Stop Bit Length)

Selects the stop bit length in transmission.

In reception, only the first stop bit is checked regardless of this bit setting. If the second stop bit is 0, it is treated as the start bit of the next transmit frame.

PM Bit (Parity Mode)

Selects the parity mode (even or odd) for transmission and reception.

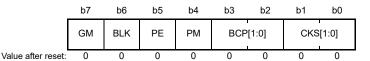
The setting of the PM bit is invalid in multi-processor mode.

PE Bit (Parity Enable)

When this bit is set to 1, the parity bit is added to transmit data, and the parity bit is checked in reception. Irrespective of the setting of the PE bit, the parity bit is not added or checked in multi-processor format.

CHR Bit (Character Length)

Selects the data length for transmission and reception.


Selects in combination with the CHR1 bit in SCMR.

In other than asynchronous mode, a fixed data length of 8 bits is used.

(2) Smart Card Interface Mode (SCMR.SMIF = 1)

Address(es): SMCI0.SMR 0008 A000h, SMCI1.SMR 0008 A020h, SMCI5.SMR 0008 A0A0h, SMCI6.SMR 0008 A0C0h, SMCI8.SMR 0008 A100h, SMCI9.SMR 0008 A120h, SMCI12.SMR 0008 B300h

Bit	Symbol	Bit Name	Description	
b1, b0	CKS[1:0]	Clock Select	b1 b0 0 0: PCLK (n = 0)*1 0 1: PCLK/4 (n = 1)*1 1 0: PCLK/16 (n = 2)*1 1 1: PCLK/64 (n = 3)*1	
b3, b2	BCP[1:0]	Base Clock Pulse	Selects the number of base clock cycles in combination with the SCMR.BCP2 bit. Table 27.8 lists the combinations of the SCMR.BCP2 bit and SMR.BCP[1:0] bits.	
b4	PM	Parity Mode	(Valid only when the PE bit is 1) 0: Selects even parity 1: Selects odd parity	
b5	PE	Parity Enable	When this bit is set to 1, a parity bit is added to transmit data, and the parity of received data is checked. Set this bit to 1 in smart card interface mode.	
b6	BLK	Block Transfer Mode	Non-block transfer mode operation Block transfer mode operation	
b7	GM	GSM Mode	0: Non-GSM mode operation 1: GSM mode operation	

Note 1. n is the decimal notation of the value of n in BRR (refer to section 27.2.11, Bit Rate Register (BRR)).

Note 2. Writable only when TE in SCR = 0 and RE in SCR = 0 (both serial transmission and reception are disabled).

CKS[1:0] Bits (Clock Select)

These bits select the clock source for the on-chip baud rate generator.

For the relationship between the settings of these bits and the baud rate, refer to section 27.2.11, Bit Rate Register (BRR).

BCP[1:0] Bits (Base Clock Pulse)

These bits select the number of base clock cycles in a 1-bit data transfer time in smart card interface mode.

Set these bits in combination with the SCMR.BCP2 bit.

For details, refer to section 27.6.4, Receive Data Sampling Timing and Reception Margin.

Table 27.8 Combinations of the SCMR.BCP2 Bit and SMR.BCP[1:0] Bits

SCMR.BCP2 Bit	SMR.BCP[1:0] Bits		Number of Base Clock Cycles for 1-Bit Transfer Period
0	0	0	93 clock cycles (S = 93)*1
0	0	1	128 clock cycles (S = 128)*1
0	1	0	186 clock cycles (S = 186)*1
0	1	1	512 clock cycles (S = 512)*1
1	0	0	32 clock cycles (S = 32)*1 (Initial Value)
1	0	1	64 clock cycles (S = 64)*1
1	1	0	372 clock cycles (S = 372)*1
1	1	1	256 clock cycles (S = 256)*1
			`

Note 1. S is the value of S in BRR (refer to section 27.2.11, Bit Rate Register (BRR)).

PM Bit (Parity Mode)

Selects the parity mode for transmission and reception (even or odd).

For details on the usage of this bit in smart card interface mode, refer to section 27.6.2, Data Format (Except in Block Transfer Mode).

PE Bit (Parity Enable)

Set the PE bit to 1.

The parity bit is added to transmit data before transmission, and the parity bit is checked in reception.

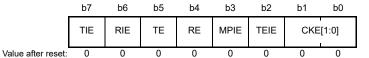
BLK Bit (Block Transfer Mode)

Setting this bit to 1 allows block transfer mode operation.

For details, refer to section 27.6.3, Block Transfer Mode.

GM Bit (GSM Mode)

Setting this bit to 1 allows GSM mode operation.


In GSM mode, the SSR.TEND flag set timing is put forward to 11.0 etu (elementary time unit = 1-bit transfer time) from the start and the clock output control function is appended. For details, refer to section 27.6.6, Serial Data Transmission (Except in Block Transfer Mode) and section 27.6.8, Clock Output Control.

27.2.8 Serial Control Register (SCR)

Note: Some bits in the SCR register have different functions in smart card interface mode and non-smart card interface mode.

(1) Non-Smart Card Interface Mode (SCMR.SMIF = 0)

Address(es): SCI0.SCR 0008 A002h, SCI1.SCR 0008 A022h, SCI5.SCR 0008 A0A2h, SCI6.SCR 0008 A0C2h, SCI8.SCR 0008 A102h, SCI9.SCR 0008 A122h, SCI12.SCR 0008 B302h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	CKE[1:0]	Clock Enable	For SCI0, SCI1, SCI8, and SCI9 (Asynchronous mode) b1 b0 0 0: On-chip baud rate generator The SCKn pin becomes high-impedance. 0 1: On-chip baud rate generator The clock with the same frequency as the bit rate is output from the SCKn pin. 1 x: External clock The clock with a frequency 16 times the bit rate should be input from the SCKn pin. Input a clock signal with a frequency eight times the bit rate when the SEMR.ABCS bit is 1.	R/W* ¹
			(Clock synchronous mode) b1 b0 0 x: Internal clock The SCKn pin functions as the clock output pin. 1 x: External clock The SCKn pin functions as the clock input pin.	
b1, b0	CKE[1:0]	Clock Enable	For SCI5, SCI6, and SCI12 (Asynchronous mode) 100 O: On-chip baud rate generator The SCKn pin becomes high-impedance. 110 O: On-chip baud rate generator The clock with the same frequency as the bit rate is output from the SCKn pin. 111 X: External clock or TMR clock The clock with a frequency 16 times the bit rate should be input from the SCKn pin. Input a clock signal with a frequency eight times the bit rate when the SEMR.ABCS bit is 1. The SCKn pin becomes high-impedance when the TMR clock is used.	R/W*1
			(Clock synchronous mode) b1 b0 0 x: Internal clock The SCKn pin functions as the clock output pin. 1 x: External clock The SCKn pin functions as the clock input pin.	
b2	TEIE	Transmit End Interrupt Enable	A TEI interrupt request is disabled A TEI interrupt request is enabled	R/W
b3	MPIE	Multi-Processor Interrupt Enable	 (Valid in asynchronous mode when SMR.MP = 1) 0: Normal reception 1: When the data with the multi-processor bit set to 0 is received the data is not read, and setting the status flags ORER and in SSR to 1 is disabled. When the data with the multi-process bit set to 1 is received, the MPIE bit is automatically cleared and normal reception is resumed. 	

Bit	Symbol	Bit Name	Description	R/W
b4	RE	Receive Enable	Serial reception is disabled Serial reception is enabled	R/W* ²
b5	TE	Transmit Enable	Serial transmission is disabled Serial transmission is enabled	R/W*2
b6	RIE	Receive Interrupt Enable	RXI and ERI interrupt requests are disabled RXI and ERI interrupt requests are enabled	R/W
b7	TIE	Transmit Interrupt Enable	O: A TXI interrupt request is disabled 1: A TXI interrupt request is enabled	R/W

x: Don't care

Note 1. Writable only when TE = 0 and RE = 0.

Note 2. 1 can be written only when TE = 0 and RE = 0, while the SMR.CM bit is 1. After setting TE or RE to 1, only 0 can be written to TE and RE. While the SMR.CM bit is 0 and the SIMR1.IICM bit is 0, writing is enabled under any condition.

CKE[1:0] Bits (Clock Enable)

These bits select the clock source and SCKn pin function.

The combination of the settings of these bits and of the SEMR.ACS0 bit sets the internal TMR clock.

TEIE Bit (Transmit End Interrupt Enable)

Enables or disables a TEI interrupt request.

A TEI interrupt request is disabled by setting the TEIE bit to 0.

In simple I²C mode, the TEI is allocated to the interrupt on completion of issuing a start, restart, or stop condition (STI). In this case, the TEIE bit can be used to enable or disable the STI.

MPIE Bit (Multi-Processor Interrupt Enable)

When this bit is set to 1 and the data with the multi-processor bit set to 0 is received, the data is not read and setting the status flags ORER and FER in the SSR register to 1 is disabled. When the data with the multi-processor bit set to 1 is received, the MPIE bit is automatically cleared to 0, and normal reception is resumed. For details, refer to section 27.4, Multi-Processor Communications Function.

When the data with the multi-processor bit set to 0 is received, the receive data is not transferred from the RSR to the RDR, a receive error is not detected, and setting the flags ORER and FER to 1 is disabled.

When the data with the multi-processor bit set to 1 is received, the MPB bit is set to 1, the MPIE bit is automatically cleared to 0, the RXI and ERI interrupt requests are enabled (if the SCR.RIE bit is set to 1), and setting the flags ORER and FER to 1 is enabled.

Set the MPIE bit to 0 if multi-processor communications function is not to be used.

RE Bit (Receive Enable)

Enables or disables serial reception.

When this bit is set to 1, serial reception is started by detecting the start bit in asynchronous mode or the synchronous clock input in clock synchronous mode. Note that the SMR register should be set prior to setting the RE bit to 1 in order to designate the reception format.

Even if reception is halted by setting the RE bit to 0, the ORER, FER, PER, and RDRF flags in the SSR register are not affected and the previous value is retained.

TE Bit (Transmit Enable)

Enables or disables serial transmission.

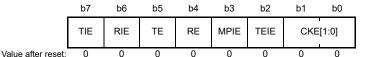
When this bit is set to 1, serial transmission is started by writing transmit data to TDR. Note that SMR should be set prior to setting the TE bit to 1 in order to designate the transmission format.

RIE Bit (Receive Interrupt Enable)

Enables or disables RXI and ERI interrupt requests.

An RXI interrupt request is disabled by setting the RIE bit to 0.

An ERI interrupt request can be canceled by reading 1 from the ORER, FER, or PER flag in the SSR register and then setting the flag to 0, or setting the RIE bit to 0.


TIE Bit (Transmit Interrupt Enable)

Enables or disables TXI interrupt request.

A TXI interrupt request is disabled by setting the TIE bit to 0.

(2) Smart Card Interface Mode (SCMR.SMIF = 1)

Address(es): SMCI0.SCR 0008 A002h, SMCI1.SCR 0008 A022h, SMCI5.SCR 0008 A0A2h, SMCI6.SCR 0008 A0C2h, SMCI8.SCR 0008 A102h, SMCI9.SCR 0008 A122h, SMCI12.SCR 0008 B302h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	CKE[1:0]	Clock Enable	When SMR.GM = 0 b1 b0 0 0: Output disabled The SCKn pin becomes high-impedance. 0 1: Clock output 1 x: Setting prohibited	R/W*1
			 When SMR.GM = 1 b1 b0 0 0: Output fixed low x 1: Clock output 1 0: Output fixed high 	
b2	TEIE	Transmit End Interrupt Enable	This bit should be 0 in smart card interface mode.	R/W
b3	MPIE	Multi-Processor Interrupt Enable	This bit should be 0 in smart card interface mode.	R/W
b4	RE	Receive Enable	Serial reception is disabled Serial reception is enabled	R/W*2
b5	TE	Transmit Enable	Serial transmission is disabled Serial transmission is enabled	R/W*2
b6	RIE	Receive Interrupt Enable	RXI and ERI interrupt requests are disabled RXI and ERI interrupt requests are enabled	R/W
b7	TIE Transmit Interrupt Enable		O: A TXI interrupt request is disabled 1: A TXI interrupt request is enabled	R/W

x: Don't care

Note 2. 1 can be written only when TE = 0 and RE = 0. After setting TE or RE to 1, only 0 can be written in TE and RE.

For details on interrupt requests, refer to section 27.12, Interrupt Sources.

CKE[1:0] Bits (Clock Enable)

These bits control the clock output from the SCKn pin.

In GSM mode, clock output can be dynamically switched. For details, refer to section 27.6.8, Clock Output Control.

TEIE Bit (Transmit End Interrupt Enable)

This bit should be 0 in smart card interface mode.

MPIE Bit (Multi-Processor Interrupt Enable)

This bit should be 0 in smart card interface mode.

Note 1. Writable only when TE = 0 and RE = 0.

RE Bit (Receive Enable)

Enables or disables serial reception.

When this bit is set to 1, serial reception is started by detecting the start bit. Note that the SMR register should be set prior to setting the RE bit to 1 in order to designate the reception format.

Even if reception is halted by setting the RE bit to 0, the ORER, FER, and PER flags in the SSR register are not affected and the previous value is retained.

TE Bit (Transmit Enable)

Enables or disables serial transmission.

When this bit is set to 1, serial transmission is started by writing transmit data to the TDR register. Note that the SMR register should be set prior to setting the TE bit to 1 in order to designate the transmission format.

RIE Bit (Receive Interrupt Enable)

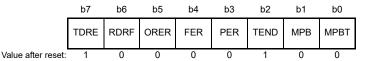
Enables or disables RXI and ERI interrupt requests.

An RXI interrupt request is disabled by setting the RIE bit to 0.

An ERI interrupt request can be canceled by reading 1 from the ORER, FER, or PER flag in the SSR register and then setting the flag to 0, or setting the RIE bit to 0.

TIE Bit (Transmit Interrupt Enable)

Enables or disables TXI interrupt request.


A TXI interrupt request is disabled by setting the TIE bit to 0.

27.2.9 Serial Status Register (SSR)

Some bits in the SSR register have different functions in smart card interface mode and non-smart card interface mode.

(1) Non-Smart Card Interface Mode (SCMR.SMIF = 0)

Address(es): SCI0.SSR 0008 A004h, SCI1.SSR 0008 A024h, SCI5.SSR 0008 A0A4h, SCI6.SSR 0008 A0C4h, SCI8.SSR 0008 A104h, SCI9.SSR 0008 A124h, SCI12.SSR 0008 B304h

Bit	Symbol	Bit Name	Description	R/W
b0	MPBT	Multi-Processor Bit Transfer	Sets the multi-processor bit for adding to the transmission frame 0: Data transmission cycles 1: ID transmission cycles	R/W
b1	MPB	Multi-Processor	Value of the multi-processor bit in the reception frame 0: Data transmission cycles 1: ID transmission cycles	R
b2	TEND	Transmit End Flag 0: A character is being transmitted. 1: Character transfer has been completed.		R
b3	PER	Parity Error Flag 0: No parity error occurred 1: A parity error has occurred		R/(W) *1
b4	FER	Framing Error Flag	No framing error occurred A framing error has occurred	R/(W) *1
b5	ORER	Overrun Error Flag 0: No overrun error occurred 1: An overrun error has occurred		R/(W) *1
b6	RDRF	Receive Data Full Flag 0: No valid data is held in the RDR register 1: Received data is held in the RDR register		R/(W) *2
b7	TDRE	Transmit Data Empty Flag	0: Data to be transmitted is held in the TDR register1: No data is held in the TDR register	

Note 1. Only 0 can be written to this bit, to clear the flag. To clear this flag, confirm that the flag is 1 and then set it to 0.

MPB Bit (Multi-Processor)

Holds the value of the multi-processor bit in the reception frame. This bit does not change when the SCR.RE bit is 0.

TEND Flag (Transmit End Flag)

Indicates completion of transmission.

[Setting conditions]

- When the SCR.TE bit is set to 0 (serial transmission is disabled)
 When the SCR.TE bit is changed from 0 to 1, the TEND flag is not affected and retains the value 1.
- When the TDR register is not updated at the time of transmission of the tail-end bit of a character being transmitted [Clearing condition]
 - When transmit data are written to the TDR register while the SCR.TE bit is 1
 When setting the TEND flag to 0 to complete the interrupt handling, refer to section 14.4.1.2, Operation of Status Flags for Level-Detected Interrupts.

Note 2. Write 1 when writing is necessary.

PER Flag (Parity Error Flag)

Indicates that a parity error has occurred during reception in asynchronous mode and the reception ends abnormally. [Setting condition]

• When a parity error is detected during reception
Although receive data when the parity error occurs is transferred to RDR, no RXI interrupt request occurs. Note that when the PER flag is being set to 1, the subsequent receive data is not transferred to RDR.

[Clearing condition]

• When 0 is written to PER after reading PER = 1

When setting the PER flag to 0 to complete the interrupt handling, refer to section 14.4.1.2, Operation of Status Flags for Level-Detected Interrupts.

Even when the SCR.RE bit is set to 0 (serial reception is disabled), the PER flag is not affected and retains its previous value.

FER Flag (Framing Error Flag)

Indicates that a framing error has occurred during reception in asynchronous mode and the reception ends abnormally. [Setting condition]

• When the stop bit is 0

In 2-stop-bit mode, only the first stop bit is checked whether it is 1 but the second stop bit is not checked. Note that although receive data when the framing error occurs is transferred to RDR, no RXI interrupt request occurs. In addition, when the FER flag is being set to 1, the subsequent receive data is not transferred to RDR.

[Clearing condition]

• When 0 is written to FER after reading FER = 1

When setting the FER flag to 0 to complete the interrupt handling, refer to section 14.4.1.2, Operation of Status Flags for Level-Detected Interrupts.

Even when the SCR.RE bit is set to 0, the FER flag is not affected and retains its previous value.

ORER Flag (Overrun Error Flag)

Indicates that an overrun error has occurred during reception and the reception ends abnormally. [Setting condition]

When the next data is received before receive data is read from RDR
 In RDR, receive data prior to an overrun error occurrence is retained, but data received after the overrun error occurrence is lost. When the ORER flag is set to 1, subsequent serial reception cannot be performed. Note that, in clock synchronous mode, serial transmission also cannot continue.

[Clearing condition]

• When 0 is written to ORER after reading ORER = 1

When setting the ORER flag to 0 to complete the interrupt handling, refer to section 14.4.1.2, Operation of Status Flags for Level-Detected Interrupts.

Even when the SCR.RE bit is set to 0, the ORER flag is not affected and retains its previous value.

RDRF Flag (Receive Data Full Flag)

Indicates whether the RDR register has received data.

[Setting condition]

• When data has been received normally, and transferred from RSR to RDR

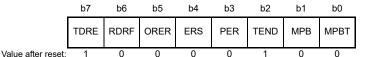
[Clearing condition]

• When data is read from RDR

TDRE Flag (Transmit Data Empty Flag)

Indicates whether the TDR register has data to be transmitted. [Setting condition]

• When data is transferred from TDR to TSR


[Clearing condition]

• When data is written to TDR

(2) Smart Card Interface Mode (SCMR.SMIF = 1)

Address(es): SMCI0.SSR 0008 A004h, SMCI1.SSR 0008 A024h, SMCI5.SSR 0008 A0A4h, SMCI6.SSR 0008 A0C4h, SMCI8.SSR 0008 A104h, SMCI9.SSR 0008 A124h, SMCI12.SSR 0008 B304h

Bit	Symbol	Bit Name	Description	R/W
b0	MPBT	Multi-Processor Bit Transfer	This bit should be set to 0 in smart card interface mode.	R/W
b1	MPB	Multi-Processor	This bit is not used in smart card interface mode. It should be set to 0.	R
b2	TEND	Transmit End Flag	O: A character is being transmitted. Character transfer has been completed.	R
b3	PER	Parity Error Flag	No parity error occurred A parity error has occurred	R/(W) *1
b4	ERS	Error Signal Status Flag	Cow error signal not responded Low error signal responded	R/(W) *1
b5	ORER	Overrun Error Flag	No overrun error occurred An overrun error has occurred	R/(W) *1
b6	RDRF	Receive Data Full Flag	No valid data is held in the RDR register Received data is held in the RDR register	R/(W) *2
b7	TDRE	Transmit Data Empty Flag	Data to be transmitted is held in the TDR register No data is held in the TDR register	R/(W) *2

Note 1. Only 0 can be written to this bit, to clear the flag. To clear this flag, confirm that the flag is 1 and then set it to 0.

Note 2. Write 1 when writing is necessary.

TEND Flag (Transmit End Flag)

With no error signal from the receiving side, this bit is set to 1 when further data for transfer is ready to be transferred to the TDR register.

[Setting conditions]

- When the SCR.TE bit = 0 (serial transmission is disabled)
 When the SCR.TE bit is changed from 0 to 1, the TEND flag is not affected and retains the value 1.
- When a specified period has elapsed after the latest transmission of 1 byte, the ERS flag is 0, and the TDR register is not updated

The set timing is determined by register settings as listed below.

When SMR.GM = 0 and SMR.BLK = 0, 12.5 etu after the start of transmission

When SMR.GM = 0 and SMR.BLK = 1, 11.5 etu after the start of transmission

When SMR.GM = 1 and SMR.BLK = 0, 11.0 etu after the start of transmission

When SMR.GM = 1 and SMR.BLK = 1, 11.0 etu after the start of transmission

[Clearing condition]

When transmit data are written to the TDR register while the SCR.TE bit is 1
 When setting the TEND flag to 0 to complete the interrupt handling, refer to section 14.4.1.2, Operation of Status Flags for Level-Detected Interrupts.

PER Flag (Parity Error Flag)

Indicates that a parity error has occurred during reception in asynchronous mode and the reception ends abnormally. [Setting condition]

When a parity error is detected during reception
 Although receive data when the parity error occurs is transferred to RDR, no RXI interrupt request occurs. Note that when the PER flag is being set to 1, the subsequent receive data is not transferred to RDR.

[Clearing condition]

• When 0 is written to PER after reading PER = 1

When setting the PER flag to 0 to complete the interrupt handling, refer to section 14.4.1.2, Operation of Status Flags for Level-Detected Interrupts.

Even when the SCR.RE bit is set to 0 (serial reception is disabled), the PER flag is not affected and retains its previous value.

ERS Flag (Error Signal Status Flag)

[Setting condition]

• When a low error signal is sampled

[Clearing condition]

• When 0 is written to ERS after reading ERS = 1

When setting the ERS flag to 0 to complete the interrupt handling, refer to section 14.4.1.2, Operation of Status Flags for Level-Detected Interrupts.

Even when the SCR.RE bit is set to 0, the ERS flag is not affected and retains its previous value.

ORER Flag (Overrun Error Flag)

Indicates that an overrun error has occurred during reception and the reception ends abnormally. [Setting condition]

• When the next data is received before receive data is read from RDR In RDR, the receive data prior to an overrun error occurrence is retained, but data received following the overrun error occurrence is lost. When the ORER flag is set to 1, subsequent serial reception cannot be performed.

[Clearing condition]

• When 0 is written to ORER after reading ORER = 1

When setting the ORER flag to 0 to complete the interrupt handling, refer to section 14.4.1.2, Operation of Status Flags for Level-Detected Interrupts.

Even when the SCR.RE bit is set to 0, the ORER flag is not affected and retains its previous value.

RDRF Flag (Receive Data Full Flag)

Indicates whether the RDR register has received data.

[Setting condition]

• When data has been received normally, and transferred from RSR to RDR

[Clearing condition]

• When data is read from RDR

TDRE Flag (Transmit Data Empty Flag)

Indicates whether the TDR register has data to be transmitted.

[Setting condition]

• When data is transferred from TDR to TSR

[Clearing condition]

• When data is written to TDR

27.2.10 Smart Card Mode Register (SCMR)

Address(es): SMCI0.SCMR 0008 A006h, SMCI1.SCMR 0008 A026h, SMCI5.SCMR 0008 A0A6h, SMCI6.SCMR 0008 A0C6h, SMCI8.SCMR 0008 A106h, SMCI9.SCMR 0008 A126h, SMCI12.SCMR 0008 B306h

Bit	Symbol	Bit Name	Description	
b0	SMIF	Smart Card Interface Mode Select	O: Non-smart card interface mode (Asynchronous mode, clock synchronous mode, simple SPI mode, or simple I ² C mode) 1: Smart card interface mode	
b1	_	Reserved	This bit is read as 1. The write value should be 1.	R/W
b2	SINV	Transmitted/Received Data Invert	O: TDR contents are transmitted as they are. Receive data is stored as it is in RDR. 1: TDR contents are inverted before being transmitted. Receive data is stored in inverted form in RDR.	
b3	SDIR	Transmitted/Received Data Transfer Direction	This bit can be used in the following modes. Smart card interface mode Asynchronous mode (multi-processor mode) Clock synchronous mode Simple SPI mode Set this bit to 1 if operation is to be in simple I ² C mode. Transfer with LSB first Transfer with MSB first	
b4	CHR1	Character Length 1	(Only valid in asynchronous mode)*2 Selects in combination with the SMR.CHR bit. CHR1 CHR 0 0: Transmit/receive in 9-bit data length 0 1: Transmit/receive in 9-bit data length 1 0: Transmit/receive in 8-bit data length (initial value) 1 1: Transmit/receive in 7-bit data length*3	
b6, b5	_	Reserved	These bits are read as 1. The write value should be 1.	
b7	BCP2	Base Clock Pulse 2	Selects the number of base clock cycles in combination with the SMR.BCP[1:0] bits. Table 27.9 lists the combinations of the SCMR.BCP2 bit and SMR.BCP[1:0] bits.	

- Note 1. Writable only when TE in SCR = 0 and RE in SCR = 0 (both serial transmission and reception are disabled).
- Note 2. The setting is invalid and a fixed data length of 8 bits is used in modes other than asynchronous mode.
- Note 3. LSB first should be selected and the value of MSB (b7) in the TDR register cannot be transmitted.

SMIF Bit (Smart Card Interface Mode Select)

When this bit is set to 1, smart card interface mode is selected.

When this bit is set to 0, non-smart card interface mode, i.e., asynchronous mode (including multi-processor mode), clock synchronous mode, simple SPI mode, or simple I²C mode is selected.

SINV Bit (Transmitted/Received Data Invert)

Inverts the transmit/receive data logic level. This bit does not affect the logic level of the parity bit. To invert the parity bit, invert the PM bit in the SMR register.

CHR1 Bit (Character Length 1)

Selects the data length of transmit/receive data.

Selects in combination with the CHR bit in SMR.

A fixed data length of 8 bits is used in modes other than asynchronous mode.

BCP2 Bit (Base Clock Pulse 2)

Selects the number of base clock cycles in a 1-bit data transfer time in smart card interface mode. Set this bit in combination with the SMR.BCP[1:0] bits.

Table 27.9 Combinations of the SCMR.BCP2 Bit and SMR.BCP[1:0] Bits

SCMR.BCP2 Bit	SMR.BCP[1:0] Bits		Number of Base Clock Cycles for 1-Bit Transfer Period
0	0	0	93 clock cycles (S = 93)*1
0	0	1	128 clock cycles (S = 128)*1
0	1	0	186 clock cycles (S = 186)*1
0	1	1	512 clock cycles (S = 512)*1
1	0	0	32 clock cycles (S = 32)*1 (Initial Value)
1	0	1	64 clock cycles (S = 64)*1
1	1	0	372 clock cycles (S = 372)*1
1	1	1	256 clock cycles (S = 256)*1

Note 1. S is the value of S in BRR (refer to section 27.2.11, Bit Rate Register (BRR)).

27.2.11 Bit Rate Register (BRR)

Address(es): SCI0.BRR 0008 A001h, SCI1.BRR 0008 A021h, SCI5.BRR 0008 A0A1h, SCI6.BRR 0008 A0C1h, SCI8.BRR 0008 A101h, SCI9.BRR 0008 A121h, SCI12.BRR 0008 B301h

The BRR register is an 8-bit register that adjusts the bit rate.

As each SCI channel has independent baud rate generator control, different bit rates can be set for each. Table 27.10 shows the relationship between the setting (N) in the BRR register and the bit rate (B) for normal asynchronous mode, multi-processor communication, clock synchronous mode, smart card interface mode, simple SPI mode, and simple I²C mode.

The BRR register is writable only when the TE and RE bits in the SCR register are 0.

Table 27.10 Relationship between N Setting in BRR Register and Bit Rate B

	SEMR Sett	ings		
Mode	BGDM bit	ABCS bit	BRR Setting	Error (%)
Asynchronous, multi-processor communication	0	0	$N = \frac{PCLK \times 10^6}{64 \times 2^{2n-1} \times B} - 1$	Error = $\left\{ \frac{PCLK \times 10^6}{B \times 64 \times 2^{2n-1} \times (N+1)} - 1 \right\} \times 100$
	0	1	$N = \frac{PCLK \times 10^6}{32 \times 2^{2n-1} \times R} - 1$	Error = $\left\{ \frac{PCLK \times 10^6}{B \times 32 \times 2^{2n-1} \times (N+1)} - 1 \right\} \times 100$
	1	0	$32 \times 2^{2n-1} \times B$	$\left\{ B \times 32 \times 2^{2n-1} \times (N+1) \right\}$
	1	1	$N = \frac{PCLK \times 10^6}{16 \times 2^{2n-1} \times B} - 1$	Error = $\left\{\frac{PCLK \times 10^{6}}{B \times 16 \times 2^{2n-1} \times (N+1)} - 1\right\} \times 100$
Clock synchronou	s, simple SPI		$N = \frac{PCLK \times 10^6}{8 \times 2^{2n-1} \times B} - 1$	
Smart card interfa	ce		$N = \frac{PCLK \times 10^6}{S \times 2^{2n+1} \times B} - 1$	Error = $\left\{ \frac{PCLK \times 10^6}{B \times S \times 2^{2n+1} \times (N+1)} - 1 \right\} \times 100$
Simple I ² C* ¹			$N = \frac{PCLK \times 10^6}{64 \times 2^{2n-1} \times B} - 1$	

B: Bit rate (bps)

N: BRR setting for on-chip baud rate generator ($0 \le N \le 255$)

PCLK: Operating frequency (MHz)

n and S: Determined by the settings of the SMR and SCMR registers as listed in Table 27.12 and Table 27.13.

Note 1. Adjust the bit rate so that the widths at high and low level of the SCL output in simple I²C mode satisfy the I²C standard.

Table 27.11 Calculating Widths at High and Low Level for SCL

Mode	SCL	Formula (Result in Seconds)
I ² C	High period (minimum value)	$(N+1) \times 4 \times 2^{2n-1} \times 7 \times \frac{1}{PCLK \times 10^6}$
	Low period (minimum value)	$(N+1) \times 4 \times 2^{2n-1} \times 8 \times \frac{1}{PCLK \times 10^6}$

Table 27.12 Clock Source Settings

SMR.CKS[1:0] Bit Setting	Clock Source	n
0 0	PCLK	0
0 1	PCLK/4	1
10	PCLK/16	2
1 1	PCLK/64	3

Table 27.13 Base Clock Settings in Smart Card Interface Mode

SCMR.BCP2 Bit Setting	SMR.BCP[1:0] Bit Setting	Base Clock Cycles for 1-bit Period	S
0	0 0	93 clock cycles	93
0	0 1	128 clock cycles	128
0	10	186 clock cycles	186
0	11	512 clock cycles	512
1	0 0	32 clock cycles	32
1	0 1	64 clock cycles	64
1	10	372 clock cycles	372
1	11	256 clock cycles	256

Table 27.14 lists examples of N settings in BRR in normal asynchronous mode. Table 27.15 lists the maximum bit rate settable for each operating frequency. Examples of BRR (N) settings in clock synchronous mode and simple SPI mode are listed in Table 27.18. Examples of BRR (N) settings in smart card interface mode are listed in Table 27.20. Examples of BRR (N) settings in simple I²C mode are listed in Table 27.22. In smart card interface mode, the number of base clock cycles S in a 1-bit data transfer time can be selected. For details, refer to section 27.6.4, Receive Data Sampling Timing and Reception Margin. Table 27.16 and Table 27.19 list the maximum bit rates with external clock input.

When either the SEMR.ABCS or BGDM bit is set to 1 in asynchronous mode, the bit rate becomes twice that listed in Table 27.14. When both of those bits are set to 1, the bit rate becomes four times the listed value.

Table 27.14 Examples of BRR Settings for Various Bit Rates (Asynchronous Mode)

	Operating Frequency PCLK (MHz)														
Bit Rate	8			9.8304			10			12			12.288		
(bps)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	2	141	0.03	2	174	-0.26	2	177	-0.25	2	212	0.03	2	217	0.08
150	2	103	0.16	2	127	0.00	2	129	0.16	2	155	0.16	2	159	0.00
300	1	207	0.16	1	255	0.00	2	64	0.16	2	77	0.16	2	79	0.00
600	1	103	0.16	1	127	0.00	1	129	0.16	1	155	0.16	1	159	0.00
1200	0	207	0.16	0	255	0.00	1	64	0.16	1	77	0.16	1	79	0.00
2400	0	103	0.16	0	127	0.00	0	129	0.16	0	155	0.16	0	159	0.00
4800	0	51	0.16	0	63	0.00	0	64	0.16	0	77	0.16	0	79	0.00
9600	0	25	0.16	0	31	0.00	0	32	-1.36	0	38	0.16	0	39	0.00
19200	0	12	0.16	0	15	0.00	0	15	1.73	0	19	-2.34	0	19	0.00
31250	0	7	0.00	0	9	-1.70	0	9	0.00	0	11	0.00	0	11	2.40
38400	_	_	_	0	7	0.00	0	7	1.73	0	9	-2.34	0	9	0.00

	Operating Frequency PCLK (MHz)														
Bit Rate	14			16			17.2032			18			19.6608		
(bps)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)
110	2	248	-0.17	3	70	0.03	3	75	0.48	3	79	-0.12	3	86	0.31
150	2	181	0.16	2	207	0.16	2	223	0.00	2	233	0.16	2	255	0.00
300	2	90	0.16	2	103	0.16	2	111	0.00	2	116	0.16	2	127	0.00
600	1	181	0.16	1	207	0.16	1	223	0.00	1	233	0.16	1	255	0.00
1200	1	90	0.16	1	103	0.16	1	111	0.00	1	116	0.16	1	127	0.00
2400	0	181	0.16	0	207	0.16	0	223	0.00	0	233	0.16	0	255	0.00
4800	0	90	0.16	0	103	0.16	0	111	0.00	0	116	0.16	0	127	0.00
9600	0	45	-0.93	0	51	0.16	0	55	0.00	0	58	-0.69	0	63	0.00
19200	0	22	-0.93	0	25	0.16	0	27	0.00	0	28	1.02	0	31	0.00
31250	0	13	0.00	0	15	0.00	0	16	1.20	0	17	0.00	0	19	-1.70
38400	_	_	_	0	12	0.16	0	13	0.00	0	14	-2.34	0	15	0.00

		Operating Frequency PCLK (MHz)											
Bit Rate		2	0		2	5	30						
(bps)	n N Error (%) n N Error (%)				Error (%)	n	N	Error (%)					
110	3	88	-0.25	3	110	-0.02	3	132	0.13				
150	3	64	0.16	3	80	0.47	3	97	-0.35				
300	2	129	0.16	2	162	-0.15	2	194	0.16				
600	2	64	0.16	2	80	0.47	2	97	-0.35				
1200	1	129	0.16	1	162	-0.15	1	194	0.16				
2400	1	64	0.16	1	80	0.47	1	97	-0.35				
4800	0	129	0.16	0	162	-0.15	0	194	0.16				
9600	0	64	0.16	0	80	0.47	0	97	-0.35				
19200	0	32	-1.36	0	40	-0.76	0	48	-0.35				
31250	0	19	0.00	0	24	0.00	0	29	0				
38400	0	15	1.73	0	19	1.73	0	23	1.73				

Note: This is an example when the ABCS and BGDM bits in SEMR are 0.
When either the ABCS bit or BGDM bit is set to 1, the bit rate doubles.
When both ABCS and BGDM bits in SEMR are set to 1, the bit rate increases four times.

Table 27.15 Maximum Bit Rate for Each Operating Frequency (Asynchronous Mode)

SEMR Settings					SEMR S	Settings						
PCLK (MHz)	BGDM Bit	ABCS Bit	n	N	Maximum Bit Rate (bps)	PCLK (MHz)	BGDM Bit	ABCS Bit n		N	Maximum Bit Rate (bps)	
8	0	0	0	0	250000	17.2032	0	0	0	0	537600	
		1	0	0	500000	_		1	0	0	1075200	
	1	0	0	0	-		1	0	0	0	_	
		1	0	0	1000000	_		1	0	0	2150400	
9.8304	0	0	0	0	307200	18	0	0	0	0	562500	
		1	0	0	614400	<u> </u>		1	0	0	1125000	
	1	0	0	0	-		1	0 0 0		0	_	
		1	0	0	1228800			1	0	0	2250000	
10	0	0	0	0	312500	19.6608	0	0	0	0	614400	
		1	0	0	625000	<u> </u>		1	0	0	1228800	
	1	0	0	0	-		1	0	0	0	_	
		1	0	0	1250000	_		1	0	0	2457600	
12	0	0	0	0	375000	20	0	0	0	0	625000	
		1	0	0	750000	_		1	0	0	1250000	
	1	0	0	0	_		1	0	0	0	_	
		1	0	0	1500000	_		1	0	0	2500000	
12.288	0	0	0	0	384000	25	0	0	0	0	781250	
		1	0	0	768000	_		1	0	0	1562500	
	1	0	0	0	-		1	0	0	0	_	
		1	0	0	1536000	_		1	0	0	3125000	
14	0	0	0	0	437500	30	0	0	0	0	937500	
		1	0	0	875000	<u> </u>		1	0	0	1875000	
	1	0	0	0	_		1	0	0	0	_	
		1	0	0	1750000	_		1	0	0	3750000	
16	0	0	0	0	500000							
		1	0	0	1000000	_						
	1	0	0	0	_							
		1	0	0	2000000	_						

Table 27.16 Maximum Bit Rate with External Clock Input (Asynchronous Mode)

		Maximum Bit Rate (bp	os)
PCLK (MHz)	External Input Clock (MHz)	SEMR.ABCS Bit = 0	SEMR.ABCS Bit = 1
8	2.0000	125000	250000
9.8304	2.4576	153600	307200
10	2.5000	156250	312500
12	3.0000	187500	375000
12.288	3.0720	192000	384000
14	3.5000	218750	437500
16	4.0000	250000	500000
17.2032	4.3008	268800	537600
18	4.5000	281250	562500
19.6608	4.9152	307200	614400
20	5.0000	312500	625000
25	6.2500	390625	781250
30	7.5000	468750	937500

Table 27.17 Maximum Bit Rate with TMR Clock Input (Asynchronous Mode)

		Maximum Bit Rate (bp	os)
PCLK (MHz)	TMR Clock (MHz)	SEMR.ABCS Bit = 0	SEMR.ABCS Bit = 1
8	4	250000	500000
9.8304	4.9152	307200	614400
10	5	312500	625000
12	6	375000	750000
12.288	6.144	384000	768000
14	7	437500	875000
16	8	500000	1000000
17.2032	8.6016	537600	1075200
18	9	562500	1125000
19.6608	9.8304	614400	1228800
20	10	625000	1250000
25	12.5	781250	1562500
30	15	937500	1875000

Table 27.18 BRR Settings for Various Bit Rates (Clock Synchronous Mode, Simple SPI Mode)

	Operating Frequency PCLK (MHz)												
		8		10		16		20	:	25		30	
Bit Rate (bps)	n	N	n	N	n	N	n	N	n	N	n	N	
110													
250	3	124	3	155	3	249							
500	2	249	3	77	3	124	3	155	3	194	3	233	
1 k	2	124	2	155	2	249	3	77	3	97	3	116	
2.5 k	1	199	1	249	2	99	2	124	2	155	2	187	
5 k	1	99	1	124	1	199	1	249	2	77	2	93	
10 k	0	199	0	249	1	99	1	124	1	155	1	187	
25 k	0	79	0	99	0	159	0	199	0	249	1	74	
50 k	0	39	0	49	0	79	0	99	0	124	0	149	
100 k	0	19	0	24	0	39	0	49	0	62	0	74	
250 k	0	7	0	9	0	15	0	19	0	24	0	29	
500 k	0	3	0	4	0	7	0	9	_	_	0	14	
1 M	0	1			0	3	0	4	_	_			
2 M	0	0*1			0	1			_	_			
2.5 M			0	0*1			0	1			0	2	
4 M					0	0*1							
5 M							0	0*1					
6.25 M									0	0*1			
7.5 M	1					1					0	0*1	

Blank cell: Cannot be set since the bit rate error exceeds 5%.

Note 1. Continuous transmission or reception is not possible. After transmitting/receiving one frame of data, there is an interval of a 1-bit period before starting transmitting/receiving the next frame of data. The output of the synchronization clock is stopped for a 1-bit period. For this reason, it takes 9 bits worth of time to transfer one frame (8 bits) of data, and the average transfer rate is 8/9 times the bit rate.

Table 27.19 Maximum Bit Rate with External Clock Input (Clock Synchronous Mode, Simple SPI Mode)

PCLK (MHz)	External Input Clock (MHz)	Maximum Bit Rate (Mbps)
8	1.3333	1.3333
10	1.6667	1.6667
12	2.0000	2.0000
14	2.3333	2.3333
16	2.6667	2.6667
18	3.0000	3.0000
20	3.3333	3.3333
25	4.1667	4.1667
30	5.0000	5.0000

^{—:} Can be set, but a bit rate error of 1 to 5% will occur.

Table 27.20 BRR Settings for Various Bit Rates (Smart Card Interface Mode, n = 0, S = 372)

Bit Rate (bps)	PCLK (MHz)	n	N	Error (%)
9600	7.1424	0	0	0.00
	10.00	0	1	-30.00
	10.7136	0	1	-25.00
	13.00	0	1	-8.99
	14.2848	0	1	0.00
	16.00	0	1	12.01
	18.00	0	2	-15.99
	20.00	0	2	-6.66
	25.00	0	3	-12.49
	30.00	0	3	5.01

Table 27.21 Maximum Bit Rate for Each Operating Frequency (Smart Card Interface Mode, S = 32)

PCLK (MHz)	Maximum Bit Rate (bps)	n	N
10.00	156250	0	0
10.7136	167400	0	0
13.00	203125	0	0
16.00	250000	0	0
18.00	281250	0	0
20.00	312500	0	0
25.00	390625	0	0
30.00	468750	0	0

Table 27.22 BRR Settings for Various Bit Rates (Simple I²C Mode)

		Operating Frequency PCLK (MHz)														
Bit Rate	8		8		10			16			20			25		
(bps)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	n	N	Error (%)	
10 k	0	24	0.0	0	31	-2.3	1	12	-3.8	1	15	-2.3	1	19	-2.3	
25 k	0	9	0.0	0	12	-3.8	1	4	0.0	1	6	-10.7	1	7	-2.3	
50 k	0	4	0.0	0	6	-10.7	1	2	-16.7	1	3	-21.9	1	3	-2.3	
100 k	0	2	-16.7	0	3	-21.9	0	4	0.0	0	6	-10.7	1	1	-2.3	
250 k	0	0	0.0	0	1	-37.5	0	1	0.0	0	2	-16.7	0	3	-21.9	
350 k										0	1	-10.7	0	2	-25.6	

	Operating Frequency PCLK (MHz)						
Bit Rate	30						
(bps)	n	N	Error (%)				
10 k	1	23	-2.3				
25 k	1	9	-6.3				
50 k	1	4	-6.3				
100 k	1	2	-21.9				
250 k	0	3	-6.3				
350 k	0	2	-10.7				

Table 27.23 Minimum Widths at High and Low Level for SCL at Various Bit Rates (Simple I²C Mode)

						Operating Frequ	ency	PCLK	(MHz)			
	8		10			16			20			
Bit Rate (bps)	n	N	Min. Widths at High/Low Level for SCL (μs)	n	N	Min. Widths at High/Low Level for SCL (μs)	n	N	Min. Widths at High/Low Level for SCL (μs)	n	N	Min. Widths at High/Low Level for SCL (µs)
10 k	0	24	43.75/50.00	0	31	44.80/51.20	1	12	45.50/52.00	1	15	44.80/51.20
25 k	0	9	17.50/20.00	0	12	18.20/20.80	1	4	17.50/20.00	1	6	19.60/22.40
50 k	0	4	8.75/10.00	0	6	9.80/11.20	1	2	10.50/12.00	1	3	11.20/12.80
100 k	0	2	5.25/6.00	0	3	5.60/6.40	0	4	4.37/5.00	0	6	4.90/5.60
250 k	0	0	1.75/2.00	0	1	2.80/3.20	0	1	1.75/2.00	0	2	2.10/2.40
350 k										0	1	1.40/1.60

		Operating Frequency PCLK (MHz)									
			25	30							
Bit Rate (bps)	n	N	Min. Widths at High/Low Level for SCL (μs)	n	N	Min. Widths at High/Low Level for SCL (µs)					
10 k	1	19	44.80/51.20	1	23	44.80/51.20					
25 k	1	7	17.92/20.48	1	9	18.66/21.33					
50 k	1	3	8.96/10.24	1	4	9.33/10.66					
100 k	1	1	4.48/5.12	1	2	5.60/6.40					
250 k	0	3	2.24/2.56	0	3	1.86/2.13					
350 k	0	2	1.68/1.92	0	2	1.40/1.60					

27.2.12 Modulation Duty Register (MDDR)

Address(es): SCI0.MDDR 0008 A012h, SCI1.MDDR 0008 A032h, SCI5.MDDR 0008 A0B2h, SCI6.MDDR 0008 A0D2h, SCI8.MDDR 0008 A112h, SCI9.MDDR 0008 A132h, SCI12.MDDR 0008 B312h

The MDDR register corrects the bit rate adjusted by the BRR register.

When the SEMR.BRME bit is set to 1, the bit rate generated by the on-chip baud rate generator is evenly corrected according to the settings of the MDDR register (M/256). The relationship between the MDDR register setting (M) and the bit rate (B) is given in Table 27.24.

The range of the value that can be set in the MDDR register is from 80h to FFh. A value other than these cannot be set. The MDDR register is writable only when the TE and RE bits in the SCR register are 0.

Table 27.24 Relationship between MDDR Setting (M) and Bit Rate (B) When Bit Rate Modulation Function is Used

	SEMR Sett	inas		
Mode	BGDM Bit		BRR Setting	Error (%)
Asynchronous, multi-processor communication	0	0	$N = \frac{PCLK \times 10^{6}}{64 \times 2^{2n-1} \times \frac{256}{M} \times B} - 1$	Error = $ \left\{ \frac{PCLK \times 10^{6}}{B \times 64 \times 2^{2n-1} \times \frac{256}{M} \times (N+1)} - 1 \right\} \times 100 $
	1	0	$N = \frac{PCLK \times 10^6}{32 \times 2^{2n-1} \times \frac{256}{31} \times B} - 1$	Error = $ \frac{PCLK \times 10^{6}}{B \times 32 \times 2^{2n-1} \times \frac{256}{M} \times (N+1)} - 1 \times 100 $
	0	1	32×2 × M×B	$\left[B \times 32 \times 2^{2n-1} \times \frac{256}{M} \times (N+1) \right]$
	1	1	$N = \frac{PCLK \times 10^{6}}{16 \times 2^{2n-1} \times \frac{256}{M} \times B} - 1$	Error = $ \left\{ \frac{PCLK \times 10^6}{B \times 16 \times 2^{2n-1} \times \frac{256}{M} \times (N+1)} - 1 \right\} \times 100 $
Clock synchrono	ous, simple S	P *1	$N = \frac{PCLK \times 10^6}{8 \times 2^{2n-1} \times \frac{256}{M} \times B} - 1$	
Smart card interface			$N = \frac{PCLK \times 10^{6}}{S \times 2^{2n+1} \times \frac{256}{M} \times B} - 1$	Error = $\left\{ \frac{PCLK \times 10^6}{B \times S \times 2^{2n+1} \times \frac{256}{M} \times (N+1)} - 1 \right\} \times 100$
Simple I ² C* ²			$N = \frac{PCLK \times 10^{6}}{64 \times 2^{2n-1} \times \frac{256}{M} \times B} - 1$	

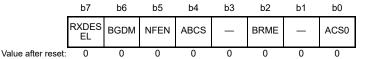
B: Bit rate (bps)

M: MDDR setting (128 \leq MDDR \leq 256)

N: BRR setting for baud rate generator $(0 \le N \le 255)$

PCLK: Operating frequency (MHz)

n and S: Determined by the settings of the SMR and SCMR registers as listed in Table 27.12 and Table 27.13, section 27.2.11, Bit Rate Register (BRR).


Note 1. Do not use this function in clock synchronous mode and in the highest speed settings in simple SPI mode (SMR.CKS[1:0] = 00b, SCR.CKE[1] = 0, and BRR = 0).

Note 2. Adjust the bit rate so that the widths at high and low level of the SCL output in simple I²C mode satisfy the I²C standard.

27.2.13 Serial Extended Mode Register (SEMR)

Address(es): SCI0.SEMR 0008 A007h, SCI1.SEMR 0008 A027h, SCI5.SEMR 0008 A0A7h, SCI6.SEMR 0008 A0C7h, SCI8.SEMR 0008 A107h, SCI9.SEMR 0008 A127h, SCI12.SEMR 0008 B307h

Bit **Bit Name** Description R/W **Symbol** b0 ACS₀ Asynchronous Mode (Valid only in asynchronous mode) R/W*1 Clock Source Select 0: External clock input 1: Logical AND of two compare matches output from TMR (valid for SCI5, SCI6, and SCI12 only) Available compare match output varies per SCI channel. Reserved This bit is read as 0. The write value should be 0. R/W b2 **BRME** Bit Rate Modulation 0: Bit rate modulation function is disabled. R/W Enable 1: Bit rate modulation function is enabled b3 Reserved This bit is read as 0. The write value should be 0. R/W b4 **ABCS** Asynchronous Mode (Valid only in asynchronous mode) R/W*1 0: Selects 16 base clock cycles for 1-bit period. Base Clock Select 1: Selects 8 base clock cycles for 1-bit period. b5 NFEN Digital Noise Filter R/W*1 (In asynchronous mode) Function Enable 0: Noise cancellation function for the RXDn input signal is disabled. 1: Noise cancellation function for the RXDn input signal is enabled. (in simple I2C mode) 0: Noise cancellation function for the SSCLn and SSDAn input signals is disabled. 1: Noise cancellation function for the SSCLn and SSDAn input signals is enabled The NFEN bit should be 0 in any mode other than above. b6 **BGDM Baud Rate Generator** (Only valid the CKE[1] bit in SCR is 0 in asynchronous mode) R/W Double-Speed Mode 0: Baud rate generator outputs the clock with normal frequency. Select 1: Baud rate generator outputs the clock with doubled frequency. R/W*1 b7 **RXDESEL** Asynchronous Start Bit (Valid only in asynchronous mode) **Edge Detection Select** 0: The low level on the RXDn pin is detected as the start bit.

Note 1. Writable only when TE in SCR = 0 and RE in SCR = 0 (both serial transmission and reception are disabled).

The SEMR register is used to select a clock source for 1-bit period in asynchronous mode or a detection method of the start bit.

1: A falling edge on the RXDn pin is detected as the start bit.

ACS0 Bit (Asynchronous Mode Clock Source Select)

Selects the clock source in the asynchronous mode.

The ACS0 bit is valid in asynchronous mode (SMR.CM bit = 0) and when an external clock input is selected (SCR.CKE[1:0] bits = 10b or 11b). This bit is used to select an external clock input or the logical AND of compare matches output from the internal TMR.

Set the ACS0 bit to 0 in other than asynchronous mode.

For SCI5, SCI6, and SCI12, the TMOn output (n = 0 to 3) of TMR units 0 and 1 can be set as the base clock source. Refer to Table 27.25 for details.

These bits for SCI0, SCI1, SCI8, and SCI9 are reserved. The write values to these bits for SCI0, SCI1, SCI8, and SCI9 should be 0.

Table 27.25 Correspondence between SCI Channels and Compare Match Outputs

SCI	TMR	Compare Match Output
SCI5	Unit 0	TMO0, TMO1
SCI6	Unit 1	TMO2, TMO3
SCI12	Unit 0	TMO0, TMO1

Figure 27.4 shows a setting example of when TMO0 and TMO1 in the TMR unit 0 are selected for output.

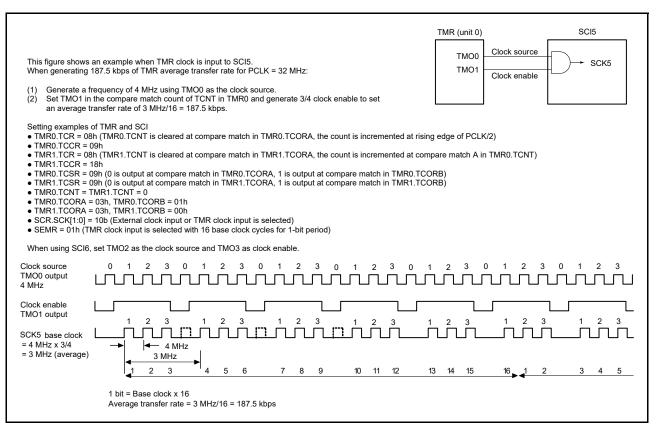


Figure 27.4 Example of Average Transfer Rate Setting When TMR Clock is Input

BRME Bit (Bit Rate Modulation Enable)

Enables and disables the bit rate modulation function. The bit rate generated by on-chip baud rate generator is evenly corrected when this function is enabled.

NFEN Bit (Digital Noise Filter Function Enable)

This bit enables or disables the digital noise filter function.

When the function is enabled, noise cancellation is applied to the RXDn input signal in asynchronous mode, and noise cancellation is applied to the SSDAn and SSCLn input signals in simple I^2C mode.

In any mode other than above, set the NFEN bit to 0 to disable the digital noise filter function.

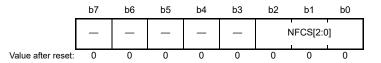
When the function is disabled, input signals are transferred as is, as internal signals.

BGDM Bit (Baud Rate Generator Double-Speed Mode Select)

Selects the cycle of output clock for the baud rate generator.

This bit is valid when the on-chip baud rate generator is selected as the clock source (SCR.CKE[1] = 0) in asynchronous mode (SMR.CM = 0). For the clock output from the baud rate generator, either normal or doubled frequency can be selected. The base clock is generated by the clock output from the baud rate generator. When the BGDM bit is set to 1, the base clock cycle is halved and the bit rate is doubled.

Set this bit to 0 in modes other than asynchronous mode.


RXDESEL Bit (Asynchronous Start Bit Edge Detection Select)

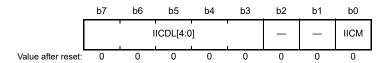
Selects the detection method of the start bit for reception in asynchronous mode. When a break occurs, data receiving operation depends on the settings of this bit. Set this bit to 1 when reception should be stopped while a break occurs or when reception should be started without retaining the RXDn pin input at high level for the period of one data frame or longer after completion of the break.

Set this bit to 0 in modes other than asynchronous mode.

27.2.14 Noise Filter Setting Register (SNFR)

Address(es): SCI0.SNFR 0008 A008h, SCI1.SNFR 0008 A028h, SCI5.SNFR 0008 A0A8h, SCI6.SNFR 0008 A0C8h, SCI8.SNFR 0008 A108h, SCI9.SNFR 0008 A128h, SCI12.SNFR 0008 B308h

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	NFCS[2:0]	Noise Filter Clock Select	In asynchronous mode, the standard setting for the base clock is as follows. b2 b0 0 0: The clock signal divided by 1 is used with the noise filter.	R/W*1
			In simple I ² C mode, the standard settings for the clock source of the on-chip baud rate generator selected by the SMR.CKS[1:0] bits are given below. b2 b0 0 0 1: The clock signal divided by 1 is used with the noise filter. 0 1 0: The clock signal divided by 2 is used with the noise filter. 0 1 1: The clock signal divided by 4 is used with the noise filter. 1 0 0: The clock signal divided by 8 is used with the noise filter.	
			Settings other than above are prohibited.	
b7 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W


Note 1. Writing to these bits is only possible when the RE and TE bits in the SCR are 0 (serial reception and transmission disabled).

NFCS[2:0] Bits (Noise Filter Clock Select)

These bits select the sampling clock for the digital noise filter. To use the noise filter in asynchronous mode, set these bits to 000b. In simple I²C mode, set the bits to a value in the range from 001b to 100b.

27.2.15 I²C Mode Register 1 (SIMR1)

Address(es): SCI0.SIMR1 0008 A009h, SCI1.SIMR1 0008 A029h, SCI5.SIMR1 0008 A0A9h, SCI6.SIMR1 0008 A0C9h, SCI8.SIMR1 0008 A109h, SCI9.SIMR1 0008 A129h, SCI12.SIMR1 0008 B309h

Bit	Symbol	Bit Name	Description	R/W
b0	IICM	Simple I ² C Mode Select	SMIF IICM 0 0: Asynchronous mode, Multi-processor mode, Clock synchronous mode (in asynchronous mode, synchronous, or simple SPI mode) 0 1: Simple I ² C mode 1 0: Smart card interface mode 1 1: Setting prohibited.	R/W* ¹
b2, b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b7 to b3	IICDL[4:0]	SSDA Output Delay Select	(Cycles below are of the clock signal from the on-chip baud rate generator.) b7 0 0 0 0 0: No output delay 0 0 0 0 1: 0 to 1 cycle 0 0 0 1 0: 1 to 2 cycles 0 0 0 1 1: 2 to 3 cycles 0 0 1 0 0: 3 to 4 cycles 0 0 1 0 1: 4 to 5 cycles : 1 1 1 1 0: 29 to 30 cycles 1 1 1 1 1: 30 to 31 cycles	R/W*1

Note 1. Writing to these bits is only possible when the RE and TE bits in the SCR are 0 (both serial transmission and reception are disabled).

SIMR1 is used to select simple I²C mode and the number of delay stages for the SSDA output.

IICM Bit (Simple I²C Mode Select)


In conjunction with the SMIF bit in the SCMR register, this bit selects the operating mode.

IICDL[4:0] Bits (SSDA Output Delay Select)

These bits are used to set a delay for output on the SSDAn pin relative to the falling edge of the output on the SSCLn pin. The available delay settings range from no delay to 31 cycles, with the clock signal from the on-chip baud rate generator as the base. The signal obtained by frequency-dividing PCLK by the divisor set in the SMR.CKS[1:0] bits is supplied as the clock signal from the on-chip baud rate generator. Set these bits to 00000b unless operation is in simple I^2C mode. In simple I^2C mode, set the bits to a value in the range from 00001b to 11111b.

27.2.16 I²C Mode Register 2 (SIMR2)

Address(es): SCI0.SIMR2 0008 A00Ah, SCI1.SIMR2 0008 A02Ah, SCI5.SIMR2 0008 A0AAh, SCI6.SIMR2 0008 A0CAh, SCI8.SIMR2 0008 A10Ah, SCI9.SIMR2 0008 A12Ah, SCI12.SIMR2 0008 B30Ah

Bit	Symbol	Bit Name	Description	R/W
b0	IICINTM	I ² C Interrupt Mode Select	Use ACK/NACK interrupts. Use reception and transmission interrupts.	R/W*1
b1	IICCSC	Clock Synchronization	No synchronization with the clock signal Synchronization with the clock signal	R/W*1
b4 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b5	IICACKT	ACK Transmission Data	0: ACK transmission 1: NACK transmission and reception of ACK/NACK	R/W
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. Writing to these bits is only possible when the RE and TE bits in the SCR are 0 (serial reception and transmission disabled).

SIMR2 is used to select how reception and transmission are controlled in simple I²C mode.

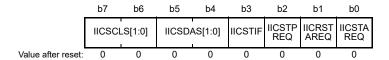
IICINTM Bit (I²C Interrupt Mode Select)

This bit selects the sources of interrupt requests in simple I²C mode.

IICCSC Bit (Clock Synchronization)

Set the IICCSC bit to 1 if the internally generated SSCLn clock signal is to be synchronized when the SSCLn pin has been placed at the low level in the case of a wait inserted by the other device, etc.

The SSCLn clock signal is not synchronized if the IICCSC bit is 0. The SSCLn clock signal is generated in accord with the rate selected in the BRR regardless of the level being input on the SSCLn pin.


Set the IICCSC bit to 1 except during debugging.

IICACKT Bit (ACK Transmission Data)

Transmitted data contains ACK bits. Set this bit to 1 when ACK and NACK bits are received.

27.2.17 I²C Mode Register 3 (SIMR3)

Address(es): SCI0.SIMR3 0008 A00Bh, SCI1.SIMR3 0008 A02Bh, SCI5.SIMR3 0008 A0ABh, SCI6.SIMR3 0008 A0CBh, SCI8.SIMR3 0008 A10Bh, SCI9.SIMR3 0008 A12Bh, SCI12.SIMR3 0008 B30Bh

Bit	Symbol	Bit Name	Description	R/W
b0	IICSTAREQ	Start Condition Generation	0: A start condition is not generated. 1: A start condition is generated.*1, *3, *4, *5	R/W
b1	IICRSTAREQ	Restart Condition Generation	0: A restart condition is not generated. 1: A restart condition is generated.*2, *3, *4, *5	R/W
b2	IICSTPREQ	Stop Condition Generation	0: A stop condition is not generated. 1: A stop condition is generated.*2, *3, *4, *5	R/W
b3	IICSTIF	Issuing of Start, Restart, or Stop Condition Completed Flag	O: There are no requests for generating conditions or a condition is being generated. 1: A start, restart, or stop condition is completely generated.	R/W
b5, b4	IICSDAS[1:0]	SSDA Output Select	 b5 b4 0 0: Serial data output 0 1: Generate a start, restart, or stop condition. 1 0: Output the low level on the SSDAn pin. 1 1: Place the SSDAn pin in the high-impedance state. 	R/W
b7, b6	IICSCLS[1:0]	SSCL Output Select	b7 b6 0 0: Serial clock output 0 1: Generate a start, restart, or stop condition. 1 0: Output the low level on the SSCLn pin. 1 1: Place the SSCLn pin in the high-impedance state.	R/W

- Note 1. Generate a start condition only when the SSCLn and SSDAn pins are both high (the corresponding bits in the corresponding PIDR registers are 1).
- Note 2. Generate a restart or stop condition only when the SSCLn pin is low (the corresponding bit in the PIDR register is 0).
- Note 3. Do not set more than one from among the IICSTAREQ, IICRSTAREQ, and IICSTPREQ bits to 1 at a given time.
- Note 4. Execute the generation of a condition after the value of the IICSTIF flag is 0.
- Note 5. Do not write 0 to this bit while it is 1. Generation of a condition is suspended by writing 0 to this bit while it is 1.

SIMR3 is used to control the simple I²C mode start and stop conditions, and to hold the SSDAn and SSCLn pins at fixed levels.

IICSTAREQ Bit (Start Condition Generation)

When a start condition is to be generated, set both the IICSDAS[1:0] and IICSCLS[1:0] bits to 01b as well as setting the IICSTAREQ bit to 1.

[Setting condition]

• Writing 1 to the bit

[Clearing condition]

• Completion of generation of the start condition

IICRSTAREQ Bit (Restart Condition Generation)

When a restart condition is to be generated, set both the IICSDAS[1:0] and IICSCLS[1:0] bits to 01b as well as setting the IICRSTAREQ bit to 1.

[Setting condition]

• Writing 1 to the bit

[Clearing condition]

• Completion of generation of the restart condition

IICSTPREQ Bit (Stop Condition Generation)

When a stop condition is to be generated, set both the IICSDAS[1:0] and IICSCLS[1:0] bits to 01b as well as setting the IICSTPREQ bit to 1.

[Setting condition]

• Writing 1 to the bit

[Clearing condition]

• Completion of generation of the stop condition

IICSTIF Flag (Issuing of Start, Restart, or Stop Condition Completed Flag)

After generating a condition, this bit indicates that the generation is completed. When using the IICSTAREQ, IICRSTAREQ, or IICSTPREQ bit to cause generation of a condition, do so after setting the IICSTIF flag to 0. When the IICSTIF flag is 1 while an interrupt request is enabled by setting the SCR.TEIE bit, an STI request is output. [Setting condition]

• Completion of the generation of a start, restart, or stop condition (however, in cases where this conflicts with any of the conditions for the flag becoming 0 listed below, the other condition takes precedence)

[Clearing conditions]

- Writing 0 to the bit (confirm that the IICSTIF flag is 0 before doing so)
- Writing 0 to the SIMR1.IICM bit (when operation is not in simple I²C mode)
- Writing 0 to the SCR.TE bit

IICSDAS[1:0] Bits (SSDA Output Select)

These bits control output from the SSDAn pin.

Set the IICSDAS[1:0] and IICSCLS[1:0] bits to the same value during normal operations.

IICSCLS[1:0] Bits (SSCL Output Select)

These bits control output from the SSCLn pin.

Set the IICSCLS[1:0] and IICSDAS[1:0] bits to the same value during normal operations.

27.2.18 I²C Status Register (SISR)

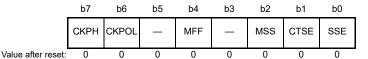
Address(es): SCI0.SISR 0008 A00Ch, SCI1.SISR 0008 A02Ch, SCI5.SISR 0008 A0ACh, SCI6.SISR 0008 A0CCh, SCI8.SISR 0008 A10Ch, SCI9.SISR 0008 A12Ch, SCI12.SISR 0008 B30Ch

x: Undefined

Bit	Symbol	Bit Name	Description	R/W
b0	IICACKR	ACK Reception Data Flag	0: ACK received 1: NACK received	R/W*1
b1	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b2	_	Reserved	The read value is undefined.	R
b3	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b5, b4	_	Reserved	The read value is undefined.	R
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. Only 0 can be written to this bit, to clear the flag.

SISR is used to monitor state in relation to simple I²C mode.


IICACKR Flag (ACK Reception Data Flag)

Received ACK and NACK bits can be read from this bit.

The IICACKR flag is updated at the rising of SSCLn clock for the ACK/NACK receiving bit.

27.2.19 SPI Mode Register (SPMR)

Address(es): SCI0.SPMR 0008 A00Dh, SCI1.SPMR 0008 A02Dh, SCI5.SPMR 0008 A0ADh, SCI6.SPMR 0008 A0CDh, SCI8.SPMR 0008 A10Dh, SCI9.SPMR 0008 A12Dh, SCI12.SPMR 0008 B30Dh

Bit	Symbol	Bit Name	Description	R/W
b0	SSE	SSn# Pin Function Enable	0: SSn# pin function is disabled. 1: SSn# pin function is enabled.	R/W*1
b1	CTSE	CTS Enable	CTS function is disabled (RTS output function is enabled). CTS function is enabled.	R/W*1
b2	MSS	Master Slave Select	O: Transmission is through the TXDn pin and reception is through the RXDn pin (master mode). 1: Reception is through the TXDn pin and transmission is through the RXDn pin (slave mode).	R/W* ¹
b3	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b4	MFF	Mode Fault Flag	0: No mode fault error 1: Mode fault error	R/W* ²
b5	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b6	CKPOL	Clock Polarity Select	Clock polarity is not inverted. Clock polarity is inverted.	R/W*1
b7	CKPH	Clock Phase Select	0: Clock is not delayed. 1: Clock is delayed.	R/W*1

Note 1. Writing to these bits is only possible when the RE and TE bits in the SCR are 0 (both serial transmission and reception are disabled).

SPMR is used to select the extension settings in asynchronous and clock synchronous modes.

SSE Bit (SSn# Pin Function Enable)

Set this bit to 1 if the SSn# pin is to be used in control of transmission and reception (in simple SPI mode). Set this bit to 0 in any other mode. Furthermore, even for usage in simple SPI mode, the SSn# pin on the master side is not required to control reception and transmission when master mode (SCR.CKE[1:0] = 00b and MSS = 0) is selected and there is a single master, so the setting for the SSE bit is 0. Do not set both the SSE and CTSE bits to enabled (even if this setting is made, operation is the same as that when these bits are set to 0).

CTSE Bit (CTS Enable)

Set this bit to 1 if the SSn# pin is to be used for inputting of the CTS control signal to control of transmission and reception. The RTS signal is output when this bit is set to 0. Set this bit to 0 in smart card interface mode, simple SPI mode, and simple I²C mode. Do not set both the CTSE and SSE bits to enabled (even if this setting is made, operation is the same as that when these bits are set to 0).

MSS Bit (Master Slave Select)

This bit selects between master and slave operation in simple SPI mode. The functions of the TXDn and RXDn pins are reversed when the MSS bit is set to 1, so that data is received through the TXDn pin and transmitted through the RXDn pin.

Set this bit to 0 in modes other than simple SPI mode.

Note 2. Only 0 can be written to these bits, which clears the flag.

MFF Flag (Mode Fault Flag)

This bit indicates mode fault errors.

In a multi-master configuration, determine the mode fault error occurrence by reading the MFF flag. [Setting condition]

• Input on the SSn# pin being at the low level during master operation in simple SPI mode (SSE bit = 1 and MSS bit = 0)

[Clearing condition]

• Writing 0 to the bit after it was read as 1

CKPOL Bit (Clock Polarity Select)

This bit selects the polarity of the clock signal output through the SCKn pin. Refer to Figure 27.57 for details. Set the bit to 0 in other than simple SPI mode and clock synchronous mode.

CKPH Bit (Clock Phase Select)

This bit selects the phase of the clock signal output through the SCKn pin. Refer to Figure 27.57 for details. Set the bit to 0 in other than simple SPI mode and clock synchronous mode.

27.2.20 Extended Serial Module Enable Register (ESMER)

Address(es): SCI12.ESMER 0008 B320h

Bit	Symbol	Bit Name	Description	R/W
b0	ESME	Extended Serial Mode Enable	0: The extended serial mode is disabled.1: The extended serial mode is enabled.	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

ESME Bit (Extended Serial Mode Enable)

When the ESME bit is 1, the facilities of the extended serial mode control section are enabled.

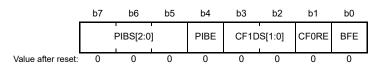
When the ESME bit is 0, the extended serial mode control section is initialized.

Table 27.26 Settings of the ESME Bit and Timer Operation Mode

ESME Bit	Timer Mode	Break Field Low Width Determination Mode	Break Field Low Width Output Mode
0	Available*1	Not available	Not available
1	Available	Available	Available

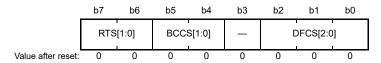
Note 1. Operation is only possible with PCLK selected.

27.2.21 Control Register 0 (CR0)


Address(es): SCI12.CR0 0008 B321h

Bit	Symbol	Bit Name	Description	R/W
b0	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b1	SFSF	Start Frame Status Flag	Start Frame detection function is disabled. Start Frame detection function is enabled.	R
b2	RXDSF	RXDX12 Input Status Flag	0: RXDX12 input is enabled. 1: RXDX12 input is disabled.	R
b3	BRME	Bit Rate Measurement Enable	Measurement of bit rate is disabled. Measurement of bit rate is enabled.	R/W
b7 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

27.2.22 Control Register 1 (CR1)


Address(es): SCI12.CR1 0008 B322h

Bit	Symbol	Bit Name	Description	R/W
b0	BFE	Break Field Enable	Break Field detection is disabled. Break Field detection is enabled.	R/W
b1	CF0RE	Control Field 0 Reception Enable	Reception of Control Field 0 is disabled. Reception of Control Field 0 is enabled.	R/W
b3, b2	CF1DS[1:0]	Control Field 1 Data Register Select	 b3 b2 0 0: Selects comparison with the value in PCF1DR. 0 1: Selects comparison with the value in SCF1DR. 1 0: Selects comparison with the values in PCF1DR and SCF1DR. 1 1: Setting prohibited. 	R/W
b4	PIBE	Priority Interrupt Bit Enable	The priority interrupt bit is disabled. The priority interrupt bit is enabled.	R/W
b7 to b5	PIBS[2:0]	Priority Interrupt Bit Select	b7 b5 0 0 0: 0th bit of Control Field 1 0 0 1: 1st bit of Control Field 1 0 1 0: 2nd bit of Control Field 1 0 1 1: 3rd bit of Control Field 1 1 0 0: 4th bit of Control Field 1 1 0 1: 5th bit of Control Field 1 1 0: 6th bit of Control Field 1 1 1 1: 7th bit of Control Field 1	R/W

27.2.23 Control Register 2 (CR2)

Address(es): SCI12.CR2 0008 B323h

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	DFCS[2:0]	RXDX12 Signal Digital Filter Clock Select	b2 b0 0 0 0: Filter is disabled. 0 0 1: Filter clock is base clock*1, *2 0 1 0: Filter clock is PCLK/8 0 1 1: Filter clock is PCLK/16 1 0 0: Filter clock is PCLK/32 1 0 1: Filter clock is PCLK/64 1 1 0: Filter clock is PCLK/128 1 1 1: Setting prohibited	R/W
b3	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b5, b4	BCCS[1:0]	Bus Collision Detection Clock Select	When SEMR.BGDM = 0 or SEMR.BGDM = 1 and SMR.CKS[1:0] = a value other than 00b b5 b4 0 0: Base clock 0 1: Base clock frequency divided by 2 1 0: Base clock frequency divided by 4 1 1: Setting prohibited When SEMR.BGDM = 1 and SMR.CKS[1:0] = 00b b5 b4 0 0: Base clock frequency divided by 2 0 1: Base clock frequency divided by 4 1 0: Setting prohibited 1 1: Setting prohibited	R/W
b7, b6	RTS[1:0]	RXDX12 Reception Sampling Timing Select	When SCI12.SEMR.ABCS = 0 The bold of the Sth cycle of base clock of the Sth cycle of the Sth c	R/W

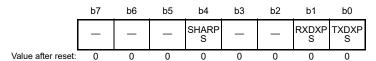
Note: The period of the base clock is 1/16 of a single bit period when the SCI12.SEMR.ABCS is 0, and 1/8 of a single bit period when the SCI12.SEMR.ABCS is 1.

Note 1. To use the base clock, set the SCI12.SCR.TE bit to 1.

Note 2. The base clock divided by 2 is the filter clock when the SEMR.BGDM bit is 1 and the SMR.CKS[1:0] bits are 00b.

27.2.24 Control Register 3 (CR3)

Address(es): SCI12.CR3 0008 B324h

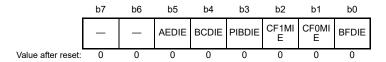

Bit	Symbol	Bit Name	Description	R/W
b0	SDST	Start Frame Detection Start	Detection of Start Frame is not performed. Detection of Start Frame is performed.	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

SDST Bit (Start Frame Detection Start)

Detection of a Start Frame begins when this bit is set to 1. The bit is read as 0.

27.2.25 Port Control Register (PCR)

Address(es): SCI12.PCR 0008 B325h


Bit	Symbol	Bit Name	Description	R/W
b0	TXDXPS	TXDX12 Signal Polarity Select	O: The polarity of TXDX12 signal is not inverted for output. 1: The polarity of TXDX12 signal is inverted for output.	R/W
b1	RXDXPS	RXDX12 Signal Polarity Select	0: The polarity of RXDX12 signal is not inverted for input. 1: The polarity of RXDX12 signal is inverted for input.	R/W
b3, b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b4	SHARPS	TXDX12/RXDX12 Pin Multiplexing Select	0: The TXDX12 and RXDX12 pins are independent. 1: The TXDX12 and RXDX12 signals are multiplexed on the same pin.	R/W
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

SHARPS Bit (TXDX12/RXDX12 Pin Multiplexing Select)

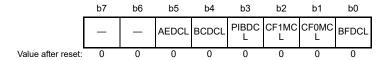
When this bit is set to 1, the TXDX12 and RXDX12 signals are multiplexed on the same pin so that half-duplex communications become possible.

27.2.26 Interrupt Control Register (ICR)

Address(es): SCI12.ICR 0008 B326h

Bit	Symbol Bit Name		Description					
b0	BFDIE	Break Field Low Width Detected Interrupt Enable	O: Interrupts on detection of the low width for a Break Field are disabled. I: Interrupts on detection of the low width for a Break Field are enabled.					
b1	CF0MIE	Control Field 0 Match Detected Interrupt Enable	O: Interrupts on detection of a match with Control Field 0 are disabled. 1: Interrupts on detection of a match with Control Field 0 are enabled.	R/W				
b2	CF1MIE	Control Field 1 Match Detected Interrupt Enable	O: Interrupts on detection of a match with Control Field 1 are disabled. 1: Interrupts on detection of a match with Control Field 1 are enabled.	R/W				
b3	PIBDIE	Priority Interrupt Bit Detected Interrupt Enable	O: Interrupts on detection of the priority interrupt bit are disabled. 1: Interrupts on detection of the priority interrupt bit are enabled.	R/W				
b4	BCDIE	Bus Collision Detected Interrupt Enable	O: Interrupts on detection of a bus collision are disabled. I: Interrupts on detection of a bus collision are enabled.	R/W				
b5	AEDIE	Valid Edge Detected Interrupt Enable	O: Interrupts on detection of a valid edge are disabled. 1: Interrupts on detection of a valid edge are enabled.	R/W				
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W				

27.2.27 Status Register (STR)


Address(es): SCI12.STR 0008 B327h

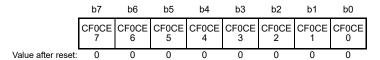
Bit	Symbol	Bit Name	Description	R/W
b0	BFDF	Break Field Low Width Detection Flag	 [Setting conditions] Detection of the low width for a Break Field Completion of the output of the low width for a Break Field Underflow of the timer [Clearing condition] Writing 1 to the BFDCL bit in STCR 	R
b1	CF0MF	Control Field 0 Match Flag	 [Setting condition] A match between the value received in Control Field 0 and the set value. [Clearing condition] Writing 1 to the CF0MCL bit in STCR 	R
b2	CF1MF	Control Field 1 Match Flag	 [Setting condition] A match between the data received in Control Field 1 and the set values. [Clearing condition] Writing 1 to the CF1MCL bit in STCR 	R
b3	PIBDF	Priority Interrupt Bit Detection Flag	[Setting condition] • Detection of the priority interrupt bit [Clearing condition] • Writing 1 to the PIBDCL bit in STCR	R
b4	BCDF	Bus Collision Detected Flag	[Setting condition] • Detection of the bus collision [Clearing condition] • Writing 1 to the BCDCL bit in STCR	R
b5	AEDF	Valid Edge Detection Flag	[Setting condition] • Detection of a valid edge [Clearing condition] • Writing 1 to the AEDCL bit in STCR	R
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R

27.2.28 Status Clear Register (STCR)

Address(es): SCI12.STCR 0008 B328h

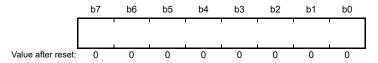
Bit	Symbol	Bit Name	Description	R/W
b0	BFDCL	BFDF Clear	Setting this bit to 1 clears the STR.BFDF flag. This bit is read as 0.	R/W
b1	CF0MCL	CF0MF Clear	Setting this bit to 1 clears the STR.CF0MF flag. This bit is read as 0.	R/W
b2	CF1MCL	CF1MF Clear	Setting this bit to 1 clears the STR.CF1MF flag. This bit is read as 0.	R/W
b3	PIBDCL	PIBDF Clear	Setting this bit to 1 clears the STR.PIBDF flag. This bit is read as 0.	R/W
b4	BCDCL	BCDF Clear	Setting this bit to 1 clears the STR.BCDF flag. This bit is read as 0.	R/W
b5	AEDCL	AEDF Clear	Setting this bit to 1 clears the STR.AEDF flag. This bit is read as 0.	R/W
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

27.2.29 Control Field 0 Data Register (CF0DR)


Address(es): SCI12.CF0DR 0008 B329h

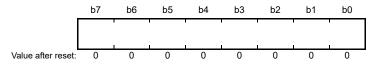
The CF0DR register is an 8-bit readable and writable register that holds a value for comparison with Control Field 0.

27.2.30 Control Field 0 Compare Enable Register (CF0CR)


Address(es): SCI12.CF0CR 0008 B32Ah

Bit	Symbol	Bit Name	Description	R/W
b0	CF0CE0	Control Field 0 Bit 0 Compare Enable	Comparison with bit 0 of Control Field 0 is disabled. Comparison with bit 0 of Control Field 0 is enabled.	R/W
b1	CF0CE1	Control Field 0 Bit 1 Compare Enable	Comparison with bit 1 of Control Field 0 is disabled. Comparison with bit 1 of Control Field 0 is enabled.	R/W
b2	CF0CE2	Control Field 0 Bit 2 Compare Enable	Comparison with bit 2 of Control Field 0 is disabled. Comparison with bit 2 of Control Field 0 is enabled.	R/W
b3	CF0CE3	Control Field 0 Bit 3 Compare Enable	Comparison with bit 3 of Control Field 0 is disabled. Comparison with bit 3 of Control Field 0 is enabled.	R/W
b4	CF0CE4	Control Field 0 Bit 4 Compare Enable	Comparison with bit 4 of Control Field 0 is disabled. Comparison with bit 4 of Control Field 0 is enabled.	R/W
b5	CF0CE5	Control Field 0 Bit 5 Compare Enable	Comparison with bit 5 of Control Field 0 is disabled. Comparison with bit 5 of Control Field 0 is enabled.	R/W
b6	CF0CE6	Control Field 0 Bit 6 Compare Enable	Comparison with bit 6 of Control Field 0 is disabled. Comparison with bit 6 of Control Field 0 is enabled.	R/W
b7	CF0CE7	Control Field 0 Bit 7 Compare Enable	Comparison with bit 7 of Control Field 0 is disabled. Comparison with bit 7 of Control Field 0 is enabled.	R/W

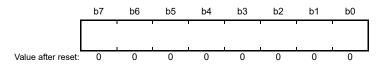
27.2.31 Control Field 0 Receive Data Register (CF0RR)


Address(es): SCI12.CF0RR 0008 B32Bh

CF0RR is a readable register that holds the value received in Control Field 0.

27.2.32 Primary Control Field 1 Data Register (PCF1DR)

Address(es): SCI12.PCF1DR 0008 B32Ch


PCF1DR is an 8-bit readable and writable register that holds the 8-bit primary value for comparison with Control Field 1.

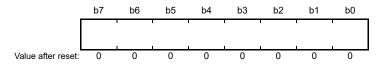
Valu

27.2.33 Secondary Control Field 1 Data Register (SCF1DR)

Address(es): SCI12.SCF1DR 0008 B32Dh

PCF1DR is an 8-bit readable and writable register that holds the 8-bit secondary value for comparison with Control Field 1.

27.2.34 Control Field 1 Compare Enable Register (CF1CR)


Address(es): SCI12.CF1CR 0008 B32Eh

	b7	b6	b5	b4	b3	b2	b1	b0
	CF1CE 7	CF1CE 6	CF1CE 5	CF1CE 4	CF1CE	CF1CE 2	CF1CE	CF1CE 0
ie after reset:	0	0	0	0	0	0	0	0

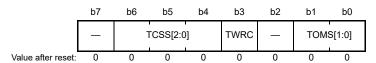
Bit	Symbol	Bit Name	Description	R/W
b0	CF1CE0	Control Field 1 Bit 0 Compare Enable	Comparison with bit 0 of Control Field 1 is disabled. Comparison with bit 0 of Control Field 1 is enabled.	R/W
b1	CF1CE1	Control Field 1 Bit 1 Compare Enable	Comparison with bit 1 of Control Field 1 is disabled. Comparison with bit 1 of Control Field 1 is enabled.	R/W
b2	CF1CE2	Control Field 1 Bit 2 Compare Enable	Comparison with bit 2 of Control Field 1 is disabled. Comparison with bit 2 of Control Field 1 is enabled.	R/W
b3	CF1CE3	Control Field 1 Bit 3 Compare Enable	Comparison with bit 3 of Control Field 1 is disabled. Comparison with bit 3 of Control Field 1 is enabled.	R/W
b4	CF1CE4	Control Field 1 Bit 4 Compare Enable	Comparison with bit 4 of Control Field 1 is disabled. Comparison with bit 4 of Control Field 1 is enabled.	R/W
b5	CF1CE5	Control Field 1 Bit 5 Compare Enable	Comparison with bit 5 of Control Field 1 is disabled. Comparison with bit 5 of Control Field 1 is enabled.	R/W
b6	CF1CE6	Control Field 1 Bit 6 Compare Enable	Comparison with bit 6 of Control Field 1 is disabled. Comparison with bit 6 of Control Field 1 is enabled.	R/W
b7	CF1CE7	Control Field 1 Bit 7 Compare Enable	Comparison with bit 7 of Control Field 1 is disabled. Comparison with bit 7 of Control Field 1 is enabled.	R/W

27.2.35 Control Field 1 Receive Data Register (CF1RR)

Address(es): SCI12.CF1RR 0008 B32Fh

CF1RR is a readable register that holds the value received in Control Field 1.

27.2.36 Timer Control Register (TCR)

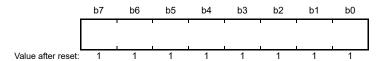

Address(es): SCI12.TCR 0008 B330h

Bit	Symbol	Bit Name	Description	R/W
b0	TCST	Timer Count Start	Stops the timer counting Starts the timer counting	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

27.2.37 Timer Mode Register (TMR)

Address(es): SCI12.TMR 0008 B331h

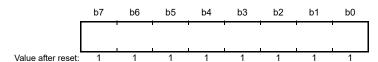
Bit	Symbol	Bit Name	Description	R/W
b1, b0	o1, b0 TOMS[1:0] Timer Operating Mode Select*1		b1 b0 0 0: Timer mode 0 1: Break Field low width determination mode 1 0: Break Field low width output mode 1 1: Setting prohibited	R/W
b2	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b3	TWRC	Counter Write Control	Data is written to the reload register and counter Data is written to the reload register only	R/W
b6 to b4	TCSS[2:0]	Timer Count Clock Source Select*1	b6 b4 0 0 0: PCLK 0 0 1: PCLK/2 0 1 0: PCLK/4 0 1 1: PCLK/8 1 0 0: PCLK/16 1 0 1: PCLK/32 1 1 0: PCLK/64 1 1 1: PCLK/128	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W


Note 1. Rewrite the TOMS[1:0] and TCSS[2:0] bits only when the timer is stopped (TCST = 0).

TWRC Bit (Counter Write Control)

This bit determines whether a value written to TPRE or TCNT is written to the reload register only or is written to both the reload register and the counter.

27.2.38 Timer Prescaler Register (TPRE)


Address(es): SCI12.TPRE 0008 B332h

TPRE consists of an 8-bit reload register, a read buffer, and a counter, each of which has FFh as its initial value. The counter counts down in synchronization with the counter clock selected by the TMR.TCSS[2:0] bits, and is reloaded with the value in the reload register when it underflows. Underflows of this register provide the clock source to drive counting by the TCNT register. The reload register and read buffer are allocated to the same address. Data is written to the reload register in writing, and the counter value that has been transferred to the read buffer is returned in reading. It takes one PCLK cycle to load a value from the reload register to the counter.

27.2.39 Timer Count Register (TCNT)

Address(es): SCI12.TCNT 0008 B333h

TCNT consists of an 8-bit reload register, a read buffer, and a counter, each of which has FFh as its initial value. This down-counter counts underflows of the TPRE register until the TCNT register underflows, and is then reloaded with the value from the reload register. The reload register and read buffer are allocated to the same address. Data is written to the reload register in writing, and the counter value that has been transferred to the read buffer is returned in reading. It takes one PCLK cycle to load a value from the reload register to the counter.

27.3 Operation in Asynchronous Mode

Figure 27.5 shows the general format for asynchronous serial communications.

One frame consists of a start bit (low level), transmit/receive data, a parity bit, and stop bits (high level).

In asynchronous serial communications, the communications line is usually held in the mark state (high level).

The SCI monitors the communications line. When the SCI detects a low, it regards that as a start bit and starts serial communication.

Inside the SCI, the transmitter and receiver are independent units, enabling full-duplex communications. Both the transmitter and the receiver also have a double-buffered structure, so that data can be read or written during transmission or reception, enabling continuous data transmission and reception.

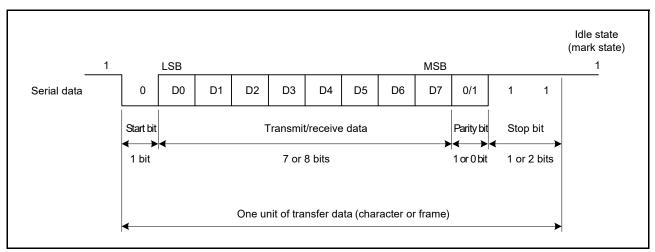


Figure 27.5 Data Format in Asynchronous Serial Communications (Example with 8-Bit Data, Parity, 2 Stop Bits)

27.3.1 Serial Data Transfer Format

Table 27.27 lists the serial data transfer formats that can be used in asynchronous mode.

Any of 18 transfer formats can be selected according to the SMR and SCMR setting. For details of multi-processor function, refer to section 27.4, Multi-Processor Communications Function.

Table 27.27 Serial Transfer Formats (Asynchronous Mode)

SCMR Setting	SMR Se	etting						Se	erial Tr	ansfer	Forma	at and	Frame L	ength.			
CHR1	CHR	PE	MP	STOP	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	0	s					9-bit	data				STO	P	
0	0	0	0	1	s					9-bit	data				STO	P STC)P
0	0	1	0	0	s					9-bit	data				Р	STO	DP
0	0	1	0	1	s					9-bit	data				Р	STO	OP STOP
1	0	0	0	0	S				8-	bit data	a			STOR	-		
1	0	0	0	1	S				8-	bit data	a			STOR	STO	P	
1	0	1	0	0	s				8-	bit data	a			Р	STO	P	
1	0	1	0	1	s				8-	bit data	a			Р	STO	PSTC)P
1	1	0	0	0	s				7-bit	data			STO	-			
1	1	0	0	1	s				7-bit	data			STO	STOR	-		
1	1	1	0	0	S				7-bit	data			Р	STOR	D		
1	1	1	0	1	S				7-bit	data			Р	STOR	STO	P	
0	0	_	1	0	s					9-bit	data				MPE	STC)P
0	0	_	1	1	S					9-bit	data				MPE	STC	OP STOP
1	0	_	1	0	s				8-	bit data	a			MPB	STO	P	
1	0	_	1	1	s				8-	bit data	a			MPB	STO	PSTC)P
1	1	_	1	0	s				7-bit	data			MPE	STOR	-		
1	1	_	1	1	s				7-bit	data			MPE	STOR	STO	_ P	

S: Start bit STOP: Stop bit P: Parity bit

MPB: Multi-processor bit

27.3.2 Receive Data Sampling Timing and Reception Margin in Asynchronous Mode

In asynchronous mode, the SCI operates on a base clock with a frequency of 16 times*1 the bit rate.

In reception, the SCI samples the falling edge of the start bit using the base clock, and performs internal synchronization. Since receive data is sampled at the rising edge of the 8th pulse*1 of the base clock, data is latched at the middle of each bit, as shown in Figure 27.6. Thus the reception margin in asynchronous mode is determined by formula (1) below.

$$M = \left| \left(0.5 - \frac{1}{2N} \right) - (L - 0.5)F - \frac{|D - 0.5|}{N} (1 + F) \right| \times 100 \, (\%) \quad \cdots \text{ Formula (1)}$$

M: Reception margin

N: Ratio of bit rate to clock

(N = 16 when SEMR.ABCS = 0, N = 8 when SEMR.ABCS = 1)

D: Duty cycle of clock (D = 0.5 to 1.0)

L: Frame length (L = 9 to 13)

F: Absolute value of clock frequency deviation

Assuming values of F = 0 and D = 0.5 in formula (1), the reception margin is determined by the formula below.

$$M = \{0.5 - 1/(2 \times 16)\} \times 100 (\%) = 46.875 (\%)$$

However, this is only the computed value, and a margin of 20% to 30% should be allowed in system design.

Note 1. This is an example when the ABCS bit in the SEMR register is 0. When the ABCS bit is 1, a frequency of 8 times the bit rate is used as a base clock and receive data is sampled at the rising edge of the 4th pulse of the base clock.

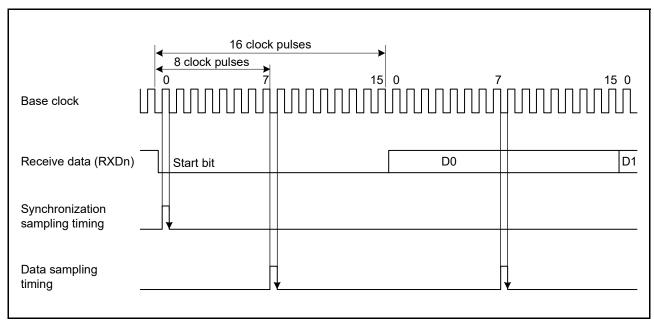


Figure 27.6 Receive Data Sampling Timing in Asynchronous Mode

27.3.3 Clock

Either an internal clock generated by the on-chip baud rate generator or an external clock input to the SCKn pin can be selected as the SCI's transfer clock, according to the setting of the CM bit in the SMR register and the CKE[1:0] bits in the SCR register.

When an external clock is input to the SCKn pin, the clock frequency should be 16 times the bit rate (when SEMR.ABCS bit = 0) and 8 times the bit rate (when SEMR.ABCS bit = 1). In addition, when an external clock is specified, the base clock of TMR0 and TMR1 can be selected by the SCIn.SEMR.ACS0 bit (n = 5, 6, 12).

When the SCI is operated on an internal clock, the clock can be output from the SCKn pin. The frequency of the clock output in this case is equal to the bit rate, and the phase is such that the rising edge of the clock is in the middle of the transmit data, as shown in Figure 27.7.

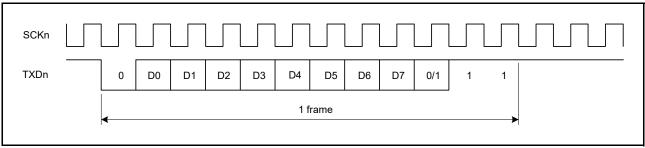


Figure 27.7 Phase Relationship between Output Clock and Transmit Data (Asynchronous Mode: SMR.CHR = 0, PE = 1, MP = 0, STOP = 1)

27.3.4 Double-Speed Mode

The output clock frequency of the on-chip baud rate generator is doubled by setting the SEMR.BGDM bit to 1, enabling high-speed communication at a doubled bit rate. If the SEMR.ABCS bit is set to 1 under the above condition, the number of base clock cycles changes from 16 to 8, so the bit rate becomes four times faster than the initial state.

As shown by Formula (1) in section 27.3.2, Receive Data Sampling Timing and Reception Margin in Asynchronous Mode, setting the SEMR.ABCS bit to 1 changes the number of cycles to 8, and the sampling interval becomes longer. This causes the reception margin to decrease. Therefore, setting the SEMR.BGDM bit to 1 and the SEMR.ABCS bit to 0 is recommended instead of setting the SEMR.BGDM bit to 0 and the SEMR.ABCS bit to 1 for high-speed operation at a doubled bit rate.

27.3.5 CTS and RTS Functions

The CTS function is the use of input on the CTSn# pin in transmission control. Setting the SPMR.CTSE bit to 1 enables the CTS function. When the CTS function is enabled, placing the low level on the CTSn# pin causes transmission to start.

Applying the high level to the CTS# pin while transmission is in progress does not affect transmission of the current frame, which continues.

In the RTS function, by using the function of output on the RTSn# pin, a low level is output when reception becomes possible. Conditions for output of the low and high level are shown below.

[Conditions for low-level output]

When the following conditions are all satisfied

- The SCR.RE bit is 1
- Reception is not in progress
- There are no received data yet to be read
- The ORER, FER, and PER flags in the SSR are all 0

[Condition for high-level output]

When the conditions for low-level output are not satisfied

Note that either one of CTS and RTS can be selected.

27.3.6 SCI Initialization (Asynchronous Mode)

Before transmitting and receiving data, start by writing the initial value 00h to the SCR register and then continue through the procedure for SCI given in Figure 27.8. Whenever the operating mode or transfer format is changed, the SCR register must be initialized before the change is made.

When the external clock is used in asynchronous mode, ensure that the clock signal is supplied even during initialization. Note that setting the SCR.RE bit to 0 initializes neither the ORER, FER, PER, and RDRF flags in the SSR register nor registers RDR, RDRH, and RDRL.

Moreover, note that changing the value of the SCR.TE bit from 1 to 0 or 0 to 1 while the SCR.TIE bit is 1 leads to the generation of a transmit data empty interrupt (TXI) request.

In addition, note that setting bits TIE, TE, and TEIE in the SCR register to 1 simultaneously leads to the generation of a transmit end interrupt (TEI) request before the generation of a TXI interrupt request.

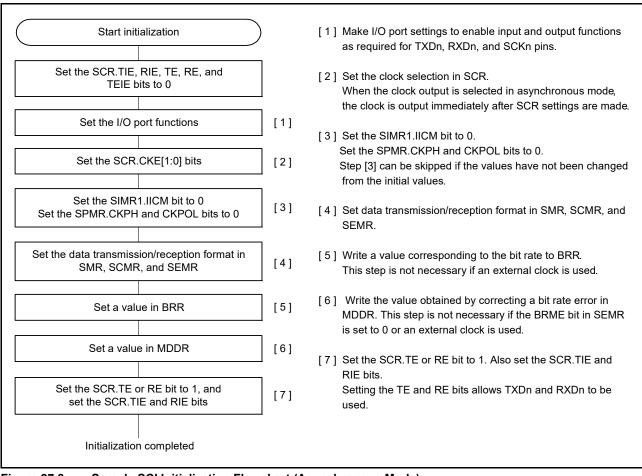


Figure 27.8 Sample SCI Initialization Flowchart (Asynchronous Mode)

27.3.7 Serial Data Transmission (Asynchronous Mode)

Figure 27.9 to Figure 27.11 show an example of the operation for serial transmission in asynchronous mode. In serial transmission, the SCI operates as described below.

- 1. The SCI transfers data from the TDR register*1 to the TSR register when data is written to the TDR register*1 in the TXI interrupt handling routine. The TXI interrupt request at the beginning of transmission is generated when the SCR.TE bit is set to 1 after the SCR.TIE bit is set to 1 or when these 2 bits are set to 1 simultaneously by a single instruction.
- 2. Transmission starts after the SPMR.CTSE bit is set to 0 (CTS function is disabled) and a low level on the CTSn# pin causes data transfer from the TDR register*¹ to the TSR register. If the SCR.TIE bit is 1 at this time, a TXI interrupt request is generated. Continuous transmission is obtainable by writing the next transmit data to the TDR register*¹ in the TXI interrupt handling routine before transmission of the current transmit data is completed. When TEI interrupt requests are in use, set the SCR.TIE bit to 0 (a TXI interrupt request is disabled) and the SCR.TEIE bit to 1 (a TEI interrupt request is enabled) after the last of the data to be transmitted are written to the TDR register*¹, *² from the handling routine for TXI requests.
- 3. Data is sent from the TXDn pin in the following order: start bit, transmit data, parity bit or multi-processor bit (may be omitted depending on the format), and stop bit.
- 4. The SCI checks for updating of (writing to) the TDR register*3 at the time of stop bit output.
- 5. When the TDR register*3 is updated, setting of the SPMR.CTSE bit to 0 (CTS function is disabled) or a low level input on the CTSn# pin cause the next transfer of the next transmit data from the TDR register*1 to the TSR register and sending of the stop bit, after which serial transmission of the next frame starts.
- 6. If the TDR register*3 is not updated, the SSR.TEND flag is set to 1, the stop bit is sent, and then the mark state is entered in which 1 is output. If the SCR.TEIE bit is 1 at this time, the SSR.TEND flag is set to 1 and a TEI interrupt request is generated.
- Note 1. Write data not to the TDR register but to the TDRH and TDRL registers when 9-bit data length is selected.
- Note 2. Write data in the order from the TDRH register to the TDRL register when 9-bit data length is selected.
- Note 3. The SCI checks for updating of the TDRL register only and does not check for updating of the TDRH register when 9-bit data length is selected.

Figure 27.12 shows a sample flowchart for serial transmission in asynchronous mode.

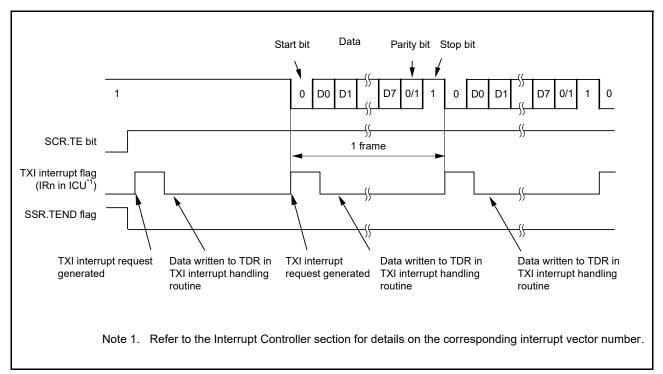


Figure 27.9 Example of Operation for Serial Transmission in Asynchronous Mode (1)
(with 8-Bit Data, Parity, 1 Stop Bit, CTS Function Not Used, at the Beginning of Transmission)

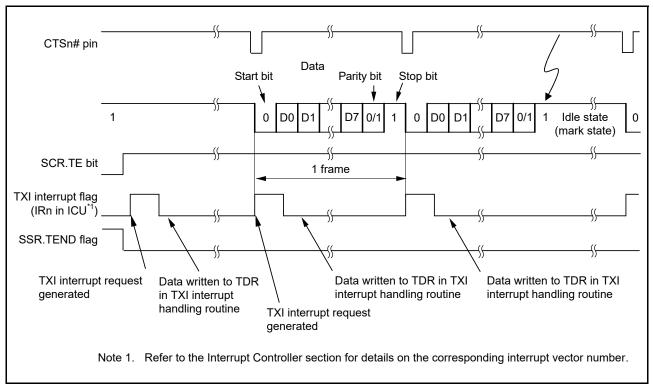


Figure 27.10 Example of Operation for Serial Transmission in Asynchronous Mode (2) (with 8-Bit Data, Parity, 1 Stop Bit, CTS Function Used, at the Beginning of Transmission)

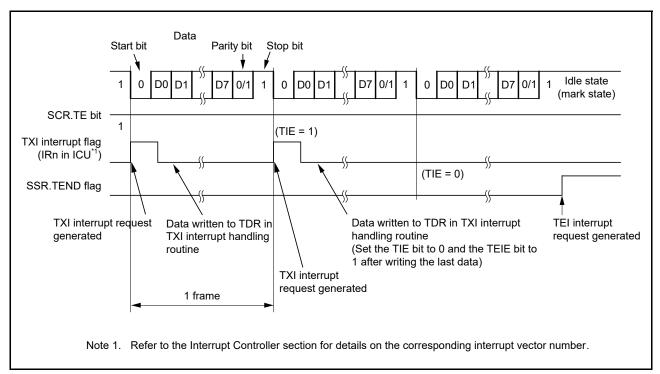


Figure 27.11 Example of Operation for Serial Transmission in Asynchronous Mode (3)
(with 8-Bit Data, Parity, 1 Stop Bit, CTS Function Not Used, from the Middle of Transmission until Transmission Completion)

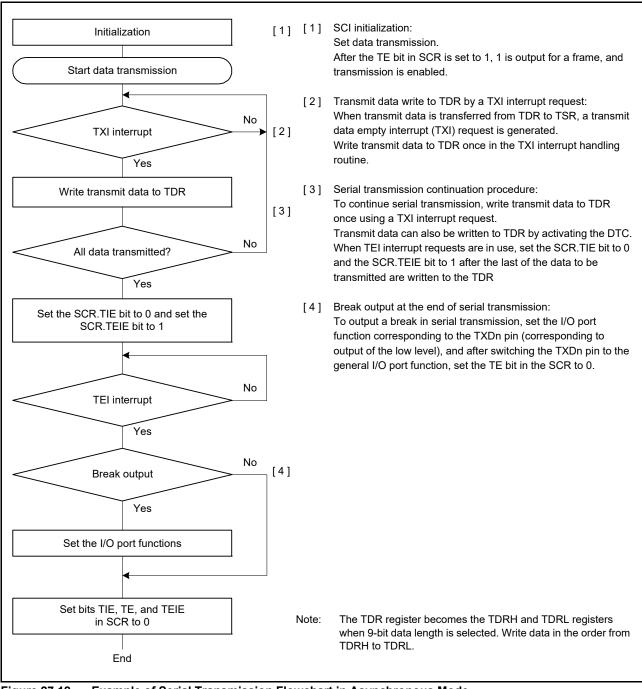


Figure 27.12 Example of Serial Transmission Flowchart in Asynchronous Mode

27.3.8 Serial Data Reception (Asynchronous Mode)

Figure 27.13 and Figure 27.14 show an example of the operation for serial data reception in asynchronous mode. In serial data reception, the SCI operates as described below.

- 1. When the value of the SCR.RE bit becomes 1, the output signal on the RTSn# pin goes to the low level.
- 2. When the SCI monitors the communications line and detects a start bit, it performs internal synchronization, stores receive data in the RSR register, and checks the parity bit and stop bit.
- 3. If an overrun error occurs, the SSR.ORER flag is set to 1. If the SCR.RIE bit is 1 at this time, an ERI interrupt request is generated. Receive data is not transferred to the RDR register*1.
- 4. If a parity error is detected, the SSR.PER flag is set to 1 and receive data is transferred to the RDR register*1. If the SCR.RIE bit is 1 at this time, an ERI interrupt request is generated.
- 5. If a framing error (when the stop bit is 0) is detected, the SSR.FER flag is set to 1 and receive data is transferred to the RDR register*1. If the SCR.RIE bit is 1 at this time, an ERI interrupt request is generated.
- 6. When reception finishes successfully, receive data is transferred to the RDR register*1. If the SCR.RIE bit is 1 at this time, an RXI interrupt request is generated. Continuous reception is enabled by reading the receive data transferred to the RDR register*1 in this RXI interrupt handling routine before reception of the next receive data is completed. Reading the received data that have been transferred to the RDR register*1 causes the RTSn# pin to output the low level.
- Note 1. Read data not in the RDR register but in the RDRH and RDRL registers when 9-bit data length is selected.
- Note 2. The SCI checks for reading of the RDRL register only and does not check for reading of the RDRH register when 9-bit data length is selected.

Figure 27.13 Example of SCI Operation for Serial Reception in Asynchronous Mode (1) (When RTS Function is Not Used) (Example with 8-Bit Data, Parity, 1 Stop Bit)

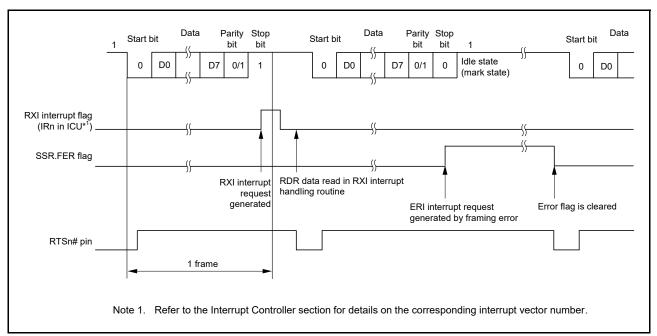


Figure 27.14 Example of SCI Operation for Serial Reception in Asynchronous Mode (2) (When RTS Function is Used) (Example with 8-Bit Data, Parity, 1 Stop Bit)

Table 27.28 lists the states of the flags in the SSR status register and receive data handling when a receive error is detected.

If a receive error is detected, an ERI interrupt request is generated but an RXI interrupt request is not generated. Data reception cannot be resumed while the receive error flag is 1. Accordingly, set the ORER, FER, and PER flags to 0 before resuming reception. Moreover, be sure to read the RDR (or the RDRL) during overrun error processing. When a reception is forcibly terminated by setting the SCR.RE bit to 0 during operation, read the RDR (or the RDRL) register because received data which has not yet been read may be left in RDR (or the RDRL).

Figure 27.15 and Figure 27.16 show samples of flowcharts for serial data reception.

Table 27.28 Flags in the SSR Status Register and Receive Data Handling

Flags in the SSR Status Register				
ORER	FER	PER	Receive Data	Receive Error Type
1	0	0	Lost	Overrun error
0	1	0	Transferred to RDR*1	Framing error
0	0	1	Transferred to RDR*1	Parity error
1	1	0	Lost	Overrun error + framing error
1	0	1	Lost	Overrun error + parity error
0	1	1	Transferred to RDR*1	Framing error + parity error
1	1	1	Lost	Overrun error + framing error + parity error

Note 1. Read data not in RDR but in the RDRH and RDRL registers when 9-bit data length is selected.

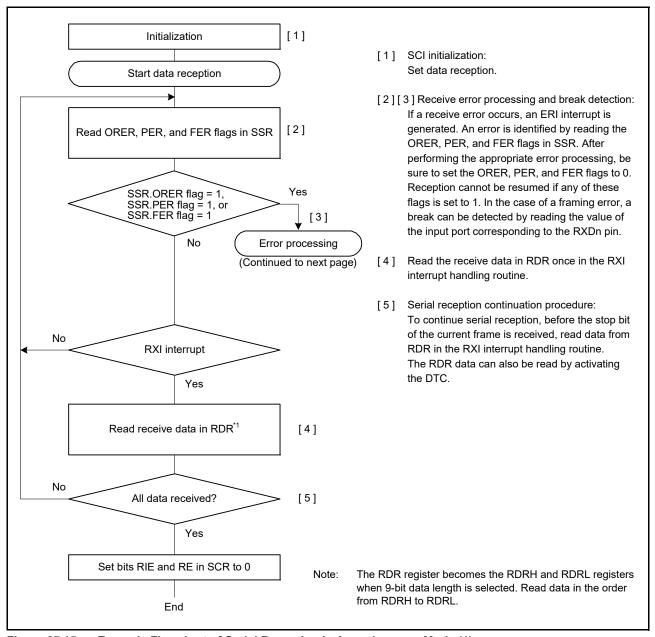


Figure 27.15 Example Flowchart of Serial Reception in Asynchronous Mode (1)

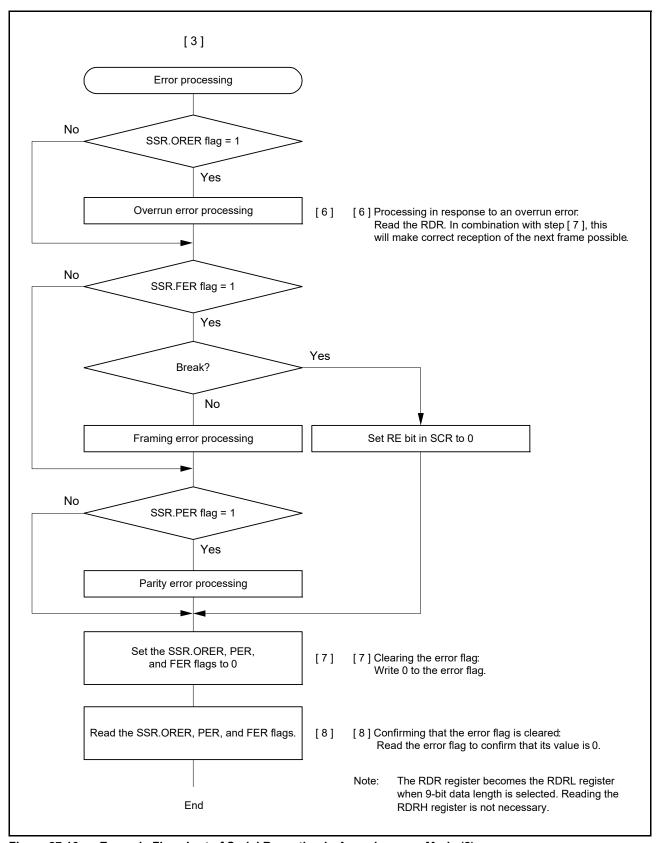


Figure 27.16 Example Flowchart of Serial Reception in Asynchronous Mode (2)

27.4 Multi-Processor Communications Function

Using the multi-processor communication functions enables to transmit and receive data by sharing a communication line between multiple processors by using asynchronous serial communication in which the multi-processor bit is added. In multi-processor communication, a unique ID code is allocated to each receiving station. Serial communication cycles consist of an ID transmission cycle to specify the receiving station and a data transmission cycle to transmit data to the specified receiving station. The multi-processor bit is used to distinguish between the ID transmission cycle and the data transmission cycle. When the multi-processor bit is set to 1, it indicates the ID transmission cycle and when the multiprocessor bit is set to 0, it indicates the data transmission cycle. Figure 27.17 shows an example of communication between processors by using a multi-processor format. First, a transmitting station transmits communication data in which the multi-processor bit set to 1 is added to the ID code of the receiving station. Next, the transmitting station transmits the communication data in which the multi-processor bit set to 0 is added to the transmit data. Upon receiving the communication data in which the multi-processor bit is set to 1, the receiving station compares the received ID with the ID of the receiving station itself and if the two match, receives the communication data that is subsequently transmitted. If the received ID does not match with the ID of the receiving station, the receiving station skips the communication data until again receiving the communication data in which the multi-processor bit is set to 1. For supporting this function, the SCI provides the SCR.MPIE bit. When the MPIE bit is set to 1, transfer of receive data from the RSR register to the RDR register (the RDRH and RDRL registers when 9-bit data length is selected), detection of a receive error, and setting the respective status flags RDRF, ORER, and FER in the SSR register are disabled until reception of data in which the multi-processor bit is set to 1. Upon receiving a reception character in which the multiprocessor bit is set to 1, the SSR.MPB bit is set to 1 and the SCR.MPIE bit is automatically cleared, thus returning to a normal reception operation. During this time, an RXI interrupt is generated if the SCR.RIE bit is 1. When the multi-processor format is specified, specification of the parity bit is disabled. Apart from this, there is no difference from the operation in the normal asynchronous mode. A clock which is used for the multi-processor communication is also the same as the clock used in the normal asynchronous mode.

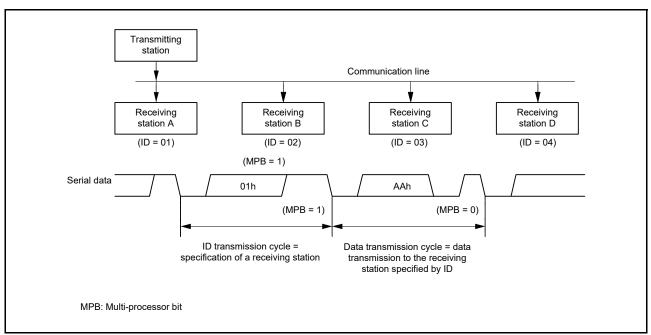


Figure 27.17 An Example of Communication using the Multi-Processor Format (Example of Transmission of Data AAh to Receiving Station A)

27.4.1 Multi-Processor Serial Data Transmission

Figure 27.18 is a sample flowchart of multi-processor data transmission. In the ID transmission cycle, the ID should be transmitted with the SSR.MPBT bit set to 1. In the data transmission cycle, the data should be transmitted with the MPBT bit set to 0. The other operations are the same as the operations in asynchronous mode.

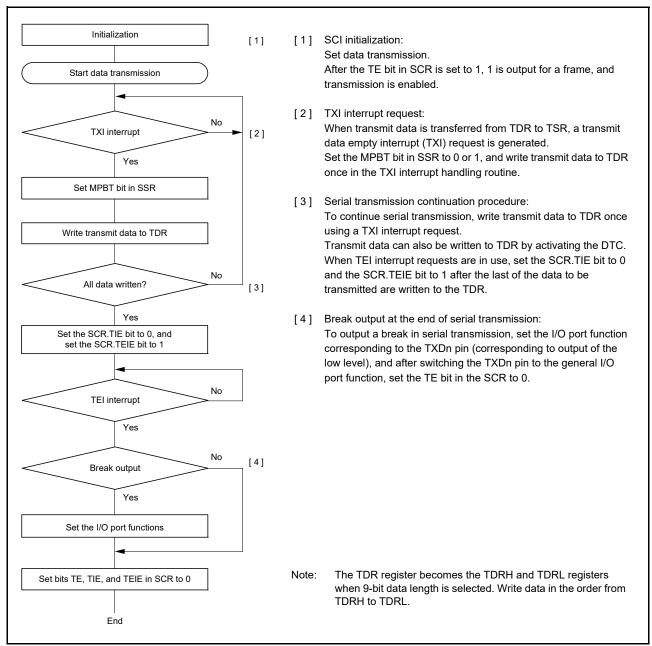


Figure 27.18 Example of Multi-Processor Serial Transmission Flowchart

27.4.2 Multi-Processor Serial Data Reception

Figure 27.20 and Figure 27.21 are sample flowcharts of multi-processor data reception. When the SCR.MPIE bit is set to 1, reading the communication data is skipped until reception of the communication data in which the multi-processor bit is set to 1. When the communication data in which the multi-processor bit is set to 1 is received, the received data is transferred to RDR (the RDRH and RDRL registers when 9-bit data length is selected). During this time, the RXI interrupt request is generated. The other operations are the same as the operations in asynchronous mode. Figure 27.19 is the example of operation for reception.

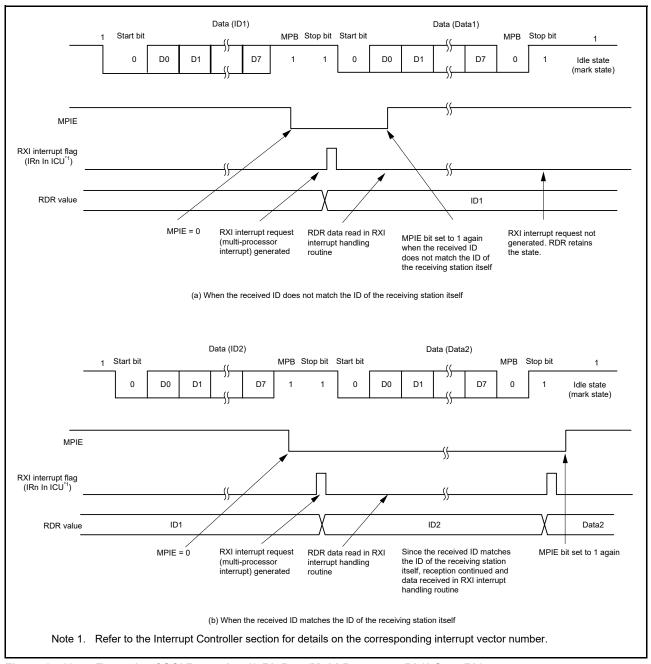


Figure 27.19 Example of SCI Reception (8-Bit Data/Multi-Processor Bit/1 Stop Bit)

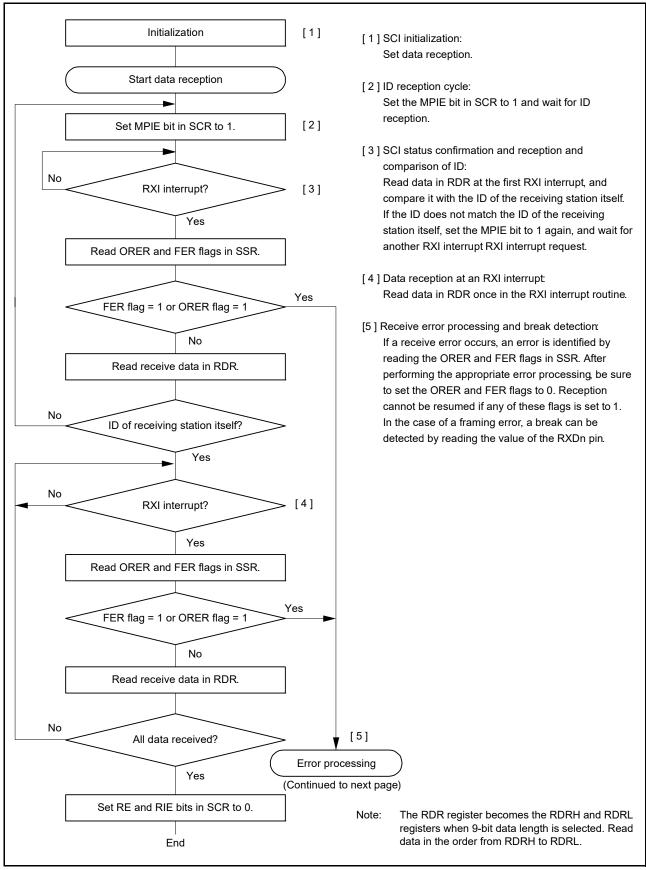


Figure 27.20 Example of Multi-Processor Serial Reception Flowchart (1)

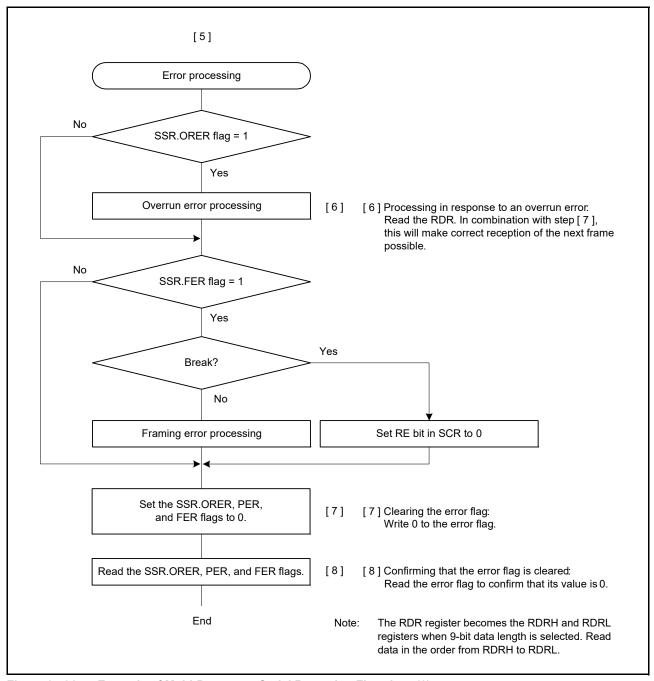


Figure 27.21 Example of Multi-Processor Serial Reception Flowchart (2)

27.5 Operation in Clock Synchronous Mode

Figure 27.22 shows the data format for clock synchronous serial data communications.

In clock synchronous mode, data is transmitted or received in synchronization with clock pulses. One character in transfer data consists of 8-bit data. In clock synchronous mode, no parity bit can be added.

In data transmission, the SCI outputs data from one falling edge of the synchronization clock to the next. In data reception, the SCI receives data in synchronization with the rising edge of the synchronization clock. After 8-bit data is output, the communication line holds the last bit output state.

Inside the SCI, the transmitter and receiver are independent units, enabling full-duplex communications by use of a common clock. Both the transmitter and the receiver also have a double-buffered structure, so that the next transmit data can be written during transmission or the previous receive data can be read during reception, enabling continuous data transfer.

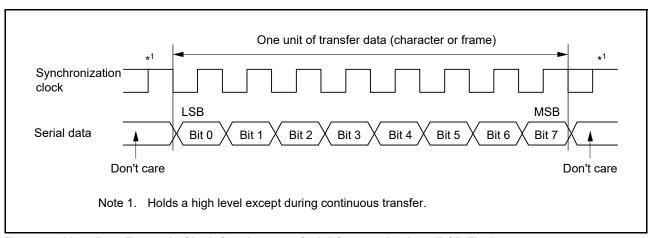


Figure 27.22 Data Format in Clock Synchronous Serial Communications (LSB First)

27.5.1 Clock

Either an internal clock generated by the on-chip baud rate generator or an external synchronization clock input at the SCKn pin can be selected, according to the setting of the SCR.CKE[1:0] bits.

When the SCI is operated on an internal clock, the synchronization clock is output from the SCKn pin. Eight synchronization clock pulses are output in the transfer of one character, and when no transfer is performed the clock is held high. However, when only data reception is performed while the CTS function is disabled, the synchronization clock output is started at the same time when the SCR.RE bit set to 1. The synchronization clock is stopped at the high level when an overrun error occurs or the SCR.RE bit is set to 0.

When only data reception is performed and the CTS function is enabled, the clock output is not started even when the SCR.RE bit set to 1 if the CTSn# pin input is high when the SCR.RE bit is 0. The synchronization clock output is started when the SCR.RE bit is set to 1 and the CTSn# pin input is low. After that, if the CTSn# pin input is high on completion of the frame reception, the synchronization clock output is stopped at the high level. If the CTSn# pin input continues to be low, the synchronization clock is stopped at the high level when an overrun error occurs or the SCR.RE bit is set to 0.

27.5.2 CTS and RTS Functions

In the CTS function, CTSn# pin input is used to control reception/transmission start when the clock source is the internal clock. Setting the SPMR.CTSE bit to 1 enables the CTS function.

When the CTS function is enabled, placing the low level on the CTSn# pin causes reception/transmission to start. Applying the high level to the CTS# pin while reception/transmission are in progress does not affect reception/transmission of the current frame, which continues.

In the RTS function, RTSn# pin output is used to request reception/transmission start when the clock source is an external synchronizing clock. A low level is output when serial communications become possible. Conditions for output of the low and high level are shown below.

[Conditions for low-level output]

When the following conditions are all satisfied

- The SCR.RE or SCR.TE bit is 1
- Transmission or reception of data is not in progress
- There are no received data yet to be read (when the SCR.RE bit is 1)
- Transmit data has been written (when the SCR.TE bit is 1)
- The SSR.ORER flag is 0

[Condition for high-level output]

The conditions for low-level output have not been satisfied.

27.5.3 SCI Initialization (Clock Synchronous Mode)

Before transmitting and receiving data, start by writing the initial value 00h to the SCR register and then continue through the procedure for SCI given in Figure 27.23. Whenever the operating mode or transfer format is changed, the SCR register must be initialized before the change is made.

Note that setting the SCR.RE bit to 0 initializes neither the ORER, FER, and PER flags in the SSR register nor the RDR register.

Moreover, note that switching the value of the SCR.TE bit from 1 to 0 or 0 to 1 while the SCR.TIE bit is 1 leads to the generation of a TXI interrupt request.

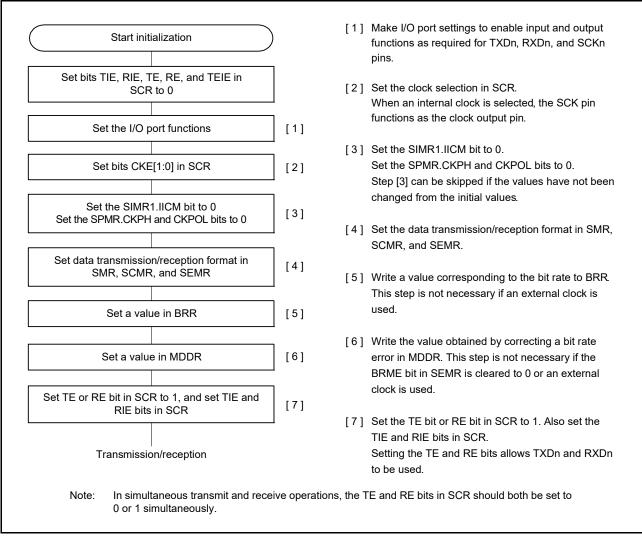
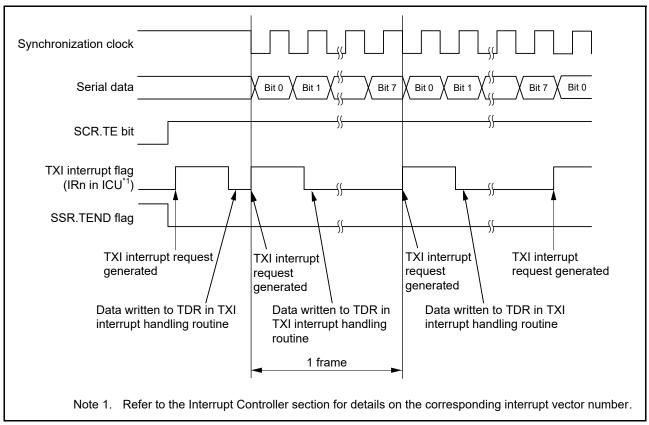


Figure 27.23 Example of SCI Initialization Flowchart (Clock Synchronous Mode)

27.5.4 Serial Data Transmission (Clock Synchronous Mode)


Figure 27.23, Figure 27.24, and Figure 27.25 show an example of the operation for serial transmission in clock synchronous mode.

In serial data transmission, the SCI operates as described below.

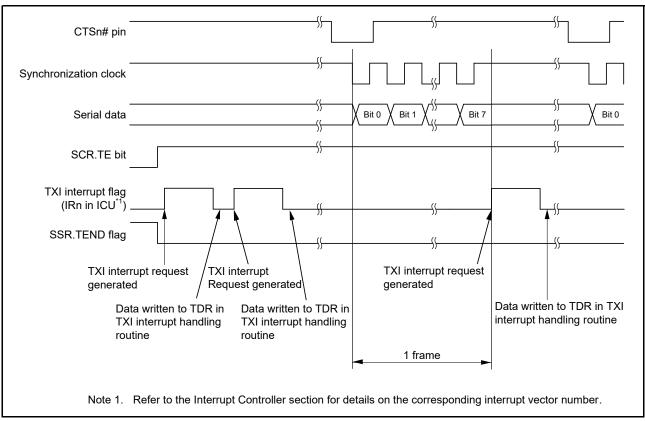

- 1. The SCI transfers data from TDR to TSR when data is written to TDR in the TXI interrupt handling routine. The TXI interrupt request at the beginning of transmission is generated when the TE bit in the SCR register is set to 1 after the TIE bit in the SCR register is set to 1 or when these 2 bits are set to 1 simultaneously by a single instruction.
- 2. After transferring data from the TDR register to the TSR register, the SCI starts transmission. When the SCR.TIE bit is set to 1 at this time, a TXI interrupt request is generated. Continuous transmission is enabled by writing the next transmit data to the TDR register in this TXI interrupt handling routine before transmission of the current transmit data has finished. When TEI interrupt requests are in use, set the SCR.TIE bit to 0 (a TXI interrupt request is disabled) and the SCR.TEIE bit to 1 (a TEI interrupt request is enabled) after the last of the data to be transmitted are written to the TDR register from the handling routine for TXI requests.
- 3. 8-bit data is sent from the TXDn pin in synchronization with the output clock when clock output mode has been specified and in synchronization with the input clock when use of an external clock has been specified. Output of the clock signal is suspended until the input CTS signal is at the low level while the CTSE bit in the SPMR register is 1 (CTS function is enabled).
- 4. The SCI checks for updating of (writing to) the TDR register at the time of the last bit output.
- 5. When TDR is updated, the next transmit data is transferred from the TDR register to the TSR register, and serial transmission of the next frame is started.
- 6. If the TDR register is not updated, set the SSR.TEND flag to 1 and the TXDn pin retains the output state of the last bit. If the TEIE bit in the SCR register is 1 at this time, a TEI interrupt request is generated. The SCKn pin is held high.

Figure 27.27 shows a sample flowchart of serial data transmission.

Transmission will not start while a receive error flag (ORER, FER, or PER in the SSR register) is set to 1. Be sure to set the receive error flags to 0 before starting transmission. Note that setting the RE bit in the SCR register to 0 does not clear the receive error flags.

Figure 27.24 Example of Serial Data Transmission in Clock Synchronous Mode When the CTS Function is Not Used at the Beginning of Transmission

Figure 27.25 Example of Serial Data Transmission in Clock Synchronous Mode When the CTS Function is Used at the Beginning of Transmission

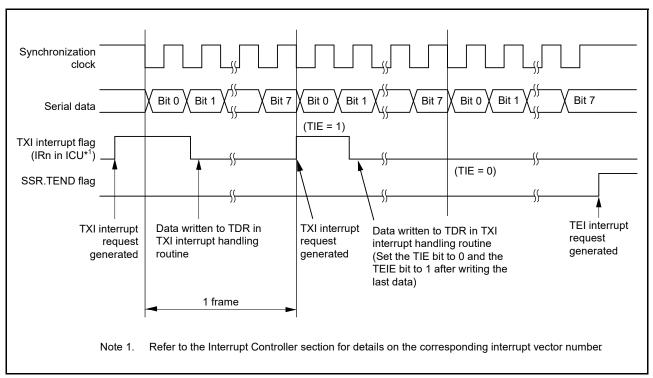
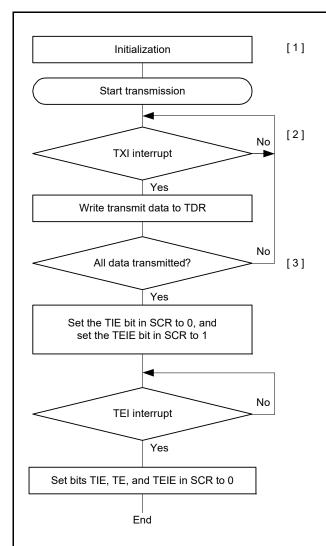



Figure 27.26 Example of Serial Data Transmission in Clock Synchronous Mode from the Middle of Transmission until Transmission Completion

- [1] SCI initialization: Set data transmission.
- [2] Writing transmit data write to TDR by a TXI interrupt request:

When transmit data is transferred from TDR to TSR, a transmit data empty interrupt (TXI) request is generated.

Transmit data is written to TDR once from the handling routine for TXI requests.

[3] Serial transmission continuation procedure:
To continue serial transmission, write transmit data to
TDR upon accepting a transmit data empty interrupt
(TXI) request. Transmit data can also be written to TDR
by activating the DTC by the TXI interrupt request.
When TEI interrupt requests are in use, set the
SCR.TIE bit to 0 and the SCR.TEIE bit to 1 after the last
of the data to be transmitted are written to the TDR.

Note: When the external clock is in use (the value of the SCR.CKE[1:0] bits is 10b or 11b), the rising edge on the SCK pin for the last bit sets the SSR.TEND flag to 1. Setting the SCR.TE bit to 0 immediately after this may lead to insufficient received-data hold time on the receiver side.

Figure 27.27 Example Flowchart of Serial Transmission in Clock Synchronous Mode

27.5.5 Serial Data Reception (Clock Synchronous Mode)

Figure 27.28 and Figure 27.29 show an example of SCI operation for serial reception in clock synchronous mode. In serial data reception, the SCI operates as described below.

- 1. The value of the RE bit in the SCR register becoming 1 places the signal output on the RTSn# pin at the low level (when the RTS function is in use).
- 2. The SCI performs internal initialization and starts receiving data in synchronization with a synchronization clock input or output, and stores the receive data in the RSR register.
- 3. If an overrun error occurs, the ORER flag in the SSR register is set to 1. If the RIE bit in the SCR register is 1 at this time, an ERI interrupt request is generated. Receive data is not transferred to the RDR register.
- 4. When reception finishes successfully, receive data is transferred to the RDR register. If the RIE bit in the SCR register is 1 at this time, an RXI interrupt request is generated. Continuous reception is enabled by reading the receive data transferred to the RDR register in this RXI interrupt handling routine before reception of the next receive data is completed. Reading out the received data that have been transferred to the RDR register causes the RTSn# pin to output the low level (when the RTS function is in use).

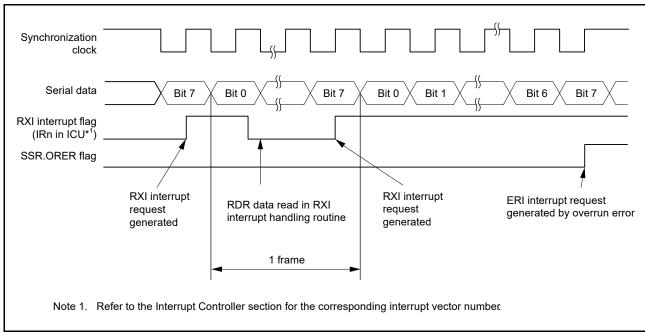


Figure 27.28 Example of Operation for Serial Reception in Clock Synchronous Mode (1) (When RTS Function is Not Used)

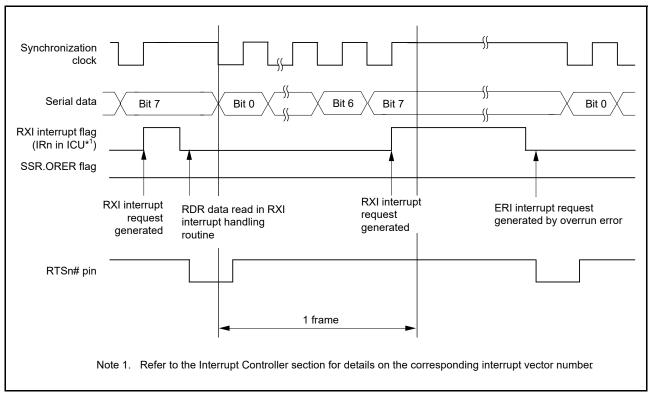


Figure 27.29 Example of Operation for Serial Reception in Clock Synchronous Mode (2) (When RTS Function is Used)

Data transfer cannot be resumed while a receive error flag is 1. Accordingly, clear the ORER, FER, and PER flags in the SSR register to 0 before resuming reception. Moreover, be sure to read the RDR register during overrun error processing. When a reception is forcibly terminated by setting the SCR.RE bit to 0 during operation, read the RDR register because received data which has not yet been read may be left in the RDR register.

Figure 27.30 shows a sample flowchart for serial data reception.

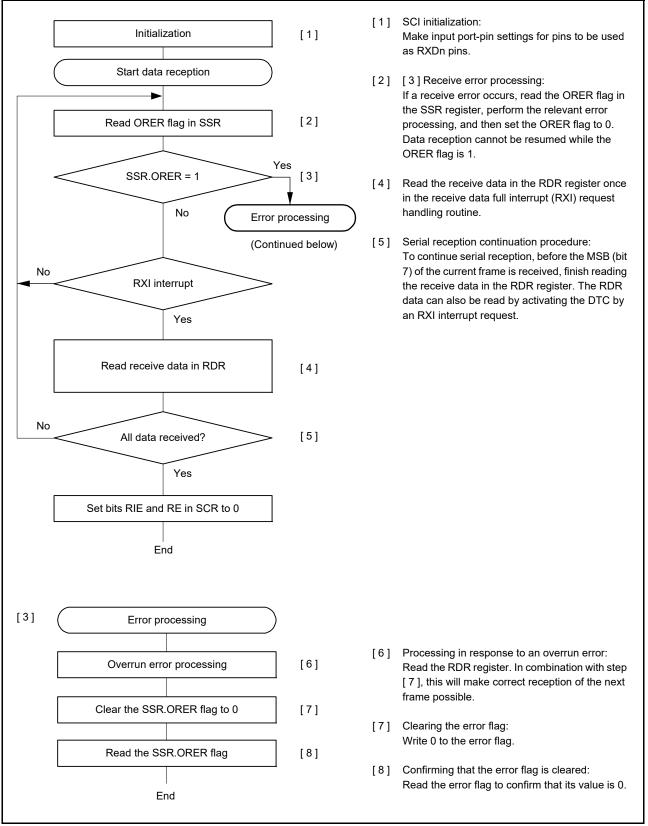


Figure 27.30 Example Flowchart of Serial Reception in Clock Synchronous Mode

27.5.6 Simultaneous Serial Data Transmission and Reception (Clock Synchronous Mode)

Figure 27.31 shows a sample flowchart for simultaneous serial transmit and receive operations in clock synchronous mode.

After initializing the SCI, the following procedure should be used for simultaneous serial data transmit and receive operations.

To switch from transmit mode to simultaneous transmit and receive mode, check that the SCI has finished transmission by reading that the TEND flag in the SSR register is 1, and then initialize the SCR register. Then set the TIE, RIE, TE, and RE bits in the SCR register to 1 simultaneously by a single instruction.

To switch from receive mode to simultaneous transmit and receive mode, check that the SCI has finished reception, and then set the RIE and RE bits to 0. Then check that the receive error flags (ORER, FER, and PER in the SSR register) are 0, and then set the TIE, RIE, TE, and RE bits in the SCR register to 1 simultaneously by a single instruction.

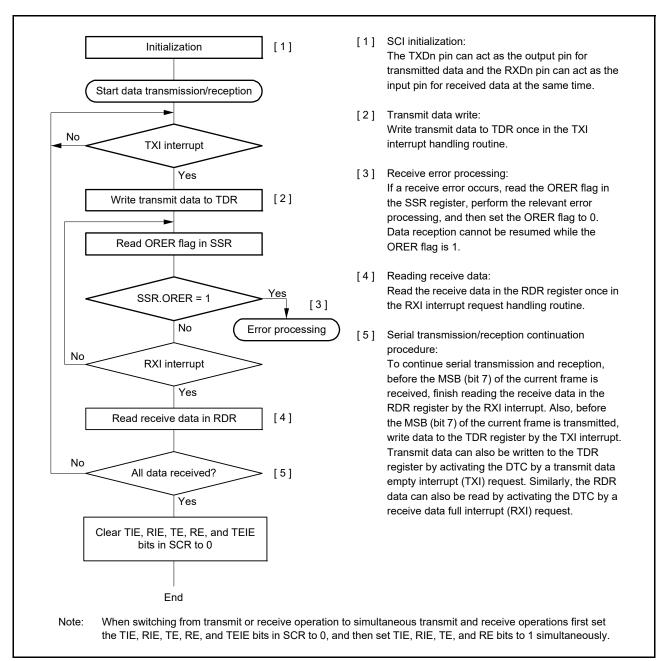


Figure 27.31 Example Flowchart of Simultaneous Serial Transmission and Reception in Clock Synchronous Mode

27.6 Operation in Smart Card Interface Mode

The SCI supports smart card (IC card) interfaces conforming to ISO/IEC 7816-3 (standard for Identification Cards), as an extended function of the SCI.

Smart card interface mode can be selected using the appropriate register.

27.6.1 Sample Connection

Figure 27.32 shows a sample connection between a smart card (IC card) and this MCU.

As in the figure, since this MCU communicates with an IC card using a single transmission line, interconnect the TXDn and RXDn pins and pull up the data transmission line to VCC using a resistor.

Setting the TE and RE bits in the SCR register to 1 with an IC card disconnected enables closed transmission/reception allowing self-diagnosis.

To supply an IC card with the clock pulses generated by the SCI, input the SCKn pin output to the CLK pin of an IC card. The output port of the this MCU can be used to output a reset signal.

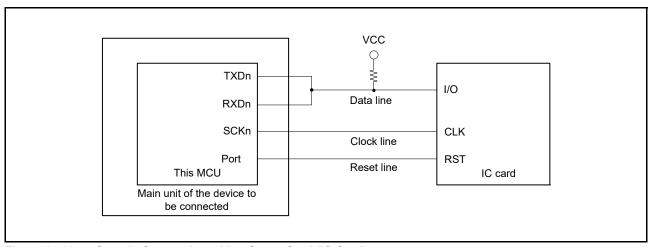


Figure 27.32 Sample Connection with a Smart Card (IC Card)

27.6.2 Data Format (Except in Block Transfer Mode)

Figure 27.33 shows the data transfer formats in smart card interface mode.

- One frame consists of 8-bit data and a parity bit in asynchronous mode.
- During transmission, at least 2 etu (elementary time unit: time required for transferring 1 bit) is secured as a guard time from the end of the parity bit until the start of the next frame.
- If a parity error is detected during reception, a low-level error signal is output for 1 etu after 10.5 etu has passed from the start bit.
- If an error signal is sampled during transmission, the same data is automatically retransmitted after at least 2 etu.

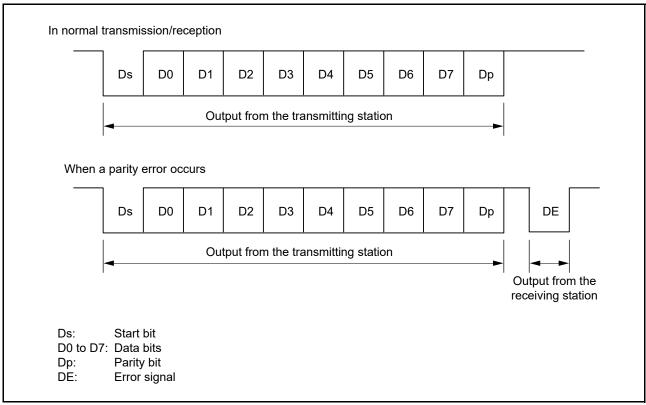


Figure 27.33 Data Formats in Smart Card Interface Mode

For communications with IC cards of the direct convention type and inverse convention type, follow the procedure below.

(1) Direct Convention Type

For the direct convention type, logic levels 1 and 0 correspond to states Z and A, respectively, and data is transferred with LSB first as the start character, as shown in Figure 27.34. Therefore, data in the start character in the figure is 3Bh. When using the direct convention type, write 0 to both the SDIR and SINV bits in the SCMR register. Write 0 to the PM bit in the SMR register in order to use even parity, which is prescribed by the smart card standard.

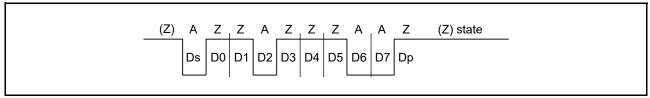


Figure 27.34 Direct Convention (SDIR in SCMR = 0, SINV in SCMR = 0, PM in SMR = 0)

(2) Inverse Convention Type

For the inverse convention type, logic levels 1 and 0 correspond to states A and Z, respectively and data is transferred with MSB first as the start character, as shown in Figure 27.35. Therefore, data in the start character in the figure is 3Fh. When using the inverse convention type, write 1 to both the SDIR and SINV bits in the SCMR register. The parity bit is logic level 0 to produce even parity, which is prescribed by the smart card standard, and corresponds to state Z. Since the SINV bit of the this MCU only inverts data bits D7 to D0, write 1 to the PM bit in the SMR register to invert the parity bit for both transmission and reception.

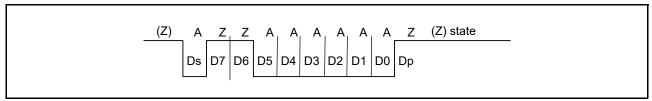


Figure 27.35 Inverse Convention (SDIR in SCMR = 1, SINV in SCMR = 1, PM in SMR = 1)

27.6.3 Block Transfer Mode

Block transfer mode is different from non-block transfer mode in the following respects.

- Even if a parity error is detected during reception, no error signal is output. Since the PER bit in the SSR register is set by error detection, clear the PER bit before receiving the parity bit of the next frame.
- During transmission, at least 1 etu is secured as a guard time from the end of the parity bit until the start of the next frame.
- Since the same data is not retransmitted during transmission, the TEND flag in the SSR register is set 11.5 etu after transmission start.
- In block transfer mode, the ERS flag in the SSR register indicates the error signal status as in non-block transfer mode, but the flag is read as 0 because no error signal is transferred.

27.6.4 Receive Data Sampling Timing and Reception Margin

Only the base clock generated by the on-chip baud rate generator can be used as a transmit/receive clock in smart card interface mode.

In this mode, the SCI can operate on a base clock with a frequency of 32, 64, 372, 256, 93, 128, 186, or 512 times the bit rate according to the settings of the SCMR.BCP2 bit and the SMR.BCP[1:0] bits.

For data reception, the falling edge of the start bit is sampled with the base clock to perform synchronization. Receive data is sampled on the 16th, 32nd, 186th, 128th, 46th, 64th, 93rd, and 256th rising edges of the base clock so that it can be latched at the middle of each bit as shown in Figure 27.36. The reception margin here is determined by the following formula.

$$M = \left| \left(0.5 - \frac{1}{2N} \right) - (L - 0.5)F - \frac{|D - 0.5|}{N} (1 + F) \right| \times 100 \text{ (\%)}$$

M: Reception margin (%)

N: Ratio of bit rate to clock (N = 32, 64, 372, 256)

D: Duty cycle of clock (D = 0 to 1.0)

L: Frame length (L = 10)

F: Absolute value of clock frequency deviation

Assuming values of F = 0, D = 0.5, and N = 372 in the above formula, the reception margin is determined by the formula below.

$$M = \{0.5 - 1/(2 \times 372)\} \times 100 (\%) = 49.866 (\%)$$

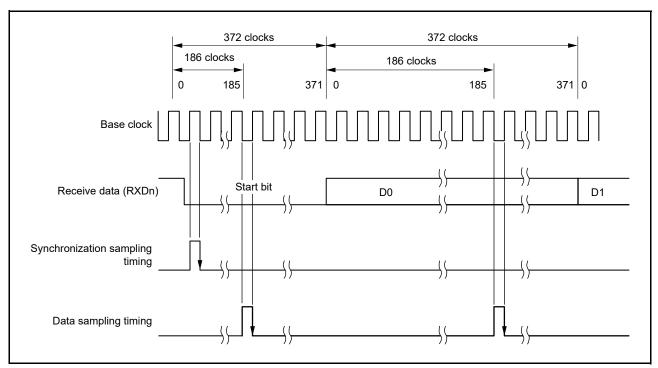


Figure 27.36 Receive Data Sampling Timing in Smart Card Interface Mode (When Clock Frequency is 372 Times the Bit Rate)

27.6.5 SCI Initialization (Smart Card Interface Mode)

Initialize the SCI following the example of flowchart shown in Figure 27.37.

Initialize the SCR and SSR registers before switching from transmit mode to receive mode and vice versa. When not changing the bit rate, it is not necessary to set the CKE[1:0] bits to 00b. Even if the RE bit is set to 0, the RDR register is not initialized.

To change receive mode to transmit mode, first check that reception has completed, and then execute steps [1] and [3] in Figure 27.37. Set TE = 1 and RE = 0 at step [11]. Reception completion can be verified by reading the RXI request, SSR.ORER, or SSR.PER flag.

To change transmit mode to receive mode, first check that transmission has completed, and then execute steps [1] and [3] in Figure 27.37. Set TE = 0 and RE = 1 at step [11]. Transmission completion can be verified by reading the SSR.TEND flag.

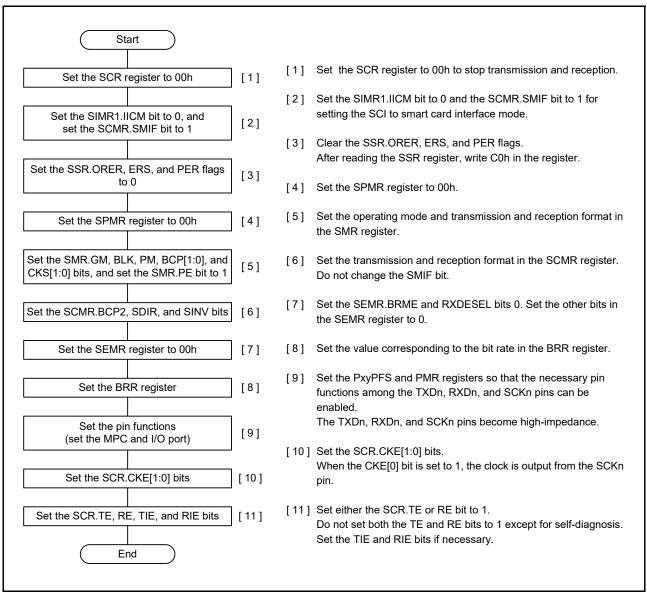


Figure 27.37 Example of SCI Initialization Flowchart (Smart Card Interface Mode)

Figure 27.38 shows an example of data transmission when the SCI is set to smart card interface mode according to the flow described in Figure 27.37 after a reset. When the pin functions are set to the SCK and TXD pins, they are still high-impedance because the CKE[0] bit is 0. When the CKE[0] bit is set to 1, clock is output from the SCK pin. When the transmit data is written after setting the SCR.TE bit to 1, a data transmission starts. After the TE bit is set to 1, one frame of high-impedance is output from TXD pin (internal wait time) and then the data transmission starts. In smart card interface mode, the clock is continuously output while the CKE[0] bit is set to 1 (clock output) even if both the SCR.TE and RE bits are set to 0.

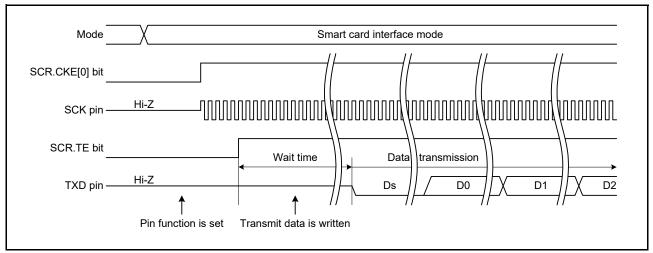


Figure 27.38 Example of Data Transmission Timing in Smart Card Interface Mode

27.6.6 Serial Data Transmission (Except in Block Transfer Mode)

Serial data transmission in smart card interface mode (except in block transfer mode), in that an error signal is sampled and data can be retransmitted, is different from that in non-smart card interface mode. Figure 27.39 shows the data retransmit operation during transmission.

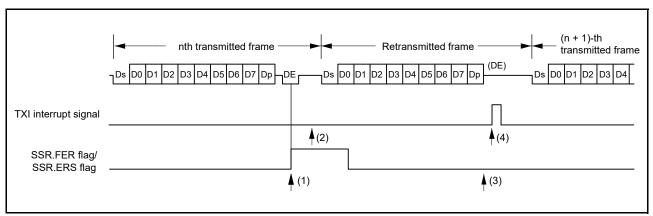


Figure 27.39 Data Retransmit Operation in SCI Transmit Mode

- (1) When an error signal from the receiver end is sampled after one-frame data has been transmitted, the ERS flag in the SSR register is set to 1. If the RIE bit in the SCR register is 1 at this time, an ERI interrupt request is generated. Clear the ERS flag to 0 before the next parity bit is sampled.
- (2) For a frame in which an error signal is received, the TEND flag in the SSR register is not set. Data is retransferred from the TDR register to the TSR register allowing automatic data retransmission.
- (3) If no error signal is returned from the receiver, the ERS flag is not set to 1.
- (4) In this case, the SCI judges that transmission of one-frame data (including retransmission) has been completed, and the TEND flag is set. If the TIE bit in the SCR register is 1 at this time, a TXI interrupt request is generated. Writing transmit data to the TDR register starts transmission of the next data.

Figure 27.40 shows a sample flowchart of serial transmission.

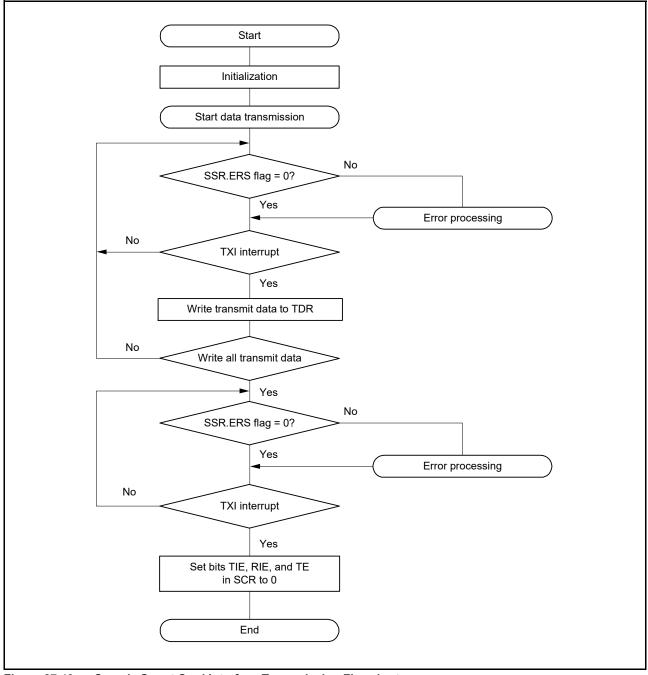


Figure 27.40 Sample Smart Card Interface Transmission Flowchart

All the processing steps are automatically performed using a TXI interrupt request to activate the DTC.

When the TEND flag in the SSR register is set to 1 in transmission, if the TIE bit in the SCR register is 1, a TXI interrupt request is generated. The DTC is activated by a TXI interrupt request if the TXI interrupt request is specified as a source of DTC activation beforehand, allowing transfer of transmit data. The TEND flag is automatically set to 0 when the DTC transfers the data.

If an error occurs, the SCI automatically retransmits the same data. During this retransmission, the TEND flag is kept to 0 and the DTC is not activated. Therefore, the SCI and DTC automatically transmit the specified number of bytes, including retransmission in the case of error occurrence. However, since the ERS flag is not automatically cleared, set the RIE bit to 1 beforehand to enable an ERI interrupt request to be generated at error occurrence, and clear the ERS flag to 0.

When transmitting/receiving data using the DTC, be sure to make settings to enable the DTC before making SCI settings. For DTC settings, refer to section 16, Data Transfer Controller (DTCa).

Note that the SSR.TEND flag is set in different timings depending on the GM bit setting in the SMR register. Figure 27.41 shows the TEND flag generation timing.

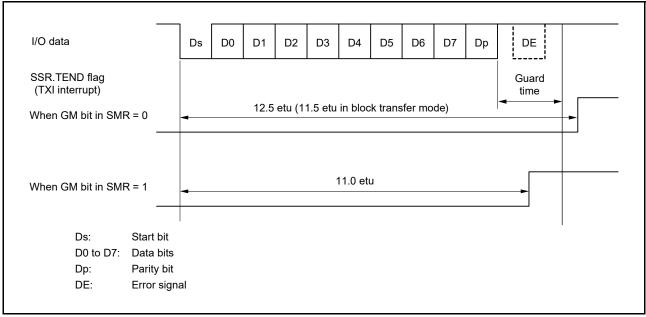


Figure 27.41 SSR.TEND Flag Generation Timing during Transmission

27.6.7 Serial Data Reception (Except in Block Transfer Mode)

Serial data reception in smart card interface mode is similar to that in non-smart card interface mode. Figure 27.42 shows the data retransmit operation in receive mode.

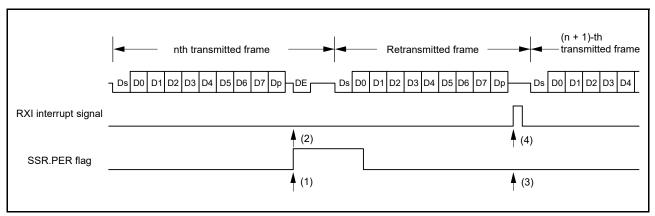


Figure 27.42 Data Retransmit Operation in SCI Receive Mode (Data Retransmit Operation during Reception)

- (1) If a parity error is detected in receive data, the PER flag in the SSR register is set to 1. When the RIE bit in the SCR register is 1 at this time, an ERI interrupt request is generated. Clear the PER flag to 0 before the next parity bit is sampled.
- (2) For a frame in which a parity error is detected, no RXI interrupt is generated.
- (3) When no parity error is detected, the PER flag in the SSR register is not set to 1.
- (4) In this case, data is determined to have been received successfully. When the RIE bit in the SCR register is 1, an RXI interrupt request is generated.

Figure 27.43 shows a sample flowchart for serial data reception.

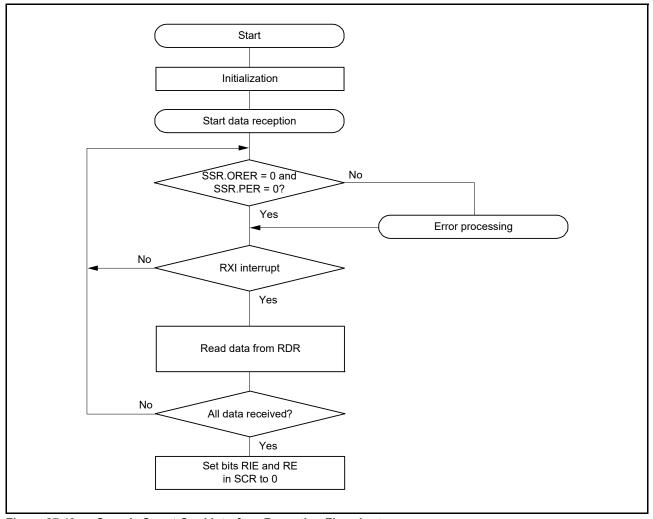


Figure 27.43 Sample Smart Card Interface Reception Flowchart

All the processing steps are automatically performed using an RXI interrupt request to activate the DTC. In reception, setting the RIE bit to 1 allows an RXI interrupt request to be generated. The DTC is activated by an RXI interrupt request if the RXI interrupt request is specified as a source of DTC activation beforehand, allowing transfer of receive data.

If an error occurs during reception and either the ORER or PER flag in the SSR register is set to 1, a receive error interrupt (ERI) request is generated. Clear the error flag after the error occurrence. If an error occurs, the DTC is not activated and receive data is skipped. Therefore, the number of bytes of receive data specified in the DTC is transferred. Even if a parity error occurs and the PER flag is set to 1 during reception, receive data is transferred to RDR, thus allowing the data to be read.

When a reception is forcibly terminated by setting the SCR.RE bit to 0 during operation, read the RDR register because the received data which has not yet been read may be left in RDR.

Note 1. For operations in block transfer mode, refer to section 27.3, Operation in Asynchronous Mode.

27.6.8 Clock Output Control

Clock output can be fixed to high or low using the SCR.CKE[1:0] bits when the SMR.GM bit is 1. When the CKE[1:0] bits are set to 01b (clock output), the base clock is output from the SCK pin. For the settings of the base clock frequency (bit rate), refer to section 27.2.11, Bit Rate Register (BRR). When the CKE[1:0] bits are set to 00b (output fixed low) or 10b (output fixed to high), the SCK pin can be fixed to low or high.

Figure 27.44 shows a timing chart when the clock output is controlled.

If changing the CKE[1:0] bits while the SMR.GM bit is 0 (non-GSM mode), a pulse of unexpected width may output from SCK pin because the result is immediately reflected to the SCK pin.

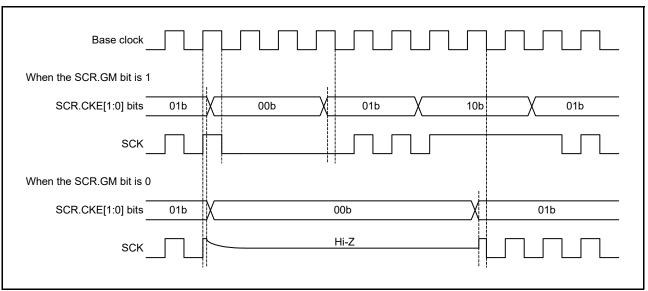


Figure 27.44 Clock Output Control

27.7 Operation in Simple I²C Mode

Simple I²C-bus format is composed of 8 data bits and an acknowledge bit. By continuing into a slave-address frame after a start condition or restart condition, a master device is able to specify a slave device as the partner for communications. The currently specified slave device remains valid until a new slave device is specified or a stop condition is satisfied. The 8 data bits in all frames are transmitted in order from the MSB.

The I²C format and timing of the I²C-bus are shown in Figure 27.45 and Figure 27.46.

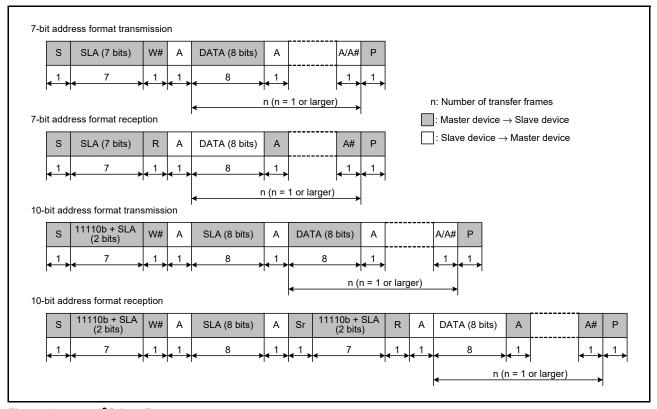


Figure 27.45 I²C-bus Format

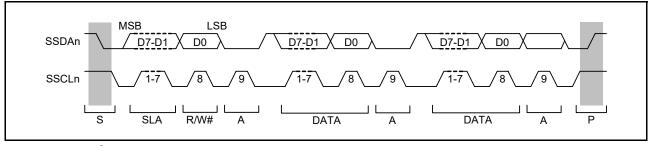


Figure 27.46 I²C-bus Timing (When SLA is 7 Bits)

- S: Indicates a start condition, i.e. the master device changing the level on the SSDAn line from the high to the low level while the SSCLn line is at the high level.
- SLA: Indicates a slave address, by which the master device selects a slave device.
- R/W#: Indicates the direction of transfer (reception or transmission). The value 1 corresponds to transfer from the slave device to the master device and 0 corresponds to transfer from the master device to the slave device.
- A/A#: Indicates an acknowledge bit. This is returned by the slave device for master transmission and by the master device for master reception. Return of the low level indicates ACK and return of the high level indicates NACK.
- Sr: Indicates a restart condition, i.e. the master device changing the level on the SSDAn line from the high to the low level while the SSCLn line is at the high level and after the setup time has elapsed.
- DATA: Indicates the data being received or transmitted.
- P: Indicates a stop condition, i.e. the master device changing the level on the SSDAn line from the low to the high level while the SSCLn line is at the high level.

27.7.1 Generation of Start, Restart, and Stop Conditions

Writing 1 to the IICSTAREQ bit in the SIMR3 register causes the generation of a start condition. The generation of a start condition proceeds through the following operations.

- The level on the SSDAn line falls (from the high level to the low level) and the SSCLn line is kept in the released state.
- The hold time for the start condition is secured as half of a bit period at the bit rate determined by the setting of the BRR.
- The level on the SSCLn line falls (from the high level to the low level), the IICSTAREQ bit in the SIMR3 register is set (to 0), and a start-condition generated interrupt is output.

Writing 1 to the IICRSTAREQ bit in the SIMR3 register causes the generation of a start condition. The generation of a start condition proceeds through the following operations.

- The SSDAn line is released and the SSCLn line is kept at the low level.
- The period at low level for the SSCLn line is secured as half of a bit period at the bit rate determined by the setting of the BRR.
- The SSCLn line is released (transition from the low to the high level).
- Once the high level on the SSCLn line is detected, the setup time for the restart condition is secured as half of a bit period at the bit rate determined by the setting of the BRR.
- The level on the SSDAn line falls (from the high level to the low level).
- The hold time for the restart condition is secured as half of a bit period at the bit rate determined by the setting of the BRR.
- The level on the SSCLn line falls (from the high level to the low level), the IICRSTAREQ bit in the SIMR3 register is set (to 0), and a restart-condition generated interrupt is output.

Writing 1 to the IICSTPREQ bit in the SIMR3 register causes the generation of a stop condition. The generation of a stop condition proceeds through the following operations.

- The level on the SSDAn line falls (from the high level to the low level) and the SSCLn line is kept at the low level.
- The period at low level for the SSCLn line is secured as half of a bit period at the bit rate determined by the setting of the BRR.
- The SSCLn line is released (transition from the low to the high level).
- Once the high level on the SSCLn line is detected, the setup time for the stop condition is secured as half of a bit period at the bit rate determined by the setting of the BRR.
- The SSDAn is released (transition from the low to the high level), the IICSTPREQ bit in the SIMR3 register is set (to 0), and a stop-condition generated interrupt is output.

Figure 27.47 shows the timing of operations in the generation of start, restart, and stop conditions.

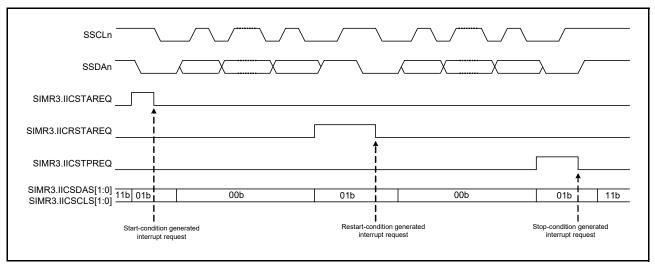


Figure 27.47 Timing of Operations in the Generation of Start, Restart, and Stop Conditions

27.7.2 Clock Synchronization

The SSCLn line may be placed at the low level in the case of a wait inserted by a slave device as the other side of transfer. Setting the IICCSC bit in the SIMR2 register to 1 applies control to obtain synchronization when the levels of the internal SSCLn clock signal and the level being input on the SSCLn pin differ.

When the IICCSC bit in the SIMR2 register is set to 1, the level of the internal SSCLn clock signal changes from low to high, counting to determine the period at high level is stopped while the low level is being input on the SSCLn pin, and counting to determine the period at high level starts after the transition of the input on the SSCLn pin to the high level. The interval from this time until counting to determine the period at high level starts on the transition of the SSCLn pin to the high level is the total of the delay of SSCLn output, delay for noise filtering of the input on the SSCLn pin (2 or 3 cycles of sampling clock for the noise filter), and delay for internal processing (1 or 2 cycles of PCLK). The period at high level of the internal SSCLn clock is extended even if other devices are not placing the low level on the SSCLn line. If the IICCSC bit in the SIMR2 register is 1, synchronization is obtained for the transmission and reception of data by taking the logical AND of the input on the SSCLn pin and the internal SSCLn clock. If the IICCSC bit in the SIMR2 register is 0, synchronization with the internal SSCLn clock is obtained for the transmission and reception of data. If a slave device inserts a period of waiting into the interval until the transition of the internal SSCLn clock signal from the low to the high level after a request for the generation of a start, restart, or stop condition is issued, the time until generation is prolonged by that period.

If a slave device inserts a period of waiting after the transition of the internal SSCLn clock signal from the low to the high level, although the generation-completed interrupt is issued without stopping the period of waiting, generation of the condition itself is not guaranteed. Figure 27.48 shows an example of operations to synchronize the clocks.

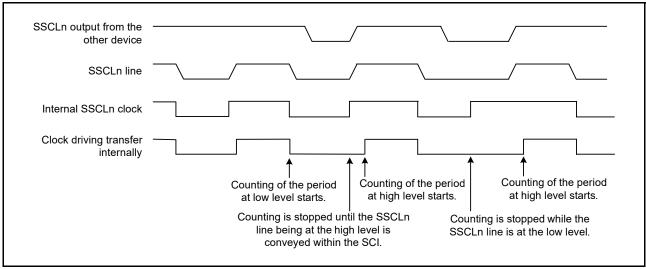


Figure 27.48 Example of Operations for Clock Synchronization

27.7.3 SSDA Output Delay

The IICDL[4:0] bits in the SIMR1 register can be used to set a delay for output on the SSDAn pin relative to falling edges of output on the SSCLn pin. Delay-time settings from 0 to 31 are selectable, representing periods of the corresponding numbers of cycles of the clock signal from the on-chip baud rate generator (derived by frequency-dividing the base clock, PCLK, by the divisor selected by the CKS[1:0] bits in the SMR register). A delay for output on the SSDAn pin is for the start condition/restart condition/stop condition signal, 8-bit transmit data, and an acknowledge bit. If the SSDA output delay is shorter than the time for the level on the SSCLn pin to fall, the change of the output on the SSDAn pin will start while the output level on the SSCLn pin is falling, creating a possibility of erroneous operation for slave devices. Ensure that settings for the delay of output on the SSDAn pin are for times greater than the time output on the SSCLn pin takes to fall (300 ns for I²C in normal mode and fast mode).

Figure 27.49 shows the timing of delays in SSDA output.

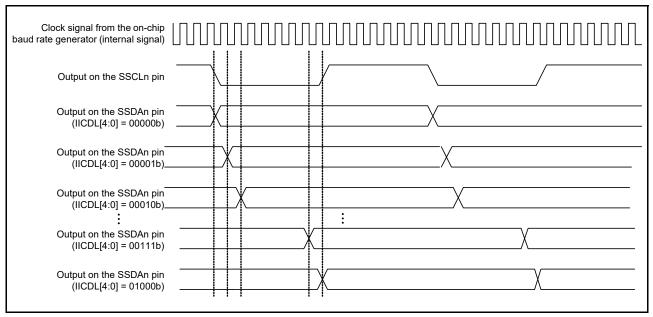


Figure 27.49 Timing of Delays in SSDA Output

27.7.4 SCI Initialization (Simple I²C Mode)

Before transferring data, write the initial value (00h) to SCR and initialize the interface following the example shown in Figure 27.50.

When changing the operating mode, transfer format, and so on, be sure to set SCR to its initial value before proceeding with the changes.

In simple I²C mode, the open-drain setting for the communication ports should be made on the port side.

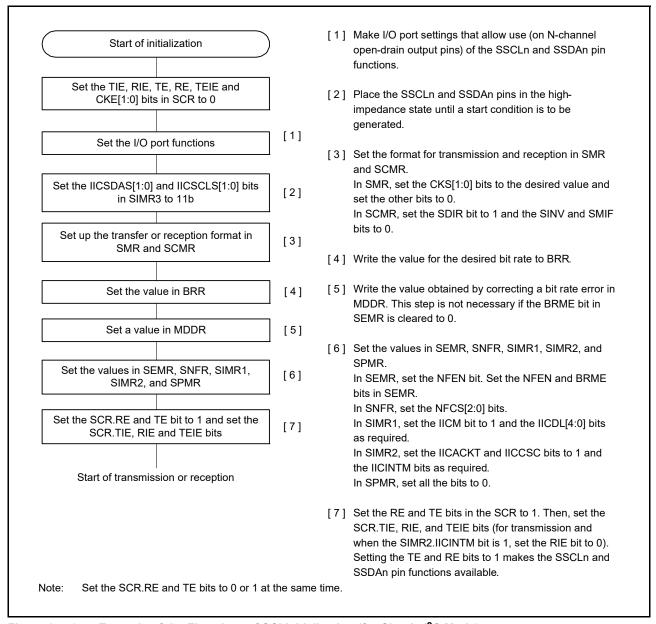


Figure 27.50 Example of the Flowchart of SCI Initialization (for Simple I²C Mode)

27.7.5 Operation in Master Transmission (Simple I²C Mode)

Figure 27.51 and Figure 27.52 show examples of operations in master transmission and Figure 27.53 is a flowchart showing the procedure for data transmission. Refer to Table 27.33 for more information on the STI interrupt. When 10-bit slave addresses are in use, steps [3] and [4] in Figure 27.53 are repeated twice.

In simple I²C mode, the transmit data empty interrupt (TXI) is generated when communication of one frame is completed, unlike the TXI interrupt request generation timing during clock synchronous transmission.

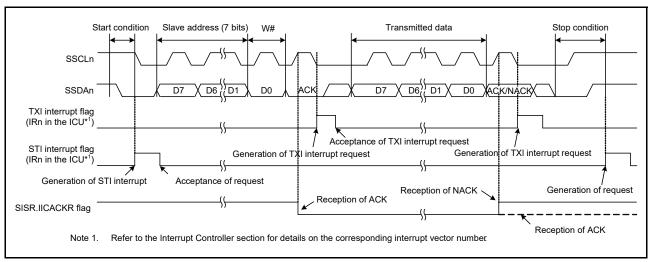


Figure 27.51 Example 1 of Operations for Master Transmission in Simple I²C-bus Mode (with 7-Bit Slave Addresses, Transmission Interrupts, and Reception Interrupts in Use)

When the SIMR2.IICINTM bit is set to 0 (use ACK/NACK interrupts) during master transmission, the DTC is activated by the ACK interrupt as the trigger and necessary number of data bytes are transmitted. When the NACK is received, error processing, such as transmission stop and retransmission, is performed by the NACK interrupt as the trigger.

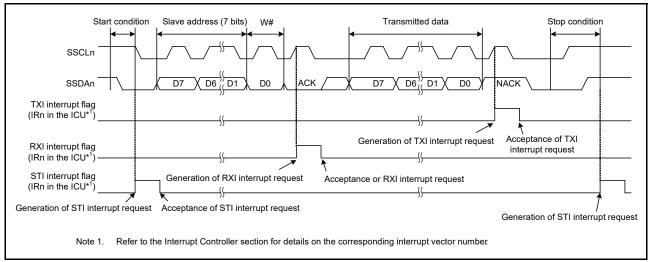


Figure 27.52 Example 2 of Operations for Master Transmission in Simple I²C-bus Mode (with 7-Bit Slave Addresses, ACK Interrupts, and NACK Interrupts in Use)

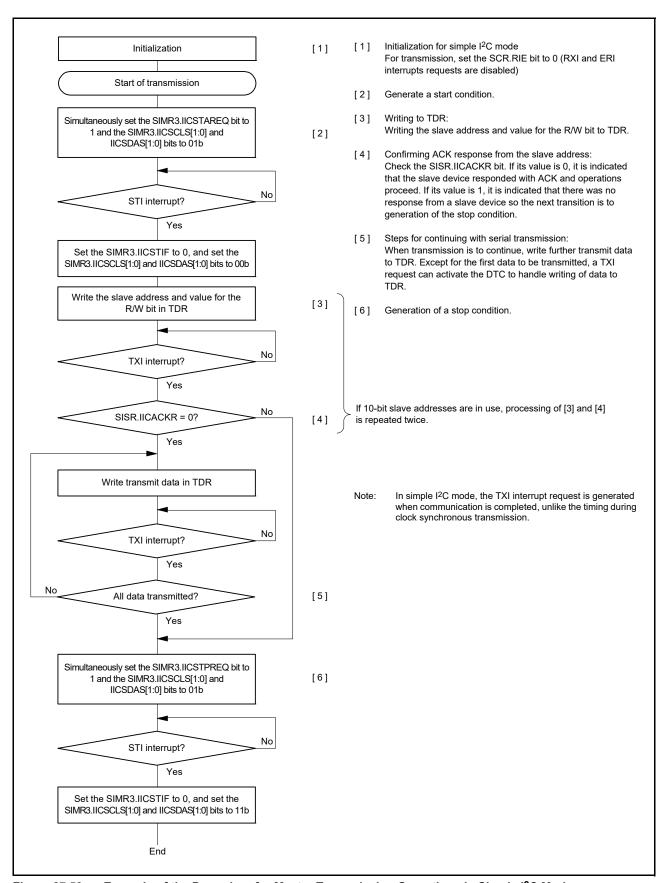


Figure 27.53 Example of the Procedure for Master Transmission Operations in Simple I²C Mode (with Transmission Interrupts and Reception Interrupts in Use)

27.7.6 Master Reception (Simple I²C Mode)

Figure 27.54 shows an example of operations in simple I²C mode master reception and Figure 27.55 is a flowchart showing the procedure for master reception.

The value of the SIMR2.IICINTM bit is assumed to be 1 (use reception and transmission interrupts).

In simple I²C mode, the transmit data empty interrupt (TXI) is generated when communication of one frame is completed, unlike the TXI interrupt request generation timing during clock synchronous transmission.

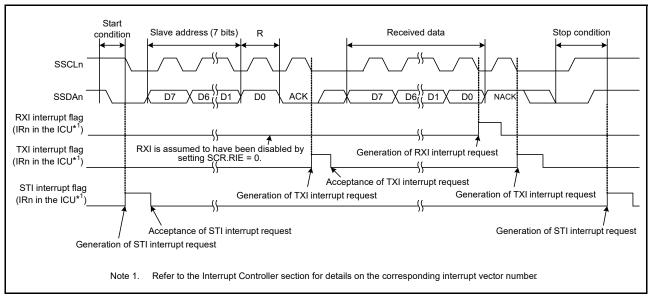


Figure 27.54 Example of Operations for Master Reception in Simple I²C-bus Mode (with 7-Bit Slave Addresses, Transmission Interrupts, and Reception Interrupts in Use)

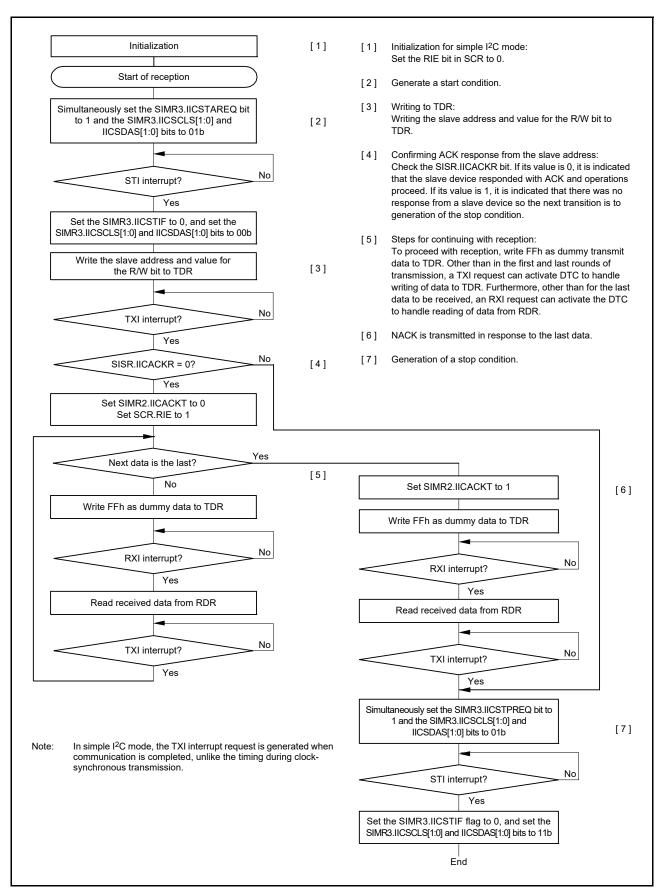


Figure 27.55 Example of the Procedure for Master Reception Operations in Simple I²C Mode (with Transmission Interrupts and Reception Interrupts in Use)

27.7.7 Recovery from Bus Hang-up

If the bus is stuck by an abnormal state in SCI because of the communication error, reset the SCI according to the following steps and release the bus.

- (1) Set the SCR.TE and RE bit to 0 at the same time to reset SCI.
- (2) Set the SIMR3 register to F0h to release the bus.
- (3) If the SSR.RDRF flag is 1, set the flag to 0.
- (4) Set the SCR.TE and RE bit to 1 at the same time.

27.8 Operation in Simple SPI Mode

As an extended function, the SCI supports a simple SPI mode that handles transfer among one or multiple master devices and multiple slave devices.

Making the settings for clock synchronous mode (SCMR.SMIF = 0, SIMR1.IICM = 0, SMR.CM = 1) plus setting the SSE bit in the SPMR to 1 places the SCI in simple SPI mode. However, the SS pin function on the master side is unnecessary for connection of the device used as the master in simple SPI mode when the configuration only has a single master, so set the SSE bit in the SPMR to 0 in such cases.

Figure 27.56 shows an example of connections for simple SPI mode. Control a general port pin to produce the SS output signal from the master.

In simple SPI mode, data are transferred in synchronization with clock pulses in the same way as in clock synchronous mode. One character of data for transfer consists of 8 bits of data, and parity bits cannot be appended to this. The data can be inverted by setting the SCMR.SINV bit to 1.

Since the receiver and transmitter are independent of each other within the SCI module, full-duplex communications are possible, with a common clock signal. Furthermore, since both the transmitter and receiver have a double-buffered structure, writing of further transmit data while transmission is in progress and reading of previously received data while reception is in progress are both possible. Continuous transfer is thus possible.

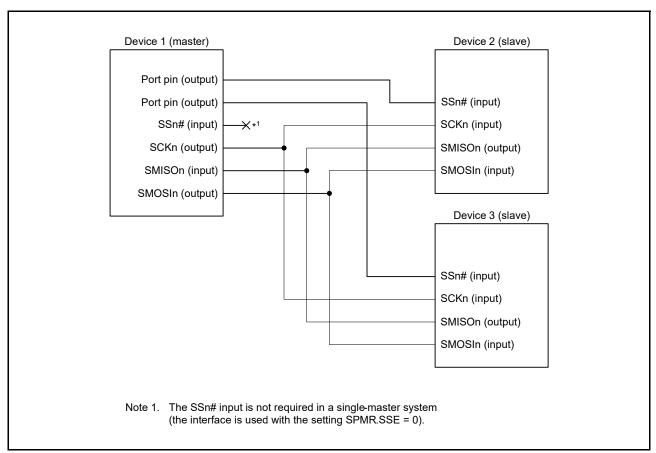


Figure 27.56 Example of Connections via a Simple SPI Mode (In Single Master Mode, SPMR.SSE Bit = 0)

27.8.1 States of Pins in Master and Slave Modes

The direction (input or output) of pins for the simple SPI mode interface differs according to whether the device is a master (SCR.CKE[1:0] = 00b or 01b and SPMR.MSS = 0) or slave (SCR.CKE[1:0] = 10b or 11b and SPMR.MSS = 1). Table 27.29 lists the states of pins according to the mode and the level on the SSn# pin.

Table 27.29 States of Pins by Mode and Input Level on the SSn# Pin

Mode	Input on SSn# Pin	State of SMOSIn Pin	State of SMISOn Pin	State of SCKn Pin
Master mode*1	High level (transfer can proceed)	Output for data transmission*2	Input for received data	Clock output*3
	Low level (transfer cannot proceed)	High-impedance	Input for received data (but disabled)	High-impedance
Slave mode	High level (transfer can proceed)	Input for received data (but disabled)	High-impedance	Clock input (but disabled)
	Low level (transfer cannot proceed)	Input for received data	Output for data transmission	Clock input

Note 1. When there is only a single master (SPMR.SSE = 0), transfer is possible regardless of the input level on the SSn# pin (this is equivalent to input of a high level on the SSn# pin). Since the SSn# pin function is not required, the pin is available for other purposes.

27.8.2 SS Function in Master Mode

Setting the CKE[1:0] bits in the SCR to 00b and the MSS bit in the SPMR to 0 selects master operation. The SSn# pin is not used in single-master configurations (SPMR.SSE = 0), so transmission or reception can proceed regardless of the value of the SSn# pin.

When the level on the SSn# pin is high in a multi-master configuration (SPMR.SSE = 1), a master device outputs clock signals from the SCKn pin before starting transmission or reception to indicate that there are no other masters or another master is performing reception or transmission. When the level on the SSn# pin is low in a multi-master configuration (SPMR.SSE = 1), there are other masters, and this indicates that transmission or reception is in progress. At this time the SMOSIn output and SCKn pins will be placed in the high-impedance state and starting transmission or reception will not be possible. Furthermore, the value of the SPMR.MFF bit will be 1, indicating a mode fault error. In a multi-master configuration, start error processing by reading SPMR.MFF flag. Also, even if a mode fault error occurs while transmission or reception is in progress, transmission or reception will not be stopped, but the SMOSIn and SCKn pin output will be placed in the high-impedance state after the completion of the transfer.

Control a general port pin to produce the SS output signal from the master.

27.8.3 SS Function in Slave Mode

Setting the CKE[1:0] bits in the SCR to 10b and the MSS bit in the SPMR to 1 selects slave operation. When the level on the SSn# pin is high, the SMISOn output pin will be in the high-impedance state and clock input through the SCKn pin will be ignored. When the level on the SSn# pin is low, clock input through the SCKn pin will be effective and transmission or reception can proceed.

If the input on the SSn# pin changes from low to high level during transmission or reception, the SMISOn output pin will be placed in the high-impedance state. Meanwhile, the internal processing for transmission or reception will continue at the rate of the clock input through the SCKn pin until processing for the character currently being transmitted or received is completed, after which it stops. At that time, an interrupt (the appropriate one from among TXI, RXI, and TEI) will be generated.

Note 2. The SMOSIn pin output is in the high-impedance state when serial transmission is disabled (SCR.TE bit = 0).

Note 3. The SCKn pin output is in the high-impedance state when serial transmission is disabled (SCR.TE and RE bits = 00b) in a multimaster configuration (SPMR.SSE = 1).

27.8.4 Relationship between Clock and Transmit/Receive Data

The CKPOL and CKPH bits in the SPMR can be used to set up the clock for use in transmission and reception in four different ways. The relation between the clock signal and the transmission and reception of data is shown in Figure 27.57. The relation is the same for both master and slave operation.

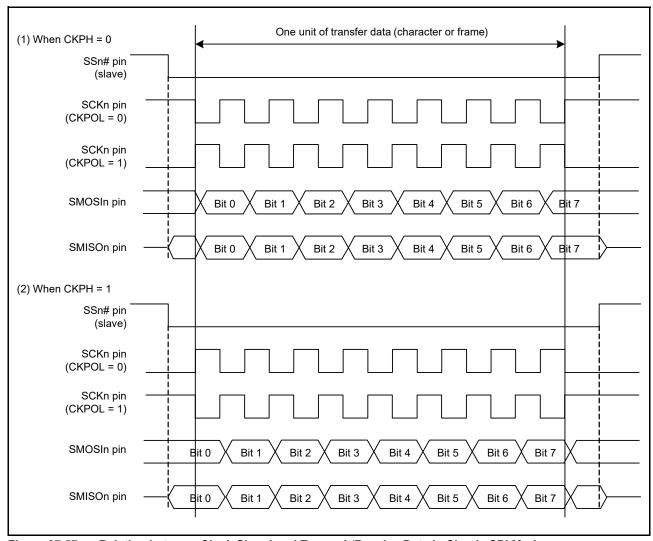


Figure 27.57 Relation between Clock Signal and Transmit/Receive Data in Simple SPI Mode

27.8.5 SCI Initialization (Simple SPI Mode)

The procedure is the same as for initialization in clock synchronous mode Figure 27.23, Sample SCI Initialization Flowchart. The CKPOL and CKPH bits in the SPMR must be set to ensure that the kind of clock signal they select is suitable for both master and slave devices.

For initialization, changes to the operating mode, changes to the transfer format, and so on, initialize the SCR register before proceeding with changes.

As well as setting the RE bit to 0, note that the SSR.ORER, FER, and PER flags, as well as the RDR, are not initialized. Note that changing the value of the TE bit from 1 to 0 or from 0 to 1 will lead to the generation of a transmit data empty interrupt (TXI) if the value of the TIE bit in the SCR is 1 at the time.

27.8.6 Transmission and Reception of Serial Data (Simple SPI Mode)

In master operation, ensure that the SSn# pin of the slave device on the other side of the transfer is at the low level before starting the transfer and at the high level on completion of the transfer. Otherwise, the procedures are the same as in clock synchronous mode.

27.9 Bit Rate Modulation Function

The bit rate modulation function corrects the bit rate by thinning out the specified amount of clocks from those input to the baud rate generator.

When the SEMR.BRME bit is 1, the baud rate generator validates and counts the average interval of the number of clocks set in the MDDR register out of the total 256 clocks input.

Figure 27.58 assumes the SCI is in asynchronous mode, bits SMR.CKS[1:0] are 00b, the BRR register is 00h, and the MDDR register is 160. In this example, the cycle of the base clock is evenly corrected to 256/160, and the bit rate is corrected to 160/256. Note that there is an imbalance in thinning out the internal clock, and expansion and contraction occur in the pulse width of the base clock.

Note: Do not use this function in clock synchronous mode and in the highest speed settings in simple SPI mode (SMR.CKS[1:0] = 00b, SCR.CKE[1] = 0, and BRR = 0).

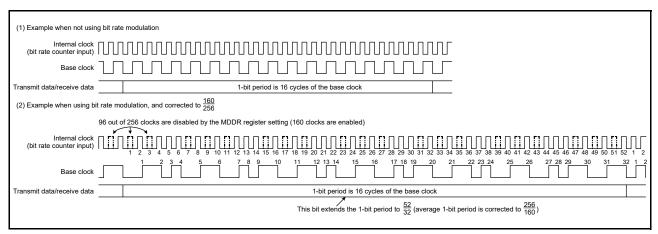


Figure 27.58 Example of the Base Clock When the Bit Rate Modulation Function is Used

27.10 Extended Serial Mode Control Section: Description of Operation

27.10.1 Serial Transfer Protocol

In conjunction with the SCIg module, the extended serial mode control section of the SCIh module can realize the serial transfer protocol composed of Start Frames and Information Frames that is shown in Figure 27.59.

A Start Frame is composed of a Break Field, Control Field 0, and Control Field 1. An Information Frame is composed of a number of Data Fields, a CRC16 Upper Field, and a CRC16 Lower Field.

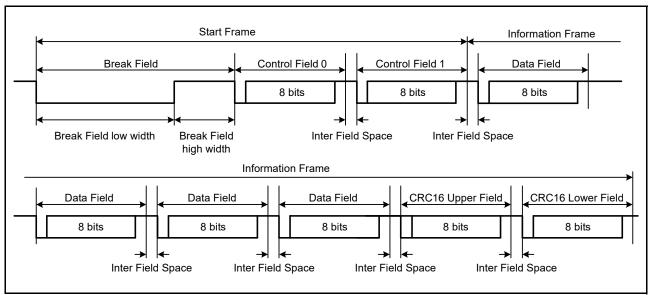


Figure 27.59 Protocol for Serial Transfer by the Extended Serial Mode Control Section

27.10.2 Transmitting a Start Frame

Figure 27.60 shows an example of operations to transmit a Start Frame, which is composed of the Break Field low width, Control Field 0, and Control Field 1. Figure 27.61 and Figure 27.62 are flowcharts for the transmission of a Start Frame.

Operations when the extended serial mode control section is to be used to transmit a Start Frame are as listed below. Be sure to use the SCI12 in asynchronous mode.

- (1) With Break Field low width output mode as the operating mode for the timer, writing 1 to the TCR.TCST bit starts counting by the timer, and the low level will be output from the TXDX12 pin over the period corresponding to registers TCNT and TPRE settings.
- (2) The output on the TXDX12 pin is inverted when the timer counter underflows, and the STR.BFDF flag is set to 1. An SCIX0 interrupt is also generated if the value of the ICR.BFDIE bit is 1.
- (3) Write 0 to the TCR.TCST bit to stop counting by the timer, and send the data for Control Field 0 by using SCI12. After the Break Field low width output, stop counting before the next underflow occurs.
- (4) When the data for Control Field 0 have been transmitted, send the data for Control Field 1.
- (5) When the data for Control Field 1 have been transmitted, send an Information Frame.

Omit the Break Field and Control Field 0 to suit the structure of the Start Frame.

Figure 27.60 Example of Operations When Transmitting a Start Frame

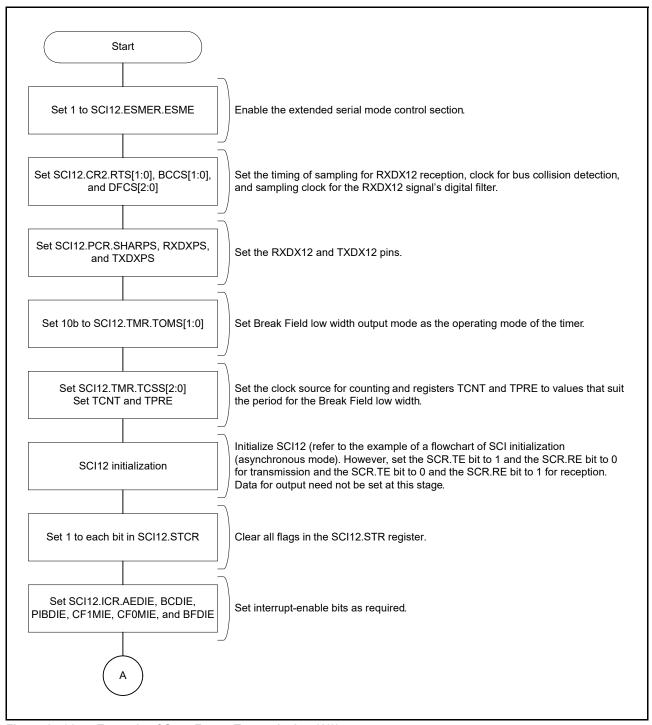


Figure 27.61 Example of Start Frame Transmission (1/2)

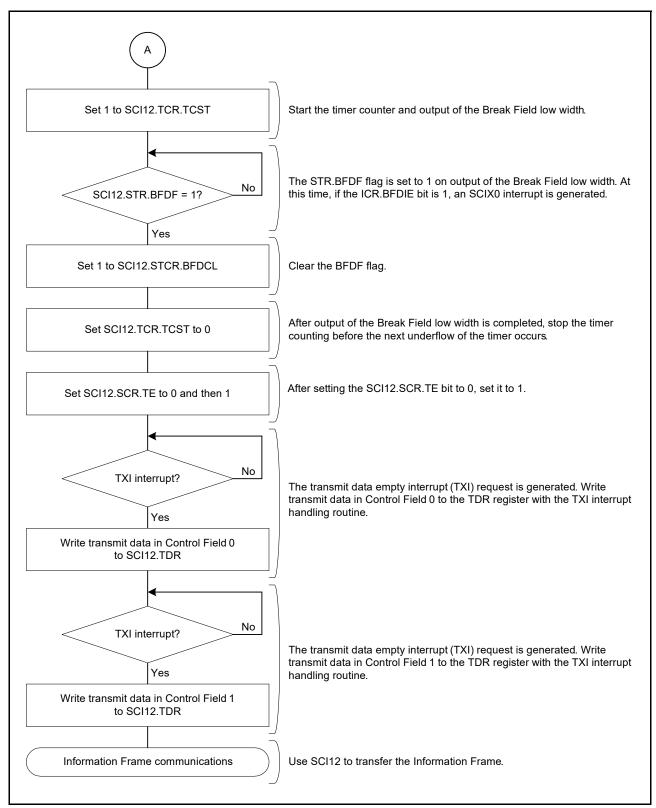


Figure 27.62 Example of Start Frame Transmission (2/2)

27.10.3 Receiving a Start Frame

The extended serial mode control section is capable of receiving Start Frames with the structures listed in Table 27.30.

Table 27.30 Structures of Start Frames

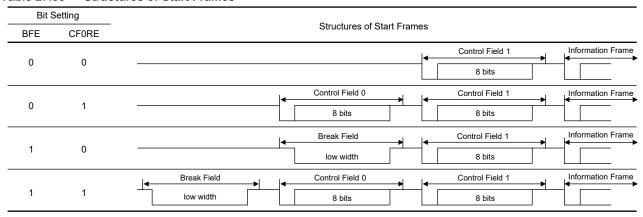


Figure 27.63 shows an example of operations to receive a Start Frame, which is composed of the Break Field low width, Control Field 0, and Control Field 1. Figure 27.64 and Figure 27.65 are flowcharts for the reception of a Start Frame, and Figure 27.66 is a state transition diagram for the extended serial mode control section.

Operations when the extended serial mode control section is to be used to receive a Start Frame are as listed below. Be sure to use the SCI12 in asynchronous mode.

- (1) With Break Field low width detection mode as the operating mode for the timer, writing 1 to the CR3.SDST bit enables detection of the Break Field low width. RXDX12 input to the SCI12 is disabled at this time.
- (2) Low-level input on the RXDX12 pin continuing over a period longer than that corresponding to the settings of registers TCNT and TPRE is detected as the Break Field low width. At this time, the STR.BFDF flag is set to 1. An SCIX0 interrupt is also generated if the value of the ICR.BFDIE bit is 1.
- (3) When the input from the RXDX12 pin goes high after the Break Field low width, the CR0.RXDSF flag becomes 0 and reception of Control Field 0 by the SCI12 starts.
- (4) If the data received in Control Field 0 match the data set in the CF0DR register, the STR.CF0MF flag is set to 1. An SCIX1 interrupt is also generated if the value of the ICR.CF0MIE bit is 1. Reception of Control Field 1 by the SCI12 starts after that. If the data received in Control Field 0 do not match the data set in the CF0DR register, a transition to the state prior to Break Field low width detection proceeds.
- (5) If the data received in Control Field 1 match the data set in registers PCF1DR and SCF1DR, the STR.CF1MF flag is set to 1. An SCIX1 interrupt is also generated if the value of the ICR.CF1MIE bit is 1. Transfer of the Information Frame by the SCI12 starts after that. If the data received in Control Field 1 do not match the data set in either or both of registers PCF1DR and SCF1DR, a transition to the state prior to Break Field low width detection proceeds.

Omit the Break Field and Control Field 0 to suit the structure of the Start Frame.

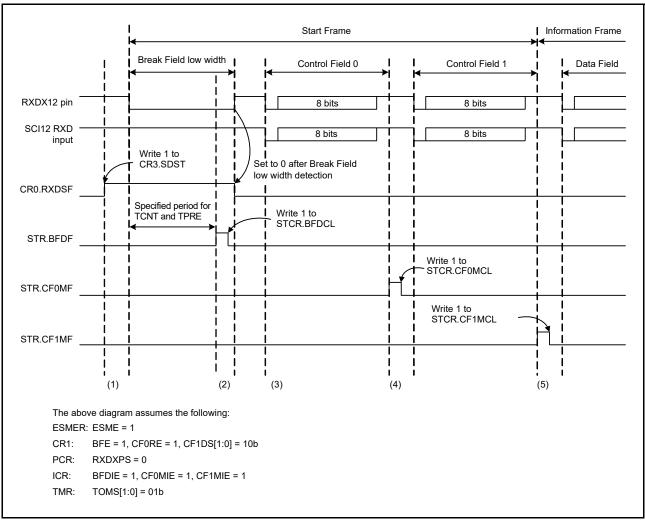


Figure 27.63 Example of Operations at the Time of Start Frame Reception

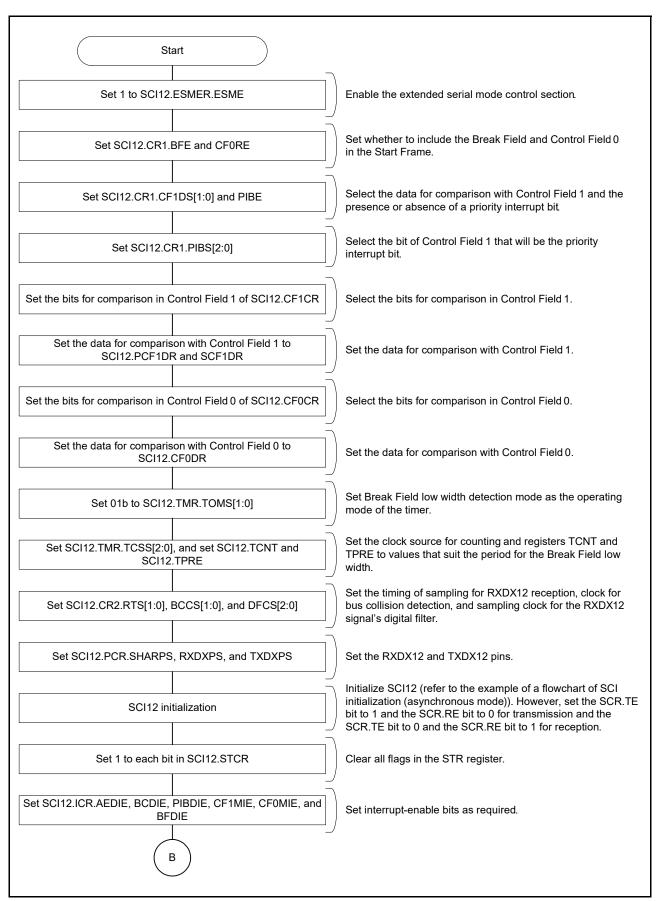


Figure 27.64 Sample Flowchart for Reception of a Start Frame (1)

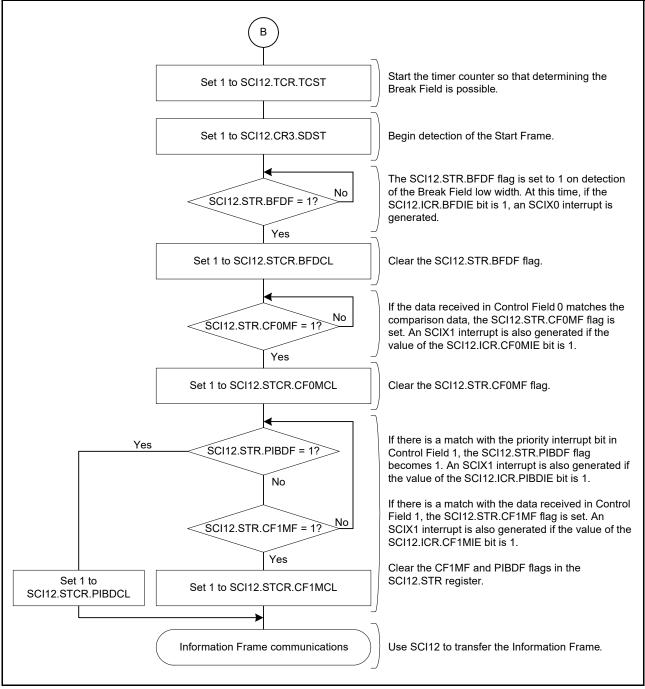


Figure 27.65 Sample Flowchart for Reception of a Start Frame (2)

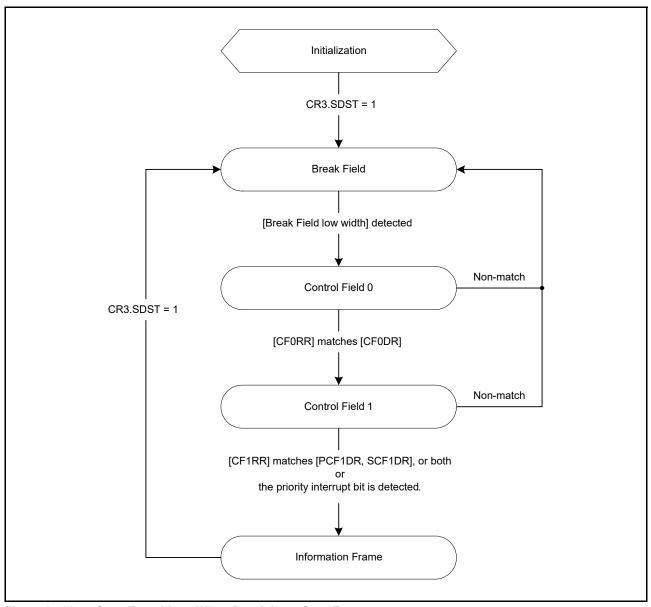


Figure 27.66 State Transitions When Receiving a Start Frame

27.10.3.1 Priority Interrupt Bit

Figure 27.67 shows an example of operation in Start Frame reception where a priority interrupt bit is in use. Setting the CR1.PIBE bit to 1 enables the use of a priority interrupt bit.

Operations of the extended serial mode control section in start Frame reception where a priority interrupt bit is in use are as described below.

Steps (1) to (4) are the same as in Figure 27.63, for Start Frame reception.

(5) If the value of the bit selected by the CR1.PIBS[2:0] bits matches the corresponding bit in the PCF1DR register, the STR.PIBDF flag is set to 1. An SCIX1 interrupt is also generated if the value of the ICR.PIBDIE bit is 1. Transfer of the Information Frame by the SCI12 starts after that. If the data received in Control Field 1 do not match the data set in either or both of registers PCF1DR and SCF1DR and the priority interrupt bit is not detected, a transition to the state prior to Break Field low width detection proceeds.

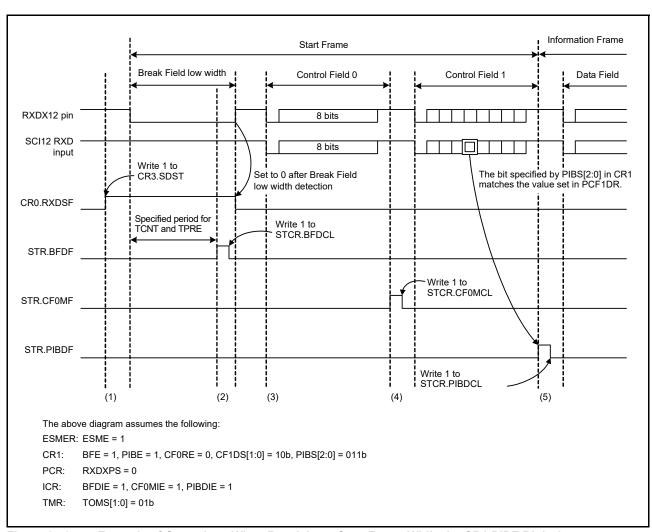


Figure 27.67 Example of Operations When Receiving a Start Frame While the CR1.PIBE Bit is 1

27.10.4 Detection of Bus Collisions

Detection of bus collisions operate for cases where output of the Break Field low width and transmission of data by the SCI12 are in progress when the ESMER.ESME bit and the SCI12.SCI.TE bit are set to 1.

Figure 27.68 shows an example of operations with bus collision detection. Signals output through TXDX12 and input through RXDX12 are sampled with the bus collision detection clock set with the CR2.BCCS[1:0] bits as the sampling clock, and the STR.BCDF flag is set to 1 if the signals fail to match three times in a row. An SCIX2 interrupt is also generated if the value of the ICR.BCDIE bit is 1.

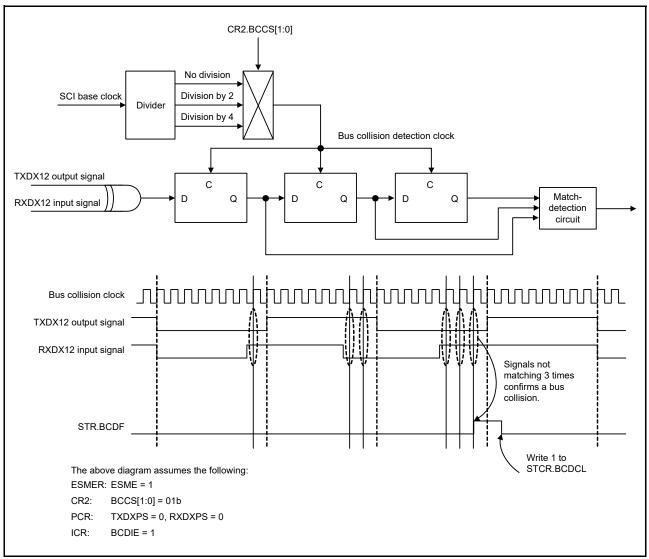


Figure 27.68 Example of Operations with Bus Collision Detection

27.10.5 Digital Filter for Input on the RXDX12 Pin

Signals input through the RXDX12 pin can be passed through a digital filter before they are conveyed to the internal circuits. The digital filter consists of three flip-flop circuit stages connected in series and a match-detecting circuit. The CR2.DFCS[2:0] bits select the sampling clock for the RXDX12 pin input signals. If the outputs of all three latches match, the given level is conveyed to subsequent circuits. If the levels do not match, the previous value is retained. In other words, levels are confirmed as being the signal if they are retained for at least three cycles of the sampling clock but judged to be noise rather than changes in the signal level if they change within three cycles of the sampling clock. Figure 27.69 shows an example of operations with the digital filter.

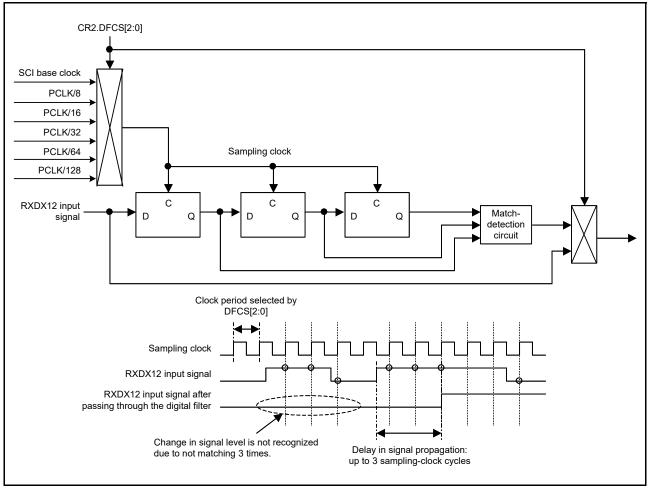


Figure 27.69 Example of Operations with the Digital Filter

27.10.6 Bit Rate Measurement

The bit rate measurement function measures the intervals between rising and falling edges and between falling and rising edges of the signal input from the RXDX12 pin. Figure 27.70 shows an example of operations for bit rate measurement.

- (1) Writing 1 to the CR0.BRME bit enables bit rate measurement. Only set the BRME bit to 1 when you wish to proceed with bit rate measurement. Furthermore, bit rate measurement will not proceed during a Break Field, even if the BRME bit is set to 1.
- (2) After detection of the Break Field low width, bit rate measurement starts when the level input on the RXDX12 pin becomes high.
- (3) Once bit rate measurement has started, counter values from the timer are retained in the read buffers on the input of valid edges from the RXDX12 pin (rising and falling edges) and the counter is reloaded. An SCIX3 interrupt is also generated if the value of the ICR.AEDIE bit is 1. Retention by registers TCNT and TPRE is released by reading these registers.
- (4) The bit rate as calculated from the values counted during intervals between valid edges can be used for adjusting the rate by changing the settings of the SCI12. To disable the bit rate measurement after a match with Control Field 1, write 0 to the CR0.BRME bit.

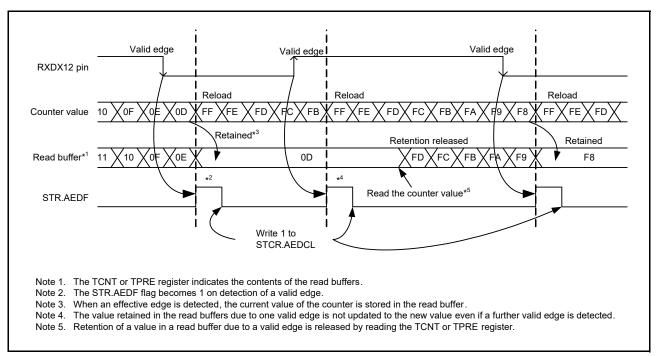


Figure 27.70 Example of Operations for Bit Rate Measurement

27.10.7 Selectable Timing for Sampling Data Received through RXDX12

The extended serial mode control section provides a way of adjusting the timing for the sampling of data received through the RXDX12 pin of an SCI12 by setting the CR2.RTS[1:0] bits to select the rising edges of 8th, 10th, 12th, or 14th cycle of the SCI base clock. If the value of the SEMR.ABCS bit is 1, the bits select the rising edges of 4th, 5th, 6th, or 7th cycle of the PCLK of the SCI12. Figure 27.71 shows timing for the sampling of data received through RXDX12.

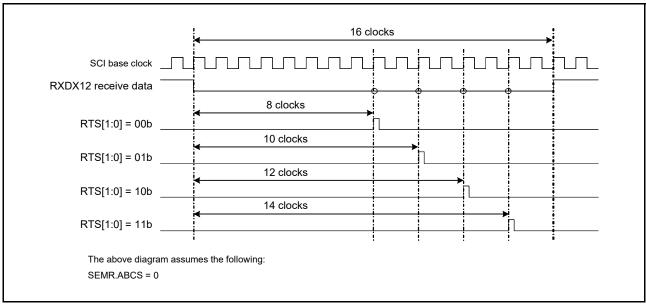


Figure 27.71 Timing for Sampling of Data Received through RXDX12

27.10.8 Timer

The timer has the following operating modes.

(1) Break Field Low Width Output Mode

This mode is for output through the TXDX12 pin of the low level over the Break Field low width at the transmission of a Start Frame. Setting the TMR.TOMS[1:0] bits to 10b switches operation to Break Field low width output mode. The TMR.TCSS[2:0] bits select the clock source for the counter. When the TCR.TCST bit is set to 1, the output on the TXDX12 pin goes to the low level and counting starts. When the timer underflows, the output on the TXDX12 pin goes to the high level and the STR.BFDF flag is set to 1. An SCIX0 interrupt is also generated if the value of the ICR.BFDIE bit is 1. When 0 is written to the TCR.TCST bit, counting stops after reloading of registers TPRE and TCNT. After output of the Break Field low width is completed, stop the timer before it underflows again. Figure 27.72 shows an example of operations in Break Field low width output mode.

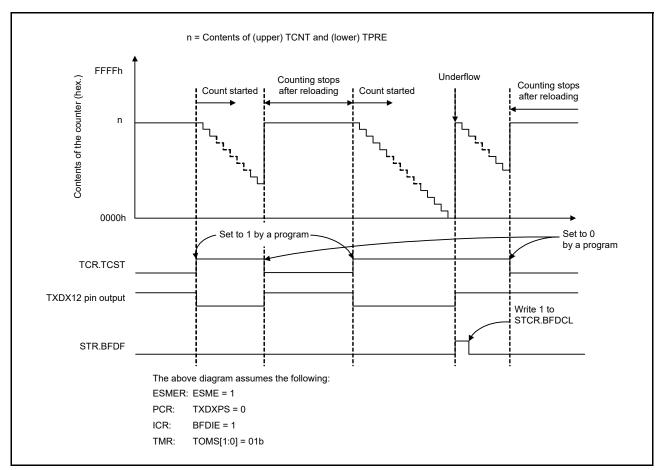


Figure 27.72 Example of Operations in Break Field Low Width Output Mode

(2) Break Field Low Width Determination Mode

This mode is for determining the Break Field low width in the input signal on the RXDX12 pin at the reception of a Start Frame. Setting the TMR.TOMS[1:0] bits to 01b switches operation to Break Field low width determination mode. The TMR.TCSS[2:0] bits select the clock source for the counter. When the TCR.TCST bit is set to 1, the interface enters the Break Field low width determinable state. Determination starts when a low level is input from the RXDX12 pin. When a high level is then input on the RXDX12 pin, registers TPRE and TCNT are reloaded and the interface enters the Break Field low width determinable state. When the timer underflows during Break Field low width determination, the STR.BFDF flag is set to 1. An SCIX0 interrupt is also generated if the value of the ICR.BFDIE bit is 1. If an underflow of the timer during data transfer cause a problem in the form of interrupt generation, stop the timer after Break Field low width determination. Figure 27.73 shows an example of operations in Break Field low width output mode.

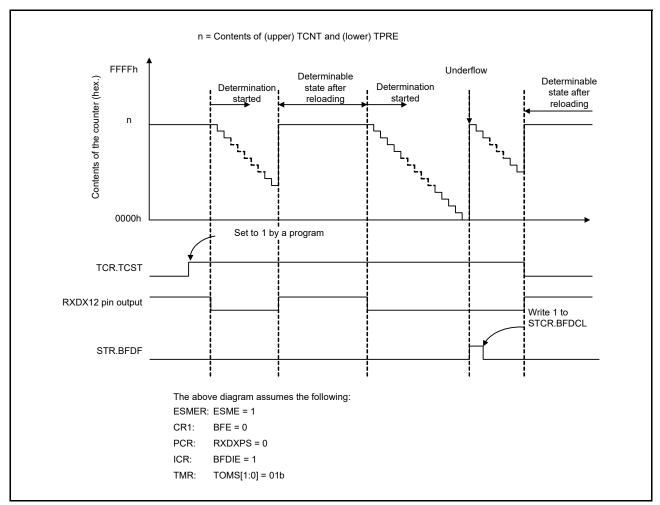


Figure 27.73 Example of Operations in Break Field Low Width Determination Mode

(3) Timer Mode

This mode is for counting cycles of the internal clock as the clock source. Setting the TMR.TOMS[1:0] bits to 00b switches operation to timer mode. The TMR.TCSS[2:0] bits select the clock source for the counter. Counting starts when 1 is written to the TCR.TCST bit and stops when 0 is written to the TCST bit. Registers TPRE and TCNT both count down. The TPRE register counts cycles of the clock source for counting, and underflows of the TPRE register provide the clock source for counting by the TCNT register. When the timer underflows, the STR.BFDF flag is set to 1. An SCIX0 interrupt is also generated if the value of the ICR.BFDIE bit is 1.

27.11 Noise Cancellation Function

Figure 27.74 shows the configuration of the noise filter used for noise cancellation. The noise filter consists of two stages of flip-flop circuits and a match-detection circuit. When the level on the pin matches in three consecutive samples taken at the set sampling interval, the matching level continues to be conveyed internally until the level on the pin again matches in three consecutive samples.

In asynchronous mode, the noise cancellation function can be applied on the RXDn input signal. The period of the base clock (1/16th of a bit-period when SEMR.ABCS = 0 and 1/8th of a bit-period when SEMR.ABCS = 1) is the sampling interval.

In simple I²C mode, the noise cancellation function can be applied on the SSDAn and SSCLn input signals. The sampling clock is the clock signal produced by frequency-dividing the signal from the clock source for the internal baudrate generator by one, two, four, or eight as selected by the setting of the SNFR.NFCS[2:0] bits.

If the base clock is stopped with the noise filter enabled and then the clock input is started again, the noise filter operation resumes from where the clock was stopped. If SCR.TE and SCR.RE are set to 0 during base clock input, all of the noise filter flip-flop values are initialized to 1. Accordingly, if the input data is 1 when reception operation resumes, it is determined that a level match is detected and is conveyed to the internal signal. When the level being input corresponds to 0, the initial output of the noise filter is retained until the level matches in three consecutive samples.

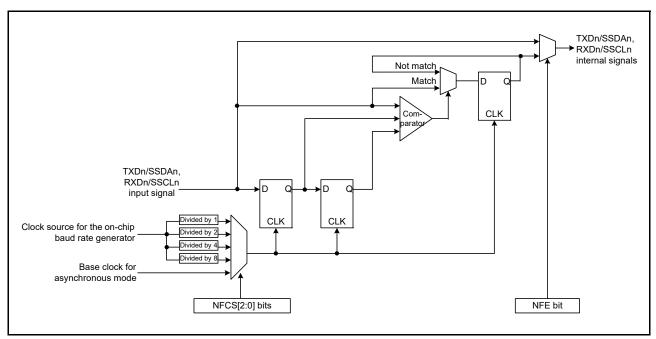


Figure 27.74 Block Diagram of Digital Noise Filter Circuit

27.12 Interrupt Sources

27.12.1 Buffer Operations for TXI and RXI Interrupts

If the conditions for a TXI and RXI interrupt are satisfied while the interrupt status flag in the interrupt controller is 1, the SCI does not output the interrupt request but retains it internally (with a capacity for retention of one request per source). When the value of the interrupt status flag in the interrupt controller becomes 0, the interrupt request retained within the SCI is output. The internally retained interrupt request is automatically discarded once the actual interrupt is output. Clearing of the corresponding interrupt enable bit (the TIE or RIE bit in the SCR) can also be used to discard an internally retained interrupt request.

27.12.2 Interrupts in Asynchronous Mode, Clock Synchronous Mode, and Simple SPI Mode

Table 27.31 lists interrupt sources in asynchronous mode, clock synchronous mode, and simple SPI mode. A different interrupt vector is assigned to each interrupt source, and individual interrupt sources can be enabled or disabled with the enable bits in the SCR register.

If the SCR.TIE bit is 1, a TXI interrupt request is generated when transmit data is transferred from the TDR or TDRL register*¹ to the TSR. A TXI interrupt request can also be generated by setting the SCR.TE bit to 1 after setting the SCR.TIE bit to 1 or by using a single instruction to set the SCR.TE and SCR.TIE bit to 1 at the same time. A TXI interrupt request can activate the DTC to handle data transfer.

A TXI interrupt request is not generated by setting the SCR.TE bit to 1 while the setting of the SCR.TIE bit is 0 or by setting the SCR.TIE bit to 1 while the setting of the SCR.TE bit is 1.*2

When new data is not written by the time of transmission of the last bit of the current transmit data and the setting of the SCR.TEIE bit is 1, the SSR.TEND flag becomes 1 and a TEI interrupt request is generated. Furthermore, when the setting of the SCR.TE bit is 1, the SSR.TEND flag retains the value 1 until further transmit data are written to the TDR or TDRL register*1, and setting the SCR.TEIE bit to 1 leads to the generation of a TEI interrupt request.

Writing data to the TDR or TDRL register*1 leads to clearing of the SSR.TEND flag and, after a certain time, discarding of the TEI interrupt request.

If the SCR.RIE bit is 1, an RXI interrupt request is generated when received data is stored in the RDR. An RXI interrupt request can activate the DTC to handle data transfer.

Setting of any from among the ORER, FER, and PER flags in the SSR to 1 while the SCR.RIE bit is 1 leads to the generation of an ERI interrupt request. An RXI interrupt request is not generated at this time. Clearing all three flags (ORER, FER, and PER) leads to discarding of the ERI interrupt request.

Note 1. In the case where asynchronous mode and 9-bit data length are selected

Note 2. To temporarily disable TXI interrupts at the time of transmission of the last of the data and so on when you wish a new round of transmission to start after handling of the transmission-completed interrupt, control disabling and enabling of the interrupt by using the interrupt request enable bit in the interrupt controller rather than using the SCR.TIE bit. This can prevent the suppression of TXI interrupt requests in the transfer of new data.

Table 27.31 Interrupt Sources

Name	Interrupt Source	Interrupt Flag	DTC Activation	Priority
ERI	Receive error	ORER, FER, or PER	Not possible	High
RXI	Receive data full	RDRF	Possible	↑
TXI	Transmit data empty	TDRE	Possible	
TEI	Transmit end	TEND	Not possible	Low

27.12.3 Interrupts in Smart Card Interface Mode

Table 27.32 lists interrupt sources in smart card interface mode. A transmit end interrupt (TEI) request cannot be used in this mode.

Table 27.32 SCI Interrupt Sources

Name	Interrupt Source	Interrupt Flag	DTC Activation	Priority
ERI	Receive error or error signal detection	ORER, PER, or ERS	Not possible	High
RXI	Receive data full	_	Possible	↑
TXI	Transmit data empty	TEND	Possible	Low

Data transmission/reception using the DTC is also possible in smart card interface mode, similar to in the normal SCI mode. In transmission, when the TEND flag in the SSR register is set to 1, a TXI interrupt request is generated. This TXI interrupt request activates the DTC allowing transfer of transmit data if the TXI request is specified beforehand as a source of DTC activation. The TEND flag is automatically set to 0 when the DTC transfers the data.

If an error occurs, the SCI automatically retransmits the same data. During the retransmission, the TEND flag is kept to 0 and the DTC is not activated. Therefore, the SCI and DTC automatically transmit the specified number of bytes, including retransmission in the case of error occurrence. However, the ERS flag in the SSR register is not automatically cleared to 0 at error occurrence. Therefore, the ERS flag must be cleared by previously setting the RIE bit in the SCR register to 1 to enable an ERI interrupt request to be generated at error occurrence.

When transmitting/receiving data using the DTC, be sure to make settings to enable the DTC before making SCI settings. For DTC settings, refer to section 16, Data Transfer Controller (DTCa).

In reception, an RXI interrupt request is generated when receive data is set to RDR. This RXI interrupt request activates the DTC allowing transfer of receive data if the RXI request is specified beforehand as a source of DTC activation. If an error occurs, the error flag is set. Therefore, the DTC is not activated and an ERI interrupt request is issued to the CPU instead; the error flag must be cleared.

27.12.4 Interrupts in Simple I²C Mode

The interrupt sources in simple I²C mode are listed in Table 27.33. The STI interrupt is allocated to the transmit end interrupt (TEI) request. The receive error interrupt (ERI) request cannot be used.

The DTC can also be used to handle transfer in simple I²C mode.

When the value of the IICINTM bit in the SIMR2 register is 1, an RXI request will be generated on the falling edge of the SSCLn signal for the eighth bit. If the RXI has been set up as an activating request for the DTC beforehand, the RXI request will activate the DTC to handle transfer of the received data. Furthermore, a TXI request is generated on the falling edge of the SSCLn signal for the ninth bit (acknowledge bit). If the TXI has been set up as an activating request for the DTC beforehand, the TXI request will activate the DTC to handle transfer of the transmit data.

When the value of the IICINTM bit in the SIMR2 register is 0, an RXI request (ACK detection) if the input on the SSDAn pin is at the low level or a TXI request (NACK detection) if the input on the SSDAn pin is at the high level will be generated on the rising edge of the SSCLn signal for the ninth bit (acknowledge bit). If the RXI has been set up as an activating request for the DTC beforehand, the RXI request will activate the DTC to handle transfer of the received data. Also, if the DTC is used for data transfer in reception or transmission, be sure to set up and enable the DTC before setting up the SCI.

When the IICSTAREQ, IICRSTAREQ, and IICSTPREQ bits in the SIMR3 register are used to generate a start condition, restart condition, or stop condition, the STI request is issued when generation is complete.

Table 27.33 SCI Interrupt Sources

	Interrupt Source				
Name	IICINTM bit = 0	IICINTM bit = 1	Interrupt Flag	DTC Activation	Priority
RXI	ACK detection	Reception	_	Possible	High
TXI	NACK detection	Transmission	_	Possible*1	─ ↑
STI	Completion of generation of a start, restart, or stop condition		IICSTIF	Not possible	Low

Note 1. Activation of the DTC is only possible when the SIMR2.IICINTM bit is 1 (use reception and transmission interrupts).

27.12.5 Interrupt Requests from the Extended Serial Mode Control Section

The extended serial mode control section has a total of six types of interrupt request for generating the SCIX0 interrupt (Break Field low width detected), SCIX1 interrupt (Control Field 0 match, Control Field 1 match, priority interrupt bit detected), SCIX2 interrupt (bus collision detected), and SCIX3 interrupt (valid edge detected). When any of the interrupt factors is generated, the corresponding status flag is set to 1. Details of all of the interrupt requests are listed in Table 27.34.

Table 27.34 Interrupt Sources of the Extended Serial Mode Control Section

Interrupt Request Status Flag		Interrupt Factors	
SCIX0 interrupt (Break Field low width detected)	BFDF	 Detection of a Break Field low width longer than the interval corresponding to the timer setting Completion of the output of a Break Field low width over the interval corresponding to the timer setting Underflow of the timer 	
SCIX1 interrupt (Control Field 0 match)	CF0MF	The data received in Control Field 0 matching the value set in CF0DR	
SCIX1 interrupt (Control Field 1 match)	CF1MF	The data received in Control Field 1 matching the value set in PCF1DR or SCF1DR	
SCIX1 interrupt (priority interrupt bit detected)	PIBDF	The value of the bit specified as the priority interrupt bit matching the value set in PCF1DR	
SCIX2 interrupt (bus collision detected)	BCDF	The output level on the TXDX12 pin and the input level on the RXDX12 pin not matching on three consecutive cycles of the bus collision detection clock	
SCIX3 interrupt (valid edge detected)	AEDF	Detection of a valid edge during bit rate measurement	

27.13 Event Linking

By employing interrupt request signals as event signals, SCI5 is able to provide linked operation through the event link controller (ELC) for modules selected in advance.

Event signals can be output regardless of the values of the corresponding interrupt request enable bits.

- (1) Error (receive error, error signal detected) event output
- Indicates abnormal termination due to a parity error during reception in asynchronous mode.
- Indicates abnormal termination due to a framing error during reception in asynchronous mode.
- Indicates abnormal termination due to an overrun error during reception.
- Indicates detection of the error signal during transmission in smart card interface mode.
- (2) Receive data full event output
- Indicates that received data have been set in the receive data register (RDR or RDRL).
- Indicates that ACK has been detected if the SIMR2.IICINTM bit is 0 in simple I²C mode.
- Indicates that the 8th-bit SSCL5 falling edge has been detected if the SIMR2.IICINTM bit is 1 in simple I²C mode.
- When the SIMR2.IICINTM bit is 1 during master transmission in simple I²C mode, set the event link controller (ELC) so that receive data full events are not used.
- (3) Transmit data empty event output
 - Indicates that the SCR.TE bit has been changed from 0 to 1.
- Indicates that transmit data have been transferred from the transmit data register (TDR or TDRL) to the transmit shift register (TSR).
- Indicates that transmission has been completed in smart card interface mode.
- Indicates that NACK has been detected if the SIMR2.IICINTM bit is 0 in simple I²C mode.
- Indicates that the ninth-bit SSCL5 falling edge has been detected if the SIMR2.IICINTM bit is 1 in simple I²C mode.
- (4) Transmit end event output
- Indicates the completion of transmission.
- Indicates that the starting condition, resumption condition, or termination condition has been generated in simple I²C mode.

27.14 Usage Notes

27.14.1 Setting the Module Stop Function

Module stop control register B (MSTPCRB) and module stop control register C (MSTPCRC) are used to stop and start SCI operations. With the value after a reset, SCI operations are stopped. Register access is enabled by releasing the module stop state. For details, refer to section 11, Low Power Consumption.

27.14.2 Break Detection and Processing

When a framing error is detected, a break can be detected by reading the RXDn pin value directly. In a break, the input from the RXDn pin becomes all 0s, and so the SSR.FER flag is set to 1 (framing error has occurred), and the SSR.PER flag may also be set to 1 (parity error has occurred). When the SEMR.RXDESEL bit is 0, the SCI continues the receive operation even after a break is received. Therefore, note that even if the FER flag is set to 0 (no framing error occurred), it will be set to 1 again. When the SEMR.RXDESEL bit is 1, the SCI sets the SSR.FER flag to 1 and stops receiving operation until a start bit of the next data frame is detected. If the SSR.FER flag is set to 0 at this time, the SSR.FER flag retains 0 during the break. When the RXDn pin becomes high and the break ends, detecting the beginning of the start bit at the first falling edge of the RXDn pin allows the SCI to start the receiving operation.

27.14.3 Mark State and Sending Breaks

When the SCR.TE bit is 0 (serial transmission is disabled), the TXDn pin becomes high-impedance. To forcibly set the TXDn pin to mark or space state while the TE bit is 0, set the I/O port associated registers and switch the TXDn pin to general output port.

For holding the communication line in the mark ("1") state until the TE bit is set to 1 (serial transmission is enabled), set the corresponding bit in the PODR register to 1 for high output from general output port. To start communications, set the TE bit to 1 and then the corresponding bit in the PMR register to 1.

To send a break (the space state for longer than a certain period of time) while data transmission, set the corresponding bit in the PODR register to 0 (low output), and set the corresponding bit in the PMR register to 0 (general I/O port). Then set the TE bit to 0 if necessary. When the TE bit is set to 0, the transmitter is initialized regardless of the current transmit status.

27.14.4 Receive Error Flags and Transmit Operations (Clock Synchronous Mode and Simple SPI Mode)

Transmission cannot be started when a receive error flag (ORER) in the SSR register is set to 1, even if data is written to the TDR register. Be sure to set the receive error flags to 0 before starting transmission. Note also that the receive error flags cannot be set to 0 even if the SCR.RE bit is set to 0 (serial reception is disabled).

27.14.5 Writing Data to the TDR Register

Data can be written to registers TDR, TDRH, and TDRL. However, if new data is written to registers TDR, TDRH, and TDRL when transmit data is remaining in registers TDR, TDRH, and TDRL, the previous data in registers TDR, TDRH, and TDRL is lost because it has not been transferred to the TSR register yet. Be sure to write transmit data to registers TDR, TDRH, and TDRL in the TXI interrupt request handling routine.

27.14.6 Restrictions on Clock Synchronous Transmission (Clock Synchronous Mode and Simple SPI Mode)

When the external clock source is used as a synchronization clock, the following restrictions apply.

(1) Start of transmission

Update TDR by the CPU or DTC and wait for at least five PCLK cycles before allowing the transmit clock to be input (refer to Figure 27.75).

(2) Continuous transmission

- (a) Write the next transmit data to TDR or TDRL before the falling edge of the transmit clock (bit 7) (refer to Figure 27.75).
- (b) When updating TDR after bit 7 has started to transmit, update TDR while the synchronization clock is in the low-level period, and set the high-level width of the transmit clock (bit 7) to four PCLK cycles or longer (refer to Figure 27.75).

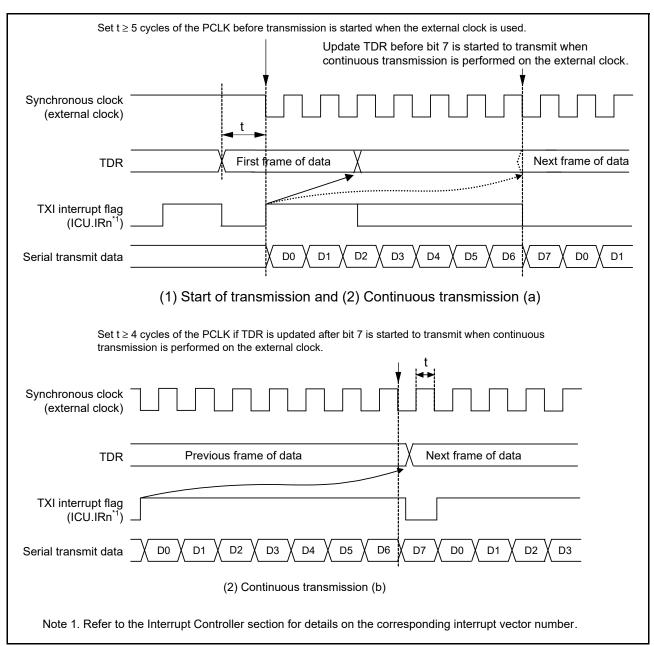


Figure 27.75 Restrictions on Use of External Clock in Clock Synchronous Transmission

27.14.7 Restrictions on Using DTC

When using the DTC to read RDR, RDRH, and RDRL, be sure to set the receive data full interrupt (RXI) as the activation source of the relevant SCI.

27.14.8 Notes on Starting Transfer

At the point where transfer starts when the interrupt status flag (IRn.IR flag) in the interrupt controller is 1, follow the procedure below to clear interrupt requests before permitting operations (by setting the SCR.TE or SCR.RE bit to 1). For details on the interrupt status flag, refer to section 14, Interrupt Controller (ICUb).

- Confirm that transfer has stopped (the setting of the SCR.TE or SCR.RE bits is 0).
- Set the corresponding interrupt enable bit (SCR.TIE or SCR.RIE) to 0.
- Read the corresponding interrupt enable bit (SCR.TIE or SCR.RIE bit) to check that it has become 0.
- Set the interrupt status flag (IRn.IR flag) in the interrupt controller to 0.

27.14.9 SCI Operations during Low Power Consumption State

(1) Transmission

When making settings for the module stopped state or in transitions to software standby, stop operations (by setting the TIE, TE, and TEIE bits in the SCR register to 0) after switching the TXDn pin to the general I/O port pin function. Setting the TE bit to 0 resets the TSR register and the SSR.TEND flag. Depending on the port settings, output pins may output the level before a transition to the low power consumption state is made after release from the module stopped state or software standby mode. When transitions to these states are made during transmission, the data being transmitted become indeterminate.

To transmit data in the same transmit mode after cancellation of the low power consumption state, set the TE bit to 1, read SSR, and write data to TDR sequentially to start data transmission. To transmit data with a different transmit mode, initialize the SCI first.

Figure 27.76 shows a sample flowchart for transition to software standby mode during transmission. Figure 27.77 and Figure 27.78 show the port pin states during transition to software standby mode.

Before specifying the module stop state or making a transition to software standby mode from the transmit mode using DTC transfer, stop the transmit operations (TE = 0). To start transmission after cancellation using the DTC, set the TE and TIE bits to 1. The TXI interrupt flag is set to 1 and transmission starts using the DTC.

(2) Reception

Before specifying the module stop state or making a transition to software standby mode, stop the receive operations (SCR.RE = 0). If transition is made during data reception, the data being received will be invalid.

To receive data in the same receive mode after cancellation of the low power consumption state, set the RE bit to 1, and then start receive data in a different receive mode, initialize the SCI first.

Figure 27.79 shows a sample flowchart for transition to software standby mode during reception.

Figure 27.76 Example of Flowchart for Transition to Software Standby Mode during Transmission

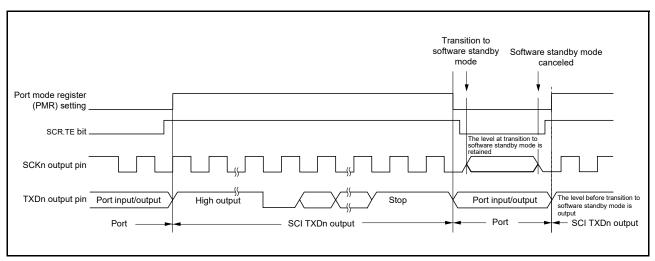


Figure 27.77 Port Pin States during Transition to Software Standby Mode (Internal Clock, Asynchronous Transmission)

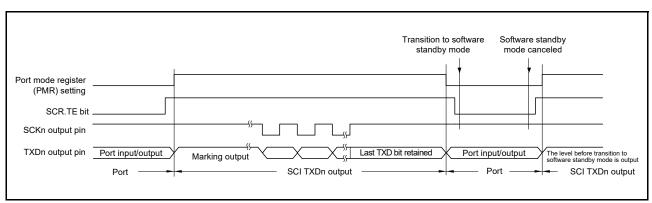


Figure 27.78 Port Pin States during Transition to Software Standby Mode (Internal Clock, Clock Synchronous Transmission)

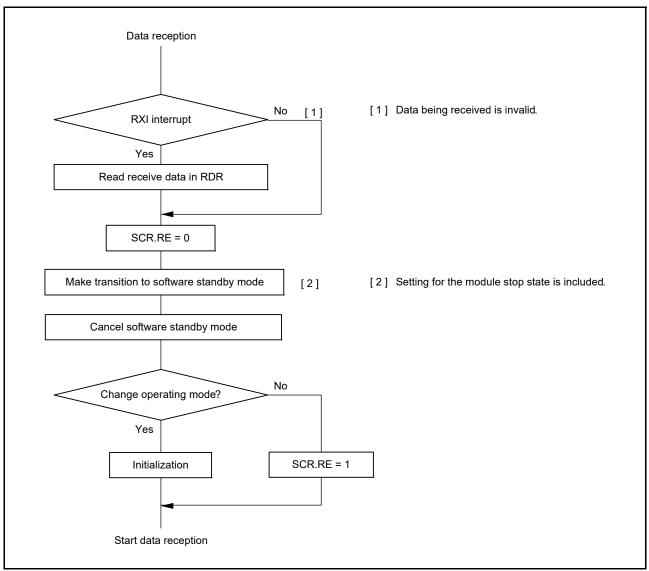


Figure 27.79 Example of Flowchart for Transition to Software Standby Mode during Reception

27.14.10 External Clock Input in Clock Synchronous Mode and Simple SPI Mode

In clock synchronous mode and simple SPI mode, the external clock SCKn must be input as follows: High-pulse period, low-pulse period = 2 PCLK cycles or more, period = 6 PCLK cycles or more

27.14.11 Limitations on Simple SPI Mode

(1) Master Mode

- Use a resistor to pull up or pull down the clock line matching the initial settings for the transfer clock set by the SPMR.CKPH and CKPOL bits when the SPMR.SSE bit is 1.
 - This prevents the clock line from being placed in the high-impedance state when the SCR.TE bit is set to 0 or unexpected edges from being generated on the clock line when the SCR.TE bit is changed from 0 to 1. When the SPMR.SSE bit is 0 in single master mode, pulling up or pulling down the clock line is not necessary because the clock line is not placed in the high-impedance state even when the SCR.TE bit is set to 0.
- In the case of the setting for clock delay (SPMR.CKPH bit is 1), the receive data full interrupt (RXI) is generated before the final clock edge on the SCKn pin as indicated in Figure 27.80. If the TE and RE bits in the SCR become 0 at this time before the final edge of the clock signal on the SCKn pin, the SCKn pin is placed in the high-impedance state, so the width of the last clock pulse of the transfer clock is shortened. Furthermore, an RXI interrupt may lead to the input signal on the SSn# pin of a connected slave going to the high level before the final edge of the clock signal on the SCKn pin, leading to incorrect operation of the slave.
- In a multi-master configuration, take care because the SCKn pin output becomes high-impedance while the input on
 the SSn# pin is at the low level if a mode fault error occurs as the current character is being transferred, stopping
 supply of the clock signal to the connected slave. Remake the settings for the connected slave to avoid misaligned
 bits when transfer is restarted.

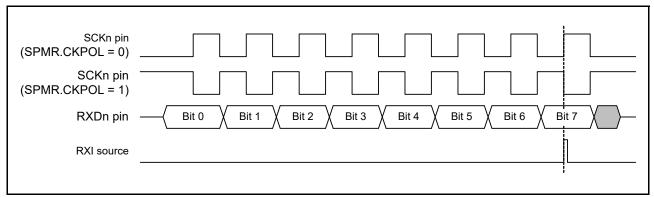


Figure 27.80 Timing of the RXI Interrupt in Simple SPI Mode (with Clock Delay)

(2) Slave Mode

- Secure at least five cycles of the PCLK from writing transmit data in the TDR register to start of the external clock input. Also secure at least five cycles of the PCLK from input of low level on the SSn# pin to start of the external clock input.
- Provide an external clock signal from the master the same as the transmit/receive data length.
- Control the input on the SSn# pin before the start and after the end of data transfer.
- When the level being input on the SSn# pin is to be changed from low to high while the current character is being transferred, set the TE and RE bits in the SCR to 0 and, after remaking the settings, restart transfer of the first byte.

27.14.12 Limitation 1 on Usage of the Extended Serial Mode Control Section

When the PCR.SHARPS bit is set to 1, output on the TXDX12/RXDX12 pin is only possible when the following conditions apply.

- The timer of the SCIh module is in Break Field low width output mode and the value of the TCR.TCST bit is 1 (when the TCST bit is set to 1, the high level continues to be output for up to one cycle of the clock source for counting by the timer counter before output of the low level)
- The value of the SCI12.SCR.TE bit is 1.

27.14.13 Limitation 2 on Usage of the Extended Serial Mode Control Section

An SCIg interrupt request is generated even if the extended serial mode is enabled. However, the SCIg interrupt should not be used during reception of a Start Frame because SCIh uses an SCIg interrupt request.

The two ways of dealing with this are described below. When a receive error is detected, clear the error flag of the SCIg and initialize the control section of the SCIh.

- (1) Set the SCR.RIE bit of the SCIg to 0 to disable the output of interrupt requests. Check the error flags in the SSR register for SCIg on completion of the reception of a Start Frame, because an ERI interrupt is not generated if a receive error occurs. After reception of the Start Frame is completed, set the SCR.RIE bit of the SCIg to 1 by the time the first byte of the Information Frame is received.
- (2) Set the SCR.RIE bit of the SCIg to 1 to disable RXI interrupts and enable ERI interrupts for ICU.

 Clear the IRn.IR flag to enable the acceptance of RXI interrupts by ICU by the time the first byte of the Information Frame is received after the completion of Start Frame reception.

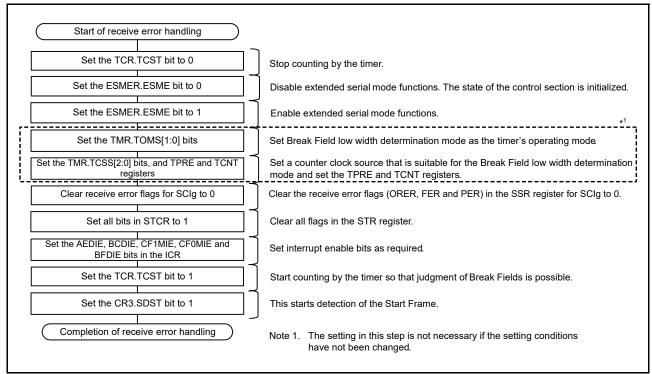


Figure 27.81 Example of Flowchart for Receive Error Handling (during Reception of the Start Frame)

27.14.14 Note on Transmit Enable Bit (TE Bit)

When setting the SCR.TE bit to 0 (serial transmission is disabled) while the pin function is "TXDn", output of the pin becomes high-impedance.

Prevent the TXDn line from becoming high-impedance by any of the following ways:

- (1) Connect a pull-up resistor to the TXDn line.
- (2) Change the pin function to "general-purpose I/O port, output" before setting the SCR.TE bit to 0. Set the SCR.TE bit to 1 before changing the pin function to "TXDn".

27.14.15 Note on Stopping Reception When Using the RTS Function in Asynchronous Mode

One clock cycle of PCLK is required for the time from setting the SCR.RE bit to 0 to stopping the RTS signal generator in asynchronous mode.

When reading the RDR (or RDRL) register after setting the SCR.RE bit to 0, confirm that the RE bit has been set to 0 before reading the RDR (or RDRL) register to prevent these two processes from being performed consecutively.

28. Remote Control Signal Receiver (REMC)

This MCU has a two-channel remote control signal receiver (REMC). The REMC can receive data by checking the width and period of an external pulse input signal.

28.1 Overview

Table 28.1 lists the REMC specifications. Figure 28.1 shows a block diagram of the REMC.

Table 28.1 REMC Specifications

	Description	
Item	REMC0	REMC1
External pulse input	PMC0	PMC1
Operating clock sources*1	IWDTCLK*2 Sub-clock HOCO clock*3 TMR compare match output (TMO0) PCLKB	IWDTCLK*2 Sub-clock HOCO clock*3 TMR compare match output (TMO2) PCLKB
Detection patterns	 Header pattern Data '0' pattern Data '1' pattern Special data pattern 	
Receive buffer	8 bytes (64 bits)	
Interrupt request signal	REMCI0	REMCI1
Interrupt request source	Compare match Receive error Completion of data reception Receive buffer full Header pattern match Data '0' pattern or data '1' pattern match Special data pattern match	
Selectable functions	 Input signal inversion Digital filter (matching three or two times)*4 Pattern end setting 	
Low power consumption	 Module stop state can be set for each channel. Signal reception during low power consumption response to the REMC interrupt request are available. 	state and recovery from low power consumption state in allable.

Note 1. Satisfy the frequency of the peripheral module clock (PCLKB) > the frequency of the REMC operating clock.

Note 2. IWDTCLK is a clock supplied from the IWDT-dedicated on-chip oscillator.

Note 3. HOCO clock is a clock supplied from the high-speed on-chip oscillator (HOCO).

Note 4. The sampling clock of the digital filter is an operating clock selected by the REMCON1.CSRC[3:0] bits, or the IWDTCLK.

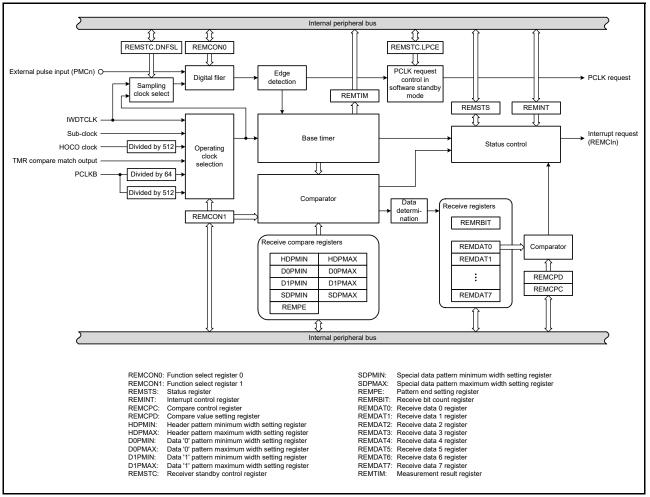


Figure 28.1 REMC Block Diagram (n = 0, 1)

Table 28.2 lists the input pins used for the REMC.

Table 28.2 REMC Pin Configuration

Channel	Pin Name	I/O	Function
REMC0	PMC0	Input	External pulse signal input
REMC1	PMC1	Input	External pulse signal input

28.2 Registers

28.2.1 Function Select Register 0 (REMCON0)

Address(es): REMC0.REMCON0 000A 0B00h, REMC1.REMCON0 000A 0B80h

Bit	Symbol	Bit Name	Description	R/W
b0	ENFLG	Remote Control Status Flag*1	0: Stopped 1: Operating	R
b1	INV	Input Signal Inversion*2	0: Not inverted 1: Inverted	R/W
b2	FIL	Digital Filter Enable/Disable Setting*2	Disables the digital filter for matching three or two times. Enables the digital filter for matching three or two times.	R/W
b3	INFLG	Input Signal Flag* ¹	O: The level of the internal input signal of the remote control signal receiver is low. 1: The level of the internal input signal of the remote control signal receiver is high.	R
b4	EC	Receive Error Capture Operation Select*2	O: Captures the data after an error pattern is received. Does not capture the data after an error pattern is received.	R/W
b5	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b6	FILSEL	Digital Filter Function Select*2	Digital filter for matching three times Digital filter for matching two times	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

Note 1. These flags become 0 when the REMCON1.EN bit is set to 0.

ENFLG Flag (Remote Control Status Flag)

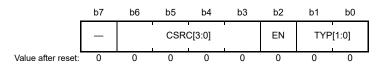
This flag can be used to confirm whether the remote control signal receiver is stopped or operating. This flag changes after zero to one clock when a value is written to the REMCON1.EN bit.

FIL Bit (Digital Filter Enable/Disable Setting)

This bit enables or disables the digital filter.

INFLG Flag (Input Signal Flag)

This flag can be used to confirm the level of the internal input signal of the remote control signal receiver. The confirmed level is the result set by the INV and FIL bits.


EC Bit (Receive Error Capture Operation Select)

This bit can be used to set capture operation to the REMRBIT and REMDATj registers (j = 0 to 7) after an error pattern is received.

Note 2. These bits can be rewritten when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped).

28.2.2 Function Select Register 1 (REMCON1)

Address(es): REMC0.REMCON1 000A 0B01h, REMC1.REMCON1 000A 0B81h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	TYP[1:0]	Receive Mode Select*1	These bits can be used to select the format for capturing the remote control signal waveform. b1 b0 0 0: Format A shown in section 28.3.3, Pattern Setting. 0 1: Format B shown in section 28.3.3, Pattern Setting. 1 0: Format C shown in section 28.3.3, Pattern Setting. 1 1: Setting prohibited	
b2	EN	Remote Control	Operation disabled Operation enabled	R/W
b6 to b3	CSRC[3:0]	Operating Clock Select*2	x 0 0 0: IWDTCLK x 0 1 0: TMR compare match output x 1 0 0: Sub-clock x 1 0 1: HOCO clock/512 0 1 1 0: PCLKB/64 1 1 1 0: PCLKB/512	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

x: Don't care

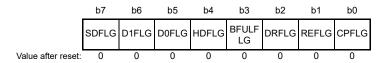
EN Bit (Remote Control)

This bit enables or disables REMC operation.

Use the REMCON0.ENFLG flag to confirm whether operation has started or not.

CSRC[3:0] Bits (Operating Clock Select)

These bits select the operating clock for the REMC.


Satisfy the frequency of the operating clock < the frequency of the PCLKB.

Note 1. To rewrite the TYP[1:0] bits when the REMCON1.EN bit or REMCON0.ENFLG flag is 1 (REMC is operating), change the values of these bits one bit at a time.

Note 2. These bits can be rewritten when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped).

28.2.3 Status Register (REMSTS)

Address(es): REMC0.REMSTS 000A 0B02h, REMC1.REMSTS 000A 0B82h

Bit	Symbol	Bit Name	Description	R/W
b0	CPFLG	Compare Match Flag	0: Mismatch 1: Match	R
b1	REFLG	Receive Error Flag	No error has occurred. An error has occurred.	R
b2	DRFLG	Data Receiving Flag	Waiting for data reception. Data is being received.	R
b3	BFULFLG	Receive Buffer Full Flag	Receive buffer is empty. Receive buffer is full (64 bits received).	R/(W) *1
b4	HDFLG	Header Pattern Match Flag	0: Mismatch 1: Match	R
b5	D0FLG	Data '0' Pattern Match Flag	0: Mismatch 1: Match	R
b6	D1FLG	Data '1' Pattern Match Flag	0: Mismatch 1: Match	R
b7	SDFLG	Special Data Pattern Match Flag	0: Mismatch 1: Match	R

Note: If updating and reading data overlap, an undefined value may be read. For details on reading this register, see section 28.4.9, Reading Registers.

Note: This register becomes 00h when the REMCON1.EN bit is set to 0.

Note 1. Only 0 can be written to clear the flag. However, if this flag is written when changing the REMCON0.INFLG flag, the value read from this flag may become undefined.

CPFLG Flag (Compare Match Flag)

This flag indicates the comparison result between the value of the REMCPD register specified by the REMCPC.CPN[2:0] bits and the data to be stored in the REMDAT0 register.

[Setting condition]

• When the value of the REMCPD register matches the value to be stored in the REMDAT0 register (when the setting value of the REMCPC.CPN[2:0] bits is n, bits n to 0 in the REMCPD register match bits n to 0 in the REMDAT0 register)

[Clearing conditions]

- When the DRFLG flag changes from 0 to 1 (next frame reception starts)
- When the HDFLG flag changes from 0 to 1

REFLG Flag (Receive Error Flag)

This flag indicates that a receive error has occurred. The setting conditions differ depending on the value of the REMCON1.TYP[1:0] bits.

[Setting condition]

When the REMCON1.TYP[1:0] bits are 00b (format A):

- The data '0', data '1', or special data pattern is detected prior to receiving the header pattern
- The width between a rising edge and the next rising edge of the input signal is not the header, data '0', data '1', or special data pattern (when the REMCON0.INV bit is 0)
- A conflict occurs between when data reception is completed (timing when the DRFLG flag changes from 1 to 0) and when the new input signal changes.

When the REMCON1.TYP[1:0] bits are 01b (format B):

- The data '0', data '1', or special data pattern is detected prior to receiving the header pattern
- The width between a falling edge and the next falling edge of the input signal is not the data '0', data '1', or special data pattern (when the REMCON0.INV bit is 0)
- A conflict occurs between when data reception is completed (timing when the DRFLG flag changes from 1 to 0) and when the new input signal changes.

When the REMCON1.TYP[1:0] bits are 10b (format C):

- The width between a rising edge and the next rising edge of the input signal is not the header, data '0', data '1', or special data pattern (when the REMCON0.INV bit is 0)
- A conflict occurs between when data reception is completed (timing when the DRFLG flag changes from 1 to 0) and when the new input signal changes.

[Clearing conditions]

- The header pattern is detected
- When the DRFLG flag changes from 0 to 1 (next frame reception starts).

DRFLG Flag (Data Receiving Flag)

This flag indicates the state of receiving the remote control signal.

[Setting condition]

• Rising edge of REMC internal input signal (when the REMCON0.INV bit is 0)

[Clearing condition]

• This flag becomes 0 after one cycle of the operating clock when the value of the base timer is greater than any value of the HDPMAX, D0PMAX, D1PMAX, SDPMAX, and REMPE registers.

BFULFLG Flag (Receive Buffer Full Flag)

[Setting condition]

• When the value of the REMRBIT register becomes 64

[Clearing conditions]

- When the HDFLG flag changes from 0 to 1
- When the DRFLG flag changes from 0 to 1 (next frame reception starts)
- This flag becomes 0 after one to two cycles when 0 is written to the BFULFLG flag.

HDFLG Flag (Header Pattern Match Flag)

[Setting condition]

• See Table 28.3, Measurement Results and Flags.

[Clearing conditions]

- When the DRFLG flag changes from 0 to 1 (next frame reception starts)
- When the REFLG flag changes from 0 to 1
- See Table 28.3, Measurement Results and Flags.

D0FLG Flag (Data '0' Pattern Match Flag)

[Setting condition]

See Table 28.3, Measurement Results and Flags.

[Clearing conditions]

- When the DRFLG flag changes from 0 to 1 (next frame reception starts)
- When the REFLG flag changes from 0 to 1
- See Table 28.3, Measurement Results and Flags.

D1FLG Flag (Data '1' Pattern Match Flag)

[Setting condition]

See Table 28.3, Measurement Results and Flags.

[Clearing conditions]

- When the DRFLG flag changes from 0 to 1 (next frame reception starts)
- When the REFLG flag changes from 0 to 1
- See Table 28.3, Measurement Results and Flags.

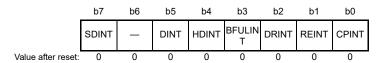
SDFLG Flag (Special Data Pattern Match Flag)

[Setting condition]

• See Table 28.3, Measurement Results and Flags.

[Clearing conditions]

- When the DRFLG flag changes from 0 to 1 (next frame reception starts)
- When the REFLG flag changes from 0 to 1
- See Table 28.3, Measurement Results and Flags.


Table 28.3 Measurement Results and Flags

Comparison Result between REMTIM Register Value	Flag Value			
(Measurement Result) and Each Register	HDFLG	D0FLG	D1FLG	SDFLG
Between HDPMIN and HDPMAX	1	0	0	0
Between D0PMIN and D0PMAX	0	1*1	0	0
Between D1PMIN and D1PMAX	0	0	1*1	0
Between SDPMIN and SDPMAX	0	0	0	1*1
Values not listed above	0	0	0	0

Note 1. When the REMCON1.TYP[1:0] bits are 00b or 01b, the D0FLG, D1FLG, and SDFLG flags remain unchanged until the header pattern is detected.

28.2.4 Interrupt Control Register (REMINT)

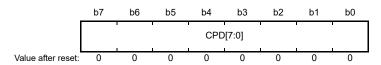
Address(es): REMC0.REMINT 000A 0B03h, REMC1.REMINT 000A 0B83h

Bit	Symbol	Bit Name	Description	R/W
b0	CPINT	Compare Match Interrupt Enable*1	0: Disabled 1: Enabled	R/W
b1	REINT	Receive Error Interrupt Enable*1	0: Disabled 1: Enabled	R/W
b2	DRINT	Data Reception Complete Interrupt Enable	0: Disabled 1: Enabled	R/W
b3	BFULINT	Receive Buffer Full Interrupt Enable*1	0: Disabled 1: Enabled	R/W
b4	HDINT	Header Pattern Match Interrupt Enable *1	0: Disabled 1: Enabled	R/W
b5	DINT	Data '0' Pattern or Data '0' Pattern Match Interrupt Enable	0: Disabled 1: Enabled	R/W
b6	_	Reserved	The read value is undefined. The write value should be 0.	R/W
b7	SDINT	Special Data Pattern Match Interrupt Enable*1	0: Disabled 1: Enabled	R/W

Note 1. These bits can be rewritten when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped).

28.2.5 Compare Control Register (REMCPC)

Address(es): REMC0.REMCPC 000A 0B04h, REMC1.REMCPC 000A 0B84h

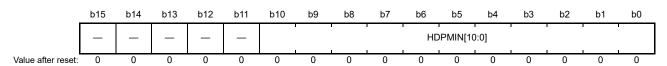


Bit	Symbol	Bit Name	Description	R/W
b2 to b0	CPN[2:0]	Compare Bit Count Specification *1	When the setting value of the CPN[2:0] bits is n, bits n to 0 are compared. Example 1) Setting value: 0 Bit 0 in the REMCPD register and bit 0 in the REMDAT0 register are compared Example 2) Setting value: 7 Bits 7 to 0 in the REMCPD register and bits 7 to 0 in the REMDAT0 register are compared	R/W
b7 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. These bits can be rewritten when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped).

28.2.6 Compare Value Setting Register (REMCPD)

Address(es): REMC0.REMCPD 000A 0B05h, REMC1.REMCPD 000A 0B85h

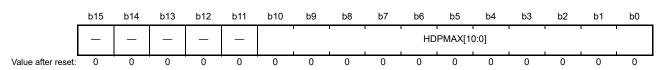


Bit	Symbol	Bit Name	Description	R/W
b7 to b0	CPD[7:0]	Compare Value Setting*1	Set the value to be compared with the data in the REMDAT0 register when the compare function is used. The REMCPC.CPN[2:0] bits can be used to set the number of bits to be compared.	R/W

Note 1. These bits can be rewritten when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped).

28.2.7 Header Pattern Minimum Width Setting Register (HDPMIN)

Address(es): REMC0.HDPMIN 000A 0B06h, REMC1.HDPMIN 000A 0B86h

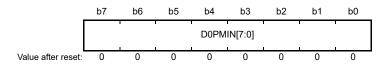


Bit	Symbol	Bit Name	Description	R/W
b10 to b0	HDPMIN[10:0]	Header Pattern Minimum Width Setting*1	Set the minimum width of header pattern. Setting range: 000h to 7FFh	R/W
b15 to b11	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. These bits can be rewritten when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped).

28.2.8 Header Pattern Maximum Width Setting Register (HDPMAX)

Address(es): REMC0.HDPMAX 000A 0B08h, REMC1.HDPMAX 000A 0B88h

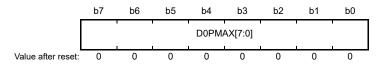


Bit	Symbol	Bit Name	Description	R/W
b10 to b0	HDPMAX[10:0]	Header Pattern Maximum Width Setting*1	Set the maximum width of header pattern. Setting range: 000h to 7FFh	R/W
b15 to b11	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. These bits can be rewritten when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped).

28.2.9 Data '0' Pattern Minimum Width Setting Register (D0PMIN)

Address(es): REMC0.D0PMIN 000A 0B0Ah, REMC1.D0PMIN 000A 0B8Ah

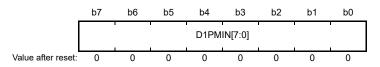


Bit	Symbol	Bit Name	Description	R/W
b7 to b0	D0PMIN[7:0]	Data '0' Pattern Minimum Width Setting *1	Set the minimum width of data '0' pattern. Setting range: 00h to FFh	R/W

Note 1. These bits can be rewritten when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped).

28.2.10 Data '0' Pattern Maximum Width Setting Register (D0PMAX)

Address(es): REMC0.D0PMAX 000A 0B0Bh, REMC1.D0PMAX 000A 0B8Bh

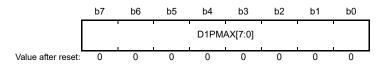


Bit	Symbol	Bit Name	Description	R/W
b7 to b0	D0PMAX[7:0]	Data '0' Pattern Maximum Width Setting *1	Set the maximum width of data '0' pattern. Setting range: 00h to FFh	R/W

Note 1. These bits can be rewritten when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped).

28.2.11 Data '1' Pattern Minimum Width Setting Register (D1PMIN)

Address(es): REMC0.D1PMIN 000A 0B0Ch, REMC1.D1PMIN 000A 0B8Ch

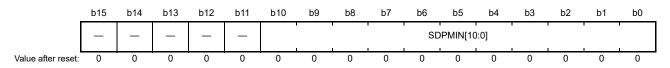


Bit	Symbol	Bit Name	Description	R/W
b7 to b0	D1PMIN[7:0]	Data '1' Pattern Minimum Width Setting *1	Set the minimum width of data '1' pattern. Setting range: 00h to FFh	R/W

Note 1. These bits can be rewritten when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped).

28.2.12 Data '1' Pattern Maximum Width Setting Register (D1PMAX)

Address(es): REMC0.D1PMAX 000A 0B0Dh, REMC1.D1PMAX 000A 0B8Dh

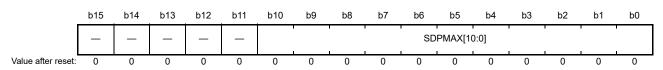


Bit	Symbol	Bit Name	Description	R/W
b7 to b0	D1PMAX[7:0]	Data '1' Pattern Maximum Width Setting *1	Set the maximum width of data '1' pattern. Setting range: 00h to FFh	R/W

Note 1. These bits can be rewritten when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped).

28.2.13 Special Data Pattern Minimum Width Setting Register (SDPMIN)

Address(es): REMC0.SDPMIN 000A 0B0Eh, REMC1.SDPMIN 000A 0B8Eh



Bit	Symbol	Bit Name	Description	R/W
b10 to b0	SDPMIN[10:0]	Special Data Pattern Minimum Width Setting*1	Set the minimum width of special data pattern. Setting range: 000h to 7FFh	R/W
b15 to b11	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. These bits can be rewritten when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped).

28.2.14 Special Data Pattern Maximum Width Setting Register (SDPMAX)

Address(es): REMC0.SDPMAX 000A 0B10h, REMC1.SDPMAX 000A 0B90h

Bit	Symbol	Bit Name	Description	R/W
b10 to b0	SDPMAX[10:0]	Special Data Pattern Maximum Width Setting*1	Set the maximum width of special data pattern. Setting range: 000h to 7FFh	R/W
b15 to b11	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. These bits can be rewritten when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped).

28.2.15 Pattern End Setting Register (REMPE)

Address(es): REMC0.REMPE 000A 0B12h, REMC1.REMPE 000A 0B92h



Bit	Symbol	Bit Name	Description	R/W
b10 to b0	PE[10:0]	Pattern End Width Setting* ¹	Set the width of pattern end. Setting range: 000h to 7FFh	R/W
			These bits can be used to set the timing at which the REMSTS.DRFLG flag changes from 1 to 0.	
b15 to b11	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. These bits can be rewritten when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped).

28.2.16 Receiver Standby Control Register (REMSTC)

Address(es): REMC0.REMSTC 000A 0B14h, REMC1.REMSTC 000A 0B94h

Bit	Symbol	Bit Name	Description	R/W
b0	LPCE	Low Power Control Enable*1	The PCLK supply in software standby mode is disabled. The PCLK supply in software standby mode is enabled.	R/W
b1	DNFSL	Digital Filter Clock Selection*2	REMC operating clock is selected as a sampling clock I: IWDTCLK is selected as a sampling clock	R/W
b7 to b2		Reserved	These bits are read as 0. The write value should be 0.	R/W

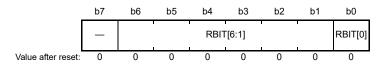
Note 1. Set this bit to 1 when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped)

LPCE Bit (Low Power Control Enable)

This bit enables or disables the PCLK supply when the input level of the PMCn pin is changed in software standby mode. When this bit is set to 1 (the PCLK supply in software standby mode is enabled) and the input level of the PMCn pin is changed, each oscillator that was once operating before transition to software standby mode resumes its operation and starts supplying the PCLK. Therefore, data can be received even if PCLKB/64 or PCLKB/512 is selected as the REMC operating clock. In addition, the PCLK supply is restarted when the oscillation stabilization time of the oscillator is elapsed after the change of the input level of the PMCn pin. During that time, the REMC operating clock is not supplied and the base timer is stopped. Select the high-speed on-chip oscillator (HOCO) as the system clock source.

When setting this bit to 1, set the REMCON0.FIL bit to 1 (enables the digital filter) and set the REMSTC.DNFSL bit to 1 (IWDTCLK is selected as a sampling clock).

After returning from software standby mode due to a compare match interrupt or header pattern match interrupt, set this bit to 0.


DNFSL Bit (Digital Filter Clock Selection)

This bit is used to select the sampling clock of the digital filter. Set this bit to 1 when setting the LPCE bit to 1 (the PCLK supply in software standby mode is enabled).

Note 2. This bit can be rewritten when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped).

28.2.17 Receive Bit Count Register (REMRBIT)

Address(es): REMC0.REMRBIT 000A 0B15h, REMC1.REMRBIT 000A 0B95h

Bit	Symbol	Bit Name	Description	R/W
b0	RBIT[0]	Receive Bit Count Check 0	Receive bit count can be read. These bits indicate the bit position of the buffer to be stored	R/W
b6 to b1	RBIT[6:1]	Receive Bit Count Check 6 to 1	 by counting the detected data '0' pattern or data '1' pattern. When the receive bit count exceeds 64 (40h), the value returns to 1. The header pattern and special data pattern are not counted. If an error is detected while the REMCON0.EC bit is 1, the value is not incremented even when the data '0' pattern or data '1' pattern is detected. The REMRBIT register becomes 00h when the REMSTS.DRFLG flag changes from 0 to 1. The REMRBIT register becomes 00h when the REMSTS.HDFLG flag changes from 0 to 1. When 0 is written to the REMRBIT.RBIT[0] bit, the value of the REMRBIT register becomes 00h after one to two cycles of the operating clock. 	R
b7	_	Reserved	The read value is undefined. The write value should be 0.	R/W

Note: If updating and reading data overlap, an undefined value may be read. For details on reading this register, see section 28.4.9, Reading Registers.

Note: The values of this register are initialized when the REMCON1.EN bit is 0.

28.2.18 Receive Data 0 Register (REMDAT0)

Address(es): REMC0.REMDAT0 000A 0B16h, REMC1.REMDAT0 000A 0B96h

Bit	Symbol	Bit Name	Description	R/W
b0	DAT0[0]	Receive Data 0 Store Bit 0	Receive data is stored.	R/W
b7 to b1	DAT0[7:1]	Receive Data 0 Store Bits 7 to 1	 The values of the REMDAT0 to REMDAT7 registers become all 00h after one to two cycles of the operating clock when 0 is written to bit 0 in the REMDAT0 register. 	R

Note: If updating and reading data overlap, an undefined value may be read. For details on reading this register, see section 28.4.9, Reading Registers.

Note: The values of this register are initialized when the REMCON1.EN bit is 0.

28.2.19 Receive Data j Register (REMDATj) (j = 1 to 7)

Address(es): REMC0.REMDAT1 000A 0B17h, REMC0.REMDAT2 000A 0B18h, REMC0.REMDAT3 000A 0B19h, REMC0.REMDAT4 000A 0B1Ah, REMC0.REMDAT5 000A 0B1Bh, REMC0.REMDAT6 000A 0B1Ch, REMC0.REMDAT7 000A 0B1Dh, REMC1.REMDAT1 000A 0B97h, REMC1.REMDAT2 000A 0B98h, REMC1.REMDAT3 000A 0B99h, REMC1.REMDAT4 000A 0B9Ah, REMC1.REMDAT5 000A 0B9Bh, REMC1.REMDAT6 000A 0B9Ch, REMC1.REMDAT7 000A 0B9Dh

Bit	Symbol	Bit Name	Description	R/W
b7 to b0	DATj[7:0]	Receive Data j Store	Receive data is stored.	R

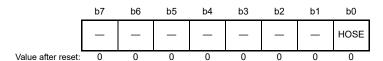
Note: If updating and reading data overlap, an undefined value may be read. For details on reading this register, see section 28.4.9, Reading Registers.

Note: The values of this register are initialized when the REMCON1.EN bit is 0.

When data '0' pattern or data '1' pattern is detected, the result is stored bit by bit as received data. For details on storing received data, see section 28.3.8, Receive Data Buffer.

28.2.20 Measurement Result Register (REMTIM)

Address(es): REMC0.REMTIM 000A 0B1Eh, REMC1.REMTIM 000A 0B9Eh


Bit	Symbol	Bit Name	Description	R/W
b10 to b0	TIM[10:0]	Measurement Result	The measurement result of each pattern width can be read. The value of the base timer is captured when one of the following patterns is detected. • Header pattern • Data '0' pattern • Data '1' pattern • Special data pattern • Data pattern other than the above (receive error)	R
b15 to b11	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note: If updating and reading data overlap, an undefined value may be read. For details on reading this register, see section 28.4.9, Reading Registers.

Note: The values of this register are initialized when the REMCON1.EN bit is 0.

28.2.21 HOCO Clock Supply Control Register (HOSCR)

Address(es): REMCOM.HOSCR 000A 0C00h

Bit	Symbol	Bit Name	Description	R/W
b0	HOSE	HOCO clock Supply Enable*1	Disables the HOCO clock supply Enables the HOCO clock supply	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. This bit can be rewritten when the REMCON1.EN bit and the REMCON0.ENFLG flag are both 0 (REMC is stopped).

HOSE Bit (HOCO clock Supply Enable)

This bit is used to control the HOCO clock supply to the REMC.

Rewrite this bit while the oscillation of the HOCO clock is stable. Do not rewrite the HOFCR.HOFXIN bit or HOCOCR.HCSTP bit while this bit is 1. Set this bit to 0 and stop the HOCO clock supply to the REMC when rewriting the HOFCR.HOFXIN bit and HOCOCR.HCSTP bit.

28.3 Operation

28.3.1 Overview of REMC Operation

Figure 28.2 shows an example of the remote control signal. The signal begins with a header, followed by a sequence of data. This header differs from the subsequent sequence of data in waveform, allowing the header and the data to be distinguished. The sequence of data contains custom code and data code, and 0 or 1 is distinguished depending on the bit length. After a stop bit, there is an interval during which the signal does not change (frame space), thus constituting a frame.

The time between the edges of the external input signal is measured using the base timer in the REMC. The patterns of the remote control signal are detected and the data is captured according to the measurement results.

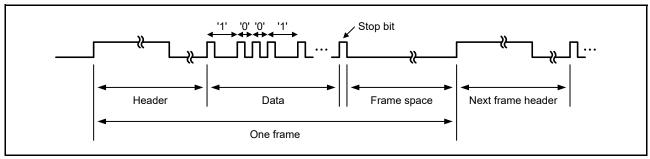


Figure 28.2 Example of Remote Control Signal

28.3.2 Initial Setting

Initialize the REMC according to the procedure shown in Figure 28.3 to receive the remote control signal. Set the REMCON1.EN bit to 0 if the REMC is operating. Then the REMCON0.ENFLG flag becomes 0 and the REMC stops the operation.

Set the format for the remote control signal waveform by the REMCON1.TYP[1:0] bits; select the signal inversion or non-inversion by the REMCON0.INV bit; select the operating clock by the REMCON1.CSRC[3:0] bits; and set the digital filter by the REMCON0.FIL, REMCON0.FILSEL, and REMSTC.DNFSL bits, while the REMCON0.ENFLG flag is 0. Set the detecting width for each data pattern into the HDPMIN, HDPMAX, D0PMIN, D0PMAX, D1PMIN, D1PMAX, SDPMIN, SDPMAX, and REMPE registers. Make any other settings such as enabling interrupts by the REMINT register and setting of the compare function by the REMCPC and REMCPD registers if required. After all necessary register settings are completed, set the REMCON1.EN bit to 1 to start REMC operation.

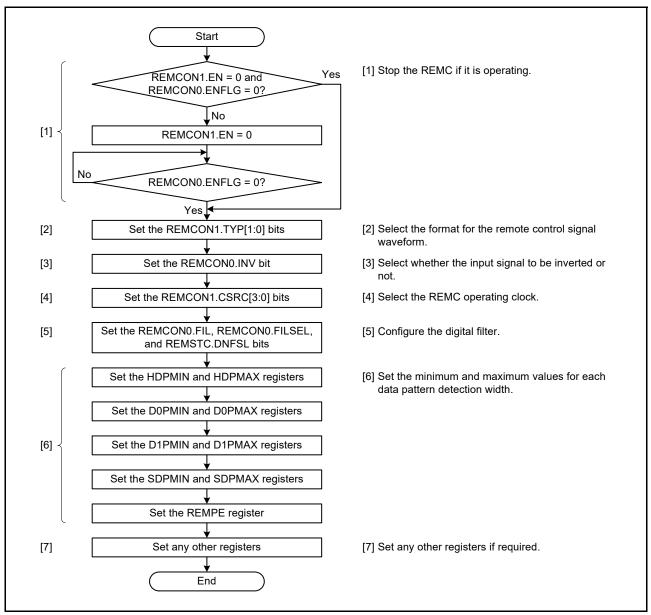


Figure 28.3 Example of Flowchart for Initial Settings of REMC

28.3.3 Pattern Setting

The format for capturing the remote control signal reception waveform can be set by setting the REMCON1.TYP[1:0] bits. Figure 28.4 and Figure 28.5 show examples of a remote control signal reception waveform captured by setting the REMCON1.TYP[1:0] bits.

When the REMCON1.TYP[1:0] bits are 00b (format A)

The measured result is determined from the setting value of the header pattern at the rising edge of the internal input signal.

When the header pattern is received, the measured result is determined from the setting values of the data '0', data '1' and special data patterns at the rising edge of the internal input signal.

When the REMCON1.TYP[1:0] bits are 01b (format B)

The measured result is determined from the setting value of the header pattern at the falling edge of the internal input signal.

When the header pattern is received, the measured result is determined from the setting values of the data '0', data '1' and special data patterns at the falling edge of the internal input signal.

The header pattern is detected once within one frame.

When the REMCON1.TYP[1:0] bits are 10b (format C)

The measured result is determined from the setting values of the header, data '0', data '1' and special data patterns at the rising edge of the internal input signal.

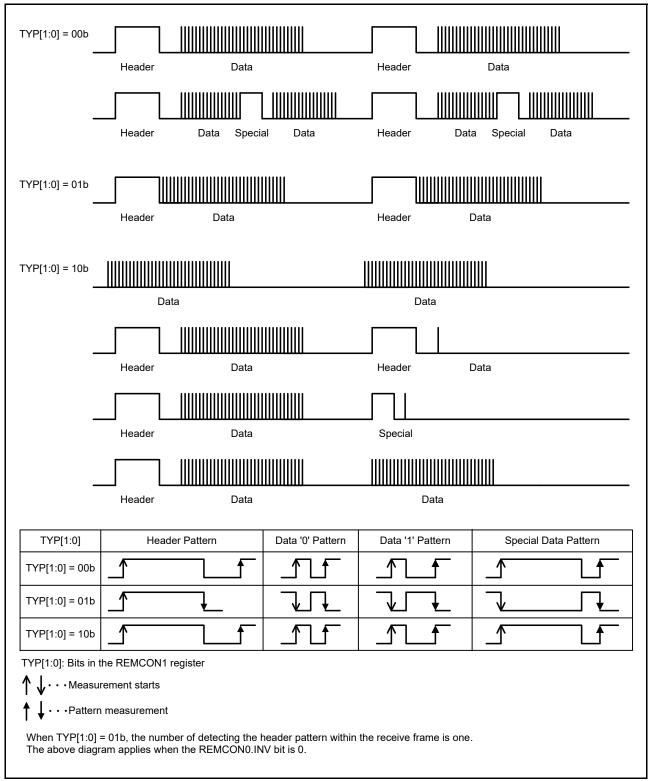


Figure 28.4 Example of Remote Control Signal Reception Waveform Captured by Setting REMCON1.TYP[1:0]
Bits (REMCON0.INV = 0)

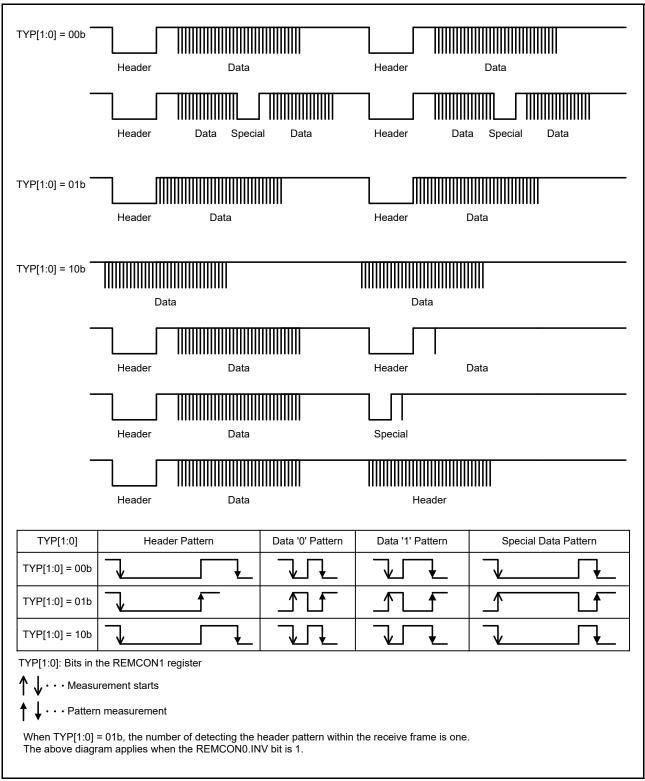


Figure 28.5 Example of Remote Control Signal Reception Waveform Captured by Setting REMCON1.TYP[1:0]
Bits (REMCON0.INV = 1)

28.3.4 Operating Clocks

The REMC can use one of the following clocks as its operating clock: the divided clock of the peripheral module clock (PCLKB), the IWDTCLK supplied from the IWDT-dedicated on-chip oscillator, the sub-clock supplied from the sub-clock oscillator, the divided clock of the HOCO clock supplied from the high-speed on-chip oscillator, or TMR compare match output.

When using the IWDTCLK as the sampling clock of the digital filter, it is necessary to supply the IWDTCLK. When supplying the IWDTCLK, sub-clock, or HOCO clock to the REMC, take note of the respective procedures for supplying these clocks. The following describes how to supply these clocks.

28.3.4.1 When Using IWDTCLK as REMC Operating Clock

This section describes the procedure for using the IWDTCLK supplied from the IWDT-dedicated on-chip oscillator as the REMC operating clock.

When the ILOCOCR.ILCSTP bit is set to 0, the IWDT-dedicated on-chip oscillator starts operating. After oscillation starts, the operating clock is supplied to the REMC when the oscillation stabilization wait time has elapsed. When continuing operation of the IWDT-dedicated on-chip oscillator in software standby mode, set the IWDTCSTPR.SLCSTP bit to 0.

For details on the ILOCOCR register, refer to section 9.2.8, IWDT-Dedicated On-Chip Oscillator Control Register (ILOCOCR). For details on the IWDTCSTPR register, refer to section 26.2.5, IWDT Count Stop Control Register (IWDTCSTPR).

Note that the operating clock is also supplied to the IWDT while the IWDT-dedicated on-chip oscillator is operating. When using the IWDTCLK as the REMC operating clock, do not use the IWDT function in order to prevent an unexpected reset or an interrupt from being generated.

Figure 28.6 shows an example of the flowchart for starting the IWDTCLK supply to the REMC.

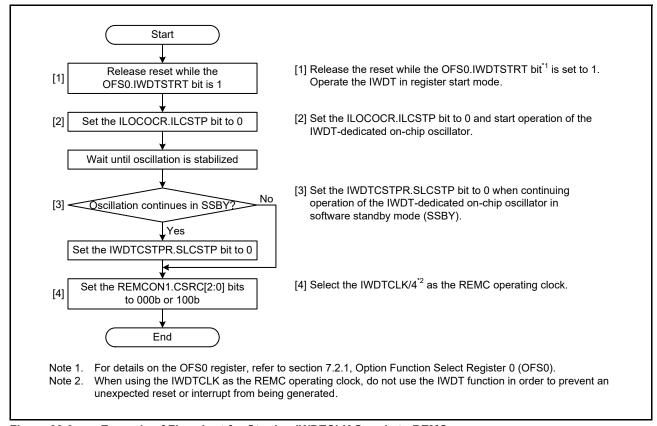


Figure 28.6 Example of Flowchart for Starting IWDTCLK Supply to REMC

28.3.4.2 When Using Sub-Clock as the REMC Operating Clock

This section describes the procedure for using the sub-clock as the REMC operating clock.

The sub-block oscillator stop bit in the sub-clock oscillator control register (SOSCCR.SOSTP) and the sub-clock oscillator control bit in the RTC control register 3 (RCR3.RTCEN) operate and stop the sub-clock oscillator. The sub-clock oscillator starts to oscillate when the SOSCCR.SOSTP bit is set to 0 or the RCR3.RTCEN bit is set to 1. For details of the SOSCCR register, refer to section 9.2.6, Sub-Clock Oscillator Control Register (SOSCCR). For details of the RCR3 register, refer to section 24.2.19, RTC Control Register 3 (RCR3).

After oscillation starts and the sub-clock oscillation stabilization time (tSUBOSC) has elapsed, set the REMCON1.CSRC[3:0] bits to x100b (sub-clock). Figure 28.7 shows an example of the flowchart for starting the sub-clock supply to the REMC.

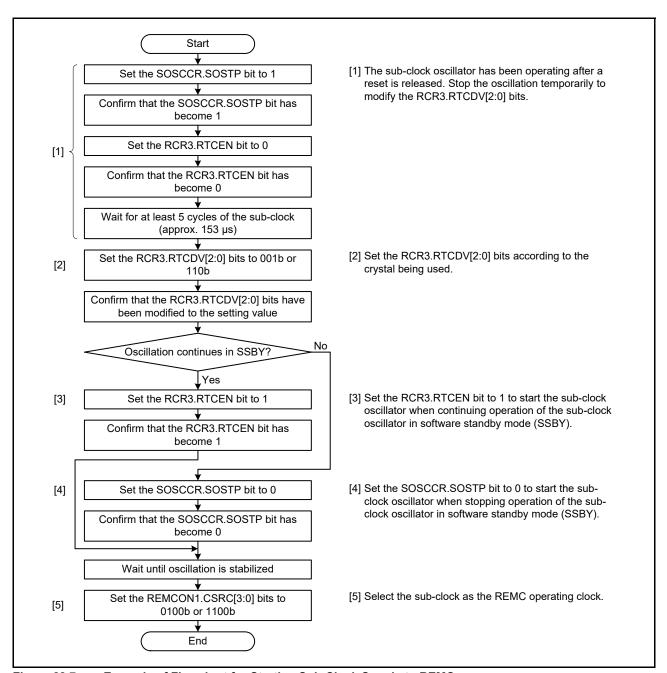


Figure 28.7 Example of Flowchart for Starting Sub-Clock Supply to REMC

28.3.4.3 When Using HOCO Clock as the REMC Operating Clock

This section describes the procedure for using the divided clock of HOCO clock supplied from the high-speed on-chip oscillator (HOCO) as the REMC operating clock.

Setting the HOCOCR.HCSTP bit to 0 starts oscillation of the HOCO. Oscillation can be started by setting the HOFCR.HOFXIN bit to 1. In this case, use the HOCOCR.HCSTP bit to start oscillation, because the HOCO clock cannot be supplied to the system clock. The HOFCR.HOFXIN bit is set only when oscillation is continued in software standby mode. For details of the HOCOCR register, refer to section 9.2.9, High-Speed On-Chip Oscillator Control Register (HOCOCR). For details of the HOFCR register, refer to section 9.2.10, High-Speed On-Chip Oscillator Forced Oscillation Control Register (HOFCR).

A fixed time is required for oscillation to become stable. After oscillation of the HOCO starts, when the OSCOVFSR.HCOVF flag is set to 1, the oscillation of the HOCO becomes stable. For details of the OSCOVFSR register, refer to section 9.2.11, Oscillation Stabilization Flag Register (OSCOVFSR).

After the oscillation stabilization time of the HOCO clock has elapsed and the supply of the HOCO clock to the REMC is enabled, set the HOSCR.HOSE bit to 1 to start the HOCO clock supply.

To continue oscillation of the HOCO in software standby mode, set the HOFCR.HOFXIN bit to 1 while the power supply voltage is at least 2.4 V, the HOCOCR.HOSTP bit is 0 (HOCO is operating), and the HOSCR.HOSE bit is 0 (disables the HOCO clock supply).

To stop oscillation of the HOCO, stop the HOCO clock supply to the REMC by setting the HOSCR.HOSE bit to 0. Afterwards, set the HOFCR.HOFXIN bit to 0 to disable the HOCO forced oscillation and lastly, set the HOCOCR.HCSTP bit to 1.

Figure 28.8 shows an example of the flowchart for starting the HOCO clock supply to the REMC and Figure 28.9 shows the path for supplying the HOCO clock to the REMC.

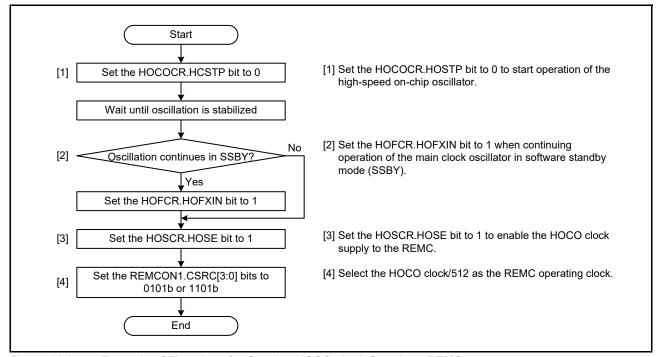


Figure 28.8 Example of Flowchart for Starting HOCO clock Supply to REMC

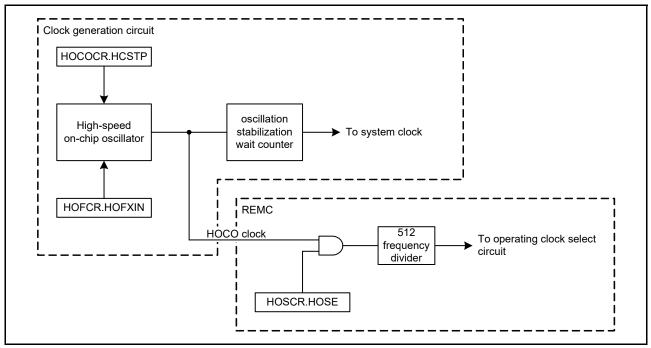


Figure 28.9 Path for Supplying HOCO Clock to the REMC

28.3.4.4 Using TMR Compare Match Output as REMC Operating Clock

The TMR compare match output can be supplied as the REMC operating clock. TMO0 and TMO2 can be supplied to the REMC0 and REMC1, respectively. For details on the TMR compare match output, refer to section 22, 8-Bit Timer (TMR).

28.3.5 PMCn Input

The options below can be selected in PMCn (n = 0, 1) input.

- Input polarity
- Digital filter

Figure 28.10 shows the configuration of PMCn internal input signal generation.

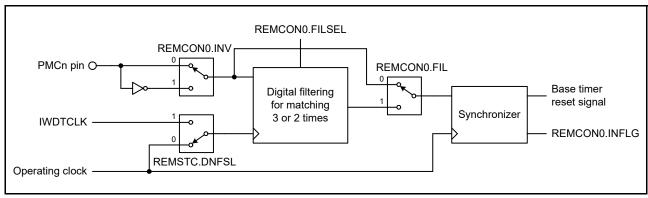


Figure 28.10 PMCn Internal Input Signal Generation Configuration

The input polarity of the PMCn pin can be inverted. Whether to invert or not can be selected by the REMCON0.INV bit. When the REMCON0.FIL bit is 1 (digital filter enabled), if the signal input to the PMCn pin holds the same level for k sequential cycles (k = 3 or 2; value selected by the REMCON0.FILSEL bit), that level is transferred to the internal circuit. This enables noise to be eliminated from k cycles of the sampling clock. The sampling clock of the digital filter is selectable from the REMC operating clock and IWDTCLK by setting the REMSTC.DNFSL bit.

When setting the REMSTC.LPCE bit to 1 (the PCLK supply in software standby mode is enabled), set the REMCON0.FIL bit to 1 (the digital filter is enabled), and the REMSTC.DNFSL bit to 1 (IWDTCLK is selected as a sampling clock).

Input to the PMCn pin is transferred as the REMCON0.INFLG flag (input signal flag) and the base timer reset signal to the internal circuit in synchronization with the operating clock. The base timer reset signal is used to initialize the internal base timer to the pattern detection corresponding to the REMCON1.TYP[1:0] setting. There is a delay caused by internal processing after the input to the PMCn pin is changed and before these signals are generated. Figure 28.11 shows digital filtering for PMCn input.

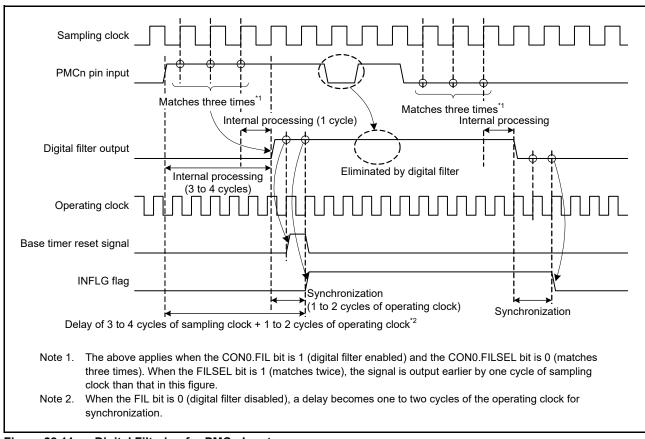


Figure 28.11 Digital Filtering for PMCn Input

28.3.6 Pattern Detection

The REMC has a function that detects the following patterns.

- Header pattern
- Data '0' pattern
- Data '1' pattern
- Special data pattern

Using the base timer included in the REMC, the time between the edges of the external input signal is measured to determine which pattern matches the measurement result. This enables detection of the remote control signal and capturing the data. The width for determining each pattern can be set to any value using each pattern setting register. Figure 28.12 shows the waveform of REMC operation.

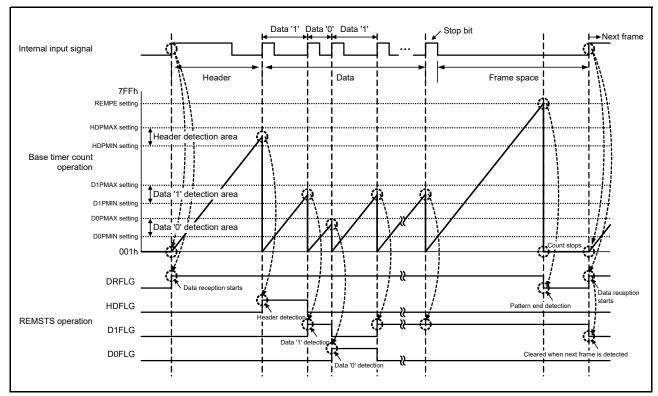


Figure 28.12 Waveform of REMC Operation

28.3.6.1 Header Pattern Detection

The header pattern can be detected by setting the minimum width of the header pattern in the HDPMIN register and the maximum width in the HDPMAX register.

The minimum and maximum widths of the header pattern must be "1 < HDPMIN register value ≤ HDPMAX register value".

Setting value $n = \frac{Minimum \ width \ (maximum \ width) \ of \ header \ pattern}{Operating \ clock \ cycle \ time}$

When not using the header pattern, set the HDPMIN and HDPMAX registers to 000h.

Make sure that the setting value of the header pattern is different from the setting values of data '0', data '1', and special data patterns, and the setting ranges are not overlapped.

When the REMCON1.TYP[1:0] bits are 00b or 01b, if the data '0', data '1', or special data pattern is detected before the header pattern is detected, the following occur:

- The REMSTS.REFLG flag becomes 1 (an error has occurred).
- The REMSTS.D0FLG, REMSTS.D1FLG, and REMSTS.SDFLG flags remain unchanged.
- The REMDAT0 to REMDAT7 registers remain unchanged.

When the REMCON1.TYP[1:0] bits are 01b, the number of detecting the header pattern is one while the DRFLG flag is 1.

28.3.6.2 Data '0' Pattern Detection

The data '0' pattern can be detected by setting the minimum width of the data '0' pattern in the D0PMIN register and the maximum width in the D0PMAX register.

The minimum and maximum widths of the data '0' pattern must be "1 < D0PMIN register value $\le D0PMAX$ register value".

Setting value $n = \frac{Minimum \ width \ (maximum \ width) \ of \ data \ '0' \ pattern}{Operating \ clock \ cycle \ time}$

When not using the data '0' pattern, set the D0PMIN and D0PMAX registers to 00h.

Make sure that the setting value of the data '0' pattern is different from the setting values of the header, data '1', and special data patterns, and the setting ranges are not overlapped.

When the REMCON1.TYP[1:0] bits are 00b or 01b, if the data '0' pattern or data '1' pattern is detected before the head pattern is detected, the following occur:

- The REMSTS.REFLG flag becomes 1 (an error has occurred).
- The REMSTS.D0FLG, REMSTS.D1FLG, and REMSTS.SDFLG flags remain unchanged.
- The REMDAT0 to REMDAT7 registers remain unchanged.

28.3.6.3 Data '1' Pattern Detection

The data '1' pattern can be detected by setting the minimum width of the data '1' pattern in the D1PMIN register and the maximum width in the D1PMAX register.

The minimum and maximum widths of the data '1' pattern must be "1 < D1PMIN register value ≤ D1PMAX register value".

Setting value n = Minimum width (maximum width) of data '1' pattern
Operating clock cycle time

When not using the data '1' pattern, set the D1PMIN and D1PMAX registers to 00h.

Make sure that the setting value of the data '1' pattern is different from the setting values of the header, data '0', and special data patterns, and the setting ranges are not overlapped.

When the REMCON1.TYP[1:0] bits are 00b or 01b, if the data '0' pattern or data '1' pattern is detected before the head pattern is detected, the following occur:

- The REMSTS.REFLG flag becomes 1 (an error has occurred).
- The REMSTS.D0FLG, REMSTS.D1FLG, and REMSTS.SDFLG flags remain unchanged.
- The REMDAT0 to REMDAT7 registers remain unchanged.

28.3.6.4 Special Data Pattern Detection

The special data pattern can be detected by setting the minimum width of the special data pattern in the SDPMIN register and the maximum width in the SDPMAX register.

The minimum and maximum widths of the special data pattern must be "1 < SDPMIN register value $\le SDPMAX$ register value".

Setting value $n = \frac{Minimum \ width \ (maximum \ width) \ of \ special \ data \ pattern}{Operating \ clock \ cycle \ time}$

When not using the special data pattern, set the SDPMIN and SDPMAX registers to 00h.

Make sure that the setting value of the special data pattern is different from the setting values of the header, data '0', and data '1' patterns, and the setting ranges are not overlapped.

When the REMCON1.TYP[1:0] bits are 00b or 01b, if the special data pattern is detected before the head pattern is detected, the following occur:

- The REMSTS.REFLG flag becomes 1 (an error has occurred).
- The REMSTS.SDFLG flag remain unchanged.
- The REMDAT0 to REMDAT7 registers remain unchanged.

28.3.6.5 Examples of Setting Pattern Setting Registers

For the header, data '0', data '1', and special data setting registers, make sure that the minimum to maximum values of each pattern are different, and the setting ranges do not overlap as shown in Figure 28.13.

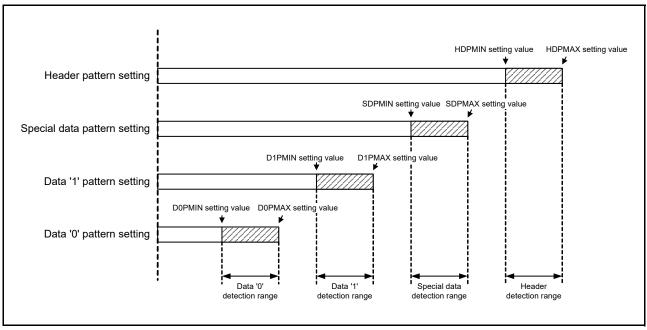


Figure 28.13 Examples of Setting Pattern Setting Registers

28.3.6.6 Updating Status Flags upon Pattern Detection

The detected patterns can be confirmed by reading the following flags: header pattern match flag (REMSTS.HDFLG), data '0' pattern match flag (REMSTS.D0FLG), data '1' pattern match flag (REMSTS.D1FLG), and special data pattern match flag (REMSTS.SDFLG). These flags are negated when a different pattern is detected. If a pattern other than the above patterns is detected, it is detected as an error pattern. This can be confirmed by reading the receive error flag (REMSTS.REFLG). This flag is negated when the next frame is received. Figure 28.14 shows pattern detection and an example of flag operation.

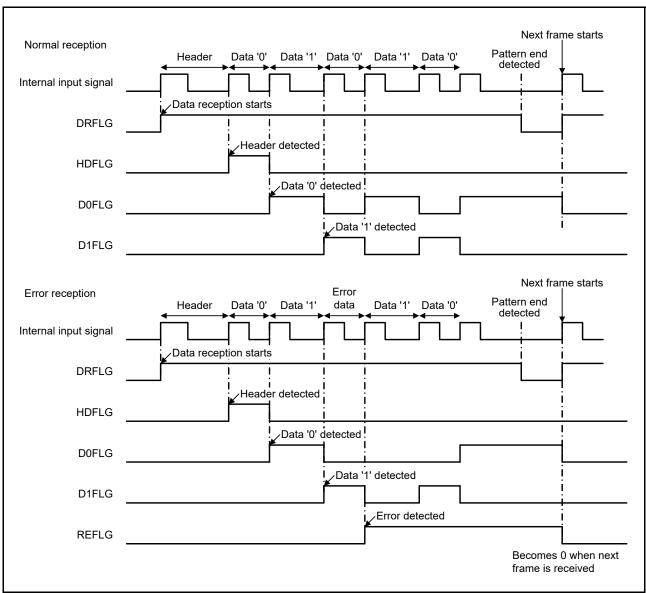


Figure 28.14 Example of Flag Operation

28.3.7 Pattern End

The timing when the REMSTS.DRFLG flag becomes 0 can be set.

When setting the REMPE register, be sure to set that the REMPE value > HDPMAX, D0PMAX, D1PMAX, or SDPMAX value.

When the REMPE value ≤ HDPMAX, D0PMAX, D1PMAX, or SDPMAX value, the REMPE register cannot be used to set the timing when the REMSTS.DRFLG flag becomes 0. In this case, data reception is completed according to the largest value from among the setting values of the HDPMAX, D0PMAX, D1PMAX, and SDPMAX registers.

Figure 28.15 shows operation of the data reception complete flag for each pattern end setting.

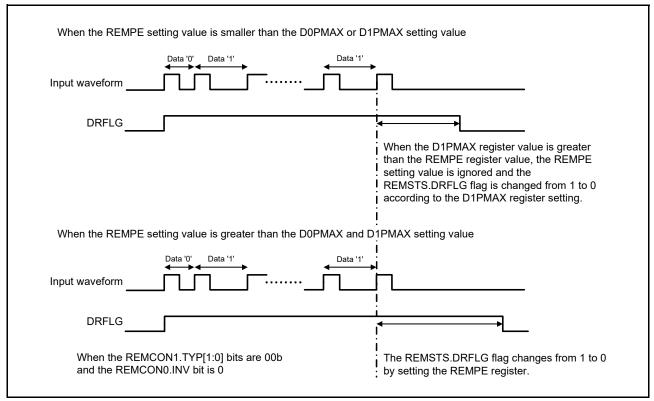


Figure 28.15 Operation of Data Reception Complete Flag for Each Pattern End Setting

28.3.8 Receive Data Buffer

The receive data j register (REMDATj) (j = 0 to 7) is an 8-byte (64-bit) buffer for storing received data. When data '0' pattern or data '1' pattern is detected, the detection result is sequentially stored starting from the REMDAT0.DAT0[0] bit as shown in Figure 28.16. The REMRBIT register is counted up at the same time, so the number of the current received bits can be checked by reading the REMRBIT register. See Table 28.4 for the relationship between the number of received bits and the location where data is stored. The values of the REMDATj and REMRBIT registers do not change even when the header pattern or special pattern is received. If the REMDATj or REMRBIT register is read while the data is being updated, the value read may be undefined.

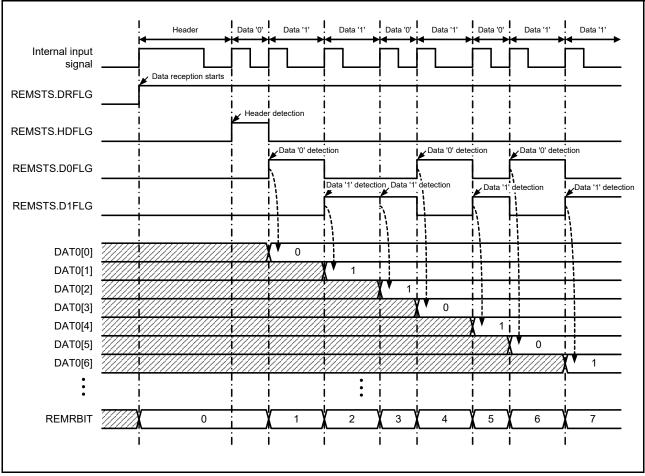


Figure 28.16 Operation of Receive Data Buffer

Table 28.4 Relationship between Number of Received Bits and Location Where Data is Stored

Number of	Location Where Data is Stored		
Received Bits	Register Name	Bit Name	
1	REMDAT0	DAT0[0]	
2		DAT0[1]	
3		DAT0[2]	
4		DAT0[3]	
5		DAT0[4]	
6		DAT0[5]	
7		DAT0[6]	
8		DAT0[7]	
9	REMDAT1	DAT1[0]	
10		DAT1[1]	
11		DAT1[2]	
12		DAT1[3]	
13		DAT1[4]	
14		DAT1[5]	
15		DAT1[6]	
16		DAT1[7]	
17	REMDAT2	DAT2[0]	
18		DAT2[1]	
19		DAT2[2]	
20		DAT2[3]	
21		DAT2[4]	
22		DAT2[5]	
23		DAT2[6]	
24		DAT2[7]	
25	REMDAT3	DAT3[0]	
26		DAT3[1]	
27		DAT3[2]	
28		DAT3[3]	
29		DAT3[4]	
30		DAT3[5]	
31		DAT3[6]	
32		DAT3[7]	

Number of	Location Where Data	is Stored
Received Bits	Register Name	Bit Name
33	REMDAT4	DAT4[0]
34		DAT4[1]
35		DAT4[2]
36		DAT4[3]
37		DAT4[4]
38		DAT4[5]
39		DAT4[6]
40		DAT4[7]
41	REMDAT5	DAT5[0]
42		DAT5[1]
43		DAT5[2]
44		DAT5[3]
45		DAT5[4]
46		DAT5[5]
47		DAT5[6]
48		DAT5[7]
49	REMDAT6	DAT6[0]
50		DAT6[1]
51		DAT6[2]
52		DAT6[3]
53		DAT6[4]
54		DAT6[5]
55		DAT6[6]
56		DAT6[7]
57	REMDAT7	DAT7[0]
58		DAT7[1]
59		DAT7[2]
60		DAT7[3]
61		DAT7[4]
62		DAT7[5]
63		DAT7[6]
64		DAT7[7]

Note: When the data exceeds 64 bits, the REMDATj register is sequentially overwritten from the first bit.

When 0 is written to the REMDAT0.DAT0[0] bit, the values of the REMDAT0 to REMDAT7 registers become 00h after one to two cycles of the operating clock. Figure 28.17 shows the REMDATj/REMRBIT register operation when 00h is written to the REMDAT0 register.

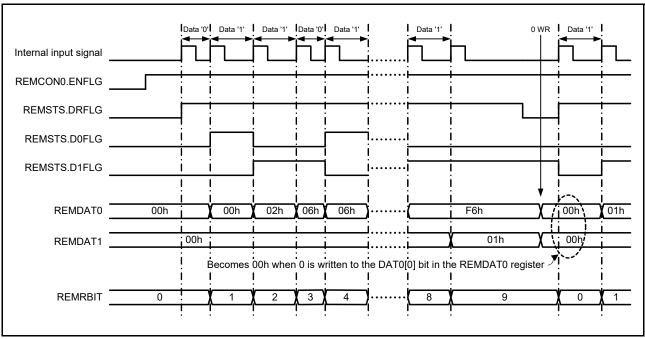


Figure 28.17 REMDATJ/REMRBIT Register Operation (00h is Written to REMDAT0 Register)

When 0 is written to the REMRBIT.RBIT[0] bit, the value of the REMRBIT register becomes 00h after one to two cycles of the operating clock. When the REMCON1.TYP[1:0] bits are 00b or 01b, if the header pattern is detected during data reception, the value of the REMRBIT register is initialized to 00h and the received data is sequentially overwritten from the REMDAT0.DAT0[0] bit. Figure 28.18 shows operation of header pattern detection during data reception.

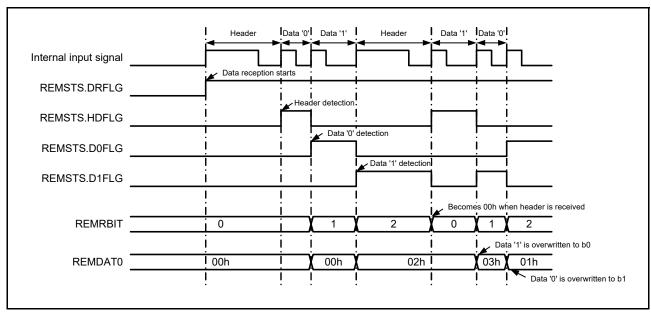


Figure 28.18 Operation of Header Pattern Detection during Data Reception

When the data exceeds 64 bits, the buffer is sequentially overwritten from the first bit. Figure 28.19 shows the REMRBIT register operation when the REMSTS.BFULFLG flag becomes 1.

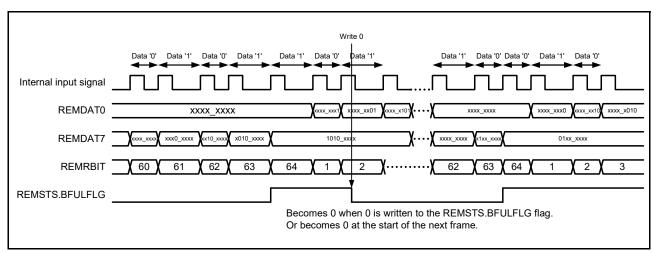


Figure 28.19 REMRBIT Register Operation (REMSTS.BFULFLG Flag = 1)

28.3.9 Compare Function

The REMC has a function to compare the value of the REMCPD register with the value of the REMDAT0 register. As a result of comparison, it can be detected that the first 1 to 8 bits of the remote control signal are the specific values. Figure 28.20 shows the operation timing of the receive buffer and the compare function.

When using the compare function, set the following:

- Select bits to be compared by setting the REMCPC.CPN[2:0] bits (when the setting value is n, bits n to 0 are compared. n: 0 to 7).
- Set the compare data in the REMCPD register.
 When the value of the REMRBIT register becomes the bit count specified by the REMCPC.CPN[2:0] bits, if the stored comparison result between the REMCPD and REMDAT0 registers matches, the REMSTS.CPFLG flag becomes 1 (compare match).

When the value of the REMRBIT register matches the bit count specified by the REMCPC.CPN[2:0] bits during reception of 64 bits or more, even if the comparison result between REMCPD and REMDAT0 matches, the REMSTS.CPFLG flag does not become 1 (compare match).

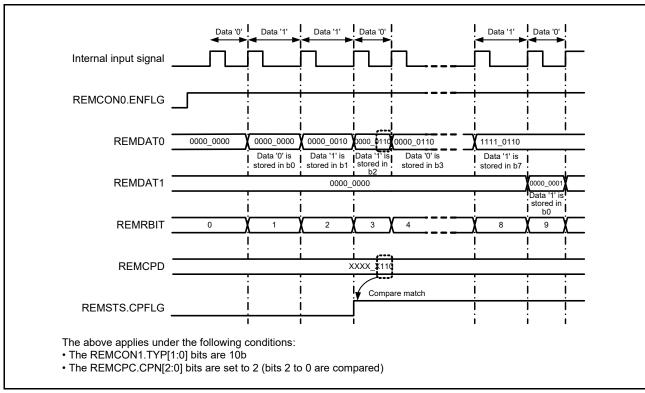


Figure 28.20 Receive Buffer and Compare Function

28.3.10 Error Pattern Reception

When the error pattern is detected during data reception, subsequent operation differs depending on the setting of the REMCON0.EC bit.

Figure 28.21 shows operation of the REMDAT0 and REMRBIT registers when the REMCON0.EC bits are set to 0. If an error is detected while the REMCON0.EC bit is 0, the data when the error is detected is not captured, but the data is captured when the data '0' pattern or data '1' pattern is detected later.

Figure 28.22 shows operation of the REMDAT0 and REMRBIT registers when the REMCON0.EC bits are set to 1. If an error is detected while the REMCON0.EC bit is 1, the values of the REMDAT0 to REMDAT7 registers are not updated even when the data '0' pattern or data '1' pattern is detected later. Once the REMSTS.DRFLG flag is cleared and after data reception is completed, if data reception starts again, the REMSTS.REFLG flag is cleared and the data is captured.

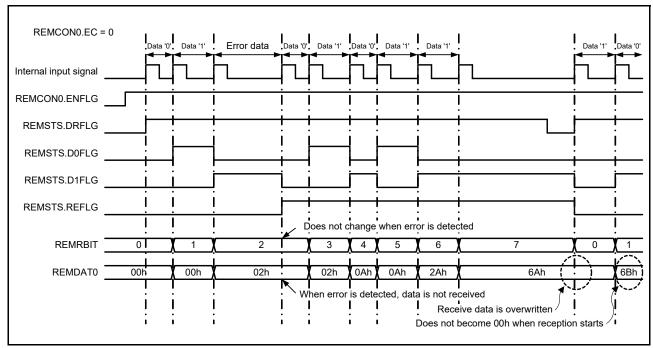


Figure 28.21 REMDAT0 and RREMBIT Registers Operation upon Error Detection (REMCON0.EC Bit = 0)

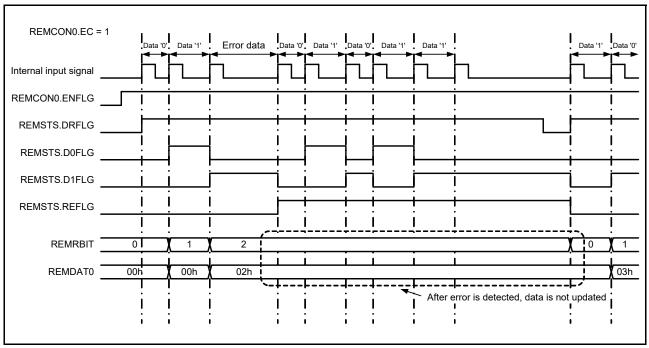


Figure 28.22 REMDAT0 and REMRBIT Registers Operation upon Error Detection (REMCON0.EC Bit = 1)

28.3.11 Storing Base Timer Value When Pattern is Detected

The measurement result register (REMTIM) stores the base timer value when one of the following patterns is detected. Figure 28.23 shows an operation example of the measurement function.

- Header pattern
- Data '0' pattern
- Data '1' pattern
- Special data pattern
- Data pattern other than the above (receive error)

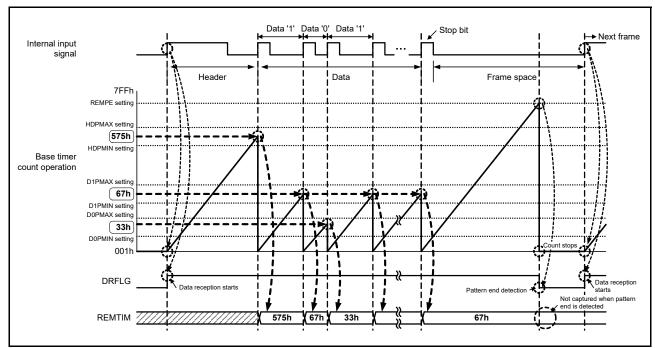


Figure 28.23 Operation Example of Measurement Function

28.3.12 Interrupts

The REMC generates the following interrupt requests: compare match, receive error, data reception complete, receive buffer full, header pattern match, data '0' pattern or data '1' pattern match, and special data pattern match interrupts. Each of these interrupt requests is assigned to a single vector address for each channel, and generated each time the condition is met. If an interrupt enable bit in the REMINT register is 1, an interrupt request is output when the corresponding generation condition is met.

Table 28.5 lists the interrupt source of the REMC. Refer to section 14, Interrupt Controller (ICUb) for details on interrupt control.

Table 28.5 REMC Interrupt Sources

Interrupt Source	Interrupt Request Generation Condition	Interrupt Status Flag	Interrupt Enable Bit
Compare match	When the REMSTS.CPFLG flag changes from 0 to 1	REMSTS.CPFLG	REMINT.CPINT
Receive error	When the REMSTS.REFLG flag changes from 0 to 1 (When a receive error is detected)	REMSTS.REFLG	REMINT.REINT
Completion of data reception	When the REMSTS.DRFLG flag changes from 1 to 0	REMSTS.DRFLG	REMINT.DRINT
Receive buffer full	When the REMSTS.BFULFLG flag changes from 0 to 1	REMSTS.BFULFLG	REMINT.BFULINT
Header pattern match	When the REMSTS.HDFLG flag changes from 0 to 1 (When the header pattern is detected)	REMSTS.HDFLG	REMINT.HDINT
Data '0' pattern or data '1' pattern match	 When the REMSTS.D0FLG flag changes from 0 to 1 (When the data '0' pattern is detected) When the REMSTS.D1FLG flag changes from 0 to 1 (When the data '1' pattern is detected) 	REMSTS.D0FLG, REMSTS.D1FLG	REMINT.DINT
Special data pattern match	When the REMSTS.SDFLG flag changes from 0 to 1 (When the special data pattern is detected)	REMSTS.SDFLG	REMINT.SDINT

28.3.13 Data Reception in Low Power Consumption State

In this MCU, data can be received in a low power consumption state (sleep mode, deep sleep mode, or software standby mode).

To receive data in a low power consumption state, REMC communications should be set before transitioning to the state.

28.3.13.1 Using REMC Interrupt Request to Return from Low Power Consumption State

Power consumption while waiting for data reception can be reduced by using the REMC interrupt request to be output during data reception as the source for returning from the low power consumption state (see Figure 28.24). Pattern detection and compare function enable returning from the low power consumption state only when specified data is received.

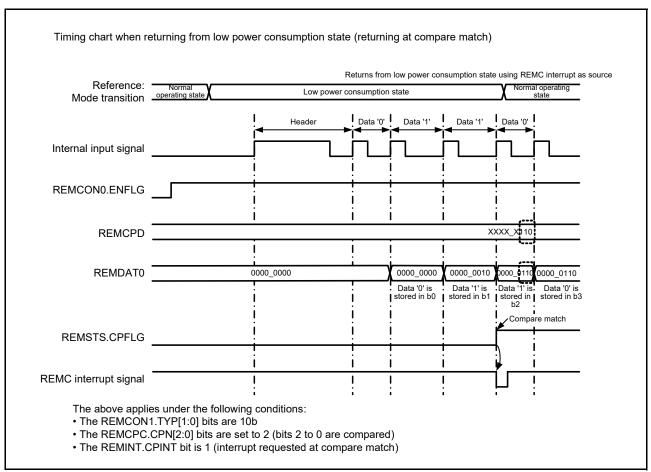


Figure 28.24 Using REMC Interrupt Request to Return from Low Power Consumption State

28.3.13.2 Data Reception in Software Standby Mode

In software standby mode, data reception is possible with the combination of the settings shown in Table 28.6.

Table 28.6 Possible Combinations of the Settings for Data Reception in Software Standby Mode

REMC Operating Clock	Setting of the REMSTC Register	Other Settings and Restrictions
IWDTCLK	LPCE = 0, DNFSL = 0 or 1	IWDTCSTPR.SLCSTP = 0
Sub-clock		RCR3.RTCEN = 1
HOCO clock/512		HOFCR.HOFXIN = 1 (HOCO oscillation is to be continued) VCC ≥ 2.4 V
PCLKB/64	LPCE = 1, DNFSL = 1	SCKCR3.CKSEL[2:0] = 001b (HOCO is selected as a system
PCLKB/512		clock source) REMCON0.FIL = 1 IWDTCSTPR.SLCSTP = 0 Do not use the LPT function

(1) When IWDTCLK, Sub-clock, or HOCO Clock/512 is Selected as the REMC Operating Clock

When IWDTCLK, sub-clock, or HOCO clock/512 is selected as the REMC operating clock, set the REMSTC.LPCE bit to 0 (the PCLK supply in software standby mode is disabled). The selected clock need to be continuously supplied in the software standby mode. For the procedure to supply each clock, see section 28.3.4, Operating Clocks. Select the REMC interrupt request that is generated when the data is received as the source for returning from software standby mode. The MCU can return from software standby mode only when a specific data has been received by using the pattern detection and compare function.

(2) When PCLKB/64 or PCLKB/512 is Selected as the REMC Operating Clock

When PCLKB/64 or PCLKB/512 is selected as the REMC operating clock, set the REMSTC.LPCE bit to 1 (the PCLK supply in software standby mode is enabled). After transition to software standby mode, when a change of the input level of the PMCn pin is detected, the PCLK request signal is output from the REMC. The oscillator resume its operation and restarts the PCLK supply. Select the HOCO as the system clock source. It takes up to 55 µs from detection of the change in the input level of the PMCn pin to the PCLK supply. During that time, the REMC operating clock is not supplied and the base timer is stopped. Set the value minus 55 µs from the value to be set for data reception in normal mode for the minimum value of the pattern setting of the first data.

When a header pattern match interrupt or compare match interrupt is generated during data reception, the MCU returns from software standby mode. When an interrupt in not generated, the PCLK request signal is negated due to detection of the pattern end and operation of the oscillator is stopped (the data reception complete interrupt should be disabled). Afterwards, when a change of the input level of the PMCn pin is detected again, the PCLK request signal is output and data reception becomes possible. Furthermore, a header pattern match interrupt or compare match interrupt is generated, the PCLK request signal is not negated even if a pattern end is detected. The PCLK request signal is negated by setting the REMSTC.LPCE bit to 0 during interrupt handling of the recovery source. Figure 28.25 shows software standby mode continued operation in response to a compare mismatch, and Figure 28.26 shows operation of returning from software standby mode in response to a compare match. Figure 28.27 shows an example of the flowchart for setting data reception in software standby mode.

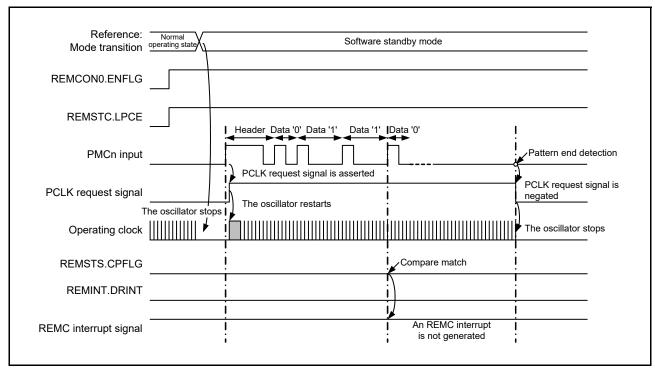


Figure 28.25 Software Standby Mode Continued Operation in Response to a Compare Mismatch

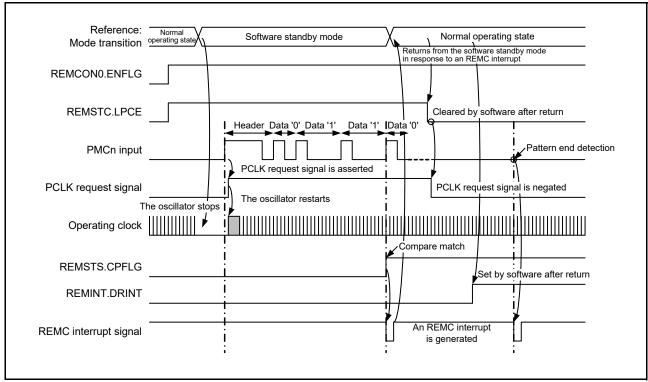


Figure 28.26 Returning from Software Standby Mode in Response to a Compare Match

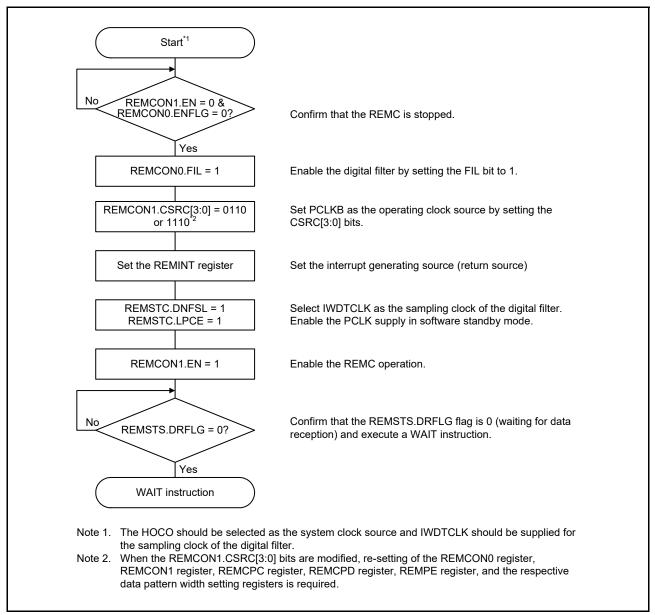


Figure 28.27 Flowchart for Setting Data Reception in Software Standby Mode (REMSTC.LPCE = 1)

28.4 Usage Notes

28.4.1 Module Stop Function Setting

REMC operation can be disabled or enabled by setting the module stop control register. The REMC is stopped with the value after reset. Register access is enabled by releasing the module stop state. For details, refer to section 11, Low Power Consumption.

28.4.2 Settings for Peripheral Module Clock and REMC Operating Clock

Set the peripheral module clock (PCLKB) frequency to higher than the REMC operating clock frequency.

28.4.3 Restriction on Using Independent Watchdog Timer (IWDT)

Do not use the IWDT function when using IWDTCLK as the REMC operating clock or the sampling clock of the digital filter.

28.4.4 Restriction on Using Low-Power Timer (LPT)

Do not use the LPT function when setting the REMSTC.LPCE bit to 1 to receive data in software standby mode.

28.4.5 Starting/Stopping Operation of Remote Control Signal Receiver

The REMCON1.EN bit controls starting/stopping of operation of the remote control signal receiver. The REMCON0.ENFLG flag indicates that the operation is enabled or disabled. After the REMCON1.EN bit is set to 1 (operation enabled), it takes up to zero to one cycle of the operating clock before the REMC circuit starts operating and the REMCON0.ENFLG flag becomes 1. During this period, do not access the REMC related registers (listed in section 28.2.1 to section 28.2.21) except for the REMCON0.ENFLG flag.

28.4.6 Accessing Registers

Change the following registers only when the REMCON1.EN bit and REMCON0.ENFLG flag are both 0 (REMC is stopped)

- REMCON0 register
- REMCON1 register (except for bits 0 to 2)
- REMINT register (except for bits 2 and 5)
- REMCPC register
- REMCPD register
- Pattern width setting registers for header, data '0', data '1', and special data patterns
- Pattern end setting register
- REMSTC register
- HOSCR register

When rewriting the REMCON1.TYP[1:0] bits while the REMCON1.EN bit or REMCON0.ENFLG flag is 1 (REMC is operating), change the values of these bits one bit at a time. If the REMCON1.TYP[1:0] bits are rewritten when the REMCON0.INFLG flag changes, the signal captured into the remote control signal receiver may be undefined. After 0 is written to bit 0 in the REMDAT0 or REMRBIT register or the REMSTS.BFULFLG flag, do not write 0 to the same bit again for two cycles of the operating clock. If 0 is written when the REMCON0.INFLG flag changes, the values

of the REMDATj and REMRBIT registers and the REMSTS.BFULFLG flag may be undefined.

28.4.7 PMCn Input Control

If the REMCON0.FILSEL, FIL, or INV bit is rewritten, the signal captured into the remote control signal receiver is undefined for three cycles of the digital filter sampling clock.

28.4.8 Notes on Changing the Operating Clock

When the REMCON1.CSRC[3:0] bits are rewritten, set the following registers again: REMCON0, REMCON1, REMINT, REMCPC, REMCPD, REMPE, and header, data '0', data '1', and special data pattern width setting registers.

28.4.9 Reading Registers

When the following registers are read while data changes, an undefined value may be read.

Flags in the REMCON0 and REMSTS registers (except for the REMSTS.DRFLG flag) and registers REMTIM, REMDAT0 to REMDAT7, and REMRBIT

Follow the procedures below to avoid reading an undefined value.

- Using an interrupt
 - Set the REMINT.DRINT bit to 1 (data reception complete interrupt enabled) and read the registers within the REMC interrupt routine.
- Polling by a program 1
 - Set the REMINT.DRINT bit to 1 (data reception complete interrupt enabled) and poll the ICU.IRn.IR flag by a program. Read the registers when the IF bit becomes 1 (interrupt request generated).
- Polling by a program 2
 - (1) Poll the REMSTS.DRFLG flag.
 - (2) When the REMSTS.DRFLG flag becomes 1, poll this flag until it becomes 0.
 - (3) Read the necessary content of the registers when the REMSTS.DRFLG flag becomes 0.

28.4.10 Notes on Data Reception in Software Standby Mode

The HOCO clock frequency may drift for a given time when the MCU transits to software standby mode while the HOFCR.HOFXIN bit is 1. Set the respective pattern width setting registers in consideration of the frequency drift when setting the REMCON1.CSRC[3:0] bits to 0101b or 1101b and the HOFCR.HOFXIN bit to 1 to receive data. Refer to section 40, Electrical Characteristics for the amount and period of the HOCO clock frequency drift after the MCU transits to software standby mode.

Stop the peripheral modules except for the REMC by setting the module stop control register before transition to software standby mode.

29. I²C-bus Interface (RIICa)

This MCU has a single-channel I²C-bus interface (RIIC).

The RIIC module conforms with the NXP I²C-bus (Inter-IC bus) interface and provides a subset of its functions. In this section, "PCLK" is used to refer to PCLKB.

29.1 Overview

Table 29.1 lists the specifications of the RIIC, Figure 29.1 shows a block diagram of the RIIC, and Figure 29.2 shows an example of I/O pin connections to external circuits (I²C-bus configuration example). Table 29.2 lists the I/O pins of the RIIC.

Table 29.1 RIIC Specifications (1/2)

Item	Description
Communications format	 I²C-bus format or SMBus format Master mode or slave mode selectable Automatic securing of the various setup times, hold times, and bus-free times for the transfer rate
Transfer rate	Fast-mode is supported (up to 400 kbps)
SCL clock	For master operation, the duty cycle of the SCL clock is selectable in the range from 4 to 96%.
Issuing and detecting conditions	Start, restart, and stop conditions are automatically generated. Start conditions (including restart conditions) and stop conditions are detectable.
Slave address	 Up to three different slave addresses can be set. 7-bit and 10-bit address formats are supported (along with the use of both at once). General call addresses, device ID addresses, and SMBus host addresses are detectable.
Acknowledgment	 For transmission, the acknowledge bit is automatically loaded. Transfer of the next data for transmission can be automatically aborted on detection of a not-acknowledge bit. For reception, the acknowledge bit is automatically transmitted. If a wait between the eighth and ninth clock cycles has been selected, software control of the value in the acknowledge field in response to the received value is possible.
Wait function	In reception, the following periods of waiting can be obtained by holding the SCL clock at the low level: Waiting between the eighth and ninth clock cycles Waiting between the ninth clock cycle and the first clock cycle of the next transfer
SDA output delay function	Timing of the output of transmitted data, including the acknowledge bit, can be delayed.
Arbitration	 For multi-master operation Operation to synchronize the SCL clock in cases of conflict with the SCL signal from another master is possible. When issuing the start condition would create conflict on the bus, loss of arbitration is detected by testing for non-matching between the internal signal for the SDA line and the level on the SDA line. In master operation, loss of arbitration is detected by testing for non-matching between the signal on the SDA line and the internal signal for the SDA line. Loss of arbitration due to detection of the start condition while the bus is busy is detectable (to prevent the issuing of double start conditions). Loss of arbitration in transfer of a not-acknowledge bit due to the internal signal for the SDA line and the level on the SDA line not matching is detectable. Loss of arbitration due to non-matching of internal and line levels for data is detectable in slave transmission.
Timeout function	The internal timeout function is capable of detecting long-interval stop of the SCL clock.
Noise cancellation	The interface incorporates digital noise filters for both the SCL and SDA signals, and the width for noise cancellation by the filters is adjustable by software.
Interrupt sources	Four sources: • Error in transfer or occurrence of events Detection of arbitration, NACK, timeout, a start condition including a restart condition, or a stop condition • Receive data full (including matching with a slave address) • Transmit data empty (including matching with a slave address) • Transmit end

Table 29.1 RIIC Specifications (2/2)

Item	Description
Low power consumption function	Module stop state can be set.
RIIC operating modes	Four Master transmit mode, master receive mode, slave transmit mode, and slave receive mode
Event link function (output)	 Four sources (RIIC0): Error in transfer or occurrence of events Detection of arbitration, NACK, timeout, a start condition including a restart condition, or a stop condition Receive data full (including matching with a slave address) Transmit data empty (including matching with a slave address) Transmit end

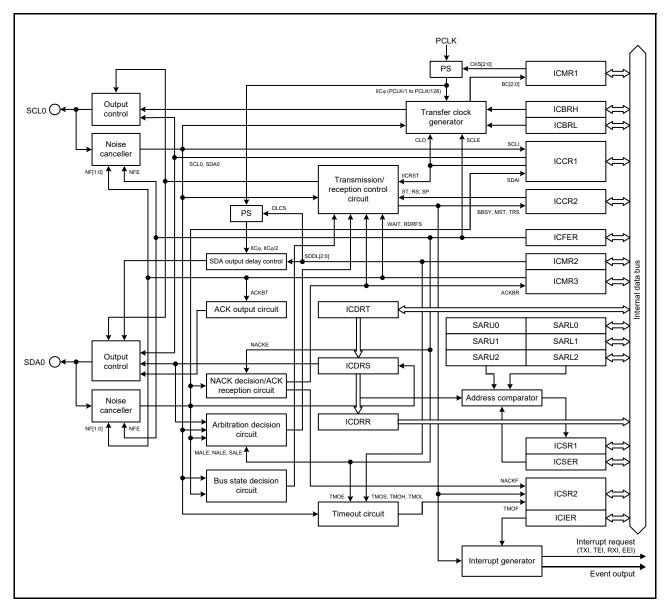


Figure 29.1 RIIC Block Diagram

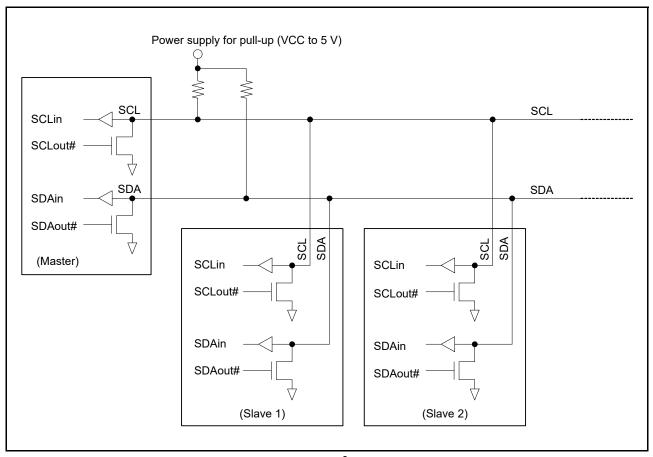


Figure 29.2 I/O Pin Connection to the External Circuit (I²C-bus Configuration Example)

The input level of the signals for RIIC is CMOS when I²C-bus is selected (ICMR3.SMBS bit is 0), or TTL when SMBus is selected (ICMR3.SMBS bit is 1).

Table 29.2 RIIC Pin Configuration

Channel	Pin Name	I/O	Function
RIIC0	SCL0	I/O	RIIC0 serial clock I/O pin
	SDA0	I/O	RIIC0 serial data I/O pin

29.2 Register Descriptions

29.2.1 I²C-bus Control Register 1 (ICCR1)

Address(es): RIIC0.ICCR1 0008 8300h

Bit	Symbol	Bit Name	Description	R/W
b0	SDAI	SDA Line Monitor	0: SDA0 line is low. 1: SDA0 line is high.	R
b1	SCLI	SCL Line Monitor	0: SCL0 line is low. 1: SCL0 line is high.	R
b2	SDAO	SDA Output Control/Monitor	 Read: 0: The RIIC has driven the SDA0 pin low. 1: The RIIC has released the SDA0 pin. Write: 0: The RIIC drives the SDA0 pin low. 1: The RIIC releases the SDA0 pin. 	R/W
b3	SCLO	SCL Output Control/Monitor	Read: The RIIC has driven the SCL0 pin low. The RIIC has released the SCL0 pin. Write: The RIIC drives the SCL0 pin low. The RIIC drives the SCL0 pin. High level output is achieved through an external pull-up resistor.)	R/W
b4	SOWP	SCLO/SDAO Write Protect	0: SCLO and SDAO bits can be written. 1: SCLO and SDAO bits are protected. (This bit is read as 1.)	R/W
b5	CLO	Extra SCL Clock Cycle Output	O: Does not output an extra SCL clock cycle (default). 1: Outputs an extra SCL clock cycle. (The CLO bit is cleared automatically after one clock cycle is output.)	R/W
b6	IICRST	I ² C-bus Interface Internal Reset	0: Releases the RIIC reset or internal reset. 1: Initiates the RIIC reset or internal reset. (Clears the bit counter and the SCL0/SDA0 output latch)	R/W
b7	ICE	I ² C-bus Interface Enable	0: Disable (SCL0 and SDA0 pins in inactive state) 1: Enable (SCL0 and SDA0 pins in active state) (Combined with the IICRST bit to select either RIIC or internal reset.)	R/W

SDAO Bit (SDA Output Control/Monitor) and SCLO Bit (SCL Output Control/Monitor)

These bits are used to directly control the SDA0 and SCL0 signals output from the RIIC.

When writing to these bits, also write 0 to the SOWP bit.

The result of setting these bits is input to the RIIC via the input buffer. When slave mode is selected, a start condition may be detected and the bus may be released depending on the bit settings.

Do not rewrite these bits during a start condition, stop condition, restart condition, or during transmission or reception.

Operation after rewriting under the above conditions is not guaranteed.

When reading these bits, the state of signals output from the RIIC can be read.

CLO Bit (Extra SCL Clock Cycle Output)

This bit is used to output an extra SCL clock cycle for debugging or error processing.

Normally, set the bit to 0. Setting the bit to 1 in a normal communication state causes a communication error.

For details on this function, refer to section 29.11.2, Extra SCL Clock Cycle Output Function.

IICRST Bit (I²C-bus Interface Internal Reset)

This bit is used to reset the internal states of the RIIC.

Setting this bit to 1 initiates an RIIC reset or internal reset.

Whether an RIIC reset or internal reset is initiated is determined according to the combination with the ICE bit. Table 29.3 lists the resets of the RIIC.

The RIIC reset initializes all registers and internal states of the RIIC, and the internal reset initializes the bit counter (ICMR1.BC[2:0] bits), the I²C-bus shift register (ICDRS), and the I²C-bus status registers (ICSR1 and ICSR2) as well as the internal states of the RIIC. For the reset conditions for each register, refer to section 29.14, Initialization of Registers and Functions When a Reset is Issued or a Condition is Detected.

An internal reset initiated with the IICRST bit set to 1 during operation (with the ICE bit set to 1) resets the internal states of the RIIC without initializing the port settings and the control and setting registers of the RIIC when the bus or RIIC hangs up due to a communication error.

If the RIIC hangs up in a low level output state, resetting the internal states cancels the low level output state and releases the bus with the SCL0 pin and SDA0 pin at a high impedance.

Note:

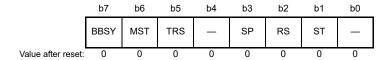
If an internal reset is initiated using the IICRST bit for a bus hang-up occurred during communication with the master device in slave mode, the states may become different between the slave device and the master device (due to the difference in the bit counter information). For this reason, do not initiate an internal reset in slave mode, but initiate restoration processing from the master device. If an internal reset is necessary because the RIIC hangs up with the SCL0 line in a low level output state in slave mode, initiate an internal reset and then issue a restart condition from the master device or resume communication from the start condition issuance after issuing a stop condition. If communication is restarted by initiating a reset solely in the slave device without issuing a start condition or restart condition from the master device, synchronization will be lost because the master and slave devices operate asynchronously.

Table 29.3 RIIC Resets

IICRST	ICE	State	Specifications
1	0	RIIC reset	Resets all registers and internal states of the RIIC.
	1	Internal reset	Resets the ICMR1.BC[2:0] bits, registers ICSR1, ICSR2, and ICDRS, and the internal states of the RIIC.

ICE Bit (I²C-bus Interface Enable)

This bit selects the active or inactive state of the SCL0 and SDA0 pins. It can also be combined with the IICRST bit to initiate two types of resets. See Table 29.3, RIIC Resets, for the types of resets.


Set the ICE bit to 1 when using the RIIC. The SCL0 and SDA0 pins are placed in the active state when the ICE bit is set to 1.

Set the ICE bit to 0 when the RIIC is not to be used. The SCL0 and SDA0 pins are placed in the inactive state when the ICE bit is set to 0. Do not assign the SCL0 or SDA0 pin to the RIIC when setting up the multi-function pin controller (MPC). Note that the slave address comparison operation is carried out if the pins are assigned to the RIIC.

29.2.2 I²C-bus Control Register 2 (ICCR2)

Address(es): RIIC0.ICCR2 0008 8301h

Bit	Symbol	Bit Name	Description	R/W
b0	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b1	ST	Start Condition Issuance Request	O: Does not request to issue a start condition. 1: Requests to issue a start condition.	R/W
b2	RS	Restart Condition Issuance Request	Does not request to issue a restart condition. Requests to issue a restart condition.	R/W
b3	SP	Stop Condition Issuance Request	O: Does not request to issue a stop condition. 1: Requests to issue a stop condition.	R/W
b4	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b5	TRS	Transmit/Receive Mode	0: Receive mode 1: Transmit mode	R/W*1
b6	MST	Master/Slave Mode	0: Slave mode 1: Master mode	R/W*1
b7	BBSY	Bus Busy Detection Flag	0: The I ² C-bus is released (bus free state). 1: The I ² C-bus is occupied (bus busy state).	R

Note 1. When the ICMR1.MTWP bit is set to 1, bits MST and TRS can be written to.

ST Bit (Start Condition Issuance Request)

This bit is used to request transition to master mode and issuance of a start condition.

When this bit is set to 1 to request to issue a start condition, a start condition is issued when the BBSY flag is set to 0 (bus free state).

For details on the start condition issuance, refer to section 29.10, Start Condition/Restart Condition/Stop Condition Issuing Function.

[Setting condition]

• When 1 is written to the ST bit

[Clearing conditions]

- When 0 is written to the ST bit
- When a start condition has been issued (a start condition is detected)
- When the ICSR2.AL (arbitration-lost) flag is set to 1
- When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset

Note: Set the ST bit to 1 (start condition issuance request) when the BBSY flag is set to 0 (bus free state).

Note that arbitration may be lost due to a start condition issuance error if the ST bit is set to 1 (start condition issuance request) when the BBSY flag is set to 1 (bus busy state).

RS Bit (Restart Condition Issuance Request)

This bit is used to request that a restart condition be issued in master mode.

When this bit is set to 1 to request to issue a restart condition, a restart condition is issued when the BBSY flag is set to 1 (bus busy state) and the MST bit is set to 1 (master mode).

For details on the restart condition issuance, refer to section 29.10, Start Condition/Restart Condition/Stop Condition Issuing Function.

[Setting condition]

• When 1 is written to the RS bit with the ICCR2.BBSY flag set to 1

[Clearing conditions]

- When 0 is written to the RS bit
- When a restart condition has been issued (a start condition is detected)
- When the ICSR2.AL (arbitration-lost) flag is set to 1
- When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset

Note: Do not set the RS bit to 1 while issuing a stop condition.

Note: If 1 (requests to issue a restart condition) is written to the RS bit in slave mode, the restart condition is not issued but the RS bit remains set to 1. If the operating mode changes to master mode with the bit not being cleared, note that the restart condition may be issued.

SP Bit (Stop Condition Issuance Request)

This bit is used to request that a stop condition be issued in master mode.

When this bit is set to 1 to request to issue a stop condition, a stop condition is issued when the BBSY flag is set to 1 (bus busy state) and the MST bit is set to 1 (master mode).

For details on the stop condition issuance, refer to section 29.10, Start Condition/Restart Condition/Stop Condition Issuing Function.

[Setting condition]

• When 1 is written to the SP bit with both the BBSY flag and the ICCR2.MST bit set to 1

[Clearing conditions]

- When 0 is written to the SP bit
- When a stop condition has been issued (a stop condition is detected)
- When the ICSR2.AL (arbitration-lost) flag is set to 1
- When a start condition and a restart condition are detected
- When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset

Note: Writing to the SP bit is not possible while the setting of the BBSY flag is 0 (bus free state).

Note: Do not set the SP bit to 1 while a restart condition is being issued.

TRS Bit (Transmit/Receive Mode)

This bit indicates transmit or receive mode.

The RIIC is in receive mode when the TRS bit is set to 0 and is in transmit mode when the bit is set to 1. Combination of this bit and the MST bit indicates the operating mode of the RIIC.

The value of TRS bit is automatically changed to 1 for transmit mode or 0 for receive mode by issuing or detection of a start condition and setting of the R/W# bit. Although writing to the TRS bit is possible when the ICMR1.MTWP bit is set to 1, writing to this bit is not necessary during normal usage.

[Setting conditions]

- When a start condition is issued normally according to the start condition issuance request (when a start condition is detected with the ST bit set to 1)
- When a restart condition is issued normally according to the restart condition issuance request (when a restart condition is detected with the RS bit set to 1)
- When the R/W# bit added to the slave address is set to 0 in master mode
- When the address received in slave mode matches the address enabled in the ICSER register, with the R/W# bit set to 1
- When 1 is written to the TRS bit with the ICMR1.MTWP bit set to 1

[Clearing conditions]

- When a stop condition is detected
- The ICSR2.AL (arbitration-lost) flag being set to 1
- In master mode, reception of a slave address to which an R/W# bit with the value 1 is appended
- In slave mode, a match between the received address and the address enabled in the ICSER register when the value of the received R/W# bit is 0 (including cases where the received address is the general call address)
- In slave mode, a restart condition is detected (a start condition is detected with ICCR2.BBSY flag is 1 and ICCR2.MST bit is 0)
- When 0 is written to the TRS bit with the ICMR1.MTWP bit set to 1
- When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset

MST Bit (Master/Slave Mode)

This bit indicates master or slave mode.

The RIIC is in slave mode when the MST bit is set to 0 and is in master mode when the bit is set to 1. Combination of this bit and the TRS bit indicates the operating mode of the RIIC.

The value of the MST bit is automatically changed to 1 for master mode or 0 for slave mode by issuing of a start condition and issuing or detection of a stop condition, etc. Although writing to the MST bit is possible when the ICMR1.MTWP bit is set to 1, writing to this bit is not necessary during normal usage.

[Setting conditions]

- When a start condition is issued normally according to the start condition issuance request (when a start condition is detected with the ST bit set to 1)
- When 1 is written to the MST bit with the ICMR1.MTWP bit set to 1

[Clearing conditions]

- When a stop condition is detected
- When the ICSR2.AL (arbitration-lost) flag is set to 1
- When 0 is written to the MST bit with the ICMR1.MTWP bit set to 1
- When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset

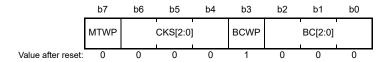
BBSY Flag (Bus Busy Detection Flag)

The BBSY flag indicates whether the I²C-bus is occupied (bus busy state) or released (bus free state).

This bit is set to 1 when the SDA0 line changes from high to low under the condition of SCL0 line = high, assuming that a start condition has been issued.

When the SDA0 line changes from low to high under the condition of SCL0 line = high, this bit is set to 0 after the bus free time (specified in the ICBRL register) start condition is not detected, assuming that a stop condition has been issued. [Setting condition]

• When a start condition is detected


[Clearing conditions]

- When the bus free time (specified in the ICBRL register) start condition is not detected after detecting a stop condition
- When 1 is written to the ICCR1.IICRST bit with the ICCR1.ICE bit set to 0 (RIIC reset)

29.2.3 I²C-bus Mode Register 1 (ICMR1)

Address(es): RIIC0.ICMR1 0008 8302h

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	BC[2:0]	Bit Counter	b2 b0 0 0 0:9 bits 0 0 1:2 bits 0 1 0:3 bits 0 1 1:4 bits 1 0 0:5 bits 1 0 1:6 bits 1 1 0:7 bits 1 1 1:8 bits	R/W* ¹
b3	BCWP	BC Write Protect	0: Enables a value to be written in the BC[2:0] bits. (This bit is read as 1.)	R/W*1
b6 to b4	CKS[2:0]	Internal Reference Clock Select	Select the internal reference clock (IICφ) source for the RIIC. b6 b4 0 0 0: PCLK/1 clock 0 0 1: PCLK/2 clock 0 1 0: PCLK/4 clock 0 1 1: PCLK/8 clock 1 0 0: PCLK/16 clock 1 0 1: PCLK/32 clock 1 1 1: PCLK/32 clock 1 1 1: PCLK/64 clock 1 1 1: PCLK/64 clock	R/W
b7	MTWP	MST/TRS Write Protect	Disables writing to the ICCR2.MST and TRS bits. Enables writing to the ICCR2.MST and TRS bits.	R/W

Note 1. Rewrite the BC[2:0] bits and set the BCWP bit to 0 at the same time.

BC[2:0] Bits (Bit Counter)

These bits function as a counter that indicates the number of bits remaining to be transferred at the detection of a rising edge on the SCL0 line. Although these bits are writable and readable, it is not necessary to access these bits under normal conditions.

To write to these bits, specify the number of bits to be transferred plus one (data is transferred with an additional acknowledge bit) between transferred bytes when the SCL0 line is at a low level.

The values of the BC[2:0] bits return to 000b at the end of a data transfer including the acknowledge bit or when a start condition including a restart condition is detected.

29.2.4 I²C-bus Mode Register 2 (ICMR2)

Address(es): RIIC0.ICMR2 0008 8303h

Bit	Symbol	Bit Name	Description	R/W
b0	TMOS	Timeout Detection Time Select	0: Long mode is selected. 1: Short mode is selected.	R/W
b1	TMOL	Timeout L Count Control	0: Count-up is disabled while the SCL0 line is at a low level. 1: Count-up is enabled while the SCL0 line is at a low level.	R/W
b2	TMOH	Timeout H Count Control	O: Count-up is disabled while the SCL0 line is at a high level. 1: Count-up is enabled while the SCL0 line is at a high level.	R/W
b3	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b6 to b4	SDDL[2:0]	SDA Output Delay Counter	• When ICMR2.DLCS bit is 0 (IICφ) b6 b4 0 0 0: No output delay 0 1: 1 IICφ cycle 0 1 0: 2 IICφ cycles 0 1 1: 3 IICφ cycles 1 0 0: 4 IICφ cycles 1 0 1: 5 IICφ cycles 1 1 0: 6 IICφ cycles 1 1 1: 7 IICφ cycles • When ICMR2.DLCS bit is 1 (IICφ/2) b6 b4 0 0 0: No output delay 0 0 1: 1 or 2 IICφ cycles 0 1 0: 3 or 4 IICφ cycles 1 0 0: 7 or 8 IICφ cycles 1 0 1: 9 or 10 IICφ cycles 1 1 0: 11 or 12 IICφ cycles	R/W
b7	DLCS	SDA Output Delay Clock Source Select	0: The internal reference clock (IICφ) is selected as the clock source of the SDA output delay counter. 1: The internal reference clock divided by 2 (IICφ/2) is selected as the clock source of the SDA output delay counter.*1	R/W

Note 1. The DLCS bit setting of 1 (IICφ/2) only becomes valid when SCL pin is low. When SCL pin is high, the DLCS bit setting of 1 becomes invalid and the clock source becomes the internal reference clock (IICφ).

TMOS Bit (Timeout Detection Time Select)

This bit is used to select long mode or short mode for the timeout detection time when the timeout function is enabled (ICFER.TMOE bit is 1). When this bit is set to 0, long mode is selected. When this bit is set to 1, short mode is selected. In long mode, the timeout detection internal counter functions as a 16-bit counter. In short mode, the counter functions as a 14-bit counter. While the SCL0 line is in the state that enables this counter as specified by bits TMOH and TMOL, the counter counts up in synchronization with the internal reference clock (IIC ϕ) as a count source. For details on the timeout function, refer to section 29.11.1, Timeout Function.

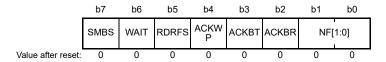
TMOL Bit (Timeout L Count Control)

This bit is used to enable or disable the internal counter of the timeout function to count up while the SCL0 line is held low when the timeout function is enabled (ICFER.TMOE bit is 1).

TMOH Bit (Timeout H Count Control)

This bit is used to enable or disable the internal counter of the timeout function to count up while the SCL0 line is held high when the timeout function is enabled (ICFER.TMOE bit is 1).

SDDL[2:0] Bits (SDA Output Delay Counter)


The SDA output can be delayed by the SDDL[2:0] setting. This counter works with the clock source selected by the DLCS bit. The setting of this function can be used for all types of SDA output, including the transmission of the acknowledge bit.

Set the SDA output delay time to meet the I²C-bus specification (within the data enable time/acknowledge enable time*¹) or the SMBus specification (within the data hold time: 300 ns or more, and SCL-clock low-level period - the data setup time: 250 ns). Note that, if a value outside the specification is set, communication with communication devices may malfunction or it may seemingly become a start condition or stop condition depending on the bus state. For details on this function, refer to section 29.5, SDA Output Delay Function.

Note 1. Data enable time/acknowledge enable time 3,450 ns (up to 100 kbps: Standard-mode (Sm)) 900 ns (up to 400 kbps: Fast-mode (Fm))

29.2.5 I²C-bus Mode Register 3 (ICMR3)

Address(es): RIIC0.ICMR3 0008 8304h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	NF[1:0]	Noise Filter Stage Select	b1 b0 0 0: Noise of up to one IICφ cycle is filtered out (single-stage filter). 0 1: Noise of up to two IICφ cycles is filtered out (2-stage filter). 1 0: Noise of up to three IICφ cycles is filtered out (3-stage filter). 1 1: Noise of up to four IICφ cycles is filtered out (4-stage filter).	R/W
b2	ACKBR	Receive Acknowledge	0: 0 is received as the acknowledge bit (ACK reception). 1: 1 is received as the acknowledge bit (NACK reception).	R
b3	ACKBT	Transmit Acknowledge	0: 0 is sent as the acknowledge bit (ACK transmission). 1: 1 is sent as the acknowledge bit (NACK transmission).	R/W*1
b4	ACKWP	ACKBT Write Protect	Modification of the ACKBT bit is disabled. Modification of the ACKBT bit is enabled.	R/W*1
b5	RDRFS	RDRF Flag Set Timing Select	O: The RDRF flag is set at the rising edge of the ninth SCL clock cycle. (The SCL0 line is not held low at the falling edge of the eighth clock cycle.) 1: The RDRF flag is set at the rising edge of the eighth SCL clock cycle. (The SCL0 line is held low at the falling edge of the eighth clock cycle.) Low-hold is released by writing a value to the ACKBT bit.	R/W*2
b6	WAIT	WAIT	O: No WAIT (The period between ninth clock cycle and first clock cycle is not held low.) 1: WAIT (The period between ninth clock cycle and first clock cycle is held low.) Low-hold is released by reading the ICDRR register.	R/W* ²
b7	SMBS	SMBus/I ² C-bus Select	0: The I ² C-bus is selected. 1: The SMBus is selected.	R/W

Note 1. Write to the ACKBT bit only while the ACKWP bit is already 1. If it is attempted to write 1 to both the ACKWP and ACKBT bits at the same time, the ACKBT bit will not be set to 1.

NF[1:0] Bits (Noise Filter Stage Select)

These bits are used to select the number of stages in the digital noise filter.

For details on the digital noise filter function, refer to section 29.6, Digital Noise Filter Circuit.

Note: Set the noise range to be filtered out by the noise filter within a range less than the SCL0 line high-level period or low-level period. If the noise filter width is set to a value of [the shorter one of either SCL high width or SCL low width] – {1.5 × t_{IICcyc} (cycle time of internal reference clock (IICφ)) + 120 ns (pulse width suppressed by the analog noise filter, a reference value)} or a greater value, the SCL clock is regarded as noise by the noise filter function of the RIIC, which may prevent the RIIC from operating normally.

Note 2. The WAIT and RDRFS bits are valid only in receive mode (invalid in transmit mode).

ACKBR Bit (Receive Acknowledge)

This bit is used to store the acknowledge bit information received from the receive device in transmit mode. [Setting condition]

- When 1 is received as the acknowledge bit with the ICCR2.TRS bit set to 1 [Clearing conditions]
- When 0 is received as the acknowledge bit with the ICCR2.TRS bit set to 1
- When 1 is written to the ICCR1.IICRST bit while the ICCR1.ICE bit is 0 (RIIC reset)

ACKBT Bit (Transmit Acknowledge)

This bit is used to set the bit to be sent at the acknowledge timing in receive mode. [Setting condition]

• When 1 is written to this bit with the ACKWP bit set to 1

[Clearing conditions]

- When 0 is written to this bit with the ACKWP bit set to 1
- When stop condition issuance is detected (when a stop condition is detected with the ICCR2.SP bit set to 1)
- When 1 is written to the ICCR1.IICRST bit while the ICCR1.ICE bit is 0 (RIIC reset)

ACKWP Bit (ACKBT Write Protect)

This bit is used to control the modification of the ACKBT bit.

RDRFS Bit (RDRF Flag Set Timing Select)

This bit is used to select the RDRF flag set timing in receive mode and also to select whether to hold the SCL0 line low at the falling edge of the eighth SCL clock cycle.

When the RDRFS bit is 0, the SCL0 line is not held low at the falling edge of the eighth SCL clock cycle, and the RDRF flag is set to 1 at the rising edge of the ninth SCL clock cycle.

When the RDRFS bit is 1, the RDRF flag is set to 1 at the rising edge of the eighth SCL clock cycle and the SCL0 line is held low at the falling edge of the eighth SCL clock cycle. The low-hold of the SCL0 line is released by writing a value to the ACKBT bit.

After data is received with this setting, the SCL0 line is automatically held low before the acknowledge bit is sent. This enables processing to send ACK (ACKBT bit is 0) or NACK (ACKBT bit is 1) according to receive data.

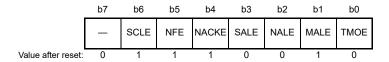
WAIT Bit (WAIT)

This bit is used to control whether to hold the period between the ninth SCL clock cycle and the first SCL clock cycle low until the I²C-bus receive data register (ICDRR) is completely read each time single-byte data is received in receive mode.

When the WAIT bit is 0, the receive operation is continued without holding the period between the ninth and the first SCL clock cycle low. When both the RDRFS and WAIT bits are 0, continuous receive operation is enabled with the double buffer.

When the WAIT bit is 1, the SCL0 line is held low from the falling edge of the ninth clock cycle until the ICDRR register value is read each time single-byte data is received. This enables receive operation in byte units.

Note: When the value of the WAIT bit is to be read, be sure to read the ICDRR register beforehand.


SMBS Bit (SMBus/I²C-bus Select)

Setting this bit to 1 selects the SMBus and enables the ICSER.HOAE bit.

29.2.6 I²C-bus Function Enable Register (ICFER)

Address(es): RIIC0.ICFER 0008 8305h

Bit	Symbol	Bit Name	Description	R/W
b0	TMOE	Timeout Function Enable	O: The timeout function is disabled. The timeout function is enabled.	R/W
b1	MALE	Master Arbitration-Lost Detection Enable	O: Master arbitration-lost detection is disabled. (Disables the arbitration-lost detection function and does not clear the ICCR2.MST and TRS bits automatically when arbitration is lost.) 1: Master arbitration-lost detection is enabled. (Enables the arbitration-lost detection function and clears the ICCR2.MST and TRS bits automatically when arbitration is lost.)	R/W
b2	NALE	NACK Transmission Arbitration-Lost Detection Enable	NACK transmission arbitration-lost detection is disabled. NACK transmission arbitration-lost detection is enabled.	R/W
b3	SALE	Slave Arbitration-Lost Detection Enable	Slave arbitration-lost detection is disabled. Slave arbitration-lost detection is enabled.	R/W
b4	NACKE	NACK Reception Transfer Abort Enable	O: Transfer operation is not aborted during NACK reception (transfer abort disabled). 1: Transfer operation is aborted during NACK reception (transfer abort enabled).	R/W
b5	NFE	Digital Noise Filter Circuit Enable	O: No digital noise filter circuit is used. 1: A digital noise filter circuit is used.	R/W
b6	SCLE	SCL Synchronous Circuit Enable	0: No SCL synchronous circuit is used. 1: An SCL synchronous circuit is used.	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

TMOE Bit (Timeout Function Enable)

This bit is used to enable or disable the timeout function.

For details on the timeout function, refer to section 29.11.1, Timeout Function.

MALE Bit (Master Arbitration-Lost Detection Enable)

This bit is used to specify whether to use the arbitration-lost detection function in master mode. Normally, set this bit to 1.

NALE Bit (NACK Transmission Arbitration-Lost Detection Enable)

This bit is used to specify whether to cause arbitration to be lost when ACK is detected during transmission of NACK in receive mode (such as when slaves with the same address exist on the bus or when two or more masters select the same slave device simultaneously with different number of receive bytes).

SALE Bit (Slave Arbitration-Lost Detection Enable)

This bit is used to specify whether to cause arbitration to be lost when a value different from the value being transmitted is detected on the bus in slave transmit mode (such as when slaves with the same address exist on the bus or when a mismatch with the transmit data occurs due to noise).

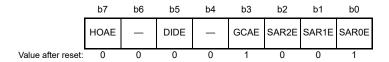
NACKE Bit (NACK Reception Transfer Abort Enable)

This bit is used to specify whether to continue or discontinue the transfer operation when NACK is received from the slave device in transmit mode. Normally, set this bit to 1.

When NACK is received with the NACKE bit set to 1, the next transfer operation is aborted.

When the NACKE bit is 0, the next transfer operation is continued regardless of the received acknowledge content. For details on the NACK reception transfer abort function, refer to section 29.8.2, NACK Reception Transfer Abort Function.

SCLE Bit (SCL Synchronous Circuit Enable)


This bit is used to specify whether to synchronize the SCL clock with the SCL input clock. Normally, set this bit to 1. When the SCLE bit is set to 0 (no SCL synchronous circuit used), the RIIC does not synchronize the SCL clock with the SCL input clock. In this setting, the RIIC outputs the SCL clock with the transfer rate set in registers ICBRH and ICBRL regardless of the SCL0 line state. For this reason, if the bus load of the I²C-bus line is much larger than the specification value or if the SCL clock output overlaps in multiple masters, the short-cycle SCL clock that does not meet the specification may be output. When no SCL synchronous circuit is used, it also affects the issuance of a start condition, restart condition, and stop condition, and the continuous output of extra SCL clock cycles.

This bit must not be set to 0 except for checking the output of the set transfer rate.

29.2.7 I²C-bus Status Enable Register (ICSER)

Address(es): RIIC0.ICSER 0008 8306h

Bit	Symbol	Bit Name	Description	R/W
b0	SAR0E	Slave Address Register 0 Enable	Slave address in registers SARL0 and SARU0 is disabled. Slave address in registers SARL0 and SARU0 is enabled.	R/W
b1	SAR1E	Slave Address Register 1 Enable	Slave address in registers SARL1 and SARU1 is disabled. Slave address in registers SARL1 and SARU1 is enabled.	R/W
b2	SAR2E	Slave Address Register 2 Enable	Slave address in registers SARL2 and SARU2 is disabled. Slave address in registers SARL2 and SARU2 is enabled.	R/W
b3	GCAE	General Call Address Enable	General call address detection is disabled. General call address detection is enabled.	R/W
b4	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b5	DIDE	Device-ID Address Detection Enable	Device-ID address detection is disabled. Device-ID address detection is enabled.	R/W
b6	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b7	HOAE	Host Address Enable	O: Host address detection is disabled. 1: Host address detection is enabled.	R/W

SARyE Bit (Slave Address Register y Enable) (y = 0 to 2)

This bit is used to enable or disable the slave address set in registers SARLy and SARUy.

When this bit is set to 1, the slave address set in registers SARLy and SARUy is enabled and is compared with the received slave address.

When this bit is set to 0, the slave address set in registers SARLy and SARUy is disabled and is ignored even if it matches the received slave address.

GCAE Bit (General Call Address Enable)

This bit is used to specify whether to ignore the general call address $(0000\ 000b + 0\ (write)$: All 0) when it is received. When this bit is set to 1, if the received slave address matches the general call address, the RIIC recognizes the received slave address as the general call address independently of the slave addresses set in registers SARLy and SARUy (y = 0 to 2) and performs data receive operation.

When this bit is set to 0, the received slave address is ignored even if it matches the general call address.

DIDE Bit (Device-ID Address Detection Enable)

This bit is used to specify whether to recognize and execute the device-ID address when a device ID (1111 100b) is received in the first byte after a start condition or restart condition is detected.

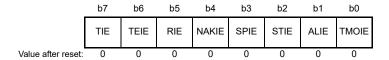
When this bit is set to 1, if the received first byte matches the device ID, the RIIC recognizes that the device-ID address has been received. When the following R/W# bit is 0 (write), the RIIC recognizes the second and the following bytes as slave addresses and continues the receive operation.

When this bit is set to 0, the RIIC ignores the received first byte even if it matches the device ID address and recognizes the first byte as a normal slave address.

For details on the device-ID address detection, refer to section 29.7.3, Device-ID Address Detection.

HOAE Bit (Host Address Enable)

This bit is used to specify whether to ignore received host address (0001 000b) when the ICMR3.SMBS bit is 1.


When this bit is set to 1 while the ICMR3.SMBS bit is 1, if the received slave address matches the host address, the RIIC recognizes the received slave address as the host address independently of the slave addresses set in registers SARLy and SARUy (y = 0 to 2) and performs the receive operation.

When the ICMR3.SMBS bit or the HOAE bit is set to 0, the received slave address is ignored even if it matches the host address.

29.2.8 I²C-bus Interrupt Enable Register (ICIER)

Address(es): RIIC0.ICIER 0008 8307h

Bit	Symbol	Bit Name	Description	R/W
b0	TMOIE	Timeout Interrupt Request Enable	0: Timeout interrupt (TMOI) request is disabled. 1: Timeout interrupt (TMOI) request is enabled.	R/W
b1	ALIE	Arbitration-Lost Interrupt Request Enable	0: Arbitration-lost interrupt (ALI) request is disabled. 1: Arbitration-lost interrupt (ALI) request is enabled.	R/W
b2	STIE	Start Condition Detection Interrupt Request Enable	Start condition detection interrupt (STI) request is disabled. Start condition detection interrupt (STI) request is enabled.	R/W
b3	SPIE	Stop Condition Detection Interrupt Request Enable	Stop condition detection interrupt (SPI) request is disabled. Stop condition detection interrupt (SPI) request is enabled.	R/W
b4	NAKIE	NACK Reception Interrupt Request Enable	0: NACK reception interrupt (NAKI) request is disabled. 1: NACK reception interrupt (NAKI) request is enabled.	R/W
b5	RIE	Receive Data Full Interrupt Request Enable	0: Receive data full interrupt (RXI) request is disabled. 1: Receive data full interrupt (RXI) request is enabled.	R/W
b6	TEIE	Transmit End Interrupt Request Enable	0: Transmit end interrupt (TEI) request is disabled. 1: Transmit end interrupt (TEI) request is enabled.	R/W
b7	TIE	Transmit Data Empty Interrupt Request Enable	Transmit data empty interrupt (TXI) request is disabled. Transmit data empty interrupt (TXI) request is enabled.	R/W

TMOIE Bit (Timeout Interrupt Request Enable)

This bit is used to enable or disable timeout interrupt (TMOI) requests when the ICSR2.TMOF flag is set to 1. A TMOI interrupt request is canceled by setting the TMOF flag or the TMOIE bit to 0.

ALIE Bit (Arbitration-Lost Interrupt Request Enable)

This bit is used to enable or disable arbitration-lost interrupt (ALI) requests when the ICSR2.AL flag is set to 1. An ALI interrupt request is canceled by setting the AL flag or the ALIE bit to 0.

STIE Bit (Start Condition Detection Interrupt Request Enable)

This bit is used to enable or disable start condition detection interrupt (STI) requests when the ICSR2.START flag is set to 1. An STI interrupt request is canceled by setting the START flag or the STIE bit to 0.

SPIE Bit (Stop Condition Detection Interrupt Request Enable)

This bit is used to enable or disable stop condition detection interrupt (SPI) requests when the ICSR2.STOP flag is set to 1. An SPI interrupt request is canceled by setting the STOP flag or the SPIE bit to 0.

NAKIE Bit (NACK Reception Interrupt Request Enable)

This bit is used to enable or disable NACK reception interrupt (NAKI) requests when the ICSR2.NACKF flag is set to 1. An NAKI interrupt request is canceled by setting the NACKF flag or the NAKIE bit to 0.

RIE Bit (Receive Data Full Interrupt Request Enable)

This bit is used to enable or disable receive data full interrupt (RXI) requests when the ICSR2.RDRF flag is set to 1.

TEIE Bit (Transmit End Interrupt Request Enable)

This bit is used to enable or disable transmit end interrupt (TEI) requests when the ICSR2.TEND flag is set to 1. An TEI interrupt request is canceled by setting the TEND flag or the TEIE bit to 0.


TIE Bit (Transmit Data Empty Interrupt Request Enable)

This bit is used to enable or disable transmit data empty interrupt (TXI) requests when the ICSR2.TDRE flag is set to 1.

29.2.9 I²C-bus Status Register 1 (ICSR1)

Address(es): RIIC0.ICSR1 0008 8308h

Bit	Symbol	Bit Name	Description			
b0	AAS0	Slave Address 0 Detection Flag	0: Slave address 0 is not detected. 1: Slave address 0 is detected.	R/(W) *1		
b1	AAS1	Slave Address 1 Detection Flag	0: Slave address 1 is not detected. 1: Slave address 1 is detected.	R/(W) *1		
b2	AAS2	Slave Address 2 Detection Flag	0: Slave address 2 is not detected. 1: Slave address 2 is detected.	R/(W) *1		
b3	GCA	General Call Address Detection Flag	General call address is not detected. General call address is detected.			
b4	_	Reserved	This bit is read as 0. The write value should be 0.	R/W		
b5	DID	Device-ID Address Detection Flag	O: Device-ID command is not detected. 1: Device-ID command is detected. • This bit is set to 1 when the first byte received immediately after a start condition is detected matches a value of (device ID (1111 100b) + 0 (write)).	R/(W) *1		
b6	_	Reserved	This bit is read as 0. The write value should be 0.	R/W		
b7	НОА	Host Address Detection Flag	O: Host address is not detected. 1: Host address is detected. • This bit is set to 1 when the received slave address matches the host address (0001 000b).	R/(W) *1		

Note 1. Only 0 can be written to clear the flag.

AASy Flag (Slave Address y Detection Flag) (y = 0 to 2)

[Setting conditions]

For 7-bit address format: SARUy.FS bit = 0

• When the received slave address matches the SARLy.SVA[6:0] bits value with the ICSER.SARyE bit set to 1 (slave address y detection enabled)

This flag is set to 1 at the rising edge of the ninth SCL clock cycle in the first byte.

For 10-bit address format: SARUy.FS bit = 1

• When the received slave address matches a value of (11110b + SARUy.SVA[1:0] bits) and the following address matches the SARLy value with the ICSER.SARyE bit set to 1 (slave address y detection enabled)

This flag is set to 1 at the rising edge of the ninth SCL clock cycle in the second byte.

[Clearing conditions]

- When 0 is written to the AASy flag after reading the AASy flag to be 1
- When a stop condition is detected
- When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset

For 7-bit address format: SARUy.FS bit = 0

• When the received slave address does not match the SARLy.SVA[6:0] bits value with the ICSER.SARyE bit set to 1 (slave address y detection enabled)

This flag is set to 0 at the rising edge of the ninth SCL clock cycle in the first byte.

For 10-bit address format: SARUy.FS bit = 1

- When the received slave address does not match a value of (11110b + SARUy.SVA[1:0] bits) with the ICSER.SARyE bit set to 1 (slave address y detection enabled)
 - This flag is set to 0 at the rising edge of the ninth SCL clock cycle in the first byte.
- When the received slave address matches a value of (11110b + SARUy.SVA[1:0] bits) and the following address does not match the SARLy value with the ICSER.SARyE bit set to 1 (slave address y detection enabled)

 This flag is set to 0 at the rising edge of the ninth SCL clock cycle in the second byte.

GCA Flag (General Call Address Detection Flag)

[Setting condition]

- When the received slave address matches the general call address (0000 000b + 0 (write)) with the ICSER.GCAE bit set to 1 (general call address detection is enabled)
 - This flag is set to 1 at the rising edge of the ninth SCL clock cycle in the first byte.

[Clearing conditions]

- When 0 is written to the GCA flag after reading GCA flag to be 1
- When a stop condition is detected
- When the received slave address does not match the general call address (0000 000b + 0 (write)) with the ICSER.GCAE bit set to 1 (general call address detection is enabled)

 This flag is set to 0 at the rising edge of the ninth SCL clock cycle in the first byte.
- When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset

DID Flag (Device-ID Address Detection Flag)

[Setting condition]

• When the first byte received immediately after a start condition or restart condition is detected matches a value of (device ID (1111 100b) + 0 (write)) with the ICSER.DIDE bit set to 1 (device-ID address detection is enabled)

This flag is set to 1 at the rising edge of the ninth SCL clock cycle in the first byte.

[Clearing conditions]

- When 0 is written to the DID flag after reading DID flag to be 1
- When a stop condition is detected
- When the first byte received immediately after a start condition or restart condition is detected does not match a value of (device ID (1111 100b)) with the ICSER.DIDE bit set to 1 (device-ID address detection is enabled)

 This flag is set to 0 at the rising edge of the ninth SCL clock cycle in the first byte.
- When the first byte received immediately after a start condition or restart condition is detected matches a value of (device ID (1111 100b) + 0 (write)) and the second byte does not match any of slave addresses 0 to 2 with the ICSER.DIDE bit set to 1 (device-ID address detection is enabled)
 - This flag is set to 0 at the rising edge of the ninth SCL clock cycle in the second byte.
- When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset

HOA Flag (Host Address Detection Flag)

[Setting condition]

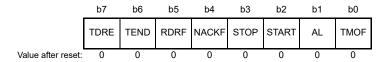
• When the received slave address matches the host address (0001 000b) with the ICSER.HOAE bit set to 1 (host address detection is enabled)

This flag is set to 1 at the rising edge of the ninth SCL clock cycle in the first byte.

[Clearing conditions]

- When 0 is written to the HOA flag after reading HOA flag to be 1
- When a stop condition is detected
- When the received slave address does not match the host address (0001 000b) with the ICSER.HOAE bit set to 1

(host address detection is enabled)


This flag is set to 0 at the rising edge of the ninth SCL clock cycle in the first byte.

• When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset

29.2.10 I²C-bus Status Register 2 (ICSR2)

Address(es): RIIC0.ICSR2 0008 8309h

Bit	Symbol	Bit Name	Description	R/W	
b0	TMOF	Timeout Detection Flag	Timeout is not detected. Timeout is detected.	R/(W) *1	
b1	AL	Arbitration-Lost Flag	Arbitration is not lost. Arbitration is lost.	R/(W) *1	
b2	START	Start Condition Detection Flag	Start condition is not detected. Start condition is detected.	R/(W) *1	
b3	STOP	Stop Condition Detection Flag	Stop condition is not detected. Stop condition is detected.	R/(W) *1	
b4	NACKF	NACK Detection Flag	0: NACK is not detected. 1: NACK is detected.	R/(W) *1	
b5	RDRF	Receive Data Full Flag 0: The ICDRR register contains no receive data. 1: The ICDRR register contains receive data.		R/(W) *1	
b6	TEND	Transmit End Flag	Data is being transmitted. Data has been transmitted.	R/(W) *1	
b7	TDRE	Transmit Data Empty Flag	The ICDRT register contains transmit data. The ICDRT register contains no transmit data.	R	

Note 1. Only 0 can be written to clear the flag.

TMOF Flag (Timeout Detection Flag)

This flag is set to 1 when the RIIC recognizes timeout after the SCL0 line state remains unchanged for a certain period. [Setting condition]

When the SCL0 line state remains unchanged for the period specified by bits ICMR2.TMOH, TMOL, and TMOS
while the ICFER.TMOE bit is 1 (the timeout function is enabled) in master mode or in slave mode and the received
slave address matches.

[Clearing conditions]

- When 0 is written to the TMOF bit after reading TMOF = 1
- When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset

AL Flag (Arbitration-Lost Flag)

This flag shows that bus mastership has been lost (loss in arbitration) due to a bus conflict or some other reason when a start condition is issued or an address and data are transmitted. The RIIC monitors the level on the SDA0 line during transmission and, if the level on the line does not match the value of the bit being output, sets the value of the AL flag to 1 to indicate that the bus is occupied by another device.

The RIIC can also set the flag to indicate the detection of loss of arbitration during NACK transmission in master mode or during data transmission in slave mode.

[Setting conditions]

When master arbitration-lost detection is enabled: ICFER.MALE = 1

- When the internal SDA output state does not match the SDA0 line level at the rising edge of SCL clock except for the ACK period during data (including slave address) transmission in master transmit mode (when the SDA0 line is driven low while the internal SDA output is at a high level (the SDA0 pin is in the high-impedance state))
- When a start condition is detected while the ICCR2.ST bit is 1 (start condition issuance request) or the internal SDA output state does not match the SDA0 line level
- When the ICCR2.ST bit is set to 1 (start condition issuance request) with the ICCR2.BBSY flag set to 1.

When NACK arbitration-lost detection is enabled: ICFER.NALE = 1

• When the internal SDA output state does not match the SDA0 line level at the rising edge of SCL clock in the ACK period during NACK transmission in receive mode

When slave arbitration-lost detection is enabled: ICFER.SALE = 1

• When the internal SDA output state does not match the SDA0 line level at the rising edge of SCL clock except for the ACK period during data transmission in slave transmit mode

[Clearing conditions]

- When 0 is written to the AL flag after reading AL = 1
- When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset

Table 29.4 Relationship between Arbitration-Lost Generation Sources and Arbitration-Lost Enable Functions

ICFER ICSR2								
MALE	NALE	SALE	AL	Error	Arbitration-Lost Generation Source			
1	×	×	1	Start condition issuance error	When internal SDA output state does not match SDA0 line level when a start condition is detected while the ICCR2.ST bit is 1			
					When ICCR2.ST bit is set to 1 with ICCR2.BBSY flag set to 1			
			1	Transmit data mismatch	When transmit data (including slave address) does not match the bus state in master transmit mode			
×	1	×	1	NACK transmission mismatch	When ACK is detected during transmission of NACK in master receive mode or slave receive mode			
×	×	1	1	Transmit data mismatch	When transmit data does not match the bus state in slave transmit mode			

^{×:} Don't care

START Flag (Start Condition Detection Flag)

[Setting condition]

• When a start condition (or a restart condition) is detected

[Clearing conditions]

- When 0 is written to the START bit after reading START = 1
- When a stop condition is detected
- When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset

STOP Flag (Stop Condition Detection Flag)

[Setting condition]

• When a stop condition is detected

[Clearing conditions]

- When 0 is written to the STOP bit after reading STOP = 1
- When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset

NACKF Flag (NACK Detection Flag)

[Setting condition]

• When acknowledge is not received (NACK is received) from the receive device in transmit mode with the ICFER.NACKE bit set to 1 (transfer abort enabled)

[Clearing conditions]

- When 0 is written to the NACKF bit after reading NACKF = 1
- When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset

Note: When the NACKF flag is set to 1, the RIIC aborts data transmission/reception. Writing to the ICDRT register in transmit mode or reading from the ICDRR register in receive mode with the NACKF flag set to 1 does not enable data transmit/receive operation. To restart data transmission/reception, set the NACKF flag to 0.

RDRF Flag (Receive Data Full Flag)

[Setting conditions]

- When receive data has been transferred from the ICDRS register to the ICDRR register

 This flag is set to 1 at the rising edge of the eighth or ninth SCL clock cycle (selected by the ICMR3.RDRFS bit)
- When the received slave address matches after a start condition (or a restart condition) is detected with the ICCR2.TRS bit set to 0

[Clearing conditions]

- When 0 is written to the RDRF bit after reading RDRF = 1
- When data is read from the ICDRR register
- When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset

TEND Flag (Transmit End Flag)

[Setting condition]

• At the rising edge of the ninth SCL clock cycle while the TDRE flag is 1

[Clearing conditions]

- When 0 is written to the TEND bit after reading TEND = 1
- When data is written to the ICDRT register
- When a stop condition is detected
- When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset

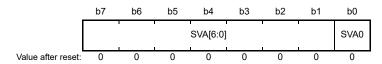
TDRE Flag (Transmit Data Empty Flag)

[Setting conditions]

- When data has been transferred from the ICDRT register to the ICDRS register and the ICDRT register becomes empty
- When the ICCR2.TRS bit is set to 1
- When the received slave address matches while the TRS bit is 1

[Clearing conditions]

- When data is written to the ICDRT register
- When the ICCR2.TRS bit is set to 0
- When 1 is written to the ICCR1.IICRST bit to apply an RIIC reset or an internal reset


Note: When the NACKF flag is set to 1 while the ICFER.NACKE bit is 1, the RIIC aborts data transmission/reception.

Here, if the TDRE flag is 0 (next transmit data has been written), data is transferred to the ICDRS register and the ICDRT register becomes empty at the rising edge of the ninth clock cycle, but the TDRE flag is not set to 1.

29.2.11 Slave Address Register Ly (SARLy) (y = 0 to 2)

Address(es): RIIC0.SARL0 0008 830Ah, RIIC0.SARL1 0008 830Ch, RIIC0.SARL2 0008 830Eh

Bit	Symbol	Bit Name	Description	R/W
b0	SVA0	10-Bit Address LSB	A slave address is set.	R/W
b7 to b1	SVA[6:0]	7-Bit Address/10-Bit Address Lower Bits	A slave address is set.	R/W

SVA0 Bit (10-Bit Address LSB)

When the 10-bit address format is selected (SARUy.FS bit is 1), this bit functions as the LSB of a 10-bit address and forms the lower 8 bits of a 10-bit address in combination with the SVA[6:0] bits.

When the ICSER.SARyE bit is set to 1 (SARLy and SARUy enabled) and the SARUy.FS bit is 1, this bit is valid. While the SARUy.FS bit or SARyE bit is 0, the setting of this bit is ignored.

SVA[6:0] Bits (7-Bit Address/10-Bit Address Lower Bits)

When the 7-bit address format is selected (SARUy.FS bit is 0), these bits function as a 7-bit address. When the 10-bit address format is selected (SARUy.FS bit is 1), these bits function as the lower 8 bits of a 10-bit address in combination with the SVA0 bit.

While the ICSER.SARyE bit is 0, the setting of these bits is ignored.

29.2.12 Slave Address Register Uy (SARUy) (y = 0 to 2)

Address(es): RIIC0.SARU0 0008 830Bh, RIIC0.SARU1 0008 830Dh, RIIC0.SARU2 0008 830Fh

Bit	Symbol	Bit Name	Description	R/W
b0	FS	7-Bit/10-Bit Address Format Select	O: The 7-bit address format is selected. T: The 10-bit address format is selected.	R/W
b2, b1	SVA[1:0]	10-Bit Address Upper Bits	A slave address is set.	R/W
b7 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

FS Bit (7-Bit/10-Bit Address Format Select)

This bit is used to select 7-bit address or 10-bit address for slave address y (in registers SARLy and SARUy). When the ICSER.SARyE bit is set to 1 (registers SARLy and SARUy enabled) and the SARUy.FS bit is 0, the 7-bit address format is selected for slave address y, the SARLy.SVA[6:0] bits setting is valid, and the settings of the SVA[1:0] bits and the SARLy.SVA0 bit are ignored.

When the ICSER.SARyE bit is set to 1 (registers SARLy and SARUy enabled) and the SARUy.FS bit is 1, the 10-bit address format is selected for slave address y and the settings of the SVA[1:0] bits and SARLy are valid. While the ICSER.SARyE bit is 0 (registers SARLy and SARUy disabled), the setting of the SARUy.FS bit is invalid.

SVA[1:0] Bits (10-Bit Address Upper Bits)

When the 10-bit address format is selected (FS = 1), these bits function as the upper 2 bits of a 10-bit address. When the ICSER.SARyE bit is set to 1 (SARLy and SARUy enabled) and the SARUy.FS bit is 1, these bits are valid. While the SARUy.FS bit or SARyE bit is 0, the setting of these bits is ignored.

29.2.13 I²C-bus Bit Rate Low-Level Register (ICBRL)

Address(es): RIIC0.ICBRL 0008 8310h

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	BRL[4:0]	Bit Rate Low-Level Period	Low-level period of SCL clock	R/W
b7 to b5	_	Reserved	These bits are read as 1. The write value should be 1.	R/W

ICBRL is a 5-bit register to set the low-level period of SCL clock.

It also works to generate the data setup time for automatic SCL low-hold operation (refer to section 29.8, Automatic Low-Hold Function for SCL); when the RIIC is used only in slave mode, this register needs to be set to a value longer than the data setup time*1.

ICBRL counts the low-level period with the internal reference clock (IIC ϕ) specified by the ICMR1.CKS[2:0] bits. If the digital noise filter is enabled (the ICFER.NFE bit is 1), set the ICBRL register to a value at least one greater than the number of stages in the noise filter. Regarding the number of stages in the noise filter, see the description of the ICMR3.NF[1:0] bits.

Note 1. Data setup time (tSU: DAT)

250 ns (up to 100 kbps: Standard-mode (Sm)) 100 ns (up to 400 kbps: Fast-mode (Fm))

29.2.14 I²C-bus Bit Rate High-Level Register (ICBRH)

Address(es): RIIC0.ICBRH 0008 8311h

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	BRH[4:0]	Bit Rate High-Level Period	High-level period of SCL clock	R/W
b7 to b5	_	Reserved	These bits are read as 1. The write value should be 1.	R/W

ICBRH is a 5-bit register to set the high-level period of SCL clock. ICBRH is valid in master mode. If the RIIC is used only in slave mode, this register need not to set the high-level period.

ICBRH counts the high-level period with the internal reference clock (IIC ϕ) specified by the ICMR1.CKS[2:0] bits. If the digital noise filter is enabled (the ICFER.NFE bit is 1), set the ICBRH register to a value at least one greater than the number of stages in the noise filter. Regarding the number of stages in the noise filter, see the description of the ICMR3.NF[1:0] bits.

The I²C transfer rate and the SCL clock duty are calculated using the following expression.

 $\begin{aligned} & \text{Transfer rate} = 1 \ / \ \{ \left[\left(\text{ICBRH} + 1 \right) + \left(\text{ICBRL} + 1 \right) \right] \ / \ \text{IIC} \phi^{\star 1} + \text{SCL0 line rising time [tr]} + \text{SCL0 line falling time [tf]} \} \\ & \text{Duty cycle} = \left\{ \text{SCL0 line rising time [tr]}^{\star 2} + \left(\text{ICBRH} + 1 \right) \ / \ \text{IIC} \phi \right\} \ / \left\{ \text{SCL0 line falling time [tf]}^{\star 2} + \left(\text{ICBRL} + 1 \right) \ / \ \text{IIC} \phi \right\} \end{aligned}$

Note 1. $IIC\phi = PCLK \times Division ratio$

Note 2. The SCL0 line rising time [tr] and SCL0 line falling time [tf] depend on the total bus line capacitance [Cb] and the pull-up resistor [Rp]. For details, see the I²C-bus specification from NXP Semiconductors.

Table 29.5 lists examples of ICBRH/ICBRL settings.

Table 29.5 Examples of ICBRH/ICBRL Settings for Transfer Rate

	Operating Frequency PCLK (MHz)									
Transfer Rate	8			10			12.5			
(kbps)	CKS[2:0]	ICBRH	ICBRL	CKS[2:0]	ICBRH	ICBRL	CKS[2:0]	ICBRH	ICBRL	
10	100b	22 (F6h)	25 (F9h)	101b	13 (EDh)	15 (EFh)	101b	16 (F0h)	20 (F4h)	
50	010b	16 (F0h)	19 (F3h)	010b	21 (F5h)	24 (F8h)	011b	12 (ECh)	15 (EFh)	
100	001b	15 (EFh)	18 (F2h)	001b	19 (F3h)	23 (F7h)	001b	24 (F8h)	29 (FDh)	
400	000b	4 (E4h)	10 (EAh)	000b	5 (E5h)	12 (ECh)	000b	7 (E7h)	16 (F0h)	

	Operating Frequency PCLK (MHz)								
Transfer Rate	16			20			25		
(kbps)	CKS[2:0]	ICBRH	ICBRL	CKS[2:0]	ICBRH	ICBRL	CKS[2:0]	ICBRH	ICBRL
10	101b	22 (F6h)	25 (F9h)	110b	13 (EDh)	15 (EFh)	110b	16 (F0h)	20 (F4h)
50	011b	16 (F0h)	19 (F3h)	011b	21 (F5h)	24 (F8h)	100b	12 (ECh)	15 (EFh)
100	010b	15 (EFh)	18 (F2h)	010b	19 (F3h)	23 (F7h)	010b	24 (F8h)	29 (FDh)
400	000b	9 (E9h)	20 (F4h)	000b	11 (EBh)	25 (F9h)	001b	7 (E7h)	16 (F0h)

_ ,	Operating Frequency PCLK (MHz)								
Transfer Rate		30		32					
(kbps)	CKS[2:0]	ICBRH	ICBRL	CKS[2:0]	ICBRH	ICBRL			
10	110b	20 (F4h)	24 (F8h)	110b	22 (F6h)	25 (F9h)			
50	100b	15 (EFh)	18 (F2h)	100b	16 (F0h)	19 (F3h)			
100	011b	14 (EEh)	17 (F1h)	011b	15 (EFh)	18 (F2h)			
400	001b	8 (E8h)	19 (F3h)	001b	9 (E9h)	20 (F4h)			

Note: ICBRH/ICBRL settings in these tables are calculated using the following values:

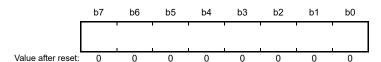
SCL0 line rising time (tr): 100 kbps or less (Sm): 1000 ns, 400 kbps or less (Fm): 300 ns

SCL0 line falling time (tf): 400 kbps or less (Sm/Fm): 300 ns

For the specified values of SCL0 line rising time (tr) and SCL0 line falling time (tf), see the I²C-bus specification from NXP Semiconductors.

29.2.15 I²C-bus Transmit Data Register (ICDRT)

Address(es): RIIC0.ICDRT 0008 8312h


When the ICDRT register detects a space in the I^2C -bus shift register (ICDRS), it transfers the transmit data that has been written to the ICDRT register to the ICDRS register and starts transmitting data in transmit mode.

The double-buffer structure of the ICDRT register and the ICDRS register allows continuous transmit operation if the next transmit data has been written to the ICDRT register while the ICDRS register data is being transmitted.

The ICDRT register can always be read and written. Write transmit data to the ICDRT register once when a transmit data empty interrupt (TXI) request is generated.

29.2.16 I²C-bus Receive Data Register (ICDRR)

Address(es): RIIC0.ICDRR 0008 8313h

When 1 byte of data has been received, the received data is transferred from the I²C-bus shift register (ICDRS) to the ICDRR register to enable the next data to be received.

The double-buffer structure of the ICDRS register and the ICDRR register allows continuous receive operation if the received data has been read from the ICDRR register while the ICDRS register is receiving data.

The ICDRR register cannot be written. Read data from the ICDRR register once when a receive data full interrupt (RXI) request is generated.

If the ICDRR register receives the next receive data before the current data is read from the ICDRR register (while the ICSR2.RDRF flag is 1), the RIIC automatically holds the SCL clock low one cycle before the RDRF flag is set to 1 next.

29.2.17 I²C-bus Shift Register (ICDRS)

The ICDRS register is an 8-bit shift register to transmit and receive data.

During transmission, transmit data is transferred from the ICDRT register to the ICDRS register and is sent from the SDA0 pin. During reception, data is transferred from the ICDRS register to the ICDRR register after 1 byte of data has been received.

The ICDRS register cannot be accessed directly.

29.3 Operation

29.3.1 Communication Data Format

The I^2C -bus format consists of 8-bit data and 1-bit acknowledge. The first byte following a start condition or restart condition is an address byte used to specify a slave device with which the master device communicates. The specified slave is valid until a new slave is specified or a stop condition is issued.

Figure 29.3 shows the I²C-bus format, and Figure 29.4 shows the I²C-bus timing.

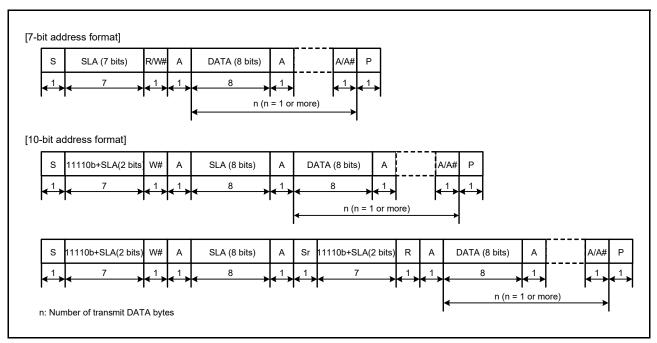


Figure 29.3 I²C-bus Format

Figure 29.4 I²C-bus Timing (SLA = 7 Bits)

- S: Start condition. The master device drives the SDA0 line low from high level while the SCL0 line is at a high level.
- SLA: Slave address, by which the master device selects a slave device.
- R/W#: Indicates the direction of data transfer: from the slave device to the master device when R/W is 1, or from the master device to the slave device when R/W is 0.
- A: Acknowledge. The receive device drives the SDA0 line low. (In master transmit mode, the slave device returns acknowledge. In master receive mode, the master device returns acknowledge.)
- A#: Not Acknowledge. The receive device drives the SDA0 line high.
- Sr: Restart condition. The master device drives the SDA0 line low from the high level after the setup time has elapsed with the SCL0 line at the high level.
- DATA: Transmitted or received data
- P: Stop condition. The master device drives the SDA0 line high from low level while the SCL0 line is at a high level.

29.3.2 Initial Settings

Before starting data transmission and reception, initialize the RIIC according to the procedure in Figure 29.5. Set the ICCR1.ICE bit to 1 (internal reset) after setting the ICCR1.IICRST bit to 1 (RIIC reset) with the ICCR1.ICE bit set to 0 (SCL0 and SDA0 pins in inactive state). This initializes the various flags and internal state of the ICSR1 register. After that, set registers SARLy, SARUy, ICSER, ICMR1, ICBRH, and ICBRL (y = 0 to 2), and set the other registers as necessary (for initial settings of the RIIC, see Figure 29.5). When the necessary register settings have been completed, set the ICCR1.IICRST bit to 0 (releases the RIIC reset). This step is not necessary if initialization of the RIIC has already been completed.

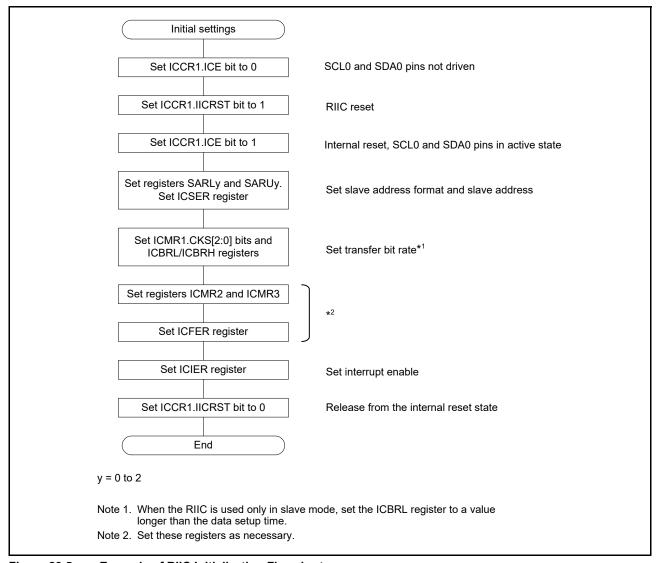


Figure 29.5 Example of RIIC Initialization Flowchart

29.3.3 Master Transmit Operation

In master transmit operation, the RIIC outputs the SCL clock and transmitted data signals as the master device, and the slave device returns acknowledgments. Figure 29.6 shows an example of usage of master transmission and Figure 29.7 to Figure 29.9 show the timing of operations in master transmission.

The following describes the procedure and operations for master transmission.

- (1) Initial settings. For details, refer to section 29.3.2, Initial Settings.
- (2) Read the ICCR2.BBSY flag to check that the bus is open, and then set the ICCR2.ST bit to 1 (start condition issuance request). Upon receiving the request, the RIIC issues a start condition. At the same time, the BBSY flag and the ICSR2.START flag are automatically set to 1 and the ST bit is automatically set to 0. At this time, if the start condition is detected and the internal levels for the SDA output state and the levels on the SDA0 line have matched while the ST bit is 1, the RIIC recognizes that issuing of the start condition as requested by the ST bit has been successfully completed, and bits MST and TRS in the ICCR2 register are automatically set to 1, placing the RIIC in master transmit mode. The ICSR2.TDRE flag is also automatically set to 1 in response to setting of the TRS bit to 1.
- (3) Check that the ICSR2.TDRE flag is 1, and then write the value for transmission (the slave address and the R/W# bit) to the ICDRT register. Once the data for transmission are written to the ICDRT register, the TDRE flag is automatically set to 0, the data are transferred from the ICDRT register to the ICDRS register, and the TDRE flag is again set to 1. After the byte containing the slave address and R/W# bit has been transmitted, the value of the TRS bit is automatically updated to select master transmit or master receive mode in accord with the value of the transmitted R/W# bit. If the value of the R/W# bit was 0, the RIIC continues in master transmit mode. Because the ICSR2.NACKF flag being 1 at this time indicates that no slave device recognized the address or there was an error in communications, write 1 to the ICCR2.SP bit to issue a stop condition. For data transmission with an address in the 10-bit format, start by writing 1111 0b, the 2 higher-order bits of the slave address, and W to the ICDRT register as the first address transmission. Then, as the second address transmission, write the 8 lower-order bits of the slave address to the ICDRT register.
- (4) After confirming that the ICSR2.TDRE flag is 1, write the data for transmission to the ICDRT register. The RIIC automatically holds the SCL0 line low until the data for transmission are ready or a stop condition is issued.
- (5) After all bytes of data for transmission have been written to the ICDRT register, wait until the value of the ICSR2.TEND flag returns to 1, and then set the ICCR2.SP bit to 1 (stop condition issuance request). Upon receiving a stop condition issuance request, the RIIC issues the stop condition.
- (6) Upon detecting the stop condition, the RIIC automatically sets bits MST and TRS in the ICCR2 register to 00b and enters slave receive mode. Furthermore, it automatically sets the TDRE and TEND flags to 0, and sets the ICSR2.STOP flag to 1.
- (7) After checking that the ICSR2.STOP flag is 1, set the ICSR2.NACKF and STOP flags to 0 for the next transfer operation.

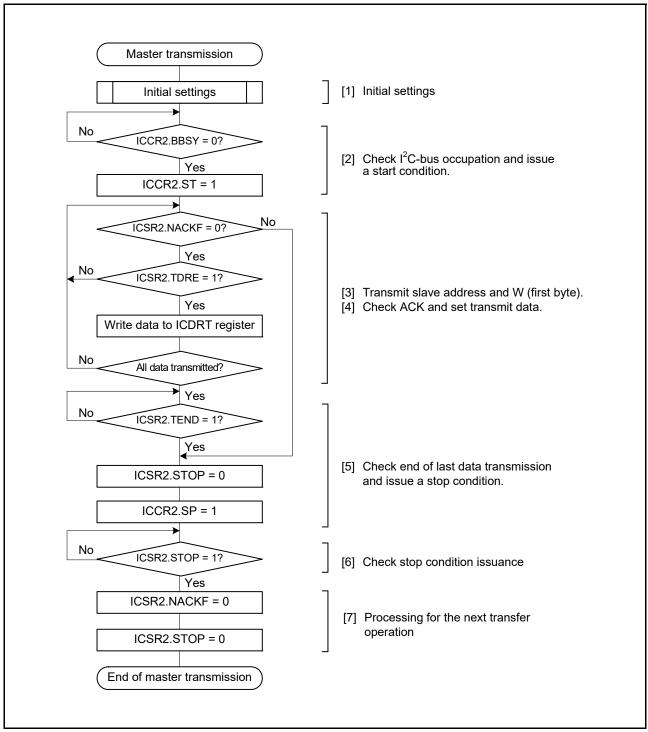


Figure 29.6 Example of Master Transmission Flowchart

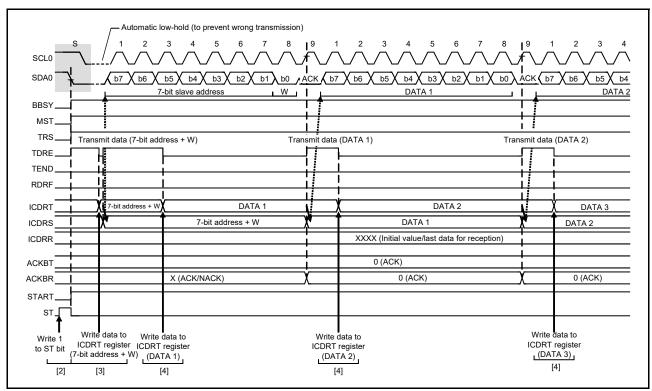


Figure 29.7 Master Transmit Operation Timing (1) (7-Bit Address Format)

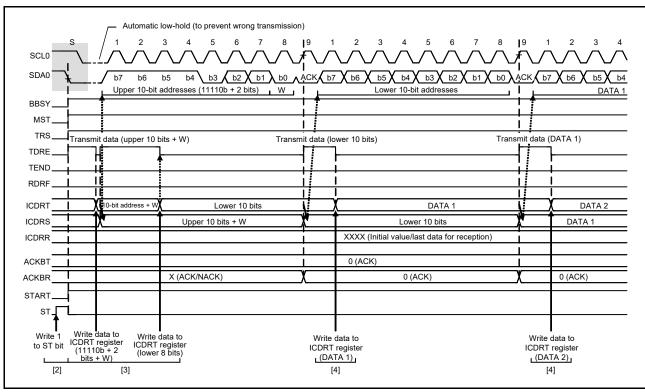


Figure 29.8 Master Transmit Operation Timing (2) (10-Bit Address Format)

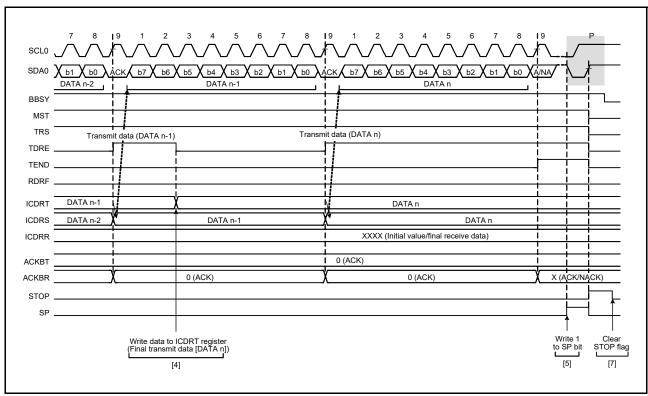


Figure 29.9 Master Transmit Operation Timing (3)

29.3.4 Master Receive Operation

In master receive operation, the RIIC as a master device outputs the SCL clock, receives data from the slave device, and returns acknowledgments. Because the RIIC must start by sending a slave address to the corresponding slave device, this part of the procedure is performed in master transmit mode, but the subsequent steps are in master receive mode. Figure 29.10 and Figure 29.11 show examples of usage of master reception (7-bit address format) and Figure 29.12 to Figure 29.14 show the timing of operations in master reception.

The following describes the procedure and operations for master reception.

- (1) Initial settings. For details, refer to section 29.3.2, Initial Settings.
- (2) Read the ICCR2.BBSY flag to check that the bus is open, and then set the ICCR2.ST bit to 1 (start condition issuance request). Upon receiving the request, the RIIC issues a start condition. When the RIIC detects the start condition, the BBSY flag and the ICSR2.START flag are automatically set to 1 and the ST bit is automatically set to 0. At this time, if the start condition is detected and the levels for the SDA output and the levels on the SDA0 line have matched while the ST bit is 1, the RIIC recognizes that issuing of the start condition as requested by the ST bit has been successfully completed, and bits MST and TRS in the ICCR2 register are automatically set to 1, placing the RIIC in master transmit mode. The ICSR2.TDRE flag is also automatically set to 1 in response to setting of the TRS bit to 1.
- (3) Check that the ICSR2.TDRE flag is 1, and then write the value for transmission (the first byte indicates the slave address and value of the R/W# bit) to the ICDRT register. Once the data for transmission are written to the ICDRT register, the TDRE flag is automatically set to 0, the data are transferred from the ICDRT register to the ICDRS register, and the TDRE flag is again set to 1. Once the byte containing the slave address and R/W# bit has been transmitted, the value of the ICCR2.TRS bit is automatically updated to select transmit or receive mode in accord with the value of the transmitted R/W# bit. If the value of the R/W# bit was 1, the TRS bit is set to 0 on the rising edge of the ninth cycle of SCL clock, placing the RIIC in master receive mode. At this time, the TDRE flag is set to 0 and the ICSR2.RDRF flag is automatically set to 1.

- Because the ICSR2.NACKF flag being 1 at this time indicates that no slave device recognized the address or there was an error in communications, write 1 to the ICCR2.SP bit to issue a stop condition.
- For master reception from a device with a 10-bit address, start by using master transmission to issue the 10-bit address, and then issue a restart condition. After that, transmitting 1111 0b, the two higher-order bits of the slave address, and the R bit places the RIIC in master receive mode.
- (4) Dummy read the ICDRR register after confirming that the ICSR2.RDRF flag is 1; this makes the RIIC start output of the SCL clock and start data reception.
- (5) After 1 byte of data has been received, the ICSR2.RDRF flag is set to 1 on the rising edge of the eighth or ninth cycle of SCL clock (the clock signal) as selected by the ICMR3.RDRFS bit. Reading the ICDRR register at this time will produce the received data, and the RDRF flag is automatically set to 0 at the same time. Furthermore, the value of the acknowledgment field received during the ninth cycle of SCL clock is returned as the value set in the ICMR3.ACKBT bit. Furthermore, if the next byte to be received is the next to last byte, set the ICMR3.WAIT bit to 1 (for wait insertion) before reading the ICDRR register (containing the second byte from last). As well as enabling NACK output even in the case of delays in processing to set the ICMR3.ACKBT bit to 1 (NACK) in step (6), due to other interrupts, etc., this fixes the SCL0 line to the low level on the falling edge of the ninth clock cycle in reception of the last byte, so the state is such that issuing a stop condition is possible.
- (6) When the ICMR3.RDRFS bit is 0 and the slave device must be notified that it is to end transfer for data reception after transfer of the next (final) byte, set the ICMR3.ACKBT bit to 1 (NACK).
- (7) After reading the byte before last from the ICDRR register, if the value of the ICSR2.RDRF flag is confirmed to be 1, write 1 to the ICCR2.SP bit (stop condition issuance request) and then read the last byte from the ICDRR register. When the ICDRR register is read, the RIIC is released from the wait state and issues the stop condition after low-level output in the ninth clock cycle is completed or the SCL0 line is released from the low-hold state.
- (8) Upon detecting the stop condition, the RIIC automatically sets bits MST and TRS in the ICCR2 register to 00b and enters slave receive mode. Furthermore, detection of the stop condition leads to setting of the ICSR2.STOP flag to 1.
- (9) After checking that the ICSR2.STOP flag is 1, set the ICSR2.NACKF and STOP flags to 0 for the next transfer operation.

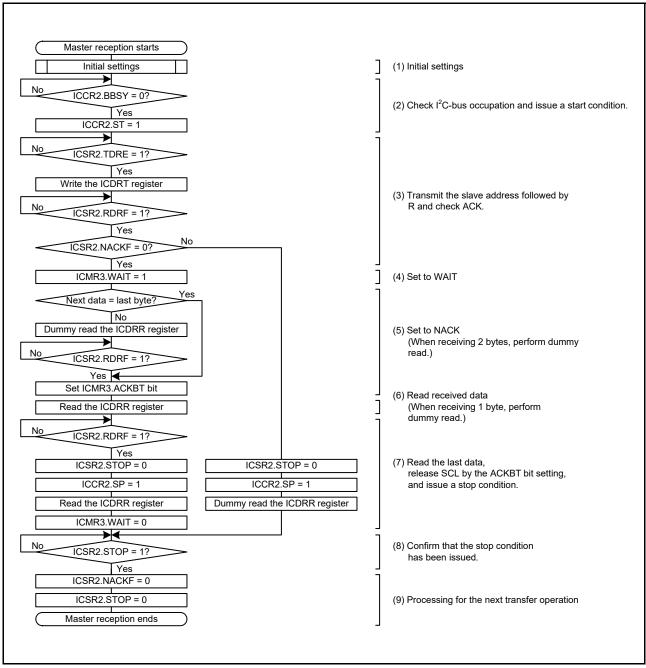


Figure 29.10 Example of Master Reception (7-Bit Address Format, 1 or 2 bytes)

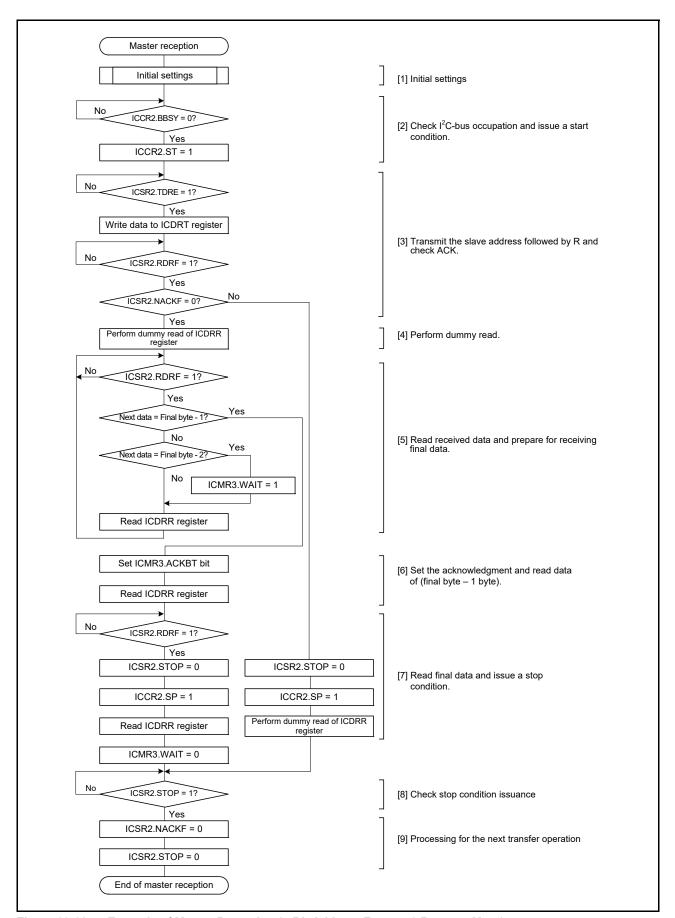


Figure 29.11 Example of Master Reception (7-Bit Address Format, 3 Bytes or More)

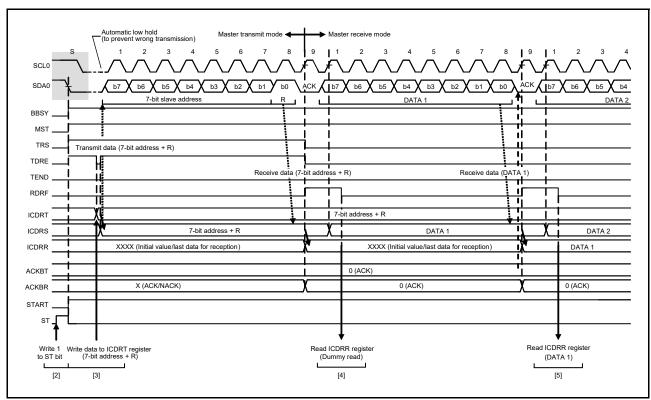


Figure 29.12 Master Receive Operation Timing (1) (7-Bit Address Format, When RDRFS bit is 0)

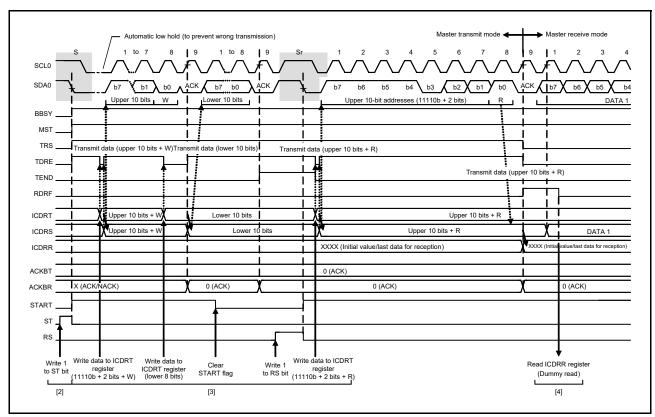


Figure 29.13 Master Receive Operation Timing (2) (10-Bit Address Format, When RDRFS bit is 0)

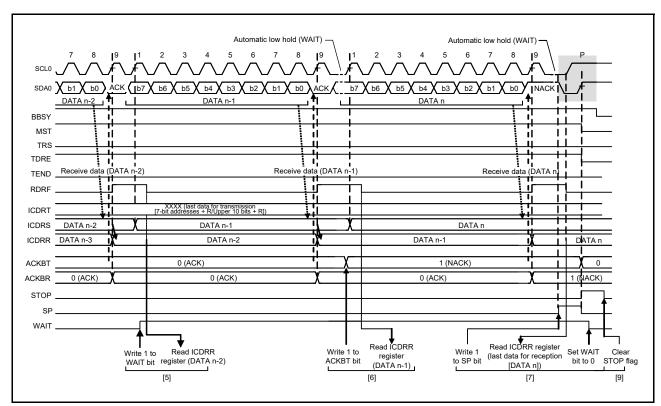


Figure 29.14 Master Receive Operation Timing (3) (When RDRFS bit is 0)

29.3.5 Slave Transmit Operation

In slave transmit operation, the master device outputs the SCL clock, the RIIC transmits data as a slave device, and the master device returns acknowledgments.

Figure 29.15 shows an example of usage of slave transmission and Figure 29.16 and Figure 29.17 show the timing of operations in slave transmission.

The following describes the procedure and operations for slave transmission.

- (1) Initial settings. For details, refer to section 29.3.2, Initial Settings.

 After initial settings, the RIIC will stay in the standby state until it receives a slave address that it matches.
- (2) After receiving a matching slave address, the RIIC sets one of the corresponding bits ICSR1.HOA, GCA, and AASy (y = 0 to 2) to 1 on the rising edge of the ninth cycle of SCL clock (the clock signal) and outputs the value set in the ICMR3.ACKBT bit to the acknowledge bit on the ninth cycle of SCL clock. If the value of the R/W# bit that was also received at this time is 1, the RIIC automatically places itself in slave transmit mode by setting both the ICCR2.TRS bit and the ICSR2.TDRE flag to 1.
- (3) After the ICSR2.TDRE flag is confirmed to be 1, write the data for transmission to the ICDRT register. At this time, if the RIIC does not receive acknowledge from the master device (receives an NACK signal) while the ICFER.NACKE bit is 1, the RIIC aborts transfer of the next data.
- (4) Wait until the ICSR2.TEND flag is set to 1 while the ICSR2.TDRE flag is 1, after the ICSR2.NACKF flag is set to 1 or the last byte for transmission is written to the ICDRT register. When the ICSR2.NACKF flag or the TEND flag is 1, the RIIC drives the SCL0 line low on the ninth falling edge of SCL clock.
- (5) When the ICSR2.NACKF flag or the ICSR2.TEND flag is 1, dummy read the ICDRR register to complete the processing. This releases the SCL0 line.
- (6) Upon detecting the stop condition, the RIIC automatically sets bits ICSR1.HOA, GCA, and AASy (y = 0 to 2), flags ICSR2.TDRE and TEND, and the ICCR2.TRS bit to 0, and enters slave receive mode.
- (7) After checking that the ICSR2.STOP flag is 1, set the ICSR2.NACKF and STOP flags to 0 for the next transfer operation.

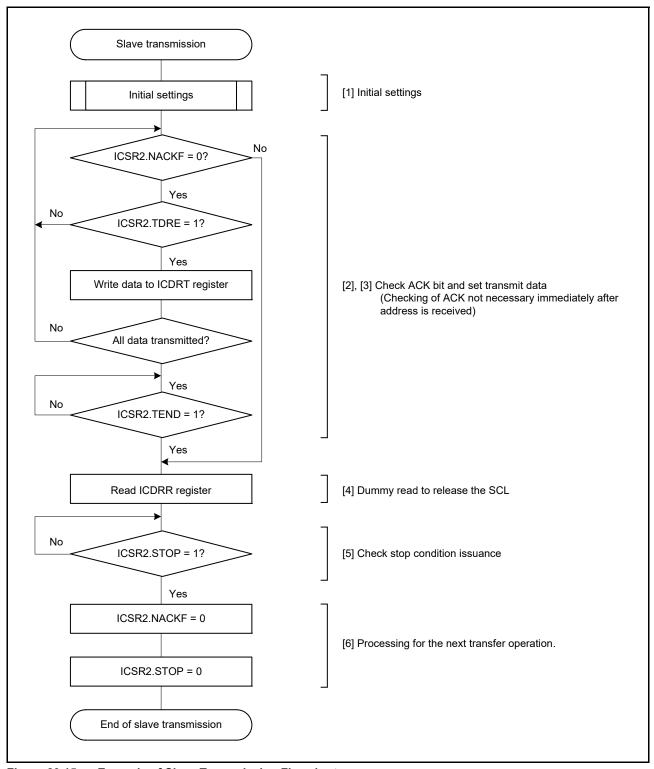


Figure 29.15 Example of Slave Transmission Flowchart

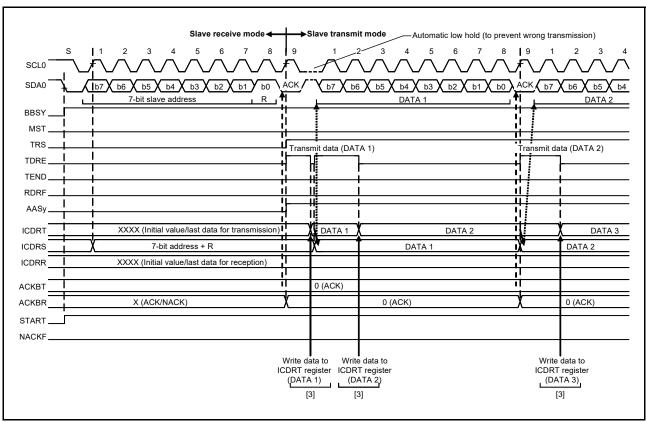


Figure 29.16 Slave Transmit Operation Timing (1) (7-Bit Address Format)

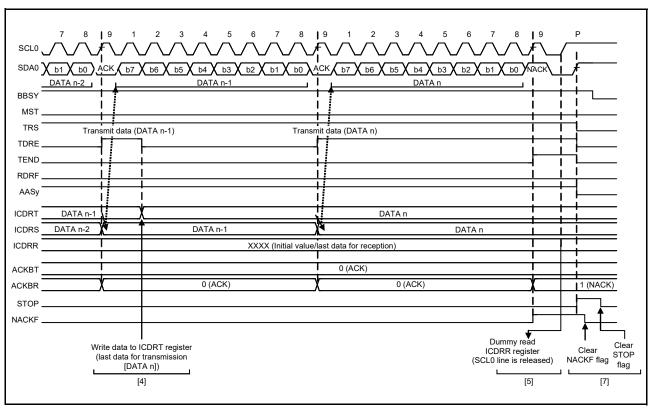


Figure 29.17 Slave Transmit Operation Timing (2)

29.3.6 Slave Receive Operation

In slave receive operation, the master device outputs the SCL clock and transmit data, and the RIIC returns acknowledgments as a slave device.

Figure 29.18 shows an example of usage of slave reception and Figure 29.19 and Figure 29.20 show the timing of operations in slave reception.

The following describes the procedure and operations for slave reception.

- (1) Initial settings. For details, refer to section 29.3.2, Initial Settings.

 After initial settings, the RIIC will stay in the standby state until it receives a slave address that it matches.
- (2) After receiving a matching slave address, the RIIC sets one of the corresponding bits ICSR1.HOA, GCA, and AASy (y = 0 to 2) to 1 on the rising edge of the ninth cycle of SCL clock (the clock signal) and outputs the value set in the ICMR3.ACKBT bit to the acknowledge bit on the ninth cycle of SCL clock. If the value of the R/W# bit that was also received at this time is 0, the RIIC continues to place itself in slave receive mode and sets the ICSR2.RDRF flag to 1.
- (3) After the ICSR2.STOP flag is confirmed to be 0 and the ICSR2.RDRF flag to be 1, dummy read the ICDRR register (the dummy value consists of the slave address and R/W# bit when the 7-bit address format is selected, or the lower 8 bits when the 10-bit address format is selected).
- (4) When the ICDRR register is read, the RIIC automatically sets the ICSR2.RDRF flag to 0. If reading of the ICDRR register is delayed and a next byte is received while the RDRF flag is still set to 1, the RIIC holds the SCL0 line low from one SCL cycle before the timing with which RDRF should be set. In this case, reading the ICDRR register releases the SCL0 line from being held at the low level.
 - When the ICSR2.STOP flag is 1 and the ICSR2.RDRF flag is also 1, read the ICDRR register until all the data is completely received.
- (5) Upon detecting the stop condition, the RIIC automatically clears bits ICSR1.HOA, GCA, and AASy (y = 0 to 2) to 0
- (6) After checking that the ICSR2.STOP flag is 1, set the ICSR2.STOP flag to 0 for the next transfer operation.

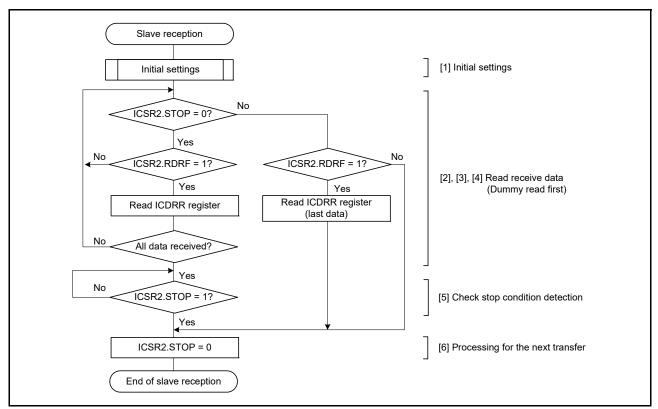


Figure 29.18 Example of Slave Reception Flowchart

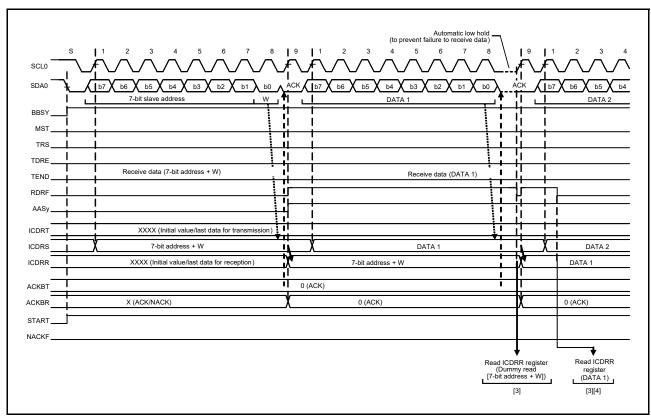


Figure 29.19 Slave Receive Operation Timing (1) (7-Bit Address Format, when RDRFS bit is 0)

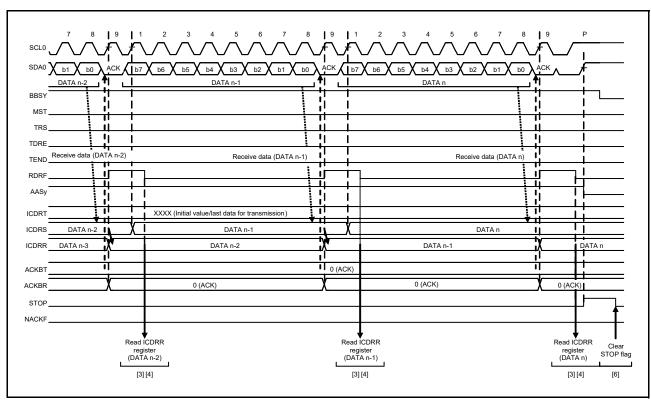


Figure 29.20 Slave Receive Operation Timing (2) (when RDRFS bit is 0)

29.4 SCL Synchronization Circuit

In generation of the SCL clock, the RIIC starts counting out the value for width at high level specified in the ICBRH register when it detects a rising edge on the SCL0 line and drives the SCL0 line low once counting of the width at high level is complete. When the RIIC detects the falling edge of the SCL0 line, it starts counting out the width at low level period specified in the ICBRL register, and then stops driving the SCL0 line (releases the line) once counting of the width at low level is complete. The SCL clock is thus generated.

If multiple master devices are connected to the I²C-bus, a collision of SCL signals may arise due to contention with another master device. In such cases, the master devices have to synchronize their SCL signals. Because this synchronization of SCL signals must be bit by bit, the RIIC is equipped with a facility (the SCL synchronization circuit) to obtain bit-by-bit synchronization of the SCL clock signals by monitoring the SCL0 line while in master mode. When the RIIC has detected a rising edge on the SCL0 line and thus started counting out the width at high level specified in the ICBRH register, and the level on the SCL0 line falls because an SCL signal is being generated by another master device, the RIIC stops counting when it detects the falling edge, drives the level on the SCL0 line low, and starts counting out the width at low level specified in the ICBRL register. When the RIIC finishes counting out the width at low level, it stops driving the SCL0 line to the low level (i.e. releases the line). At this time, if the width at low level of the SCL clock signal from the other master device is longer than the width at low level set in the RIIC, the width at low level of the SCL signal will be extended. Once the width at low level for the other master device has ended, the SCL signal rises because the SCL0 line has been released. When the RIIC finishes outputting the low-level period of the SCL clock, the SCL0 line is released and the SCL clock rises. That is, in cases of contention of SCL signals from more than one master, the width at high level of the SCL signal is synchronized with that of the clock having the narrower width, and the width at low level of the SCL signal is synchronized with that of the clock having the broader width. However, such synchronization of the SCL signal is only enabled when the ICFER.SCLE bit is set to 1.

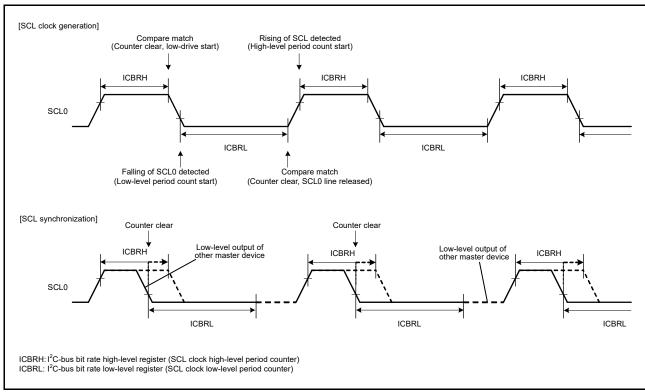


Figure 29.21 Generation and Synchronization of the SCL Signal from the RIIC

29.5 SDA Output Delay Function

The RIIC module incorporates a function for delaying output on the SDA line. The delay can be applied to all output (issuing of the start, restart, and stop conditions, data, and the ACK and NACK signals) on the SDA line.

With the SDA output delay function, SDA output is delayed from detection of a falling edge of the SCL signal to ensure that the SDA signal is output within the interval over which the SCL clock is at the low level. Doing this leads to usage with the aim of preventing erroneous operation of communications devices, with the aim of satisfying the 300-ns (min.) data-hold time requirement of the SMBus specification.

The output delay function is enabled by setting the ICMR2.SDDL[2:0] bits to any value other than 000b, and disabled by setting the same bits to 000b.

While the SDA output delay function is enabled (i.e. while the ICMR2.SDDL[2:0] bits are set to any value other than 000b), the ICMR2.DLCS bit selects the clock source for counting by the SDA output delay counter as the internal base clock (IIC ϕ) for the RIIC module or as a clock signal derived by dividing the frequency of the internal base clock by two (IIC ϕ /2). The counter counts the number of cycles set in the ICMR2.SDDL[2:0] bits. After counting of the set number of cycles of delay is completed, the RIIC module places the required output (start, restart, or stop condition, data, or an ACK or NACK signal) on the SDA line.

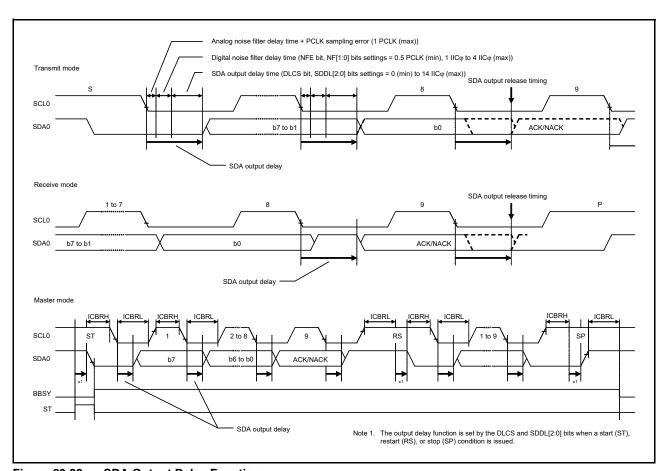


Figure 29.22 SDA Output Delay Function

29.6 Digital Noise Filter Circuit

The states of the SCL0 and SDA0 pins are conveyed to the internal circuitry through analog noise-filter and digital noise-filter circuits. Figure 29.23 is a block diagram of the digital noise-filter circuit.

The on-chip digital noise-filter circuit of the RIIC consists of four flip-flop circuit stages connected in series and a match-detection circuit.

The number of effective stages in the digital noise filter is selected by the ICMR3.NF[1:0] bits. The selected number of effective stages determines the noise-filtering capability as a period from one to four IIC ϕ cycles.

The input signal to the SCL0 pin (or SDA0 pin) is sampled on falling edges of the IIC ϕ signal. When the input signal level matches the output level of the number of effective flip-flop circuit stages as selected by the ICMR3.NF[1:0] bits, the signal level is conveyed to the subsequent stage. If the signal levels do not match, the previous value is retained. If the ratio between the frequency of the internal operating clock (PCLK) and the transfer rate is small (e.g. data transfer at 400 kbps with PCLK = 4 MHz), the characteristics of the digital noise filter may lead to the elimination of needed signals as noise. In such cases, it is possible to disable the digital noise-filter circuit (by setting the ICFER.NFE bit to 0) and use only the analog noise filter circuit.

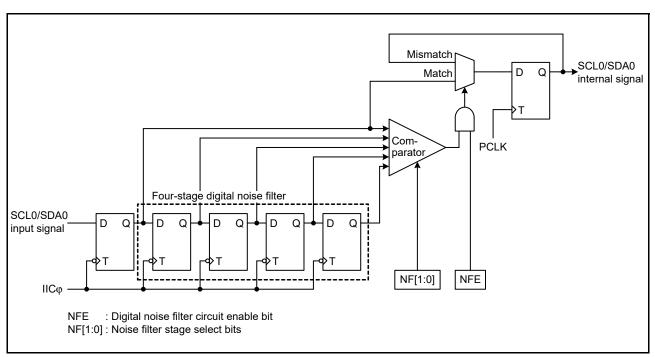


Figure 29.23 Block Diagram of Digital Noise Filter Circuit

29.7 Address Match Detection

The RIIC can set three unique slave addresses in addition to the general call address and host address, and also can set 7-bit or 10-bit slave addresses.

29.7.1 Slave-Address Match Detection

The RIIC can set three unique slave addresses, and has a slave address detection function for each unique slave address. When the ICSER.SARyE bit (y = 0 to 2) is set to 1, the slave addresses set in registers SARUy and SARLy (y = 0 to 2) can be detected.

When the RIIC detects a match of the set slave address, the corresponding ICSR1.AASy flag (y = 0 to 2) is set to 1 at the rising edge of the ninth SCL clock cycle, and the ICSR2.RDRF flag or the ICSR2.TDRE flag is set to 1 by the following R/W# bit. This causes a receive data full interrupt (RXI) or transmit data empty interrupt (TXI) to be generated. The AASy flag is used to identify which slave address has been specified.

Figure 29.24 to Figure 29.26 show the AASy flag set timing in three cases.

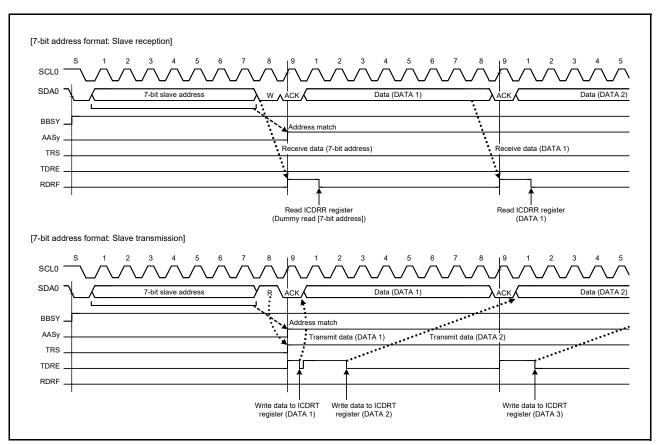


Figure 29.24 AASy Flag Set Timing with 7-Bit Address Format Selected

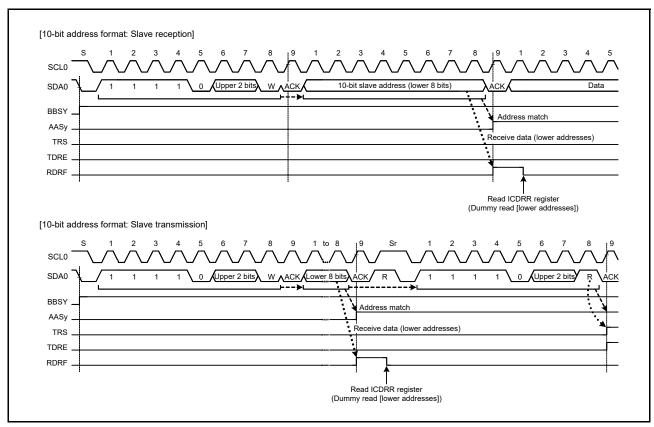


Figure 29.25 AASy Flag Set Timing with 10-Bit Address Format Selected

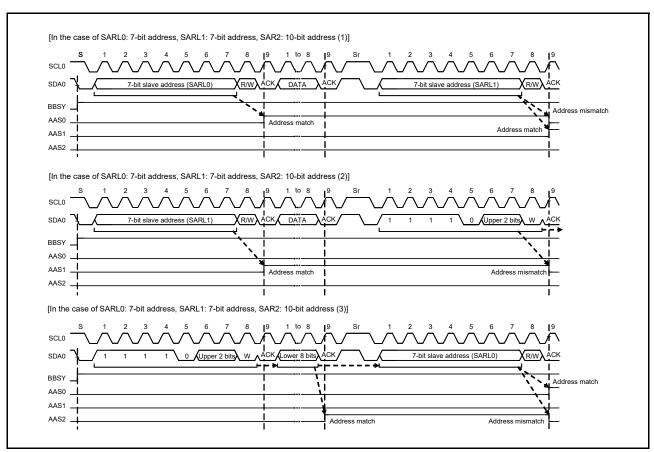


Figure 29.26 AASy Flag Set/Clear Timing with 7-Bit/10-Bit Address Formats Mixed

29.7.2 Detection of the General Call Address

The RIIC has a facility for detecting the general call address $(0000\ 000b + 0\ (write))$. This is enabled by setting the ICSER.GCAE bit to 1.

If the address received after a start or restart condition is issued is 0000 000b + 1 (read) (start byte), the RIIC recognizes this as the address of a slave device with an "all-zero" address but not as the general call address.

When the RIIC detects the general call address, both the ICSR1.GCA flag and the ICSR2.RDRF flag are set to 1 on the rising edge of the ninth cycle of SCL clock. This leads to the generation of a receive data full interrupt (RXI). The value of the GCA flag can be confirmed to recognize that the general call address has been transmitted.

Operation after detection of the general call address is the same as normal slave receive operation.

Figure 29.27 Timing of GCA Flag Setting during Reception of General Call Address

29.7.3 Device-ID Address Detection

The RIIC module has a facility for detecting device-ID addresses conformant with the I^2C -bus specification (Rev. 03). When the RIIC receives 1111 100b as the first byte after a start condition or restart condition was issued with the ICSER.DIDE bit set to 1, the RIIC recognizes the address as a device ID, sets the ICSR1.DID flag to 1 on the rising edge of the eighth SCL clock cycle when the following R/W# bit is 0, and then compares the second and subsequent bytes with its own slave address. If the address matches the value in the slave address register, the RIIC sets the corresponding ICSR1.AASy flag (y = 0 to 2) to 1.

After that, when the first byte received after a start or restart condition is issued matches the device ID address (1111 100b) again and the following R/W# bit is 1, the RIIC does not compare the second and subsequent bytes and sets the ICSR2.TDRE flag to 1.

In the device-ID address detection function, the RIIC sets the DID flag to 0 if a match with the RIIC's own slave address is not obtained or a match with the device ID address is not obtained after a match with the RIIC's own slave address and the detection of a restart condition. If the first byte after detection of a start or restart condition matches the device ID address (1111 100b) and the R/W# bit is 0, the RIIC sets the DID flag to 1 and compares the second and subsequent bytes with the RIIC's slave address. If the R/W# bit is 1, the DID flag holds the previous value and the RIIC does not compare the second and subsequent bytes. Therefore, the reception of a device-ID address can be checked by reading the DID flag after confirming that TDRE flag is 1.

Furthermore, prepare the device-ID fields (3 bytes: 12 bits indicating the manufacturer + 9 bits identifying the part + 3 bits indicating the revision) that must be sent to the host after reception of a continuous device-ID field as normal data for transmission. For details of the information that must be included in device-ID fields, contact NXP Semiconductors.

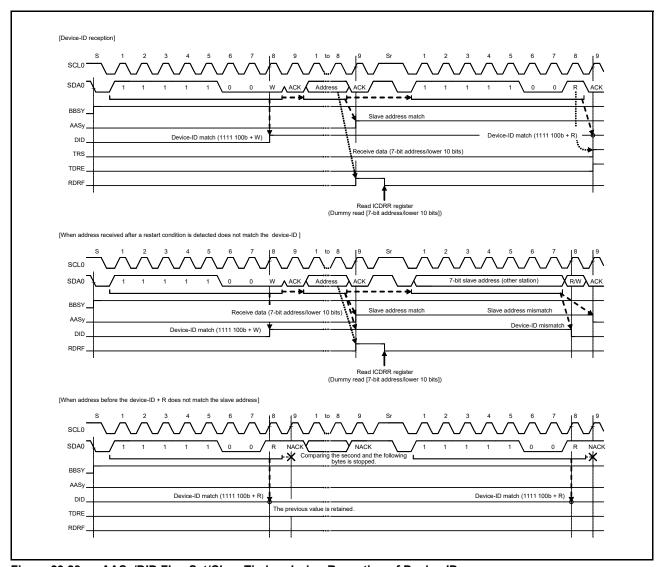


Figure 29.28 AASy/DID Flag Set/Clear Timing during Reception of Device-ID

29.7.4 Host Address Detection

The RIIC has a function to detect the host address while the SMBus is operating. When the ICSER.HOAE bit is set to 1 while the ICMR3.SMBS bit is 1, the RIIC can detect the host address (0001 000b) in slave receive mode (bits MST and TRS in the ICCR2 register are 00b).

When the RIIC detects the host address, the ICSR1.HOA flag is set to 1 at the rising edge of the ninth SCL clock cycle, and at the same time, the ICSR2.RDRF flag is set to 1 when the R/W# bit is 0 (Wr bit). This causes a receive data full interrupt (RXI) to be generated. The HOA flag is used to recognize that the host address was sent from the smart battery or other devices.

If the bit following the host address (0001 000b) is an Rd bit (R/W# bit is 1), the RIIC can also detect the host address. After the host address is detected, the RIIC operates in the same manner as normal slave operation.

Figure 29.29 HOA Flag Set Timing during Reception of Host Address

29.8 Automatic Low-Hold Function for SCL

29.8.1 Function to Prevent Wrong Transmission of Transmit Data

If the shift register (ICDRS) is empty when data have not been written to the I²C-bus transmit data register (ICDRT) with the RIIC in transmission mode (ICCR2.TRS bit is 1), the SCL0 line is automatically held at the low level over the intervals shown below. This low-hold period is extended until data for transmission have been written, which prevents the unintended transmission of erroneous data.

Master transmit mode

- Low-level interval after a start condition or restart condition is issued
- Low-level interval between the ninth clock cycle of one transfer and the first clock cycle of the next

Slave transmit mode

• Low-level interval between the ninth clock cycle of one transfer and the first clock cycle of the next

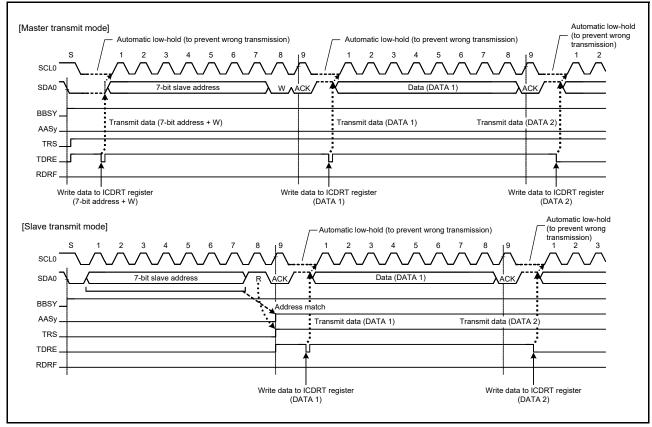


Figure 29.30 Automatic Low-Hold Operation in Transmit Mode

29.8.2 NACK Reception Transfer Abort Function

The RIIC has a function to abort transfer operation when NACK is received in transmit mode (ICCR2.TRS bit is 1). This function is enabled when the ICFER.NACKE bit is set to 1 (transfer abort enabled). If the next transmit data has already been written (ICSR2.TDRE flag is 0) when NACK is received, next data transmission at the falling edge of the ninth SCL clock cycle is automatically aborted. This prevents the SDA0 line output level from being held low when the MSB of the next transmit data is 0.

If the transfer operation is aborted by this function (ICSR2.NACKF flag is 1), transmit operation and receive operation are discontinued. To restore transmit/receive operation, be sure to set the NACKF flag to 0. In master transmit mode, after setting the NACKF flag to 0, issue a restart condition, or issue a stop condition and then issue a start condition again.

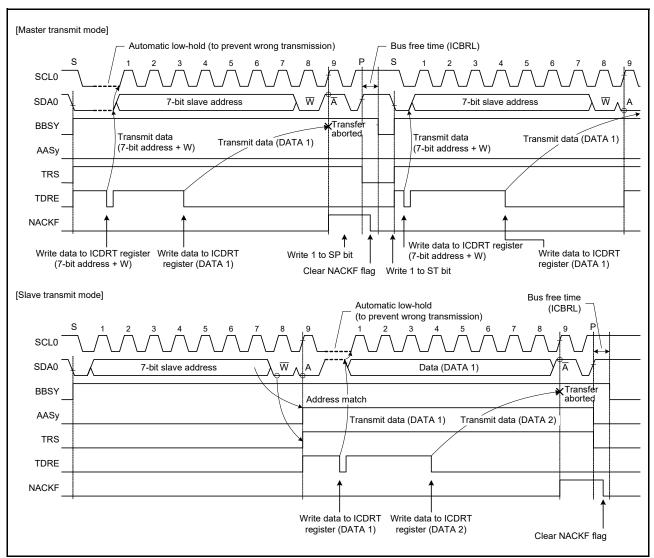


Figure 29.31 Abort of Data Transfer When NACK is Received (NACKE = 1)

29.8.3 Function to Prevent Failure to Receive Data

If response processing is delayed when receive data (ICDRR) read is delayed for a period of one transfer byte or more with receive data full (ICSR2.RDRF flag is 1) in receive mode (ICCR2.TRS bit is 0), the RIIC holds the SCL0 line low automatically immediately before the next data is received to prevent failure to receive data.

This function to prevent failure to receive data using the automatic low-hold function is also enabled even if the read processing of the final receive data is delayed and, in the meantime, the RIIC's own slave address is designated after a stop condition is issued. This function does not disturb other communication because the RIIC does not hold the SCL0 line low when a mismatch with its own slave address occurs after a stop condition is issued.

Sections in which the SCL0 line is held low can be selected with a combination of the WAIT and RDRFS bits in the ICMR3 register.

(1) 1-Byte Receive Operation and Automatic Low-Hold Function Using the WAIT Bit

When the ICMR3.WAIT bit is set to 1, the RIIC performs 1-byte receive operation using the WAIT bit function. Furthermore, when the ICMR3.RDRFS bit is 0, the RIIC automatically sends the ICMR3.ACKBT bit value for the acknowledge bit in the period from the falling edge of the eighth SCL clock cycle to the falling edge of the ninth SCL clock cycle, and automatically holds the SCL0 line low at the falling edge of the ninth SCL clock cycle using the WAIT bit function. This low-hold is released by reading data from the ICDRR register, which enables bytewise receive operation.

The WAIT bit function is enabled for receive bytes after a match with the RIIC's own slave address (including the general call address and host address) is obtained in master receive mode or slave receive mode.

(2) 1-Byte Receive Operation (ACK/NACK Transmission Control) and Automatic Low-Hold Function Using the RDRFS Bit

When the ICMR3.RDRFS bit is set to 1, the RIIC performs 1-byte receive operation using the RDRFS bit function. When the RDRFS bit is set to 1, the ICSR2.RDRF flag (receive data full) is set to 1 at the rising edge of the eighth SCL clock cycle, and the SCL0 line is automatically held low at the falling edge of the eighth SCL clock cycle. This low-hold is released by writing a value to the ICMR3.ACKBT bit, but cannot be released by reading data from the ICDRR register, which enables receive operation by the ACK/NACK transmission control according to the data received in byte units. The RDRFS bit function is enabled for receive bytes after a match with the RIIC's own slave address (including the general call address and host address) is obtained in master receive mode or slave receive mode.

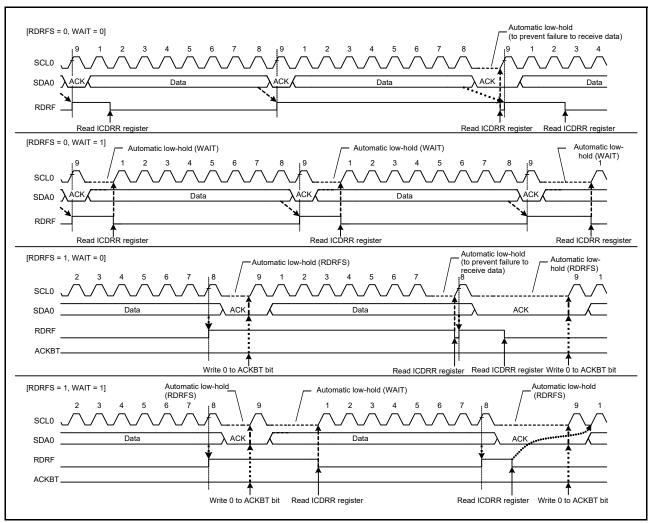


Figure 29.32 Automatic Low-Hold Operation in Receive Mode (Using RDRFS and WAIT Bits)

29.9 Arbitration-Lost Detection Functions

In addition to the normal arbitration-lost detection function defined by the I²C-bus specification, the RIIC has functions to prevent double-issue of a start condition, to detect arbitration-lost during transmission of NACK, and to detect arbitration-lost in slave transmit mode.

29.9.1 Master Arbitration-Lost Detection (MALE Bit)

The RIIC drives the SDA0 line low to issue a start condition. However, if the SDA0 line has already been driven low by another master device issuing a start condition, the RIIC causes arbitration to be lost, so priority is given to transfer by the other master device. Similarly, if the ICCR2.ST bit is set to 1 while the ICCR2.BBSY flag is 1 (bus busy state), arbitration is lost, so priority is given to transfer by the other master device. No start condition is issued in this case. When a start condition is issued successfully, if the data for transmission including the address bits (i.e. the internal SDA output level) and the level on the SDA0 line do not match (the high output as the internal SDA output; i.e. the SDA0 pin is in the high-impedance state) and the low level is detected on the SDA0 line, the RIIC loses in arbitration. After a loss in arbitration of mastership, the RIIC immediately enters slave receive mode. If a slave address (including the general call address) matches its own address at this time, the RIIC continues in slave operation.

A loss in arbitration of mastership is detected when the following conditions are met while the ICFER.MALE bit is 1 (master arbitration-lost detection enabled).

Conditions for master arbitration-lost

- Non-matching of the internal level for output on SDA and the level on the SDA0 line after a start condition was issued by setting the ICCR2.ST bit to 1 while the ICCR2.BBSY flag was set to 0 (erroneous issuing of a start condition)
- Setting of the ICCR2.ST bit to 1 (start condition double-issue error) while the BBSY flag is set to 1
- When the transmit data excluding acknowledge (internal SDA output level) does not match the level on the SDA0 line in master transmit mode (bits MST and TRS in the ICCR2 register = 11b)

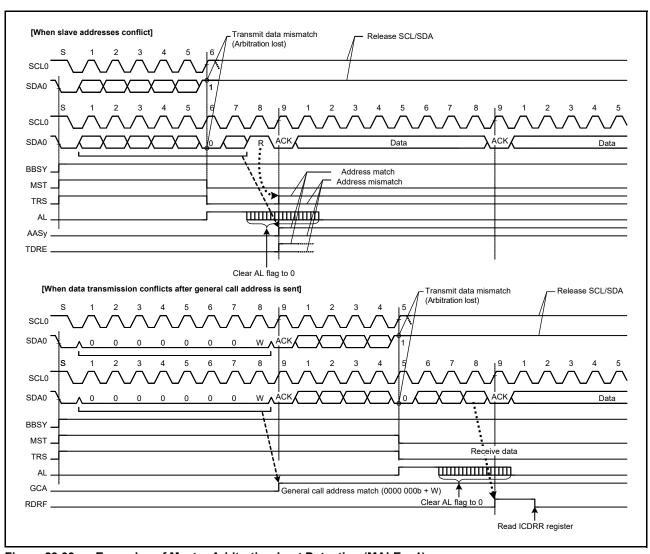


Figure 29.33 Examples of Master Arbitration-Lost Detection (MALE = 1)

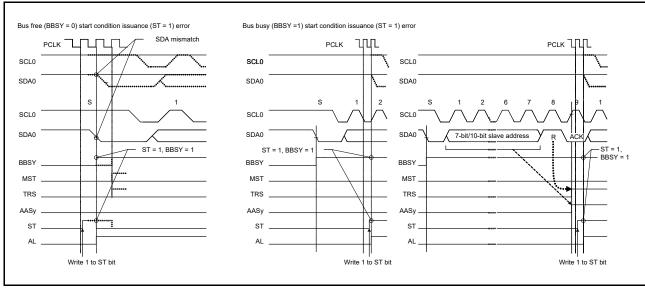


Figure 29.34 Arbitration-Lost When a Start Condition is Issued (MALE = 1)

29.9.2 Function to Detect Loss of Arbitration during NACK Transmission (NALE Bit)

The RIIC has a function to cause arbitration to be lost if the internal SDA output level does not match the level on the SDA0 line (the high output as the internal SDA output; i.e. the SDA0 pin is in the high-impedance state) and the low level is detected on the SDA0 line during transmission of NACK in receive mode. Arbitration is lost due to a conflict of NACK transmission and ACK transmission when two or more master devices receive data from the same slave device simultaneously in a multi-master system. Such conflict occurs when multiple master devices send/receive the same information through a single slave device. Figure 29.35 shows an example of arbitration-lost detection during transmission of NACK.

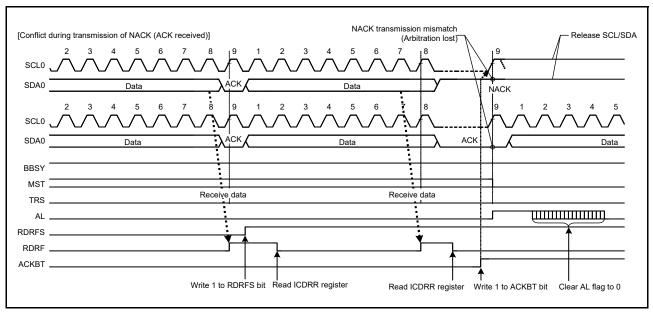


Figure 29.35 Example of Arbitration-Lost Detection during Transmission of NACK (NALE = 1)

The following explains arbitration-lost detection using an example where two master devices (master A and master B) and a single slave device are connected through the bus. In this example, master A receives 2 bytes of data from the slave device, and master B receives 4 bytes of data from the slave device.

If master A and master B access the slave device simultaneously, because the slave address is identical, arbitration is not lost in both master A and master B during access to the slave device. Therefore, both master A and master B recognize that they have obtained the bus mastership and operate as such. Here, master A sends NACK when it has received 2 final bytes of data from the slave device. Meanwhile, master B sends ACK because it has not received necessary 4 bytes of data. At this time, the NACK transmission from master A and the ACK transmission from master B conflict. In general, if a conflict like this occurs, master A cannot detect ACK transmitted by master B and issues a stop condition. Therefore, the issuance of the stop condition conflicts with the SCL clock output of master B, which disturbs communication. When the RIIC receives ACK during transmission of NACK, it detects a defeat in conflict with other master devices and causes arbitration to be lost.

If arbitration is lost during transmission of NACK, the RIIC immediately cancels the slave match condition and enters slave receive mode. This prevents a stop condition from being issued, preventing a communication failure on the bus. Similarly, in the ARP command processing of SMBus, the function to detect loss of arbitration during transmission of NACK is also available for eliminating the extra clock cycle processing (such as FFh transmission processing) necessary if the UDID (Unique Device Identifier) of assign address does not match in the Get UDID (general) processing after the Assign address command.

The RIIC detects arbitration-lost during transmission of NACK when the following condition is met with the ICFER.NALE bit set to 1 (arbitration-lost detection during NACK transmission enabled).

Condition for arbitration-lost during NACK transmission

• When the internal SDA output level does not match the SDA0 line (ACK is received) during transmission of NACK (ICMR3.ACKBT bit = 1)

29.9.3 Slave Arbitration-Lost Detection (SALE Bit)

The RIIC has a function to cause arbitration to be lost if the data for transmission (i.e. the internal SDA output level) and the level on the SDA0 line do not match (the high output as the internal SDA output; i.e. the SDA0 pin is in the high-impedance state and the low level is detected on the SDA0 line in slave transmit mode). This arbitration-lost detection function is mainly used when transmitting a UDID (Unique Device Identifier) over an SMBus.

When it loses slave arbitration, the RIIC is immediately released from the slave-matched state and enters slave receive mode. This function can detect conflicts of data during transmission of UDIDs over an SMBus and eliminate subsequent redundant processing (processing for the transmission of FFh).

The RIIC detects slave arbitration-lost when the following condition is met with the ICFER.SALE bit set to 1 (slave arbitration-lost detection enabled).

Condition for slave arbitration-lost

 When transmit data excluding acknowledge (internal SDA output level) does not match the SDA0 line in slave transmit mode (bits MST and TRS in the ICCR2 register are 01b)

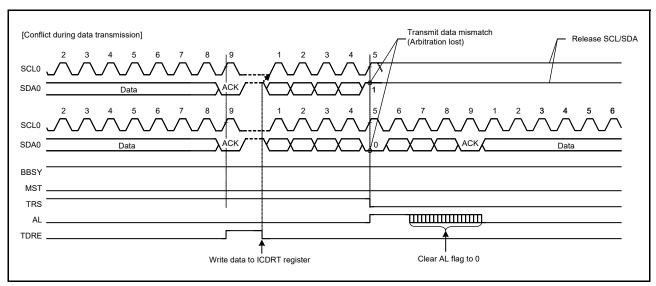


Figure 29.36 Example of Slave Arbitration-Lost Detection (SALE = 1)

29.10 Start Condition/Restart Condition/Stop Condition Issuing Function

29.10.1 Issuing a Start Condition

The RIIC issues a start condition when the ICCR2.ST bit is set to 1.

When the ST bit is set to 1, a start condition issuance request is made and the RIIC issues a start condition when the ICCR2.BBSY flag is 0 (bus free state). When a start condition is issued normally, the RIIC automatically shifts to the master transmit mode.

A start condition is issued in the following sequence.

Start condition issuance

- (1) Drive the SDA0 line low (high level to low level).
- (2) Ensure the time set in the ICBRH register and the start condition hold time.
- (3) Drive the SCL0 line low (high level to low level).
- (4) Detect low level of the SCL0 line and ensure the low-level period of SCL0 line set in the ICBRL register.

29.10.2 Issuing a Restart Condition

The RIIC issues a restart condition when the ICCR2.RS bit is set to 1.

When the RS bit is set to 1, a restart condition issuance request is made and the RIIC issues a restart condition when the ICCR2.BBSY flag is 1 (bus busy state) and the ICCR2.MST bit is 1 (master mode).

A restart condition is issued in the following sequence.

Restart condition issuance

- (1) Release the SDA0 line.
- (2) Ensure the low-level period of SCL0 line set in the ICBRL register.
- (3) Release the SCL0 line (low level to high level).
- (4) Detect a high level of the SCL0 line and ensure the time set in the ICBRL register and the restart condition setup time.
- (5) Drive the SDA0 line low (high level to low level).
- (6) Ensure the time set in the ICBRH register and the restart condition hold time.
- (7) Drive the SCL0 line low (high level to low level).
- (8) Detect a low level of the SCL0 line and ensure the low-level period of SCL0 line set in the ICBRL register.

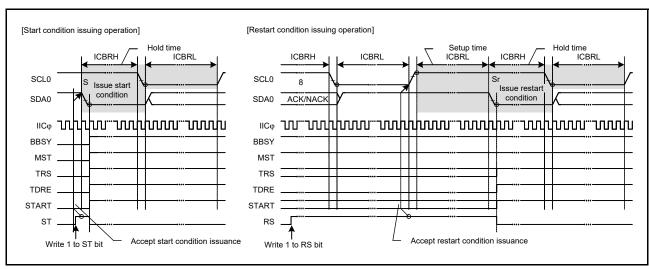


Figure 29.37 Start Condition/Restart Condition Issue Timing (ST and RS Bits)

29.10.3 Issuing a Stop Condition

The RIIC issues a stop condition when the ICCR2.SP bit is set to 1.

When the SP bit is set to 1, a stop condition issuance request is made and the RIIC issues a stop condition when the ICCR2.BBSY flag is 1 (bus busy state) and the ICCR2.MST bit is 1 (master mode).

A stop condition is issued in the following sequence.

Stop condition issuance

- (1) Drive the SDA0 line low (high level to low level).
- (2) Ensure the low-level period of SCL0 line set in the ICBRL register.
- (3) Release the SCL0 line (low level to high level).
- (4) Detect a high level of the SCL0 line and ensure the time set in the ICBRH register and the stop condition setup time.
- (5) Release the SDA0 line (low level to high level).
- (6) Ensure the time set in the ICBRL register and the bus free time.
- (7) Set the BBSY flag to 0 (to release the bus mastership).

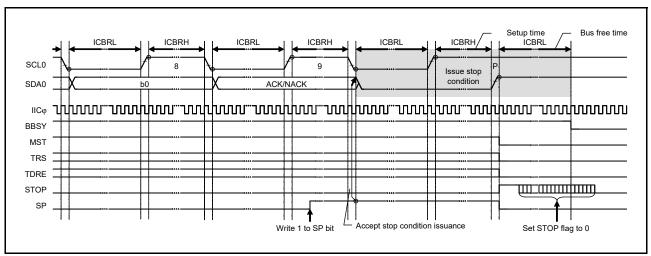


Figure 29.38 Stop Condition Issue Timing (SP Bit)

29.11 Bus Hanging

If the clock signals from the master and slave devices go out of synchronization due to noise or other factors, the I²C-bus might hang with a fixed level on the SCL0 line and/or SDA0 line.

As measures against the bus hanging, the RIIC has a timeout function to detect hanging by monitoring the SCL0 line, a function for the output of an extra SCL clock cycle to release the bus from a hung state due to clock signals being out of synchronization, the RIIC reset function, and internal reset function.

By checking bits SCLO, SDAO, SCLI, and SDAI in the ICCR1 register, it is possible to see whether the RIIC or its partner in communications is placing the low level on the SCL0 or SDA0 lines.

29.11.1 Timeout Function

The RIIC includes a timeout function for detecting when the SCL0 line has been stuck longer than the predetermined time. The RIIC can detect an abnormal bus state by monitoring that the SCL0 line is stuck low or high for a predetermined time.

The timeout function monitors the SCL0 line state and counts the low-level period or high-level period using the internal counter. The timeout function resets the internal counter each time the SCL0 line changes (rising or falling), but continues to count unless the SCL0 line changes. If the internal counter overflows due to no SCL0 line change, the RIIC can detect the timeout and report the bus hung state.

This timeout function is enabled when the ICFER.TMOE bit is 1. It detects a hung state that the SCL0 line is stuck low or high during the following conditions:

- The bus is busy (ICCR2.BBSY flag is 1) in master mode (ICCR2.MST bit is 1).
- The RIIC's own slave address is detected (ICSR1 register is not 00h) and the bus is busy (ICCR2.BBSY flag is 1) in slave mode (ICCR2.MST bit is 0).
- The bus is free (ICCR2.BBSY flag is 0) while generation of a start condition is requested (ICCR2.ST bit is 1).

The internal counter of the timeout function works using the internal reference clock (IIC ϕ) set by the ICMR1.CKS[2:0] bits as a count source. It functions as a 16-bit counter when long mode is selected (ICMR2.TMOS bit is 0) or a 14-bit counter when short mode is selected (TMOS bit is 1).

The SCL0 line level (low/high or both levels) during which this counter is activated can be selected by the setting of bits TMOH and TMOL in the ICMR2 register. If both bits TMOL and TMOH are set to 0, the internal counter does not work.

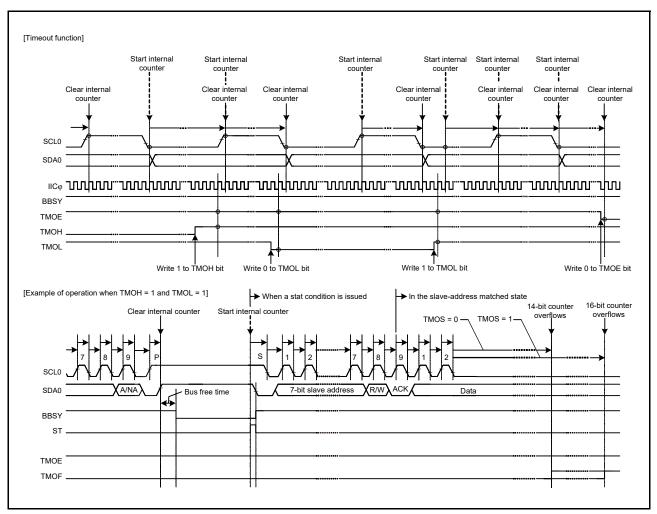


Figure 29.39 Timeout Function

29.11.2 Extra SCL Clock Cycle Output Function

In master mode, the RIIC module has a facility for the output of extra SCL clock cycles to release the SDA0 line of the slave device from being held at the low level due to the master being out of synchronization with the slave device. This function is mainly used in master mode to release the SDA0 line of the slave device from the state of being fixed to the low level by including extra cycles of SCL output from the RIIC with single cycles of the SCL clock as the unit if the RIIC cannot issue a stop condition because the slave device is holding the SDA0 line at the low level. Do not use this facility in normal situations. Using it when communications are proceeding correctly will lead to malfunctions. When the ICCR1.CLO bit is set to 1 in master mode, a single cycle of the SCL clock at the frequency corresponding to the transfer rate settings (settings of the ICMR1.CKS[2:0] bits, and of registers ICBRH and ICBRL) is output as an extra clock cycle. After output of this single cycle of the SCL clock, the CLO bit is automatically set to 0. Therefore, further extra clock cycles can be output consecutively by writing 1 to the CLO bit after confirming the CLO bit to be 0. When the RIIC module is in master mode and the slave device is holding the SDA0 line at the low level because synchronization with the slave device has been lost due to the effects of noise, etc., the output of a stop condition is not possible. The facility for output of an extra cycle of the SCL clock can be used to output extra cycles of SCL one by one to make the slave device release the SDA0 line from being held at the low level, thus recovering the bus from an unusable state. Release of the SDA0 line by the slave device can be monitored by reading the ICCR1.SDAI bit. After confirming release of the SDA0 line by the slave device, complete communications by reissuing the stop condition. Use this facility with the ICFER.MALE bit (master arbitration-lost detection disabled) set to 0. If the MALE bit is set to 1 (master arbitration-lost detection enabled), arbitration is lost when the value of the ICCR1.SDAO bit does not match the state of the SDA0 line, so take care on this point.

Output conditions for using the ICCR1.CLO bit

- When the bus is free (ICCR2.BBSY flag is 0) or in master mode (ICCR2.MST bit is 1 and ICCR2.BBSY flag is 1)
- When the communication device does not hold the SCL0 line low

Figure 29.40 shows the operation timing of the extra SCL clock cycle output function (CLO bit).

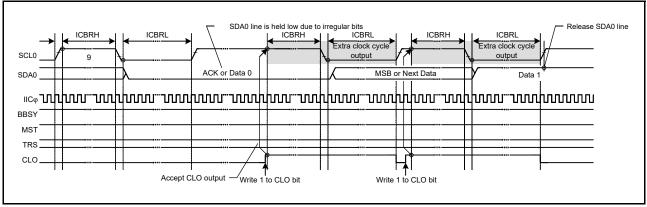


Figure 29.40 Extra SCL Clock Cycle Output Function (CLO Bit)

29.11.3 RIIC Reset and Internal Reset

The RIIC module incorporates a function for resetting itself. There are two types of reset. One is referred to as an RIIC reset; this initializes all registers including the ICCR2.BBSY flag. The other is referred to as an internal reset; this releases the RIIC from the slave-address matched state and initializes the internal counter while retaining other settings. After issuing a reset, be sure to set the ICCR1.IICRST bit to 0.

Both types of reset are effective for release from bus-hung states because both restore the output state of the SCL0 and SDA0 pins to the high-impedance state.

Issuing a reset during slave operation may lead to a loss of synchronization between the master device clock and the slave device clock, so avoided this where possible. Note that monitoring of the bus state, such as for the presence of a start condition, is not possible during an RIIC reset (bits ICE and IICRST in the ICCR1 register are 01b).

For a detailed description of the RIIC and internal resets, refer to section 29.14, Initialization of Registers and Functions When a Reset is Issued or a Condition is Detected.

29.12 SMBus Operation

The RIIC is available for data communication conforming to the SMBus (Version 2.0). To perform SMBus communication, set the ICMR3.SMBS bit to 1. To use the transfer rate within a range of 10 kbps to 100 kbps of the SMBus specification, set the ICMR1.CKS[2:0] bits, the ICBRH register, and the ICBRL register. In addition, determine the values of the ICMR2.DLCS bit and the ICMR2.SDDL[2:0] bits to meet the data hold time specification of 300 ns or more. If the RIIC is used only as a slave device, the transfer rate setting is not necessary, whereas the ICBRL register needs to be set to a value longer than the data setup time (250 ns).

For the SMBus device default address (1100 001b), use one of the slave address registers L0 to L2 (registers SARL0, SARL1, and SARL2), and set the corresponding SARUy.FS bit (7-bit/10-bit address format select) (y = 0 to 2) to 0 (7-bit address format).

When transmitting the UDID (Unique Device Identifier), set the ICFER.SALE bit to 1 to enable the slave arbitration-lost detection function.

29.12.1 SMBus Timeout Measurement

(1) Measuring timeout of slave device

The following period (timeout interval: T_{LOW:SEXT}) must be measured for slave devices in SMBus communication.

• From start condition to stop condition

To measure timeout for slave devices, measure the period from start condition detection to stop condition detection with the MTU or TMR timer using a start condition detection interrupt (STI) and stop condition detection interrupt (SPI) of the RIIC. The measured timeout period must be within the total clock low-level period [slave device] $T_{LOW:SEXT}$: 25 ms (max.) of the SMBus specification.

If the time measured with the MTU or TMR exceeds the clock low-level detection timeout T_{TIMEOUT} : 25 ms (min.) of the SMBus specification, the slave device must release the bus by writing 1 to the ICCR1.IICRST bit to issue an internal reset of the RIIC. When an internal reset is issued, the RIIC stops driving the bus for the SCL0 pin and SDA0 pin and make the SCL0/SDA0 pin outputs high-impedance, which releases the bus.

(2) Measuring timeout of master device

The following periods (timeout interval: T_{LOW:MEXT}) must be measured for master devices in SMBus communication.

- From start condition to acknowledge bit
- Between acknowledge bits
- From acknowledge bit to stop condition

To measure timeout for master devices, measure these periods with the MTU or TMR timer using a start condition detection interrupt (STI), stop condition detection interrupt (SPI), and transmit end interrupt (TEI) or receive data full interrupt (RXI) of the RIIC. The measured timeout period must be within the total clock low-level extended period (master device) $T_{LOW:MEXT}$: 10 ms (max.) of the SMBus specification, and the total of all $T_{LOW:MEXT}$ from start condition to stop condition must be within $T_{LOW:SEXT}$: 25 ms (max.).

For the ACK receive timing (rising edge of the ninth SCL clock cycle), monitor the ICSR2.TEND flag in master transmit mode (master transmitter) and the ICSR2.RDRF flag in master receive mode (master receiver). For this reason, perform bytewise transmit operation in master transmit mode, and hold the ICMR3.RDRFS bit 0 until the byte just before reception of the final byte in master receive mode. While the RDRFS bit is 0, the RDRF flag is set to 1 at the rising edge of the ninth SCL clock cycle.

If the period measured with the MTU or TMR exceeds the total clock low-level extended period (master device) $T_{LOW:MEXT}$: 10 ms (max.) of the SMBus specification or the total of measured periods exceeds the clock low-level detection timeout $T_{TIMEOUT}$: 25 ms (min.) of the SMBus specification, the master device must stop the transaction by issuing a stop condition. In master transmit mode, immediately stop the transmit operation (writing data to the ICDRT register).

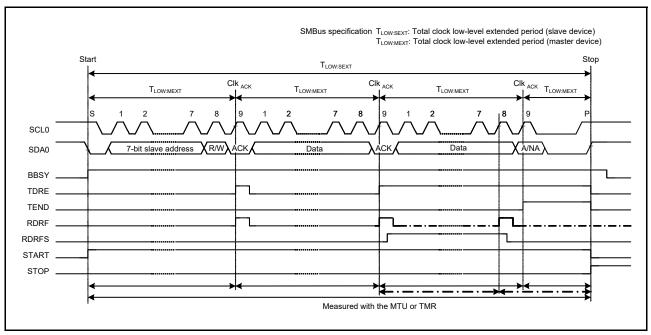


Figure 29.41 SMBus Timeout Measurement

29.12.2 Packet Error Code (PEC)

This MCU incorporates a CRC calculator. The CRC calculator enables transmission of a packet error code (PEC) or checking the received data of the SMBus in data communication of the RIIC. For the CRC generating polynomials of the CRC calculator, refer to section 31, CRC Calculator (CRC).

The PEC data in master transmit mode can be generated by writing all transmit data to the CRC data input register (CRCDIR) in the CRC calculator.

The PEC data in master receive mode can be checked by writing all receive data to CRCDIR in the CRC calculator and comparing the obtained value in the CRC data output register (CRCDOR) with the received PEC data.

To send ACK or NACK according to the match or mismatch result when the final byte is received as a result of the PEC code check, set the ICMR3.RDRFS bit to 1 before the rising edge of the eighth SCL clock cycle during reception of the final byte, and hold the SCL0 line low at the falling edge of the eighth clock cycle.

29.12.3 SMBus Host Notification Protocol (Notify ARP Master Command)

In communications over an SMBus, a slave device can temporarily act as a master device to notify the SMBus host (or ARP master) of its own slave address or to request its own slave address from the SMBus host.

For a product of this MCU to operate as an SMBus host (or ARP master), the host address (0001 000b) sent from the slave device must be detected as a slave address, so the RIIC has a function for detecting the host address. To detect the host address as a slave address, set the ICMR3.SMBS bit and the ICSER.HOAE bit to 1. Operation after the host address has been detected is the same as normal slave operation.

29.13 Interrupt Sources

The RIIC issues four types of interrupt request: transfer error or event generation (arbitration-lost, NACK detection, timeout detection, start condition detection, and stop condition detection), receive data full, transmit data empty, and transmit end.

Table 29.6 lists details of the several interrupt requests. The receive data full and transmit data empty are both capable of activating data transfer by the DTC.

Table 29.6 Interrupt Sources

Symbol	Interrupt Source	Interrupt Flag	DTC Activation	Interrupt Condition	
EEI	Transfer error/	AL	Not possible	AL = 1 and ALIE = 1	
	event generation	eneration NACKF		NACKF = 1 and NAKIE = 1	
		TMOF		TMOF = 1 and TMOIE = 1	
		START		START = 1 and STIE = 1	
		STOP		STOP = 1 and SPIE = 1	
RXI*2	Receive data full	RDRF	Possible	RDRF = 1 and RIE = 1	
TXI*1	Transmit data empty	TDRE	Possible	TDRE = 1 and TIE = 1	
TEI*3	Transmit end	TEND	Not possible	TEND = 1 and TEIE = 1	

Note: There is a delay time between the execution of a write instruction for a peripheral module by the CPU and actual writing to the module. Thus, when an interrupt flag has been cleared or an interrupt request has been masked, read the relevant flag again to check whether clearing or masking has been completed, and then return from interrupt handling. Returning from interrupt handling without checking that writing to the module has been completed creates a possibility of repeated processing of the same interrupt.

- Note 1. Because TXI is an edge-detected interrupted, it does not require clearing. Furthermore, the ICSR2.TDRE flag (a condition for TXI) is automatically set to 0 when data for transmission are written to the ICDRT register or a stop condition is detected (ICSR2.STOP flag is 1).
- Note 2. Because RXI is an edge-detected interrupted, it does not require clearing. Furthermore, the ICSR2.RDRF flag (a condition for RXI) is automatically set to 0 when data are read from the ICDRR register.
- Note 3. When using the TEI interrupt, clear the ICSR2.TEND flag in the TEI interrupt handling.

 Note that the ICSR2.TEND flag is automatically set to 0 when data for transmission are written to the ICDRT register or a stop condition is detected (ICSR2.STOP flag is 1).

Clear the each flag or mask the interrupt request during interrupt handling.

29.13.1 Buffer Operation for TXI and RXI Interrupts

If the conditions for generating a TXI and RXI interrupt are satisfied while the corresponding IR flag is 1, the interrupt request is not output for the ICU but retained internally (the capacity for internal retention is one request per source). An interrupt request that was being retained internally is output to the ICU when the value of the ICU.IRn.IR flag becomes 0. Internally retained interrupt requests are automatically cleared under normal conditions of usage. Internally retained interrupt requests can also be cleared by writing 0 to the corresponding interrupt enable bit in the ICIER register.

29.14 Initialization of Registers and Functions When a Reset is Issued or a Condition is

The RIIC can be reset by MCU reset, RIIC reset, and internal reset functions. Table 29.7 lists the reset states of registers and functions when a reset is issued or a condition is detected.

Table 29.7 Reset States of Registers and Functions When a Reset is Issued or a Condition is Detected

		MCU Reset	RIIC Reset (ICE = 0, IICRST = 1)	Internal Reset (ICE = 1, IICRST = 1)	Start Condition/ Restart Condition Detection	Stop Condition Detection
ICCR1	ICE, IICRST	To be reset	Retained	Retained	Retained	Retained
	SCLO, SDAO		To be reset	To be reset		
	Others			Retained		
ICCR2	BBSY	To be reset	To be reset To be reset	Retained	Retained	Retained
	ST, RS			To be reset	To be reset	
	TRS, MST				Retained	To be reset
	SP				To be reset	
ICMR1	BC[2:0]	To be reset	To be reset	To be reset	To be reset	Retained
	Others			Retained	Retained	
ICMR2		To be reset	To be reset	Retained	Retained	Retained
ICMR3	ACKBT	To be reset	To be reset	Retained	Retained	To be reset
	Others					Retained
ICFER	•	To be reset	To be reset	Retained	Retained	Retained
ICSER		To be reset	To be reset	Retained	Retained	Retained
ICIER		To be reset	To be reset	Retained	Retained	Retained
ICSR1		To be reset	To be reset	To be reset	Retained	To be reset
ICSR2	TDRE, TEND	To be reset	To be reset	To be reset	Retained	To be reset
	START					
	Others					Retained
SARL0, SARL1, SARL2, SARU0, SARU1, SARU2		To be reset	To be reset	Retained	Retained	Retained
ICBRH,	ICBRL	To be reset	To be reset	Retained	Retained	Retained
ICDRT		To be reset	To be reset	Retained	Retained	Retained
ICDRR		To be reset	To be reset	Retained	Retained	Retained
ICDRS		To be reset	To be reset	To be reset	Retained	Retained
Timeout function		To be reset	To be reset	To be reset	Operation	Operation
Bus free time measurement		To be reset	To be reset	Operation	Operation	Operation

To be reset: Registers and functions are initialized.

Retained: Registers and functions are not initialized, but retained or updated according to the state.

29.15 Event Link Function (Output)

The RIIC0 handles event output for the event link controller (ELC) corresponding to the following sources.

- Communication error/ communication event
- Receive data full
- Transmit data empty
- Transmit end

29.15.1 Interrupt Handling and Event Linking

The RIIC module produces four kinds of interrupt: transfer error (arbitration-lost detection, detection of NACK, detection of timeout, or detection of a stop condition) event, receive data full, transmit data empty, and transmit end interrupts detection of a start condition. Each of these has an enable bit to control enabling and disabling of the interrupt signal. An interrupt request signal is output for the CPU when an interrupt source condition is satisfied while the setting of the corresponding enable bit is enabled.

The corresponding event signals are sent to other modules via the ELC when the interrupt source conditions are satisfied, regardless of the settings of the interrupt enable bits.

For details on interrupt sources, see Table 29.6.

29.16 Usage Notes

29.16.1 Setting Module Stop Function

Module stop state can be entered or released using module stop control register B (MSTPCRB). The initial setting is for operation of the RIIC to be stopped. RIIC register access is enabled by releasing the module stop state. For details on module stop control register B, refer to section 11, Low Power Consumption.

29.16.2 Notes on Starting Transfer

If the IR flag corresponding to the RIIC interrupt is 1 when transfer is started (ICCR1.ICE bit is 1), follow the procedure below to clear interrupts before enabling operations. Starting transfer with the IR flag set to 1 while the ICCR1.ICE bit is 1 leads to an interrupt request being internally retained after transfer starts, and this can lead to unanticipated behavior of the IR flag.

- 1. Confirm that the ICCR1.ICE bit is 0.
- 2. Set the relevant interrupt enable bits (ICIER.TIE, etc.) on the peripheral function side to 0.
- 3. Read the relevant interrupt enable bits (ICIER.TIE, etc.) on the peripheral function side and confirm that its value is 0.
- 4. Set the IR flag to 0.

30. Serial Peripheral Interface (RSPIa)

In this section, "PCLK" is used to refer to PCLKB.

30.1 Overview

This MCU includes one channel of Serial Peripheral Interface (RSPI).

The RSPI channels are capable of high-speed, full-duplex synchronous serial communications with multiple processors and peripheral devices.

Table 30.1 lists the specifications of the RSPI, and Figure 30.1 shows a block diagram of the RSPI.

In this section, m as used with the RSPI command registers (SPCMDm) indicates 0 to 7.

Table 30.1 RSPI Specifications (1/2)

Item	Description		
Number of channels	One channel		
RSPI transfer functions	Use of MOSI (master out/slave in), MISO (master in/slave out), SSL (slave select), and RSPCK (RSPI clock) signals allows serial communications through SPI operation (4-wire method) or clock synchronous operation (3-wire method). Transmit-only operation is available. Communication mode: Full-duplex or transmit-only can be selected. Switching of the polarity of RSPCK Switching of the phase of RSPCK		
Data format	 MSB first/LSB first selectable Transfer bit length is selectable as 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits. 128-bit transmit/receive buffers Up to four frames can be transferred in one round of transmission/reception (each frame consisting of up to 32 bits). 		
Bit rate	 In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from divided by 2 to divided by 4096). In slave mode, the minimum PCLK clock divided by 8 can be input as RSPCK (the maximum frequency of RSPCK is that of PCLK divided by 8). Width at high level: 4 cycles of PCLK; width at low level: 4 cycles of PCLK 		
Buffer configuration	 Double buffer configuration for the transmit/receive buffers 128 bits for the transmit/receive buffers 		
Error detection	 Mode fault error detection Overrun error detection*1 Parity error detection 		
SSL control function	 Four SSL pins (SSLA0 to SSLA3) for each channel In single-master mode, SSLA0 to SSLA3 pins are output. In multi-master mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins for either output or unused. In slave mode: SSLA0 pin for input, and SSLA1 to SSLA3 pins for unused. Controllable delay from SSL output assertion to RSPCK operation (RSPCK delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable delay from RSPCK stop to SSL output negation (SSL negation delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Controllable wait for next-access SSL output assertion (next-access delay) Range: 1 to 8 RSPCK cycles (set in RSPCK-cycle units) Function for changing SSL polarity 		
Control in master transfer	 A transfer of up to eight commands can be executed sequentially in looped execution. For each command, the following can be set: SSL signal value, bit rate, RSPCK polarity/phase, transfer data length, MSB/LSB first, burst, RSPCK delay, SSL negation delay, and next-access delay A transfer can be initiated by writing to the transmit buffer. MOSI signal value specifiable in SSL negation RSPCK auto-stop function 		

Table 30.1 RSPI Specifications (2/2)

Item	Description
Interrupt sources	Interrupt sources Receive buffer full interrupt Transmit buffer empty interrupt RSPI error interrupt (mode fault, overrun, or parity error) RSPI idle interrupt (RSPI idle)
Others	 Function for switching between CMOS output and open-drain output Function for initializing the RSPI Loopback mode
Low power consumption function	Module stop state can be set.

Note 1. In master reception and when the RSPCK auto-stop function is enabled, an overrun error does not occur because the transfer clock is stopped at the timing of overrun error detection.

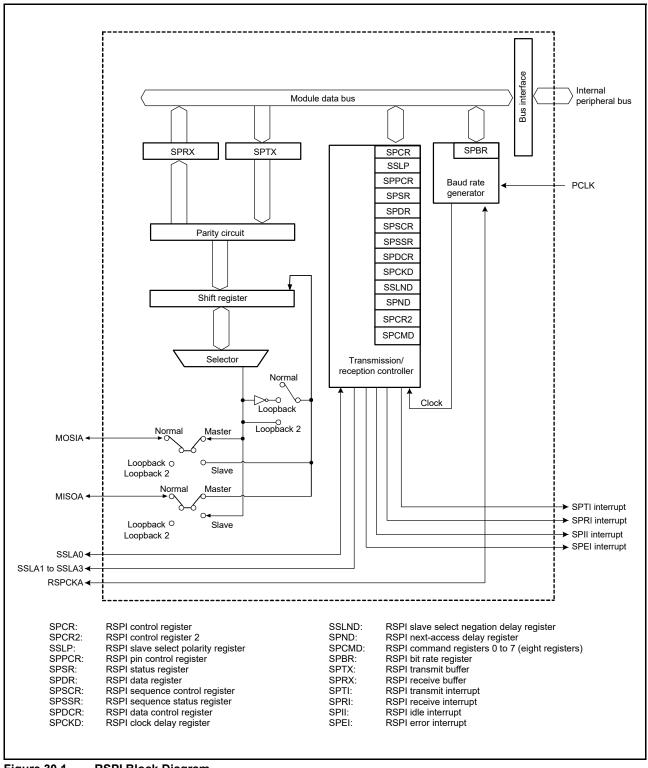
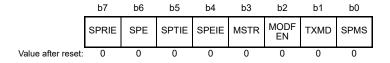


Figure 30.1 RSPI Block Diagram

Table 30.2 lists the I/O pins used in the RSPI.

The RSPI automatically switches the I/O direction of the SSLA0 pin. SSLA0 is set as an output when the RSPI is a single master and as an input when the RSPI is a multi-master or a slave. Pins RSPCKA, MOSIA, and MISOA are automatically set as inputs or outputs according to the setting of master or slave and the level input on the SSLA0 pin. Refer to section 30.3.2, Controlling RSPI Pins for details.


Table 30.2 RSPI Pin Configuration

Channel	Pin Name	I/O	Function
RSPI0	RSPCKA	I/O	Clock I/O
	MOSIA	I/O	Master transmit data I/O
	MISOA	I/O	Slave transmit data I/O
	SSLA0	I/O	Slave selection I/O
	SSLA1	Output	Slave selection output
	SSLA2	Output	Slave selection output
	SSLA3	Output	Slave selection output

30.2 Register Descriptions

30.2.1 RSPI Control Register (SPCR)

Address(es): RSPI0.SPCR 0008 8380h

Bit	Symbol	Bit Name	Description	R/W
b0	SPMS	RSPI Mode Select	0: SPI operation (4-wire method) 1: Clock synchronous operation (3-wire method)	R/W
b1	TXMD	Communications Operating Mode Select	Full-duplex synchronous serial communications Serial communications consisting of only transmit operations	R/W
b2	MODFEN	Mode Fault Error Detection Enable	Disables the detection of mode fault error Enables the detection of mode fault error	
b3	MSTR	RSPI Master/Slave Mode Select	0: Slave mode 1: Master mode	
b4	SPEIE	RSPI Error Interrupt Enable	Disables the generation of RSPI error interrupt requests Enables the generation of RSPI error interrupt requests	R/W
b5	SPTIE	Transmit Buffer Empty Interrupt Enable		
b6	SPE	RSPI Function Enable	Disables the RSPI function Enables the RSPI function	R/W
b7	SPRIE	RSPI Receive Buffer Full Interrupt Enable	Disables the generation of RSPI receive buffer full interrupt requests Enables the generation of RSPI receive buffer full interrupt requests	R/W

Do not change the SPCR.MSTR, SPCR.MODFEN, or SPCR.TXMD bit while the SPCR.SPE bit is 1.

SPMS Bit (RSPI Mode Select)

The SPMS bit selects SPI operation (4-wire method) or clock synchronous operation (3-wire method). The SSLA0 to SSLA3 pins are not used in clock synchronous operation. The RSPCKA, MOSIA, and MISOA pins handle communications. If clock synchronous operation is to proceed in master mode (SPCR.MSTR = 1), the SPCMDm.CPHA bit can be set to either 0 or 1. Set the CPHA bit to 1 if clock synchronous operation is to proceed in slave mode (SPCR.MSTR = 0). Do not set the CPHA bit to 0 when clock synchronous operation is to proceed in slave mode (SPCR.MSTR = 0).

TXMD Bit (Communications Operating Mode Select)

The TXMD bit selects full-duplex synchronous serial communications or transmit operations only.

When performing communications with the TXMD bit set to 1, the RSPI performs only transmit operations and not receive operations (refer to section 30.3.6, Communications Operating Mode).

When the TXMD bit is set to 1, receive buffer full interrupt requests cannot be used.

MODFEN Bit (Mode Fault Error Detection Enable)

The MODFEN bit enables or disables the detection of mode fault error (refer to section 30.3.8, Error Detection). In addition, the RSPI determines the I/O direction of the SSLA0 to SSLA3 pins based on combinations of the MODFEN and MSTR bits (refer to section 30.3.2, Controlling RSPI Pins).

MSTR Bit (RSPI Master/Slave Mode Select)

The MSTR bit selects master/slave mode of the RSPI. According to MSTR bit settings, the RSPI determines the direction of pins RSPCKA, MOSIA, MISOA, and SSLA0 to SSLA3.

SPEIE Bit (RSPI Error Interrupt Enable)

The SPEIE bit enables or disables the generation of RSPI error interrupt requests when the RSPI detects a mode fault error and sets the SPSR.MODF flag to 1, when the RSPI detects an overrun error and sets the SPSR.OVRF flag to 1, or when the RSPI detects a parity error and sets the SPSR.PERF flag to 1 (refer to section 30.3.8, Error Detection).

SPTIE Bit (Transmit Buffer Empty Interrupt Enable)

The SPTIE bit enables or disables the generation of transmit buffer empty interrupt requests when the RSPI detects when the transmit buffer is empty.

A transmit buffer empty interrupt request when transmission starts is generated by setting the SPE and SPTIE bits to 1 at the same time or by setting the SPE bit to 1 after setting the SPTIE bit to 1.

Note that a transmit buffer interrupt is generated when the SPTIE bit is 1 even if the RSPI function is disabled (the SPTIE bit is changed to 0).

SPE Bit (RSPI Function Enable)

The SPE bit enables or disables the RSPI function.

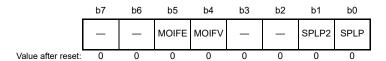
When the SPSR.MODF flag is 1, the SPE bit cannot be set to 1. For details, refer to section 30.3.8, Error Detection. Setting the SPE bit to 0 disables the RSPI function, and initializes a part of the module function. For details, refer to section 30.3.9, Initializing RSPI. Furthermore, a transmit buffer empty interrupt request is generated by the state of the SPE bit changing from 0 to 1 or from 1 to 0.

SPRIE Bit (RSPI Receive Buffer Full Interrupt Enable)

If the RSPI has detected a receive buffer full write after completion of a serial transfer, the SPRIE bit enables or disables the generation of an RSPI receive buffer full interrupt request.

30.2.2 RSPI Slave Select Polarity Register (SSLP)

Address(es): RSPI0.SSLP 0008 8381h



Bit	Symbol	Bit Name	Description	R/W
b0	SSL0P	SSL0 Signal Polarity Setting	0: SSL0 signal is active low 1: SSL0 signal is active high	R/W
b1	SSL1P	SSL1 Signal Polarity Setting	0: SSL1 signal is active low 1: SSL1 signal is active high	R/W
b2	SSL2P	SSL2 Signal Polarity Setting	0: SSL2 signal is active low 1: SSL2 signal is active high	R/W
b3	SSL3P	SSL3 Signal Polarity Setting	0: SSL3 signal is active low 1: SSL3 signal is active high	R/W
b7 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Do not change the SSLP register while the SPCR.SPE bit is 1.

30.2.3 RSPI Pin Control Register (SPPCR)

Address(es): RSPI0.SPPCR 0008 8382h

Bit	Symbol	Bit Name	Description	R/W
b0	SPLP	RSPI Loopback	Normal mode Loopback mode (data is inverted for transmission)	R/W
b1	SPLP2	RSPI Loopback 2	Normal mode Loopback mode (data is not inverted for transmission)	
b3, b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b4	MOIFV	MOSI Idle Fixed Value	O: The level output on the MOSIA pin during MOSI idling corresponds to low 1: The level output on the MOSIA pin during MOSI idling corresponds to high	
b5	MOIFE	MOSI Idle Value Fixing Enable	MOSI output value equals final data from previous transfer MOSI output value equals the value set in the MOIFV bit	R/W
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Do not change the SPPCR register while the SPCR.SPE bit is 1.

SPLP Bit (RSPI Loopback)

The SPLP bit selects the mode of the RSPI pins.

When the SPLP bit is set to 1, the RSPI shuts off the path between the MISOA pin and the shift register if the SPCR.MSTR bit is 1, and between the MOSIA pin and the shift register if the SPCR.MSTR bit is 0, and connects (inverts) the input path and output path for the shift register (loopback mode).

SPLP2 Bit (RSPI Loopback 2)

The SPLP2 bit selects the mode of the RSPI pins.

When the SPLP2 bit is set to 1, the RSPI shuts off the path between the MISOA pin and the shift register if the SPCR.MSTR bit is 1, and between the MOSIA pin and the shift register if the SPCR.MSTR bit is 0, and connects the input path and output path for the shift register (loopback mode).

MOIFV Bit (MOSI Idle Fixed Value)

If the MOIFE bit is 1 in master mode, the MOIFV bit determines the MOSIA pin output value during the SSL negation period (including the SSL retention period during a burst transfer).

MOIFE Bit (MOSI Idle Value Fixing Enable)

The MOIFE bit fixes the MOSIA output value when the RSPI in master mode is in an SSL negation period (including the SSL retention period during a burst transfer). When the MOIFE bit is 0, the RSPI outputs the last data from the previous serial transfer during the SSL negation period to the MOSIA pin. When the MOIFE bit is 1, the RSPI outputs the fixed value set in the MOIFV bit to the MOSIA pin.

30.2.4 RSPI Status Register (SPSR)

Address(es): RSPI0.SPSR 0008 8383h

Bit	Symbol	Bit Name	Description	R/W
b0	OVRF	Overrun Error Flag	No overrun error occurs An overrun error occurs	R/(W) *1
b1	IDLNF	RSPI Idle Flag	0: RSPI is in the idle state 1: RSPI is in the transfer state	R
b2	MODF	Mode Fault Error Flag	No mode fault error occurs A mode fault error occurs	R/(W) *1
b3	PERF	Parity Error Flag	O: No parity error occurs 1: A parity error occurs	R/(W) *1
b4	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b5	SPTEF	Transmit Buffer Empty Flag	0: Transmit buffer has valid data 1: Transmit buffer has no valid data	R*2
b6	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b7	SPRF	Receive Buffer Full Flag	Receive buffer has no valid data Receive buffer has valid data	R*2

Note 1. Only 0 can be written to clear the flag after reading 1.

Note 2. The write value should be 1.

OVRF Flag (Overrun Error Flag)

The OVRF flag indicates the occurrence of an overrun error. In master mode (when the SPCR.MSTR bit is 1) and when the RSPCK clock auto-stop function is enabled (the SPCR2.SCKASE bit is 1), an overrun error does not occur; accordingly this flag does not become 1. For details, refer to section 30.3.8.1, Overrun Error.

[Setting condition]

• When the next serial transfer ends while the SPCR.TXMD bit is 0 and the receive buffer is full.

[Clearing condition]

• When SPSR is read while the OVRF flag is 1, and then 0 is written to the OVRF flag.

IDLNF Flag (RSPI Idle Flag)

The IDLNF flag indicates the transfer status of the RSPI.

[Setting condition]

Master mode

• Condition 1 and condition 2 are not satisfied in master mode under the [Clearing condition] below.

Slave mode

• The SPCR.SPE bit is 1 (enables the RSPI function)

[Clearing condition]

Master mode

- The following 1 is satisfied (condition 1) or all of the following 2 to 4 are satisfied (condition 2).
- 1. The SPCR.SPE bit is 0 (disables the RSPI function)
- 2. The transmit buffer (SPTX) is empty (data for the next transfer is not set)
- 3. The SPSSR.SPCP[2:0] bits are 000b (beginning of sequence control)

4. The RSPI internal sequencer has entered the idle state (status in which operations up to the next-access delay have finished)

Slave mode

• The SPCR.SPE bit is 0 (disables the RSPI function)

MODF Flag (Mode Fault Error Flag)

Indicates the occurrence of a mode fault error.

[Setting condition]

Multi-master mode

• When the input level of the SSLAi pin changes to the active level while the SPCR.MSTR bit is 1 (master mode) and the SPCR.MODFEN bit is 1 (mode fault error detection is enabled), the RSPI detects a mode fault error

Slave mode

• When the SSLAi pin is negated before the RSPCK cycle necessary for data transfer ends while the SPCR.MSTR bit is 0 (slave mode) and the SPCR.MODFEN bit is 1 (mode fault error detection is enabled), the RSPI detects a mode fault error

The active level of the SSLAi signal is determined by the SSLP.SSLiP bit (SSLi signal polarity setting bit).

[Clearing condition]

• When SPSR is read while the MODF flag is 1, and then 0 is written to the MODF flag

PERF Flag (Parity Error Flag)

Indicates the occurrence of a parity error.

[Setting condition]

• When a serial transfer ends while the SPCR.TXMD bit is 0 and the SPCR2.SPPE bit is 1, the RSPI detects a parity error

[Clearing condition]

• When SPSR is read while the PERF flag is 1, and then 0 is written to the PERF flag

SPTEF Flag (Transmit Buffer Empty Flag)

Indicates whether the transmit buffer (SPTX) in the RSPI data register has valid data.

[Setting condition]

- When the SPCR.SPE bit is 0 (disables the RSPI function)
- When data is transferred from the transmit buffer to the shift register

[Clearing condition]

• When the number of frames of transmit data specified by the SPDCR.SPFC[1:0] bits is written to the SPDR register

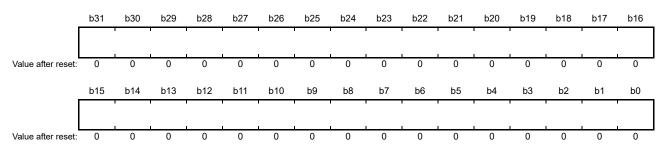
The SPDR register can be set only when the SPTEF flag is 1. The data in the transmit buffer is not updated when the SPDR register is set while the SPTEF flag is 0.

SPRF Flag (Receive Buffer Full Flag)

Indicates whether the receive buffer (SPRX) in the RSPI data register has valid data.

[Setting condition]

• When the number of frames of receive data specified by the SPDCR.SPFC[1:0] bits is transferred from shift register to the receive buffer (SPRX) while the SPCR.TXMD bit is 0 (full duplex) and the SPRF flag is 0. Note that the SPRF flag does not become 1 when the OVRF flag is 1.


[Clearing condition]

• When all of the received data are read from the SPDR register

30.2.5 RSPI Data Register (SPDR)

· When accessing in longword size

Address(es): RSPI0.SPDR 0008 8384h

· When accessing in word size

Address(es): RSPI0.SPDR.H 0008 8384h

SPDR is the interface with the buffers that hold data for transmission and reception by the RSPI.

When accessing in longwords (the SPLW bit is 1), access SPDR in 32-bit units.

When accessing in words (the SPLW bit is 0), access SPDR.H in 16-bit units.

The transmit buffer (SPTX) and receive buffer (SPRX) are independent but are both mapped to SPDR. Figure 30.2 shows the Configuration of SPDR.

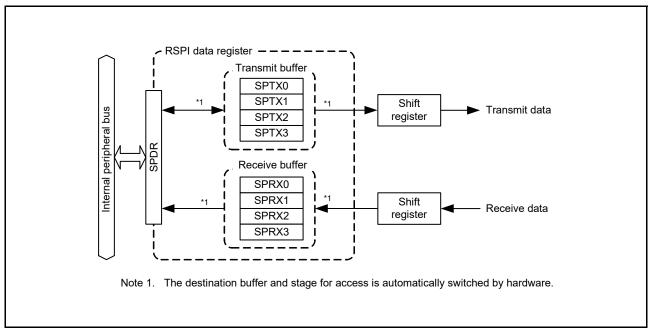


Figure 30.2 Configuration of SPDR

The transmit and receive buffers each have four stages. The number of stages to be used is selectable by the number of frames specification bits in the RSPI data control register (SPDCR.SPFC[1:0]). The eight stages of the buffer are all

mapped to the single address of SPDR.

Data written to SPDR are written to a transmit-buffer stage (SPTXn) (n = 0 to 3) and then transmitted from the buffer. The receive buffer holds received data on completion of reception. The receive buffer is not updated if an overrun is generated.

Furthermore, if the data length is other than 32 bits, bits not referred to in SPTXn (n = 0 to 3) are stored in the corresponding bits in SPRXn. For example, if the data length is 9 bits, received data are stored in the SPRXn[8:0] bits and the SPTXn[31:9] bits are stored in the SPRXn[31:9] bits.

(1) Bus Interface

SPDR is the interface with 32-bit wide transmit and receive buffers, each of which has four stages, for a total of 32 bytes. In other words, the 32 bytes are mapped to the 4-byte address space for SPDR. Furthermore, the unit of access for SPDR is selected by the SPDCR.SPLW bit.

Data for transmission should be flush with the LSB end of the register. Received data are stored flush with the LSB end. Operations involved in writing to and reading from SPDR are described below.

(a) Writing

Data written to SPDR are written to a transmit buffer (SPTXn). This is not influenced by the value of the SPDCR.SPRDTD bit unlike when reading from SPDR.

The transmit buffer includes a transmit buffer write pointer which is automatically updated to indicate the next stage each time data are written to SPDR.

Figure 30.3 shows the configuration of the bus interface with the transmit buffer in the case of writing to SPDR.

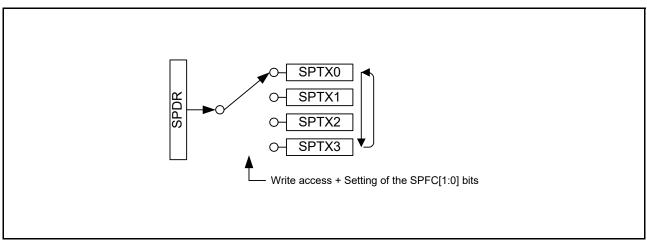


Figure 30.3 Configuration of SPDR (Writing)

The sequence for switching the transmit buffer write pointer differs with the setting of the number of frames specification bits in the RSPI data control register (SPDCR.SPFC[1:0]).

• Settings of the SPFC[1:0] bits and sequence of switching the pointer among SPTX0 to SPTX3.

```
When the SPFC[1:0] bits are 00b: SPTX0 \rightarrow SPTX0 \rightarrow SPTX0 \rightarrow ...
When the SPFC[1:0] bits are 01b: SPTX0 \rightarrow SPTX1 \rightarrow SPTX0 \rightarrow SPTX1 \rightarrow ...
When the SPFC[1:0] bits are 10b: SPTX0 \rightarrow SPTX1 \rightarrow SPTX2 \rightarrow SPTX0 \rightarrow SPTX1 \rightarrow ...
When the SPFC[1:0] bits are 11b: SPTX0 \rightarrow SPTX1 \rightarrow SPTX2 \rightarrow SPTX3 \rightarrow SPTX0 \rightarrow SPTX1 \rightarrow ...
```

When 1 is written to the RSPI function enable bit in the RSPI control register (SPCR.SPE) while the bit's current value is 0, SPTX0 will be the destination the next time writing proceeds.

When writing to the transmit buffer (SPTXn) after generation of the transmit buffer empty interrupt (after the SPSR.SPTEF flag becomes 1), write the number of frames set by the number of frames specification bits (SPFC[1:0]) in

the RSPI data control register (SPDCR). Even if the number of frames is written to the transmit buffer (SPTXn), the value of the buffer is not updated after completion of the writing and before generation of the next transmit buffer empty interrupt (while the SPSR.SPTEF flag is 0).

(b) Reading

SPDR can be read to read the value of a receive buffer (SPRXn) or a transmit buffer (SPTXn). The setting of the RSPI receive/transmit data select bit in the RSPI data control register (SPDCR.SPRDTD) selects whether reading is of the receive or transmit buffer.

The sequence of reading the SPDR register is controlled by independent pointers, receive buffer read pointer and transmit buffer read pointer.

Figure 30.4 shows the configuration of the bus interface with the receive and transmit buffers in the case of reading from SPDR.

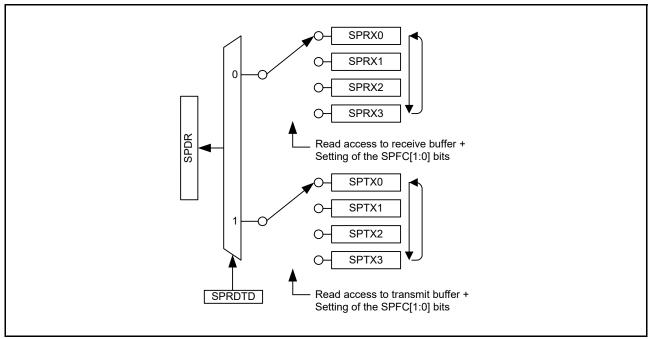


Figure 30.4 Configuration of SPDR (Reading)

Reading the receive buffer switches the receive buffer read pointer to the next buffer automatically.

The sequence of switching the receive buffer read pointer is the same as that for the transmit buffer write pointer. However, when 1 is written to the RSPI function enable bit in the RSPI control register (SPCR.SPE) while the bit's current value is 0, SPRX0 will be indicated by the buffer read pointer the next time reading proceeds.

The transmit buffer read pointer is updated when writing to SPDR, and not updated when reading from the transmit buffer. When reading from the transmit buffer, the value most recently written to SPDR is read. However, after generation of the transmit buffer empty interrupt, the values read from the transmit buffer are all 0 in the interval after completion of writing the number of frames of data specified in the number of frames specification bits (SPDCR.SPFC[1:0]) and before generation of the next buffer empty interrupt (while the SPSR.SPTEF flag is 0).

30.2.6 RSPI Sequence Control Register (SPSCR)

Address(es): RSPI0.SPSCR 0008 8388h

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	SPSLN[2:0]	RSPI Sequence Length Specification	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	R/W
b7 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

SPSCR sets the sequence length when the RSPI operates in master mode. When changing the SPSCR.SPSLN[2:0] bits while both the SPCR.MSTR and SPCR.SPE bits are 1, the bits should be changed while the SPSR.IDLNF flag is 0.

SPSLN[2:0] Bits (RSPI Sequence Length Specification)

The SPSLN[2:0] bits specify a sequence length when the RSPI in master mode performs sequential operations. The RSPI in master mode changes SPCMD0 to SPCMD7 registers to be referenced and the order in which they are referenced according to the sequence length that is set in the SPSLN[2:0] bits.

In slave mode, SPCMD0 is referred.

30.2.7 RSPI Sequence Status Register (SPSSR)

Address(es): RSPI0.SPSSR 0008 8389h

Bit	Symbol	Bit Name	Description	R/W	
b2 to b0	SPCP[2:0]	RSPI Command Pointer	b2 b0 0 0 0: SPCMD0 0 0 1: SPCMD1 0 1 0: SPCMD2 0 1 1: SPCMD3 1 0 0: SPCMD4 1 0 1: SPCMD5 1 1 0: SPCMD6 1 1 1: SPCMD7	R	
b3	_	Reserved	This bit is read as 0.	R	
b6 to b4	SPECM[2:0]	RSPI Error Command	b6 b4 0 0 0: SPCMD0 0 0 1: SPCMD1 0 1 0: SPCMD2 0 1 1: SPCMD3 1 0 0: SPCMD4 1 0 1: SPCMD5 1 1 0: SPCMD6 1 1 1: SPCMD7	R	
b7	_	Reserved	This bit is read as 0.	R	

SPSSR indicates the sequence control status when the RSPI operates in master mode. Any writing to SPSSR is ignored.

SPCP[2:0] Bits (RSPI Command Pointer)

The SPCP[2:0] bits indicate SPCMDm that is currently pointed to by the pointer during sequence control by the RSPI. For the RSPI's sequence control, refer to section 30.3.10.1, Master Mode Operation.

SPECM[2:0] Bits (RSPI Error Command)

The SPECM[2:0] bits indicate SPCMDm that is specified by the SPCP[2:0] bits when an error is detected during sequence control by the RSPI. The RSPI updates the SPECM[2:0] bits only when an error is detected. If both the SPSR.OVRF and SPSR.MODF flags are 0 and there is no error, the values of the SPECM[2:0] bits have no meaning. For the RSPI's error detection function, refer to section 30.3.8, Error Detection. For the RSPI's sequence control, refer to section 30.3.10.1, Master Mode Operation.

30.2.8 RSPI Bit Rate Register (SPBR)

Address(es): RSPI0.SPBR 0008 838Ah

SPBR sets the bit rate in master mode. Do not change the SPBR register while both the SPCR.MSTR and SPCR.SPE bits are 1.

When the RSPI is used in slave mode, the bit rate depends on the bit rate of the input clock (bit rate satisfying the electrical characteristics should be used) regardless of the settings of SPBR and the SPCMDm.BRDV[1:0] bits (bit rate division setting bits).

The bit rate is determined by combinations of the SPBR setting and the SPCMDm.BRDV[1:0] bit setting. The equation for calculating the bit rate is given below. In the equation, n denotes an SPBR setting (0, 1, 2, ..., 255), and N denotes a BRDV[1:0] bit setting (0, 1, 2, 3).

Bit rate =
$$\frac{f(PCLK)}{2 \times (n+1) \times 2^{N}}$$

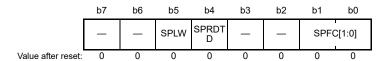

Table 30.3 lists examples of the relationship among the SPBR settings, the BRDV[1:0] settings, and bit rates. Use the bit rate that meets electrical characteristics based on the AC specifications of the target device.

Table 30.3 Relationship among SPBR Settings, BRDV[1:0] Settings, and Bit Rates

		Division	Bit Rate
SPBR (n)	BRDV[1:0] Bits (N)	Ratio	PCLK = 32 MHz
0	0	2	16.0 Mbps
1	0	4	8.00 Mbps
2	0	6	5.33 Mbps
3	0	8	4.00 Mbps
4	0	10	3.20 Mbps
5	0	12	2.67 Mbps
5	1	24	1.33 Mbps
5	2	48	667 kbps
5	3	96	333 kbps
255	3	4096	7.81 kbps

30.2.9 RSPI Data Control Register (SPDCR)

Address(es): RSPI0.SPDCR 0008 838Bh

Bit	Symbol	Bit Name	Description	R/W
b1, b0	SPFC[1:0]	Number of Frames Specification	b1 b0 0 0: 1 frame	R/W
		эрсэшашэн	0 1: 2 frames	
			1 0: 3 frames	
			1 1: 4 frames	
b3, b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b4	SPRDTD	RSPI Receive/Transmit Data	0: SPDR values are read from the receive buffer	R/W
		Select	1: SPDR values are read from the transmit buffer	
			(but only if the transmit buffer is empty)	
b5	SPLW	RSPI Longword Access/	0: SPDR is accessed in words	R/W
		Word Access Specification	1: SPDR is accessed in longwords	
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Up to four frames can be transmitted or received in one round of transmission or reception activation. The amount of data in each transfer is controlled by the combination of the SPCMDm.SPB[3:0] bits, the SPSCR.SPSLN[2:0] bits, and the SPDCR.SPFC[1:0] bits.

When changing the SPDCR.SPFC[1:0] bits while the SPCR.SPE bit is 1, the bits should be changed while the SPSR.IDLNF flag is 0.

SPFC[1:0] Bits (Number of Frames Specification)

The SPFC[1:0] bits specify the number of frames that can be stored in SPDR (per transfer activation). Up to four frames can be transmitted or received in one round of transmission or reception, and the amount of data is determined by the combination of the SPSCR.SPSLN[2:0] bits, and the SPDCR.SPFC[1:0] bits. Furthermore, the setting of the SPFC[1:0] bits adjusts the number of frames for generation of RSPI receive buffer full interrupt, and start of transmission or generation of transmit buffer empty interrupts.

When the number of frames of transmit data specified by SPFC[1:0] bits is written to the SPDR register, the SPSR.SPTEF flag becomes 0 and transmission starts. Then, when the specified number of frames of transmit data has been transferred to the shift register, the SPTEF flag becomes 1 and the RSPI transmit buffer empty interrupt is generated.

When the number of frames specified by the SPFC[1:0] bits are received, the SPSR.SPRF flag becomes 1 and the RSPI receive buffer full interrupt is generated.

Table 30.4 lists the frame configurations that can be stored in SPDR and examples of combinations of settings for transmission and reception. Do not select the combinations of settings other than those shown in the examples.

Table 30.4 Settable Combinations of SPSLN[2:0] Bits and SPFC[1:0] Bits

Setting	SPSLN[2:0]	SPFC[1:0]	Number of Frames in a Single Sequence	Number of Frames at which Transmit Buffer or Receive Buffer Status Becomes "Has Valid Data"
1-1	000b	00b	1	1
1-2	000b	01b	2	2
1-3	000b	10b	3	3
1-4	000b	11b	4	4
2-1	001b	01b	2	2
2-2	001b	11b	4	4
3	010b	10b	3	3
4	011b	11b	4	4
5	100b	00b	5	1
6	101b	00b	6	1
7	110b	00b	7	1
8	111b	00b	8	1

SPRDTD Bit (RSPI Receive/Transmit Data Select)

The SPRDTD bit selects whether the SPDR reads values from the receive buffer or from the transmit buffer.

If reading is from the transmit buffer, the value written to SPDR register immediately beforehand is read.

When reading the transmit buffer, do so before writing of the number of frames set in the SPFC[1:0] bits is finished and after generation of the transmit buffer empty interrupt (While the SPSR.SPTEF flag is 1).

For details, refer to section 30.2.5, RSPI Data Register (SPDR).

SPLW Bit (RSPI Longword Access/Word Access Specification)

The SPLW bit specifies the access width for SPDR. Access to the SPDR register in words when the SPLW bit is 0 and in longwords when the SPLW bit is 1.

Also, when the SPLW bit is 0, set the SPCMDm.SPB[3:0] bits (RSPI data length setting bits) to 8 to 16 bits. Do not select 20, 24, or 32 bits.

30.2.10 RSPI Clock Delay Register (SPCKD)

Address(es): RSPI0.SPCKD 0008 838Ch

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	SCKDL[2:0]	RSPCK Delay Setting	b2 b0 0 0 0: 1 RSPCK 0 0 1: 2 RSPCK 0 1 0: 3 RSPCK 0 1 1: 4 RSPCK 1 0 0: 5 RSPCK 1 0 1: 6 RSPCK 1 1 0: 7 RSPCK	R/W
b7 to b3	_	Reserved	1 1 1:8 RSPCK These bits are read as 0. The write value should be 0.	R/W

SPCKD sets a period from the beginning of SSLAi signal assertion to RSPCK oscillation (RSPCK delay) when the SPCMDm.SCKDEN bit is 1. Do not change the SPCKD register while both the SPCR.MSTR and SPCR.SPE bits are 1.

SCKDL[2:0] Bits (RSPCK Delay Setting)

The SCKDL[2:0] bits set an RSPCK delay value when the SPCMDm.SCKDEN bit is 1. When using the RSPI in slave mode, set the SCKDL[2:0] bits to 000b.

30.2.11 RSPI Slave Select Negation Delay Register (SSLND)

Address(es): RSPI0.SSLND 0008 838Dh

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	SLNDL[2:0]	SSL Negation Delay Setting	b2 b0 0 0 0:1 RSPCK 0 0 1:2 RSPCK 0 1 0:3 RSPCK 0 1 1:4 RSPCK 1 0 0:5 RSPCK 1 0 1:6 RSPCK 1 1 0:7 RSPCK 1 1 1:8 RSPCK	R/W
b7 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

SSLND sets a period (SSL negation delay) from the transmission of a final RSPCK edge to the negation of the SSLAi signal during a serial transfer by the RSPI in master mode. Do not change the SSLND register while both the SPCR.MSTR and SPCR.SPE bits are 1.

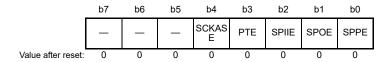
SLNDL[2:0] Bits (SSL Negation Delay Setting)

The SLNDL[2:0] bits set an SSL negation delay value when the RSPI is in master mode. When using the RSPI in slave mode, set the SLNDL[2:0] bits to 000b.

30.2.12 RSPI Next-Access Delay Register (SPND)

Address(es): RSPI0.SPND 0008 838Eh

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	SPNDL[2:0]	RSPI Next-Access Delay Setting	b2 b0 0 0 0: 1 RSPCK + 2 PCLK	R/W
			0 0 1: 2 RSPCK + 2 PCLK	
			0 1 0: 3 RSPCK + 2 PCLK	
			0 1 1: 4 RSPCK + 2 PCLK	
			1 0 0: 5 RSPCK + 2 PCLK	
			1 0 1: 6 RSPCK + 2 PCLK	
			1 1 0: 7 RSPCK + 2 PCLK	
			1 1 1: 8 RSPCK + 2 PCLK	
b7 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W


SPND sets a non-active period (next-access delay) of the SSLAi signal after termination of a serial transfer when the SPCMDm.SPNDEN bit is 1. Do not change the SPND register while both the SPCR.MSTR and SPCR.SPE bits are 1.

SPNDL[2:0] Bits (RSPI Next-Access Delay Setting)

The SPNDL[2:0] bits set a next-access delay when the SPCMDm.SPNDEN bit is 1. When using the RSPI in slave mode, set the SPNDL[2:0] bits to 000b.

30.2.13 RSPI Control Register 2 (SPCR2)

Address(es): RSPI0.SPCR2 0008 838Fh

Bit	Symbol	Bit Name	Description	R/W
b0	SPPE	Parity Enable	0: Does not add the parity bit to transmit data and does not check the parity bit of receive data 1: Adds the parity bit to transmit data and checks the parity bit of receive data (when SPCR.TXMD = 0) Adds the parity bit to transmit data but does not check the parity bit of receive data (when SPCR.TXMD = 1)	R/W
b1	SPOE	Parity Mode	Selects even parity for use in transmission and reception Selects odd parity for use in transmission and reception	R/W
b2	SPIIE	RSPI Idle Interrupt Enable	Disables the generation of idle interrupt requests Enables the generation of idle interrupt requests	R/W
b3	PTE	Parity Self-Diagnosis	Disables the self-diagnosis function of the parity circuit Enables the self-diagnosis function of the parity circuit	R/W
b4	SCKASE	RSPCK Auto-Stop Function Enable	Disables the RSPCK auto-stop function Enables the RSPCK auto-stop function	R/W
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Do not change the SPPE, SPOE, and SCKASE bits in the SPCR2 register while the SPCR.SPE bit is 1.

SPPE Bit (Parity Enable)

The SPPE bit enables or disables the parity function.

The parity bit is added to transmit data and parity checking is performed for receive data when the SPCR.TXMD bit is 0 and the SPCR2.SPPE bit is 1.

The parity bit is added to transmit data but parity checking is not performed for receive data when the SPCR.TXMD bit is 1 and the SPCR2.SPPE bit is 1.

SPOE Bit (Parity Mode)

The SPOE bit specifies odd or even parity.

When even parity is set, parity bit addition is performed so that the total number of 1-bits in the transmit/receive character plus the parity bit is even. Similarly, when odd parity is set, parity bit addition is performed so that the total number of 1-bits in the transmit/receive character plus the parity bit is odd.

The SPOE bit is valid only when the SPPE bit is 1.

SPIIE Bit (RSPI Idle Interrupt Enable)

The SPIIE bit enables or disables the generation of RSPI idle interrupt requests when the RSPI being in the idle state is detected and the SPSR.IDLNF flag is set to 0.

PTE Bit (Parity Self-Diagnosis)

The PTE bit enables the self-diagnosis function of the parity circuit in order to check whether the parity function is operating correctly.

SCKASE Bit (RSPCK Auto-Stop Function Enable)

The SCKASE bit enables or disables the RSPCK auto-stop function. When this function is enabled, the RSPCK clock is stopped before an overrun error occurs when data is received in master mode. For details, refer to section 30.3.8.1, Overrun Error.

30.2.14 RSPI Command Registers 0 to 7 (SPCMD0 to SPCMD7)

Address(es): RSPI0.SPCMD0 0008 8390h, RSPI0.SPCMD1 0008 8392h, RSPI0.SPCMD2 0008 8394h, RSPI0.SPCMD3 0008 8396h, RSPI0.SPCMD4 0008 8398h, RSPI0.SPCMD5 0008 839Ah, RSPI0.SPCMD6 0008 839Ch, RSPI0.SPCMD7 0008 839Eh

Bit	Symbol	Bit Name	Description	R/W
b0	СРНА	RSPCK Phase Setting	Data sampling on odd edge, data variation on even edge Data variation on odd edge, data sampling on even edge	R/W
b1	CPOL	RSPCK Polarity Setting	0: RSPCK is low when idle 1: RSPCK is high when idle	R/W
b3, b2	BRDV[1:0]	Bit Rate Division Setting	b3 b2 0 0: These bits select the base bit rate 0 1: These bits select the base bit rate divided by 2 1 0: These bits select the base bit rate divided by 4 1 1: These bits select the base bit rate divided by 8	R/W
b6 to b4	SSLA[2:0]	SSL Signal Assertion Setting	b6 b4 0 0 0: SSL0 0 0 1: SSL1 0 1 0: SSL2 0 1 1: SSL3 1 x x: Setting prohibited	R/W
b7	SSLKP	SSL Signal Level Keeping	Negates all SSL signals upon completion of transfer Reeps the SSL signal level from the end of transfer until the beginning of the next access	R/W
b11 to b8	SPB[3:0]	RSPI Data Length Setting	0100 to 0111: 8 bits 1 0 0 0: 9 bits 1 0 1 0: 11 bits 1 0 1 0: 11 bits 1 0 1 1: 12 bits 1 1 0 0: 13 bits 1 1 0 1: 14 bits 1 1 1 0: 15 bits 1 1 1 1: 16 bits 0 0 0 0: 20 bits 0 0 0 1: 24 bits 0010, 0011: 32 bits	R/W
b12	LSBF	RSPI LSB First	0: MSB first 1: LSB first	R/W
b13	SPNDEN	RSPI Next-Access Delay Enable	0: A next-access delay of 1 RSPCK + 2 PCLK 1: A next-access delay is equal to the setting of the RSPI next-access delay register (SPND)	R/W
b14	SLNDEN	SSL Negation Delay Setting Enable	O: An SSL negation delay of 1 RSPCK 1: An SSL negation delay is equal to the setting of the RSPI slave select negation delay register (SSLND)	R/W
b15	SCKDEN	RSPCK Delay Setting Enable	0: An RSPCK delay of 1 RSPCK 1: An RSPCK delay is equal to the setting of the RSPI clock delay register (SPCKD)	R/W

x: Don't care

SPCMDm register is used to set a transfer format for the RSPI in master mode. Each channel has eight RSPI command registers (SPCMD0 to SPCMD7). Some of the bits in SPCMD0 register is used to set a transfer mode for the RSPI in slave mode. The RSPI in master mode sequentially references SPCMDm register according to the settings in the SPSCR.SPSLN[2:0] bits, and executes the serial transfer that is set in the referenced SPCMDm register.

SPCMDm register should be set while the transmit buffer is empty (data for the next transfer is not set) and before setting of the data that is to be transmitted when that SPCMDm register is referenced.

SPCMDm that is referenced by the RSPI in master mode can be checked by means of the SPSSR.SPCP[2:0] bits. Do not change the SPCMDm register while the SPCR.MSTR bit is 0 and the SPCR.SPE bit is 1.

CPHA Bit (RSPCK Phase Setting)

The CPHA bit sets an RSPCK phase of the RSPI in master mode or slave mode. Data communications between RSPI modules require the same RSPCK phase setting between the modules.

CPOL Bit (RSPCK Polarity Setting)

The CPOL bit sets an RSPCK polarity of the RSPI in master mode or slave mode. Data communications between RSPI modules require the same RSPCK polarity setting between the modules.

BRDV[1:0] Bits (Bit Rate Division Setting)

The BRDV[1:0] bits are used to determine the bit rate. A bit rate is determined by combinations of the settings in the BRDV[1:0] bits and SPBR (refer to section 30.2.8, RSPI Bit Rate Register (SPBR)). The settings in SPBR determine the base bit rate. The settings in the BRDV[1:0] bits are used to select a bit rate which is obtained by dividing the base bit rate by 1, 2, 4, or 8. In SPCMDm register, different BRDV[1:0] bit settings can be specified. This enables execution of serial transfers at a different bit rate for each command.

SSLA[2:0] Bits (SSL Signal Assertion Setting)

The SSLA[2:0] bits control the SSLAi signal assertion when the RSPI performs serial transfers in master mode. Setting the SSLA[2:0] bits controls the assertion for the SSLAi signal. When an SSLAi signal is asserted, its polarity is determined by the set value in the corresponding SSLP. When the SSLA[2:0] bits are set to 000b in multi-master mode, serial transfers are performed with all the SSL signals in the negated state (as the SSLA0 pin acts as input). When using the RSPI in slave mode, set the SSLA[2:0] bits to 000b.

SSLKP Bit (SSL Signal Level Keeping)

When the RSPI in master mode performs a serial transfer, the SSLKP bit specifies whether the SSLAi signal level for the current command is to be kept or negated between the SSL negation timing associated with the current command and the SSL assertion timing associated with the next command.

Setting the SSLKP bit to 1 enables a burst transfer. For details, refer to section 30.3.10.1, Master Mode Operation (4) Burst Transfer.

When using the RSPI in slave mode, the SSLKP bit should be set to 0.

SPB[3:0] Bits (RSPI Data Length Setting)

The SPB[3:0] bits set a transfer data length for the RSPI in master mode or slave mode. When the SPDCR.SPLW bit is 0, set the SPB[3:0] bits to "0100b" (8 bits) to "1111b" (16 bits).

LSBF Bit (RSPI LSB First)

The LSBF bit sets the data format of the RSPI in master mode or slave mode to MSB first or LSB first.

SPNDEN Bit (RSPI Next-Access Delay Enable)

The SPNDEN bit sets the period from the time the RSPI in master mode terminates a serial transfer and sets the SSLAi signal inactive until the RSPI enables the SSLAi signal assertion for the next access (next-access delay). If the SPNDEN bit is 0, the RSPI sets the next-access delay to 1 RSPCK + 2 PCLK. If the SPNDEN bit is 1, the RSPI inserts a next-access delay in compliance with the SPND setting.

When using the RSPI in slave mode, the SPNDEN bit should be set to 0.

SLNDEN Bit (SSL Negation Delay Setting Enable)

The SLNDEN bit sets the period from the time the RSPI in master mode stops RSPCK oscillation until the RSPI sets the SSLAi signal inactive (SSL negation delay). If the SLNDEN bit is 0, the RSPI sets the SSL negation delay to 1 RSPCK. If the SLNDEN bit is 1, the RSPI negates the SSL signal at an SSL negation delay in compliance with the SSLND setting.

When using the RSPI in slave mode, the SLNDEN bit should be set to 0.

SCKDEN Bit (RSPCK Delay Setting Enable)

The SCKDEN bit sets the period from the point when the RSPI in master mode activates the SSLAi signal until the RSPCK starts oscillation (RSPI clock delay). If the SCKDEN bit is 0, the RSPI sets the RSPCK delay to 1 RSPCK. If the SCKDEN bit is 1, the RSPI starts the oscillation of RSPCK at an RSPCK delay in compliance with the SPCKD setting. When using the RSPI in slave mode, the SCKDEN bit should be set to 0.

30.3 Operation

In this section, the serial transfer period means a period from the beginning of driving valid data to the fetching of the final valid data.

30.3.1 Overview of RSPI Operations

The RSPI is capable of synchronous serial transfers in slave mode (SPI operation), single-master mode (SPI operation), multi-master mode (SPI operation), slave mode (clock synchronous operation), and master mode (clock synchronous operation). A particular mode of the RSPI can be selected by using the MSTR, MODFEN, and SPMS bits in SPCR. Table 30.5 lists the relationship between RSPI modes and SPCR settings, and a description of each mode.

Table 30.5 Relationship between RSPI Modes and SPCR Settings and Description of Each Mode

Mode	Slave (SPI Operation)	Single-Master (SPI Operation)	Multi-Master (SPI Operation)	Slave (Clock Synchronous Operation)	Master (Clock Synchronous Operation)
MSTR bit setting	0	1	1	0	1
MODFEN bit setting	0 or 1	0	1	0	0
SPMS bit setting	0	0	0	1	1
RSPCKA signal	Input	Output	Output/Hi-Z	Input	Output
MOSIA signal	Input	Output	Output/Hi-Z	Input	Output
MISOA signal	Output/Hi-Z	Input	Input	Output	Input
SSLA0 signal	Input	Output	Input	Hi-Z*1	Hi-Z*1
SSLA1 to SSLA3 signals	Hi-Z*1	Output	Output/Hi-Z	Hi-Z*1	Hi-Z*1
SSL polarity change function	Supported	Supported	Supported		
Transfer rate	Up to PCLK/8	Up to PCLK/2	Up to PCLK/2	Up to PCLK/8	Up to PCLK/2
Clock source	RSPCK input	On-chip baud rate generator	On-chip baud rate generator	RSPCK input	On-chip baud rate generator
Clock polarity			Two		
Clock phase	Two	Two	Two	One (CPHA = 1)	Two
First transfer bit			MSB/LSB	1	
Transfer data length			8 to 16, 20, 24, 32 bit	s	
Burst transfer	Possible (CPHA = 1)	Possible (CPHA = 0,1)	Possible (CPHA = 0,1)	_	_
RSPCK delay control	Not supported	Supported	Supported	Not supported	Supported
SSL negation delay control	Not supported	Supported	Supported	Not supported	Supported
Next-access delay control	Not supported	Supported	Supported	Not supported	Supported
Transfer activation method	SSL input active or RSPCK oscillation	Transmit buffer is written to at generation of a transmit buffer empty interrupt request or when the SPTEF flag is 1	Transmit buffer is written to at generation of a transmit buffer empty interrupt request or when the SPTEF flag is 1	RSPCK oscillation	Transmit buffer is written to at generation of a transmit buffer empty interrupt request or when the SPTEF flag is 1
Sequence control	Not supported	Supported	Supported	Not supported	Supported
Transmit buffer empty detection	Supported				
Receive buffer full detection	Supported*2				
Overrun error detection	Supported*2	Supported*2, *4	Supported*2, *4	Supported*2	Supported*2
Parity error detection			Supported*2, *3		
Mode fault error detection	Supported (MODFEN = 1)	Not supported	Supported	Not supported	Not supported

Note 1. This function is not supported in this mode.

Note 4. When the SPCR2.SCKASE bit is 1, overrun error detection does not proceed.

Note 2. When the SPCR.TXMD bit is 1, receiver buffer full detection, overrun error detection, and parity error detection are not performed.

Note 3. When the SPCR2.SPPE bit is 0, parity error detection is not performed.

30.3.2 Controlling RSPI Pins

According to the MSTR, MODFEN, and SPMS bits in SPCR and the ODRn.Bi bit for I/O ports, the RSPI can switch pin states. Table 30.6 lists the relationship between pin states and bit settings. Setting the ODRn.Bi bit for an I/O port to 0 selects CMOS output; setting it to 1 selects open-drain output. The I/O port settings should follow this relationship.

Table 30.6 Relationship between Pin States and Bit Settings

		Pin S	State* ²
Mode	Pin	ODRn.Bi Bit for I/O Ports = 0	ODRn.Bi Bit for I/O Ports = 1
Single-master mode (SPI operation)	RSPCKA	CMOS output	Open-drain output
(MSTR = 1, MODFEN = 0, SPMS = 0)	SSLA0 to SSLA3	CMOS output	Open-drain output
	MOSIA	CMOS output	Open-drain output
	MISOA	Input	Input
Multi-master mode (SPI operation)	RSPCKA*3	CMOS output/Hi-Z	Open-drain output/Hi-Z
(MSTR = 1, MODFEN = 1, SPMS = 0)	SSLA0	Input	Input
	SSLA1 to SSLA3*3	CMOS output/Hi-Z	Open-drain output/Hi-Z
	MOSIA*3	CMOS output/Hi-Z	Open-drain output/Hi-Z
	MISOA	Input	Input
Slave mode (SPI operation)	RSPCKA	Input	Input
(MSTR = 0, SPMS = 0)	SSLA0	Input	Input
	SSLA1 to SSLA3*5	Hi-Z*1	Hi-Z*1
	MOSIA	Input	Input
	MISOA*4	CMOS output/Hi-Z	Open-drain output/Hi-Z
Master mode	RSPCKA	CMOS output	Open-drain output
(Clock synchronous operation) (MSTR = 1, MODFEN = 0, SPMS = 1)	SSLA0 to SSLA3*5	Hi-Z*1	Hi-Z*1
(MOTIC = 1, MODI EIV = 0, OF MO = 1)	MOSIA	CMOS output	Open-drain output
	MISOA	Input	Input
Slave mode	RSPCKA	Input	Input
(Clock synchronous operation) (MSTR = 0, SPMS = 1)	SSLA0 to SSLA3*5	Hi-Z*1	Hi-Z*1
(MOTITE 0, 01 MO - 1)	MOSIA	Input	Input
	MISOA	CMOS output	Open-drain output

Note 1. This function is not supported in this mode.

The RSPI in single-master mode (SPI operation) or multi-master mode (SPI operation) determines MOSI signal values during the SSL negation period (including the SSL retention period during a burst transfer) according to MOIFE and MOIFV bit settings in SPPCR, as listed in Table 30.7.

Table 30.7 MOSI Signal Value Determination during SSL Negation Period

MOIFE Bit	MOIFV Bit	MOSIA Signal Value during SSL Negation Period
0	0, 1	Final data from previous transfer
1	0	Low
1	1	High

Note 2. RSPI settings are not reflected in the multiplex pins for which the RSPI function is not selected.

Note 3. When SSLA0 is at the active level, the pin state is Hi-Z.

Note 4. When SSLA0 is at the non-active level or the SPCR.SPE bit is 0, the pin state is Hi-Z.

Note 5. These pins are available for use as I/O port pins.

30.3.3 RSPI System Configuration Examples

30.3.3.1 Single Master/Single Slave (with This MCU Acting as Master)

Figure 30.5 shows a single-master/single-slave RSPI system configuration example when this MCU is used as a master. In the single-master/single-slave configuration, the SSLA0 to SSLA3 output of this MCU (master) are not used. The SSL input of the SPI slave is fixed to the low level, and the SPI slave is maintained in a select state.*

This MCU (master) drives the RSPCKA and MOSIA. The SPI slave drives the MISO.

Note 1. In the transfer format corresponding to the case where the SPCMDm.CPHA bit is 0, there are slave devices for which the SSL signal cannot be fixed to the active level. In situations where the SSL signal cannot be fixed, the SSLAi output of this MCU should be connected to the SSL input of the slave device.

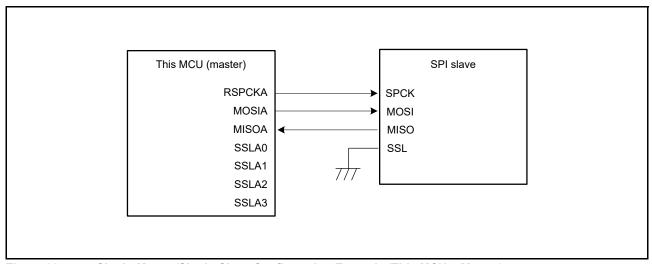


Figure 30.5 Single-Master/Single-Slave Configuration Example (This MCU = Master)

30.3.3.2 Single Master/Single Slave (with This MCU Acting as Slave)

Figure 30.6 shows a single-master/single-slave RSPI system configuration example when this MCU is used as a slave. When this MCU is to operate as a slave, the SSLA0 pin is used as SSL input. The SPI master drives the RSPCK and MOSI. This MCU (slave) drives the MISOA.*1

In the single-slave configuration in which the SPCMDm.CPHA bit is set to 1, the SSLA0 input of this MCU (slave) is fixed to the low level, this MCU (slave) is maintained in a select state, and in this manner it is possible to execute serial transfer (Figure 30.7).

Note 1. When SSLA0 is at the non-active level, the pin state is Hi-Z.

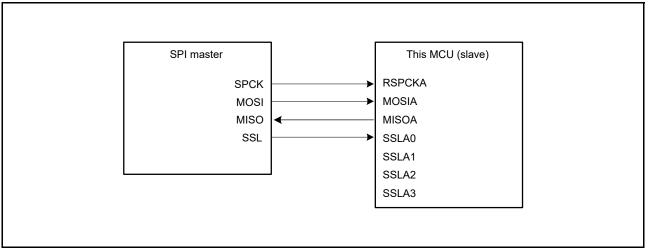


Figure 30.6 Single-Master/Single-Slave Configuration Example (This MCU = Slave, CPHA = 0)

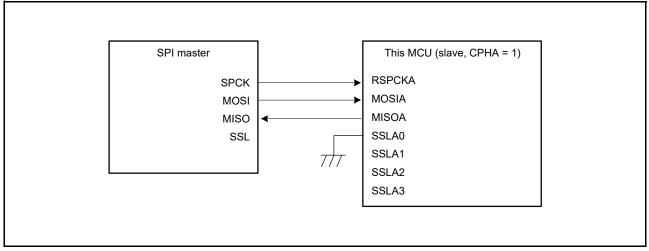


Figure 30.7 Single-Master/Single-Slave Configuration Example (This MCU = Slave, CPHA = 1)

30.3.3.3 Single Master/Multi-Slave (with This MCU Acting as Master)

Figure 30.8 shows a single-master/multi-slave RSPI system configuration example when this MCU is used as a master. In the example of Figure 30.8, the RSPI system is comprised of this MCU (master) and four slaves (SPI slave 0 to SPI slave 3).

The RSPCKA and MOSIA outputs of this MCU (master) are connected to the RSPCK and MOSI inputs of SPI slave 0 to SPI slave 3. The MISO outputs of SPI slave 0 to SPI slave 3 are all connected to the MISOA input of this MCU (master). SSLA0 to SSLA3 outputs of this MCU (master) are connected to the SSL inputs of SPI slave 0 to SPI slave 3, respectively.

This MCU (master) drives RSPCKA, MOSIA, and SSLA0 to SSLA3. Of the SPI slave 0 to SPI slave 3, the slave that receives low-level input into the SSL input drives MISO.

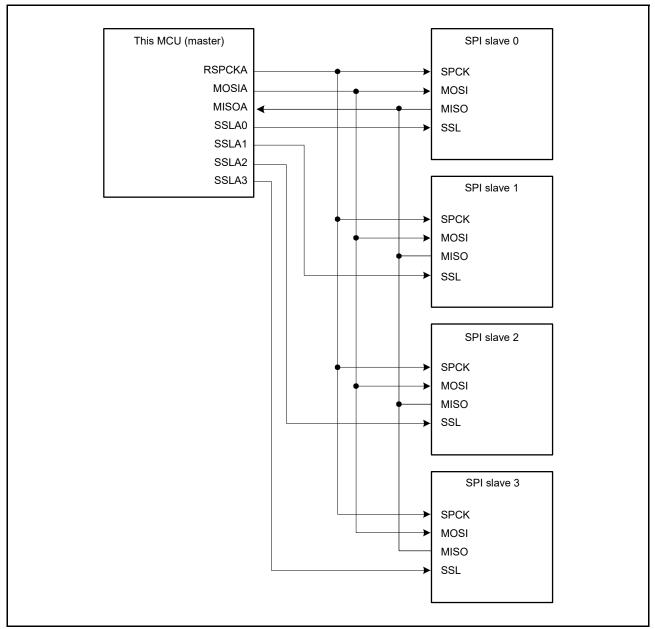


Figure 30.8 Single-Master/Multi-Slave Configuration Example (This MCU = Master)

30.3.3.4 Single Master/Multi-Slave (with This MCU Acting as Slave)

Figure 30.9 shows a single-master/multi-slave RSPI system configuration example when this MCU is used as a slave. In the example of Figure 30.9, the RSPI system is comprised of an SPI master and two MCUs (slave X and slave Y). The SPCK and MOSI outputs of the SPI master are connected to the RSPCKA and MOSIA inputs of the MCUs (slave X and slave Y). The MISOA outputs of the MCUs (slave X and slave Y) are all connected to the MISO input of the SPI master. SSLX and SSLY outputs of the SPI master are connected to the SSLA0 inputs of the MCUs (slave X and slave Y), respectively.

The SPI master drives SPCK, MOSI, SSLX, and SSLY. Of the MCUs (slave X and slave Y), the slave that receives low-level input into the SSLA0 input drives MISOA.

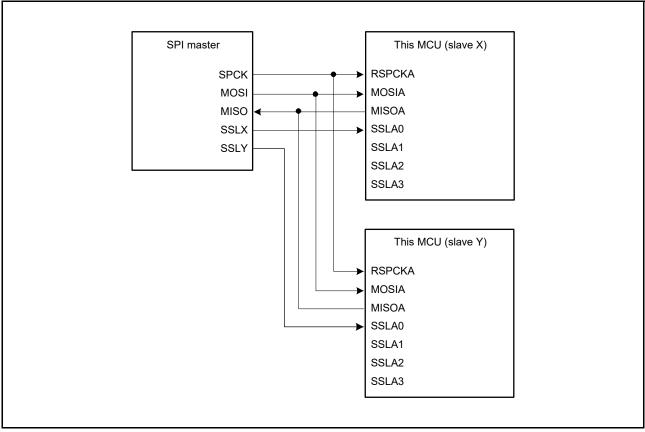


Figure 30.9 Single-Master/Multi-Slave Configuration Example (This MCU = Slave)

30.3.3.5 Multi-Master/Multi-Slave (with This MCU Acting as Master)

Figure 30.10 shows a multi-master/multi-slave RSPI system configuration example when this MCU is used as a master. In the example of Figure 30.10, the RSPI system is comprised of two MCUs (master X and master Y) and two SPI slaves (SPI slave 1 and SPI slave 2).

The RSPCKA and MOSIA outputs of the MCUs (master X and master Y) are connected to the RSPCK and MOSI inputs of SPI slaves 1 and 2. The MISO outputs of SPI slaves 1 and 2 are connected to the MISOA inputs of the MCUs (master X and master Y). Any generic port Y output from this MCU (master X) is connected to the SSLA0 input of this MCU (master Y). Any generic port X output of this MCU (master Y) is connected to the SSLA0 input of this MCU (master X). The SSLA1 and SSLA2 outputs of the MCUs (master X and master Y) are connected to the SSL inputs of the SPI slaves 1 and 2. In this configuration example, since the system can be comprised solely of SSLA0 input, and SSLA1 and SSLA2 outputs for slave connections, the SSLA3 output of this MCU is not required.

This MCU drives RSPCKA, MOSIA, SSLA1, and SSLA2 when the SSLA0 input level is high. When the SSLA0 input level is low, this MCU detects a mode fault error, sets RSPCKA, MOSIA, SSLA1, and SSLA2 to Hi-Z, and releases the RSPI bus right to the other master. Of the SPI slaves 1 and 2, the slave that receives low-level input into the SSL input drives MISO.

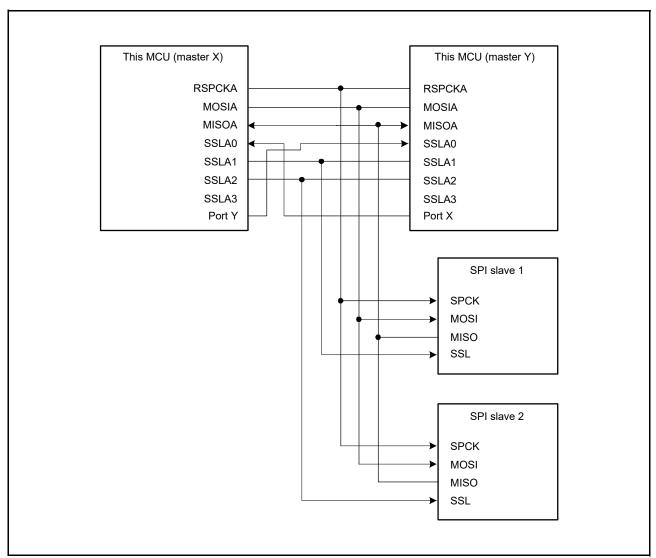


Figure 30.10 Multi-Master/Multi-Slave Configuration Example (This MCU = Master)

30.3.3.6 Master (Clock Synchronous Operation)/Slave (Clock Synchronous Operation) (with This MCU Acting as Master)

Figure 30.11 shows a master (clock synchronous operation)/slave (clock synchronous operation) RSPI system configuration example when this MCU is used as a master. In the master (clock synchronous operation)/slave (clock synchronous operation) configuration, SSLA0 to SSLA3 of this MCU (master) are not used. This MCU (master) drives the RSPCKA and MOSIA. The SPI slave drives the MISO.

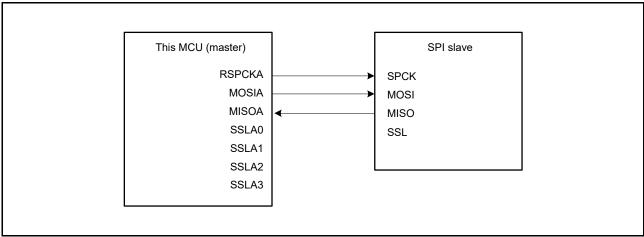


Figure 30.11 Master (Clock Synchronous Operation)/Slave (Clock Synchronous Operation) Configuration Example (This MCU = Master)

30.3.3.7 Master (Clock Synchronous Operation)/Slave (Clock Synchronous Operation) (with This MCU Acting as Slave)

Figure 30.12 shows a master (clock synchronous operation)/slave (clock synchronous operation) RSPI system configuration example when this MCU is used as a slave. When this MCU is to operate as a slave (clock synchronous operation), this MCU (slave) drives the MISOA and the SPI master drives the SPCK and MOSI. In addition, SSLA0 to SSLA3 of this MCU (slave) are not used.

Only in the single-slave configuration in which the SPCMDm.CPHA bit is set to 1, this MCU (slave) can execute serial transfer.

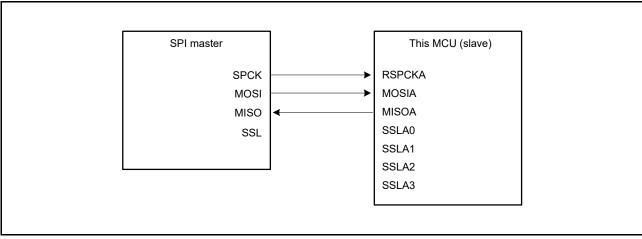


Figure 30.12 Master (Clock Synchronous Operation)/Slave (Clock Synchronous Operation) Configuration Example (This MCU = Slave, CPHA = 1)

30.3.4 Data Format

The RSPI's data format depends on the settings in RSPI command register m (SPCMDm) (m = 0 to 7) and the parity enable bit in RSPI control register 2 (SPCR2.SPPE). Regardless of whether the MSB or LSB is first, the RSPI treats the range from the LSB bit in the RSPI data register (SPDR) to the selected data length as transfer data. The format of one frame of data before or after transfer is shown below.

(a) With Parity Disabled

When parity is disabled, transmission or reception of data proceeds with the length in bits selected in the RSPI data length setting bits in RSPI command register m (SPCMDm.SPB[3:0]).

(b) With Parity Enabled

When parity is enabled, transmission or reception of data proceeds with the length in bits selected in the RSPI data length setting bits in RSPI command register m (SPCMDm.SPB[3:0]). In this case, however, the last bit is a parity bit.

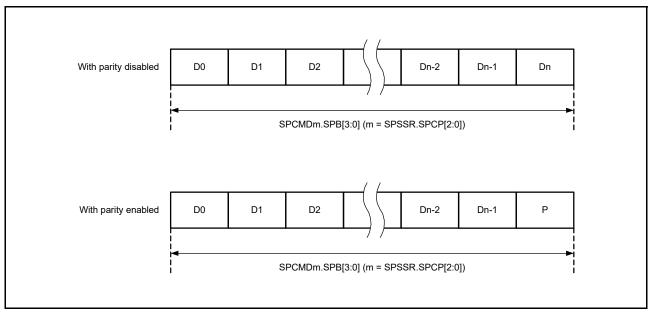


Figure 30.13 Outline of the Data Format (with Parity Disabled/Enabled)

30.3.4.1 When Parity is Disabled (SPCR2.SPPE = 0)

When parity is disabled, data for transmission are copied to the shift register with no prior processing. A description of the connection between the RSPI data register (SPDR) and the shift register in terms of the combination of MSB or LSB first and data length is given below.

(1) MSB First Transfer (32-Bit Data)

Figure 30.14 shows details of operations by the RSPI data register (SPDR) and the shift register in transfer with parity disabled, an RSPI data length of 32 bits, and MSB first selected.

In transmission, bits T31 to T00 from the current stage of the transmit buffer are copied to the shift register. Data for transmission are shifted out from the shift register in order from T31, through T30, and so on to T00.

In reception, received data are shifted in bit by bit through bit 0 of the shift register. When bits R31 to R00 have been collected after input of the required number of cycles of RSPCK, the value in the shift register is copied to the receive buffer.

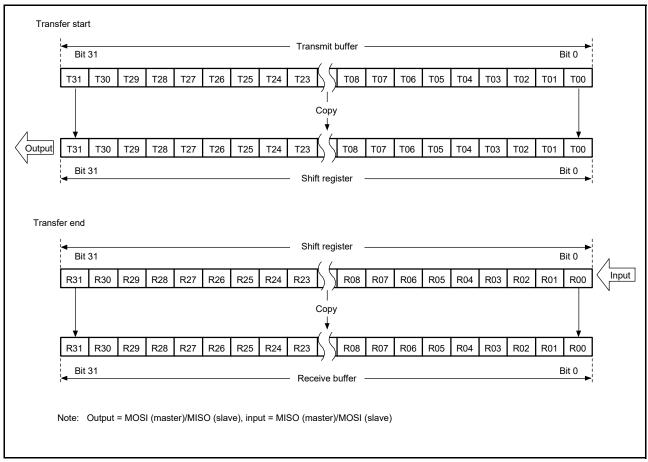


Figure 30.14 MSB First Transfer (32-Bit Data, Parity Disabled)

(2) MSB First Transfer (24-Bit Data)

Figure 30.15 shows details of operations by the RSPI data register (SPDR) and the shift register in transfer with parity disabled, 24 bits as the RSPI data length for an example that is not 32 bits, and MSB first selected.

In transmission, the lower-order 24 bits (T23 to T00) from the current stage of the transmit buffer are copied to the shift register. Data for transmission are shifted out from the shift register in order from T23, through T22, and so on to T00. In reception, received data are shifted in bit by bit through bit 0 of the shift register. When bits R23 to R00 have been collected after input of the required number of cycles of RSPCK, the value in the shift register is copied to the receive buffer. At this time, the higher-order 8 bits of the transmit buffer are stored in the higher-order 8 bits of the receive buffer. Writing 0 to bits T31 to T24 at the time of transmission leads to 0 being inserted in the higher-order 8 bits of the receive buffer.

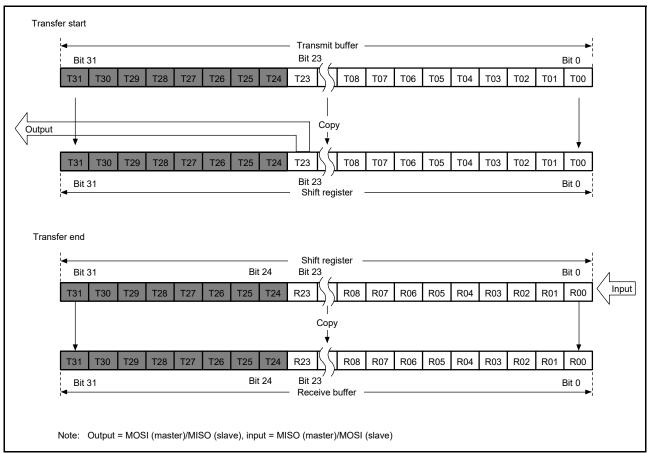


Figure 30.15 MSB First Transfer (24-Bit Data, Parity Disabled)

(3) LSB First Transfer (32-Bit Data)

Figure 30.16 shows details of operations by the RSPI data register (SPDR) and the shift register in transfer with parity disabled, an RSPI data length of 32 bits, and LSB first selected.

In transmission, bits T31 to T00 from the current stage of the transmit buffer are reordered bit by bit to obtain the order T00 to T31 for copying to the shift register. Data for transmission are shifted out from the shift register in order from T00, through T01, and so on to T31.

In reception, received data are shifted in bit by bit through bit 0 of the shift register. When bits R00 to R31 have been collected after input of the required number of cycles of RSPCK, the value in the shift register is copied to the receive buffer.

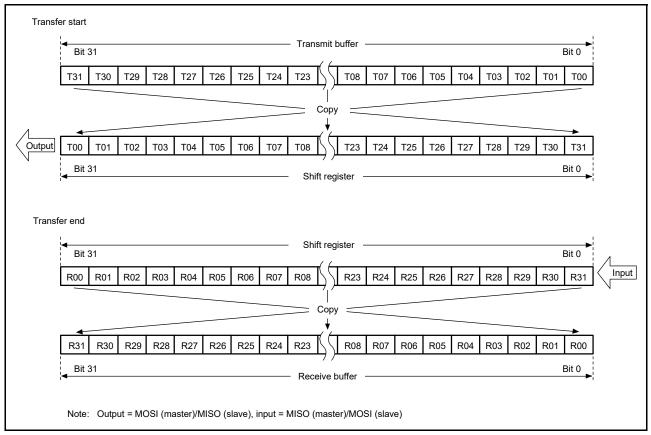


Figure 30.16 LSB First Transfer (32-Bit Data, Parity Disabled)

(4) LSB First Transfer (24-Bit Data)

Figure 30.17 shows details of operations by the RSPI data register (SPDR) and the shift register in transfer with parity disabled, 24 bits as the RSPI data length for an example that is not 32 bits, and LSB first selected.

In transmission, the lower-order 24 bits (T23 to T00) from the current stage of the transmit buffer are reordered bit by bit to obtain the order T00 to T23 for copying to the shift register. Data for transmission are shifted out from the shift register in order from T00, through T01, and so on to T23.

In reception, received data are shifted in bit by bit through bit 8 of the shift register. When bits R00 to R23 have been collected after input of the required number of cycles of RSPCK, the value in the shift register is copied to the receive buffer.

At this time, the higher-order 8 bits of the transmit buffer are stored in the higher-order 8 bits of the receive buffer. Writing 0 to bits T31 to T24 at the time of transmission leads to 0 being inserted in the higher-order 8 bits of the receive buffer.

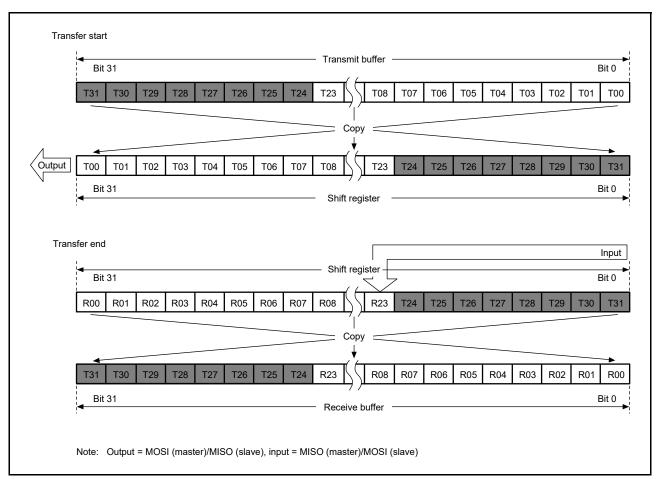


Figure 30.17 LSB First Transfer (24-Bit Data, Parity Disabled)

30.3.4.2 When Parity is Enabled (SPCR2.SPPE = 1)

When parity is enabled, the lowest-order bit of the data for transmission becomes a parity bit. Hardware calculates the value of the parity bit.

(1) MSB First Transfer (32-Bit Data)

Figure 30.18 shows details of operations by the RSPI data register (SPDR) and the shift register in transfer with parity enabled, an RSPI data length of 32 bits, and MSB first selected.

In transmission, the value of the parity bit (P) is calculated from bits T31 to T01. This replaces the final bit, T00, and the whole is copied to the shift register. Data are transmitted in the order T31, T30, ..., T01, and P.

In reception, received data are shifted in bit by bit through bit 0 of the shift register. When bits R31 to P have been collected after input of the required number of cycles of RSPCK, the value in the shift register is copied to the receive buffer. On copying of data to the shift register, the data from R31 to P are checked by judging the parity.

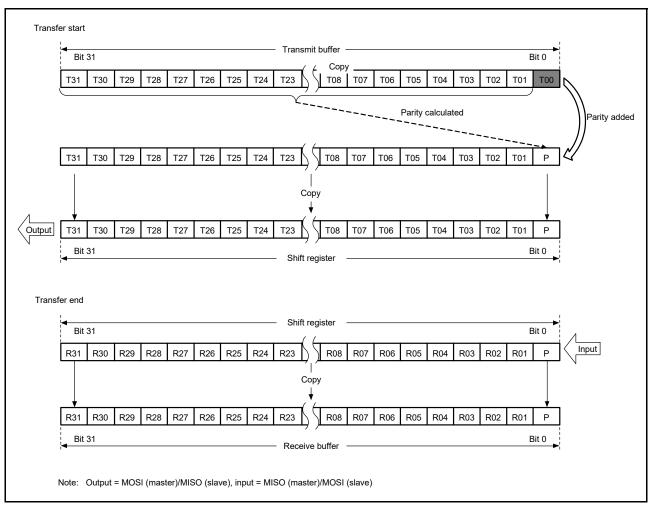


Figure 30.18 MSB First Transfer (32-Bit Data, Parity Enabled)

(2) MSB First Transfer (24-Bit Data)

Figure 30.19 shows details of operations by the RSPI data register (SPDR) and the shift register in transfer with parity enabled, 24 bits as the RSPI data length for an example that is not 32 bits, and MSB first selected.

In transmission, the value of the parity bit (P) is calculated from bits T23 to T01. This replaces the final bit, T00, and the whole is copied to the shift register. Data are transmitted in the order T23, T22, ..., T01, and P.

In reception, received data are shifted in bit by bit through bit 0 of the shift register. When bits R23 to P have been collected after input of the required number of cycles of RSPCK, the value in the shift register is copied to the receive buffer. On copying of data to the shift register, the data from R23 to P are checked by judging the parity. At this time, the higher-order 8 bits of the transmit buffer are stored in the higher-order 8 bits of the receive buffer. Writing 0 to bits T31 to T24 at the time of transmission leads to 0 being inserted in the higher-order 8 bits of the receive buffer.

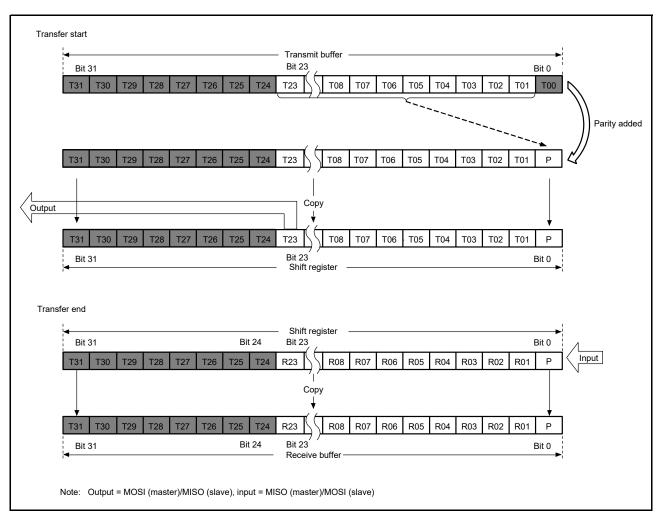


Figure 30.19 MSB First Transfer (24-Bit Data, Parity Enabled)

(3) LSB First Transfer (32-Bit Data)

Figure 30.20 shows details of operations by the RSPI data register (SPDR) and the shift register in transfer with parity enabled, an RSPI data length of 32 bits, and LSB first selected.

In transmission, the value of the parity bit (P) is calculated from bits T30 to T00. This replaces the final bit, T31, and the whole is copied to the shift register. Data are transmitted in the order T00, T01, ..., T30, and P.

In reception, received data are shifted in bit by bit through bit 0 of the shift register. When bits R00 to P have been collected after input of the required number of cycles of RSPCK, the value in the shift register is copied to the receive buffer. On copying of data to the shift register, the data from R00 to P are checked by judging the parity.

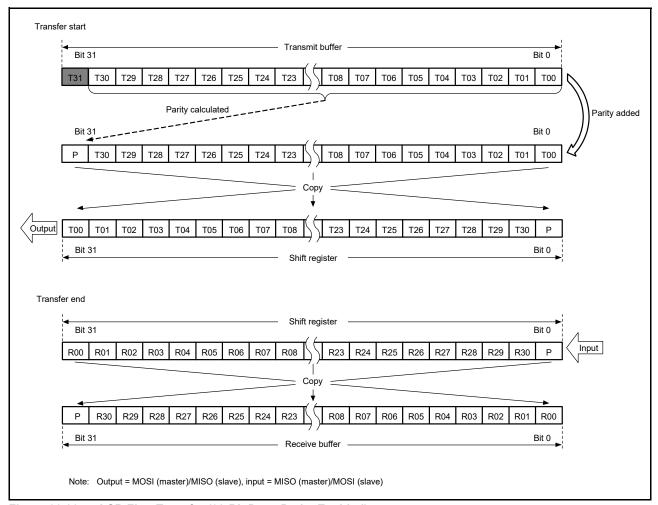


Figure 30.20 LSB First Transfer (32-Bit Data, Parity Enabled)

(4) LSB First Transfer (24-Bit Data)

Figure 30.21 shows details of operations by the RSPI data register (SPDR) and the shift register in transfer with parity enabled, 24 bits as the RSPI data length for an example that is not 32 bits, and LSB first selected.

In transmission, the value of the parity bit (P) is calculated from bits T22 to T00. This replaces the final bit, T23, and the whole is copied to the shift register. Data are transmitted in the order T00, T01, ..., T22, and P.

In reception, received data are shifted in bit by bit through bit 8 of the shift register. When bits R00 to P have been collected after input of the required number of cycles of RSPCK, the value in the shift register is copied to the receive buffer. On copying of data to the shift register, the data from R00 to P are checked by judging the parity. At this time, the higher-order 8 bits of the transmit buffer are stored in the higher-order 8 bits of the receive buffer. Writing 0 to bits T31 to T24 at the time of transmission leads to 0 being inserted in the higher-order 8 bits of the receive buffer.

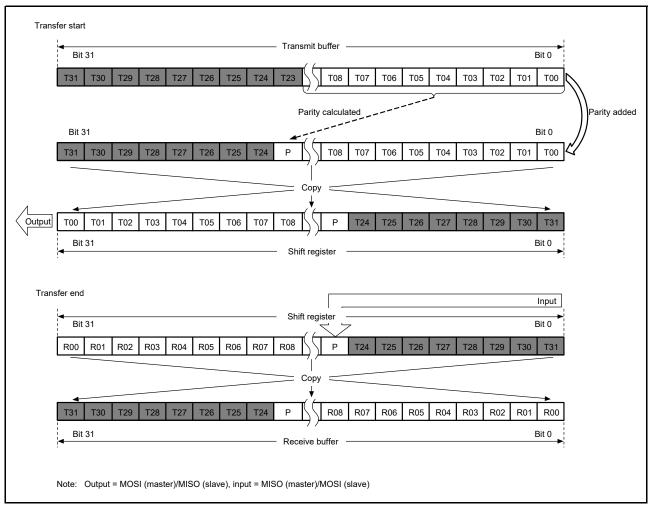


Figure 30.21 LSB First Transfer (24-Bit Data, Parity Enabled)

30.3.5 Transfer Format

30.3.5.1 CPHA = 0

Figure 30.22 shows a sample transfer format for the serial transfer of 8-bit data when the SPCMDm.CPHA bit is 0. Note that clock synchronous operation (the SPCR.SPMS bit is 1) should not performed when the RSPI operates in slave mode (SPCR.MSTR = 0) and the CPHA bit is 0. In Figure 30.22, RSPCKA (CPOL = 0) indicates the RSPCKA signal waveform when the SPCMDm.CPOL bit is 0; RSPCKA (CPOL = 1) indicates the RSPCKA signal waveform when the CPOL bit is 1. The sampling timing represents the timing at which the RSPI fetches serial transfer data into the shift register. The I/O directions of the signals depend on the RSPI settings. For details, refer to section 30.3.2, Controlling RSPI Pins.

When the SPCMDm.CPHA bit is 0, the driving of valid data to the MOSIA and MISOA signals commences at an SSLAi signal assertion timing. The first RSPCKA signal change timing that occurs after the SSLAi signal assertion becomes the first transfer data fetch timing. After this timing, data is sampled at every 1 RSPCK cycle. The change timing for MOSIA and MISOA signals is 1/2 RSPCK cycles after the transfer data fetch timing. The CPOL bit setting does not affect the RSPCKA signal operation timing; it only affects the signal polarity.

t1 denotes a period from an SSLAi signal assertion to RSPCKA oscillation (RSPCK delay). t2 denotes a period from the termination of RSPCKA oscillation to an SSLAi signal negation (SSL negation delay). t3 denotes a period in which SSLAi signal assertion is suppressed for the next transfer after the end of serial transfer (next-access delay). t1, t2, and t3 are controlled by a master device running on the RSPI system. For a description of t1, t2, and t3 when the RSPI of this MCU is in master mode, refer to section 30.3.10.1, Master Mode Operation.

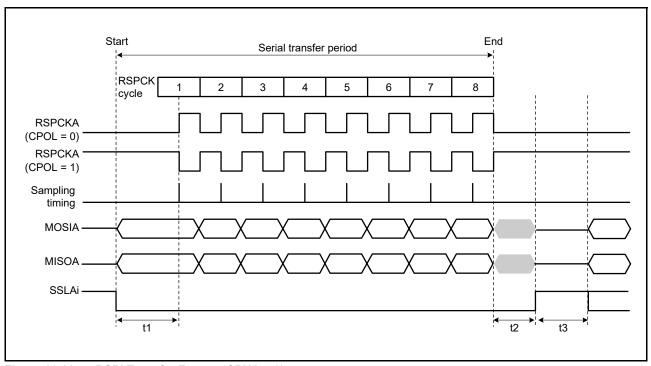


Figure 30.22 RSPI Transfer Format (CPHA = 0)

30.3.5.2 CPHA = 1

Figure 30.23 shows a sample transfer format for the serial transfer of 8-bit data when the SPCMDm.CPHA bit is 1. However, when the SPCR.SPMS bit is 1, the SSLAi signals are not used, and only the three signals RSPCKA, MOSIA, and MISOA handle communications. In Figure 30.23, RSPCK (CPOL = 0) indicates the RSPCKA signal waveform when the SPCMDm.CPOL bit is 0; RSPCKA (CPOL = 1) indicates the RSPCKA signal waveform when the CPOL bit is 1. The sampling timing represents the timing at which the RSPI fetches serial transfer data into the shift register. The I/O directions of the signals depend on the RSPI mode (master or slave). For details, refer to section 30.3.2, Controlling RSPI Pins.

When the SPCMDm.CPHA bit is 1, the driving of invalid data to the MISOA signal commences at an SSLAi signal assertion timing. The output of valid data to the MOSIA and MISOA signals commences at the first RSPCKA signal change timing that occurs after the SSLAi signal assertion. After this timing, data is updated at every 1 RSPCK cycle. The transfer data fetch timing is 1/2 RSPCK cycles after the data update timing. The SPCMDm.CPOL bit setting does not affect the RSPCKA signal operation timing; it only affects the signal polarity.

t1, t2, and t3 are the same as those in the case of CPHA = 0. For a description of t1, t2, and t3 when the RSPI of this MCU is in master mode, refer to section 30.3.10.1, Master Mode Operation.

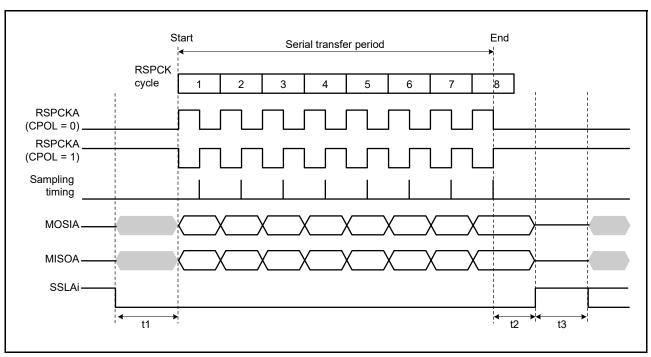


Figure 30.23 RSPI Transfer Format (CPHA = 1)

30.3.6 Communications Operating Mode

Full-duplex synchronous serial communications or transmit operations only can be selected by the communications operating mode select bit (SPCR.TXMD). The SPDR access shown in Figure 30.24 and Figure 30.25 indicate the condition of access to the SPDR register, where W denotes a write cycle.

30.3.6.1 Full-Duplex Synchronous Serial Communications (SPCR.TXMD = 0)

Figure 30.24 shows an example of operation when the communications operating mode select bit (SPCR.TXMD) is set to 0. In the example in Figure 30.24, the RSPI performs an 8-bit serial transfer in which the SPDCR.SPFC[1:0] bits are 00b, the SPCMDm.CPHA bit is 1, and the SPCMDm.CPOL bit is 0. The numbers given under the RSPCKA waveform represent the number of RSPCK cycles (i.e., the number of transferred bits).

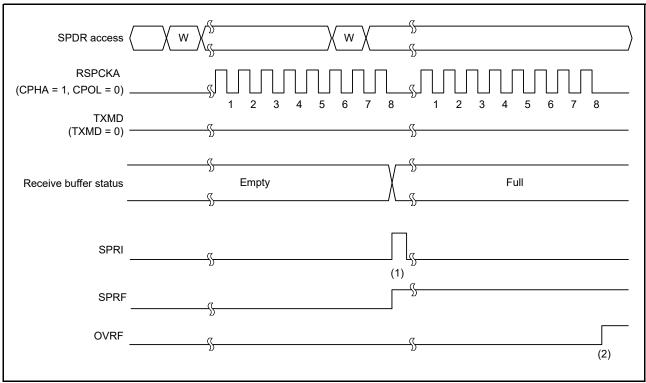


Figure 30.24 Operation Example of SPCR.TXMD = 0

The operation of the flags at timings shown in steps (1) and (2) in the figure is described below.

- (1) When a serial transfer ends with the receive buffer of SPDR empty, the RSPI generates a receive buffer full interrupt request (SPRI) (sets the SPSR.SPRF flag to 1) and copies the received data in the shift register to the receive buffer.
- (2) When a serial transfer ends with the receive buffer of SPDR holding data that was received in the previous serial transfer, the RSPI sets the SPSR.OVRF flag to 1 and discards the received data in the shift register.

When full-duplex synchronous serial communications (SPCR.TXMD = 0) is selected, reception occurs simultaneously with transmit operations. As such, the SPRF and OVRF flags in the SPSR register become 1 at the timing described in (1) and (2), respectively, according to the state of the receive buffer.

30.3.6.2 Transmit Operations Only (SPCR.TXMD = 1)

Figure 30.25 shows an example of operation when the communications operating mode select bit (SPCR.TXMD) is set to 1. In the example in Figure 30.25, the RSPI performs an 8-bit serial transfer in which the SPDCR.SPFC[1:0] bits are 00b, the SPCMDm.CPHA bit is 1, and the SPCMDm.CPOL bit is 0. The numbers given under the RSPCKA waveform represent the number of RSPCK cycles (i.e., the number of transferred bits).

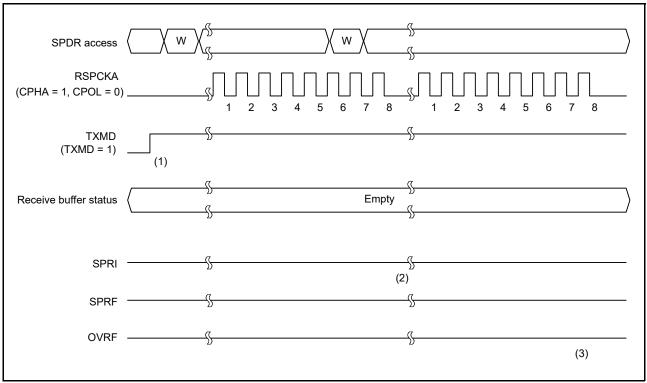


Figure 30.25 Operation Example of SPCR.TXMD = 1

The operation of the flags at timings shown in steps (1) to (3) in the figure is described below.

- (1) Make sure there is no data left in the receive buffer and the SPSR.SPRF, OVRF flags are 0 before entering the mode of transmit operations only (SPCR.TXMD = 1).
- (2) When a serial transfer ends with the receive buffer of SPDR empty, if the mode of transmit operations only is selected (SPCR.TXMD = 1), the SPRF flag remains 0 and the RSPI does not copy the data from the shift register to the receive buffer.
- (3) Since the receive buffer of SPDR does not hold data that was received in the previous serial transfer, even when a serial transfer ends, the SPSR.OVRF flag retains the value of 0, and the data in the shift register is not copied to the receive buffer.

When performing transmit operations only (SPCR.TXMD = 1), the RSPI transmits data but does not receive data. Therefore, the SPSR.SPRF, OVRF flags remain 0 at the timings of (1) to (3).

30.3.7 Transmit Buffer Empty/Receive Buffer Full Interrupts

Figure 30.26 shows an example of operation of the transmit buffer empty interrupt (SPTI) and the receive buffer full interrupt (SPRI). The SPDR register access shown in Figure 30.26 indicates the condition of access to the SPDR register, where W denotes a write cycle, and R a read cycle. In the example in Figure 30.26, the RSPI performs an 8-bit serial transfer in which the SPCR.TXMD bit is 0, the SPDCR.SPFC[1:0] bits are 00b, the SPCMDm.CPHA bit is 1, and the SPCMDm.CPOL bit is 0. The numbers given under the RSPCKA waveform represent the number of RSPCK cycles (i.e., the number of transferred bits).

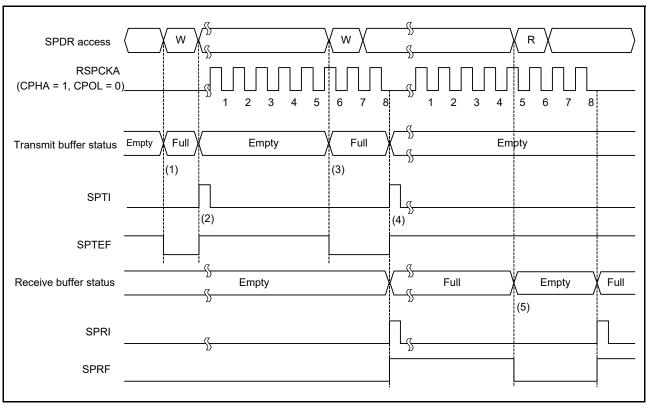


Figure 30.26 Operation Example of SPTI and SPRI Interrupts

The operation of the interrupts at timings shown in steps (1) to (5) in the figure is described below.

- (1) When transmit data is written to SPDR when the transmit buffer of SPDR is empty (data for the next transfer is not set), the RSPI writes data to the transmit buffer and sets the SPSR.SPTEF flag to 0.
- (2) If the shift register is empty, the RSPI copies the data from the transmit buffer to the shift register and generates a transmit buffer empty interrupt request (SPTI) and sets the SPSR.SPTEF flag to 1. How a serial transfer is started depends on the mode of the RSPI. For details, refer to section 30.3.10, SPI Operation, and section 30.3.11, Clock Synchronous Operation.
- (3) When transmit data is written to SPDR in the transmit buffer empty interrupt routine or in the transmit buffer empty detecting process by polling the SPTEF flag, the data is transferred to the transmit buffer and the SPSR.SPTEF flag becomes 0. Because the data being transmitted is stored in the shift register, the RSPI does not copy the data from the transmit buffer to the shift register.
- (4) When the serial transfer ends with the receive buffer of SPDR being empty, the RSPI copies the receive data from the shift register to the receive buffer, generates a receive buffer full interrupt request (SPRI), and sets the SPSR.SPRF flag to 1. Since the shift register becomes empty upon completion of serial transfer, when the transmit buffer had been full before the serial transfer ended, the RSPI sets the SPSR.SPTEF flag to 1 and copies the data from the transmit buffer to the shift register. Even when received data is not copied from the shift register to the receive buffer in an overrun error status, upon completion of the serial transfer, the RSPI determines that the shift register is empty, thus data transfer from the transmit buffer to the shift register is enabled.

(5) When SPDR is read in the receive buffer full interrupt routine or in the receive buffer full detecting process by polling the SPRF flag, the receive data can be read. When the receive data is read, the SPRF flag becomes 0.

If transmit data is written to SPDR while the transmit buffer holds data that has not yet been transmitted (the SPTEF flag is 0), the RSPI does not update the data in the transmit buffer. Transmit data should be written to SPDR in the transmit buffer empty interrupt request routine or in the transmit buffer empty detecting process by polling the SPTEF flag. To use a transmit buffer empty interrupt, set the SPTIE bit in SPCR to 1.

When setting the SPCR.SPE bit to 0 (RSPI disabled), the SPCR.SPTIE bit should also be set to 0. Otherwise (if the SPCR.SPE bit is 0 and the SPCR.SPTIE is 1), a transmit buffer empty interrupt request will occur.

When serial transfer ends with the receive buffer being full (the SPRF flag is 1), the RSPI does not copy data from the shift register to the receive buffer, and detects an overrun error (refer to section 30.3.8, Error Detection). To prevent a receive data overrun error, read the received data using a receive buffer full interrupt request before the next serial transfer ends. To use an RSPI receive buffer full interrupt, set the SPCR.SPRIE bit to 1.

Transmit and receive interrupts or the corresponding IRn.IR flags (where n is the interrupt vector number) in the ICU can be used to confirm the states of the transmit and receive buffers. Refer to section 14, Interrupt Controller (ICUb), for the interrupt vector numbers. The status of the transmit and receive buffers can be also confirmed by the SPTEF and SPRF flags.

30.3.8 Error Detection

In the normal RSPI serial transfer, the data written to the transmit buffer of SPDR is transmitted, and the received data can be read from the receive buffer of SPDR. If access is made to SPDR, depending on the status of the transmit/receive buffer or the status of the RSPI at the beginning or end of serial transfer, in some cases non-normal transfers can be executed.

If a non-normal transfer operation occurs, the RSPI detects the event as an overrun error, parity error, or mode fault error. Table 30.8 lists the relationship between non-normal transfer operations and the RSPI's error detection function.

Table 30.8 Relationship between Non-Normal Transfer Operations and RSPI Error Detection Function

	Occurrence Condition	RSPI Operation	Error Detection	
1	SPDR is written when the transmit buffer is full.	The contents of the transmit buffer are kept.Missing write data.	None	
2	SPDR is read when the receive buffer is empty.	Data received previously is output to the bus.	None	
3	Serial transfer is started in slave mode when transmit data is still not loaded on the shift register.	Data received in previous serial transfer is transmitted.	None	
4	Serial transfer terminates when the receive buffer is full.	The contents of the receive buffer are kept.Missing receive data.	Overrun error	
5	An incorrect parity bit is received when performing full- duplex synchronous serial communications with the parity function enabled.	The parity error flag is asserted.	Parity error	
6	The SSLA0 input signal is asserted when the serial transfer is idle in multi-master mode.	 Driving of the RSPCKA, MOSIA, SSLA1 to SSLA3 output signals is stopped. RSPI function is disabled. 	Mode fault error	
7	The SSLA0 input signal is asserted during serial transfer in multi-master mode.	 Serial transfer is suspended. Missing transmit/receive data. Driving of the RSPCKA, MOSIA, SSLA1 to SSLA3 output signals is stopped. RSPI function is disabled. 	Mode fault error	
8	The SSLA0 input signal is negated during serial transfer in slave mode.	 Serial transfer is suspended. Missing transmit/receive data. Driving of the MISOA output signal is stopped. RSPI function is disabled. 	Mode fault error	

On operation 1 described in Table 30.8, the RSPI does not detect an error. To prevent data omission during the writing to SPDR, the SPDR register should be written when a transmit buffer empty interrupt request occurs or while the SPSR.SPTEF flag is 1.

Likewise, the RSPI does not detect an error on operation 2. To prevent extraneous data from being read, the SPDR register should be read when an RSPI receive buffer full interrupt request occurs or while the SPSR.SPRF flag is 1. Similarly, the RSPI does not detect an error on operation 3. In a serial transfer that was started before the shift register was updated, the RSPI sends the data that was received in the previous serial transfer, and does not treat the operation indicated in 3 as an error. Note that the received data from the previous serial transfer is retained in the receive buffer of SPDR, thus it can be correctly read (if SPDR is not read before the end of the serial transfer, an overrun error may occur). An overrun error shown in 4 is described in section 30.3.8.1, Overrun Error. A parity error shown in 5 is described in section 30.3.8.2, Parity Error. A mode fault error shown in 6 to 8 is described in section 30.3.8.3, Mode Fault Error. For the transmit and receive interrupts, refer to section 30.3.7, Transmit Buffer Empty/Receive Buffer Full Interrupts.

30.3.8.1 Overrun Error

If a serial transfer ends when the receive buffer of SPDR is full, the RSPI detects an overrun error, and sets the SPSR.OVRF flag to 1. When the OVRF flag is 1, the RSPI does not copy data from the shift register to the receive buffer so that the data prior to the occurrence of the error is retained in the receive buffer. To set the OVRF flag to 0, write 0 to the OVRF flag after the CPU has read SPSR with the OVRF flag set to 1.

Figure 30.27 shows an example of operations of the SPRF and OVRF flags. The SPSR and SPDR accesses shown in Figure 30.27 indicate the condition of accesses to SPSR and SPDR, respectively, where W denotes a write cycle, and R a read cycle. In the example in Figure 30.27, the RSPI performs an 8-bit serial transfer in which the SPCMDm.CPHA bit is 1 and the SPCMDm.CPOL bit is 0. The numbers given under the RSPCKA waveform represent the number of RSPCK cycles (i.e., the number of transferred bits).

Figure 30.27 Operation Example of SPRF and OVRF Flags

The operation of the flags at the timing shown in steps (1) to (4) in the figure is described below.

- (1) If a serial transfer terminates with the receive buffer full (the SPRF flag is 1), the RSPI detects an overrun error, and sets the OVRF flag to 1. The RSPI does not copy the data in the shift register to the receive buffer. Even if the SPPE bit is 1, parity errors are not detected. In master mode, the RSPI copies the pointer value to SPCMDm register to the SPSSR.SPECM[2:0] bits.
- (2) When SPDR is read, the RSPI outputs the data in the receive buffer. At this time the SPRF flag becomes 0. Even if the receive buffer becomes empty, the OVRF flag does not become 0.
- (3) If the serial transfer ends with the OVRF flag being 1 (an overrun error occurs), the RSPI does not copy the data in the shift register to the receive buffer (the SPRF flag remains 0). A receive buffer full interrupt is not generated. Even if the SPPE bit is 1, parity errors are not detected. When in master mode, the RSPI does not update the SPSSR.SPECM[2:0] bits. When in an overrun error state and the RSPI does not copy the received data from the shift register to the receive buffer, upon termination of the serial transfer, the RSPI determines that the shift register is empty; in this manner, data transfer from the transmit buffer to the shift register is enabled.
- (4) If 0 is written to the OVRF flag after SPSR is read when the OVRF flag is 1, the OVRF flag is set to 0.

The occurrence of an overrun can be checked either by reading SPSR or by using an RSPI error interrupt and reading SPSR. When executing a serial transfer, measures should be taken to ensure the early detection of overrun errors, such as reading SPSR immediately after SPDR is read. When the RSPI is used in master mode, the pointer value to SPCMDm register at the occurrence of the error can be checked by reading the SPSSR.SPECM[2:0] bits.

If an overrun error occurs and the OVRF flag is set to 1, normal reception operations cannot be performed until the OVRF flag is set to 0.

When the RSPCK auto-stop function is enabled in master mode, an overrun error does not occur. Figure 30.28 and Figure 30.29 show the clock stop waveform when a serial transfer continues while the receive buffer is full in master mode.

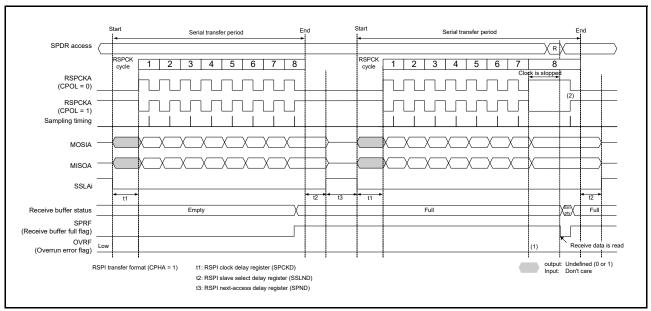


Figure 30.28 Clock Stop Waveform When a Serial Transfer Continues While the Receive Buffer is Full in Master Mode (CPHA = 1)

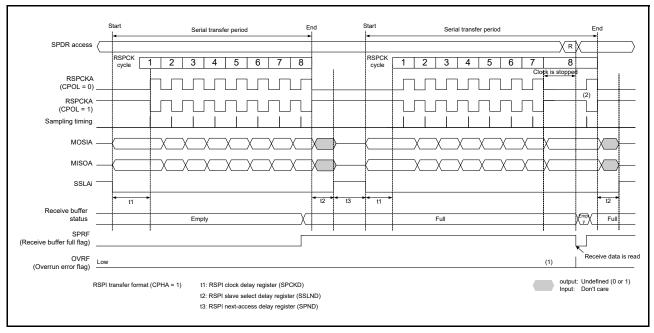


Figure 30.29 Clock Stop Waveform When a Serial Transfer Continues While the Receive Buffer is Full in Master Mode (CPHA = 0)

The operation of the flags at the timings shown in steps (1) and (2) in the figure is described below.

- (1) When the receive buffer is full, an overrun error does not occur because the RSPCK clock is stopped.
- (2) If SPDR is read while the clock is stopped, data in the receive buffer can be read. The RSPCK clock restarts after reading the receive buffer (after the SPRF flag becomes 0).

30.3.8.2 Parity Error

If full-duplex synchronous serial communications is performed with the SPCR.TXMD bit set to 0 and the SPCR2.SPPE bit set to 1, when serial transfer ends, the RSPI checks whether there are parity errors. Upon detecting a parity error in the received data, the RSPI sets the SPSR.PERF flag to 1. Since the RSPI does not copy the data in the shift register to the receive buffer when the SPSR.OVRF flag is set to 1, parity error detection is not performed for the received data. To set the PERF flag to 0, write 0 to the PERF flag after SPSR register is read with the PERF flag set to 1.

Figure 30.30 shows an example of operation of the OVRF and PERF flags. The SPSR access shown in Figure 30.30 indicates the condition of access to SPSR register, where W denotes a write cycle, and R a read cycle. In the example of Figure 30.30, full-duplex synchronous serial communications is performed while the SPCR.TXMD bit is 0 and the SPCR2.SPPE bit is 1. The RSPI performs an 8-bit serial transfer in which the SPCMDm.CPHA bit is 1 and the SPCMDm.CPOL bit is 0. The numbers given under the RSPCKA waveform represent the number of RSPCK cycles (i.e., the number of transferred bits).

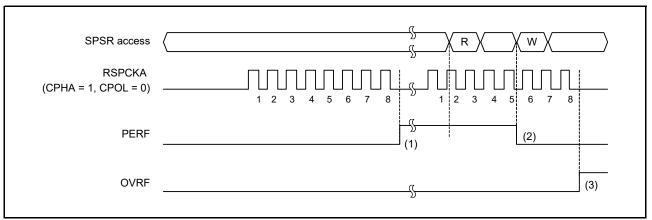


Figure 30.30 Operation Example of PERF Flag

The operation of the flags at the timing shown in steps (1) to (3) in the figure is described below.

- (1) If a serial transfer terminates with the RSPI not detecting an overrun error, the RSPI copies the data in the shift register to the receive buffer. The RSPI judges the received data at this timing, and sets the PERF flag to 1 if a parity error is detected. In master mode, the RSPI copies the pointer value to SPCMDm register to the SPSSR.SPECM[2:0] bits.
- (2) If 0 is written to the PERF flag after SPSR register is read when the PERF flag is 1, the PERF flag is set to 0.
- (3) When the RSPI detects an overrun error and serial transfer is terminated, the data in the shift register is not copied to the receive buffer. The RSPI does not perform parity error detection at this timing.

The occurrence of a parity error can be checked either by reading the SPSR register or by using an RSPI error interrupt and reading the SPSR register. When executing a serial transfer, measures should be taken to ensure the early detection of parity errors, such as reading SPSR. When the RSPI is used in master mode, the pointer value to SPCMDm register at the occurrence of the error can be checked by reading the SPSSR.SPECM[2:0] bits.

30.3.8.3 Mode Fault Error

The RSPI operates in multi-master mode when the SPCR.MSTR bit is 1, the SPCR.SPMS bit is 0, and the SPCR.MODFEN bit is 1. If the active level is input with respect to the SSLA0 input signal of the RSPI in multi-master mode, the RSPI detects a mode fault error irrespective of the status of the serial transfer, and sets the SPSR.MODF flag to 1. Upon detecting the mode fault error, the RSPI copies the value of the pointer to SPCMDm to the SPSSR.SPECM[2:0] bits. The active level of the SSLA0 signal is determined by the SSLP.SSL0P bit.

When the MSTR bit is 0, the RSPI operates in slave mode. The RSPI detects a mode fault error if the MODFEN bit of the RSPI in slave mode is 1, and the SPMS bit is 0, and if the SSLA0 input signal is negated during the serial transfer period (from the time the driving of valid data is started to the time the final valid data is fetched).

Upon detecting a mode fault error, the RSPI stops driving of the output signals and clears the SPCR.SPE bit to 0 (refer to section 30.3.9, Initializing RSPI). In the case of multi-master configuration, detection of a mode fault error is used to stop driving of the output signals and the RSPI function, which allows the master right to be released.

The occurrence of a mode fault error can be checked either by reading SPSR or by using an RSPI error interrupt and reading SPSR. Detecting mode fault errors without utilizing the RSPI error interrupt requires polling of SPSR. When using the RSPI in master mode, the pointer value to SPCMDm register at the occurrence of the error can be checked by reading the SPSSR.SPECM[2:0] bits.

When the MODF flag is 1, writing of the value 1 to the SPE bit is ignored by the RSPI. To enable the RSPI function after the detection of a mode fault error, set the MODF flag to 0.

30.3.9 Initializing RSPI

If 0 is written to the SPCR.SPE bit or the RSPI sets the SPE bit to 0 because of the detection of a mode fault error, the RSPI disables the RSPI function, and initializes some of the module functions. When a system reset is generated, the RSPI initializes all of the module functions. The following describes initialization by the clearing of the SPCR.SPE bit and initialization by a system reset.

30.3.9.1 Initialization by Clearing the SPE Bit

When the SPCR.SPE bit is set to 0, the RSPI performs the following initialization:

- Suspending any serial transfer that is being executed
- Stopping the driving of output signals (Hi-Z) in slave mode
- Initializing the internal state of the RSPI
- Initializing the transmit buffer of the RSPI (Set the SPTEF flag to 1)

Initialization by the clearing of the SPE bit does not initialize the control bits of the RSPI. For this reason, the RSPI can be started in the same transfer mode as prior to the initialization if the SPE bit is set to 1 again.

The SPSR.SPRF, SPSR.OVRF, SPSR.MODF, and SPSR.PERF flags are not initialized, nor is the value of the RSPI sequence status register (SPSSR) initialized. For this reason, even after the RSPI is initialized, data from the receive buffer can be read in order to check the status of error occurrence during an RSPI transfer.

The transmit buffer is initialized to an empty state (the SPTEF flag is 1). Therefore, if the SPCR.SPTIE bit is set to 1 after RSPI initialization, a transmit buffer empty interrupt is generated. When the RSPI is initialized, in order to disable any transmit buffer empty interrupt, 0 should be written to the SPTIE bit simultaneously with the writing of 0 to the SPE bit.

30.3.9.2 System Reset

The initialization by a system reset completely initializes the RSPI through the initialization of all bits for controlling the RSPI, initialization of the status bits, and initialization of data registers, in addition to the requirements described in section 30.3.9.1, Initialization by Clearing the SPE Bit.

30.3.10 SPI Operation

30.3.10.1 Master Mode Operation

The only difference between single-master mode operation and multi-master mode operation lies in mode fault error detection (refer to section 30.3.8, Error Detection). When operating in single-master mode, the RSPI does not detect mode fault errors whereas the RSPI running in multi-master mode does detect mode fault errors. This section explains operations that are common to single-master mode and multi-master mode.

Starting a Serial Transfer

The RSPI updates the data in the transmit buffer (SPTX) when data is written to the RSPI data register (SPDR) with the RSPI transmit buffer being empty (the SPTEF flag is 1 and data for the next transfer is not set). When the shift register is empty after the number of frames set in the SPDCR.SPFC[1:0] bits are written to the SPDR, the RSPI copies data from the transmit buffer to the shift register and starts serial transfer. Upon copying transmit data to the shift register, the RSPI changes the status of the shift register to "full", and upon termination of serial transfer, it changes the status of the shift register to "empty". The status of the shift register cannot be referenced.

For details on the RSPI transfer format, refer to section 30.3.5, Transfer Format. The polarity of the SSLAi output pins depends on the SSLP register settings.

(2) Terminating a Serial Transfer

Irrespective of the SPCMDm.CPHA bit, the RSPI terminates the serial transfer after transmitting an RSPCKA edge corresponding to the final sampling timing. If free space is available in the receive buffer (SPRX) (the SPRF flag is 0), upon termination of serial transfer, the RSPI copies data from the shift register to the receive buffer of the SPDR register. It should be noted that the final sampling timing varies depending on the bit length of transfer data. In master mode, the RSPI data length depends on the SPCMDm.SPB[3:0] bit setting. The polarity of the SSLAi output pin depends on the SSLP register settings.

For details on the RSPI transfer format, refer to section 30.3.5, Transfer Format.

(3) Sequence Control

The transfer format that is employed in master mode is determined by SPSCR, SPCMDm, SPBR, SPCKD, SSLND, and SPND registers.

SPSCR is a register used to determine the sequence configuration for serial transfers that are executed by the RSPI in master mode. The following items are set in SPCMDm register: SSLAi pin output signal value, MSB/LSB first, data length, some of the bit rate settings, RSPCK polarity/phase, whether SPCKD is to be referenced, whether SSLND is to be referenced, and whether SPND is to be referenced. SPBR holds some of the bit rate settings; SPCKD, an RSPI clock delay value; SSLND, an SSL negation delay; and SPND, a next-access delay value.

According to the sequence length that is assigned to SPSCR, the RSPI makes up a sequence comprised of a part or all of SPCMDm register. The RSPI contains a pointer to the SPCMDm register that makes up the sequence. The value of this pointer can be checked by reading the SPSSR.SPCP[2:0] bits. When the SPCR.SPE bit is set to 1 and the RSPI function is enabled, the RSPI loads the pointer to the commands in SPCMD0, and incorporates the SPCMD0 settings into the transfer format at the beginning of serial transfer. The RSPI increments the pointer each time the next-access delay period for a data transfer ends. Upon completion of the serial transfer that corresponds to the final command comprising the sequence, the RSPI sets the pointer in SPCMD0, and in this manner the sequence is executed repeatedly.

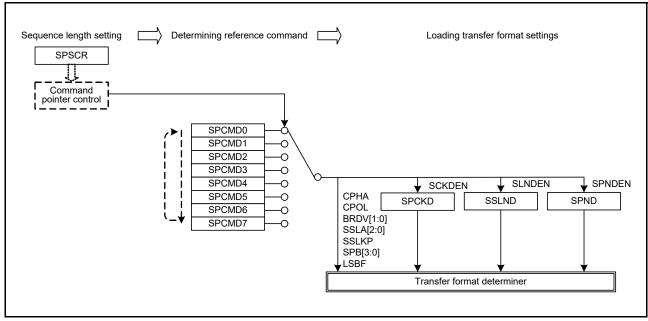


Figure 30.31 Procedure for Determining the Form of Serial Transfer in Master Mode

In this section, a frame is the combination of the data (SPDR) and the settings (SPCMDm).

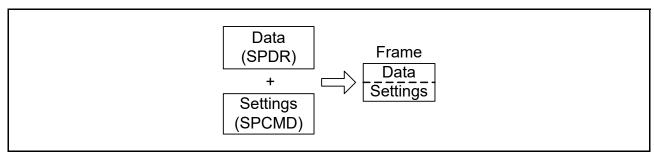


Figure 30.32 Concept of a Frame

Figure 30.33 shows the relationship between the command and the transmit and receive buffers in the sequence of operations specified by the settings in Table 30.4.

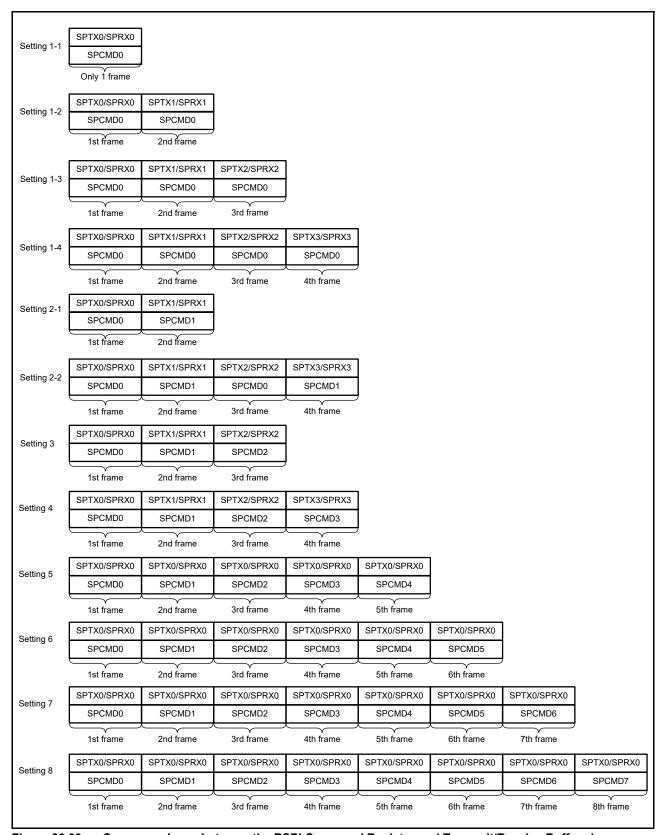


Figure 30.33 Correspondence between the RSPI Command Register and Transmit/Receive Buffers in Sequence Operations

(4) Burst Transfer

If the SPCMDm.SSLKP bit that the RSPI references during the current serial transfer is 1, the RSPI keeps the SSLAi signal level during the serial transfer until the beginning of the SSLAi signal assertion for the next serial transfer. If the SSLAi signal level for the next serial transfer is the same as the SSLAi signal level for the current serial transfer, the RSPI can execute continuous serial transfers while keeping the SSLAi signal assertion status (burst transfer). Figure 30.34 shows an example of an SSLAi signal operation for the case where a burst transfer is implemented using SPCMD0 and SPCMD1 register settings. The text below explains the RSPI operations (1) to (7) as shown in Figure 30.34. It should be noted that the polarity of the SSLAi output signal depends on the SSLP register settings.

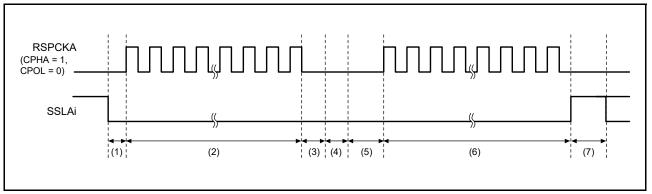


Figure 30.34 Example of Burst Transfer Operation Using SSLKP Bit

- (1) Based on SPCMD0, the RSPI asserts the SSLAi signal and inserts RSPCK delays.
- (2) The RSPI executes serial transfers according to SPCMD0.
- (3) The RSPI inserts SSL negation delays.
- (4) Since the SPCMD0.SSLKP bit is 1, the RSPI keeps the SSLAi signal value on SPCMD0. This period is sustained, at the shortest, for a period equal to the next-access delay of SPCMD0. If the shift register is empty after the passage of a minimum period, this period is sustained until the transmit data is stored in the shift register for the next transfer.
- (5) Based on SPCMD1, the RSPI asserts the SSLAi signal and inserts RSPCK delays.
- (6) The RSPI executes serial transfers according to SPCMD1.
- (7) Because the SPCMD1.SSLKP bit is 0, the RSPI negates the SSLAi signal. In addition, a next-access delay is inserted according to SPCMD1.

If the SSLAi signal output settings in the SPCMDm register in which 1 is assigned to the SSLKP bit are different from the SSLAi signal output settings in the SPCMDm register to be used in the next transfer, the RSPI switches the SSLAi signal status to SSLAi signal assertion ((5) in Figure 30.34) corresponding to the command for the next transfer. Note that if such an SSLAi signal switching occurs, the slaves that drive the MISOA signal compete, and collision of signal levels may occur.

The RSPI in master mode references the SSLAi signal operation within the module for the case where the SSLKP bit is not used. Even when the SPCMDm.CPHA bit is 0, the RSPI can accurately start serial transfers by using the SSLAi signal assertion for the next transfer that is detected internally.

(5) RSPCK Delay (t1)

The RSPCK delay value of the RSPI in master mode depends on the SPCMDm.SCKDEN bit setting and the SPCKD register setting. The RSPI determines the SPCMDm register to be referenced during serial transfer by pointer control, and determines an RSPCK delay value during serial transfer by using the SPCMDm.SCKDEN bit and SPCKD, as listed in Table 30.9. For a definition of RSPCK delay, refer to section 30.3.5, Transfer Format.

Table 30.9 Relationship among SCKDEN Bit, SPCKD, and RSPCK Delay Value

SPCMDm.SCKDEN Bit	SPCKD.SCKDL[2:0] Bits	RSPCK Delay Value
0	000b to 111b	1 RSPCK
1	000b	1 RSPCK
	001b	2 RSPCK
	010b	3 RSPCK
	011b	4 RSPCK
	100b	5 RSPCK
	101b	6 RSPCK
	110b	7 RSPCK
	111b	8 RSPCK

(6) SSL Negation Delay (t2)

The SSL negation delay value of the RSPI in master mode depends on the SPCMDm.SLNDEN bit setting and the SSLND register setting. The RSPI determines the SPCMDm register to be referenced during serial transfer by pointer control, and determines an SSL negation delay value during serial transfer by using the SPCMDm.SLNDEN bit and SSLND, as listed in Table 30.10. For a definition of SSL negation delay, refer to section 30.3.5, Transfer Format.

Table 30.10 Relationship among SLNDEN Bit, SSLND, and SSL Negation Delay Value

SPCMDm.SLNDEN Bit	SSLND.SLNDL[2:0] Bits	SSL Negation Delay Value	
0	000b to 111b	1 RSPCK	
1	000b	1 RSPCK	
	001b	2 RSPCK	
	010b	3 RSPCK	
	011b	4 RSPCK	
	100b	5 RSPCK	
	101b	6 RSPCK	
	110b	7 RSPCK	
	111b	8 RSPCK	

(7) Next-Access Delay (t3)

The next-access delay value of the RSPI in master mode depends on the SPCMDm.SPNDEN bit setting and the SPND setting. The RSPI determines the SPCMDm register to be referenced during serial transfer by pointer control, and determines a next-access delay value during serial transfer by using the SPCMDm.SPNDEN bit and SPND, as listed in Table 30.11. For a definition of next-access delay, refer to section 30.3.5, Transfer Format.

Table 30.11 Relationship among SPNDEN Bit, SPND, and Next-Access Delay Value

SPCMDm.SPNDEN Bit	SPND.SPNDL[2:0] Bits	Next-Access Delay Value	
0	000b to 111b	1 RSPCK + 2 PCLK	
1	000b	1 RSPCK + 2 PCLK	
	001b	2 RSPCK + 2 PCLK	
	010b	3 RSPCK + 2 PCLK	
	011b	4 RSPCK + 2 PCLK	
	100b	5 RSPCK + 2 PCLK	
	101b	6 RSPCK + 2 PCLK	
	110b	7 RSPCK + 2 PCLK	
	111b	8 RSPCK + 2 PCLK	

(8) Initialization Flowchart

Figure 30.35 is a flowchart illustrating an example of initialization in SPI operation when the RSPI is used in master mode. For a description of how to set up the interrupt controller and I/O ports, refer to the descriptions given in the individual blocks.

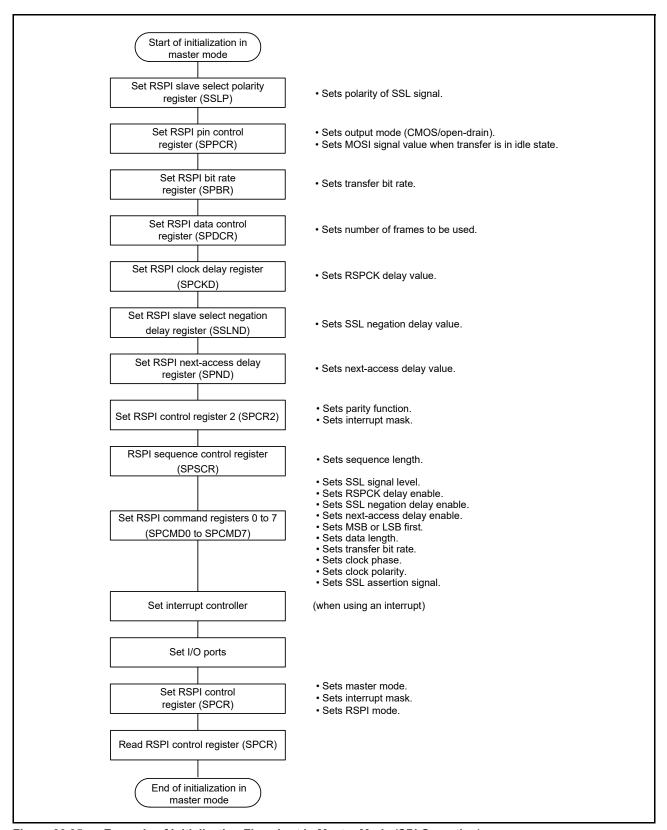


Figure 30.35 Example of Initialization Flowchart in Master Mode (SPI Operation)

Software Processing Flow

Figure 30.36 to Figure 30.38 show examples of the flow of software processing.

(a) Transmit Processing Flow

When transmitting data, the CPU will be notified of the completion of data transmission by enabling the SPI interrupt after the last writing of data for transmission.

The completion of data transmission can also be checked by polling to see if the SPSR.IDLNF flag has become 0, instead of using the SPII interrupt. However, one cycle of PCLK is required for the time from when data for transmission is written in the SPDR register to when the IDLNF flag becomes 1. After the last data is written in the SPDR register, discard the value of the SPSR register once not to judge the condition with the IDLNF flag which has not yet become 1, and read and use the value of the SPSR.IDLNF flag to confirm the completion of data transmission.

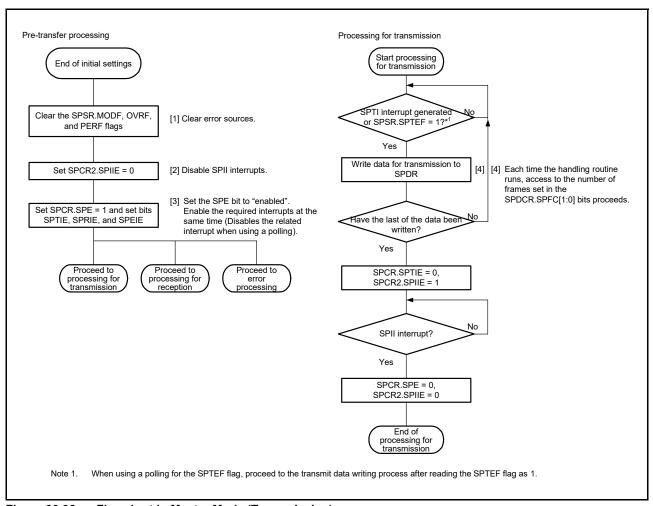


Figure 30.36 Flowchart in Master Mode (Transmission)

(b) Receive Processing Flow

The RSPI does not handle receive-only operation, so processing for transmission is required.

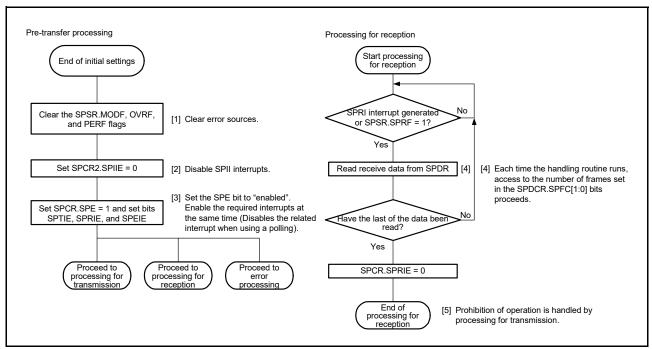


Figure 30.37 Flowchart in Master Mode (Reception)

(c) Flow of Error Processing

The RSPI has three types of error. When a mode fault error is generated, the SPCR.SPE bit is automatically cleared, stopping operations for transmission and reception. For errors from other sources, however, the SPCR.SPE bit is not cleared and operations for transmission and reception continue; accordingly, we recommend clearing of the SPCR.SPE bit to stop operations in the case of errors other than mode fault errors. Not doing so will lead to updating of the SPSSR.SPECM[2:0] bits.

When interrupts are used and an error occurs, if the ICU.IRn.IR flag for the SPTI or SPRI interrupt request is set to 1, clear the ICU.IRn.IR flag in the error processing routine. If the SPRI interrupt request is indicated, read the receive buffer and initialize the sequencer in the RSPI.

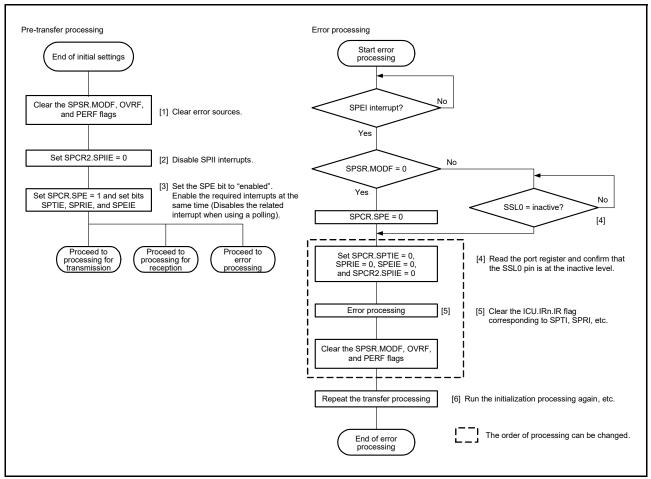


Figure 30.38 Flowchart for Master Mode (Error Processing)

30.3.10.2 Slave Mode Operation

(1) Starting a Serial Transfer

If the SPCMD0.CPHA bit is 0, when detecting an SSLA0 input signal assertion, the RSPI needs to start driving valid data to the MISOA output signal. For this reason, when the CPHA bit is 0, the assertion of the SSLA0 input signal triggers the start of a serial transfer.

If the CPHA bit is 1, when detecting the first RSPCKA edge in an SSLA0 signal asserted condition, the RSPI needs to start driving valid data to the MISOA output signal. For this reason, when the CPHA bit is 1, the first RSPCKA edge in an SSLA0 signal asserted condition triggers the start of a serial transfer.

When detecting the start of a serial transfer in a condition in which the shift register is empty, the RSPI changes the status of the shift register to "full", so that data cannot be copied from the transmit buffer to the shift register when serial transfer is in progress. If the shift register was full before the serial transfer started, the RSPI leaves the status of the shift register unchanged, in the full state.

Irrespective of the CPHA bit setting, the timing at which the RSPI starts driving of the MISOA output signal is the SSLA0 signal assertion timing. The data which is output by the RSPI is either valid or invalid, depending on the CPHA bit setting.

For details on the RSPI transfer format, refer to section 30.3.5, Transfer Format. The polarity of the SSLA0 input signal depends on the setting of the SSLP.SSL0P bit.

(2) Terminating a Serial Transfer

Irrespective of the SPCMD0.CPHA bit, the RSPI terminates the serial transfer after detecting an RSPCKA edge corresponding to the final sampling timing. When free space is available in the receive buffer (the SPRF flag is 0), upon termination of serial transfer the RSPI copies received data from the shift register to the receive buffer of the SPDR register. Upon termination of a serial transfer the RSPI changes the status of the shift register to "empty", regardless of the receive buffer state. A mode fault error occurs if the RSPI detects an SSLA0 input signal negation from the beginning of serial transfer to the end of serial transfer (refer to section 30.3.8, Error Detection).

The final sampling timing changes depending on the bit length of transfer data. In slave mode, the RSPI data length depends on the SPCMD0.SPB[3:0] bit setting. The polarity of the SSLA0 input signal depends on the SSLP.SSL0P bit setting.

For details on the RSPI transfer format, refer to section 30.3.5, Transfer Format.

(3) Notes on Single-Slave Operations

If the SPCMD0.CPHA bit is 0, the RSPI starts serial transfers when it detects the assertion edge for an SSLA0 input signal. In the type of configuration shown in Figure 30.7 as an example, if the RSPI is used in single-slave mode, the SSLA0 signal is fixed at the active state. Therefore, when the CPHA bit is set to 0, the RSPI cannot correctly start a serial transfer. To correctly execute transmit/receive operations by the RSPI in slave mode in a configuration in which the SSLA0 input signal is fixed at the active state, the CPHA bit should be set to 1. If there is a need for setting the CPHA bit to 0, the SSLA0 input signal should not be fixed.

(4) Burst Transfer

If the SPCMD0.CPHA bit is 1, continuous serial transfer (burst transfer) can be executed while retaining the assertion state for the SSLA0 input signal. If the CPHA bit is 1, the period from the first RSPCKA edge to the sampling timing for the reception of the final bit in an SSLA0 signal active state corresponds to a serial transfer period. Even when the SSLA0 input signal remains at the active level, the RSPI can accommodate burst transfers because it can detect the start of an access.

If the CPHA bit is 0, the second and subsequent serial transfers during burst transfer cannot be executed correctly.

(5) Initialization Flowchart

Figure 30.39 is a flowchart illustrating an example of initialization in SPI operation when the RSPI is used in slave mode. For a description of how to set up the interrupt controller and I/O ports, refer to the descriptions given in the individual blocks.

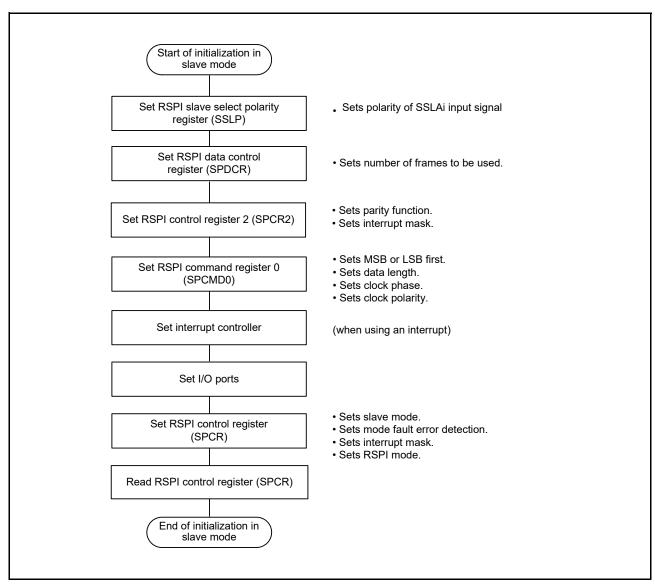


Figure 30.39 Example of Initialization Flowchart in Slave Mode (SPI Operation)

(6) Software Processing Flow

Figure 30.40 to Figure 30.42 show examples of the flow of software processing.

(a) Transmit Processing Flow

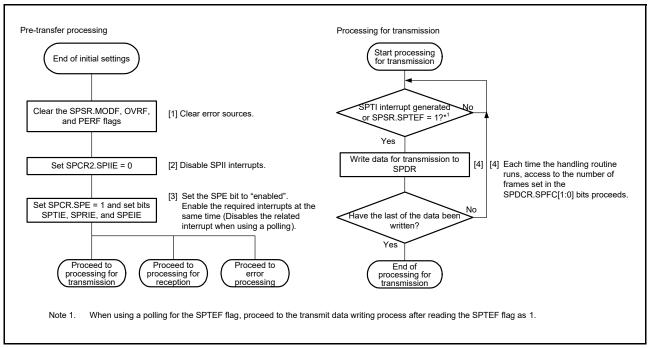


Figure 30.40 Flowchart in Slave Mode (Transmission)

(b) Receive Processing Flow

The RSPI does not handle receive-only operation, so processing for transmission is required.

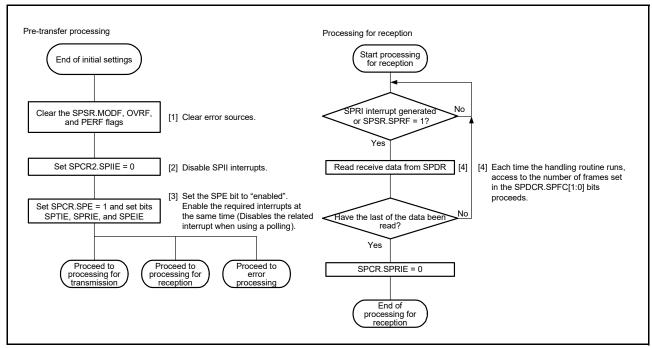


Figure 30.41 Flowchart in Slave Mode (Reception)

(c) Flow of Error Processing

In slave operation, even when a mode fault error is generated, the SPSR.MODF flag can be cleared regardless of the status of the SSLA0 pin.

When interrupts are used and an error occurs, if the ICU.IRn.IR flag for the SPTI or SPRI interrupt request is set to 1, clear the ICU.IRn.IR flag in the error processing routine. If the SPRI interrupt request is indicated, read the receive buffer and initialize the sequencer in the RSPI.

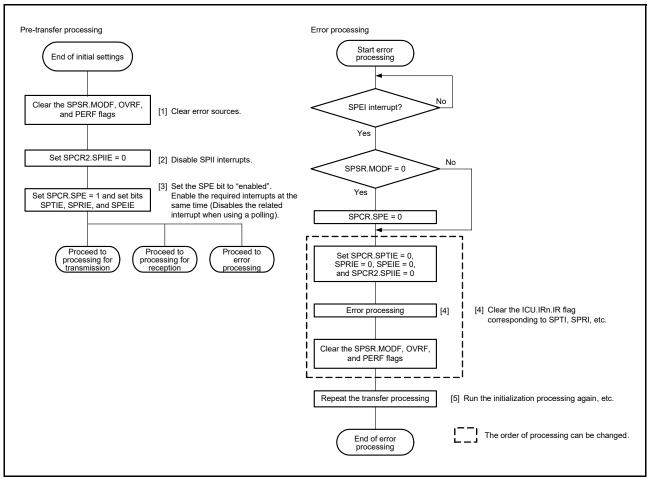


Figure 30.42 Flowchart for Slave Mode (Error Processing)

30.3.11 Clock Synchronous Operation

Setting the SPCR.SPMS bit to 1 selects clock synchronous operation of the RSPI. In clock synchronous operation, the SSLAi pin is not used, and the three pins of RSPCKA, MOSIA, and MISOA handle communications. The SSLAi pin is available as I/O port pins.

Although clock synchronous operation does not require use of the SSLAi pin, operation of the module is the same as in SPI operation. That is, in both master and slave operations, communications can be performed with the same flow as in SPI operation. However, mode fault errors are not detected because the SSLAi pin is not used.

Furthermore, do not set the SPCMDm.CPHA bit to 0 if clock synchronous operation is to proceed in slave mode (SPCR.MSTR = 0).

30.3.11.1 Master Mode Operation

(1) Starting a Serial Transfer

The RSPI updates the data in the transmit buffer (SPTX) of SPDR when data is written to the SPDR register with the transmit buffer being empty (the SPTEF flag is 1 and data for the next transfer is not set). When the shift register is empty after the number of frames set in the SPDCR.SPFC[1:0] bits are written to the SPDR, the RSPI copies data from the transmit buffer to the shift register and starts serial transmission. Upon copying transmit data to the shift register, the RSPI changes the status of the shift register to "full", and upon termination of serial transfer, it changes the status of the shift register cannot be referenced.

For details on the RSPI transfer format, refer to section 30.3.5, Transfer Format.

However, transfer in clock synchronous operation is conducted without the SSLA0 output signal.

(2) Terminating a Serial Transfer

The RSPI terminates the serial transfer after transmitting an RSPCKA edge corresponding to the sampling timing. If free space is available in the receive buffer (SPRX) (the SPRF flag is 0), upon termination of serial transfer, the RSPI copies data from the shift register to the receive buffer of the RSPI data register (SPDR).

It should be noted that the final sampling timing varies depending on the bit length of transfer data. In master mode, the RSPI data length depends on the SPCMDm.SPB[3:0] bit setting.

For details on the RSPI transfer format, refer to section 30.3.5, Transfer Format.

However, transfer in clock synchronous operation is conducted without the SSLA0 output signal.

(3) Sequence Control

The transfer format employed in master mode is determined by SPSCR, SPCMDm, SPBR, SPCKD, SSLND, and SPND registers. Although the SSLAi signals are not output in clock synchronous operation, these settings are valid.

SPSCR is a register used to determine the sequence configuration for serial transfers that are executed by the RSPI in master mode. The following items are set in SPCMDm register: SSLAi output signal value. MSP/LSP first, data length.

master mode. The following items are set in SPCMDm register: SSLAi output signal value, MSB/LSB first, data length, some of the bit rate settings, RSPCKA polarity/phase, whether SPCKD is to be referenced, whether SSLND is to be referenced, and whether SPND is to be referenced. SPBR holds some of the bit rate settings; SPCKD, an RSPI clock delay value; SSLND, an SSL negation delay; and SPND, a next-access delay value.

According to the sequence length that is assigned to SPSCR, the RSPI makes up a sequence comprised of a part or all of SPCMDm register. The RSPI contains a pointer to the SPCMDm register that makes up the sequence. The value of this pointer can be checked by reading the SPSSR.SPCP[2:0] bits. When the SPCR.SPE bit is set to 1 and the RSPI function is enabled, the RSPI loads the pointer to the commands in SPCMD0 register, and incorporates the SPCMD0 register setting into the transfer format at the beginning of serial transfer. The RSPI increments the pointer each time the next-access delay period for a data transfer ends. Upon completion of the serial transfer that corresponds to the final command comprising the sequence, the RSPI sets the pointer in SPCMD0 register, and in this manner the sequence is executed repeatedly.

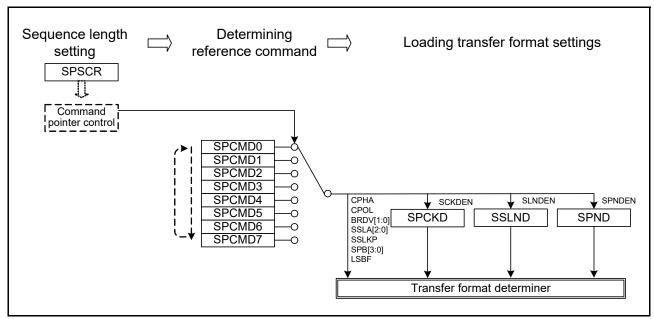


Figure 30.43 Procedure for Determining the Form of Serial Transmission in Master Mode

In this section, a frame is the combination of the data (SPDR) and the settings (SPCMDm).

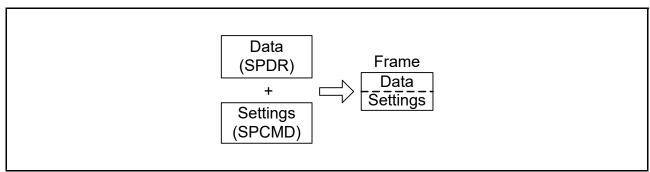


Figure 30.44 Concept of a Frame

Figure 30.45 shows the relationship between the command and the transmit and receive buffers in the sequence of operations specified by the settings in Table 30.4.

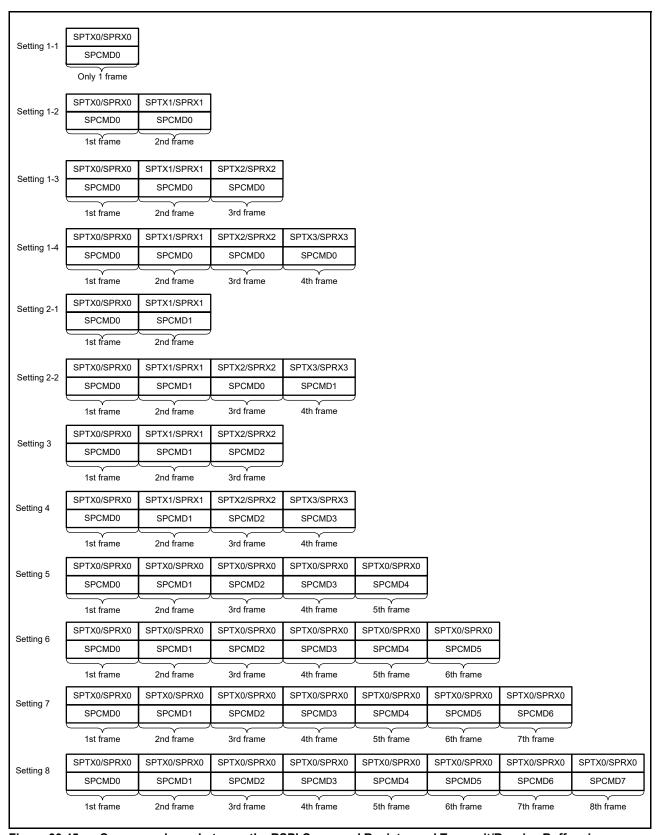


Figure 30.45 Correspondence between the RSPI Command Register and Transmit/Receive Buffers in Sequence Operations

(4) Initialization Flowchart

Figure 30.46 is a flowchart illustrating an example of initialization in clock synchronous operation when the RSPI is used in master mode. For a description of how to set up the interrupt controller and I/O ports, refer to the descriptions given in the individual blocks.

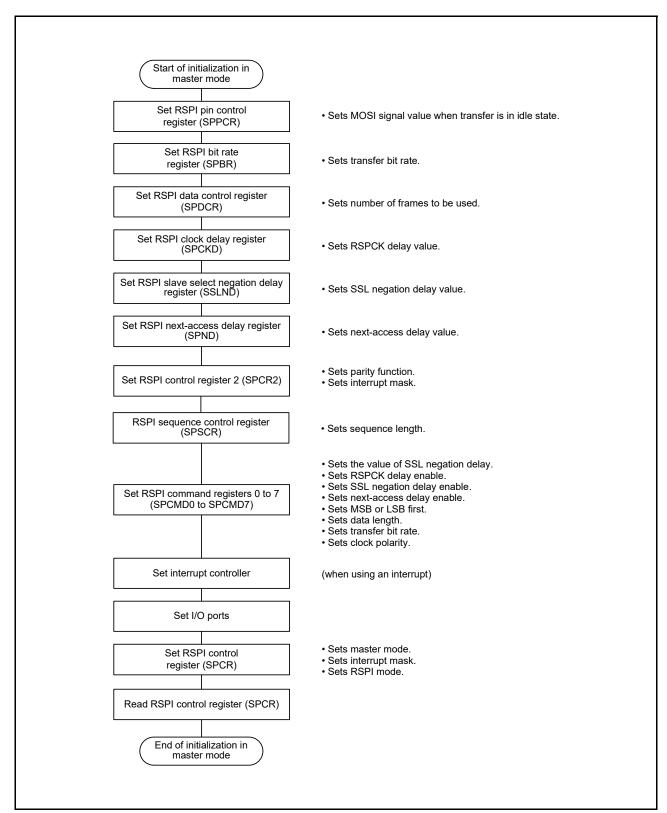


Figure 30.46 Example of Initialization Flowchart in Master Mode (Clock Synchronous Operation)

(5) Flow of Software Processing

Software processing during clock-synchronous master operation is the same as that for SPI master operation. For details, refer to section 30.3.10.1, (9) Software Processing Flow. Note that mode fault errors will not occur.

30.3.11.2 Slave Mode Operation

(1) Starting a Serial Transfer

When the SPCR.SPMS bit is 1, the first RSPCKA edge triggers the start of a serial transfer in the RSPI.

When detecting the start of a serial transfer in a condition in which the shift register is empty, the RSPI changes the status of the shift register to "full", so that data cannot be copied from the transmit buffer to the shift register when serial transfer is in progress. If the shift register was full before the serial transfer started, the RSPI keeps the status of the shift register unchanged, in the full state.

When the SPMS bit is 1, the RSPI drives the MISOA output signal.

For details on the RSPI transfer format, refer to section 30.3.5, Transfer Format.

It should be noted that the SSLA0 input signal is not used in clock synchronous operation.

(2) Terminating a Serial Transfer

The RSPI terminates the serial transfer after detecting an RSPCKA edge corresponding to the final sampling timing. When free space is available in the receive buffer (the SPRF flag is 0), upon termination of serial transfer the RSPI copies received data from the shift register to the receive buffer of the SPDR register. Upon termination of a serial transfer the RSPI changes the status of the shift register to "empty" regardless of the receive buffer status. The final sampling timing changes depending on the bit length of transfer data. In slave mode, the RSPI data length depends on the SPCMD0.SPB[3:0] bit setting.

For details on the RSPI transfer format, refer to section 30.3.5, Transfer Format.

(3) Initialization Flowchart

Figure 30.47 is a flowchart illustrating an example of initialization in clock synchronous operation when the RSPI is used in slave mode. For a description of how to set up the interrupt controller and I/O ports, refer to the descriptions given in the individual blocks.

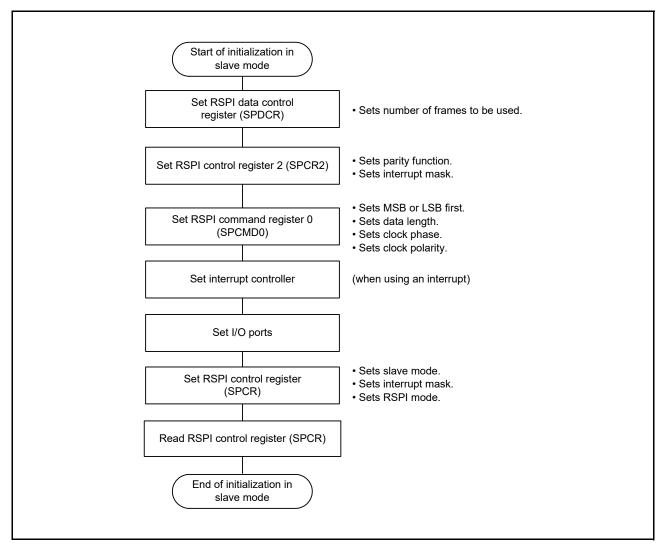


Figure 30.47 Example of Initialization Flowchart in Slave Mode (Clock Synchronous Operation)

(4) Flow of Software Processing

Software processing during clock-synchronous slave operation is the same as that for SPI slave operation. For details, refer to section 30.3.10.2, (6) Software Processing Flow. Note that mode fault errors will not occur.

30.3.12 Loopback Mode

When 1 is written to the SPPCR.SPLP2 bit or SPPCR.SPLP bit, the RSPI shuts off the path between the MISOA pin and the shift register if the SPCR.MSTR bit is 1, and between the MOSIA pin and the shift register if the SPCR.MSTR bit is 0, and connects the input path and output path of the shift register. The RSPI does not shut off the path between the MOSIA pin and the shift register if the SPCR.MSTR bit is 1, and between the MISOA pin and the shift register if the SPCR.MSTR bit is 0. This is called loopback mode. When a serial transfer is executed in loopback mode, the transmit data for the RSPI or the reversed transmit data becomes the received data for the RSPI.

Table 30.12 lists the relationship among the SPLP2 and SPLP bits and the received data. Figure 30.48 shows the configuration of the shift register I/O paths for the case where the RSPI in master mode is set in loopback mode (SPPCR.SPLP2 = 0, SPPCR.SPLP = 1).

Table 30.12 SPLP2 and SPLP Bit Settings and Received Data

SPPCR.SPLP2 Bit	SPPCR.SPLP Bit	Received Data
0	0	Input data from the MOSIA pin or MISOA pin
0	1	Inverted transmit data
1	0	Transmit data
1	1	Transmit data

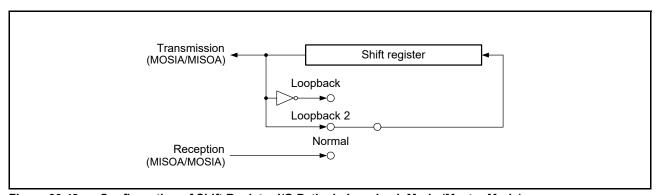


Figure 30.48 Configuration of Shift Register I/O Paths in Loopback Mode (Master Mode)

30.3.13 Self-Diagnosis of Parity Bit Function

The parity circuit consists of a parity bit adding unit used for transmit data and an error detecting unit used for received data. In order to detect defects in the parity bit adding unit and error detecting unit of the parity circuit, self-diagnosis is executed for the parity circuit following the flowchart shown in Figure 30.49.

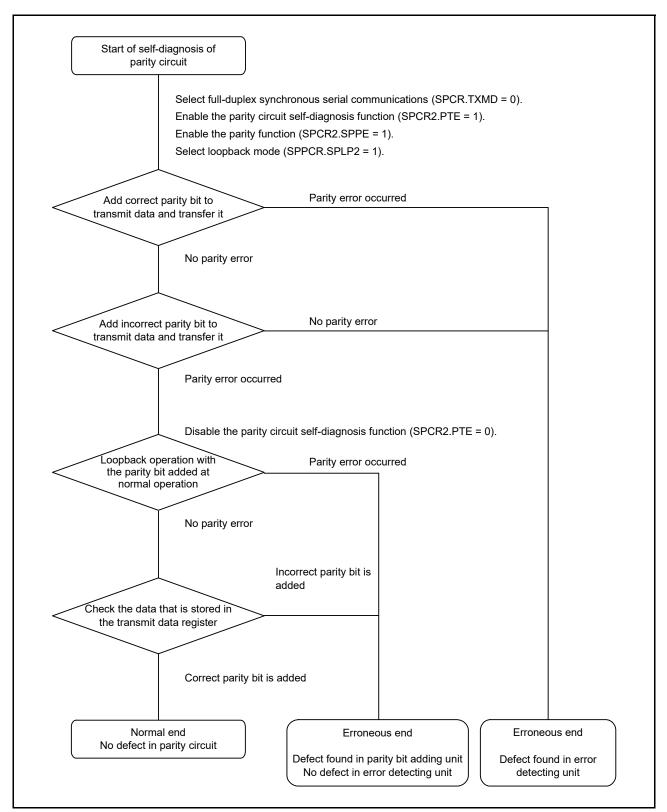


Figure 30.49 Flowchart for Self-Diagnosis of Parity Circuit

30.3.14 Interrupt Sources

The RSPI has interrupt sources of receive buffer full, transmit buffer empty, mode fault, overrun, parity error, and RSPI idle. In addition, the DTC can be activated by the receive buffer full or transmit buffer empty interrupt to perform data transfer.

Since the vector address for SPEI is allocated to interrupt requests due to mode fault, overrun, and parity errors, the actual interrupt source must be determined from the flags. Interrupt sources for the RSPI are listed in Table 30.13. An interrupt is generated on satisfaction of an interrupt condition in Table 30.13. Clear the receive buffer full and transmit buffer empty sources through data transfer.

When using the DTC to perform data transmission/reception, the DTC must be set up first to be in a status in which transfer is enabled before making the RSPI settings. For the method for setting the DTC, refer to section 16, Data Transfer Controller (DTCa).

If the conditions for generating a transmit buffer empty or receive buffer full interrupt are generated while the ICU.IRn.IR flag is 1, the interrupt is not output as a request for ICU but is retained internally (the capacity for retention is one request per source). A retained interrupt request is output when the ICU.IRn.IR flag becomes 0. A retained interrupt request is automatically discarded once it is output as an actual interrupt request. The interrupt enable bit (the SPCR.SPTIE or SPCR.SPRIE bit) for an internally retained interrupt request can also be cleared to 0.

Table 30.13 Interrupt Sources of RSPI

Interrupt Source	Symbol	Interrupt Condition	DTC Activation
Receive buffer full	SPRI	The receive buffer becomes full (the SPRF flag becomes 1) while the SPCR.SPRIE bit is 1.	Possible
Transmit buffer empty	SPTI	The transmit buffer becomes empty (the SPTEF flag becomes 1) while the SPCR.SPTIE bit is 1.	Possible
RSPI errors (mode fault, overrun and parity error)	SPEI	The SPSR.MODF, OVRF, or PERF flag is set to 1 while the SPCR.SPEIE bit is 1.	Impossible
RSPI idle	SPII	The SPSR.IDLNF flag is set to 0 while the SPCR2.SPIIE bit is 1.	Impossible

30.4 Usage Notes

30.4.1 Setting Module Stop Function

Module stop control register B (MSTPCRB) can be used to enable or disable the RSPI. Immediately after a reset, operation of the RSPI is disabled. Register access is enabled by releasing the module stop state. For details, refer to section 11, Low Power Consumption.

30.4.2 Note on Low Power Consumption Functions

When using the module stop function and entering a low power consumption mode other than sleep mode, set the SPCR.SPE bit to 0 before completing communication.

30.4.3 Notes on Starting Transfer

If the ICU.IRn.IR flag is 1 at the time transfer is to be started, an interrupt request is internally retained after transfer starts, and this can lead to unanticipated behavior of the ICU.IRn.IR flag.

When the ICU.IRn.IR flag is 1 at the time transfer is to start, follow the procedure below to clear interrupt requests before enabling operations (by setting the SPCR.SPE bit to 1).

- 1. Confirm that transfer has stopped (i.e. that the SPCR.SPE bit is 0).
- 2. Set the relevant interrupt enable bit (the SPCR.SPTIE or SPCR.SPRIE bit) to 0.
- 3. Read the relevant interrupt enable bit (the SPCR.SPTIE or SPCR.SPRIE bit) and confirm that its value is 0.
- 4. Set the ICU.IRn.IR flag to 0.

30.4.4 Notes on the SPRF and SPTEF flags

When polling the SPSR.SPRF flag and/or SPSR.SPTEF flag, set the SPCR.SPRIE bit and/or SPCR.SPTIE bit to 0.

31. CRC Calculator (CRC)

The CRC (Cyclic Redundancy Check) calculator generates CRC codes.

31.1 Overview

Table 31.1 lists the specifications of the CRC calculator, and Figure 31.1 shows a block diagram of the CRC calculator.

Table 31.1 CRC Specifications

Item	Description	
Data for CRC calculation*1	CRC codes are generated for any desired data in 8n-bit units (where n is a whole number)	
CRC processor unit	8-bit parallel processing	
CRC generating polynomial	One of three generating polynomials is selectable • 8-bit CRC X8 + X2 + X + 1 • 16-bit CRC X16 + X15 + X2 + 1 X16 + X12 + X5 + 1	
CRC calculation switching	The bit order of CRC calculation results can be switched for LSB first or MSB first communication	
Low power consumption function	Module stop state can be set.	

Note 1. The circuit does not have a function to divide data for calculation into CRC calculation units. Write data in 8-bit units.

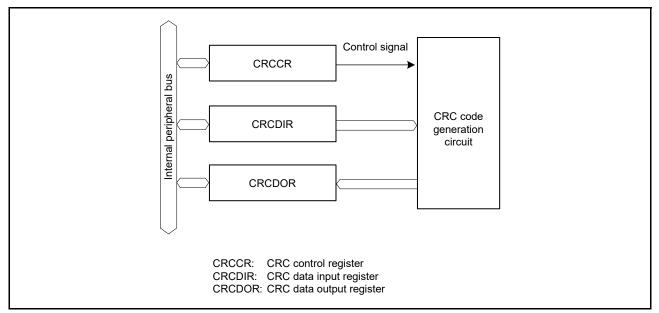
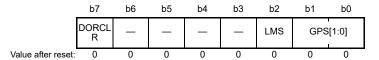



Figure 31.1 CRC Block Diagram

31.2 Register Descriptions

31.2.1 CRC Control Register (CRCCR)

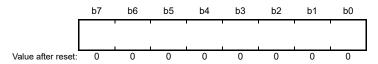
Address(es): 0008 8280h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	GPS[1:0]	CRC Generating Polynomial Switching	b1 b0 0 0: No calculation is executed. 0 1: 8-bit CRC (X ⁸ + X ² + X + 1) 1 0: 16-bit CRC (X ¹⁶ + X ¹⁵ + X ² + 1) 1 1: 16-bit CRC (X ¹⁶ + X ¹² + X ⁵ + 1)	R/W
b2	LMS	CRC Calculation Switching	Generates CRC for LSB first communication. Generates CRC for MSB first communication.	R/W
b6 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b7	DORCLR	CRCDOR Register Clear	1: Clears the CRCDOR register. This bit is read as 0.	R/W*1

Note 1. Only 1 can be written.

LMS Bit (CRC Calculation Switching)

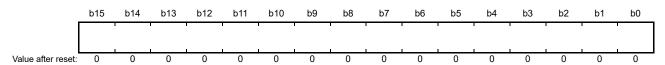
This bit selects the bit order of generated 16-bit CRC code. Transmit the lower-order byte (b7 to b0) of the CRC code first for LSB first communication and the higher-order byte (b15 to b8) first for MSB first communication. For details on the transmission and reception of CRC codes, refer to section 31.3, Operation.


DORCLR Bit (CRCDOR Register Clear)

Write 1 to this bit so that the CRCDOR register is set to 0000h.

This bit is read as 0. Only 1 can be written.

31.2.2 CRC Data Input Register (CRCDIR)


Address(es): 0008 8281h

CRCDIR is a readable and writable register. Write data for CRC calculation to this register.

31.2.3 CRC Data Output Register (CRCDOR)

Address(es): 0008 8282h

CRCDOR is a readable and writable register.

Since its initial value is 0000h, rewrite the CRCDOR register to perform calculation using a value other than the initial value.

Data written to the CRCDIR register is CRC calculated and the result is stored in the CRCDOR register. If the CRC code is calculated following the transferred data and the result is 0000h, there is no CRC error.

When an 8-bit CRC ($X^8 + X^2 + X + 1$ polynomial) is in use, the valid CRC code is obtained in the low-order byte (b7 to b0). The high-order byte (b15 to b8) is not updated.

31.3 Operation

The CRC calculator generates CRC codes for use in LSB first or MSB first transfer.

The following shows examples of generating the CRC code for input data (F0h) using the 16-bit CRC generating polynomial ($X^{16} + X^{12} + X^5 + 1$). In these examples, the value of the CRC data output register (CRCDOR) is cleared before CRC calculation.

When an 8-bit CRC (with the polynomial $X^8 + X^2 + X + 1$) is in use, the valid bits of the CRC code are obtained in the lower-order byte of the CRCDOR register.

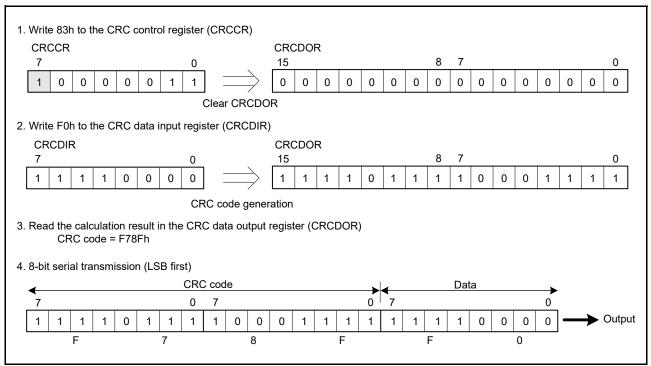


Figure 31.2 LSB First Data Transmission

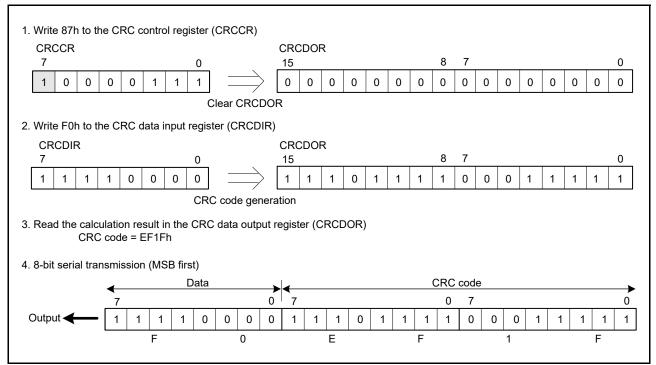


Figure 31.3 MSB First Data Transmission

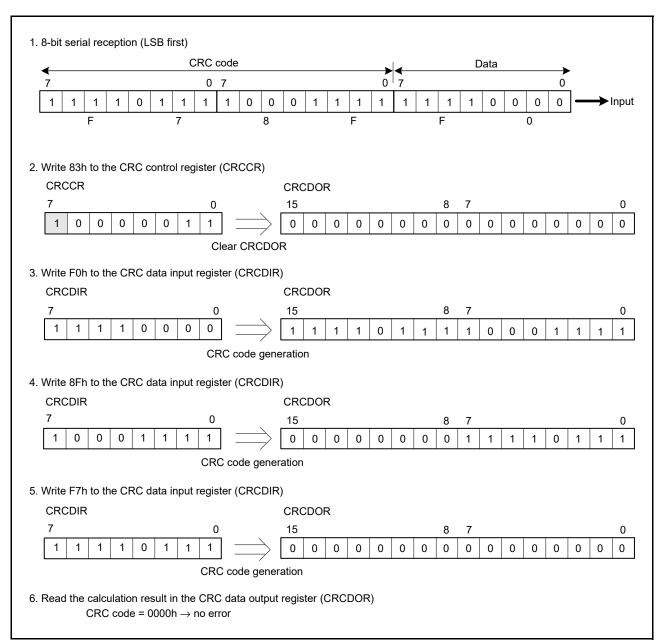


Figure 31.4 LSB First Data Reception

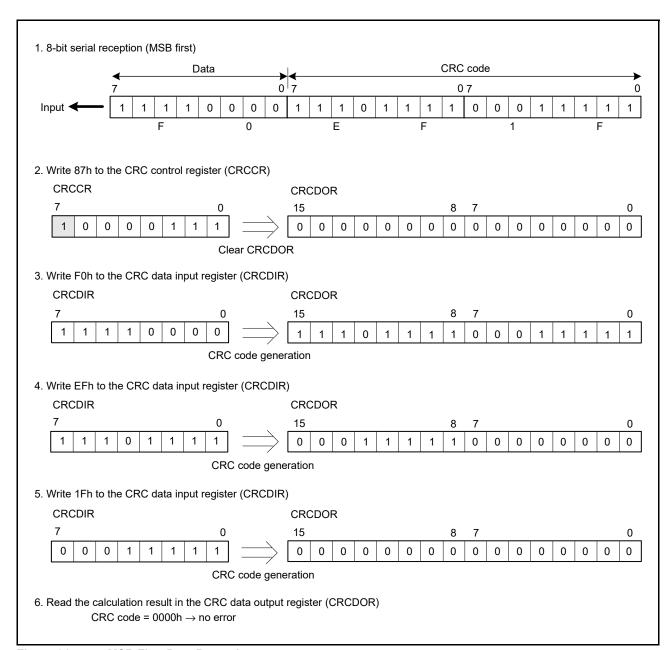


Figure 31.5 MSB First Data Reception

31.4 Usage Notes

31.4.1 Module Stop Function Setting

Operation of the CRC calculator can be disabled or enabled using the module stop control register B (MSTPCRB). After a reset, the CRC is in the module stop state. Register access is enabled by releasing the module stop state. For details, refer to section 11, Low Power Consumption.

31.4.2 Note on Transmission

Note that the sequence of transmission for the CRC code differs according to whether transmission is LSB first or MSB first.

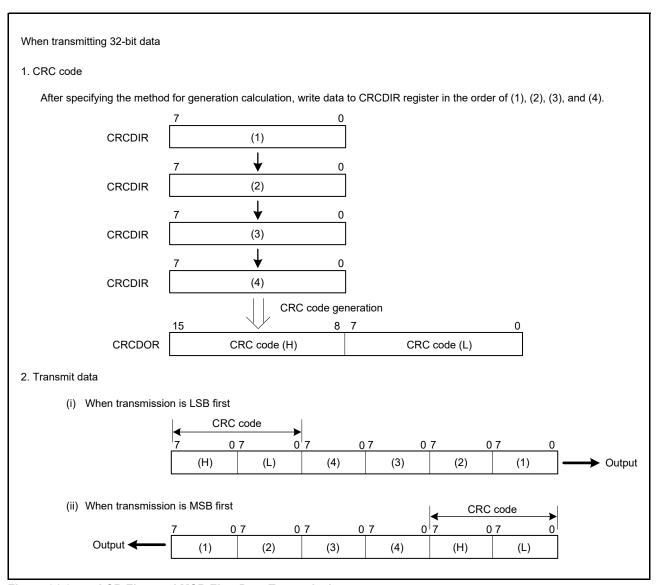


Figure 31.6 LSB First and MSB First Data Transmission

32. Capacitive Touch Sensing Unit (CTSUa)

The capacitive touch sensing unit (CTSU) measures the electrostatic capacitance of the touch sensor. Changes in the electrostatic capacitance are determined by software, which enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode surface of the touch sensor is usually enclosed with a dielectric so that a finger does not come into contact with the electrode.

As shown in Figure 32.1, electrostatic capacitance (parasitic capacitance) exists between the electrode and the surrounding conductors. Because the human body is an electrical conductor, when a finger is placed close to the electrode, the value of electrostatic capacitance increases.

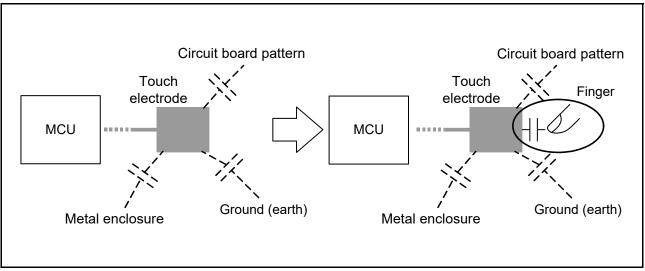


Figure 32.1 Increased Electrostatic Capacitance Due to Presence of Finger

Electrostatic capacitance is detected by the following methods: Self-capacitance and mutual capacitance. In the self-capacitance method, the CTSU detects electrostatic capacitance generated between a finger and a single electrode. In the mutual capacitance method, two electrodes are used as a transmit electrode and a receive electrode, and the CTSU detects the change in the electrostatic capacitance generated between the two when a finger is placed close to them

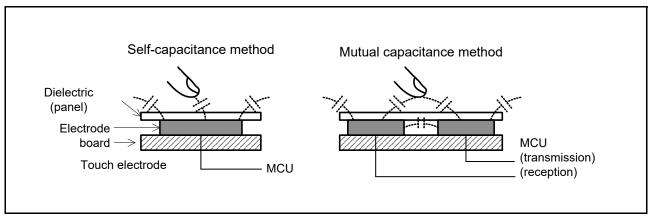


Figure 32.2 Self-Capacitance Method and Mutual Capacitance Method

Electrostatic capacitance is measured by counting a clock signal whose frequency changes according to the amount of charged/discharged current, for a specified period.

For details on the measurement principles of the CTSU, refer to section 32.3.1, Principles of Measurement Operation.

In this section, "PCLK" is used to refer to PCLKB.

32.1 Overview

Table 32.1 lists the specifications of the CTSU, and Figure 32.3 shows a block diagram of the CTSU.

Table 32.1 CTSU Specifications

Item		Description		
Operating clock		PCLK, PCLK/2, or PCLK/4		
Pins	TS0 to TS35	Electrostatic capacitance measurement pins (36 channels)		
	TSCAP	LPF (low-pass filter) connection pin		
Measurement modes	Self-capacitance single scan mode	Electrostatic capacitance on a channel is measured by the self-capacitance method.		
	Self-capacitance multi-scan mode	Electrostatic capacitance on multiple channels is measured successively by the self-capacitance method.		
	Mutual capacitance full scan mode	Electrostatic capacitance on multiple channels is measured successively by mutual capacitance.		
Noise prevention		Synchronous noise prevention, high-pass noise prevention		
Measurement start conditions		Software trigger External trigger (event input from the event link controller (ELC))		

As shown in Figure 32.3, the CTSU consists of the status control block, trigger control block, clock control block, channel control block, port control block, sensor drive pulse generator, measurement block, interrupt block, and control registers.

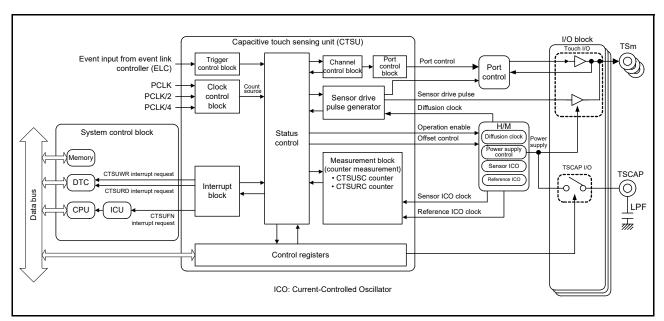


Figure 32.3 CTSU Block Diagram (m = 0 to 35)

Table 32.2 CTSU Pin Configuration

Pin Name	I/O	Function
TS0 to TS35	I/O	Electrostatic capacitive measurement pins (touch pins)
TSCAP	_	LPF connection pin

Value after

32.2 Register Descriptions

32.2.1 CTSU Control Register 0 (CTSUCR0)

Address(es): CTSU.CTSUCR0 000A 0900h

	b7	b6	b5	b4	b3	b2	b1	b0
	CTSUT XVSEL		_	CTSUI NIT	CTSUI OC	CTSUS NZ	CTSUC AP	CTSUS TRT
ter reset:	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	CTSUSTRT	CTSU Measurement Operation Start	Measurement operation stops Measurement operation starts	R/W
b1	CTSUCAP	CTSU Measurement Operation Start Trigger Select	0: Software trigger 1: External trigger	R/W
b2	CTSUSNZ	CTSU Wait State Power-Saving Enable	Power-saving function during wait state is disabled Power-saving function during wait state is enabled	R/W
b3	CTSUIOC	CTSU Transmit Pin Control	0: The TS pins are driven low 1: The TS pins are driven high	R/W
b4	CTSUINIT	CTSU Control Block Initialization	Writing 1 to this bit initializes the CTSU control block and registers*1. This bit is read as 0.	R/W
b6, b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b7	CTSUTXVSEL	CTSU Transmission Power Supply Select*2	VCC selected I: Internal logic power supply selected	R/W

Note 1. The CTSUSC, CTSURC, CTSUMCH0, CTSUMCH1, and CTSUST registers are initialized.

Note 2. This bit can be set to 1 only in mutual capacitance full scan mode when the VCC voltage is higher than or equal to 2.4 V. Otherwise (in self-capacitance single scan mode or self-capacitance multi-scan mode and/or the VCC voltage is lower than 2.4 V), set this bit to 0.

The CTSUCAP, CTSUSNZ and CTSUTXVSEL bits should be set when the CTSUSTRT bit is 0. These bits can be set at the same time as starting measurement operation.

CTSUSTRT Bit (CTSU Measurement Operation Start)

This bit specifies whether CTSU operation starts or stops.

When the CTSUCAP bit is 0 (software trigger), measurement is started by writing 1 to the CTSUSTRT bit, and the CTSUSTRT bit becomes 0 when measurement is finished.

When the CTSUCAP bit is 1 (external trigger), the CTSU waits for an external trigger by writing 1 to the CTSUSTRT bit, and measurement is started at the rising edge of the external trigger. When measurement is finished, the CTSU waits for the next external trigger and operation is continued.

Table 32.3 lists the CTSU states.

Table 32.3 CTSU States

CTSUSTRT Bit	CTSUCAP Bit	CTSU State
0	0	Stopped
0	1	Stopped
1	0	During measurement
1	1	During measurement/wait for an external trigger*1

Note 1. The state can be read from the CTSUST.CTSUSTC[2:0] flags.

During measurement: CTSUST.CTSUSTC[2:0] flags ≠ 000b

Wait for an external trigger: CTSUST.CTSUSTC[2:0] flags = 000b

If the CTSUSTRT bit is set to 1 when the CTSUSTRT bit is 1, writing is ignored and operation is continued.

To forcibly stop operation (forced stop) when the CTSUSTRT bit is 1, set the CTSUSTRT bit to 0 and the CTSUINIT bit to 1 simultaneously.

CTSUCAP Bit (CTSU Measurement Operation Start Trigger Select)

This bit specifies the measurement start condition. For details, see the description of the CTSUSTRT bit.

CTSUSNZ Bit (CTSU Wait State Power-Saving Enable)

This bit enables or disables power-saving operation during a wait state. This bit can also be used to suspend the CTSU power supply, which decreases power consumption during the wait state.

In the suspended state, the CTSU power supply is turned off while the external TSCAP is still charged after the CTSU power supply has been turned on and the TSCAP has been charged.

Table 32.4 CTSU Power Supply State Control

CTSUCR1.CTSUPON Bit	CTSUSNZ Bit	CTSUCAP Bit	CTSUSTRT Bit	CTSU Power Supply State
0	0	0	0	Stopped
1	0	_	_	Operating
1	1	0	0	Suspended

Note: Settings other than the above are prohibited.

To start measurement from the suspended state, set the CTSUSNZ bit to 0 and wait for 16 µs before setting the CTSUSTRT bit to 1. To set the suspended state after measurement is finished, set the CTSUSNZ bit to 1.

CTSUIOC Bit (CTSU Transmit Pin Control)

This bit selects the logic level of the TS pin when the CTSUERRS.CTSUTSOD bit is set to 1.

This bit setting is ignored when the CTSUTSOD bit is 0.

CTSUINIT Bit (CTSU Control Block Initialization)

The internal control registers can be initialized by writing 1 to this bit. To forcibly stop the current operation, set the CTSUSTRT bit to 0 and the CTSUINIT bit to 1 simultaneously. In this case, the operation is stopped and the internal control registers are initialized.

Do not write 1 to the CTSUINIT bit at the same time as setting the CTSUSTRT bit to 1 (CTSU operation starts).

CTSUTXVSEL Bit (CTSU Transmission Power Supply Select)

This bit is used to switch the power supply for the transmit buffer in mutual capacitance full scan mode. Set this bit to 0 for any other mode or when the VCC voltage is lower than 2.4 V.

This bit switches the power supply for touch I/O which is set for transmission by the CTSUCHTRCn registers.

Table 32.5 lists the power supply for TSm pin.

When the VCC voltage fluctuates greatly due to the switching of the output buffer, switching to the internal logic power supply can reduce the effect on the voltage fluctuation.

Do not set the TS0 to TS4, TS11, TS12, TS16 to TS19, TS21, TS23, TS27, and TS30 to TS35 pins for transmission when using the internal logic power supply.

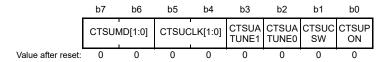


Table 32.5 Power Supply for TSm Pin

Setting of CTSUCHTRCn Registers	CTSUTXVSEL Bit	Power Supply for TSm Pin
0 (reception)	0 (VCC)	VCC
	1 (internal logic power supply)	
1 (transmission)	0 (VCC)	
	1 (internal logic power supply)	Internal logic power supply

32.2.2 CTSU Control Register 1 (CTSUCR1)

Address(es): CTSU.CTSUCR1 000A 0901h

Bit	Symbol	Bit Name	Description	R/W
b0	CTSUPON	CTSU Power Supply Enable	0: Powered off 1: Powered on	R/W
b1	CTSUCSW	CTSU LPF Capacitance Charging Control	Capacitance switch turned off Capacitance switch turned on	R/W
b2	CTSUATUNE0	CTSU Power Supply Operating Mode Setting	VCC ≥ 2.4 V 0: Normal operating mode 1: Low-voltage operating mode VCC < 2.4 V 0: Setting prohibited 1: Low-voltage operating mode	R/W
b3	CTSUATUNE1	CTSU Power Supply Capacity Adjustment	0: Normal output 1: High-current output	R/W
b5, b4	CTSUCLK[1:0]	CTSU Operating Clock Select	b5 b4 0 0: PCLK 0 1: PCLK/2 (PCLK divided by 2) 1 0: PCLK/4 (PCLK divided by 4) 1 1: Setting prohibited	R/W
b7, b6	CTSUMD[1:0]	CTSU Measurement Mode Select	 b7 b6 0 0: Self-capacitance single scan mode 0 1: Self-capacitance multi-scan mode 1 0: Setting prohibited 1 1: Mutual capacitance full scan mode 	R/W

The CTSUCR1 register should be set when the CTSUCR0.CTSUSTRT bit is 0.

CTSUPON Bit (CTSU Power Supply Enable)

This bit controls power supply to the CTSU. Set the CTSUPON and CTSUCSW bits to the same value at the same time.

CTSUCSW Bit (CTSU LPF Capacitance Charging Control)

This bit controls charging of the LPF capacitor connected to the TSCAP pin (turning on/off of the capacitance switch). After the capacitance switch is turned on, wait until the capacitance connected to the TSCAP pin is charged for the specified time before starting measurement (CTSUCR0.CTSUSTRT = 1). Prior to measurement, use an I/O port to output a low level to the TSCAP pin, and discharge the LPF capacitance that has been already charged. Set the CTSUPON and CTSUCSW bits to the same value at the same time.

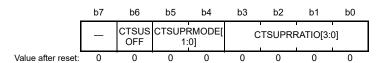
CTSUATUNEO Bit (CTSU Power Supply Operating Mode Setting)

This bit sets the power supply operating mode. Set this bit according to the lower limit of the VCC for operating the CTSU. As an example, when performing touch measurement in a system (the VCC voltage range is 2 to 3 V) where the VCC varies depending on battery operation, set this bit to 1 regardless of the initial VCC voltage.

CTSUATUNE1 Bit (CTSU Power Supply Capacity Adjustment)

This bit sets the capacity of the CTSU power supply. Normally, the value of this bit should be set to 0.

CTSUCLK[1:0] Bits (CTSU Operating Clock Select)


These bits select the operating clock.

CTSUMD[1:0] Bits (CTSU Measurement Mode Select)

These bits set the measurement mode. For details, refer to section 32.3.2, Measurement Modes.

32.2.3 CTSU Synchronous Noise Reduction Setting Register (CTSUSDPRS)

Address(es): CTSU.CTSUSDPRS 000A 0902h

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	CTSUPRRATIO[3:0]	CTSU Measurement Time and Pulse Count Adjustment	Recommended setting value: 3 (0011b)	R/W
b5, b4	CTSUPRMODE[1:0]	CTSU Base Period and Pulse Count Setting	 b5 b4 0 0: 510 pulses 0 1: 126 pulses 1 0: 62 pulses (recommended setting value) 1 1: Setting prohibited 	R/W
b6	CTSUSOFF	CTSU High-Pass Noise Reduction Function Off Setting	High-pass noise reduction function turned on High-pass noise reduction function turned off	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

The CTSUSDPRS register should be set when the CTSUCR0.CTSUSTRT bit is 0.

CTSUPRRATIO[3:0] Bits (CTSU Measurement Time and Pulse Count Adjustment)

These bits are used to determine the measurement time and the number of measurement pulses. These are calculated by the following formula. The number of base pulses is determined by setting the CTSUPRMODE[1:0] bits.

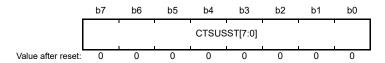
Number of measurement pulses = number of base pulses \times (CTSUPRRATIO[3:0] bits + 1)

Measurement time = (number of base pulses \times (CTSUPRRATIO[3:0] bits + 1) + (number of base pulses - 2) \times 0.25) \times base clock cycle

Note: For details on the base clock cycle, refer to section 32.2.15, CTSU Sensor Offset Register 1 (CTSUSO1).

CTSUPRMODE[1:0] Bits (CTSU Base Period and Pulse Count Setting)

These bits select the number of base pulses during measurement.



CTSUSOFF Bit (CTSU High-Pass Noise Reduction Function Off Setting)

This bit turns on or off the function for reducing high-pass noise. Set this bit to 1 when turning off the high-pass noise reduction function.

32.2.4 CTSU Sensor Stabilization Wait Control Register (CTSUSST)

Address(es): CTSU.CTSUSST 000A 0903h

Bit	Symbol	Bit Name	Description	R/W
b7 to b0	CTSUSST[7:0]	CTSU Sensor Stabilization Wait Control	The value of these bits should be fixed to 00010000b.	R/W

The CTSUSST register should be set when the CTSUCR0.CTSUSTRT bit is 0.

CTSUSST[7:0] Bits (CTSU Sensor Stabilization Wait Control)

These bits set the stabilization wait time for the TSCAP pin voltage. The value of these bits should be fixed to 00010000b. If these bits are not set, the TSCAP voltage becomes unstable at the start of measurement, and the CTSU is unable to obtain correct touch measurement results.

32.2.5 CTSU Measurement Channel Register 0 (CTSUMCH0)

Address(es): CTSU.CTSUMCH0 000A 0904h

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	CTSUMCH0[5:0]	CTSU Measurement Channel 0	In self-capacitance single scan b5 b0 0 0 0 0 0 0: TS0 : : 1 0 0 0 1 1: TS35 Other than above: Starting measurement operation (CTSUCR0.CTSUSTRT bit = 1) is prohibited after these bits are set.	R/W* ¹
			 In other measurement modes b5 b0 0 0 0 0 0 0: TS0 : : 1 0 0 0 1 1: TS35 1 1 1 1 1: Measurement is stopped 	
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. Writing to these bits is enabled only in self-capacitance single scan mode (CTSUCR1.CTSUMD[1:0] bits = 00b).

The CTSUMCH0 register should be set when CTSUCR0.CTSUSTRT bit is 0.

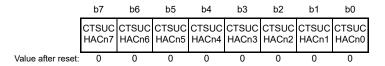
CTSUMCH0[5:0] Bits (CTSU Measurement Channel 0)

These bits set the channel to be measured in self-capacitance single scan mode, and indicate the receive channel that is being measured in other modes.

Set only enabled channels (000000b to 100011b) when setting channels in self-capacitance single scan mode. In other modes, writing to these bits has no effect.

32.2.6 CTSU Measurement Channel Register 1 (CTSUMCH1)

Address(es): CTSU.CTSUMCH1 000A 0905h


Bit	Symbol	Bit Name	Description	R/W
b5 to b0	CTSUMCH1[5:0]	CTSU Measurement Channel 1	0 0 0 0 0 0 0: TS0 : : 1 0 0 0 1 1: TS35 1 1 1 1 1 1: Measurement is stopped	R
b7, b6	_	Reserved	These bits are read as 0. Writing to these bits has no effect.	R

CTSUMCH1[5:0] Bits (CTSU Measurement Channel 1)

These bits indicate the transmit channel that is being measured in full scan mode. The value of these bits is 111111b while measurement is stopped or in self-capacitance single scan mode and multi-scan mode.

32.2.7 CTSU Channel Enable Control Register n (CTSUCHACn) (n = 0 to 3)

Address(es): CTSU.CTSUCHAC0 000A 0906h, CTSU.CTSUCHAC1 000A 0907h, CTSU.CTSUCHAC2 000A 0908h, CTSU.CTSUCHAC3 000A 0909h

Bit	Symbol	Bit Name	Description	R/W
b0	CTSUCHACn0	CTSU Channel Enable Control n0	0: Not measurement target	R/W
b1	CTSUCHACn1	CTSU Channel Enable Control n1	1: Measurement target	R/W
b2	CTSUCHACn2	CTSU Channel Enable Control n2	These bits specify the TS0 to TS31 pins.	R/W
b3	CTSUCHACn3	CTSU Channel Enable Control n3	_	R/W
b4	CTSUCHACn4	CTSU Channel Enable Control n4	_	R/W
b5	CTSUCHACn5	CTSU Channel Enable Control n5	_	R/W
b6	CTSUCHACn6	CTSU Channel Enable Control n6	_	R/W
b7	CTSUCHACn7	CTSU Channel Enable Control n7	_	R/W

The CTSUCHACn register should be set when the CTSUCR0.CTSUSTRT bit is 0.

CTSUCHACnj Bit (CTSU Channel Enable Control nj) (j = 0 to 7)

This bit sets the pin (for receive and transmit) whose electrostatic capacitance is to be measured. CTSUCHAC00 bit corresponds to TS0 pin and CTSUCHAC07 bit corresponds to TS7 pin. CTSUCHAC10 bit corresponds to TS8 pin and CTSUCHAC17 bit corresponds to TS15 pin. CTSUCHAC20 bit corresponds to TS16 pin and CTSUCHAC27 bit corresponds to TS23 pin. CTSUCHAC30 bit corresponds to TS24 pin and CTSUCHAC37 bit corresponds to TS31 pin.

32.2.8 CTSU Channel Enable Control Register 4 (CTSUCHAC4)

Address(es): CTSU.CTSUCHAC4 000A 090Ah

Bit	Symbol	Bit Name	Description	R/W
b0	CTSUCHAC40	CTSU Channel Enable Control 40	0: Not measurement target	R/W
b1	CTSUCHAC41	CTSU Channel Enable Control 41	1: Measurement target	R/W
b2	CTSUCHAC42	CTSU Channel Enable Control 42	These bits specify the TS32 to TS35 pins.	R/W
b3	CTSUCHAC43	CTSU Channel Enable Control 43	-	R/W
b7 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The CTSUCHAC4 register should be set when the CTSUCR0.CTSUSTRT bit is 0.

CTSUCHAC4j Bit (CTSU Channel Enable Control 4j) (j = 0 to 3)

This bit sets the pin (for receive and transmit) whose electrostatic capacitance is to be measured. CTSUCHAC40 bit corresponds to TS32 pin and CTSUCHAC43 bit corresponds to TS35 pin.

32.2.9 CTSU Channel Transmit/Receive Control Register n (CTSUCHTRCn) (n = 0 to 3)

Address(es): CTSU.CTSUCHTRC0 000A 090Bh, CTSU.CTSUCHTRC1 000A 090Ch, CTSU.CTSUCHTRC2 000A 090Dh, CTSU.CTSUCHTRC3 000A 090Eh

	b7	b6	b5	b4	b3	b2	b1	b0
								CTSUC HTRCn0
Value after reset:	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	CTSUCHTRCn0	CTSU Channel Transmit/Receive Control n0	0: Reception 1: Transmission*1	R/W
b1	CTSUCHTRCn1	CTSU Channel Transmit/Receive Control n1	These bits specify the TS0 to TS31 pins.	R/W
b2	CTSUCHTRCn2	CTSU Channel Transmit/Receive Control n2	_	R/W
b3	CTSUCHTRCn3	CTSU Channel Transmit/Receive Control n3	_	R/W
b4	CTSUCHTRCn4	CTSU Channel Transmit/Receive Control n4	_	R/W
b5	CTSUCHTRCn5	CTSU Channel Transmit/Receive Control n5	_	R/W
b6	CTSUCHTRCn6	CTSU Channel Transmit/Receive Control n6	_	R/W
b7	CTSUCHTRCn7	CTSU Channel Transmit/Receive Control n7	_	R/W

Note 1. Do not set the TS0 to TS4, TS11, TS12, TS16 to TS19, TS21, TS23, TS27, TS30, and TS31 pins for transmission when the CTSUCR0.CTSUTXVSEL bit is 1.

The CTSUCHTRCn register should be set when the CTSUCR0.CTSUSTRT bit is 0.

CTSUCHTRCnj Bit (CTSU Channel Transmit/Receive Control nj) (j = 0 to 7)

This bit allocates reception or transmission to the corresponding TS pin in full scan mode. Set this bit to 0 in self-capacitance single scan mode and multi-scan mode.

CTSUCHTRC00 bit corresponds to TS0 pin and CTSUCHTRC07 bit corresponds to TS7 pin.

CTSUCHTRC10 bit corresponds to TS8 pin and CTSUCHTRC17 bit corresponds to TS15 pin.

CTSUCHTRC20 bit corresponds to TS16 pin and CTSUCHTRC27 bit corresponds to TS23 pin.

CTSUCHTRC30 bit corresponds to TS24 pin and CTSUCHTRC37 bit corresponds to TS31 pin.

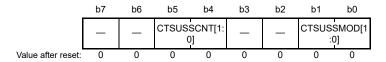
32.2.10 CTSU Channel Transmit/Receive Control Register 4 (CTSUCHTRC4)

Address(es): CTSU.CTSUCHTRC4 000A 090Fh

Bit	Symbol	Bit Name	Description	R/W
b0	CTSUCHTRC40	CTSU Channel Transmit/Receive Control 40	0: Reception 1: Transmission* ¹	R/W
b1	CTSUCHTRC41	CTSU Channel Transmit/Receive Control 41	These bits specify the TS32 to TS35 pins.	R/W
b2	CTSUCHTRC42	CTSU Channel Transmit/Receive Control 42	_	R/W
b3	CTSUCHTRC43	CTSU Channel Transmit/Receive Control 43	_	R/W
b7 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. Do not set the TS32 to TS35 pins for transmission when the CTSUCR0.CTSUTXVSEL bit is 1.

The CTSUCHTRC4 register should be set when the CTSUCR0.CTSUSTRT bit is 0.


CTSUCHTRC4j Bit (CTSU Channel Transmit/Receive Control 4j) (j = 0 to 3)

This bit allocates reception or transmission to the corresponding TS pin in full scan mode. Set this bit to 0 in self-capacitance single scan mode and multi-scan mode.

CTSUCHTRC40 bit corresponds to TS32 pin and CTSUCHTRC43 bit corresponds to TS35 pin.

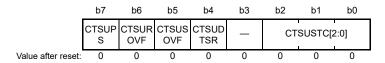
32.2.11 CTSU High-Pass Noise Reduction Control Register (CTSUDCLKC)

Address(es): CTSU.CTSUDCLKC 000A 0910h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	CTSUSSMOD[1:0]	CTSU Diffusion Clock Mode Select	These bits should be set to 00b.	R/W
b3, b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b5, b4	CTSUSSCNT[1:0]	CTSU Diffusion Clock Control	These bits should be set to 11b.	R/W
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The CTSUDCLKC register should be set when the CTSUCR0.CTSUSTRT bit is 0.

CTSUSSMOD[1:0] Bits (CTSU Diffusion Clock Mode Select)


These bits set the mode of the spectrum diffusion clock for high-pass noise reduction. When using the high-pass function, the value of these bits should be fixed to 00b. If these bits are not set, the effect of high-pass noise reduction cannot be correctly obtained.

CTSUSSCNT[1:0] Bits (CTSU Diffusion Clock Control)

These bits adjust the spectrum diffusion amount to reduce high-pass noise. When using the high-pass noise reduction function, the value of these bits should be fixed to 11b. If these bits are not set, touch measurement may not be correctly performed.

32.2.12 CTSU Status Register (CTSUST)

Address(es): CTSU.CTSUST 000A 0911h

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	CTSUSTC[2:0]	CTSU Measurement Status Counter	b2 b0 0 0 0: Status 0 0 0 1: Status 1 0 1 0: Status 2 0 1 1: Status 3 1 0 0: Status 4 1 0 1: Status 5	R
b3	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b4	CTSUDTSR	CTSU Data Transfer Status Flag	Measurement result has been read Measurement result has not been read	R
b5	CTSUSOVF	CTSU Sensor Counter Overflow Flag	0: No overflow 1: An overflow	R/W
b6	CTSUROVF	CTSU Reference Counter Overflow Flag	0: No overflow 1: An overflow	R/W
b7	CTSUPS	CTSU Mutual Capacitance Status Flag	0: First measurement 1: Second measurement	R

When using the CTSUCR0.CTSUINIT bit to clear an overflow flag, make sure that the CTSUCR0.CTSUSTRT bit is 0.

CTSUSTC[2:0] Flags (CTSU Measurement Status Counter)

These counters indicate the current measurement status. For details on each status, refer to section 32.3.2.2, Status Counter.

CTSUDTSR Flag (CTSU Data Transfer Status Flag)

This flag indicates whether the measurement result stored in the sensor counter and the reference counter has been read. This flag is set to 1 when measurement is completed; 0 when the reference counter is read by software or the DTC. This flag is also cleared using the CTSUCR0.CTSUINIT bit.

CTSUSOVF Flag (CTSU Sensor Counter Overflow Flag)

This flag indicates whether the sensor counter has overflowed. FFFFh can be read as the measurement result (CTSUSC counter) when an overflow has occurred.

Even if an overflow occurs, measurement processing is continued until the set period.

No interrupt is generated even when an overflow occurs. To determine the channel on which the overflow has occurred, read the measurement result of each channel after measurement is completed (after a measurement end interrupt is generated).

This flag is cleared when 0 is written after 1 is read by software. This flag is also cleared using the CTSUCR0.CTSUINIT bit.

CTSUROVF Flag (CTSU Reference Counter Overflow Flag)

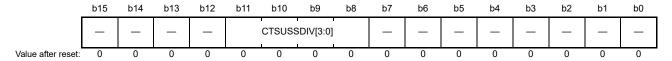
This flag indicates whether the reference counter has overflowed. FFFFh can be read as the measurement result (CTSURC counter) when an overflow has occurred.

Even if an overflow occurs, measurement processing is continued until the set period.

No interrupt is generated even when an overflow occurs. To determine the channel on which the overflow has occurred, read the measurement result of each channel after measurement is completed (after a measurement end interrupt is generated).

This flag is cleared when 0 is written after 1 is read by software. This flag is also cleared using the CTSUCR0.CTSUINIT bit.

CTSUPS Flag (CTSU Mutual Capacitance Status Flag)


This flag indicates whether the measurement is the first or second of two measurements for each channel in mutual capacitance full scan mode (CTSUCR1.CTSUMD[1:0] bits = 11b).

This flag indicates 0 while measurement is stopped or in other measurement modes.

32.2.13 CTSU High-Pass Noise Reduction Spectrum Diffusion Control Register (CTSUSSC)

Address(es): CTSU.CTSUSSC 000A 0912h

Bit	Symbol	Bit Name	Description	R/W
b7 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b11 to b8	CTSUSSDIV[3:0]	CTSU Spectrum Diffusion Frequency Division Setting	These bits specify the spectrum diffusion frequency division setting according to the base clock frequency division setting.	R/W
b15 to b12	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

CTSUSSDIV[3:0] Bits (CTSU Spectrum Diffusion Frequency Division Setting)

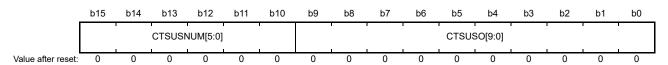

These bits specify the spectrum diffusion frequency division setting according to the base clock frequency division setting. See the relationship between base clock frequencies and CTSUSSDIV[3:0] bits settings in Table 32.6, for setting the value of these bits.

Table 32.6 Relationship between Base Clock Frequencies and CTSUSSDIV[3:0] Bits Settings

Base Clock Frequency fb (MHz)	CTSUSSDIV[3:0] Bits Setting
4.00 ≤ fb	0000Ь
2.00 ≤ fb < 4.00	0001b
1.33 ≤ fb < 2.00	0010b
1.00 ≤ fb < 1.33	0011b
0.80 ≤ fb < 1.00	0100b
0.67 ≤ fb < 0.80	0101b
0.57 ≤ fb < 0.67	0110b
0.50 ≤ fb < 0.57	0111b
0.44 ≤ fb < 0.50	1000b
0.40 ≤ fb < 0.44	1001b
0.36 ≤ fb < 0.40	1010b
0.33 ≤ fb < 0.36	1011b
0.31 ≤ fb < 0.33	1100b
0.29 ≤ fb < 0.31	1101b
0.27 ≤ fb < 0.29	1110b
fb < 0.27	1111b

32.2.14 CTSU Sensor Offset Register 0 (CTSUSO0)

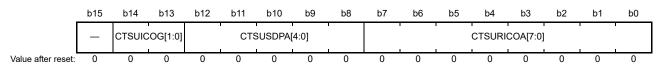
Address(es): CTSU.CTSUSO0 000A 0914h

Bit	Symbol	Bit Name	Description	R/W
b9 to b0	CTSUSO[9:0]	CTSU Sensor Offset Adjustment	b9 0 0 0 0 0 0 0 0 0 0 0 0 Current offset amount is 0 0 0 0 0 0 0 0 0 0 1: Current offset amount is 1 0 0 0 0 0 0 0 0 1 0: Current offset amount is 2 : 1 1 1 1 1 1 1 1 1 0: Current offset amount is 1022 1 1 1 1 1 1 1 1 1 1 1 Current offset amount is maximum	R/W
b15 to b10	CTSUSNUM[5:0]	CTSU Measurement Count Setting	These bits set the number of measurements.	R/W

CTSUSO[9:0] Bits (CTSU Sensor Offset Adjustment)

These control bits adjust the input current offset of the sensor ICO. These bits are used to offset the sensor ICO input current generated from electrostatic capacitance while the electrode is not being touched during touch measurement, thus preventing overflow of the CTSU sensor counter.

Make settings for the TS pin that is to be measured next after a CTSUWR interrupt is generated.


CTSUSNUM[5:0] Bits (CTSU Measurement Count Setting)

These bits set how many times the number of measurement pulses specified by the CTSUSDPRS.CTSUPRRATIO[3:0] and CTSUSDPRS.CTSUPRMODE[1:0] bits is repeated in the measurement time. The number of measurement pulses is repeated (CTSUSNUM[5:0] bits + 1) times.

Make settings for the TS pin that is to be measured next after a CTSUWR interrupt is generated.

32.2.15 CTSU Sensor Offset Register 1 (CTSUSO1)

Address(es): CTSU.CTSUSO1 000A 0916h

Bit	Symbol	Bit Name	Description	R/W
b7 to b0	CTSURICOA[7:0]	CTSU Reference ICO Current	b7 b0	R/W
		Adjustment	0 0 0 0 0 0 0 0: Input current amount 0	
			0 0 0 0 0 0 1: Input current amount 1	
			0 0 0 0 0 0 1 0: Input current amount 2	
			1 1 1 1 1 1 0: Input current amount 254	
			1 1 1 1 1 1 1 : Input current amount maximum	
b12 to b8	CTSUSDPA[4:0]	CTSU Base Clock Setting	b12 b8	R/W
		-	0 0 0 0: Operating clock divided by 2*1	
			0 0 0 0 1: Operating clock divided by 4	
			0 0 0 1 0: Operating clock divided by 6	
			0 0 0 1 1: Operating clock divided by 8	
			0 0 1 0 0: Operating clock divided by 10	
			0 0 1 0 1: Operating clock divided by 12	
			0 0 1 1 0: Operating clock divided by 14	
			0 0 1 1 1: Operating clock divided by 16	
			0 1 0 0 0: Operating clock divided by 18	
			0 1 0 0 1: Operating clock divided by 20	
			0 1 0 1 0: Operating clock divided by 22	
			0 1 0 1 1: Operating clock divided by 24	
			0 1 1 0 0: Operating clock divided by 26	
			0 1 1 0 1: Operating clock divided by 28	
			0 1 1 1 0: Operating clock divided by 30	
			0 1 1 1 1: Operating clock divided by 32	
			1 0 0 0 0. Operating clock divided by 34	
			1 0 0 0 1: Operating clock divided by 36	
			1 0 0 1 0: Operating clock divided by 38	
			1 0 0 1 1: Operating clock divided by 40	
			1 0 1 0 0: Operating clock divided by 42	
			1 0 1 0 1: Operating clock divided by 44	
			1 0 1 1 0: Operating clock divided by 46	
			1 0 1 1 1: Operating clock divided by 48	
			1 1 0 0 0: Operating clock divided by 50	
			1 1 0 0 1: Operating clock divided by 52	
			1 1 0 1 0: Operating clock divided by 54	
			1 1 0 1 1: Operating clock divided by 56	
			1 1 1 0 0: Operating clock divided by 58	
			1 1 1 0 1: Operating clock divided by 60	
			1 1 1 0: Operating clock divided by 62	
			1 1 1 1 1 Operating clock divided by 62 1 1 1 1 1: Operating clock divided by 64	
b14, b13	CTSUICOG[1:0]	CTSU ICO Gain Adjustment	b14 b13	R/W
,		o . o o o o o o o o o o o o o o o	0 0: 100% gain	
			0 1: 66% gain	
			1 0: 50% gain	
			1 1: 40% gain	
b15	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

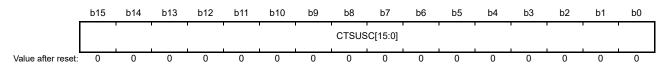
Note 1. The CTSUSDPA[4:0] bits should not be set to 00000b while the high-pass noise reduction function is turned off (CTSUSDPRS.CTSUSOFF bit = 1) in mutual capacitance full scan mode (CTSUCR1.CTSUMD[1:0] bits = 11b).

Write first to the CTSUSSC register, then CTSUSO0 register, and then CTSUSO1 register after a CTSUWR interrupt is generated. Write operation to the CTSUSO1 register causes a transition to Status 3. Thus, set all the bits in a single setting when writing to the CTSUSO1 register.

CTSURICOA[7:0] Bits (CTSU Reference ICO Current Adjustment)

These bits adjust the oscillation frequency using the input current of the reference ICO.

CTSUSDPA[4:0] Bits (CTSU Base Clock Setting)


These bits are used to generate a base clock used as the source for the sensor drive pulse by dividing the operating clock. For details on the setting procedure, refer to section 32.3.2.1, Initial Setting Flowchart.

CTSUICOG[1:0] Bits (CTSU ICO Gain Adjustment)

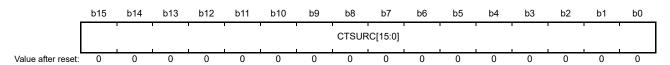
These bits adjust the output frequency gain of the sensor ICO and the reference ICO. Normally, the value of these bits should be set to 00b for the maximum gain. If changes in the capacitance between when the electrode is touched and when it is not touched greatly exceed the dynamic range of the sensor ICO, set the gain adjustment bits to adjust the gain appropriately.

32.2.16 CTSU Sensor Counter (CTSUSC)

Address(es): CTSU.CTSUSC 000A 0918h

Bit	Symbol	Bit Name	Description	R/W
b15 to b0	CTSUSC[15:0]	CTSU Sensor Counter	These bits indicate FFFFh when an overflow occurs.	R

Read first from the CTSUSC counter and then the CTSURC counter after a CTSURD interrupt is generated.


CTSUSC[15:0] Bits (CTSU Sensor Counter)

These bits are configured as an increment counter that counts the sensor ICO clock.

Read these bits after a CTSURD interrupt is generated. After the CTSURC counter is read, these bits are cleared immediately before the CTSU measurement status counter value changes to Status 4 (the CTSUST.CTSUSTC[2:0] flags changes to 100b) in the next measurement. These bits are also cleared using the CTSUCR0.CTSUINIT bit.

32.2.17 CTSU Reference Counter (CTSURC)

Address(es): CTSU.CTSURC 000A 091Ah

Bit	Symbol	Bit Name	Description	R/W
b15 to b0	CTSURC[15:0]	CTSU Reference Counter	These bits indicate FFFFh when an overflow occurs.	R

Read first from the CTSUSC counter and then the CTSURC counter after a CTSURD interrupt is generated. Even when the stabilization time specified for Status 3 has elapsed, if the CTSURC counter is not read, Status 3 continues until the counter is read.

CTSURC[15:0] Bits (CTSU Reference Counter)

These bits are configured as an increment counter that counts the reference ICO clock.

The reference ICO is used to optimize touch measurement performed using the sensor ICO. There is some deviation depending on the internal sensor ICO and the reference ICO in the CTSU, but both ICOs have almost the same characteristics, and the dynamic range and the current to frequency characteristics are almost the same. The range of current amount that can be set by the reference ICO current adjustment bits is about the same as the range of both ICOs, and the current amount input to the sensor ICO must be within this dynamic range. First, use the reference ICO to check the differences between the ICOs and measure the current to oscillation frequency characteristics. Since the reference ICO oscillation frequency can be obtained from the reference ICO counter, the ICO oscillation frequency (counter value/measurement time) for the input current amount can be measured by setting the value in the reference ICO current adjustment bits and measuring the reference ICO counter. The reference ICO counter value measured using the maximum value of the reference ICO current adjustment bits is the maximum value of the ICO dynamic range. Therefore, the current amount of the sensor ICO needs to be offset by setting the offset adjustment bits so that the sensor ICO counter value does not exceed this value.

Read the CTSURC[15:0] bits after a CTSURD interrupt is generated. After these bits are read, they are cleared immediately before the CTSU measurement status counter value changes to Status 4 (the CTSUST.CTSUSTC[2:0] flags changes to 100b) in the next measurement. These bits are also cleared using the CTSUCR0.CTSUINIT bit.

32.2.18 CTSU Error Status Register (CTSUERRS)

Address(es): CTSU.CTSUERRS 000A 091Ch

Bit	Symbol	Bit Name	Description	R/W
b1, b0	CTSUSPMD[1:0]	Calibration Mode	 b1 b0 0 0: Capacitance measurement mode 1: Setting prohibited 0: Calibration mode 1: Setting prohibited 	R/W
b2	CTSUTSOD	TS Pin Fixed Output	Capacitance measurement mode TS pins are forced to be high or low	R/W
b3	CTSUDRV	Calibration Setting 1	Capacitance measurement mode Calibration setting 1	R/W
b6 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b7	CTSUTSOC	Calibration Setting 2	Capacitance measurement mode Calibration setting 2	R/W
b14 to b8	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b15	CTSUICOMP	TSCAP Voltage Error Monitor	0: Normal TSCAP voltage 1: Abnormal TSCAP voltage	R

CTSUSPMD[1:0] Bit (Calibration Mode)

These bits are used to calibrate the CTSU.

When measuring the capacitance, set these bits to 00b.

CTSUTSOD Bit (TS Pin Fixed Output)

This bit is used to calibrate the CTSU. When setting this bit to 1, the TS pins are forced to the logic level specified by the CTSUCR0.CTSUIOC bit.

When measuring the capacitance, set this bit to 0.

CTSUDRV Bit (Calibration Setting 1)

This bit is used to calibrate the CTSU.

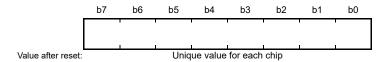
When measuring the capacitance, set this bit to 0.

CTSUTSOC Bit (Calibration Setting 2)

This bit is used to calibrate the CTSU.

When measuring the capacitance, set this bit to 0.

CTSUICOMP Bit (TSCAP Voltage Error Monitor)


If the offset current amount set by the CTSUSO1 register exceeds the sensor ICO input current during touch measurement, the TSCAP voltage becomes abnormal and touch measurement cannot be correctly performed. This bit monitors the TSCAP voltage and it is set to 1 if the voltage becomes abnormal. If the TSCAP voltage becomes abnormal, the sensor ICO counter value will be undefined, but touch measurement is normally completed, so it difficult to detect an abnormality by reading the sensor ICO counter value. If the CTSU reference ICO current adjustment bits (CTSURICOA[7:0]) in the CTSUSO1 register are set to a value other than 0, check this bit when touch measurement is completed.

This bit is cleared by writing 0 to the CTSUCR1.CTSUPON bit and turning off the power supply.

32.2.19 CTSU Reference Current Calibration Register (CTSUTRMR)

Address(es): CTSU.CTSUTRMR 007F FFBEh

The CTSUTRMR register stores a reference current value calibrated under the specified condition for each chip at factory shipment.

When rewriting this register, set the CTSUERRS.CTSUSPMD[1:0] bits to 10b (calibration mode). When resetting the MCU, the value returns to the factory setting value.

Do not rewrite this register when the CTSUSPMD[1:0] bits are 00b (capacitance measurement mode).

32.3 Operation

32.3.1 Principles of Measurement Operation

Figure 32.4 shows the measurement circuit.

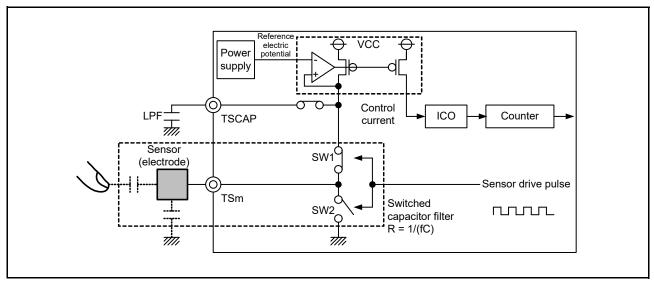


Figure 32.4 Measurement Circuit (m = 0 to 35)

The electrostatic capacitance measurement operation principles of the CTSU current frequency conversion method are explained using Figure 32.5 to Figure 32.7.

- (1) The electrostatic capacitance of the electrode is charged by turning SW1 on and SW2 off (Figure 32.5).
- (2) The charged capacitance is discharged by turning SW1 off and SW2 on (Figure 32.6).

Current flows to the switched capacitor filter by switching between charging and discharging in steps (1) and (2). At this time, the value of electrostatic capacitance varies depending on whether a finger is in close proximity, so the flowing current changes. A clock is generated by supplying the control current, which is proportional to the amount of the current flowing through the switched capacitor filter, from the circuit that generates the TSCAP power supply to the ICO. The counter is used to measure the clock frequency which changes depending on whether a finger is in close proximity, and the value read from the counter is used by software to determine contact with a finger (Figure 32.7).

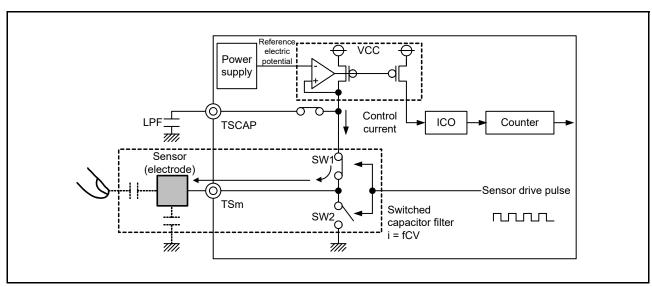


Figure 32.5 Charging Operation (m = 0 to 35)

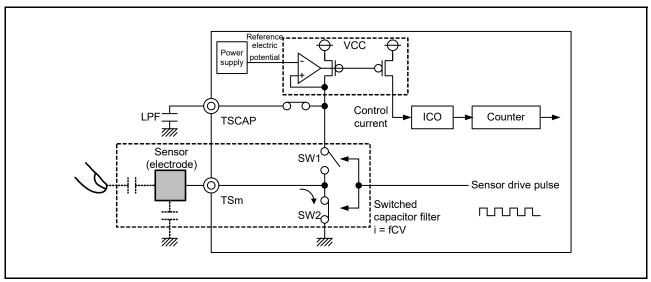


Figure 32.6 Discharging Operation (m = 0 to 35)

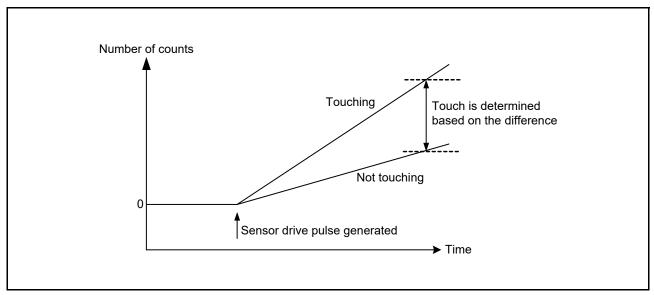


Figure 32.7 Change in Measured Value When Finger is Touching and Not Touching

32.3.2 Measurement Modes

The CTSU supports self-capacitance and mutual capacitance methods. Figure 32.8 illustrates these methods.

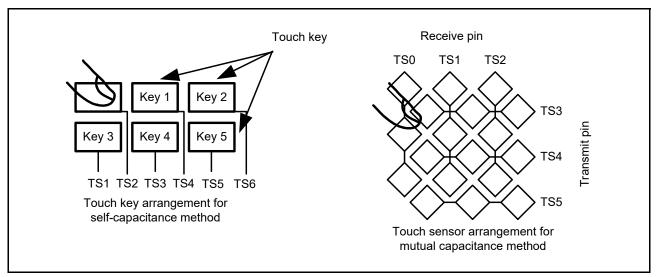


Figure 32.8 Overview of Self-Capacitance Method and Mutual Capacitance Method

In the self-capacitance method, a single touch pin is allocated to a single touch key to measure individual electrostatic capacitance when a finger is in close proximity. In this method, single scan and multi-scan can be used as measurement modes.

In the mutual capacitance method, the capacitance between two opposite electrodes (transmit and receive pins) is measured.

32.3.2.1 Initial Setting Flowchart

Figure 32.9 shows the flowchart for CTSU initial setting.

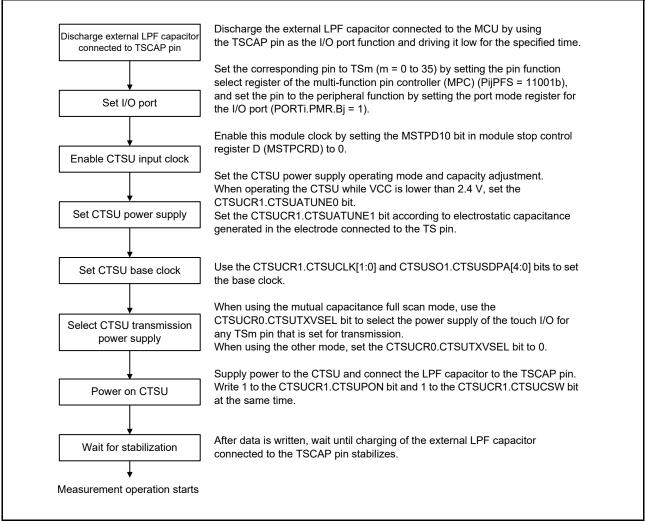


Figure 32.9 CTSU Initial Setting Flowchart

Figure 32.10 shows the flowchart for stopping CTSU operation and setting to the standby state.

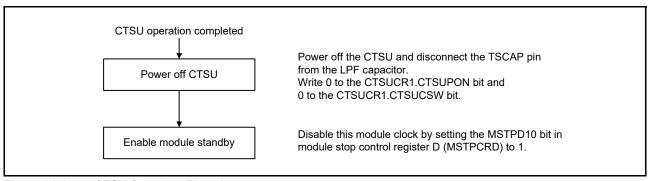


Figure 32.10 CTSU Stopping Flowchart

When restarting operation after it has been stopped, follow the initial setting flowchart shown in Figure 32.9.

32.3.2.2 Status Counter

The measurement status counter of the CTSU status register (CTSUST) indicates the current measurement status. The measurement status is common to all four modes. Figure 32.11 shows status operation transitions.

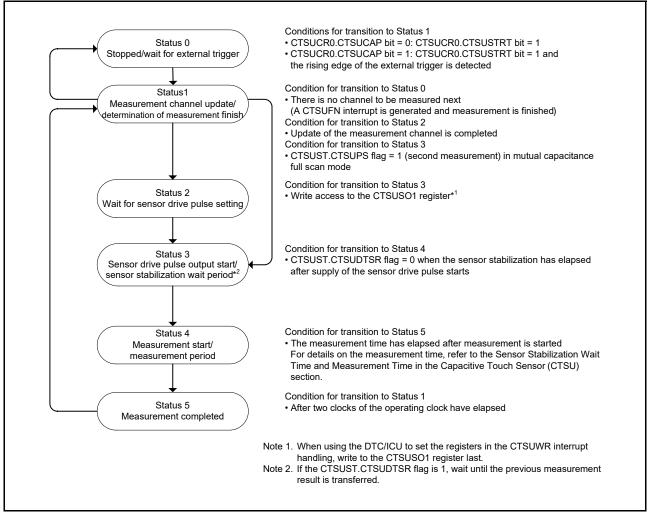


Figure 32.11 Status Operation Transitions

The status of the status counter transitions to Status 0 when all of the specified measurement channels are measured. The CTSUCR0.CTSUSTRT bit is cleared to 0 by hardware when a software trigger is used. When an external trigger is used, the value 1 is retained, and the CTSU waits for the next trigger.

When operation is forcibly stopped (by writing 0 to the CTSUCR0.CTSUSTRT bit and 1 to CTSUCR0.CTSUINIT bit at the same time) during measurement or the wait state for the trigger, the status transitions to Status 0 and measurement is stopped forcibly.

If there is no channel to be measured by setting the CTSUMCH0, CTSUCHACn, CTSUCHAC4, CTSUCHTRCn, and CTSUCHTRC4 registers (n = 0 to 3), a CTSUFN interrupt is generated immediately after a transition to Status 1, and then the status transitions to Status 0. The following are the cases when there is no channel to be measured.

- A measurement target channel is not specified by the CTSUCHACn and CTSUCHAC4 registers.
- In self-capacitance single scan mode, the channel specified in the CTSUMCH0 register is not a measurement target in the CTSUCHACn and CTSUCHAC4 registers.
- In full scan mode, there is no transmit channel or receive channel to be measured by combining the CTSUCHACn, CTSUCHAC4, CTSUCHTRCn, and CTSUCHTRC4 registers.

32.3.2.3 Self-Capacitance Single Scan Mode Operation

In self-capacitance single scan mode, electrostatic capacitance on a channel is measured. Figure 32.12 shows the software flowchart and an operation example, and Figure 32.13 shows the timing chart.

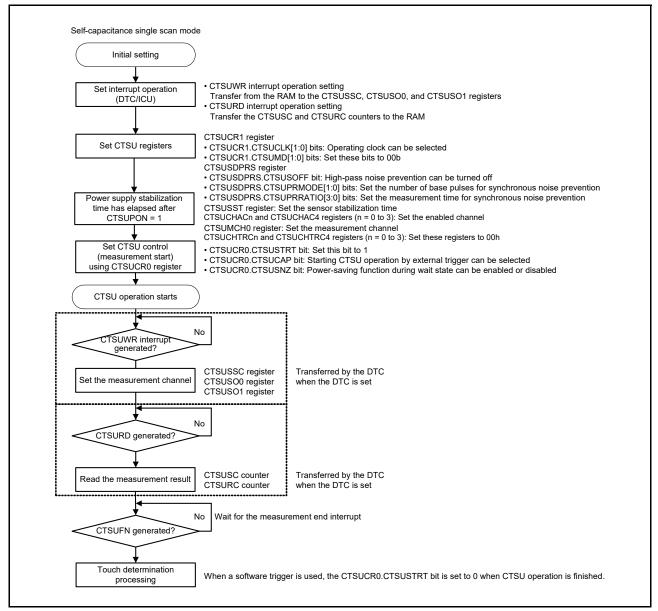


Figure 32.12 Software Flowchart and Operation Example of Self-Capacitance Single Scan Mode

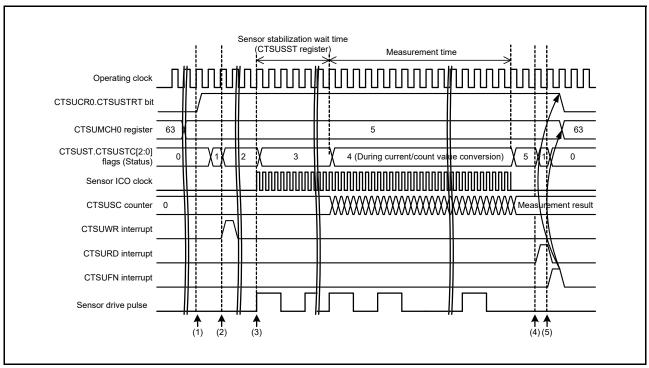


Figure 32.13 Timing Chart of Self-Capacitance Single Scan Mode (Measurement Start Condition is Software Trigger)

The following describes operation shown in the timing chart in Figure 32.13.

- (1) After various settings are made, operation is started by writing 1 to the CTSUCR0.CTSUSTRT bit.
- (2) After a channel to be measured is determined according to the preset conditions, a request for setting the corresponding channel (CTSUWR) is output.
- (3) Upon completion of writing the measurement channel settings (CTSUSSC, CTSUSO0, and CTSUSO1 registers), the sensor drive pulse is output and the sensor ICO clock and the reference ICO clock operate.
- (4) After the sensor stabilization wait time and the measurement time have elapsed and measurement is finished, a measurement result read request (CTSURD) is output.
- (5) A measurement end interrupt (CTSUFN) is output and measurement is finished (transition to Status 0).

Table 32.7 lists the touch pin states in self-capacitance single scan mode.

Table 32.7 Touch Pin States in Self-Capacitance Single Scan Mode

	Touch Pin		
Status	Measurement Channel	Non-Measurement Channel	
0	Low	Low	
1	Low	Low	
2	Low	Low	
3	Pulse	Low	
4	Pulse	Low	
5	Low	Low	

32.3.2.4 Self-Capacitance Multi-Scan Mode Operation

In self-capacitance multi-scan mode, electrostatic capacitance on all channels that are specified as measurement targets by setting the CTSUCHACn and CTSUCHAC4 registers (n = 0 to 3) are measured sequentially in ascending order. Figure 32.14 shows the software flowchart and an operation example, and Figure 32.15 shows the timing chart.

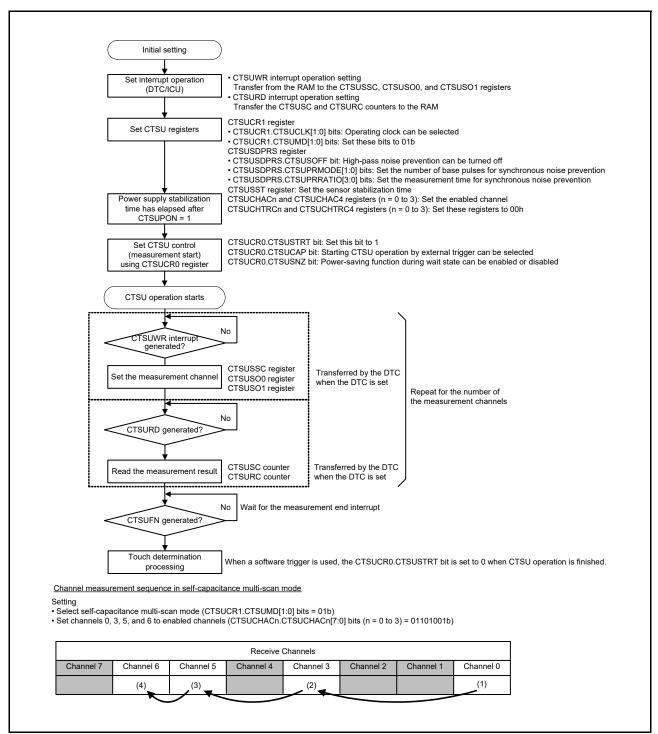


Figure 32.14 Software Flow and Operation Example of Self-Capacitance Multi-Scan Mode

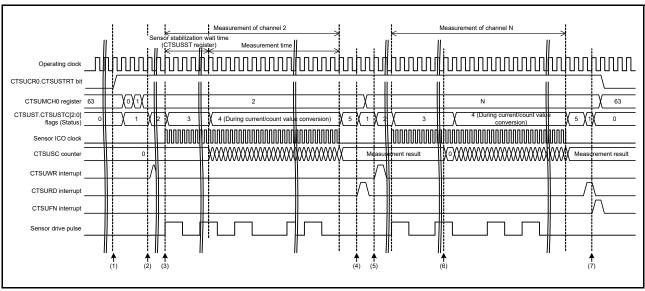


Figure 32.15 Timing Chart of Self-Capacitance Multi-Scan Mode (Measurement Start Condition is Software Trigger)

The following describes operation shown in the timing chart in Figure 32.15.

- (1) After various settings are made, operation is started by writing 1 to the CTSUCR0.CTSUSTRT bit.
- (2) After a channel to be measured is determined according to the preset conditions, a request for setting the corresponding channel (CTSUWR) is output.
- (3) Upon completion of writing the measurement channel settings (CTSUSSC, CTSUSO0, and CTSUSO1 registers), the sensor drive pulse is output and the sensor ICO clock and the reference ICO clock operate.
- (4) After the sensor stabilization wait time and the measurement time have elapsed and measurement is finished, a measurement result read request (CTSURD) is output.
- (5) After a channel to be measured next is determined, a measurement channel setting request (CTSUWR) is output.
- (6) After the stabilization wait time has elapsed and when the previous measurement is read, the result is cleared and measurement is started.
- (7) Upon completion of all measurement channels, a measurement end interrupt (CTSUFN) is output and measurement is finished (transition to Status 0).

Table 32.8 lists the touch pin states in self-capacitance multi-scan mode.

Table 32.8 Touch Pin States in Self-Capacitance Multi-Scan Mode

	Touch Pin		
Status	Measurement Channel	Non-Measurement Channel	
0	Low	Low	
1	Low	Low	
2	Low	Low	
3	Pulse	Low	
4	Pulse	Low	
5	Low	Low	

32.3.2.5 Mutual Capacitance Full Scan Mode Operation

In mutual capacitance full scan mode, measurement is performed during the high-level period of the sensor drive pulse on the receive channel by applying the edge to the target transmit channel to be measured. A single measurement target is measured twice, at the rising and falling edges. The difference between the data of these two measurements is used to determine whether or not the electrode is touched, thus achieving higher touch sensitivity.

Electrostatic capacitance is measured sequentially on channels set to transmission or reception specified by the CTSUCHTRC1 and CTSUCHTRC4 registers (n = 0 to 3), and measurement targets specified by the CTSUCHAC1 and CTSUCHAC4 registers (n = 0 to 3). Electrostatic capacitance is measured by combining signals from the measurement target pins that are allocated to transmission or reception. Figure 32.16 shows the software flowchart and an operation example, and Figure 32.17 shows the timing chart.

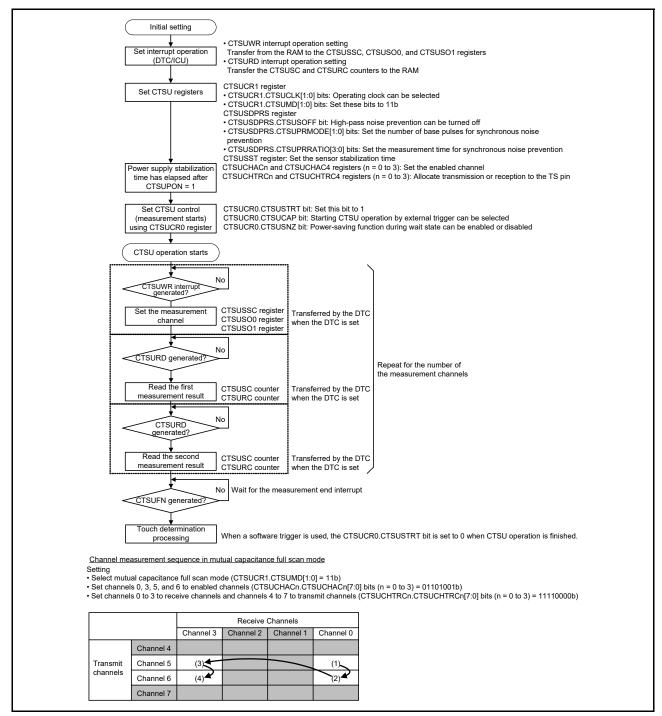


Figure 32.16 Software Flowchart and Operation Example of Mutual Capacitance Full Scan Mode

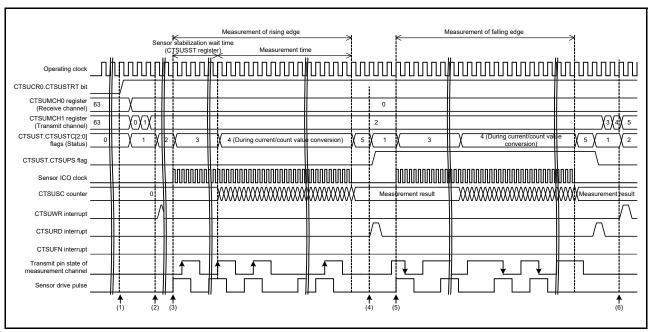


Figure 32.17 Timing Chart of Mutual Capacitance Full Scan Mode (Measurement Start Condition is Software Trigger)

The following describes operation shown in the timing chart in Figure 32.17.

- (1) After various settings are made, operation is started by writing 1 to the CTSUCR0.CTSUSTRT bit.
- (2) After a channel to be measured is determined according to the preset conditions, a request for setting the corresponding channel (CTSUWR) is output.
- (3) Upon completion of writing the measurement channel settings (CTSUSSC, CTSUSO0, and CTSUSO1 registers), the sensor drive pulse is output and the sensor ICO clock and the reference ICO clock operate.
 At the same time, a pulse which is handled as the rising edge is output to the transmit pin on the measurement channel during the high-level period of the sensor drive pulse.
- (4) After the sensor stabilization wait time and the measurement time have elapsed and measurement is finished, a measurement result read request (CTSURD) is output.
- (5) The same channel is measured by outputting a pulse that is handled as the falling edge during the high-level period of the sensor drive pulse.
- (6) After the same channel is measured twice, a channel to be measured next is determined and measured in the similar way.
- (7) Upon completion of all measurement channels, a measurement end interrupt (CTSUFN) is output and measurement is finished (transition to Status 0).

The mutual capacitance measurement status flag (CTSUST.CTSUPS flag) is changed when Status 5 transitions to Status 1.

Table 32.9 lists the touch pin states in mutual capacitance full scan mode.

Table 32.9 Touch Pin States in Mutual Capacitance Full Scan Mode

	Touch Pin of Receive Chann	nel	Touch Pin of Transmit Chan	inel	
Status	Measurement Channel	Non- Measurement Channel	Measurement Channel	Non- Measurement Channel	Remarks
0	Low	Low	Low	Low	_
1	Low	Low	Low/High	Low	_
2	Low	Low	Low	Low	_
3	Pulse	Low	Pulse	Low	Pulse of the phase same as that of the receive channel at the first measurement Pulse of the phase opposite to that of the receive channel at the second measurement
4	Pulse	Low	Pulse	Low	_
5	Low	Low	Low	Low	_

32.3.3 Items Common to Multiple Modes

32.3.3.1 Sensor Stabilization Wait Time and Measurement Time

Figure 32.18 shows the timing chart of the sensor stabilization wait time and measurement time.

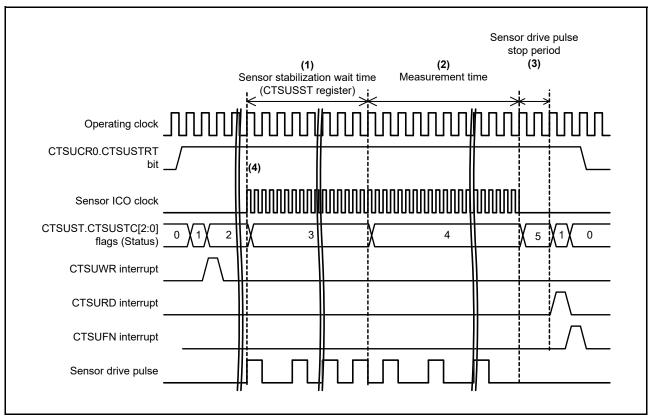


Figure 32.18 Sensor Stabilization Wait Time and Measurement Time

- (1) In response to the CTSUWR interrupt request, output of the sensor drive pulse is started by write access to the CTSUSO1 register. Then, wait for the stabilization time set in the CTSUSST register.
- (2) When the sensor stabilization time has elapsed and the CTSUST.CTSUDTSR flag is set to 0, measurement is started at transition to Status 4. The measurement time is determined by setting the base clock cycle and the CTSUSDPRS.CTSUPRMODE[1:0], CTSUPRRATIO[3:0], and CTSUSO0.CTSUSNUM[5:0] bits. When the measurement time has elapsed, measurement of the corresponding channel is finished.
- (3) After the measurement time has elapsed, the status transitions to Status 1 after two operating clock cycles and a CTSURD interrupt is generated, so read the data from the CTSUSC and CTSURC counters.

 At this time, the sensor drive pulse is output at the low level. When measurement of all specified channels is completed, the CTSUCR0.CTSUSTRT bit becomes 0.
- (4) The sensor ICO clock oscillates while the CTSUSTC[2:0] flags are 011b (Status 3) or 100b (Status 4).

32.3.3.2 Interrupts

There are three types of interrupts for the CTSU:

- Write request interrupt for setting registers for each channel (CTSUWR)
- Measurement data transfer request interrupt (CTSURD)
- Measurement end interrupt (CTSUFN)
- (1) Write request interrupt for setting registers for each channel (CTSUWR)

Store the setting data for each measurement channel in the RAM, and set the DTC or ICU transfer corresponding to the CTSUWR interrupt in advance. The CTSUWR interrupt is output when Status 1 transitions to Status 2. Write the setting data of the corresponding channel from the RAM to the CTSUSSC, CTSUSO0, and CTSUSO1 registers (Figure 32.19). Since write access to the CTSUSO1 register controls a transition to the next status, be sure to set this register last.

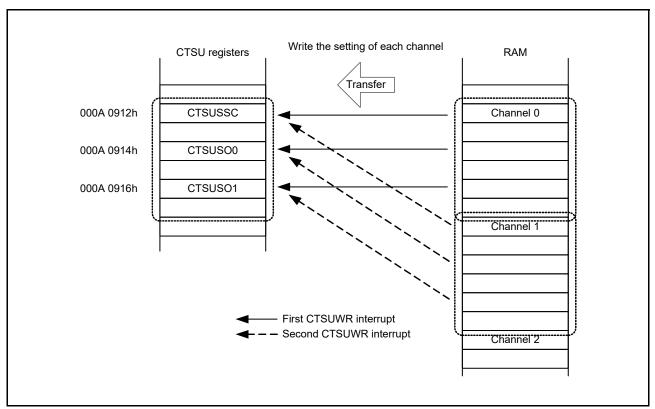


Figure 32.19 Example of DTC Transfer Operation Using CTSUWR Interrupt

The registers (CTSUSSC, CTSUSO0, and CTSUSO1 registers) to be set are allocated at sequential addresses. Set the operation at interrupt generation as shown below:

- Transfer destination address: Address of the CTSUSSC register
- Handling at the transfer destination address: Transfer 2-byte data three times by a single interrupt. (The address of the start byte is fixed.)
- Transfer source address: CTSUSSC register data storage address for the minimum channel in the setting data stored in the RAM
- Handling at the transfer source address: Transfer 2-byte data three times by a single interrupt. (The address of the first byte is continued from the previous interrupt handling.)
- Number of transfers by an interrupt: Specify the number of measurements.

(2) Measurement data transfer request interrupt (CTSURD)

Set DTC or ICU transfer corresponding to the CTSURD interrupt in advance. The CTSURD interrupt is output when Status 5 transitions to Status 1. Read the measurement result from the CTSUSC and CTSURC counters (Figure 32.20).

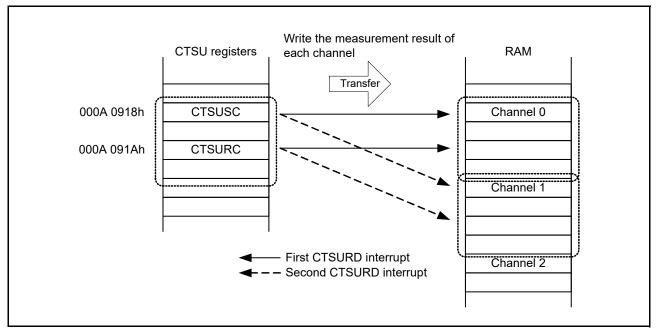


Figure 32.20 Example of DTC Transfer Operation Using CTSURD Interrupt

The measurement result registers (CTSUSC and CTSURC counters) used as transfer sources are allocated at sequential addresses. Set the operation at interrupt generation as shown below:

- Transfer source address: Address of the CTSUSC counter
- Handling at the transfer source address: Transfer 2-byte data twice by a single interrupt. (The start address is fixed.)
- Transfer destination address: CTSUSC counter data storage address for the minimum channel in the setting data stored in the RAM.
- Handling at the transfer destination address: Transfer 2-byte data twice by a single interrupt. (The start address is continued from the previous interrupt handling.)
- Number of transfers by an interrupt: Specify the number of measurements.

(3) Measurement end interrupt (CTSUFN)

When all channels are measured, an interrupt is generated when Status 1 transitions to Status 0. Use software to confirm the overflow flags (CTSUST.CTSUSOVF and CTSUROVF flags) and read the measurement results to determine whether or not the electrode is touched.

Interrupt requests are accepted or disabled in the interrupt control block.

32.4 Usage Notes

32.4.1 Measurement Result Data (CTSUSC and CTSURC Counters)

Read access during measurement is prohibited. If the measurement result data is accessed, an incorrect value may be read due to asynchronous operation.

32.4.2 Software Trigger

When 10b (PCLK/4) is selected by the CTSUCR1.CTSUCLK[1:0] bits, to restart measurement by writing 1 to the CTSUCR0.CTSUSTRT bit after measurement has been completed, wait for at least three cycles to elapse after an interrupt is generated, and then write to the CTSUCR0.CTSUSTRT bit.

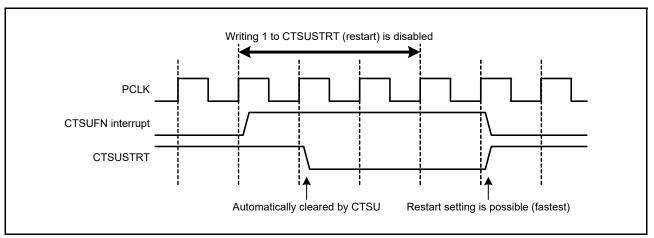


Figure 32.21 Notes on Restarting Measurement

32.4.3 External Trigger

- If an external trigger is input during the measurement time, measurement is not started. The next external event is enabled after one cycle of the operating clock when a CTSUFN interrupt is generated.
- To stop external trigger mode, write 0 to the CTSUCR0.CTSUSTRT bit and 1 to the CTSUCR0.CTSUINIT bit at the same time (forced stop).

32.4.4 Notes on Forcibly Stopping Operation

To forcibly stop the current operation, write 0 to the CTSUCR0.CTSUSTRT bit and 1 to the CTSUCR0.CTSUINIT bit at the same time. After this setting, the operation is stopped and the internal control registers are initialized.

When the CTSUCR0.CTSUINIT bit is used for initialization, the following registers are initialized in addition to the initialization of the internal measurement state.

- CTSUMCH0 register
- CTSUMCH1 register
- CTSUST register
- CTSUSC counter
- CTSURC counter

If operation is forcibly stopped, an interrupt request may be generated depending on the internal state. After operation is forcibly stopped, perform the processing for stopping/disabling the DTC or ICU.

If DTC transfer is stopped in the mounted system for some reason, also perform the processing for forcibly stopping and initializing the CTSU.

32.4.5 TSCAP Pin

The TSCAP pin requires an external decoupling capacitor to stabilize CTSU internal voltage. The traces between the TSCAP pin and the capacitor, and the capacitor and ground should be as short and wide as physically possible. The capacitor connected to the TSCAP pin should be fully discharged using I/O port control to output a low level, before turning on the switch (CTSUCR1.CTSUCSW bit = 1) to establish a connection.

32.4.6 Notes during Measurement Operation (CTSUCR0.CTSUSTRT Bit = 1)

During measurement operation (CTSUCR0.CTSUSTRT bit = 1), do not use settings such as "stop the peripheral module clock" or "change the port settings related to the touch pins (TS and TSCAP pins)" in the higher layers of the system. If control settings non-compliant to these restrictions are made, after operation is forcibly stopped (CTSUCR0.CTSUSTRT bit = 0 and CTSUCR0.CTSUINIT bit = 1), write 0 to the CTSUCR1.CTSUPON bit and 0 to the CTSUCR1.CTSUCSW bit at the same time, and set the CTSUCR0.CTSUSNZ bit to 0. Then, restart from the initial setting flow shown in Figure 32.9.

33. 12-Bit A/D Converter (S12ADE)

In this section, "PCLK" is used to refer to PCLKB.

33.1 Overview

This MCU incorporates one unit of a 12-bit successive approximation A/D converter. Up to 24 channel analog inputs, temperature sensor output, and internal reference voltage are selectable for conversion.

The 12-bit A/D converter converts a maximum of 24 selected channels of analog inputs, temperature sensor output, and internal reference voltage, which have been selected, into a 12-bit digital value through successive approximation. The A/D converter has three operating modes: single scan mode in which the analog inputs of up to 24 arbitrarily selected channels are converted only once in ascending channel order; and continuous scan mode in which the analog inputs of up to 24 arbitrarily selected channels are continuously converted in ascending channel order; and group scan mode in which up to 24 channels of the analog inputs are arbitrarily divided into two groups (group A and group B) and converted in ascending channel order in each group.

In group scan mode, the conditions for scanning start of group A and group B (synchronous trigger) can be independently selected, thus allowing A/D conversion of group A and group B to be started independently. When group-A priority control is selected along with operation as described above, if a request to start scanning for group A is received during A/D conversion for group B, the conversion operation for group B is discontinued and the conversion for group A starts, which is given priority.

In double trigger mode, one analog input channel arbitrarily selected is converted in single scan mode or group scan mode (group A), and the resulting data of A/D conversion started by the first and second synchronous triggers are stored into different registers (duplication of A/D conversion data).

Self-diagnosis is executed once at the beginning of each scan, and one of the three voltages internally generated in the 12-bit A/D converter is converted.

It is prohibited to simultaneously select both temperature sensor output and internal reference voltage. Perform A/D conversion independently for the temperature sensor output or the internal reference voltage.

The external pin input (VREFH0) or the analog reference voltage (AVCC0) is selectable as the reference voltage on the high-potential side. The external pin input (VREFL0) or the analog reference voltage (AVSS0) is selectable as the reference voltage on the low-potential side.

This IP has a compare function (window A and window B). This function is used to specify the high-side reference value and low-side reference value for window A and window B, respectively. When the A/D-converted value of the selected channel meets the comparison conditions, the ELC event (S12ADWMELC/S12ADWUMELC) is output according to the event conditions (A or B, A and B, A exor B). Furthermore, the comparator operation to compare the A/D-converted value with the low-side reference value is also enabled.

The A/D data storage buffer is a ring buffer consisting of 16 buffers to sequentially store A/D converted data. Table 33.1 lists the specifications of the 12-bit A/D converter and Table 33.2 lists the functions of the 12-bit A/D converter. Figure 33.1 shows a block diagram of the 12-bit A/D converter.

Table 33.1 Specifications of 12-Bit A/D Converter (1/2)

Item	Description
Number of units	One unit
Input channels	Up to 24 channels
Extended analog function	Temperature sensor output, internal reference voltage
A/D conversion method	Successive approximation method
Resolution	12 bits
Conversion time	1.4 µs per channel (when A/D conversion clock ADCLK = 32 MHz)
A/D conversion clock	Peripheral module clock PCLK*1 and A/D conversion clock ADCLK*1 can be set so that the frequency ratio should be one of the following. PCLK to ADCLK frequency ratio = 1:1, 1:2, 2:1, 4:1, 8:1 ADCLK is set using the clock generation circuit.
Data registers	 24 registers for analog input, 1 for A/D-converted data duplication in double trigger mode One register for temperature sensor output One register for internal reference voltage One register for self-diagnosis The results of A/D conversion are stored in 12-bit A/D data registers. 12-bit accuracy output for the results of A/D conversion The value obtained by adding up A/D-converted results is stored as a value in the number of bit for conversion accuracy + 2 bits/4 bits*² in the A/D data registers in A/D-converted value addition mode. Double trigger mode (selectable in single scan and group scan modes): The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece is stored in the duplication register.
Operating modes	 Single scan mode:
Conditions for A/D conversion start	 Software trigger Synchronous trigger Trigger by the multi-function timer pulse unit (MTU), the event link controller (ELC). Asynchronous trigger A/D conversion can be triggered by the external trigger ADTRG0# pin.
Functions	 Variable sampling state count Self-diagnosis of 12-bit A/D converter Selectable A/D-converted value addition mode or average mode Analog input disconnection detection function (discharge function/precharge function) Double trigger mode (duplication of A/D conversion data) Automatic clear function of A/D data registers Compare function (window A and window B) 16 ring buffers when the compare function is used

Table 33.1 Specifications of 12-Bit A/D Converter (2/2)

Item	Description
Interrupt sources	 In the modes except double trigger mode and group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of single scan. In double trigger mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan. In group scan mode, an A/D scan end interrupt request (S12ADI0) can be generated on completion of group A scan, whereas an A/D scan end interrupt request (GBADI) for group B can be generated on completion of group B scan. When double trigger mode is selected in group scan mode, A/D scan end interrupt request (S12ADI0) can be generated on completion of double scan of group A, whereas A/D scan end interrupt request (GBADI) specially for group B can be generated on completion of group B scan. The S12ADI0 and GBADI interrupts can activate the data transfer controller (DTC).
Event link function	 An ELC event is generated on completion of scans other than group B scan in group scan mode. An ELC event is generated on completion of group B scan in group scan mode. An ELC event is generated on completion of all scans. Scan can be started by a trigger output by the ELC. An ELC event is generated according to the event conditions of the window compare function in single scan mode.
Low power consumption function	Module stop state can be set.*3, *4

- Note 1. The peripheral module clock PCLK frequency is set according to the setting of the SCKCR.PCKB[3:0] bits and the A/D conversion clock ADCLK frequency is set according to the setting of the SCKCR.PCKD[3:0] bits.
- Note 2. The number of extended bits during addition differs depending on the addition count. 2-bit extension: 1-time to 4-time conversion (addition zero to three times)
 4-bit extension: 16-time conversion (addition 15 times)
- Note 3. See section 11, Low Power Consumption for details.
- Note 4. Wait for 1 µs or longer to start A/D conversion after release from the module stop state.

Table 33.2 Functions of 12-Bit A/D Converter

Item			Pin Name, Abbreviation
Analog input cha	annels		AN000 to AN007, AN016 to AN031, temperature sensor output, internal reference voltage
Conditions for	Software	Software trigger	Enabled
A/D conversion start	Asynchronous trigger	ADTRG0#	Enabled
	Synchronous	Compare match/input capture from MTU0.TGRA	TRG0AN
	trigger	Compare match/input capture from MTU0.TGRB	TRG0AN TRG0BN TRGAN TRG0EN
		Compare match/input capture from MTU0 to MTU4.TGRA or underflow (trough) of MTU4.TCNT in complementary PWM mode	
		Compare match from MTU0.TGRE	TRG0EN
		Compare match from MTU0.TGRF	TRG0FN
		Compare match between MTU4.TADCORA and MTU4.TCNT (interrupt skipping function)	TRG4AN
		Compare match between MTU4.TADCORB and MTU4.TCNT (interrupt skipping function)	TRG4BN
		Compare match between MTU4.TADCORA and MTU4.TCNT or compare match between MTU4.TADCORB and MTU4.TCNT (interrupt skipping function)	TRG4ABN
		ELC trigger	Enabled
Interrupt		•	S12ADI0, GBADI interrupt
Setting of modu	le stop function*1		MSTPCRA. MSTPA17 bit

Note 1. See section 11, Low Power Consumption for details.

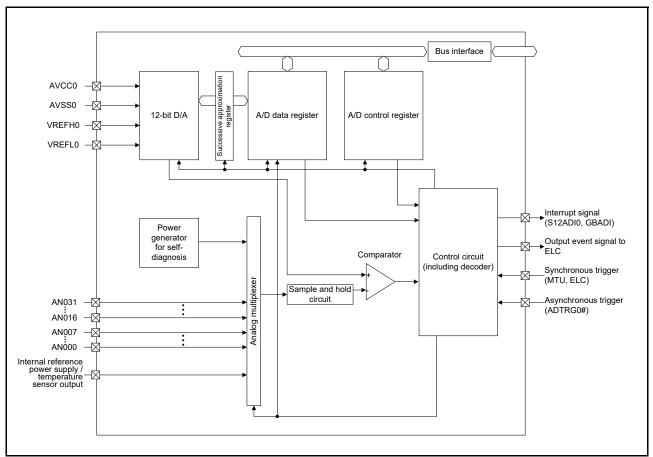


Figure 33.1 Block Diagram of 12-Bit A/D Converter

Table 33.3 lists the input pins of the 12-bit A/D converter.

Table 33.3 Pin Configuration of 12-Bit A/D Converter

Pin Name	I/O	Function
AVCC0	Input	Analog block power supply pin
AVSS0	Input	Analog block ground pin
VREFH0	Input	Reference power supply pin
VREFL0	Input	Reference power supply ground pin
AN000 to AN007, AN016 to AN031	Input	Analog input pins 0 to 7, analog input pins 16 to 31
ADTRG0#	Input	External trigger input pin for starting A/D conversion

33.2 Register Descriptions

33.2.1 A/D Data Registers y (ADDRy),

A/D Data Duplication Register (ADDBLDR),

A/D Temperature Sensor Data Register (ADTSDR),

A/D Internal Reference Voltage Data Register (ADOCDR)

ADDRy (y = 0 to 7, 16 to 31) are 16-bit read-only registers which store the A/D conversion results.

ADDBLDR is a 16-bit read-only register used in double trigger mode. ADDBLDR stores the results of A/D conversion when the conversion is started by the second trigger.

ADTSDR is a 16-bit read-only register that stores the A/D conversion results of the temperature sensor output.

ADOCDR is a 16-bit read-only register that stores the A/D conversion results of the internal reference voltage.

The format of each register differs depending on the conditions below.

- Settings of the A/D data register format select bit (ADCER.ADRFMT) (flush-right or flush-left)
- Settings of the addition count select bits (ADADC.ADC[2:0]) (addition once, twice, three, or 15 times)
- Settings of the average mode enable bit (ADADC.AVEE) (addition or average)

The data formats for each given condition are shown below.

- (1) When A/D-Converted Value Addition/Average Mode is Not Selected
 - Flush-right format

The A/D-converted value is stored in bits 11 to 0. Bits 15 to 12 are read as 0.

• Flush-left format

The A/D-converted value is stored in bits 15 to 4. Bits 3 to 0 are read as 0.

- (2) When A/D-Converted Average Mode is Selected
 - Flush-right format

The mean value of the A/D-converted results of the same channel is stored in bits 11 to 0.

Bits 15 to 12 are read as 0.

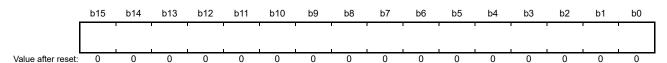
· Flush-left format

The mean value of the A/D-converted results of the same channel is stored in bits 15 to 4.

Bits 3 to 0 are read as 0.

A/D-converted value average mode can be set only when twice or four times is selected in A/D-converted value addition mode.

- (3) When A/D-Converted Value Addition Mode is Selected
 - Flush-right format (A/D-converted value addition mode and 1-time to 4-time conversion selected)
 The value added by the A/D-converted value of the same channel is stored in bits 13 to 0.
 Bits 15 and 14 are read as 0.
- Flush-right format (A/D-converted value addition mode and 16-time conversion selected) The value added by the A/D-converted value of the same channel is stored in bits 15 to 0.


- Flush-left format (A/D-converted value addition mode and 1-time to 4-time conversion selected)
 The value added by the A/D-converted value of the same channel is stored in bits 15 to 2.
 Bits 1 and 0 are read as 0.
- Flush-left format (A/D-converted value addition mode and 16-time conversion selected)

 The value added by the A/D-converted value of the same channel is stored in bits 15 to 0.

When A/D-converted addition mode is selected, the value added by the A/D-converted value of the same channel is indicated. The number of A/D conversions can be set to 1, 2, 3, 4, or 16 times. If A/D-converted addition mode is selected, when the conversion count is set to 1 to 4 times, the value added by the A/D conversion result is retained in the A/D data register as 2-bit extended data of the conversion accuracy bits; when the conversion count is set to 16 times, the value added by the A/D conversion result is retained in the A/D data register as 4-bit extended data of the conversion accuracy bits. Even if A/D-converted value addition mode is selected, the value is stored in the A/D data register according to the settings of the A/D data register format select bits.

33.2.2 A/D Self-Diagnosis Data Register (ADRD)

Address(es): S12AD.ADRD 0008 901Eh

ADRD is a 16-bit read-only register that stores the A/D conversion results based on the 12-bit A/D converter's self-diagnosis. In addition to the A/D-converted value, the self-diagnosis status is included in. In the ADRD register, the different formats are used depending on the conditions below.

• Settings of the A/D data register format select bit (ADCER.ADRFMT) (flush-right or flush-left)

The A/D-converted value addition mode and A/D-converted value average mode cannot be applied to the A/D self-diagnosis function. For details of self-diagnosis, see section 33.2.11, A/D Control Extended Register (ADCER).

The data formats for each given condition are shown below.

- Flush-right format
 The A/D-converted value is stored in bits 11 to 0. The self-diagnosis status is stored in bits 15 and 14.
 Bits 13 and 12 are read as 0.
- Flush-left format

 The A/D-converted value is stored in bits 15 to 4. The self-diagnosis status is stored in bits 1 and 0.

 Bits 3 and 2 are read as 0.

Table 33.4 Self-Diagnosis Status Description

Bits 15 and 14 for flush-right format setting Bits 1 and 0 for flush-left format setting	Self-diagnosis status
00b	Self-diagnosis has never been executed since power-on.
01b	Self-diagnosis using the voltage of 0 V has been executed.
10b	Self-diagnosis using the reference voltage × 1/2 has been executed.
11b	Self-diagnosis using the reference voltage has been executed.

Note: For details of self-diagnosis, see section 33.2.11, A/D Control Extended Register (ADCER).

33.2.3 A/D Control Register (ADCSR)

Address(es): S12AD.ADCSR 0008 9000h

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	DBLANS[4:0]	Double Trigger Channel Select	These bits select one analog input channel for double triggered operation. The setting is only effective while double trigger mode is selected.	R/W
b5	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b6	GBADIE	Group B Scan End Interrupt Enable	Disables GBADI interrupt generation upon group B scan completion. Enables GBADI interrupt generation upon group B scan completion.	R/W
b7	DBLE	Double Trigger Mode Select	Deselects double trigger mode. Selects double trigger mode.	R/W
b8	EXTRG	Trigger Select *1	O: A/D conversion is started by synchronous trigger. 1: A/D conversion is started by asynchronous trigger.	R/W
b9	TRGE	Trigger Start Enable	Disables A/D conversion to be started by synchronous or asynchronous trigger. Enables A/D conversion to be started by synchronous or asynchronous trigger.	R/W
b10	ADHSC	A/D Conversion Select	0: High-speed conversion 1: Low-current conversion	R/W
b11	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b12	ADIE	Scan End Interrupt Enable	Disables S12ADI0 interrupt generation upon scan completion. Enables S12ADI0 interrupt generation upon scan completion.	R/W
b14, b13	ADCS[1:0]	Scan Mode Select	b14 b13 0 0: Single scan mode 0 1: Group scan mode 1 0: Continuous scan mode 1 1: Setting prohibited	R/W
b15	ADST	A/D Conversion Start	0: Stops A/D conversion process. 1: Starts A/D conversion process.	R/W

Note 1. Starting A/D conversion using an external pin (asynchronous trigger)

After a high-level signal is input to the external pin (ADTRG0#), write 1 to both the TRGE and EXTRG bits in ADCSR and change the signals of ADTRG0# to low. Thus the falling edge of ADTRG0# is detected and the scan conversion process is started. In this case, the pulse width of the low-level input must be at least 1.5 clock cycles of PCLK.

ADCSR sets double trigger mode, A/D conversion start trigger; enables/disables scan end interrupt; selects the scan mode; and starts or stops A/D conversion.

DBLANS[4:0] Bits (Double Trigger Channel Select)

The DBLANS[4:0] bits select one of the channels for A/D conversion data duplication in double trigger mode. The A/D conversion results of the analog input of the channel selected by the DBLANS[4:0] bits are stored into the A/D data register y when conversion is started by the first trigger, and into the A/D data duplication register when started by the second trigger. Table 33.5 shows selection of the channel for double triggered operation.

When double trigger mode is selected, the channels selected by the ADANSA0 and ADANSA1 registers are invalid, and the channel selected by the DBLANS[4:0] bits is subjected to A/D conversion instead.

When double trigger mode is used, do not select A/D conversion for the self-diagnosis function, temperature sensor output, and internal reference voltage (temperature sensor output and internal reference voltage can be selected for A/D conversion for group B in group scan mode). The DBLANS[4:0] bits should be set while the ADST bit is 0. They should

not be set simultaneously when 1 is written to the ADST bit.

To enter A/D-converted value addition/average mode while double trigger mode is set, the channel selected by the DBLANS[4:0] bits should be selected in the ADANSA0 and ADANSA1 registers.

Table 33.5 Relationship between DBLANS[4:0] Bits Settings and Double Trigger Enabled Channels

DBLANS[4:0]	Duplication Channel	DBLANS[4:0]	Duplication Channel	DBLANS[4:0]	Duplication Channel
00000b	AN000	10000b	AN016	11000b	AN024
00001b	AN001	10001b	AN017	11001b	AN025
00010b	AN002	10010b	AN018	11010b	AN026
00011b	AN003	10011b	AN019	11011b	AN027
00100b	AN004	10100b	AN020	11100b	AN028
00101b	AN005	10101b	AN021	11101b	AN029
00110b	AN006	10110b	AN022	11110b	AN030
00111b	AN007	10111b	AN023	11111b	AN031

GBADIE Bit (Group B Scan End Interrupt Enable)

The GBADIE bit enables or disables group B scan end interrupt (GBADI) in group scan mode.

DBLE Bit (Double Trigger Mode Select)

Double trigger mode has a function to store the resulting data of A/D conversion started by the first and second synchronous triggers into separate registers.

When double trigger mode is selected, the channels specified in the ADANS0 and ADANS1 registers are invalid and the channel selected by the DBLANS[4:0] bits is effective instead. Double trigger mode can be only operated by the synchronous trigger selected by the ADSTRGR.TRSA[5:0] bits. Do not generate an asynchronous or software trigger. The A/D conversion results started by the first trigger are stored into the A/D data register y and those started by the second trigger are stored into the A/D data duplication register. In this case, if the ADIE bit is set to 1, the interrupt is generated not upon completion of the first conversion but upon completion of the second conversion.

In continuous scan mode, double trigger mode should not be selected.

The DBLE bit should be set after the ADST bit has been set to 0.

EXTRG Bit (Trigger Select)

The EXTRG bit selects the synchronous trigger or the asynchronous trigger as the trigger for starting A/D conversion.

TRGE Bit (Trigger Start Enable)

The TRGE bit enables or disables A/D conversion by the synchronous trigger and the asynchronous trigger. This bit should be set to 1 in group scan mode.

ADHSC Bit (A/D Conversion Select)

The ADHSC bit sets the operating mode of A/D conversion. When modifying this bit, set the 12-bit converter to the standby state. For the procedure for modifying the ADHSC bit, see section 33.8.10, ADHSC Bit Rewriting Procedure.

ADIE Bit (Scan End Interrupt Enable)

The ADIE bit enables or disables the A/D scan end interrupt (S12ADI0) in scans except for group B scan in group scan mode.

With double trigger mode deselected, the S12ADI0 interrupt is generated after the first scan is completed if the ADIE bit is set to 1

With double trigger mode selected, the S12ADI0 interrupt is generated after the second scan is completed if the ADIE bit

is set to 1 as long as the scan is started by the synchronous trigger selected by the ADSTRGR.TRSA[5:0] bits.

ADCS[1:0] Bits (Scan Mode Select)

The ADCS[1:0] bits select the scan mode.

In single scan mode, A/D conversion is performed for the analog inputs of a maximum of 24 channels selected with the ADANSA0 and ADANSA1 registers in the ascending order of the channel number, and when one cycle of A/D conversion is completed for all the selected channels, the scan conversion is stopped.

In continuous scan mode, while the ADCSR.ADST bit is 1, A/D conversion is performed for the analog inputs of a maximum of 24 channels selected with the ADANSA0 and ADANSA1 registers in the ascending order of the channel number, and when one cycle of A/D conversion is completed for all the selected channels, A/D conversion is repeated from the first channel. If the ADCSR.ADST bit is set to 0 during continuous scan, A/D conversion is stopped even if scanning is in progress.

In group scan mode, A/D conversion is performed for the analog inputs (group A) of 24 channels selected with the ADANSA0 and ADANSA1 registers in the ascending order of the channel number after scanning is started by the synchronous trigger selected by the ADSTRGR.TRSA[5:0] bits, and when one cycle of A/D conversion is completed for all the selected channels, A/D conversion is stopped. A/D conversion is also performed for the analog inputs (group B) of a maximum of 24 channels selected with the ADANSB0 and ADANSB1 registers in the ascending order of the channel number after scanning is started by the synchronous trigger selected by the ADSTRGR.TRSB[5:0] bits, and when one cycle of A/D conversion is completed for all the selected channels, A/D conversion is stopped.

When selecting group scan mode, different channels and triggers should be selected for group A and group B. When selecting the temperature sensor output or internal reference voltage, select single scan mode, and deselect all the channels selected with the ADANSA0 and ADANSA1 registers before performing A/D conversion. When A/D conversion of the selected temperature sensor output or internal reference voltage is completed, A/D conversion is stopped.

The ADCS[1:0] bits should be set while the ADST bit is 0. They should not be set simultaneously when 1 is written to the ADST bit.

ADST Bit (A/D Conversion Start)

The ADST bit starts or stops A/D conversion process.

Before the ADST bit is set to 1, set the A/D conversion clock, the conversion mode, and conversion target analog input. [Setting conditions]

- 1 is written by software.
- The synchronous trigger selected by the ADSTRGR.TRSA[5:0] bits is detected with ADCSR.EXTRG and ADCSR.TRGE bits being set to 0 and 1, respectively.
- The synchronous trigger selected by the ADSTRGR.TRSB[5:0] bits is detected with the ADCSR.TRGE bit being set to 1 in group scan mode.
- The asynchronous trigger is detected with the ADCSR.TRGE and ADCSR.EXTRG bits being set to 1 and the ADSTRGR.TRSA[5:0] bits being set to 000000b.
- With group-A priority control operation mode enabled (ADCSR.ADCS[1:0] bits = 01b and ADGSPCR.PGS bit = 1), a group B trigger is detected and A/D conversion of group B is started.
- With group-A priority control operation mode enabled (ADCSR.ADCS[1:0] bits = 01b and ADGSPCR.PGS bit = 1), the ADGSPCR.GBRSCN bit is set to 1 and A/D conversion of group B is restarted.
- With group-A priority control operation mode enabled (ADCSR.ADCS[1:0] bits = 01b and ADGSPCR.PGS bit = 1), the ADGSPCR.GBRP bit is set to 1 and A/D conversion of group B is started.

[Clearing conditions]

- 0 is written by software.
- The A/D conversion of all the selected channels, the temperature sensor output, or the internal reference voltage is completed in single scan mode.

- Group A scan is completed in group scan mode.
- Group B scan is completed in group scan mode.
- With group-A priority control operation mode enabled (ADCSR.ADCS[1:0] bits = 01b and ADGSPCR.PGS bit = 1), a group A trigger is detected during group B A/D conversion and the scanning of group B is stopped.
- With group-A priority control operation mode enabled (ADCSR.ADCS[1:0] bits = 01b and ADGSPCR.PGS bit = 1), the ADGSPCR.GBRSCN bit is set to 1 and the scanning of group B started by a resumption trigger is completed.
- With group-A priority control operation mode enabled (ADCSR.ADCS[1:0] bits = 01b and ADGSPCR.PGS bit =
 1) the ADGSPCR.GBRP bit is set to 1 and the scanning of group B by a trigger is completed.

Note: When group-A priority control operation mode has been enabled (ADCSR.ADCS[1:0] bits = 01b and ADGSPCR.PGS bit = 1), do not set the ADST bit to 1.

Note: When group-A priority control operation mode has been enabled (ADCSR.ADCS[1:0] bits = 01b and ADGSPCR.PGS bit = 1) and ADGSPCR.GBRP = 1, do not set the ADST bit to 0. When forcibly terminating A/D conversion, follow the procedure for clearing the ADST bit.

33.2.4 A/D Channel Select Register A0 (ADANSA0)

Address(es): S12AD.ADANSA0 0008 9004h

	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	_	_	_	_	_	_	_	ANSA0 07	ANSA0 06	ANSA0 05	ANSA0 04	ANSA0 03	ANSA0 02	ANSA0 01	ANSA0 00
Value after reset:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	ANSA000	A/D Conversion Channel Select	0: AN000 to AN007 are not subjected to conversion.	R/W
b1	ANSA001	_	1: AN000 to AN007 are subjected to conversion.	R/W
b2	ANSA002			R/W
b3	ANSA003	_		R/W
b4	ANSA004	_		R/W
b5	ANSA005	_		R/W
b6	ANSA006	_		R/W
b7	ANSA007	_		R/W
b15 to b8	B —	Reserved	These bits are read as 0. The write value should be 0.	R/W

ADANSA0 selects analog input channels for A/D conversion among AN000 to AN007. In group scan mode, this register selects group A channels.

ANSA0n Bit (n = 00 to 07) (A/D Conversion Channel Select)

The ANSA0n bit selects analog input channels for A/D conversion among AN000 to AN007. The channels to be selected and the number of channels can be arbitrarily set. The ANSA000 bit corresponds to AN000 and the ANSA007 bit corresponds to AN007.

When performing A/D conversion of the temperature sensor output or internal reference voltage, do not select analog input channels. The setting value of this register should be 0000h.


When double trigger mode is selected, the channel selected by the ANSA0n bit is invalid, and the channel selected by the ADCSR.DBLANS[4:0] bits is selected in group A instead.

The ANSA0n bit should be set while the ADCSR.ADST bit is 0.

33.2.5 A/D Channel Select Register A1 (ADANSA1)

Address(es): S12AD.ADANSA1 0008 9006h

Bit	Symbol	Bit Name	Description	R/W
b0	ANSA100	A/D Conversion Channel Select	0: AN016 to AN031 are not subjected to conversion.	R/W
b1	ANSA101		1: AN016 to AN031 are subjected to conversion.	R/W
b2	ANSA102	_		R/W
b3	ANSA103			R/W
b4	ANSA104			R/W
b5	ANSA105			R/W
b6	ANSA106	1: AN016 to AN031 are subjected to conversion.		R/W
b7	ANSA107			R/W
b8	ANSA108		R/W	
b9	ANSA109			R/W
b10	ANSA110	_		R/W
b11	ANSA111			R/W
b12	ANSA112			R/W
b13	ANSA113			R/W
b14	ANSA114			R/W
b15	ANSA115	<u> </u>		R/W

ADANSA1 selects analog input channels for A/D conversion among AN016 to AN031. In group scan mode, group A channels are to be selected.

ANSA1n Bit (n = 00 to 15) (A/D Conversion Channel Select)

The ANSA1n bit (n = 00 to 15) select analog input channels for A/D conversion among AN016 to AN031. The channels to be selected and the number of channels can be arbitrarily set. The ANSA100 bit corresponds to AN016 and the ANSA115 bit corresponds to AN031.

When performing A/D conversion of the temperature sensor output or internal reference voltage, do not select analog input channels. The setting value of this register should be 0000h.

When double trigger mode is selected, the channel selected by the ANSA1n bit is invalid, and the channel selected by the ADCSR.DBLANS[4:0] bits is selected in group A instead.

The ANSA1n bit should be set while the ADCSR.ADST bit is 0.

33.2.6 A/D Channel Select Register B0 (ADANSB0)

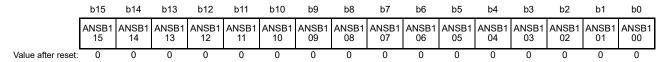
Address(es): S12AD.ADANSB0 0008 9014h

Bit	Symbol	Bit Name	Description	R/W
b0	ANSB000	A/D Conversion Channel Select	0: AN000 to AN007 are not subjected to conversion.	R/W
b1	ANSB001	_	1: AN000 to AN007 are subjected to conversion.	R/W
b2	ANSB002	_		R/W
b3	ANSB003	_		R/W
b4	ANSB004	_		R/W
b5	ANSB005	_		R/W
b6	ANSB006	_		R/W
b7	ANSB007	_		R/W
b15 to b8	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

ADANSB0 selects analog input channels for A/D conversion among AN000 to AN007 in group B when group scan mode is selected. The ADANSB0 register is not used in any scan mode other than group scan mode.

ANSB0n Bit (n = 00 to 07) (A/D Conversion Channel Select)

The ANSB0n bit selects analog input channels for A/D conversion among AN000 to AN007 in group B when group scan mode is selected. The ADANSB0 register is used for group scan mode only; not used for any other modes. The channels specified in group A (the channels corresponding to group A, selected with the ADANSA0 and ADANSA1 registers and the ADCSR.DBLANS[4:0] bits in double trigger mode) should be excluded as the channels to be selected and the number of channels to be set.


The ANSB000 bit corresponds to AN000 and the ANSB007 bit corresponds to AN007.

When performing A/D conversion of the temperature sensor output or internal reference voltage, do not select analog input channels. The setting value of this register should be 0000h.

The ANSB0n bit should be set while the ADCSR.ADST bit is 0.

33.2.7 A/D Channel Select Register B1 (ADANSB1)

Address(es): S12AD.ADANSB1 0008 9016h

Bit	Symbol	Bit Name	Description	R/W
b0	ANSB100	A/D Conversion Channel Select	0: AN016 to AN031 are not subjected to conversion.	R/W
b1	ANSB101	_	1: AN016 to AN031 are subjected to conversion.	R/W
b2	ANSB102	_		R/W
b3	ANSB103	_		R/W
b4	ANSB104	_		R/W
b5	ANSB105	_		R/W
b6	ANSB106	_		R/W
b7	ANSB107	_		R/W
b8	ANSB108	_		R/W
b9	ANSB109	_		R/W
b10	ANSB110	_		R/W
b11	ANSB111	_		R/W
b12	ANSB112	_		R/W
b13	ANSB113	_		R/W
b14	ANSB114	_		R/W
b15	ANSB115	<u> </u>		R/W

ADANSB1 selects analog input channels for A/D conversion among AN016 to AN031 in group B when group scan mode is selected. The ADANSB1 register is not used in any scan mode other than group scan mode.

ANSB1n Bit (n = 00 to 15) (A/D Conversion Channel Select)

The ANSB1n bit selects analog input channels for A/D conversion among AN016 to AN031 in group B when group scan mode is selected. The ADANSB1 register is used for group scan mode only; not used for any other modes. The channels specified in group A (the channels corresponding to group A, selected with the ADANSA0 and ADANSA1 registers and the ADCSR.DBLANS[4:0] bits in double trigger mode) should be excluded as the channels to be selected and the number of channels to be set.

The ANSB100 bit corresponds to AN016 and the ANSB115 bit corresponds to AN031.

When performing A/D conversion of the temperature sensor output or internal reference voltage, do not select analog input channels. The setting value of this register should be 0000h.

The ANSB1n bit should be set while the ADCSR.ADST bit is 0.

33.2.8 A/D-Converted Value Addition/Average Function Select Register 0 (ADADS0)

Address(es): S12AD.ADADS0 0008 9008h

Bit	Symbol	Bit Name	Description	R/W
b0	ADS000	A/D-Converted Value Addition/	0: A/D-converted value addition/average mode for AN000	R/W
b1	ADS001	Average Channel Select	to AN007 is not selected. 1: A/D-converted value addition/average mode for AN000	R/W
b2	ADS002		to AN007 is selected.	R/W
b3	ADS003	_		R/W
b4	ADS004			R/W
b5	ADS005			R/W
b6	ADS006			R/W
b7	ADS007	_		R/W
b15 to b8	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

ADADS0 selects the channels 0 to 7 on which A/D conversion is performed successively 2, 3, 4, or 16 times and then converted values are added (integrated) or averaged.

ADS0n Bit (n = 00 to 07) (A/D-Converted Value Addition/Average Channel Select)

When the ADS0n bit of the number that is the same as that of A/D-converted channel selected by the ADANSA0.ANSA0n bit (n = 00 to 07) or ADCSR.DBLANS[4:0] bits and ADANSB0.ANSB0n bit (n = 00 to 07) is set to 1, A/D conversion of analog input of the selected channels is performed successively 2, 3, 4, or 16 times that is set with the ADC[2:0] bits in ADADC. When the ADADC.AVEE bit is 0, the value obtained by addition (integration) is stored in the A/D data register. When the ADADC.AVEE bit is 1, the mean value of the results obtained by addition (integration) is stored in the A/D data register. As for the channel on which the A/D conversion is performed and addition/average mode is not selected, a normal one-time conversion is executed and the conversion result is stored to the A/D data register.

The ADS0n bit should be set while the ADCSR.ADST bit is 0.

33.2.9 A/D-Converted Value Addition/Average Function Select Register 1 (ADADS1)

Address(es): S12AD.ADADS1 0008 900Ah

Bit	Symbol	Bit Name	Description	R/W
b0	ADS100	A/D-Converted Value Addition/	0: A/D-converted value addition/average mode for AN016	R/W
b1	ADS101	Average Channel Select	to AN031 is not selected. 1: A/D-converted value addition/average mode for AN016	R/W
b2	ADS102	_	to AN031 is selected.	R/W
b3	ADS103	_		R/W
b4	ADS104	_		R/W
b5	ADS105	- -		R/W
b6	ADS106			R/W
b7	ADS107	_		R/W
b8	ADS108	_		R/W
b9	ADS109	_		R/W
b10	ADS110	_		R/W
b11	ADS111	_		R/W
b12	ADS112	_		R/W
b13	ADS113			R/W
b14	ADS114			R/W
b15	ADS115	_		R/W

ADADS1 selects the channels 16 to 31 on which A/D conversion is performed successively 2, 3, 4, or 16 times and then converted values are added (integrated) or averaged.

ADS1n Bit (n = 00 to 15) (A/D-Converted Value Addition/Average Channel Select)

When the ADS1n bit of the number that is the same as that of A/D-converted channel selected by the ADANSA1.ANSA1n bit (n = 00 to 15) or ADCSR.DBLANS[4:0] bits and ADANSB1.ANSB1n bit (n = 00 to 15) is set to 1, A/D conversion of analog input of the selected channels is performed successively 2, 3, 4, or 16 times that is set with the ADADC.ADC[2:0] bits. When the ADADC.AVEE bit is 0, the value obtained by addition (integration) is stored in the A/D data register. When the ADADC.AVEE bit is 1, the mean value of the results obtained by addition (integration) is stored in the A/D data register. As for the channel on which the A/D conversion is performed and addition/average mode is not selected, a normal one-time conversion is executed and the conversion result is stored to the A/D data register.

The ADS1n bit should be set while the ADCSR.ADST bit is 0.

Figure 33.2 shows a scanning operation sequence in which both the ADS002 and ADS006 bits are set to 1. It is assumed that addition mode is selected (ADADC.AVEE = 0), the addition count is set to three times (ADADC.ADC[2:0] = 011b), and the channels AN000 to AN007 are selected (ADANSA0.ANSA0n = FFh) in continuous scan mode (ADCSR.ADCS[1:0] = 10b). The conversion process begins with AN000. The AN002 conversion is performed successively four times (addition three times), and the added (integrated) value is stored in A/D data register 2. After that the AN003 conversion is started. The AN006 conversion is performed successively 4 times and the added (integrated) value is stored in A/D data register 6. After conversion of AN007, the conversion operation is once

again performed in the same sequence from AN000.

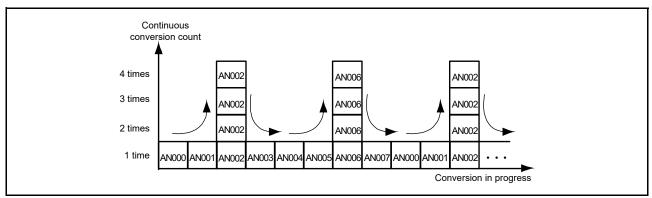



Figure 33.2 Scan Conversion Sequence with ADADC.ADC[2:0] = 011b, ADS002 = 1, and ADS006 = 1

33.2.10 A/D-Converted Value Addition/Average Count Select Register (ADADC)

Address(es): S12AD.ADADC 0008 900Ch

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	ADC[2:0]	Addition Count Select	b2 b0 0 0 0: 1-time conversion (no addition; same as normal conversion) 0 0 1: 2-time conversion (addition once) 0 1 0: 3-time conversion (addition twice)*1 0 1 1: 4-time conversion (addition three times) 1 0 1: 16-time conversion (addition 15 times)*1 Settings other than above are prohibited.	R/W
b6 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b7	AVEE	Average Mode Enable	0: Addition mode is selected. 1: Average mode is selected.	R/W

Note 1. The AVEE bit is enabled only when 2-time or 4-time conversion is selected. When average mode is selected (ADADC.AVEE bit = 1), do not set 3-time conversion (ADADC.ADC[2:0] = 010b) nor 16-time conversion (ADADC.ADC[2:0] = 101b).

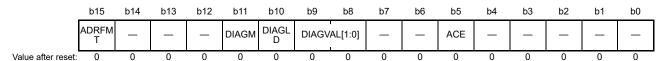
ADADC sets the addition count for A/D conversion of the channel, temperature sensor output, and internal reference voltage for which A/D-converted value addition/average mode is selected, and selects either addition or average mode.

ADC[2:0] Bits (Addition Count Select)

The ADC[2:0] bits set the addition count common to the channels for which A/D conversion and A/D-converted value addition/average mode is selected, including the channels selected in double trigger mode (by ADCSR.DBLANS[4:0] bits), and to A/D conversion of temperature sensor output and internal reference voltage.

When average mode is selected by setting the ADADC.AVEE bit to 1, do not set the addition count to one time (ADADC.ADC[2:0] = 000b), three times (ADADC.ADC[2:0] = 010b), or 16 times (ADADC.ADC[2:0] = 101b). The ADC[2:0] bits should be set while the ADCSR.ADST bit is 0.

AVEE Bit (Average Mode Enable)


The AVEE bit selects addition or average mode for A/D conversion of the channel for which A/D conversion and A/D-converted value addition/average mode is selected, including the channels selected in double trigger mode (by ADCSR.DBLANS[4:0] bits), temperature sensor output, and internal reference voltage.

When average mode is selected by setting the ADADC.AVEE bit to 1, do not set the addition count to one time (ADADC.ADC[2:0] = 000b), three times (ADADC.ADC[2:0] = 010b), or 16 times (ADADC.ADC[2:0] = 101b). The mean value of 1-time, 3-time, and 16-time conversion cannot be obtained.

The AVEE bit should be set while the ADCSR.ADST bit is 0.

33.2.11 A/D Control Extended Register (ADCER)

Address(es): S12AD.ADCER 0008 900Eh

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b5	ACE	A/D Data Register Automatic Clearing Enable	Disables automatic clearing. Enables automatic clearing.	R/W
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b9, b8	DIAGVAL[1:0]	Self-Diagnosis Conversion Voltage Select	 b9 b8 0 0: Setting prohibited in self-diagnosis voltage fixed mode 0 1: Uses the voltage of 0 V for self-diagnosis. 1 0: Uses the reference voltage x 1/2 for self-diagnosis.*1 1 1: Uses the reference voltage for self-diagnosis.*1 	R/W
b10	DIAGLD	Self-Diagnosis Mode Select	Rotation mode for self-diagnosis voltage Fixed mode for self-diagnosis voltage	R/W
b11	DIAGM	Self-Diagnosis Enable	Disables self-diagnosis of 12-bit A/D converter. Enables self-diagnosis of 12-bit A/D converter.	R/W
b14 to b12	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b15	ADRFMT	A/D Data Register Format Select	O: Flush-right is selected for the A/D data register format. 1: Flush-left is selected for the A/D data register format.	R/W

Note 1. The reference voltage refers to the voltage on the pin selected in the ADHVREFCNT register.

ADCER sets self-diagnosis mode, format of A/D data registers y (ADDRy), and automatic clearing of A/D data registers.

ACE Bit (A/D Data Register Automatic Clearing Enable)

The ACE bit enables or disables automatic clearing (all "0") of ADDRy, ADRD, ADDBLDR, ADTSDR, or ADOCDR after any of these registers have been read by the CPU and DTC. Automatic clearing of the A/D data register is enabled to detect a failure which has not been updated in the A/D data register.

DIAGVAL[1:0] Bits (Self-Diagnosis Conversion Voltage Select)

These bits select the voltage value used in self-diagnosis voltage fixed mode. For details, refer to the descriptions of the ADCER.DIAGLD bit.

Self-diagnosis should not be executed by setting the ADCER.DIAGLD bit to 1 when the ADCER.DIAGVAL[1:0] bits are set to 00b.

DIAGLD Bit (Self-Diagnosis Mode Select)

The DIAGLD bit selects whether the three voltage values are rotated or the fixed voltage is used in self-diagnosis. Setting this bit (ADCER.DIAGLD) to 0 allows conversion of the voltages in rotation mode where 0, the reference voltage × 1/2, and the reference voltage are converted in this order. When self-diagnosis rotation mode is selected after a reset, self-diagnosis is performed from 0 V. When self-diagnosis voltage fixed mode is selected, the fixed voltage specified by the ADCER.DIAGVAL[1:0] bits is converted. In self-diagnosis voltage rotation mode, the self-diagnosis voltage value does not return to 0 when scan conversion is completed. When scan conversion is restarted, therefore, rotation starts at the voltage value following the previous value. If fixed mode is switched to rotation mode, rotation starts at the fixed voltage value.

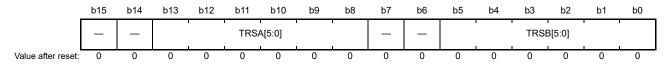
The DIAGLD bit should be set while the ADCSR.ADST bit is 0.

DIAGM Bit (Self-Diagnosis Enable)

The DIAGM bit enables or disables self-diagnosis.

Self-diagnosis is used to detect a failure of the 12-bit A/D converter. Specifically, one of the internally generated voltage values 0, the reference voltage \times 1/2, and the reference voltage is converted. When conversion is completed, information on the converted voltage and the conversion result is stored into the self-diagnosis data register (ADRD). ADRD can then be read out by software to determine whether the conversion result falls within the normal range (normal) or not (abnormal). Self-diagnosis is executed once at the beginning of each scan, and one of the three voltages is converted. When self-diagnosis is selected in group scan mode, self-diagnosis is separately executed in groups A and B. The DIAGM bit should be set while the ADCSR.ADST bit is 0.

ADRFMT Bit (A/D Data Register Format Select)


The ADRFMT bit specifies flush-right or flush-left for the data to be stored in ADDRy, ADRD, ADTSDR, ADOCDR, ADDBLDR, ADCMPDR1, ADWINLLB, or ADWINULB.

The ADRFMT bit should be set while the ADCSR.ADST bit is 0.

For details on the format of each data register, see section 33.2.1, A/D Data Registers y (ADDRy), A/D Data Duplication Register (ADDBLDR), A/D Temperature Sensor Data Register (ADTSDR), A/D Internal Reference Voltage Data Register (ADOCDR), section 33.2.2, A/D Self-Diagnosis Data Register (ADRD), section 33.2.25, A/D Compare Function Window A Lower-Side Level Setting Register (ADCMPDR0), section 33.2.26, A/D Compare Function Window A Upper-Side Level Setting Register (ADCMPDR1), section 33.2.33, A/D Compare Function Window B Lower-Side Level Setting Register (ADWINLLB), and section 33.2.34, A/D Compare Function Window B Upper-Side Level Setting Register (ADWINLLB).

33.2.12 A/D Conversion Start Trigger Select Register (ADSTRGR)

Address(es): S12AD.ADSTRGR 0008 9010h

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	TRSB[5:0]	A/D Conversion Start Trigger Select for Group B	Select the A/D conversion start trigger for group B in group scan mode.	R/W
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b13 to b8	TRSA[5:0]	A/D Conversion Start Trigger Select	Select the A/D conversion start trigger in single scan mode and continuous mode. In group scan mode, the A/D conversion start trigger for group A is selected.	R/W
b15, b14	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

ADSTRGR selects the A/D conversion start trigger.

TRSB[5:0] Bits (A/D Conversion Start Trigger Select for Group B)

The TRSB[5:0] bits select the trigger to start scanning of the analog input selected in group B. The TRSB[5:0] bits require to be set only in group scan mode and are not used in any other scan mode. For the scan conversion start trigger for group B, setting a software trigger or an asynchronous trigger is prohibited. Therefore, the TRSB[5:0] bits should be set to the value other than 000000b and the ADCSR.TRGE bit should be set to 1 in group scan mode.

When group A is given priority in group scan mode, setting the ADGSPCR.GBRP bit to 1 allows group B to continuously operate in single scan mode. When setting the ADGSPCR.GBRP bit to 1, set the TRSB[5:0] bits to 3Fh. Note that the issuance period of trigger for A/D conversion must be more than or equal to the actual scan conversion time (t_{SCAN}) . If the issuance period is less than t_{SCAN} , A/D conversion by the trigger may have no effect.

When the trigger from the module operated in 32 MHz (MTU) is selected as an A/D conversion start trigger, a delay of the period for synchronization processing occurs. See section 33.3.6, Analog Input Sampling Time and Scan Conversion Time for details.

Table 33.6 lists the A/D conversion startup sources selected by the TRSB[5:0] bits.

TRSA[5:0] Bits (A/D Conversion Start Trigger Select)

The TRSA[5:0] bits select the trigger to start A/D conversion in single scan mode and continuous scan mode. In group scan mode, the trigger to start scanning of the analog input selected in group A is selected. When scanning is executed in group scan mode or double trigger mode, software trigger and asynchronous trigger cannot be used.

- When using the A/D conversion startup source of a synchronous trigger, set the ADCSR.TRGE bit to 1 and set the ADCSR.EXTRG bit to 0.
- When using the asynchronous trigger, set the ADCSR.TRGE bit to 1 and set the ADCSR.EXTRG bit to 1.
- Software trigger (ADCSR.ADST) is enabled regardless of the settings of the ADCSR.TRGE bit, the ADCSR.EXTRG bit, and the TRSA[5:0] bits.

Note that the issuance period of trigger for A/D conversion must be more than or equal to the actual scan conversion time (t_{SCAN}) . If the issuance period is less than t_{SCAN} , A/D conversion by a trigger may have no effect. When the trigger from the module operated in 32 MHz (MTU) is selected as an A/D conversion start trigger, a delay of the period for synchronization processing occurs. See section 33.3.6, Analog Input Sampling Time and Scan Conversion Time for details.

Table 33.7 lists the selection of A/D conversion start sources selected by the TRSA[5:0] bits.

Table 33.6 Selection of A/D Activation Sources by the TRSB[5:0] Bits

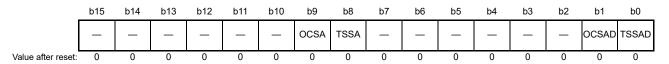

Module	Source	Remarks	TRSB[5]	TRSB[4]	TRSB[3]	TRSB[2]	TRSB[1]	TRSB[0]
Trigger sou	Trigger source deselection state			1	1	1	1	1
MTU	TRG0AN	Compare match/input capture from MTU0.TGRA	0	0	0	0	0	1
	TRG0BN	Compare match/input capture from MTU0.TGRB	0	0	0	0	1	0
	TRGAN	TRGAN Compare match/input capture from MTU0 to MTU4.TGRA or underflow (trough) of MTU4.TCNT in complementary PWM mode		0	0	0	1	1
	TRG0EN Compare match from MTU0.TGRE		0	0	0	1	0	0
	TRG0FN	Compare match from MTU0.TGRF	0	0	0	1	0	1
	TRG4AN	Compare match between MTU4.TADCORA and MTU4.TCNT (interrupt skipping function)	0	0	0	1	1	0
	TRG4BN	Compare match between MTU4.TADCORB and MTU4.TCNT (interrupt skipping function)	0	0	0	1	1	1
	TRG4ABN	Compare match between MTU4.TADCORA and MTU4.TCNT or compare match between MTU4.TADCORB and MTU4.TCNT (interrupt skipping function)	0	0	1	0	0	0
ELC	ELCTRG0		0	0	1	0	0	1

Table 33.7 Selection of A/D Activation Sources by the TRSA[5:0] Bits

Module	Source	Remarks	TRSA[5]	TRSA[4]	TRSA[3]	TRSA[2]	TRSA[1]	TRSA[0]
Trigger source	Trigger source deselection state			1	1	1	1	1
External pin	ADTRG0#	Input pin for the trigger	0	0	0	0	0	0
MTU	TRG0AN	Compare match/input capture from MTU0.TGRA	0	0	0	0	0	1
	TRG0BN	Compare match/input capture from MTU0.TGRB	0	0	0	0	1	0
	TRGAN Compare match/input capture from MTU0 to MTU4.TGRA or underflow (trough) of MTU4.TCNT in complementary PWM mode		0	0	0	0	1	1
	TRG0EN Compare match from MTU0.TGRE		0	0	0	1	0	0
	TRG0FN	Compare match from MTU0.TGRF	0	0	0	1	0	1
	TRG4AN	Compare match between MTU4.TADCORA and MTU4.TCNT (interrupt skipping function)	0	0	0	1	1	0
	TRG4BN	Compare match between MTU4.TADCORB and MTU4.TCNT (interrupt skipping function)	0	0	0	1	1	1
	TRG4ABN	Compare match between MTU4.TADCORA and MTU4.TCNT or compare match between MTU4.TADCORB and MTU4.TCNT (interrupt skipping function)	0	0	1	0	0	0
ELC	ELCTRG0		0	0	1	0	0	1

33.2.13 A/D Conversion Extended Input Control Register (ADEXICR)

Address(es): S12AD.ADEXICR 0008 9012h

Bit	Bit Symbol Bit Name		·		
b0 TSSAD		Temperature Sensor Output A/D- Converted Value Addition/Average Mode Select			
b1	OCSAD Internal Reference Voltage A/D- Converted Value Addition/Average Mode Select		O: Internal reference voltage A/D-converted value addition/average mode is not selected. 1: Internal reference voltage A/D-converted value addition/average mode is selected.		
b7 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W	
b8	TSSA	Temperature Sensor Output A/D Conversion Select	O: A/D conversion of temperature sensor output is not performed. 1: A/D conversion of temperature sensor output is performed.	R/W	
b9	OCSA Internal Reference Voltage A/D Conversion Select		A/D conversion of internal reference voltage is not performed. A/D conversion of internal reference voltage is performed.		
b15 to b10	_	Reserved	These bits are read as 0. The write value should be 0.	R/W	

ADEXICR specifies the settings of A/D conversion of the temperature sensor output and internal reference voltage.

TSSAD Bit (Temperature Sensor Output A/D-Converted Value Addition/Average Mode Select)

When the TSSAD bit is set to 1, A/D conversion of the temperature sensor output is selected and performed successively 2, 3, 4, or 16 times that is set with the ADADC.ADC[2:0] bits. When the ADADC.AVEE bit is 0, the value obtained by addition (integration) is stored in the A/D temperature sensor data register (ADTSDR). When the ADADC.AVEE bit is 1, the mean value is stored in the A/D temperature sensor data register (ADTSDR).

The TSSAD bit should be set while the ADCSR.ADST bit is 0.

OCSAD Bit (Internal Reference Voltage A/D-Converted Value Addition/Average Mode Select)

When the OCSAD bit is set to 1, A/D conversion of the internal reference voltage is selected and performed successively 2, 3, 4, or 16 times that is set with the ADADC.ADC[2:0] bits. When the ADADC.AVEE bit is 0, the value obtained by addition (integration) is stored in the A/D internal reference voltage data register (ADOCDR). When the ADADC.AVEE bit is 1, the mean value is stored in ADOCDR.

The OCSAD bit should be set while the ADCSR.ADST bit is 0.

TSSA Bit (Temperature Sensor Output A/D Conversion Select)

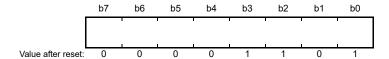
This bit selects A/D conversion of the temperature sensor output in single scan mode. When A/D conversion of the temperature sensor output is to be performed, all the bits in the ADANSA0, ADANSA1, ADANSB0, and ADANSB1 registers and the ADCSR.DBLE and OCSA bits should all be set to 0 in single scan mode.

The TSSA bit should be set while the ADCSR.ADST bit is 0. For A/D conversion of the temperature sensor output, the ADDISCR.ADNDIS[4:0] bits should be automatically set to 0Fh to discharge the A/D converter before sampling. The sampling time should be 5 µs or longer.

Sampling starts after discharging is completed during A/D conversion of the temperature sensor output, an autodischarging period of 15 ADCLK cycles is inserted before sampling.

OCSA Bit (Internal Reference Voltage A/D Conversion Select)

This bit selects A/D conversion of the internal reference voltage in single scan mode. When A/D conversion of the internal reference voltage is to be performed, set all the bits in the ADANSA0, ADANSA1, ADANSB0, and ADANSB1 registers and the ADCSR.DBLE bit and TSSA bit should be set to all 0 in single scan mode.


The OCSA bit should be set while the ADCSR.ADST bit is 0. For A/D conversion of the internal reference voltage, the ADDISCR.ADNDIS[4:0] bits should be automatically set to 0Fh to discharge the A/D converter before sampling. The sampling time should be $5 \mu s$ or longer.

Sampling starts after discharging is completed during A/D conversion of the internal reference voltage, so an auto-discharging period of 15 ADCLK cycles is inserted before sampling.

33.2.14 A/D Sampling State Register n (ADSSTRn) (n = 0 to 7, L, T, O)

Address(es): S12AD.ADSSTRL 0008 90DDh, S12AD.ADSSTRT 0008 90DEh, S12AD.ADSSTRO 0008 90DFh, S12AD.ADSSTR0 0008 90E0h, S12AD.ADSSTR1 0008 90E1h, S12AD.ADSSTR2 0008 90E2h, S12AD.ADSSTR3 0008 90E3h, S12AD.ADSSTR4 0008 90E4h, S12AD.ADSSTR5 0008 90E5h, S12AD.ADSSTR6 0008 90E6h, S12AD.ADSSTR7 0008 90E7h

The ADSSTRn register sets the sampling time for analog input.

If one state is one ADCLK (A/D conversion clock) cycle and the ADCLK clock is 32 MHz, one state is 31.25 ns. The initial value is 13 states. If the impedance of analog input signal source is too high to secure sufficient sampling time or if the ADCLK clock is slow, the sampling time can be adjusted. The ADSSTRn register should be set while the ADCSR.ADST bit is 0. The lower-limit value for sampling time differs depending on the PCLK to ADCLK frequency ratio.

Set a value that is 5 states or more when PCLK to ADCLK frequency ratio = 1:1, 2:1, 4:1, or 8:1.

Table 33.8 shows the relationship between the A/D sampling state register and the relevant channels. For details, refer to section 33.3.6, Analog Input Sampling Time and Scan Conversion Time.

Table 33.8 Relationship between A/D Sampling State Register and Relevant Channels

Register Name	Channels
ADSSTR0	AN000
ADSSTR1	AN001
ADSSTR2	AN002
ADSSTR3	AN003
ADSSTR4	AN004
ADSSTR5	AN005
ADSSTR6	AN006
ADSSTR7	AN007
ADSSTRL	AN016 to AN031
ADSSTRT	Temperature sensor output
ADSSTRO	Internal reference voltage

33.2.15 A/D Disconnection Detection Control Register (ADDISCR)

Address(es): S12AD.ADDISCR 0008 907Ah

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	ADNDIS[4:0]	A/D Disconnection Detection Assist Setting	b4 ADNDIS[4]: Discharge/precharge selected 0: Discharge 1: Precharge b3 to b0 ADNDIS[3:0]: Discharge/precharge period	R/W
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

ADDISCR sets the disconnection detection assist function.

ADNDIS[4:0] Bits (A/D Disconnection Detection Assist Setting)

These bits select either precharge or discharge and the period of precharge/discharge for the A/D disconnection detection assist function. Setting the ADNDIS[4] bit = 1 allows to select precharge and setting the ADNDIS[4] bit = 0 allows to select discharge. The period of precharge/discharge can be set with the ADNDIS[3:0] bits. When the ADNDIS[3:0] bits = 0000b, the disconnection detection assist function is not effective. Setting of the ADNDIS[3:0] bits to 0001b is prohibited. Except for the case of ADNDIS[3:0] = 0000b or 0001b, the specified value indicates the number of states for the period of precharge/discharge.

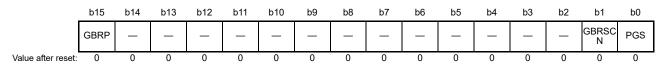
When the ADEXICR.OCSA or TSSA bit is set to 1 to perform A/D conversion of the temperature sensor output or internal reference voltage, ADNDIS[4:0] are automatically fixed to 0Fh, and discharging is executed prior to A/D conversion (auto-discharging). An auto-discharge period of 15 ADCLK cycles is inserted before sampling each time the temperature sensor output or internal reference voltage is A/D-converted.

33.2.16 A/D Event Link Control Register (ADELCCR)

Address(es): S12AD.ADELCCR 0008 907Dh

Bit	Symbol	Bit Name	Description	R/W
b1, b0	ELCC[1:0]	Event Link Control	 b1 b0 0 0: Event is generated on completion of the scan other than group B in group scan mode 0 1: Event is generated on completion of the scan of group B in group scan mode 1 x: Event is generated on completion of all scans 	R/W
b7 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

x: Don't care


ADELCCR sets the generation conditions of the ELC scan end event (S12ADELC).

ELCC[1:0] Bits (Event Link Control)

These bits select the generation conditions of the scan end event (S12ADELC) for the ELC.

33.2.17 A/D Group Scan Priority Control Register (ADGSPCR)

Address(es): S12AD.ADGSPCR 0008 9080h

Bit	Symbol	Bit Name	Description	R/W
b0	PGS	Group-A Priority Control Setting *1	O: Operation is without group-A priority control Operation is with group-A priority control	R/W
b1	GBRSCN	Group B Restart Setting *2	 (Enabled only when PGS = 1. Reserved when PGS = 0.) 0: Scanning for group B is not restarted after having been discontinued due to group-A priority control. 1: Scanning for group B is restarted after having been discontinued due to group-A priority control. 	R/W
b14 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b15	GBRP	Group B Single Scan Continuous Start *3	(Enabled only when PGS = 1. Reserved when PGS = 0.) 0: Single scan for group B is not continuously activated. 1: Single scan for group B is continuously activated.	R/W

- Note 1. When the PGS bit is to be set to 1, the ADCSR.ADCS[1:0] bits must be set to 01b (group scan mode). If the bits are set to any other values, proper operation is not guaranteed.
- Note 2. When the GBRSCN bit is to be set to 1, the frequency ratio of peripheral module clock PCLK to A/D conversion clock ADCLK should be set to 1:1.
- Note 3. When the GBRP bit has been set to 1, single scan is performed continuously for group B regardless of the setting of the GBRSCN bit.

ADGSPCR is used to make settings for priority control of A/D conversion for group A in group scan mode.

PGS Bit (Group-A Priority Control Setting)

This bit sets the priority of operation on group A. Set this bit to 1 when giving priority to operation on group A. When the PGS bit is to be set to 1, the ADCSR.ADCS[1:0] bits must be set to 01b (group scan mode). When setting the PGS bit to 0, clearing should be performed by software according to section 33.8.2, Notes on Stopping A/D Conversion. When setting the PGS bit to 1, follow the procedure described in section 33.3.4.3, Operation under Group-A Priority Control.

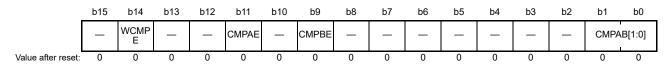
GBRSCN Bit (Group B Restart Setting)

This bit controls the restarting of scan operation on group B when operation on group A is given priority. If a scan operation on group B has been stopped by a group A trigger input with the GBRSCN bit set to 1, the scan operation is restarted on completion of the A/D conversion on group A. Also, if a group B trigger is input during A/D conversion on group A, the scan operation on group B is restarted on completion of the A/D conversion on group A. If the GBRSCN bit has been set to 0, triggers that are input during A/D conversion are ignored. Also, the ADCSR.ADST bit must be 0 when the GBRSCN bit is to be set.

The setting of the GBRSCN bit is enabled when the PGS bit is set to 1.

GBRP Bit (Group B Single Scan Continuous Start)

This bit is set when a single scan operation is to be performed continuously on group B.


Setting the GBRP bit to 1 starts a single scan on group B. On completion of the scan, another single scan on group B is automatically started. If an A/D conversion on group B has been stopped due to an operation on group A that takes priority, single scan on group B is automatically restarted on completion of the A/D conversion on group A. Disable group B trigger input before setting the GBRP bit to 1. Setting the GBRP bit to 1 invalidates the setting of the

GBRSCN bit. The ADCSR.ADST bit must be 0 when the GBRP bit is to be set. The setting of the GBRP bit is enabled when the PGS bit is 1.

33.2.18 A/D Compare Function Control Register (ADCMPCR)

Address(es): S12AD.ADCMPCR 0008 9090h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	CMPAB[1:0]	Window A/B Composite Condition Setting	b1 b0 0 0: S12ADWMELC is output when window A comparison conditions are met OR window B comparison conditions are met. S12ADWUMELC is output in other cases. 0 1: S12ADWMELC is output when window A comparison conditions are met EXOR window B comparison conditions are met. S12ADWUMELC is output in other cases. 1 0: S12ADWMELC is output when window A comparison conditions are met AND window B comparison conditions are met. S12ADWUMELC is output in other cases. 1 1: Setting prohibited.	R/W
b8 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b9	CMPBE	Compare Window B Operation Enable	Compare window B operation is disabled. S12ADWMELC and S12ADWUMELC outputs are disabled. Compare window B operation is enabled.	R/W
b10	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b11	CMPAE	Compare Window A Operation Enable	Compare window A operation is disabled. S12ADWMELC and S12ADWUMELC outputs are disabled. Compare window A operation is enabled.	R/W
b13, 12	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b14	WCMPE	Window Function Setting	O: Window function is disabled. Window A and window B operate as a comparator to compare the single value on the lower side with the A/D conversion result. I: Window function is enabled. Window A and window B operate as a comparator to compare the two values on the upper and lower sides with the A/D conversion result.	R/W
b15	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

ADCMPCR sets the compare window A and window B functions.

CMPAB[1:0] Bits (Window A/B Composite Condition Setting)

These bits are valid when both window A and window B are enabled (CMPAE = 1 and CMPBE = 1) in single scan mode. These bits are used to select compare function match/mismatch event output conditions for the ELC or monitoring conditions of ADWINMON.MONCOMB. The CMPAB[1:0] bits should be set while the ADCSR.ADST bit is 0.

CMPBE Bit (Compare Window B Operation Enable)

This bit enables or disables the compare window B operation. The CMPBE bit should be set while the ADCSR.ADST bit is 0.

Set this bit to 0 before setting the following registers.

• A/D channel select registers A0/A1/B0/B1 (ADANSA0, ADANSA1, ADANSB0, ADANSB1)

- OCSA or TSSA in the A/D conversion extended input control register (ADEXICR.OCSA, TSSA)
- CMPCHB[5:0] in the window B channel select register (ADCMPBNSR.CMPCHB[5:0])

CMPAE Bit (Compare Window A Operation Enable)

This bit enables or disables the compare window A operation. The CMPAE bit should be set while the ADCSR.ADST bit is 0.

Set this bit to 0 before setting the following registers.

- A/D channel select registers A0/A1/B0/B1 (ADANSA0, ADANSA1, ADANSB0, ADANSB1)
- OCSA or TSSA in the A/D conversion extended input control register (ADEXICR.OCSA, TSSA)
- Window A channel select registers 0/1 (ADCMPANSR0, ADCMPANSR1)
- Window A extended input select register (ADCMPANSER)

WCMPE Bit (Window Function Setting)

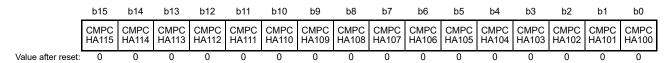
This bit enables or disables the window function. The WCMPE bit should be set while the ADCSR.ADST bit is 0.

33.2.19 A/D Compare Function Window A Channel Select Register 0 (ADCMPANSR0)

Address(es): S12AD.ADCMPANSR0 0008 9094h

Bit	Symbol	Bit Name	Description	R/W
b0	CMPCHA000	Compare Window A Channel	0: The corresponding channel from among AN000 to AN007 is	R/W
b1	CMPCHA001	- Select	not a target for compare window A. 1: The corresponding channel from among AN000 to AN007 is	R/W
b2	CMPCHA002	_	a target for compare window A.	R/W
b3	CMPCHA003	_		R/W
b4	CMPCHA004	_		R/W
b5	CMPCHA005	_		R/W
b6	CMPCHA006	_		R/W
b7	CMPCHA007	_		R/W
b15 to b8	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

ADCMPANSR0 is used to select analog input channels for comparison under compare window A conditions from among AN000 to AN007.


CMPCHA0n Bit (n = 00 to 07) (Compare Window A Channel Select)

Setting the CMPCHA0n bit which has the same number as the A/D channel selected by the ADANSA0. ANSA0n or ADANSB0. ANSB0n bit (n = 00 to 07) to 1 enables the compare function.

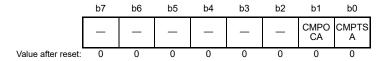
The CMPCHA0n bit should be set while ADCSR.ADST bit is 0.

33.2.20 A/D Compare Function Window A Channel Select Register 1 (ADCMPANSR1)

Address(es): S12AD.ADCMPANSR1 0008 9096h

Bit	Symbol	Bit Name	Description	R/W			
b0	CMPCHA100	Compare Window A Channel	0: The corresponding channel from among AN016 to AN031 is	R/W			
b1	CMPCHA101	- Select	not a target for compare window A. 1: The corresponding channel from among AN016 to AN031 is	R/W			
b2	CMPCHA102	_	a target for compare window A.				
b3	CMPCHA103	_					
b4	CMPCHA104	- - -					
b5	CMPCHA105			R/W			
b6	CMPCHA106			R/W			
b7	CMPCHA107	_		R/W			
b8	CMPCHA108	_		R/W			
b9	CMPCHA109	<u>—</u>		R/W			
b10	CMPCHA110	_		R/W			
b11	CMPCHA111	_		R/W			
b12	CMPCHA112	_		R/W			
b13	CMPCHA113	_		R/W			
b14	CMPCHA114			R/W			
b15	CMPCHA115	_		R/W			

ADCMPANSR1 is used to select analog input channels for comparison under compare window A conditions from among AN016 to AN031.


CMPCHA1n Bit (n = 00 to 15) (Compare Window A Channel Select)

Setting the CMPCHA1n which has the same number as the A/D channel selected by the ADANSA1. ANSA1n or ADANSB1. ANSB1n bit (n = 00 to 15) to 1 enables the compare function.

The CMPCHA1n bit should be set while ADCSR.ADST bit is 0.

33.2.21 A/D Compare Function Window A Extended Input Select Register (ADCMPANSER)

Address(es): S12AD.ADCMPANSER 0008 9092h

Bit	Symbol	Bit Name	Description	R/W
b0	CMPTSA	Temperature Sensor Output Compare Select	Temperature sensor output is not a target for compare window A. Temperature sensor output is a target for compare window A.	R/W
b1	CMPOCA	Internal Reference Voltage Compare Select	O: Internal reference voltage is not a target for compare window A. 1: Internal reference voltage is a target for compare window A.	R/W
b7 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

ADCMPANSER is used to select whether the temperature sensor output or internal reference voltage is compared under compare window A conditions.

CMPTSA Bit (Temperature Sensor Output Compare Select)

Setting the CMPTSA bit to 1 while the ADEXICR.TSSA bit is 1 enables the compare window A function. This bit should be set while the ADCSR.ADST bit is 0.

CMPOCA Bit (Internal Reference Voltage Compare Select)

Setting the CMPOCA bit to 1 while ADEXICR.OCSA bit is 1 enables the compare window A function. This bit should be set while the ADCSR.ADST bit is 0.

33.2.22 A/D Compare Function Window A Comparison Condition Setting Register 0 (ADCMPLR0)

Address(es): S12AD.ADCMPLR0 0008 9098h

Bit	Symbol	Bit Name	Description	R/W
b0	CMPLCHA000	Compare Window A	When the window function is disabled	R/W
b1	CMPLCHA001	Comparison Condition Select	(ADCMPCR.WCMPE bit = 0): 0: ADCMPDR0 register value > A/D-converted value	R/W
b2	CMPLCHA002	_	1: ADCMPDR0 register value < A/D-converted value	R/W
b3	CMPLCHA003	_	When the window function is enabled (ADCMPCR.WCMPE bit = 1):	R/W
b4	CMPLCHA004		0: A/D-converted value < ADCMPDR0 register value or	R/W
b5	CMPLCHA005	_	A/D-converted value > ADCMPDR1 register value	R/W
b6	CMPLCHA006	_	ADCMPDR0 register value < A/D-converted value < ADCMPDR1 register value	R/W
b7	CMPLCHA007	-		R/W
b15 to b	8 —	Reserved	These bits are read as 0. The write value should be 0.	R/W

The ADCMPLR0 register sets the condition for use in comparing the values of the ADCMPDR0 and ADCMPDR1 registers with results of A/D conversion. The ADCMPLR0 register should be set while ADCSR.ADST bit is 0.

CMPLCHA0n Bit (Compare Window A Comparison Condition Select)

This bit sets the condition for use in comparison with the selected channel from among AN000 to AN007 to which compare window A conditions are applied. A condition can be set for individual comparison of each analog input. The CMPLCHA000 bit is used for AN000, the CMPLCHA007 bit is used for AN007.

When the result of comparison matches the set condition, the ADCMPSR0.CMPSTCHA0n flag is set to 1. Figure 33.3 shows the comparison conditions.

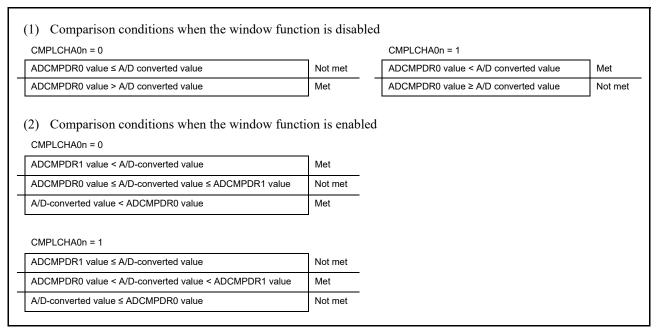


Figure 33.3 Explanation of Compare Function Window A Comparison Conditions

33.2.23 A/D Compare Function Window A Comparison Condition Setting Register 1 (ADCMPLR1)

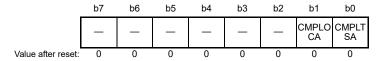
Address(es): S12AD.ADCMPLR1 0008 909Ah

	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	CMPLC															
	HA115	HA114	HA113	HA112	HA111	HA110	HA109	HA108	HA107	HA106	HA105	HA104	HA103	HA102	HA101	HA100
Value after reset:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W
b0	CMPLCHA100	Compare Window A	When the window function is disabled	R/W
b1	CMPLCHA101	Comparison Condition Select	(ADCMPCR.WCMPE bit = 0): 0: ADCMPDR0 register value > A/D-converted value	R/W
b2	CMPLCHA102	_	1: ADCMPDR0 register value < A/D-converted value	R/W
b3	CMPLCHA103	Compare Window A V Comparison Condition Select (0 1 V (0 0 0	When the window function is enabled (ADCMPCR.WCMPE bit = 1): 0: A/D-converted value < ADCMPDR0 register value or A/D-converted value > ADCMPDR1 register value 1: ADCMPDR0 register value < A/D-converted value < ADCMPDR1 register value	R/W
b4	CMPLCHA104			R/W
b5	CMPLCHA105			R/W
b6	CMPLCHA106			R/W
b7	CMPLCHA107			R/W
b8	CMPLCHA108	_		R/W
b9	CMPLCHA109	<u>—</u>		R/W
b10	CMPLCHA110	_		R/W
b11	CMPLCHA111			R/W
b12	CMPLCHA112	_ _ _		R/W
b13	CMPLCHA113			R/W
b14	CMPLCHA114			R/W
b15	CMPLCHA115	_		R/W

The ADCMPLR1 register sets the condition for use in comparing the values of the ADCMPDR0 and ADCMPDR1 registers with results of A/D conversion.

The ADCMPLR1 register should be set while ADCSR.ADST bit is 0.


CMPLCHA1n Bit (n = 00 to 15) (Compare Window A Comparison Condition Select)

This bit sets the condition for use in comparison with the selected channel from among AN016 to AN031to which compare window A conditions are applied. A condition can be set for individual comparison of each analog input. The CMPLCHA100 bit is used for AN016 and the CMPLCHA115 bit is used for AN031.

When the result of comparison matches the set condition, the ADCMPSR1.CMPSTCHA1n flag is set to 1. Figure 33.3 shows the comparison conditions.

33.2.24 A/D Compare Function Window A Extended Input Comparison Condition Setting Register (ADCMPLER)

Address(es): S12AD.ADCMPLER 0008 9093h

Bit	Symbol	Bit Name	Description	R/W
b0	CMPLTSA	Compare Window A Temperature Sensor Output Comparison Condition Select	When the window function is disabled (ADCMPCR.WCMPE bit = 0): 0: ADCMPDR0 register value > A/D-converted value 1: ADCMPDR0 register value < A/D-converted value	R/W
			When the window function is enabled (ADCMPCR.WCMPE bit = 1): 0: A/D-converted value < ADCMPDR0 register value or A/D-converted value > ADCMPDR1 register value 1: ADCMPDR0 register value < A/D-converted value < ADCMPDR1 register value	
b1	CMPLOCA	Internal Reference Voltage Comparison Condition Select	When the window function is disabled (ADCMPCR.WCMPE bit = 0): 0: ADCMPDR0 register value > A/D-converted value 1: ADCMPDR0 register value < A/D-converted value	R/W
			When the window function is enabled (ADCMPCR.WCMPE bit = 1): 0: A/D-converted value < ADCMPDR0 register value or A/D-converted value > ADCMPDR1 register value 1: ADCMPDR0 register value < A/D-converted value < ADCMPDR1 register value	
b7 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The ADCMPLER register sets the condition for use in comparing the values of ADCMPDR0 and ADCMPDR1 registers with results of A/D conversion.

The ADCMPLER register should be set while ADCSR.ADST is 0.

CMPLTSA Bit (Compare Window A Temperature Sensor Output Comparison Condition Select)

This bit sets the condition for use in comparison with temperature sensor output to which compare window A conditions are applied.

When the result of comparison matches the set condition, the ADCMPSER.CMPSTTSA flag is set to 1.

Figure 33.3 shows the comparison conditions.

CMPLOCA Bit (Internal Reference Voltage Comparison Condition Select)

This bit sets conditions for use in comparison with internal reference voltage to which compare window A conditions are applied.

When the result of comparison matches the set condition, the ADCMPSER.CMPSTOCA flag is set to 1.

Figure 33.3 shows the comparison conditions.

33.2.25 A/D Compare Function Window A Lower-Side Level Setting Register (ADCMPDR0)

Address(es): S12AD.ADCMPDR0 0008 909Ch

ADCMPDR0 is a readable/writable register that sets the reference data when the compare window A function is used. ADCMPDR0 sets the lower-side level of window A.

The ADCMPDR0 register is writable even during A/D conversion. The reference data can be dynamically modified by rewriting register values during A/D conversion.

Set the registers so that the upper-side level is not less than the lower-side level (ADCMPDR1 setting value \geq ADCMPDR0 setting value).

The ADCMPDR0 register uses different formats depending on the following conditions.

- Settings of the A/D data register format select bit (flush-right or flush-left)
- Settings of the A/D-converted value addition/average function select register (A/D-converted value average mode selected or not selected)
- Settings of the A/D-converted value addition/average count select register (addition/average mode selected, addition count selected)

Note: If a format different from the format setting of A/D data register y is used to set the compare value, a correct comparison result will not be obtained.

- (1) When A/D-Converted Value Addition/Average Mode is Not Selected
- Flush-right format

Set bits 11 to 0 to the lower-side comparison level. Write 0 to bits 15 to 12.

• Flush-left format

Set bits 15 to 4 to the lower-side comparison level. Write 0 to bits 3 to 0.

- (2) When A/D-Converted Value Average Mode is Selected
 - Flush-right format

Set bits 11 to 0 to the lower-side comparison level for comparison with the A/D-converted value of the same channel. Write 0 to bits 15 to 12.

• Flush-left format

Set bits 15 to 4 to the lower-side comparison level for comparison with the A/D-converted value of the same channel. Write 0 to bits 3 to 0.

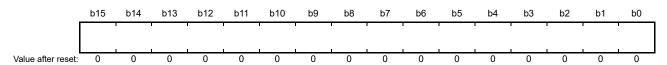
A/D-converted value average mode can be set only when two or four times is selected in A/D-converted value addition mode.

- (3) When A/D-Converted Value Addition Mode is Selected
- Flush-right format (A/D-converted value addition mode and 1-time to 4-time conversion selected)

 Set bits 13 to 0 to the lower-side comparison level for comparison with the A/D-converted value of the same channel. Write 0 to bits 15 and 14.
- Flush-right format (A/D-converted value addition mode and 16-time conversion selected)

 Set bits 15 to 0 to the lower-side comparison level for comparison with the A/D-converted value of the same channel.
- Flush-left format (A/D-converted value addition mode and 1-time to 4-time conversion selected)

Set bits 15 to 2 to the lower-side comparison level for comparison with the A/D-converted value of the same channel. Write 0 to bits 1 and 0.


Flush-left format (A/D-converted value addition mode and 16-time conversion selected)
 Set bits 15 to 0 to the lower-side comparison level for comparison with the A/D-converted value of the same channel.

When A/D-converted addition mode is selected, set the value added by the A/D-converted value of the same channel. The number of A/D conversions can be set to 1, 2, 3, 4, or 16 times. If A/D-converted addition mode is selected, when the A/D conversion count is set to 1 to 4 times, set the number of conversion accuracy bits extended by 2 bits in the ADCMPDR0 register; when the A/D conversion count is set to 16 times, set the number of conversion accuracy bits extended by 4 bits in the ADCMPDR0 register.

Even if A/D converted value addition mode is selected, set the reference data in the A/D data register according to the settings of the A/D data register format select bits.

33.2.26 A/D Compare Function Window A Upper-Side Level Setting Register (ADCMPDR1)

Address(es): S12AD.ADCMPDR1 0008 909Eh

ADCMPDR1 is a readable/writable register that sets the reference data when the compare window A function is used. ADCMPDR1 sets the upper-side level of window A.

The ADCMPDR1 register is writable even during A/D conversion. The reference data can be dynamically modified by rewriting register values during A/D conversion.

Set the registers so that the upper-side level is not less than the lower-side level (ADCMPDR1 setting value \geq ADCMPDR0 setting value).

The ADCMPDR1 register is not used when the window function is disabled.

The ADCMPDR1 register uses different formats depending on the following conditions.

- Settings of the A/D data register format select bit (flush-right or flush-left)
- Settings of the A/D-converted value addition/average function select register (A/D-converted value average mode selected or not selected)
- Settings of the A/D-converted value addition/average count select register (addition/average mode selected, addition count selected)

Note: If a format different from the format setting of A/D data register y is used to set the compare value, a correct comparison result will not be obtained.

- (1) When A/D-Converted Value Addition/Average Mode is Not Selected
- Flush-right format
 - Set bits 11 to 0 to the upper-side comparison level. Write 0 to bits 15 to 12.
- Flush-left format
 - Set bits 15 to 4 to the upper-side comparison level. Write 0 to bits 3 to 0.
- (2) When A/D-Converted Value Average Mode is Selected
 - Flush-right format
 - Set bits 11 to 0 to the upper-side comparison level for comparison with the A/D-converted value of the same channel. Write 0 to bits 15 to 12.
 - Flush-left format
 - Set bits 15 to 4 to the upper-side comparison level for comparison with the A/D-converted value of the same channel. Write 0 to bits 3 to 0.

A/D-converted value average mode can be set only when two or four times is selected in A/D-converted value addition mode.

- (3) When A/D-Converted Value Addition Mode is Selected
- Flush-right format (A/D-converted value addition mode and 1-time to 4-time conversion selected) Set bits 13 to 0 to the upper-side comparison level for comparison with the A/D-converted value of the same channel. Write 0 to bits 15 and 14.
- Flush-right format (A/D-converted value addition mode and 16-time conversion selected)
 Set bits 15 to 0 to the upper-side comparison level for comparison with the A/D-converted value of the same channel.

- Flush-left format (A/D-converted value addition mode and 1-time to 4-time conversion selected)
- Set bits 15 to 2 to the upper-side comparison level for comparison with the A/D-converted value of the same channel. Write 0 to bits 1 and 0.
- Flush-left format (A/D-converted value addition mode and 16-time conversion selected)
 Set bits 15 to 0 to the upper-side comparison level for comparison with the A/D-converted value of the same channel.

When A/D-converted addition mode is selected, set the value added by the A/D-converted value of the same channel. The number of A/D conversions can be set to 1, 2, 3, 4, or 16 times. If A/D-converted addition mode is selected, when the A/D conversion count is set to 1 to 4 times, set the number of conversion accuracy bits extended by 2 bits in the ADCMPDR1 register; when the A/D conversion count is set to 16 times, set the number of conversion accuracy bits extended by 4 bits in the ADCMPDR1 register.

Even if A/D converted value addition mode is selected, set the reference data in the A/D data register according to the settings of the A/D data register format select bits.

33.2.27 A/D Compare Function Window A Channel Status Register 0 (ADCMPSR0)

Address(es): S12AD.ADCMPSR0 0008 90A0h

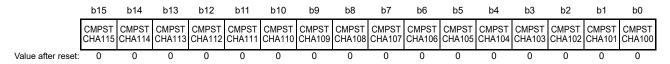
_	b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	b0
	_	_	_	_	_	_	_	_		CMPST CHA006				CMPST CHA002	CMPST CHA001	CMPST CHA000
Value after reset:	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit	Symbol	Bit Name	Description	R/W			
b0	CMPSTCHA000	Compare Window A Flag	When window A operation is enabled (ADCMPCR.CMPAE	R/W			
b1	CMPSTCHA001	_	= 1), these flags indicate the comparison result of channels (AN000 to AN007 to which window A comparison	R/W			
b2	CMPSTCHA002	_	conditions are applied.	R/W			
b3	CMPSTCHA003	-	Comparison conditions are not met. Comparison conditions are met.	R/W			
b4	CMPSTCHA004	_		R/W			
b5	CMPSTCHA005	_		R/W			
b6	CMPSTCHA006	_		R/W			
b7	CMPSTCHA007	•					
b15 to b8	_	Reserved	These bits are read as 0. The write value should be 0.	R/W			

The ADCMPSR0 register stores the comparison results of the compare window A function.

CMPSTCHA0n Flag (n = 00 to 07) (Compare Window A Flag)

This flag is comparison result status flag of channel (AN000 to AN007) to which window A comparison conditions are applied. When the comparison condition set by ADCMPLR0.CMPLCHAn is met at the end of A/D conversion, each of these flags is set to 1. CMPSTCHA000 and CMPSTCHA007 correspond to AN000 and AN007, respectively. Writing 1 to the CMPSTCHA0n flag is disabled.


[Setting condition]

- The condition set by ADCMPLR0.CMPLCHA0n is met when ADCMPCR.CMPAE = 1 [Clearing condition]
 - 0 is written after reading 1

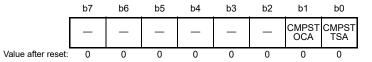
33.2.28 A/D Compare Function Window A Channel Status Register 1 (ADCMPSR1)

Address(es): S12AD.ADCMPSR1 0008 90A2h

Bit	Symbol	Bit Name	Description	R/W				
b0	CMPSTCHA100	Compare Window A Flag	When window A operation is enabled (ADCMPCR.CMPAE = 1),					
b1	CMPSTCHA101	-	these flags indicate the comparison result of channels (AN016 to AN031) to which window A comparison conditions are	R/W				
b2	CMPSTCHA102	- - - -	applied.	R/W				
b3	CMPSTCHA103		Comparison conditions are not met. Comparison conditions are met.					
b4	CMPSTCHA104		i. Companson conditions are met.					
b5	CMPSTCHA105			R/W				
b6	CMPSTCHA106			R/W				
b7	CMPSTCHA107			R/W				
b8	CMPSTCHA108	=		R/W				
b9	CMPSTCHA109	_		R/W				
b10	CMPSTCHA110	=		R/W				
b11	CMPSTCHA111	_		R/W				
b12	CMPSTCHA112	_		R/W				
b13	CMPSTCHA113	•		R/W				
b14	CMPSTCHA114			R/W				
b15	CMPSTCHA115	=		R/W				

The ADCMPSR1 register stores the comparison results of the compare window A function.

CMPSTCHA1n Flag (n = 00 to 15) (Compare Window A Flag)


This flag is comparison result status flag of channel (AN016 to AN031) to which window A comparison conditions are applied. When the comparison condition set by ADCMPLR1.CMPLCHA1n is met at the end of A/D conversion, each of these flags is set to 1. The CMPSTCHA100 bit corresponds to AN016, the CMPSTCHA104 bit corresponds to AN020, and the CMPSTCHA115 bit corresponds to AN031.

Writing 1 to the CMPSTCHA1n flag (n = 00 to 15) is disabled. [Setting condition]

- The condition set by ADCMPLR1.CMPLCHA1n is met when ADCMPCR.CMPAE = 1 [Clearing condition]
 - 0 is written after reading 1

33.2.29 A/D Compare Function Window A Extended Input Channel Status Register (ADCMPSER)

Address(es): S12AD.ADCMPSER 0008 90A4h

Bit	Symbol	Bit Name	Description	R/W
b0	CMPSTTSA	Compare Window A Temperature Sensor Output Compare Flag	When window A operation is enabled (ADCMPCR.CMPAE = 1), this flag indicates the temperature sensor output comparison result. 0: Comparison conditions are not met. 1: Comparison conditions are met.	R/W
b1	CMPSTOCA	Compare Window A Internal Reference Voltage Compare Flag	When window A operation is enabled (ADCMPCR.CMPAE = 1), this flag indicates the internal reference voltage comparison result. 0: Comparison conditions are not met. 1: Comparison conditions are met.	R/W
b7 to b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The ADCMPSER register stores the comparison result of the compare window A function.

CMPSTTSA Flag (Compare Window A Temperature Sensor Output Compare Flag)

This flag is a status flag that indicates the temperature sensor output comparison result. When the comparison condition set by ADCMPLER.CMPLTSA is met at the end of A/D conversion, this flag is set to 1.

Writing 1 to the CMPSTTSA flag is disabled.

[Setting condition]

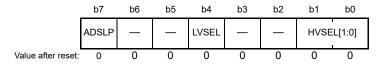
- The condition set by ADCMPLER.CMPLTSA is met when ADCMPCR.CMPAE = 1 [Clearing condition]
- 0 is written after reading 1

CMPSTOCA Flag (Compare Window A Internal Reference Voltage Compare Flag)

This flag is a status flag that indicates the internal reference voltage comparison result. When the comparison condition set by ADCMPLER.CMPLOCA is met at the end of A/D conversion, this flag is set to 1.

Writing 1 to the CMPSTOCA flag is disabled.

The value 1 cannot be written to the CMPSTOCA bit.


[Setting condition]

- The condition set in by ADCMPLER.CMPLOCA bit is met when ADCMPCR.CMPAE = 1 [Clearing condition]
 - 0 is written after reading 1

33.2.30 A/D High-Potential/Low-Potential Reference Voltage Control Register (ADHVREFCNT)

Address(es): S12AD.ADHVREFCNT 0008 908Ah

Bit	Symbol	Bit Name	Description	R/W
b1, b0	HVSEL[1:0]	High-Potential Reference Voltage Select	b1 b0 0 0: AVCC0 is selected as the high-potential reference voltage. 0 1: VREFH0 is selected as the high-potential reference voltage. Settings other than above are prohibited.	R/W
b3, b2	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b4	LVSEL	Low-Potential Reference Voltage Select	O: AVSS0 is selected as the low-potential reference voltage. Selected as the low-potential reference voltage.	R/W
b6, b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b7	ADSLP	Sleep	0: Normal operation 1: Standby state	R/W

The ADHVREFCNT register specifies the high-potential and low-potential reference voltages. Set this register before performing A/D conversion.

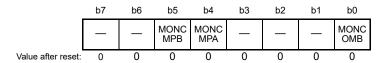
HVSEL[1:0] Bits (High-Potential Reference Voltage Select)

These bits are used to set the high-potential reference voltage. AVCC0 or VREFH0 is selectable as the high-potential reference voltage.

LVSEL Bit (Low-Potential Reference Voltage Select)

This bit is used to set the low-potential reference voltage. AVSS0 or VREFL0 is selectable as the low-potential reference voltage.

ADSLP Bit (Sleep)


This bit is used to transition the 12-bit A/D converter to the standby state. Set the ADSLP bit to 1 only when modifying the ADCSR.ADHSC bit. In other cases, setting the ADSLP bit to 1 is prohibited.

After the ADSLP bit is set to 1, wait at least 5 µs before clearing this bit to 0. Furthermore, after the ADSLP bit is cleared to 0, wait at least 1 µs and then start the A/D conversion.

For the ADHSC bit rewriting procedure, see section 33.8.10, ADHSC Bit Rewriting Procedure.

33.2.31 A/D Compare Function Window A/B Status Monitor Register (ADWINMON)

Address(es): S12AD.ADWINMON 0008 908Ch

Bit	Symbol	Bit Name	Description	R/W
b0	MONCOMB	Combination Result Monitor Flag	This flag indicates the combination result. This flag is valid when both window A operation and window B operation are enabled. 0: Window A/window B composite conditions are not met. 1: Window A/window B composite conditions are met.	R
b3 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R
b4	MONCMPA	Comparison Result Monitor A Flag	0: Window A comparison conditions are not met. 1: Window A comparison conditions are met.	R
b5	MONCMPB	Comparison Result Monitor B Flag	0: Window B comparison conditions are not met. 1: Window B comparison conditions are met.	R
b7, b6	_	Reserved	These bits are read as 0.	

The ADWINMON register can monitor the comparison result and the combination result.

MONCOMB Flag (Combination Result Monitor Flag)

This read-only flag indicates the result in combination of comparison condition result A and comparison result condition B with the combination condition set by the ADCMPCR.CMPAB[1:0] bits.

[Setting condition]

• The combined result meets the combination condition set by the ADCMPCR.CMPAB[1:0] bits when ADCMPCR.CMPAE = 1 and ADCMPCR.CMPBE = 1.

[Clearing conditions]

- The combined result does not meet the combination condition set by the ADCMPCR.CMPAB[1:0] bits.
- ADCMPCR.CMPAE = 0 or ADCMPCR.CMPBE = 0.

MONCMPA Flag (Comparison Result Monitor A Flag)

This read-only flag is read as 1 when the A/D-converted value of the window A target channel meets the condition set by the ADCMPLR1, and ADCMPLER registers, and is read as 0 in other cases.

[Setting condition]

• The A/D-converted value meets the condition set by the ADCMPLR0.CMPLCHA0n bit when ADCMPCR.CMPAE = 1.

[Clearing conditions]

- The A/D-converted value does not meet the condition set by the ADCMPLR0.CMPLCHA0n bit when ADCMPCR.CMPAE = 1.
- ADCMPCR.CMPAE = 0 (Automatically cleared when the ADCMPCR.CMPAE bit value changes from 1 to 0.)

MONCMPB Flag (Comparison Result Monitor B Flag)

This read-only flag is read as 1 when the A/D converted value of the window B target channel meets the condition set by the ADCMPBNSR.CMPLB bit, and is read as 0 in other cases.

[Setting condition]

• The A/D-converted value meets the condition set by ADCMPBNSR.CMPLB bit when ADCMPCR.CMPBE = 1.

[Clearing conditions]

- The A/D-converted value does not meet the condition set by ADCMPBNSR.CMPLB bit when ADCMPCR.CMPBE =1.
- ADCMPCR.CMPBE = 0 (Automatically cleared when the ADCMPCR.CMPBE bit value changes from 1 to 0.)

33.2.32 A/D Compare Function Window B Channel Select Register (ADCMPBNSR)

Address(es): S12AD.ADCMPBNSR 0008 90A6h

Bit	Symbol	Bit Name	Description	R/W
b5 to b0	CMPCHB[5:0]	Compare Window B Channel Select	These bits select channels to be compared with the compare window B conditions. b5	R/W
b6	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b7	CMPLB	Compare Window B Comparison Condition Setting	When the window function is disabled (ADCMPCR.WCMPE bit = 0) 0: ADWINLLB register value > A/D-converted value 1: ADWINLLB register value < A/D-converted value	R/W
			When the window function is enabled (ADCMPCR.WCMPE bit = 1) 0: A/D-converted value < ADWINLLB register value or ADWINULB register value < A/D-converted value 1: ADWINLLB register value < A/D-converted value < ADWINULB register value	

The ADCMPBNSR register is used to set the compare window B function.

CMPCHB[5:0] Bits (Compare Window B Channel Select)

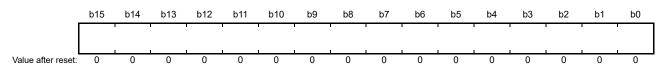
These bits are used to select channels to be compared with the compare window B conditions from AN000 to AN007 and AN016 to AN031, temperature sensor, and internal reference voltage. The compare window B function is enabled by specifying the hexadecimal number of the A/D conversion channel selected by the ADANSA0, ADANSA1, ADANSB0, and ADANSB1 registers.

The CMPCHB[5:0] bits should be set while the ADCSR.ADST bit is 0.

CMPLB Bit (Compare Window B Comparison Condition Setting)

This bit is used to set comparison conditions of channels for window B. When the comparison result of each analog input meets the set condition, the ADCMPBSR.CMPSTB flag is set to 1.

Figure 33.4 shows the comparison conditions.



CMPLB = 0		CMPLB = 1	
ADWINLLB value ≤ A/D-converted value	Not met	ADWINLLB value < A/D-converted value	Met
ADWINLLB value > A/D-converted value	Met	ADWINLLB value ≥ A/D-converted value	Not met
AD-CONVENER VALUE > ADVINVOLD VALUE	Met		
CMPLB = 0 A/D-converted value < ADWINULB value Met			
	Met		
ADWINLLB value ≤ A/D-converted value ≤ ADWINULB value	Not met		
ADWINLLB value ≤ A/D-converted value ≤ ADWINULB value A/D-converted value < ADWINLLB value CMPLB = 1	Not met Met		
ADWINLLB value ≤ A/D-converted value ≤ ADWINULB value A/D-converted value < ADWINLLB value	Not met		

Figure 33.4 Explanation of Compare Function Window B Compare Conditions

33.2.33 A/D Compare Function Window B Lower-Side Level Setting Register (ADWINLLB)

Address(es): S12AD.ADWINLLB 0008 90A8h

ADWINLLB is a readable/writable register that sets the reference data when the compare window B function is used. ADWINLLB sets the lower-side level of window B.

The ADWINLLB register is writable even during A/D conversion. The reference data can be dynamically modified by rewriting register values during A/D conversion.

Set the registers so that the upper-side level is not less than the lower-side level (ADWINULB setting value \geq ADWINLLB setting value).

The ADWINLLB register uses different formats depending on the following conditions.

- Settings of the A/D data register format select bit (flush-right or flush-left)
- Settings of the A/D-converted value addition/average function select register (A/D-converted value average mode selected or not selected)
- Settings of the A/D-converted value addition/average count select register (addition/average mode selected, addition count selected)

Note: If a format different from the format setting of A/D data register y (ADDRy) is used to set the compare value, a correct comparison result will not be obtained.

- (1) When A/D-Converted Value Addition/Average Mode is Not Selected
- Flush-right format

Set bits 11 to 0 to the lower-side comparison level. Write 0 to bits 15 to 12.

• Flush-left format

Set bits 15 to 4 to the lower-side comparison level. Write 0 to bits 3 to 0.

- (2) When A/D-Converted Value Average Mode is Selected
 - Flush-right format

Set bits 11 to 0 to the lower-side comparison level for comparison with the A/D-converted value of the same channel. Write 0 to bits 15 to 12.

• Flush-left format

Set bits 15 to 4 to the lower-side comparison level for comparison with the A/D-converted value of the same channel. Write 0 to bits 3 to 0.

A/D-converted value average mode can be set only when two or four times is selected in A/D-converted value addition mode.

- (3) When A/D-Converted Value Addition Mode is Selected
 - Flush-right format (A/D-converted value addition mode and 1-time to 4-time conversion selected)

 Set bits 13 to 0 to the lower-side comparison level for comparison with the A/D-converted value of the same channel. Write 0 to bits 15 and 14.
 - Flush-right format (A/D-converted value addition mode and 16-time conversion selected)
 Set bits 15 to 0 to the lower-side comparison level for comparison with the A/D-converted value of the same channel.
 - Flush-left format (A/D-converted value addition mode and 1-time to 4-time conversion selected)

Set bits 15 to 2 to the lower-side comparison level for comparison with the A/D-converted value of the same channel. Write 0 to bits 1 and 0.

Flush-left format (A/D-converted value addition mode and 16-time conversion selected)
 Set bits 15 to 0 to the lower-side comparison level for comparison with the A/D-converted value of the same channel.

When A/D-converted addition mode is selected, set the value added by the A/D-converted value of the same channel. The number of A/D conversions can be set to 1, 2, 3, 4, or 16 times. If A/D-converted addition mode is selected, when the A/D conversion count is set to 1 to 4 times, set the number of conversion accuracy bits extended by 2 bits in the ADWINLLB register; when the A/D conversion count is set to 16 times, set the number of conversion accuracy bits extended by 4 bits in the ADWINLLB register.

Even if A/D converted value addition mode is selected, set the reference data in the A/D data register according to the settings of the A/D data register format select bits.

33.2.34 A/D Compare Function Window B Upper-Side Level Setting Register (ADWINULB)

Address(es): S12AD.ADWINULB 0008 90AAh

ADWINULB is a readable/writable register that sets the reference data when the compare window B function is used. ADWINULB sets the upper-side level of window B.

The ADWINULB register is writable even during A/D conversion. The reference data can be dynamically modified by rewriting register values during A/D conversion.

Set the registers so that the upper-side level is not less than the lower-side level (ADWINULB setting value ≥ ADWINLLB setting value)

The ADWINULB register is not used when the window function is disabled.

The ADWINULB register uses different formats depending on the following conditions.

- Settings of the A/D data register format select bit (flush-right or flush-left)
- Settings of the A/D-converted value addition/average function select register (A/D-converted value average mode selected or not selected)
- Settings of the A/D-converted value addition/average count select register (addition/average mode selected, addition count selected)

Note: If a format different from the format setting of A/D data register y (ADDRy) is used to set the compare value, a correct comparison result will not be obtained.

- (1) When A/D-Converted Value Addition/Average Mode is Not Selected
- Flush-right format

Set bits 11 to 0 to the upper-side comparison level. Write 0 to bits 15 to 12.

- Flush-left format
 - Set bits 15 to 4 to the upper-side comparison level. Write 0 to bits 3 to 0.
- (2) When A/D-Converted Value Average Mode is Selected
 - Flush-right format

Set bits 11 to 0 to the upper-side comparison level for comparison with the A/D-converted value of the same channel. Write 0 to bits 15 to 12.

• Flush-left format

Set bits 15 to 4 to the upper-side comparison level for comparison with the A/D-converted value of the same channel. Write 0 to bits 3 to 0.

A/D-converted value average mode can be set only when two or four times is selected in A/D-converted value addition mode.

- (3) When A/D-Converted Value Addition Mode is Selected
- Flush-right format (A/D-converted value addition mode and 1-time to 4-time conversion selected)
 Set bits 13 to 0 to the upper-side comparison level for comparison with the A/D-converted value of the same channel. Write 0 to bits 15 and 14.
- Flush-right format (A/D-converted value addition mode and 16-time conversion selected)
 Set bits 15 to 0 to the upper-side comparison level for comparison with the A/D-converted value of the same channel.

- Flush-left format (A/D-converted value addition mode and 1-time to 4-time conversion selected)

 Set bits 15 to 2 to the upper-side comparison level for comparison with the A/D-converted value of the same channel. Write 0 to bits 1 and 0.
- Flush-left format (A/D-converted value addition mode and 16-time conversion selected)
 Set bits 15 to 0 to the upper-side comparison level for comparison with the A/D-converted value of the same channel.

When A/D-converted addition mode is selected, set the value added by the A/D-converted value of the same channel. The number of A/D conversions can be set to 1, 2, 3, 4, or 16 times. If A/D-converted addition mode is selected, when the A/D conversion count is set to 1 to 4 times, set the number of conversion accuracy bits extended by 2 bits in the ADWINULB register; when the A/D conversion count is set to 16 times, set the number of conversion accuracy bits extended by 4 bits in the ADWINULB register.

Even if A/D converted value addition mode is selected, set the reference data in the A/D data register according to the settings of the A/D data register format select bits.

33.2.35 A/D Compare Function Window B Channel Status Register (ADCMPBSR)

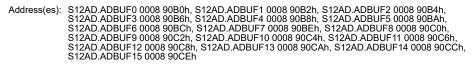
Address(es): S12AD.ADCMPBSR 0008 90ACh

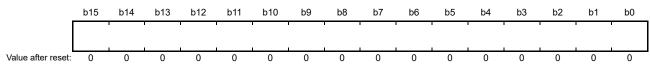
Bit	Symbol	Bit Name	Description	R/W
b0	CMPSTB	Compare Window B Flag	Comparison conditions are not met. Comparison conditions are met.	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The ADCMPBSR register stores the comparison result of the compare window B function.

CMPSTB Flag (Compare Window B Flag)

This flag is a status flag that indicates the comparison result of channels (AN000 to AN007 and AN016 to AN031, temperature sensor, and internal reference voltage) to which window B comparison conditions are applied. When the comparison condition set by ADCMPBNSR.CMPCHB[5:0] bits is met at the end of A/D conversion, this flag is set to 1.


Writing 1 to the CMPSTB flag is disabled.


[Setting condition]

- The condition set by ADCMPBNSR.CMPLB bit is met when ADCMPCR.CMPAE = 1 [Clearing condition]
 - 0 is written after reading 1

33.2.36 A/D Data Storage Buffer Register n (ADBUFn) (n = 0 to 15)

A/D data storage buffer registers n (ADBUFn) are 16-bit read-only registers that sequentially store all A/D converted values. The automatic clear function is not applied to these registers.

The ADBUFn register uses different formats depending on the following conditions.

- Settings of the A/D data register format select bit (flush-right or flush-left)
- Settings of the A/D-converted value addition/average function select register (A/D-converted value average mode selected or not selected)
- Settings of the A/D-converted value addition/average count select register (addition/average mode selected, addition count selected)
- (1) When A/D-Converted Value Addition/Average Mode is Not Selected
- Flush-right format

The A/D-converted value is stored in bits 11 to 0. Bits 15 to 12 are read as 0.

- Flush-left format
 - The A/D-converted value is stored in bits 15 to 4. Bits 3 to 0 are read as 0.
- (2) When A/D-Converted Value Average Mode is Selected
 - Flush-right format

The mean value of the A/D converted results of the same channel is stored in bits 11 to 0. Bits 15 to 12 are read as 0.

• Flush-left format

The mean value of the A/D converted results of the same channel is stored in bits 15 to 4. Bits 3 to 0 are read as 0.

A/D-converted value average mode can be set only when two or four times is selected in A/D-converted value addition mode.

- (3) When A/D-Converted Value Addition Mode is Selected
 - Flush-right format (A/D-converted value addition mode and 1-time to 4-time conversion selected)
 The value added by the A/D-converted value of the same channel is stored in bits 13 to 0.
 Bits 15 and 14 are read as 0.
- Flush-right format (A/D-converted value addition mode and 16-time conversion selected) The value added by the A/D-converted value of the same channel is stored in bits 15 to 0.
- Flush-left format (A/D-converted value addition mode and 1-time to 4-time conversion selected)
 The value added by the A/D-converted value of the same channel is stored in bits 15 to 2.
 Bits 1 and 0 are read as 0.
- Flush-left format (A/D-converted value addition mode and 16-time conversion selected)
 The value added by the A/D-converted value of the same channel is stored in bits 15 to 0.

When A/D-converted addition mode is selected, the value added by the A/D-converted value of the same channel is indicated. The number of A/D conversion can be set to 1, 2, 3, 4, or 16 times. If A/D-converted addition mode is selected, when the conversion count is set to 1 to 4 times, the value added by the A/D conversion result is retained in the ADBUFn

register as 2-bit extended data of the conversion accuracy bits: when the conversion count is set to 16 times, the value added by the A/D conversion result is retained in the ADBUFn register as 4-bit extended data of the conversion accuracy bits.

Even if A/D-converted value addition mode is selected, the extended A/D-converted value is stored in the ADBUFn register according to the settings of the A/D data register format select bits.

33.2.37 A/D Data Storage Buffer Enable Register (ADBUFEN)

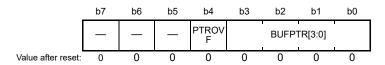
Address(es): S12AD.ADBUFEN 0008 90D0h

Bit	Symbol	Bit Name	Description	R/W
b0	BUFEN	Data Storage Buffer Enable	0: The data storage buffer is not used. 1: The data storage buffer is used.	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The ADBUFEN register is used to enable the data storage buffer.

BUFEN Bit (Data Storage Buffer Enable)

This bit enables the use of the data storage buffer when using the compare function.


When BUFEN = 1, A/D conversion result (addition result) other than self-diagnosis result is stored in ADBUFn.

Disable the data storage operation (BUFEN = 0) before reading ADBUFn and ADBUFPTR.

Do not use the data storage buffer for data duplexing, continuous scan, or group scan.

33.2.38 A/D Data Storage Buffer Pointer Register (ADBUFPTR)

Address(es): S12AD.ADBUFPTR 0008 90D2h

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	BUFPTR[3:0]	Data Storage Buffer Pointer	These bits indicate the number of data storage buffer to which the next A/D conversion data is transferred.	R/W
b4	PTROVF	Pointer Overflow Flag	O: The data storage buffer pointer has not overflowed. 1: The data storage buffer pointer has overflowed.	R/W
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

The ADBUFPTR register is used for the data storage buffer pointer.

BUFPTR[3:0] Bits (Data Storage Buffer Pointer)

These read-only bits indicate the number of data storage buffer to which the next A/D conversion data is transferred. When data has been transferred to data storage buffer 15, the pointer value becomes 0000b and the PTROVF flag is set to 1. When the next data has been transferred, the data in data storage buffer 0 is overwritten. Writing 00h to this register clears the value of these bits. Writing a value other than 00h is disabled.

PTROVF Flag (Pointer Overflow Flag)

This read-only flag indicates whether the data storage buffer pointer has overflowed. This flag is set to 1 when the pointer value becomes 0000b (overflow).

Writing 00h to this register clears this flag value. Writing a value other than 00h is disabled.

33.3 Operation

33.3.1 Scanning Operation

In scanning, A/D conversion is performed sequentially on the analog inputs of the specified channels.

A scan conversion is performed in three operating modes: single scan mode, continuous scan mode, and group scan mode. Also, conversion modes are divided into high-speed conversion mode and normal conversion mode. In single scan mode, one or more specified channels are scanned once. In continuous scan mode, one or more specified channels are scanned repeatedly until the ADCSR.ADST bit is cleared to 0 from 1 by software. In group scan mode, the selected channels of group A and the selected channels of group B are scanned once after starting to be scanned according to the respective synchronous trigger.

In single scan mode and continuous scan mode, A/D conversion is performed for ANn channels selected by the ADANSA0 and ADANSA1 registers, starting from the channel with the smallest number n. In group scan mode, A/D conversion is performed for ANn channels of group A and group B selected by the ADANSA0, ADANSA1, ADANSB0, and ADANSB1 registers, respectively, starting from the channel with the smallest number n.

When self-diagnosis is selected, it is executed once at the beginning of each scan and one of the three voltages internally generated in the 12-bit A/D converter is converted.

When performing A/D conversion of the temperature sensor output or internal reference voltage, execute scanning individually.

Double trigger mode is to be used with single scan mode or group scan mode. With double trigger mode being enabled, A/D conversion data of a channel selected by the ADCSR.DBLANS[4:0] bits is duplicated only if the conversion is started by the synchronous trigger selected by the ADSTRGR.TRSA[5:0] bits.

33.3.2 Single Scan Mode

33.3.2.1 Basic Operation

In basic operation of single scan mode, A/D conversion is performed once on the analog input of the specified channels as below.

- (1) When the ADCSR.ADST bit is set to 1 (A/D conversion start) by software, synchronous trigger, or asynchronous trigger input, A/D conversion is performed for ANn channels selected by the ADANSA0 and ADANSA1 registers, starting from the channel with the smallest number n.
- (2) Each time A/D conversion of a single channel is completed, the A/D conversion result is stored into the corresponding A/D data register (ADDRy).
- (3) When A/D conversion of all the selected channels is completed, an S12ADI0 interrupt request is generated if the ADCSR.ADIE bit is 1 (S12ADI0 interrupt upon scanning completion enabled).
- (4) The ADST bit remains 1 (A/D conversion start) during A/D conversion, and is automatically cleared to 0 when A/D conversion of all the selected channels is completed. Then the 12-bit A/D converter enters a wait state.

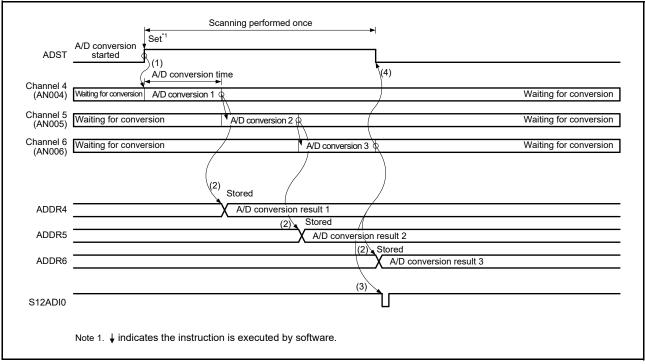


Figure 33.5 Example of Operation in Single Scan Mode (Basic Operation: AN004, AN005, AN006 Selected)

33.3.2.2 Channel Selection and Self-Diagnosis

When channels and self-diagnosis are selected, A/D conversion is performed once for the reference voltage VREFH0 supplied to the 12-bit A/D converter as below. After that, A/D conversion is performed only once on the analog input of the selected channels.

- (1) A/D conversion for self-diagnosis is started when the ADCSR.ADST bit is set to 1 (A/D conversion start) by software, synchronous trigger, or asynchronous trigger input.
- (2) When A/D conversion for self-diagnosis is completed, A/D conversion result is stored into the A/D self-diagnosis data register (ADRD), and A/D conversion is performed for ANn channels selected by the ADANSA0 and ADANSA1 registers, starting from the channel with the smallest number n.
- (3) Each time A/D conversion of a single channel is completed, the A/D conversion result is stored into the corresponding A/D data register (ADDRy).
- (4) When A/D conversion of all the selected channels is completed, an S12ADI0 interrupt request is generated if the ADCSR.ADIE bit is 1 (S12ADI0 interrupt upon scanning completion enabled).
- (5) The ADST bit remains 1 (A/D conversion start) during A/D conversion, and is automatically cleared to 0 when A/D conversion of all the selected channels is completed. Then the 12-bit A/D converter enters a wait state.

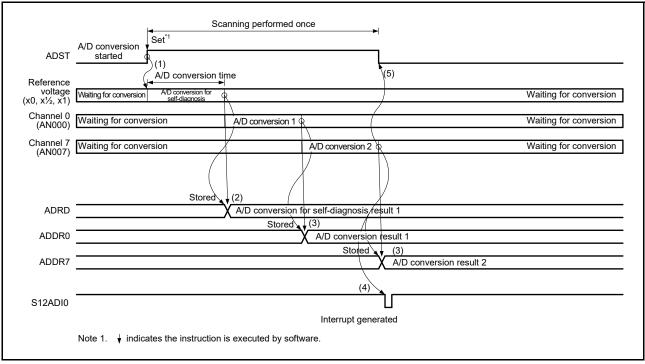


Figure 33.6 Example of Operation in Single Scan Mode (Basic Operation: AN000, AN007 Selected + Self-Diagnosis)

33.3.2.3 A/D Conversion of Temperature Sensor Output/Internal Reference Voltage

A/D conversion of the temperature sensor output and internal reference voltage is performed in single scan mode as below.

All channels should be deselected (by setting the ADANSA0 and ADANSA01 register bits to all 0 and the ADCSR.DBLE bit to 0). When selecting A/D conversion of the temperature sensor output, the A/D conversion select bit for the internal reference voltage (ADEXICR.OCSA) should be set to 0 (deselected). When selecting A/D conversion of the internal reference voltage, the A/D conversion select bit for the temperature sensor output (ADEXICR.TSSA) should be set to 0 (deselected).

- (1) Set the sampling time to 5 μ s or longer.
- (2) After switching to A/D conversion of the internal reference voltage or the temperature sensor output, start A/D conversion by setting the ADST bit to 1.
- (3) When A/D conversion is completed, the conversion result is stored into the corresponding A/D temperature sensor data register (ADTSDR) or A/D internal reference voltage data register (ADOCDR). If the ADCSR.ADIE bit is 1 (S12ADI0 interrupt upon scanning completion enabled), an S12ADI0 interrupt request is generated.
- (4) The ADST bit remains 1 during A/D conversion, and is automatically cleared to 0 upon completion of A/D conversion. Then the 12-bit A/D converter enters a wait state.

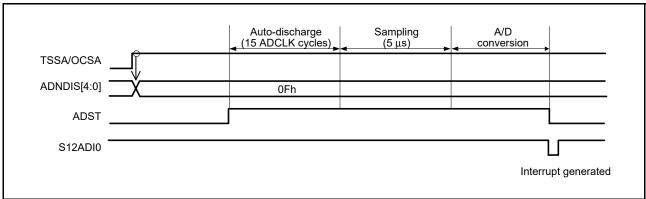


Figure 33.7 Example of Operation in Single Scan Mode (Temperature Sensor Output or Internal Reference Voltage Selected)

33.3.2.4 A/D Conversion in Double Trigger Mode

In single scan mode with double trigger mode, single scan operation started by synchronous trigger is performed twice as below.

Self-diagnosis should be deselected, and the temperature sensor output A/D conversion select bit (ADEXICR.TSSA) and the internal reference voltage A/D conversion select bit (ADEXICR.OCSA) should be set to 0.

Duplication of A/D conversion data is enabled by setting the channel numbers to be duplicated to the

ADCSR.DBLANS[4:0] bits and setting the ADCSR.DBLE bit to 1. When the DBLE bit in ADCSR is set to 1, channel selection using the ADANSA0 and ADANSA1 registers is invalid. In double trigger mode, synchronous triggers should be selected using the ADSTRGR.TRSA[5:0] bits, the ADCSR.EXTRG bit should be set to 0, and the ADCSR.TRGE bit should be set to 1. Software trigger should not be used.

- (1) When the ADCSR.ADST bit is set to 1 (A/D conversion start) by synchronous trigger input, A/D conversion is started on the single channel selected by the ADCSR.DBLANS[4:0] bits.
- (2) When A/D conversion is completed, the A/D conversion result is stored into the corresponding A/D data register (ADDRy).
- (3) The ADST bit is automatically cleared to 0 and the 12-bit A/D converter enters a wait state. Here, an S12ADI0 interrupt request is not generated irrespective of the ADCSR.ADIE bit setting (S12ADI0 interrupt upon scanning completion enabled).
- (4) When the ADCSR.ADST bit is set to 1 (A/D conversion start) by the second trigger input, A/D conversion is started on the single channel selected by the ADCSR.DBLANS[4:0] bits.
- (5) When A/D conversion is completed, the A/D conversion result is stored into the A/D data duplication register (ADDBLDR), which is exclusively used in double trigger mode.
- (6) If the ADCSR.ADIE bit is 1 (S12ADI0 interrupt upon scanning completion enabled), an S12ADI0 interrupt request is generated.
- (7) The ADST bit remains 1 (A/D conversion start) during A/D conversion, and is automatically cleared to 0 when A/D conversion is completed. Then the 12-bit A/D converter enters a wait state.

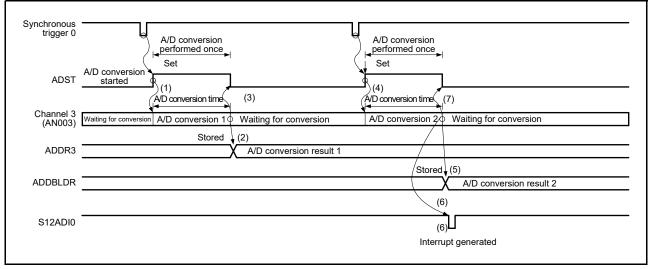


Figure 33.8 Example of Operation in Single Scan Mode (Double Trigger Mode Selected; AN003 Duplicated)

33.3.3 Continuous Scan Mode

33.3.3.1 Basic Operation

In basic operation of continuous scan mode, A/D conversion is performed repeatedly on the analog input of the specified channels as below.

In continuous scan mode, the temperature sensor output A/D conversion select bit (ADEXICR.TSSA) and the internal reference voltage A/D conversion select bit (ADEXICR.OCSA) should be set to 0 (deselected).

- (1) When the ADCSR.ADST bit is set to 1 (A/D conversion start) by software, synchronous trigger, or asynchronous trigger input, A/D conversion is performed for ANn channels selected by the ADANSA0 and ADANSA1 registers, starting from the channel with the smallest number n.
- (2) Each time A/D conversion of a single channel is completed, the A/D conversion result is stored into the corresponding A/D data register (ADDRy).
- (3) When A/D conversion of all the selected channels is completed, an S12ADI0 interrupt request is generated if the ADCSR.ADIE bit is 1 (S12ADI0 interrupt upon scanning completion enabled).
 The 12-bit A/D converter sequentially starts A/D conversion for ANn channels selected by the ADANSA0 and ADANSA1 registers, starting from the channel with the smallest number n.
- (4) The ADCSR.ADST bit is not automatically cleared to 0 and steps 2 and 3 are repeated as long as the bit remains 1 (A/D conversion start). When the ADCSR.ADST bit is set to 0 (A/D conversion stop), A/D conversion stops and the 12-bit A/D converter enters a wait state.
- (5) When the ADST bit is later set to 1 (A/D conversion start), A/D conversion is started again for ANn channels selected by the ADANSA0 and ADANSA1 registers, starting from the channel with the smallest number n.

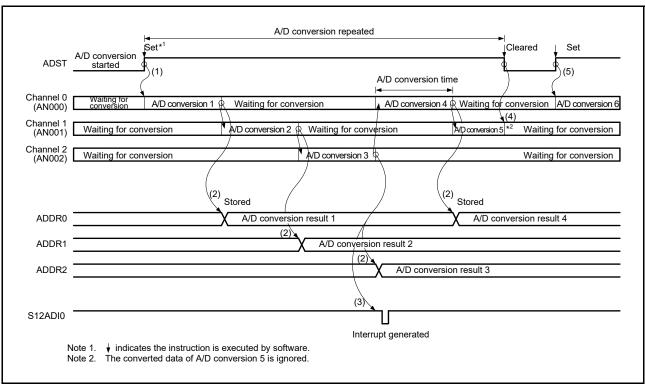


Figure 33.9 Example of Operation in Continuous Scan Mode (Basic Operation: AN000 to AN002 Selected)

33.3.3.2 Channel Selection and Self-Diagnosis

When channels and self-diagnosis are selected at the same time, A/D conversion is first performed for the reference voltage VREFH0 supplied to the 12-bit A/D converter, and then A/D conversion is performed on the analog input of the selected channels, which sequence is repeated as below. In continuous scan mode, the temperature sensor output A/D conversion select bit (ADEXICR.TSSA) and the internal reference voltage A/D conversion select bit (ADEXICR.OCSA) should be set to 0 (deselected).

- (1) When the ADCSR.ADST bit is set to 1 (A/D conversion start) by software, synchronous trigger, or asynchronous trigger input, A/D conversion for self-diagnosis is started first.
- (2) When A/D conversion for self-diagnosis is completed, the A/D conversion result is stored into the A/D self-diagnosis data register (ADRD). A/D conversion is then performed for ANn channels selected by the ADANSA0 and ADANSA1 registers, starting from the channel with the smallest number n.
- (3) Each time A/D conversion of a single channel is completed, the A/D conversion result is stored into the corresponding A/D data register (ADDRy).
- (4) When A/D conversion of all the selected channels is completed, an S12ADI0 interrupt request is generated if the ADCSR.ADIE bit is 1 (S12ADI0 interrupt upon scanning completion enabled). At the same time, the 12-bit A/D converter starts A/D conversion for self-diagnosis and then starts A/D conversion on ANn channels selected by the ADANSA0 and ADANSA1 registers, starting from the channel with the smallest number n.
- (5) The ADST bit is not automatically cleared and steps 2 to 4 are repeated as long as the bit remains 1. When the ADST bit is set to 0 (A/D conversion stop), A/D conversion stops and the 12-bit A/D converter enters a wait state.
- (6) When the ADST bit is later set to 1 (A/D conversion start), the A/D conversion for self-diagnosis is started again.

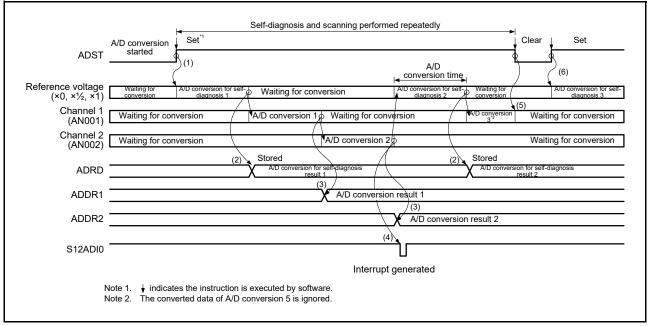


Figure 33.10 Example of Operation in Continuous Scan Mode (Basic Operation; AN001 and AN002 Selected + Self-Diagnosis)

33.3.4 Group Scan Mode

33.3.4.1 Basic Operation

In basic operation of group scan mode, A/D conversion is performed once on the analog inputs of all the specified channels in group A and group B after scanning is started by a synchronous trigger as below. Scan operation of each group is similar to the scan operation in single scan mode.

The synchronous triggers of group A and B can be selected using the TRSA[5:0] and TRSB[5:0] bits in ADSTRGR, respectively. The different triggers should be used for group A and group B to prevent simultaneous A/D conversion of group A and group B. Software trigger should not be used.

The group A channels to be A/D-converted are selected using the ADANSA0 and ADANSA1 registers while the group B channels to be A/D-converted are selected using the ADANSB0 and ADANSB1 registers. The same channels cannot be selected for both groups.

In group scan mode, the temperature sensor output A/D conversion select bit (ADEXICR.TSSA) and the internal reference voltage A/D conversion select bit (ADEXICR.OCSA) should be set to 0 (deselected).

When self-diagnosis is selected in group scan mode, self-diagnosis is separately executed for group A and group B. The following describes operation in group scan mode using a trigger from the MTU. The TRG4AN and TRG4BN triggers from the MTU are assumed to be used to start conversion of group A and group B, respectively.

- (1) Scanning of group A is started by the TRG4AN trigger from the MTU.
- (2) When group A scanning is completed, an S12ADI0 interrupt is generated if the ADCSR.ADIE bit is 1 (S12ADI0 interrupt upon scanning completion enabled).
- (3) Scanning of group B is started by the TRG4BN trigger from the MTU.
- (4) When group B scanning is completed, a GBADI interrupt is generated if the ADCSR.GBADIE bit is 1 (GBADI interrupt upon scanning completion enabled).

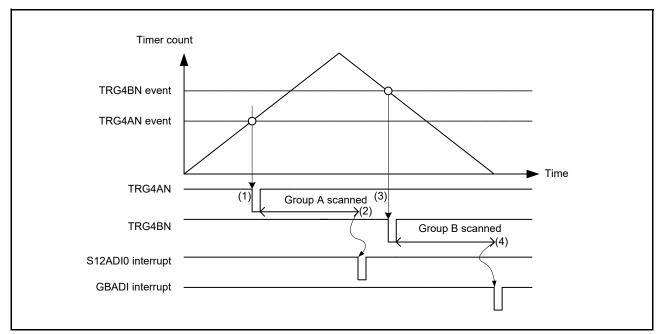


Figure 33.11 Example of Operation in Group Scan Mode
(Basic Operation: Synchronous Triggers from MTU Used)

33.3.4.2 A/D Conversion in Double Trigger Mode

When double trigger mode is selected in group scan mode, two rounds of single scan operation started by a synchronous trigger are performed as a sequence for group A. For group B, single scan operation started by a synchronous trigger is performed once.

In group scan mode, the synchronous triggers of group A and B can be selected using the TRSA[5:0] and TRSB[5:0] bits in ADSTRGR, respectively. The different triggers should be used for group A and group B to prevent simultaneous A/D conversion of group A and group B. Software trigger and asynchronous trigger should not be used.

The group A and group B channels to be A/D-converted are selected using the ADCSR.DBLANS[4:0] bits and the ADANSB0 and ADANSB1 registers, respectively. The same channels cannot be selected for both groups.

In group scan mode, the temperature sensor output A/D conversion select bit (ADEXICR.TSSA) and the internal reference voltage A/D conversion select bit (ADEXICR.OCSA) should be set to 0 (deselected).

When double trigger mode is selected in group scan mode, self-diagnosis cannot be selected.

Duplication of A/D conversion data is enabled by setting the channel numbers to be duplicated to the ADCSR.DBLANS[4:0] bits and setting the ADCSR.DBLE bit to 1.

The following describes operation in group scan mode with double trigger mode using a synchronous trigger from the MTU. The TRG4ABN and TRG0AN triggers from the MTU are assumed to be used to start conversion of group A and group B, respectively.

- (1) Scanning of group B is started by the TRG0AN trigger from the MTU.
- (2) When group B scanning is completed, a GBADI interrupt is generated if the ADCSR.GBADIE bit is 1 (GBADI interrupt upon scanning completion enabled).
- (3) The first scanning of group A is started by the first TRG4ABN trigger from the MTU.
- (4) When the first scanning of group A is completed, the conversion result is stored into the corresponding A/D data register (ADDRy); an S12ADI0 interrupt request is not generated irrespective of the ADIE bit setting in ADCSR.
- (5) The second scanning of group A is started by the second TRG4ABN trigger from the MTU.
- (6) When the second scanning of group A is completed, the conversion result is stored into ADDBLDR. An S12ADI0 interrupt is generated if the ADCSR.ADIE bit is 1 (S12ADI0 interrupt upon scanning completion enabled).

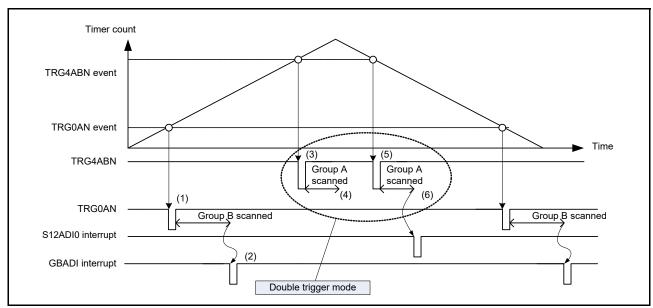


Figure 33.12 Example of Operation in Group Scan Mode with Double Trigger Mode (Basic Operation: Synchronous Triggers from MTU Used)

33.3.4.3 Operation under Group-A Priority Control

Setting the PGS bit in the A/D group scan priority control register (ADGSPCR) to 1 in group scan mode makes operation proceed under group-A priority control. When setting the PGS bit in the ADGSPCR register to 1, follow the procedure described in Figure 33.13. If the procedure is not followed, A/D conversion operation and stored data are not guaranteed.

In operation in basic group scan mode, input of the trigger for the other group during operation for A/D conversion in group A or group B is ignored. Under group-A priority control, if a group-A trigger is input during A/D conversion for group B, A/D conversion for group B is discontinued and A/D conversion for group A proceeds. If the setting of the ADGSPCR.GBRSCN bit is 0, the converter enters a wait state on completion of the A/D conversion for group A. If the setting of the ADGSPCR.GBRSCN bit is 1, the converter automatically restarts scanning for group B from the head of the group after completion of the A/D conversion for group A. Table 33.9 summarizes operations in response to the input of a trigger during A/D conversion with the settings of the ADGSPCR.GBRSCN bit.

Scan operations in group A or group B are the same in single scan mode. Furthermore, single scanning continues to proceed if the ADGSPCR.GBRP bit is set to 1 during scanning operations for group B.

For the trigger settings in group scan mode, select a synchronous trigger for group A using the ADSTRGR.TRSA[5:0] bits and select a synchronous trigger different from that of group A for group B using the ADSTRGR.TRSB[5:0] bits. Set the ADSTRGR.TRSB[5:0] bits to 3Fh when setting the ADGSPCR.GBRP bit to 1. Furthermore, as targets for A/D conversion, select channels for group A using the ADANSA0 and ADANSA1 registers, and for group B, select channels different from those for group A using the ADANSB0 and ADANSB1 registers.

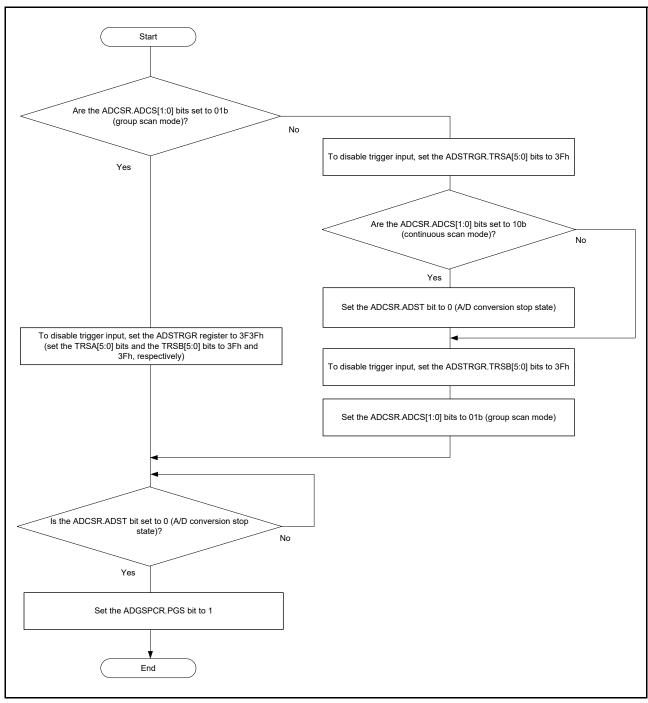


Figure 33.13 Flow of Setting the ADGSPCR.PGS Bit

A/D Conversion Operation	Trigger Input	ADGSPCR.GBRSCN = 0	ADGSPCR.GBRSCN = 1
When A/D conversion for	Input of trigger for group A	Trigger input is ineffective.	Trigger input is ineffective.
group A is in progress	Input of trigger for group B	Trigger input is ineffective.	A/D conversion is performed on group B after A/D conversion on group A is completed.
When A/D conversion for group B is in progress	Input of trigger for group A	Conversion for group B that is in progress is discontinued and conversion for group A starts.	 Conversion in progress for group B is discontinued and conversion for group A starts. Conversion for group B starts after conversion for group A is completed.
	Input of trigger for group B	Trigger input is ineffective.	Trigger input is ineffective.

Table 33.9 Control of A/D Conversion Operations According to the Settings of the ADGSPCR.GBRSCN Bit

The following describes the operations in group scan mode under group-A priority control (i.e. ADGSPCR.GBRSCN = 1 and ADGSPCR.GBRP = 0) when channel 0 is selected for group A and channels 1 to 3 are selected for group B.

- (1) When input of a trigger for group B sets the ADCSR.ADST bit to 1 (A/D conversion start), conversion for the ANn channels selected in the ADANSB0 and ADANSB1 registers, starting from the channel with the smallest number n.
- (2) On completion of A/D conversion, the result is stored in the corresponding A/D data register (ADDRy).
- (3) The ADCSR.ADST bit is cleared on the input of a trigger for group A while operation for A/D conversion in group B is in progress, and the latter is discontinued. After that, the ADCSR.ADST bit is set to 1 (A/D conversion start), and conversion for the ANn channels selected in the ADANSA0 and ADANSA1 registers, starting from the channel with the smallest number n.
- (4) On completion of A/D conversion on a single channel, the result is stored in the corresponding A/D data register (ADDRy).
- (5) An S12ADI0 interrupt request is generated if the setting of the ADCSR.ADIE bit is 1 (S12ADI0 interrupt upon scanning completion enabled).
- (6) After the ADST bit is automatically cleared, again, the bit is automatically set to 1 (A/D conversion start) and conversion for the ANn channels of group B selected in the ADANSB0 and ADANSB1 registers, starting from the channel with the smallest number n.
- (7) On completion of A/D conversion on a single channel, the result is stored in the corresponding A/D data register (ADDRy).
- (8) A GBADI interrupt request is generated if the setting of the ADCSR.GBADIE bit is 1 (GBADI interrupt upon group B scanning completion enabled).
- (9) The ADST bit remains 1 (A/D conversion start) during A/D conversion and is automatically cleared on completion of conversion, after which the A/D converter enters a wait state.

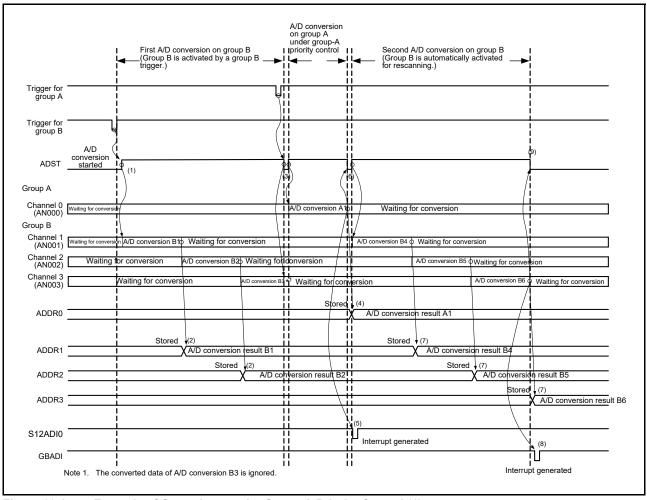


Figure 33.14 Example of Operations under Group-A Priority Control (1) (when ADGSPCR.GBRSCN = 1 and ADGSPCR.GBRP = 0)

The following is an example when a group A trigger is input again during rescanning operation on group B. In this example, channel 0 is selected for group A and channels 1 to 3 are selected for group B when operation on group A is given priority (ADGSPCR.GBRSCN = 1, ADGSPCR.GBRP = 0).

- (1) When a group B trigger input sets the ADCSR.ADST bit to 1 (A/D conversion start), conversion for the ANn channels of group B selected in the ADANSB0 and ADANSB1 registers starts in order from the channel with the lowest number n.
- (2) On completion of A/D conversion on a single channel, the result is stored in the corresponding A/D data register (ADDRy).
- (3) The ADCSR.ADST bit is cleared to 0 (A/D conversion stop) on the input of a trigger for group A while operation for A/D conversion in group B is in progress, and the latter is discontinued.
- (4) After that, the ADCSR.ADST bit is set to 1 automatically and A/D conversion for the ANn group A channels selected in the ADANSA0 and ADANSA1 registers starts in order from the channel with the lowest number n.
- (5) On completion of A/D conversion on a single channel, the result is stored in the corresponding A/D data register (ADDRy).
- (6) An S12ADI0 interrupt request is generated if the setting of the ADCSR.ADIE bit is 1 (S12ADI0 interrupt upon scanning completion enabled).

- (7) On completion of A/D conversion on the group A, rescanning operation on group B sets the ADCSR.ADST bit to 1 automatically if the setting of the ADGSPCR.GBRSCN bit is 1 (rescanning operation enabled). After that, A/D conversion for the ANn group B channels selected in the ADANSB0 and ADANSB1 registers starts again in order from the channel with the lowest number n.
- (8) On completion of A/D conversion on a single channel, the result is stored in the corresponding A/D data register (ADDRy).
- (9) If a group A trigger is input during A/D conversion on group B for rescanning, the ADCSR.ADST bit is cleared to 0 (A/D conversion stop) and the ongoing A/D conversion on group B is stopped.
- (10) After that, the ADCSR.ADST bit is set to 1 automatically and A/D conversion for the ANn group A channels selected in the ADANSA0 and ADANSA1 registers starts in order from the channel with the lowest number n.
- (11) On completion of A/D conversion on a single channel, the result is stored in the corresponding A/D data register (ADDRy).
- (12) An S12ADI0 interrupt request is generated if the setting of the ADCSR.ADIE bit is 1 (S12ADI0 interrupt upon scanning completion enabled).
- (13) On completion of A/D conversion on group A, rescanning operation on group B sets the ADCSR.ADST bit to 1 automatically if the setting of the ADGSPCR.GBRSCN bit is 1 (rescanning operation enabled). After that, A/D conversion for the ANn group B channels selected in the ADANSB0 and ADANSB1 registers starts again in order from the channel with the lowest number n.
- (14) If a group A trigger is input during A/D conversion on group B for rescanning, steps 9 to 13 are repeated. If a group A trigger is not input, the ADCSR.ADST bit is cleared automatically on completion of A/D conversion on group B and the 12-bit A/D converter enters a wait state.

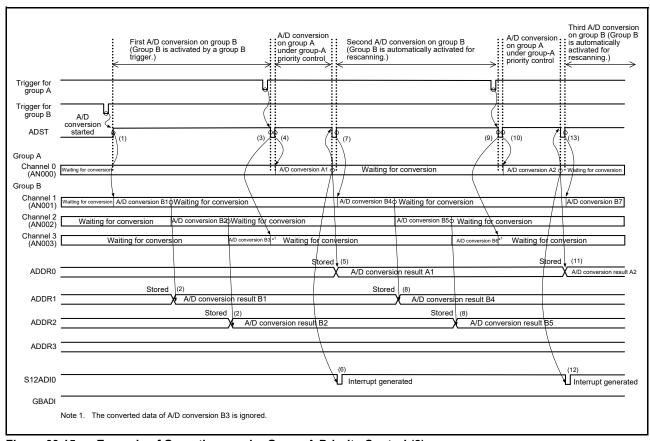


Figure 33.15 Example of Operations under Group-A Priority Control (2) (when ADGSPCR.GBRSCN = 1 and ADGSPCR.GBRP = 0)

The following is an example of a rescanning operation in which a group B trigger is input during A/D conversion on group A. In this example, channels 1 to 3 are selected for group A and channel 0 is selected for group B when operation on group A is given priority (ADGSPCR.GBRSCN = 1, ADGSPCR.GBRP = 0).

- (1) When input of a trigger for group A sets the ADCSR.ADST bit to 1 (A/D conversion start), conversion for the ANn channels selected in the ADANSA0 and ADANSA1 registers, starting from the channel with the smallest number n.
- (2) On completion of A/D conversion on a single channel, the result is stored in the corresponding A/D data register (ADDRy).
- (3) If a group B trigger is input during A/D conversion on group A, A/D conversion on group B can be performed after the A/D conversion on group A is completed. (However, if group A triggers are input continuously, the scan operation on group B is canceled by group A and is not performed.)
- (4) On completion of the A/D conversion on the group A, an S12ADI0 interrupt request is generated if the setting of the ADCSR.ADIE bit is 1 (S12ADI0 interrupt upon scanning completion enabled).
- (5) On completion of the A/D conversion on the group A, activation of group B for rescanning sets the ADCSR.ADST bit to 1 automatically.
 - After that, conversion for the ANn channels of group B selected in the ADANSB0 and ADANSB1 registers, starting from the channel with the smallest number n.
- (6) On completion of A/D conversion on a single channel, the result is stored in the corresponding A/D data register (ADDRy).
- (7) On completion of the rescanning operation on the group B, a GBADI interrupt request is generated if the setting of the ADCSR.GBADIE bit is 1 (GBADI interrupt upon scanning completion enabled).
- (8) The ADST bit retains the value 1 (A/D conversion start) during A/D conversion and is automatically cleared on completion of conversion, after which the A/D converter enters a wait state.

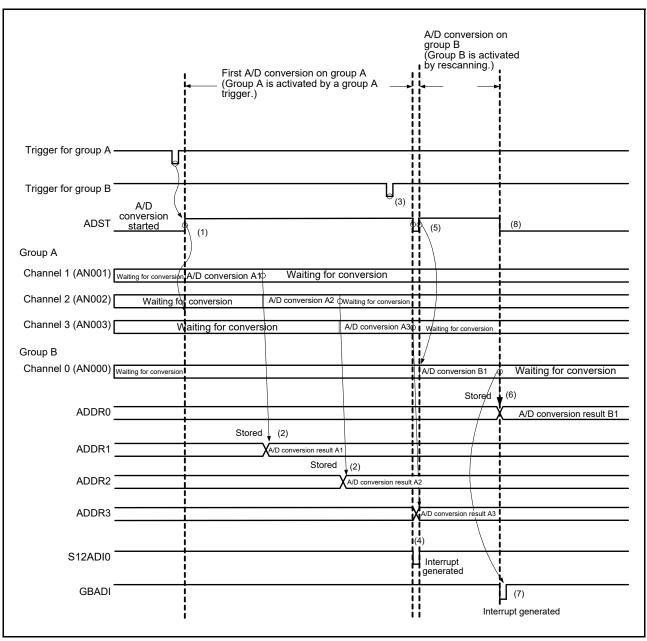


Figure 33.16 Example of Operations under Group-A Priority Control (3) (when ADGSPCR.GBRSCN = 1 and ADGSPCR.GBRP = 0)

The following is an example of operation under group-A priority control in which channel 0 is selected for group A and channels 1 to 3 are selected for group B (ADGSPCR.GBRSCN = 0, ADGSPCR.GBRP = 0).

- (1) When input of a trigger for group B sets the ADCSR.ADST bit to 1 (A/D conversion start), conversion for the ANn channels selected in the ADANSB0 and ADANSB1 registers, starting from the channel with the smallest number n.
- (2) On completion of A/D conversion on a single channel, the result is stored in the corresponding A/D data register (ADDRy).
- (3) If a group A trigger is input during A/D conversion on group B, the ADCSR.ADST bit is cleared to 0 and the ongoing A/D conversion on group B is stopped. After that, the ADCSR.ADST bit is set to 1 (A/D conversion start) and conversion for the ANn channels selected in the ADANSA0 and ADANSA1 registers, starting from the channel with the smallest number n.
- (4) On completion of A/D conversion on a single channel, the result is stored in the corresponding A/D data register (ADDRy).
- (5) An S12ADI0 interrupt request is generated if the setting of the ADCSR.ADIE bit is 1 (S12ADI0 interrupt upon scanning completion enabled).
- (6) The ADCSR.ADST bit retains the value 1 (A/D conversion start) during A/D conversion and is cleared on completion of conversion, after which the A/D converter enters a wait state.

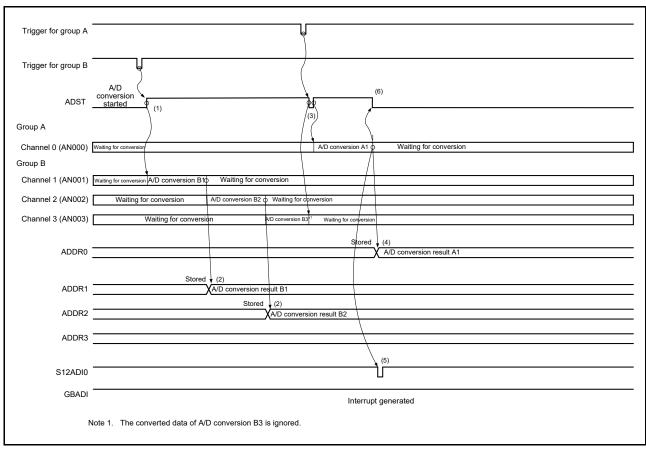


Figure 33.17 Example of Operation under Group-A Priority Control (4) (when ADGSPCR.GBRSCN = 0 and ADGSPCR.GBRP = 0)

The following is an example of operation under group-A priority control in which channel 0 is selected for group A and channels 1 to 3 are selected for group B (ADGSPCR.GBRP = 1).

- (1) The ADCSR.ADST bit is set to 1 (A/D conversion start) when ADGSPCR.GBRP is set to 1, and conversion for the ANn channels selected in the ADANSB0 and ADANSB1 registers, starting from the channel with the smallest number n.
- (2) On completion of A/D conversion on a single channel, the result is stored in the corresponding A/D data register (ADDRy).
- (3) If a group A trigger is input during A/D conversion on group B, the ADCSR.ADST bit is cleared to 0 and the ongoing A/D conversion on group B is stopped. After that, the ADCSR.ADST bit is set to 1 (A/D conversion start) and conversion for the ANn channels selected in the ADANSA0 and ADANSA1 registers, starting from the channel with the smallest number n.
- (4) On completion of A/D conversion on a single channel, the result is stored in the corresponding A/D data register (ADDRy).
- (5) An S12ADI0 interrupt request is generated if the setting of the ADCSR.ADIE bit is 1 (S12ADI0 interrupt upon scanning completion enabled).
- (6) After the ADST bit is automatically cleared, again, the ADCSR.ADST bit is automatically set to 1 (A/D conversion start) and conversion for the ANn channels selected in the ADANSB0 and ADANSB1 registers, starting from the channel with the smallest number n.
- (7) On completion of A/D conversion on a single channel, the result is stored in the corresponding A/D data register (ADDRy).
- (8) A GBADI interrupt request is generated if the setting of the ADCSR. GBADIE bit is 1.
- (9) After the ADST bit is automatically cleared, again, the bit is automatically set to 1 (A/D conversion start) and conversion for the ANn channels selected in the ADANSB0 and ADANSB1 registers, starting from the channel with the smallest number n. Steps 6 to 9 are repeated as long as the ADGSPCR.GBRP bit remains 1. Clearing of the ADCSR.ADST bit to 0 is prohibited while the ADGSPCR.GBRP bit is set to 1. To forcibly stop A/D conversion when ADGSPCR.GBRP = 1, follow the procedures for clear operation by software through the ADCSR.ADST bit shown in section 33.8.2, Notes on Stopping A/D Conversion.

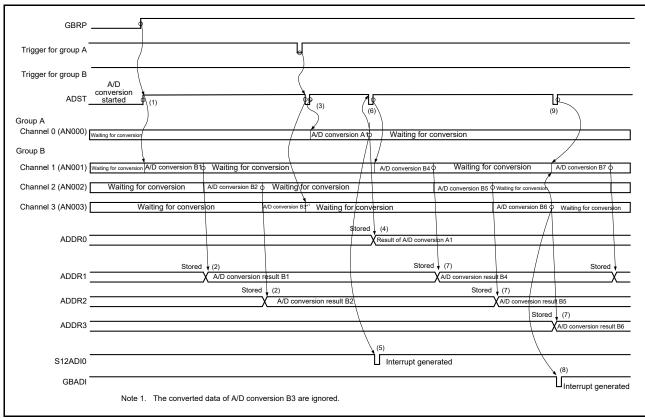


Figure 33.18 Example of Operation under Group-A Priority Control (5) (when ADGSPCR.GBRP = 1)

33.3.5 Compare Function (Window A, Window B)

33.3.5.1 Compare Function Window A/B

The compare function compares the reference value set in the register with the A/D conversion result. The reference value can be set for window A and window B independently. When the compare function is in use, the self-diagnosis function and double trigger mode cannot be used. Big differences between window A and window B are different interrupt output signals and that window B can select only one channel.

The following describes operations in combination of continuous scan mode and the compare function.

- (1) When the ADCSR.ADST bit is set to 1 (A/D conversion start) by software, synchronous trigger, or asynchronous trigger input A/D conversion starts in the order of the selected channel.
- (2) Upon completion of A/D conversion, the A/D conversion result is stored in the corresponding A/D data register (ADDRy, ADTSDR, or ADOCDR). When ADCMPCR.CMPAE = 1, if bits in the ADCMPANSRy register or the ADCMPANSER register are set for window A, the A/D conversion result is compared with the set ADCMPDR0/ADCMPDR1 register value. When ADCMPCR.CMPBE = 1, if bits in the ADCMPBNSR register are set for window B, the A/D conversion result is compared with the set ADWINULB/ADWINLLB register value.
- (3) As a result of the comparison, when window A meets the condition set in ADCMPDR0/ADCMPDR1 or ADCMPLER, the compare window A flag (ADCMPSR0.CMPSTCHA0n, ADCMPSR1.CMPSTCHA1n, ADCMPSER.CMPSTTSA, or ADCMPSER.CMPSTOCA) is set to 1. In the same way, when window B meets the condition set in ADCMPBNSR.CMPLB, the compare window B flag (ADCMPBSR.CMPSTB) is set to 1.
- (4) Upon completion of all selected A/D conversions and comparisons, scan restarts.
- (5) Set the ADCSR.ADST bit to 0 (A/D conversion stop), and execute processing for the channel with the compare flag set to 1.
- (6) Clear all compare flags after processing is competed. To perform comparison again, restart A/D conversion.

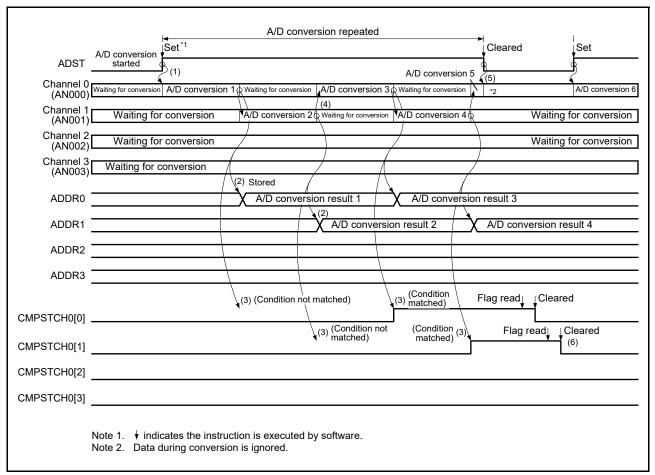


Figure 33.19 Operation Example of Comparison (AN000 to AN003 Compared)

33.3.5.2 ELC Output of Compare Function

The ELC output of the compare function is used to specify the high-side reference value and the low-side reference value for window A and window B respectively, and to compare the A/D converted value of the selected channel with the high/low-side reference value. Depending on whether the comparison conditions for window A and window B are met or not met, the ELC event (S12ADWMELC/S12ADWUMELC) is output according to the event conditions (A or B, A and B, A exor B).

If multiple channels are selected for window A, when the comparison conditions for any of the channels are met, it is recognized that the comparison conditions for window A are met.

When using this function, perform A/D conversion in single scan mode.

Any channels from AN000 to AN007 and AN016 to AN031, internal reference voltage, and temperature sensor output are selectable for window A.

However, when selecting the internal reference voltage or the temperature sensor output, it cannot be selected together with any other channel. Any channels from AN000 to AN007 and AN016 to AN031, internal reference voltage, and temperature sensor output are selectable for window B.

The setting procedure is as follows when this function is to be used. The setting procedure required for normal A/D conversion in single scan mode is omitted.

- (1) Confirm that the value of the ADCSR.ADCS[1:0] bits is 00b (single scan mode).
- (2) Select channels (from AN000 to AN007 and AN016 to AN031, internal reference voltage, and temperature sensor output) in the ADCMPANSR0/ADCMPANSR1 and ADCMPANSER registers (for window A) and in the ADCMPBNSR register (for window B).
- (3) Set window comparison conditions in the ADCMPLR0/ADCMPLR1, ADCMPLER, and ADCMPBNSR registers, and set the upper-limit and lower-limit reference values in the ADCMPDR0/ADCMPDR1, ADWINULB, and ADWINLLB registers.
- (4) Set composite conditions for window A/B, window A/B operation enable, and interrupt output enable in the ADCMPCR register. A scan end event (S12ADELC) is output to the ELC at the end of each single scan. In addition, a match or mismatch event (S12ADWMELC or S12ADWUMELC) is output with a delay of one PCLK cycle depending on the ADCMPCR.CMPAB[1:0] setting.
 - Since match and mismatch events are mutually exclusive, these are not output at the same time.

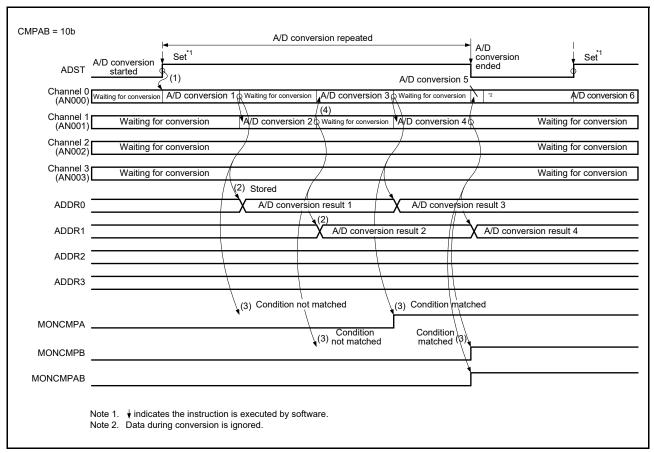


Figure 33.20 Example of Window Compare Function Operation (AN000 to AN003 Compared)

33.3.5.3 Using Data Buffers

This S12ADE is provided with a ring buffer function consisting of 16 A/D data buffers. This function sequentially stores A/D conversion results other than self-diagnosis result (including addition/average results) in data buffers (ADBUFn, n = 0 to 15) when the compare function is used.

Each conversion result is stored at the timing when the A/D conversion result is stored in the data register, and most recent 16 conversion result data are retained.

The following shows the schematic of data buffers, pointer, and overflow flag operations. When the BUFEN bit is set to 1, the A/D conversion result is transferred at each end of A/D conversion. The pointer indicates the number of data buffer to which the next transferred data is to be written. When data is written to up to buffer 15, the pointer is reset to 0000b and the overflow flag is set to 1. Subsequently transferred data overwrites the previously written data. The pointer and overflow flag are reset to the initial value by writing 00h to the ADBUFPTR register.

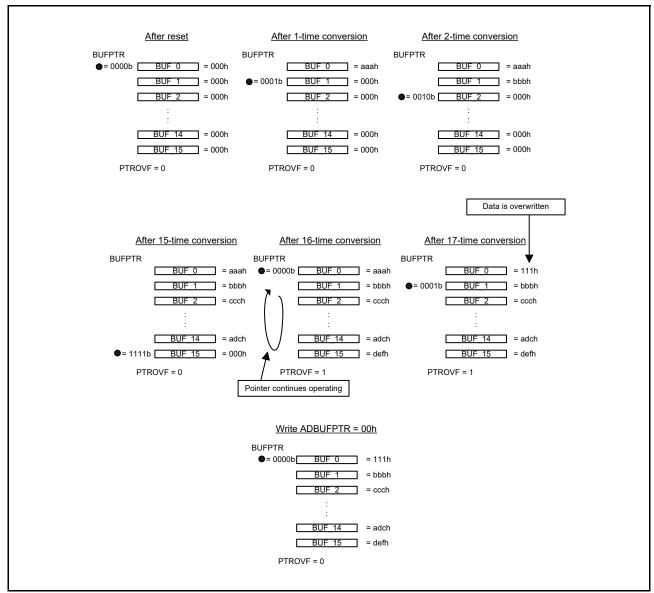


Figure 33.21 Schematic of Data Buffers, Pointer, and Overflow Flag Operations

33.3.5.4 Restrictions for Compare Function

The following restrictions are provided for the compare function.

- 1. The compare function must not be used together the self-diagnosis function or double trigger mode. (The compare function is not available for the ADRD register and the ADDBLDR register.)
- 2. Specify single scan mode when using match/mismatch event outputs.
- 3. When temperature sensor or internal reference voltage is selected for window A, window B operations are disabled.
- 4. When temperature sensor or internal reference voltage is selected for window B, window A operations are disabled.
- 5. It is prohibited to set the same channel for window A and window B.
- 6. When using the buffer function, specify single scan mode. (It is also prohibited to use double trigger mode together.)
- 7. Set the reference voltage values so that the high-side reference voltage value is equal to or larger than the low-side reference voltage value.

33.3.6 Analog Input Sampling Time and Scan Conversion Time

Scan conversion can be activated either by software, synchronous trigger, or asynchronous trigger input. After the start-of-scanning-delay time (t_D) has elapsed, processing for disconnection detection assistance and processing of conversion for self-diagnosis proceed, and this is followed by processing for A/D conversion.

Figure 33.22 shows the scan conversion timing in single scan mode, in which scan conversion is activated by software or a synchronous trigger. Figure 33.23 shows the scan conversion timing in single scan mode, in which scan conversion is activated by an asynchronous trigger. The scan conversion time (t_{SCAN}) includes the start-of-scanning-delay time $(t_{DIAG})^{*2}$, A/D conversion processing time $(t_{DIAG})^{*2}$, A/D conversion processing time (t_{CONV}) , and end-of-scanning-delay time (t_{ED}) .

The A/D conversion processing time (t_{CONV}) consists of sampling time (t_{SPL}) and time for conversion by successive approximation (t_{SAM}) . The sampling time (t_{SPL}) is used to charge sample-and-hold circuits in the A/D converter. If there is not sufficient sampling time due to the high impedance of an analog input signal source, or if the A/D conversion clock (ADCLK) is slow, sampling time can be adjusted using the ADSSTRn register.

The time for conversion by successive approximation (t_{SAM}) is at 32 ADCLK states during high-speed conversion operation, and 41 ADCLK states during low-current conversion operation. Table 33.10 shows the scan conversion time.

The scan conversion time (t_{SCAN}) in single scan mode for which the number of selected channels is n can be determined as follows:

$$t_{SCAN} = t_D + (t_{DIS} \times n) + t_{DIAG} + (t_{CONV} \times n)^{*3} + t_{ED}$$

The scan conversion time for the first cycle in continuous scan mode is t_{SCAN} for single scan minus t_{ED} . The scan conversion time for the second and subsequent cycles in continuous scan mode is fixed to $(t_{DIS} \times n) + t_{DIAG} + t_{DSD} + (t_{CONV} \times n)$.

- Note 1. When disconnection detection assistance is not selected, t_{DIS} = 0. The auto-discharge period of 15 ADCLK states is inserted only when the temperature sensor or internal reference voltage is A/D-converted.
- Note 2. When the self-diagnosis function is not used, $t_{DIAG} = 0$, $t_{DSD} = 0$.
- Note 3. $t_{CONV} \times n$ when the sampling time (t_{SPL}) of selected channels is the same, but it is the total of the sampling time of each channel and time for conversion by successive approximation (t_{SAM}).

Table 33.10 Times for Conversion during Scanning (in Numbers of Cycles of ADCLK and PCLK)

					Туре	e/Conditions		
Item			Symbol		Synchronous Trigger *5	Asynchronous Software Trigger Trigger		Unit
Scan start processing time*1, *2	A/D conversion on group A under group-A priority	Group B is to be stopped. (Group A is activated after group B is stopped due to an A/D conversion source of group A.)	t _D		3 PCLK + 6 ADCLK	_	_	Cycle
	control.	Group B is not to be stopped. (Activation by an A/D conversion source of group A.)			2 PCLK + 4 ADCLK	_	_	
	A/D conversion when self- diagnosis is enabled	A/D conversion for self-diagnosis is to be started.			2 PCLK + 6 ADCLK	4 PCLKB + 6 ADCLK	6 ADCLK	
	Other than above				2 PCLK + 4 ADCLK	4 PCLKB + 4 ADCLK	4 ADCLK	
Disconnection detection assistance processing time		t _{DIS}		The setting of ADNDIS[3:0] (initial value = 00h) × ADCLK*3				
Self-diagnosis	Sampling time	t _{DIAG}	t _{SPL}	The setting of ADSSTR0 (i	g of ADSSTR0 (initial value = 0Dh) × ADCLK*4			
conversion processing	Time for	12-bit conversion accuracy	t _{SAM}	32 ADCLK (during high-speed conversion operation)				
time*1	conversion by successive approximation				41 ADCLK (during low-curr	ent conversion ope	ration)	
	Normal A/D conversion is to be started after completion of self-diagnosis conversion.			t _{DED}	2 ADCLK			
	A/D conversion for self-diagnosis is to be started after completion of conversion for continuous scan on the last channel specified.			t _{DSD}	2 ADCLK			
A/D conversion processing time*1	Sampling time		t _{CONV}	t _{SPL}	The setting of ADSSTRn (n = 0 to 7, L, T, O) (initial value 0Dh) × ADCLK*4		nitial value =	
	Time for	12-bit conversion accuracy		t _{SAM}	32 ADCLK (during high-speed conversion operation)			
	conversion by successive approximation				41 ADCLK (during low-curr	ent conversion ope	ration)	
Scan end proce	Scan end processing time*1				1 PCLKB + 3 ADCLK*6			1

- Note 1. For t_D , t_{DIAG} , t_{CONV} , and t_{ED} , see Figure 33.22 and Figure 33.23.
- Note 2. This is the maximum time required from software writing or trigger input to A/D conversion start.
- Note 3. The value is fixed to 0Fh (15 ADCLK) when the temperature sensor output or internal reference voltage is A/D-converted.
- Note 4. The required sampling time (ns) is specified according to the voltage conditions. See section 40.4, A/D Conversion Characteristics.
- Note 5. This does not include the time consumed in the path from timer output to trigger input.
- Note 6. 2 PCLK + 3 ADCLK when ADCLK is faster than PCLK (PCLK to ADCLK frequency ratio = 1:2 or 1:4).

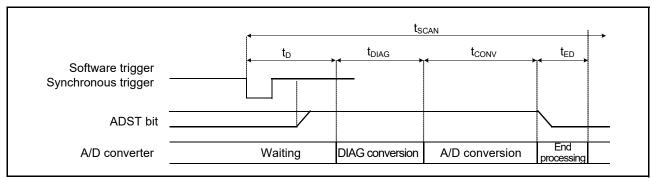


Figure 33.22 Scan Conversion Timing (Activated by Software or Synchronous Trigger)

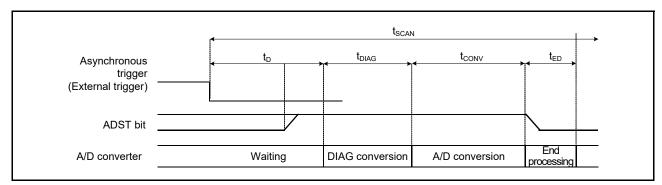


Figure 33.23 Scan Conversion Timing (Activated by Asynchronous Trigger)

33.3.7 Usage Example of A/D Data Register Automatic Clearing Function

Setting the ADCER.ACE bit to 1 automatically clears the A/D data registers (ADDRy, ADRD, ADTSDR, ADOCDR, ADDBLDR) to 0000h when the A/D data registers are read by the CPU or DTC.

The ring buffer (ADBUFn: n = 0 to 15) is not subject to auto-clearing.

This function enables detection of update failures of the A/D data registers (ADDRy, ADRD, ADTSDR, ADOCDR, ADDBLDR). The following describes the examples in which the function to automatically clear the ADDRy register is enabled and disabled.

In a case where the ADCER.ACE bit is 0 (automatic clearing disabled), if the A/D conversion result (0222h) is not written to the ADDRy register for some reason, the old data (0111h) will be the ADDRy value. Furthermore, if this ADDRy value is read into a general register using an A/D scan end interrupt, the old data (0111h) can be saved in the general register. When checking whether there is an update failure, it is necessary to frequently save the old data in the RAM or a general register.

In a case where the ADCER.ACE bit is 1 (automatic clearing enabled), when ADDRy = 0111h is read by the CPU or DTC, ADDRy is automatically cleared to 0000h. After that, if the A/D conversion result 0222h cannot be transferred to ADDRy for some reason, the cleared data (0000h) remains as the ADDRy value. If this ADDRy value is read into a general register using an A/D scan end interrupt at this point, 0000h will be saved in the general register.

Occurrence of an ADDRy update failure can be determined by simply checking that the read data value is 0000h.

33.3.8 A/D-Converted Value Addition/Average Mode

input, temperature sensor output, or internal reference voltage is selected.

In A/D-converted value addition mode, the same channel is A/D-converted 2, 3, 4, or 16 consecutive times and the sum of the converted values is stored in the data register. In A/D-converted value average mode, the same channel is A/D-converted two or four consecutive times and the mean of the converted values is stored in the data register. The use of the average of these results can improve the accuracy of A/D conversion, depending on the types of noise components that are present. This function, however, cannot always guarantee an improvement in A/D conversion accuracy. The A/D-converted value addition/average mode can be specified when A/D conversion of the channel select analog

33.3.9 Disconnection Detection Assist Function

This converter incorporates the function to fix the charge for sampling capacitance to the specified state before start of A/D conversion. This function enables disconnection detection in wiring of analog inputs.

Figure 33.24 illustrates the A/D conversion operation when the disconnection detection assist function is used. Figure 33.25 shows an example of disconnection detection when precharge is selected. Figure 33.26 shows an example of disconnection detection when discharge is selected.

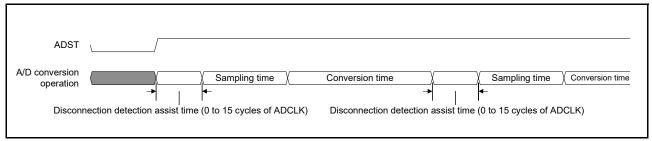


Figure 33.24 Operation of A/D Conversion When the Disconnection Detection Assist Function is Used

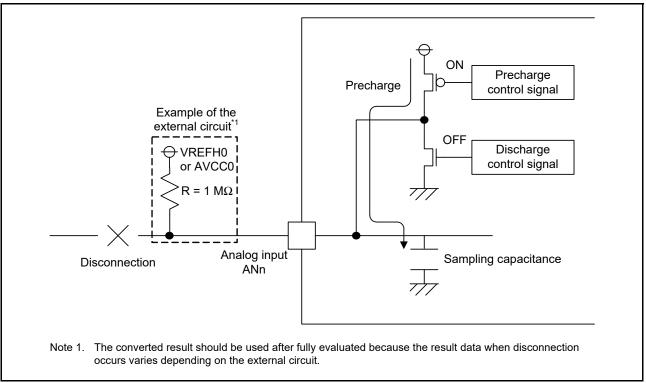


Figure 33.25 Example of Disconnection Detection When Precharge is Selected

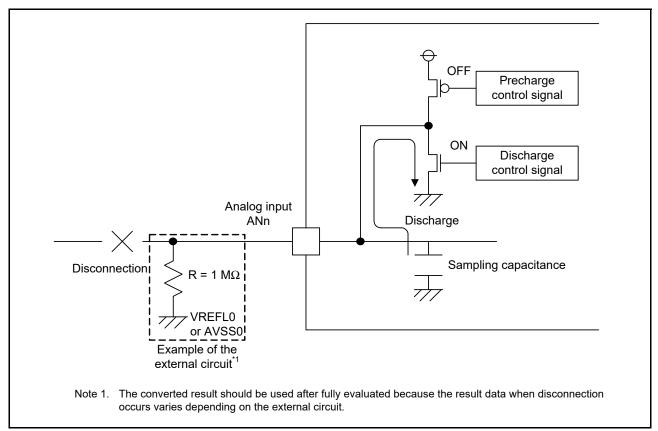


Figure 33.26 Example of Disconnection Detection When Discharge is Selected

33.3.10 Starting A/D Conversion with Asynchronous Trigger

The A/D conversion can be started by the input of an asynchronous trigger. To start up the A/D converter by an asynchronous trigger, the A/D conversion start trigger select bits (ADSTRGR.TRSA[5:0]) should be set to 000000b, and a high-level signal should be input to the asynchronous trigger (ADTRG0# pin). Then, the ADCSR.TRGE and ADCSR.EXTRG bits should be set to 1. Figure 33.27 shows a timing of the asynchronous trigger input. For the time from when the ADST bit is set to 1 until conversion starts, refer to section 33.8.3, A/D Conversion Restarting Timing and Termination Timing. An asynchronous trigger cannot be selected for group B used in group scan mode.

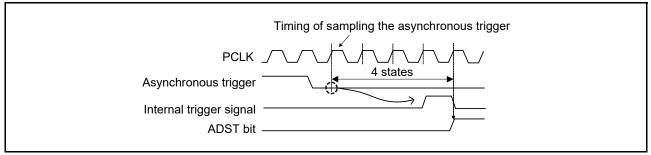


Figure 33.27 Timing of Sampling Asynchronous Trigger

33.3.11 Starting A/D Conversion with Synchronous Trigger from Peripheral Module

The A/D conversion can be started by a synchronous trigger. To start the A/D conversion by a synchronous trigger, the ADCSR.TRGE bit should be set to 1, the ADCSR.EXTRG bit should be cleared to 0, and the relevant sources should be selected by the ADSTRGR.TRSA[5:0] and ADSTRGR.TRSB[5:0] bits.

33.4 Interrupt Sources and DTC Transfer Requests

33.4.1 Interrupt Requests

The 12-bit A/D converter can send scan end interrupt requests S12ADI0 and GBADI to the CPU.

Setting the ADCSR.ADIE bit to 1 and 0 enables and disables an S12ADI0 interrupt, respectively; similarly, setting the ADCSR.GBADIE bit to 1 and 0 enables and disables a GBADI interrupt, respectively.

In addition, the DTC can be activated when an S12ADI0 or a GBADI interrupt is generated. Using an S12ADI0 or a GBADI interrupt to allow the DTC to read the converted data enables continuous conversion without burden on software.

For details on DTC settings, see section 16, Data Transfer Controller (DTCa).

33.5 Event Link Function

33.5.1 Event Output to the ELC

The ELC uses the S12ADI0 interrupt request signal as an event signal (S12ADELC), enabling link operation for the preset module. An event signal is generated under the conditions set by the event link control bits (ADELCCR.ELCC[1:0] bits).

The event signal can be output regardless of the setting of the corresponding interrupt request enable bit.

The 12-bit A/D converter outputs the A/D conversion end event (S12ADELC), window function compare match event (S12ADWMELC), and mismatch event (S12ADWUMELC).

The scan end event (S12ADELC) is output to the ELC at the same time as the interrupt output (S12ADI0) regardless of the ADCSR.ADIE setting.

The compare match/mismatch event (S12ADWMELC/S12ADWUMELC) is output to the ELC with a delay of one PCLK cycle from the interrupt output (S12ADI0) regardless of the ADCSR.ADIE setting.

When using compare match/mismatch events (S12ADWMELC/S12ADWUMELC) to the ELC, specify single scan mode.

33.5.2 12-Bit A/D Converter Operation by Event from the ELC

The 12-bit A/D converter can be started by the predetermined event by setting ELSRn of the ELC.

33.5.3 Note on 12-Bit A/D Converter When an Event Is Input from the ELC

If an event occurs during A/D conversion, the event is disabled.

33.6 Selecting Reference Voltage

For the A/D converter, the high-potential reference voltage can be selected from VREFH0 and AVCC0, and the low-potential reference voltage can be selected from VREFL0 and AVSS0, respectively. Set these before starting A/D conversion. For details of this setting, see section 33.2.30, A/D High-Potential/Low-Potential Reference Voltage Control Register (ADHVREFCNT).

33.7 Allowable Impedance of Signal Source

To achieve high-speed conversion of 1.0 μ s, the analog input pins of this MCU are designed so that the conversion accuracy is guaranteed if the impedance of the input signal source is 0.3 μ s or less. If an external capacitor of large capacitance is attached in the application in which only a single pin input is converted in single scan mode, the only load on input is virtually 2.6 μ s of the internal input resistor; therefore, the impedance of the signal source can be ignored. Being a low-pass filter, however, an analog input circuit may not follow the analog signal with a large differential coefficient. When high-speed analog signals are to be converted or multiple pins are to be converted in scan mode, a low-impedance buffer should be used.

Figure 33.28 shows an equivalent circuit of an analog input pin and an external sensor.

To perform A/D conversion accurately, charging of the internal capacitor C shown in Figure 33.28 must be completed within the specified period of time. This specified period is referred to as sampling time.

Figure 33.28 Equivalent Circuit of Analog Input Pin and External Sensor

33.8 Usage Notes

33.8.1 Notes on Reading Data Registers

The A/D data registers, A/D data duplication registers, A/D data duplication register A, A/D data duplication register B, A/D temperature sensor data register, A/D internal reference voltage data register, and A/D self-diagnosis data register should be read in word units. If a register is read twice in byte units, that is, the higher-order byte and lower-order byte are separately read, the A/D-converted value having been read first may disagree with the A/D-converted value having been read for the second time. To prevent this, the data registers should never be read in byte units.

33.8.2 Notes on Stopping A/D Conversion

To stop A/D conversion when an asynchronous trigger or a synchronous trigger has been selected as the condition for starting A/D conversion, follow the procedure in Figure 33.29.

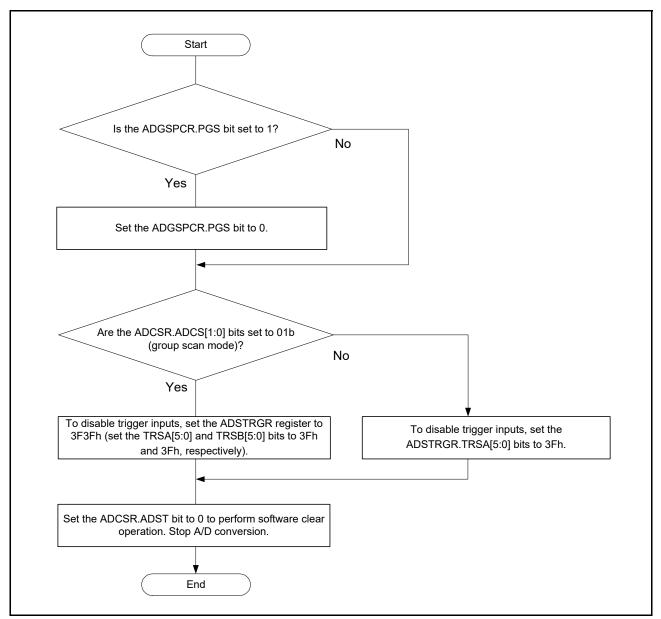


Figure 33.29 Procedure for Clear Operation by Software through the ADCSR.ADST Bit

33.8.3 A/D Conversion Restarting Timing and Termination Timing

It takes a maximum of six ADCLK cycles for the idle analog unit of the 12-bit A/D converter to be restarted by setting the ADCSR.ADST bit to 1. It takes a maximum of three ADCLK cycles for the operating analog unit of the 12-bit A/D converter to be terminated by setting the ADCSR.ADST bit to 0.

33.8.4 Notes on Scan End Interrupt Handling

When scanning the same analog input twice using any trigger, the first A/D-converted data is overwritten with the second A/D-converted data in the case that the CPU does not complete reading the A/D-converted data by the time the A/D conversion of the first analog input for the second scan ends after the first scan end interrupt is generated.

33.8.5 Module Stop Function Setting

Operation of the 12-bit A/D converter can be disabled or enabled by setting module stop control register A (MSTPCRA). The initial setting is for operation of the 12-bit A/D converter to be halted. Register access is enabled by releasing the module stop state.

After the module stop state is released, wait for 1 µs to start A/D conversion. For details, refer to section 11, Low Power Consumption.

33.8.6 Notes on Entering Low Power Consumption States

Before entering the module stop state or software standby mode, make sure to stop A/D conversion. Here, set the ADCSR.ADST bit to 0, and secure certain period of time until the analog unit of the 12-bit A/D converter is stopped. Follow the procedure given below to secure this time.

Follow the procedure for clear operation by software through the ADCSR.ADST bit, shown in Figure 33.29. After that, wait for two clock cycles of ADCLK before entering the peripheral module stop state or software standby mode.

33.8.7 Notes on Canceling Software Standby Mode

After software standby mode is canceled, wait until the crystal oscillation stabilization time or the PLL circuit stabilization time elapses, and then wait for 1 μ s before starting A/D conversion. For details, refer to section 11, Low Power Consumption.

33.8.8 Pin Setting when the 12-bit A/D Converter is Used

When the 12-bit A/D converter is used, do not set any pin of port 4 as output.

Output from any of the pins may affect on A/D conversion accuracy because analog power supply is used in the part of the port 4 circuit.

33.8.9 Error in Absolute Accuracy When Disconnection Detection Assistance is in Use

Using disconnection detection assistance leads to an error in absolute accuracy of the A/D converter. This is because an error voltage is input to the analog input pins due to the resistive voltage division between the pull-up or pull-down resistor (Rp) and the resistance of the signal source (Rs). This error in absolute accuracy is calculated from the following formula. Only use disconnection detection assistance after thorough evaluation.

Maximum error in absolute accuracy (LSB) = $4095 \times Rs / Rp$

33.8.10 ADHSC Bit Rewriting Procedure

Before rewriting the A/D conversion select bit (ADCSR.ADHSC) from 0 to 1 or from 1 to 0, the 12-bit A/D converter must be in the standby state. Carry out steps 1 to 3 below to modify the ADCSR.ADHSC bit. After the sleep bit (ADHVREFCNT.ADSLP) is cleared to 0, wait for at least 1 µs and then start A/D conversion.

ADHSC Bit Rewriting Procedure:

- 1. Set the sleep bit (ADHVREFCNT.ADSLP) to 1.
- 2. Wait for at least 0.2 μs, and then modify the A/D conversion select bit (ADCSR.ADHSC).
- 3. Wait for at least 4.8 µs, and then clear the sleep bit (ADHVREFCNT.ADSLP) to 0.

Note: It is prohibited to set the ADHVREFCNT.ADSLP bit to 1 except for modifying the A/D conversion select bit (ADCSR.ADHSC).

33.8.11 Voltage Range of Analog Power Supply Pins

If this MCU is used with the voltages outside the following ranges, the reliability of the MCU may be affected.

Analog input voltage range
 Voltage applied to analog input pins ANn: AVSS0 ≤ VAN ≤ AVCC0
 Reference voltage range applied to pins VREFH0 and VREFL0: VREFH0 ≤ AVCC0, VREFL0 = AVSS0
 Conversion will not succeed if the voltage applied to analog input pins ANn is greater than VREFH0 (see Figure 33.30).

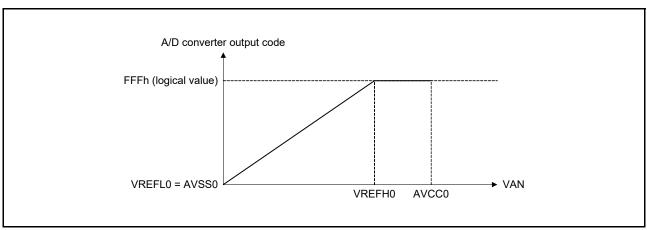


Figure 33.30 Relationship Between Voltage Applied to Analog Input Pins and Output Code

• Relationship between power supply pin pairs (AVCC0–AVSS0, VREFH0–VREFL0, VCC–VSS)

The following condition should be satisfied: AVSS0 = VSS. When performing A/D conversion of analog input pin ANn (n = 016 to 031), the following condition should be satisfied: AVCC0 = VCC. A 0.1-µF capacitor should be connected between each pair of power supply pins to create a closed loop with the shortest route possible as shown in Figure 33.31, and connection should be made so that the following conditions are satisfied at the supply side.

VREFL0 = AVSS0 = VSS

When the 12-bit A/D converter is not used, the following conditions should be satisfied.

AVCC0 = VCC and AVSS0 = VSS

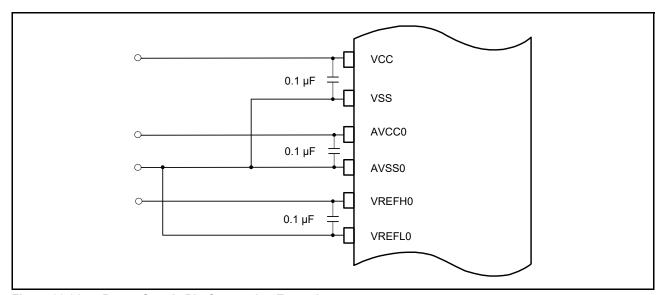


Figure 33.31 Power Supply Pin Connection Example

33.8.12 Notes on Board Design

The board should be designed so that digital circuits and analog circuits are separated from each other as far as possible. In addition, digital circuit signal lines and analog circuit signal lines should not intersect or placed near each other. If these rules are not followed, noise will be produced on analog signals and A/D conversion accuracy will be affected. The analog input pins (AN000 to AN007, AN016 to AN031), reference power supply pin (VREFH0), reference ground pin (VREFL0), and analog power supply (AVCC0) should be separated from digital circuits using the analog ground (AVSS0). The analog ground (AVSS0) should be connected to a stable digital ground (VSS) on the board (single-point ground plane connection).

33.8.13 Notes on Noise Prevention

To prevent the analog input pins (AN000 to AN007, AN016 to AN031) from being destroyed by abnormal voltage such as excessive surge, a capacitor should be inserted between AVCC0 and AVSS0 and between VREFH0 and VREFL0, and a protection circuit should be connected to protect the analog input pins (AN000 to AN007, AN016 to AN031) as shown Figure 33.32.

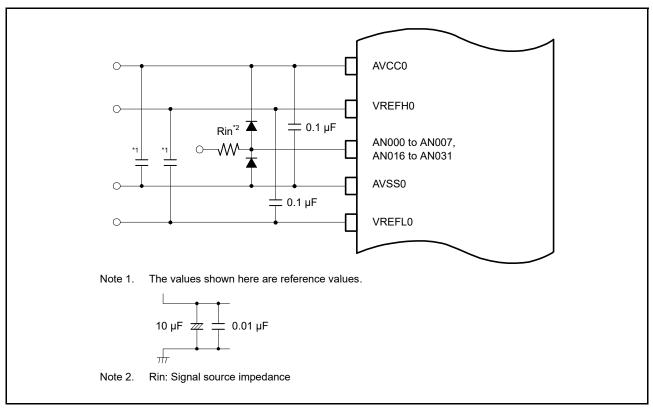


Figure 33.32 Sample Protection Circuit for Analog Inputs

34. D/A Converter (DAa)

34.1 Overview

This MCU includes two channels of 8-bit D/A converter.

Table 34.1 lists the specifications of the 8-bit D/A converter and Figure 34.1 shows a block diagram of the 8-bit D/A converter.

Table 34.1 Specifications of 8-Bit D/A Converter

Item	Specifications
Resolution	8 bits
Output channels	Two channels
Measure against mutual interference between analog modules	Measure against interference between D/A and A/D conversion D/A converted data update timing is controlled by the 12-bit A/D converter synchronous D/A conversion enable signal from the 12-bit A/D converter. Therefore, the degradation of A/D conversion accuracy due to interference is reduced by controlling the timing in which the 8-bit D/A converter inrush current occurs, with the enable signal.
Low power consumption function	Module stop state can be set.
Event link function (input)	DA0 conversion can be started when an event signal is input.

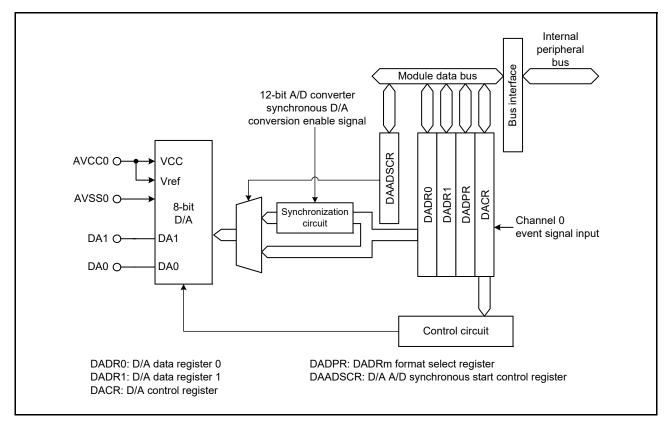
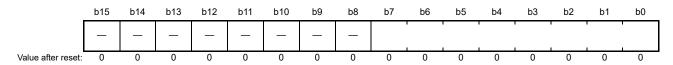


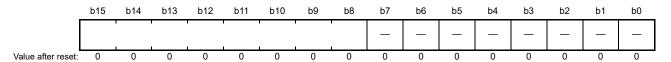
Figure 34.1 Block Diagram of 8-Bit D/A Converter

Table 34.2 lists the pin configuration of the 8-bit D/A converter.

Table 34.2 Pin Configuration of 8-Bit D/A Converter


Pin Name	I/O	Function
AVCC0	Input	Analog voltage supply pin for the 12-bit A/D converter and 8-bit D/A converter. Connect this pin to VCC when not using the 12-bit A/D converter and 8-bit D/A converter.
AVSS0	Input	Analog ground pin for the 12-bit A/D converter and 8-bit D/A converter. Connect this pin to VSS when not using the 12-bit A/D converter and 8-bit D/A converter.
DA0	Output	Channel 0 analog output pin
DA1	Output	Channel 1 analog output pin

34.2 Register Descriptions


34.2.1 D/A Data Register m (DADRm) (m = 0, 1)

Address(es): DA.DADR0 0008 80C0h, DA.DADR1 0008 80C2h

• DADPR.DPSEL bit = 0 (data is right-justified)

• DADPR.DPSEL bit = 1 (data is left-justified)

The DADRm register is a 16-bit readable/writable register, which stores data to which D/A conversion is to be performed. Whenever an analog output is enabled, the values in DADRm are converted and output from the D/A converter.

8-bit data can be relocated by setting the DADPR.DPSEL bit.

Bits "—" are read as 0. The write value should be 0.

34.2.2 D/A Control Register (DACR)

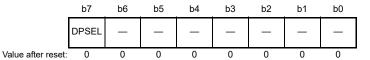
Address(es): DA.DACR 0008 80C4h

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	_	Reserved	These bits are read as 1. The write value should be 1.	R/W
b5	_	Reserved	This bit is read as 0. The write value should be 0.	R
b6	DAOE0	D/A Output Enable 0	0: Analog output of channel 0 (DA0) is disabled. 1: D/A conversion of channel 0 is enabled. Analog output of channel 0 (DA0) is enabled.	R/W
b7	DAOE1	D/A Output Enable 1	0: Analog output of channel 1 (DA1) is disabled.1: D/A conversion of channel 1 is enabled.Analog output of channel 1 (DA1) is enabled.	R/W

This register should be set when the DAADSCR.DAADST bit is 1 (measure against interference between D/A and A/D conversion is enabled) while the 12-bit A/D converter is halted (the ADCSR.ADST bit is 0). At that time, the software trigger should be selected for the 12-bit A/D converter trigger to securely stop the 12-bit A/D converter.

DAOE0 Bit (D/A Output Enable 0)

The DAOE0 bit controls the D/A conversion and analog output.


The event link function can be used to set the DAOE0 bit to 1. The DAOE0 bit becomes 1 when the event specified by setting the ELSR16 register of the ELC occurs, and output of the D/A conversion results starts.

DAOE1 Bit (D/A Output Enable 1)

The DAOE1 bit controls the D/A conversion and analog output.

34.2.3 DADRm Format Select Register (DADPR) (m = 0, 1)

Address(es): DA.DADPR 0008 80C5h

Bit	Symbol	Bit Name	Description	R/W
b6 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b7	DPSEL	DADRm Format Select	0: Data is right-justified. 1: Data is left-justified.	R/W

34.2.4 D/A A/D Synchronous Start Control Register (DAADSCR)

Address(es): DA.DAADSCR 0008 80C6h

Bit	Symbol	Bit Name	Description	R/W
b6 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b7	DAADST	D/A A/D Synchronous Conversion	0: 8-bit D/A converter operation does not synchronize with 12-bit A/D converter operation. (measure against interference between D/A and A/D conversion is disabled) 1: 8-bit D/A converter operation synchronizes with 12-bit A/D converter operation. (measure against interference between D/A and A/D conversion is enabled)	R/W

As a measure against interference between D/A and A/D conversion, the DAADSCR register selects whether or not the timing for starting 8-bit D/A conversion is synchronized with the 12-bit A/D converter synchronous D/A conversion enable signal from the 12-bit A/D converter.

This register should be set while the 12-bit A/D converter is halted (while the ADCSR.ADST bit is 0 after selecting software trigger as the 12-bit A/D converter trigger).

DAADST Bit (D/A A/D Synchronous Conversion)

Setting the DAADST bit to 0 allows the DADRm register value (m = 0, 1) to be converted into analog data at any time. Setting the DAADST bit to 1 allows synchronous D/A conversion with the 12-bit A/D converter synchronous D/A conversion enable signal from the 12-bit A/D converter. Therefore, even if the DADRm register value is modified, D/A conversion does not start until the 12-bit A/D converter completes A/D conversion.

Set this bit while the ADCSR.ADST bit is set to 0. At this time, the software trigger should be selected for the 12-bit A/D converter trigger to securely stop the 12-bit A/D converter.

The event link function cannot be used when the DAADST bit is set to 1. Stop the event link function by setting the ELSR16 register of the ELC. The setting of the DAADST bit is common to channels 0 and 1 of the 8-bit D/A converter.

34.3 Operation

The 8-bit D/A converter includes D/A conversion circuits for two channels, each of which can operate independently. When the DACR.DAOEm bit (m = 0, 1) is set to 1, D/A converter is enabled and the conversion result is output. An operation example of D/A conversion on channel 0 is shown below. Figure 34.2 shows the timing of this operation.

- (1) Set the data for D/A conversion in the DADPR.DPSEL bit and the DADR0 register.
- (2) Set the DACR.DAOE0 bit to 1 to start D/A conversion. The DA0 output settles to the voltage corresponding to the setting value after the conversion time tDCONV has elapsed. The DA0 output voltage is held at this level until the DADR0 register is updated or the DAOE0 bit is set to 0. The output voltage (reference) is expressed by the following formula:

- (3) When the DADR0 register is updated, the conversion starts. The DA0 output settles at the new output voltage after the conversion time tDCONV has elapsed.
 - When the DAADSCR.DAADST bit is 1 (measure against interference between D/A and A/D conversion is enabled), it takes a maximum of one A/D conversion time for D/A conversion to start. When ADCLK is faster than the peripheral module clock, it may take longer than one A/D conversion time.
- (4) When the DAOE0 bit is set to 0, analog output is disabled.

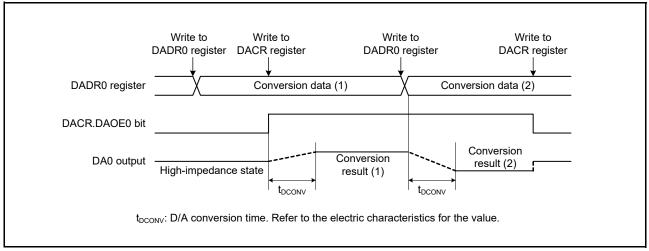


Figure 34.2 Example of 8-Bit D/A Converter Operation

34.3.1 Measure against Interference between D/A and A/D Conversion

When D/A conversion starts, an inrush current occurs to the 8-bit D/A converter. Since the same analog power supply is shared by the 8-bit D/A converter and 12-bit A/D converter, the inrush current may interfere with the proper operation of the 12-bit A/D converter.

With the DAADSCR.DAADST bit being 1, even if the DADRm register data (m = 0, 1) is modified during 12-bit A/D converter operation, D/A conversion does not start immediately but starts synchronously with A/D conversion completion. It takes a maximum of one A/D conversion time for the DADRm register data update to be reflected as the D/A conversion circuit input. Before reflection, the DADRm register value does not correspond to the analog output value.

When this function is enabled, it is impossible to check by any software means whether the DADRm register value has been D/A converted or not.

Even with the DAADSCR.DAADST bit being 1, when the DADRm register data is modified while the 12-bit A/D converter is halted, D/A conversion starts in one PCLKB cycle.

Figure 34.3 shows an example of channel 0 D/A conversion, in which the 8-bit D/A converter operates synchronously with the 12-bit A/D converter.

- (1) Confirm that the 12-bit A/D converter is halted. Set the DAADSCR.DAADST bit to 1.
- (2) Confirm that the 12-bit A/D converter is halted. Set the DACR.DAOE0 bit to 1.
- (3) Set the DADR0 register. When ADCLK is faster than the peripheral module clock, it may take longer than one A/D conversion time.
 - If the 12-bit A/D conversion is halted (ADCSR.ADST bit = 0) when the DADR0 register is modified, D/A conversion starts in one PCLKB cycle.
 - If the 12-bit A/D conversion is in progress (ADCSR.ADST bit = 1) when the DADR0 register is modified, D/A conversion starts upon A/D conversion completion. If the DADR0 register is modified twice during A/D conversion, the first update may not be converted.

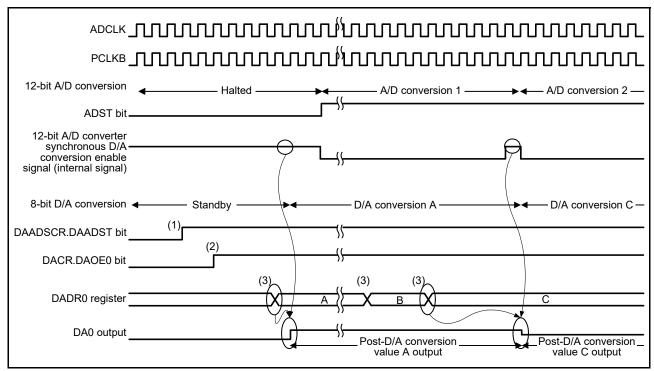


Figure 34.3 Example of Conversion When the 8-Bit D/A Converter is Synchronized with the 12-Bit A/D Converter

When ADCLK is faster than PCLKB, the 8-bit D/A converter may not be able to capture a 12-bit A/D converter synchronous D/A conversion enable signal for one ADCLK cycle which is output between A/D conversion 1 and A/D conversion 2.

Figure 34.4 shows example when the 8-bit D/A converter cannot capture the 12-bit A/D converter synchronous D/A conversion enable signal. In this case, the DA0 output is held at the level of the post-D/A conversion value A.

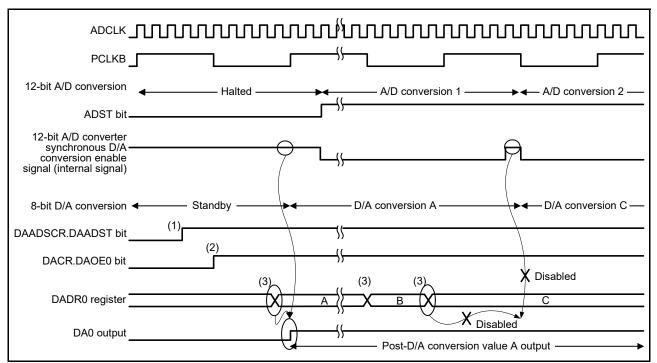


Figure 34.4 Example When the 8-Bit D/A Converter Cannot Capture the 12-Bit A/D Converter Synchronous D/A Conversion Enable Signal

34.4 Event Link Operation Setting Procedure

The event link operation procedure is described below.

- (1) Set the DADPR.DPSEL bit and set the data for D/A conversion in the DADR0 register.
- (2) Set the bit value of the ELSR16 setting event signal to link the ELSR16 register of the ELC.
- (3) Set the ELCR.ELCON bit to 1. This procedure enables event link operation for all modules with the event link function selected.
- (4) Set the event output source module to activate the event link. After the event is output from the module, the DACR.DAOE0 bit becomes 1, and D/A conversion on channel 0 starts.
- (5) Set the ELSR16.ELS[7:0] bits to 0000 0000b to stop event link operation of 8-bit D/A converter channel 0. All event link operation is stopped when the ELCR.ELCON bit is set to 0.

34.5 Usage Notes on Event Link Operation

- (1) When the event specified by the ELSR16 register is generated while the write cycle is performed to the DACR.DAOE0 bit, the write cycle is stopped, and the setting to 1 by the generated event takes precedence.
- (2) Use of the event link function is prohibited when the DAADSCR.DAADST bit is set to 1 as the measure against an interfere between D/A and A/D conversions.

34.6 Usage Notes

34.6.1 Module Stop Function Setting

Operation of the 8-bit D/A converter can be disabled or enabled using the module stop control register. The initial setting is for operation of the 8-bit D/A converter to be stopped. Register access is enabled by releasing the module stop state. For details, refer to section 11, Low Power Consumption.

34.6.2 Operation of the D/A Converter in Module Stop State

When the MCU enters the module stop state with D/A conversion enabled, the D/A converter outputs are retained, and the analog power supply current is the same as during D/A conversion. If the analog power supply current has to be reduced in the module stop state, disable D/A conversion by setting the DACR.DAOE1, and DAOE0 bits to 0.

34.6.3 Operation of the D/A Converter in Software Standby Mode

When the MCU enters software standby mode with D/A conversion enabled, the D/A converter outputs are retained, and the analog power supply current is the same as during D/A conversion. If the analog power supply current has to be reduced in software standby mode, disable D/A conversion by setting the DACR.DAOE1, and DAOE0 bits to 0.

34.6.4 Note on Usage When Measure against Interference between D/A and A/D Conversion is Enabled

When the DAADSCR.DAADST bit is 1 (measure against interference between D/A and A/D conversion is enabled), do not place the 12-bit A/D converter in the module stop state. It may halt D/A conversion in addition to A/D conversion.

35. Temperature Sensor (TEMPSA)

35.1 Overview

This MCU includes a temperature sensor. The temperature sensor outputs a voltage which varies with the temperature. The user can obtain the temperature surrounding the MCU using the 12-bit A/D converter to convert the voltage output from the temperature sensor into a digital value.

Table 35.1 lists the specifications of the temperature sensor. Figure 35.1 shows a overall block diagram of the temperature sensor system.

Table 35.1 Temperature Sensor Specifications

Item	Description
Temperature sensor voltage output	The temperature sensor voltage is output to the 12-bit A/D converter.

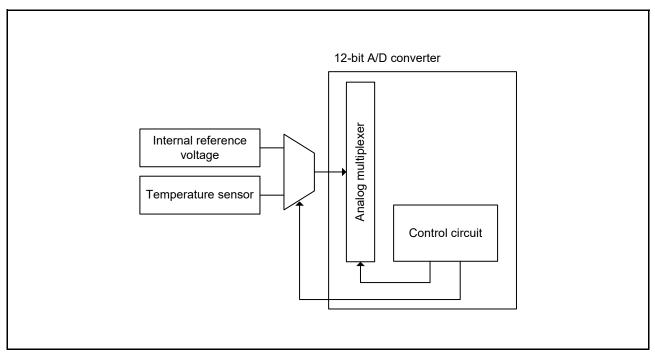
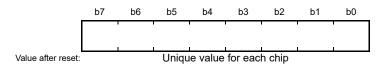
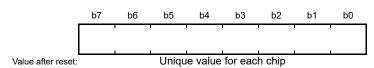



Figure 35.1 Block Diagram of Temperature Sensor System


35.2 Register Descriptions

35.2.1 Temperature Sensor Calibration Data Register (TSCDRH, TSCDRL)

Address(es): TSCDRL 007F C0ACh

Address(es): TSCDRH 007F C0ADh

The TSCDRH and TSCDRL registers store temperature sensor calibration data measured for each chip at factory shipment.

Temperature sensor calibration data is a digital value obtained using the 12-bit A/D converter to convert the voltage output by the temperature sensor under the condition Ta = Tj = 88°C and AVCC0 = VREFH0 = 3.3 V. The TSCDRH register stores the higher 4 bits of the converted value, and the TSCDRL register stores the lower 8 bits.

35.3 Using the Temperature Sensor

The temperature sensor outputs a voltage which varies with the temperature. The user can obtain the temperature surrounding the MCU using the 12-bit A/D converter to convert this voltage into a digital value.

35.3.1 Before Using the Temperature Sensor

The temperature characteristics of the temperature sensor are shown below. The voltage output by the temperature sensor is proportional to the temperature, which can be calculated according to the formula below.

Formula for the temperature characteristic:

T = (Vs - V1)/Slope + T1

T: Measured temperature (°C)

Vs: Voltage output by the temperature sensor when the temperature is measured (V)

T1: Sample temperature measurement at first point (°C)

V1: Voltage output by the temperature sensor when T1 is measured (V)

T2: Sample temperature measurement at second point (°C)

V2: Voltage output by the temperature sensor when T2 is measured (V)

(V2 - V1)/(T2 - T1) =Slope: Temperature gradient of the temperature sensor $(V/^{\circ}C)$

Characteristics vary from sensor to sensor. Therefore, it is recommended that two different sample temperatures are measured.

Use the 12-bit A/D converter to measure the voltage V1 output by the temperature sensor at temperature T1. Again, using the 12-bit A/D converter, measure the voltage V2 output by the temperature sensor at a different temperature T2. Obtain the temperature gradient (Slope = (V2 - V1)/(T2 - T1)) from these results. Subsequently, obtain temperatures by substituting the slope into the formula for the temperature characteristic (T = (Vs - V1)/Slope + T1).

If you are using the temperature gradient given in section 40, Electrical Characteristics, use the A/D converter to measure the voltage V1 output by the temperature sensor at temperature T1, and then calculate the temperature characteristic by using the formula below.

However, this method produces less accurate temperatures than measurement at two points.

$$T = (Vs - V1)/Slope + T1$$

In this MCU, the TSCDRH and TSCDRL registers store the temperature value (CAL88) of the temperature sensor measured under the condition $Ta = Tj = 88^{\circ}C$ and AVCC0 = VREFH0 = 3.3 V. By using this value as the sample measurement result at the first point, preparation before using the temperature sensor can be omitted. This measured value CAL_{88} can be calculated as follows:

 $CAL_{88} = (TSCDRH register value << 8) + TSCDRL register value$

If V1 is calculated from CAL₈₈,

$$V1 = 3.3 \times CAL_{88}/4096$$
 [V]

Using this, the measured temperature can be calculated according to the formula below.

$$T = (Vs - V1)/Slope + 88 [°C]$$

T: Measured temperature (°C)

Vs: Voltage output by the temperature sensor when the temperature is measured (V)

V1: Voltage output by the temperature sensor when $Ta = Tj = 88^{\circ}C$ and AVCC0 = VREFH0 = 3.3 V (V)

Slope: Temperature gradient listed in Table 40.46 ÷ 1000 (V/°C)

Error in the measured temperature (variation range is 3σ) is shown in Figure 35.2.

Figure 35.2 Error in the Measured Temperature (Designed Value)

35.3.2 Setting the 12-Bit A/D Converter

For details, refer to section 33, 12-Bit A/D Converter (S12ADE).

36. Comparator B (CMPBa)

Comparator B compares a reference input voltage and an analog input voltage. Comparator B0 and comparator B1 operate independently.

In this section, "PCLK" is used to refer to PCLKB.

36.1 Overview

The comparison result of the reference input voltage and analog input voltage can be read by software. The comparison result can also be output externally. The reference input voltage can be selected from either an input to the CVREFBn (n = 0, 1) pin or the internal reference voltage (1.44 V) generated internally in the MCU.

The comparator B response speed can be set before starting an operation. Setting high-speed mode decreases the response delay time, but increases current consumption. Setting low-speed mode increases the response delay time, but decreases current consumption.

Table 36.1 lists the specifications of comparator B, Figure 36.1 shows a block diagram of comparator B when the window function is disabled, and Figure 36.2 shows a block diagram of comparator B when the window function is enabled. Table 36.2 lists the I/O pins of comparator B.

Table 36.1 Comparator B Specifications

Item	Specification	
Analog input voltage	Input voltage to the CMPBn pin (n = 0, 1)	
Reference input voltage	Input voltage to the CVREFBn pin (n = 0, 1) or internal reference voltage	
Comparison result	Read from the CPBFLG.CPBnOUT flag (n = 0, 1) The comparison result can be output to the CMPOBn pin (n = 0, 1).	
Interrupt request generation timing	When comparator B0 comparison result changes When comparator B1 comparison result changes	
Event generation timing to ELC	When comparator B0 comparison result changes When comparator B0 or comparator B1 comparison result changes	
Selectable function	 Digital filter function Whether the digital filter is applied or not, and the sampling frequency can be selected. Window function Whether the window function is enabled or disabled (low-side reference (VRFL)) < CMPBn (n = 0, 1) < high-side reference (VRFH)) can be selected. Reference input voltage CVREFBn pin input or internal reference voltage (generated internally) can be selected (n = 0, 1). Comparator B response speed High-speed mode/low-speed mode can be selected. 	
Low power consumption function	Module stop state can be set.	

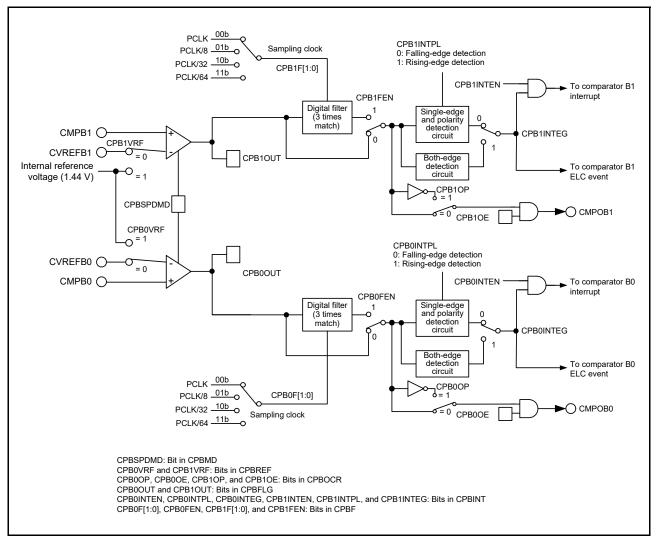


Figure 36.1 Block Diagram of Comparator B When Window Function is Disabled

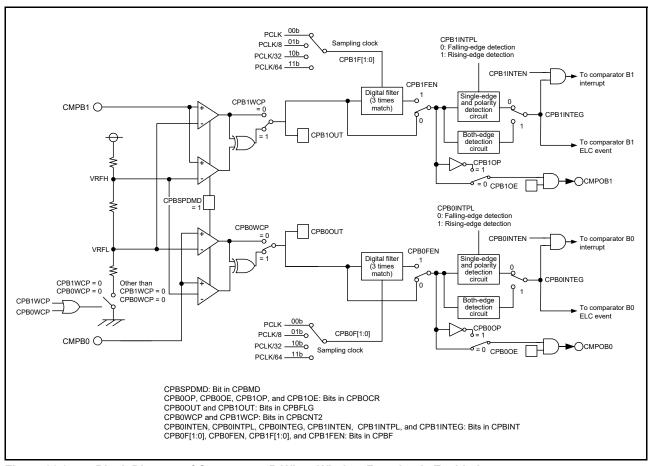
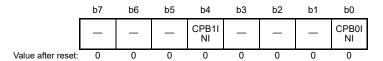


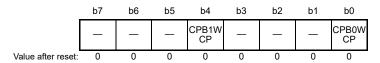
Figure 36.2 Block Diagram of Comparator B When Window Function is Enabled


Table 36.2 I/O Pins of Comparator B

Pin Name	I/O	Function	
CMPB0	Input	Comparator B0 analog pin	
CVREFB0	Input	Comparator B0 reference input voltage pin	
CMPB1	Input	Comparator B1 analog pin	
CVREFB1	Input	Comparator B1 reference input voltage pin	
СМРОВ0	Output	Comparator B0 output	
CMPOB1	Output	Comparator B1 output	

36.2 Register Descriptions

36.2.1 Comparator B Control Register 1 (CPBCNT1)


Address: 0008 C580h

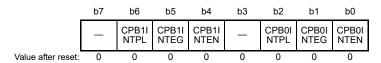
Bit	Symbol	Bit Name	Description	R/W
b0	CPB0INI	VI Comparator B0 Power Enable 0: Disabled 1: Enabled (comparator powered on)		R/W
b3 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b4	CPB1INI	INI Comparator B1 Power Enable 0: Disabled 1: Enabled (comparator powered on)		R/W
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

36.2.2 Comparator B Control Register 2 (CPBCNT2)

Address: 0008 C581h

Bit	Symbol	Bit Name	Description	R/W
b0	CPB0WCP	Comparator B0 Window Function Enable	0: Disabled 1: Enabled	R/W
b3 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b4	CPB1WCP	Comparator B1 Window Function Enable	0: Disabled 1: Enabled	R/W
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

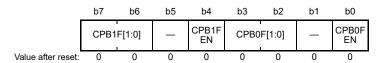
36.2.3 Comparator B Flag Register (CPBFLG)


Address: 0008 C582h

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b3	CPB0OUT	Comparator B0 Monitor Flag	 When the window function is disabled 0: CMPB0 < CVREFB0, CMPB0 < internal reference voltage, or comparator B0 operation disabled 1: CMPB0 > CVREFB0, or CMPB0 > internal reference voltage When the window function is enabled 0: CMPB0 < low-side reference (VRFL), CMPB0 > high-side reference (VRFH), or comparator B0 operation disabled 1: Low-side reference (VRFL) < CMPB0 < high-side reference (VRFH) 	
b6 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b7	CPB1OUT	Comparator B1 Monitor Flag	When the window function is disabled 0: CMPB1 < CVREFB1, CMPB1 < internal reference voltage, or comparator B1 operation disabled 1: CMPB1 > CVREFB1, or CMPB1 > internal reference voltage When the window function is enabled 0: CMPB1 < low-side reference (VRFL), CMPB1 > high-side reference (VRFH), or comparator B1 operation disabled 1: Low-side reference (VRFL) < CMPB1 < high-side reference (VRFH)	R

36.2.4 Comparator B Interrupt Control Register (CPBINT)

Address: 0008 C583h

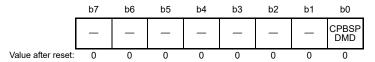

Bit	Symbol	Bit Name	Description	R/W
b0	CPB0INTEN	Comparator B0 Interrupt Enable	0: Disabled 1: Enabled	R/W
b1	CPB0INTEG	Comparator B0 Interrupt/ELC Edge Select*1	0: Single edge 1: Both edges	R/W
b2	CPB0INTPL	Comparator B0 Interrupt/ELC Edge Polarity Select*2	0: Falling edge 1: Rising edge	R/W
b3	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b4	CPB1INTEN	Comparator B1 Interrupt Enable	0: Disabled 1: Enabled	R/W
b5	CPB1INTEG	Comparator B1 Interrupt/ELC Edge Select*1	0: Single edge 1: Both edges	R/W
b6	CPB1INTPL	Comparator B1 Interrupt/ELC Edge Polarity Select*2	0: Falling edge 1: Rising edge	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

Note 1. The IR058.IR bit may become 1 (interrupt request is generated) when the CPB0INTPL bit is modified, and the IR059.IR bit may become 1 (interrupt request is generated) when the CPB1INTPL bit is modified. For details, refer to section 14, Interrupt Controller (ICUb).

Note 2. The CPBnINTPL bit setting is valid only when the CPBnINTEG bit is 0 (single edge is selected as the comparator interrupt edge).

36.2.5 Comparator B Filter Select Register (CPBF)

Address: 0008 C584h

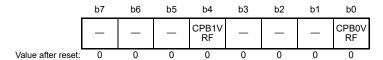


Bit	Symbol	Bit Name	Description	R/W
b0	CPB0FEN	Comparator B0 Filter Enable/Disable Select*1	0: Filter is disabled. 1: Filter is enabled.	R/W
b1	_	Reserved	This bit is read as 0. The write value should be 0.	RW
b3, b2	CPB0F[1:0]	Comparator B0 Filter Select*1	b3 b2 0 0: Sampling at PCLK 0 1: Sampling at PCLK/8 1 0: Sampling at PCLK/32 1 1: Sampling at PCLK/64	
b4	CPB1FEN	Comparator B1 Filter Enable/Disable Select*1	/Disable 0: Filter is disabled. 1: Filter is enabled.	
b5	_	Reserved	served This bit is read as 0. The write value should be 0.	
b7, b6	CPB1F[1:0]	Comparator B1 Filter Select*1	b7 b6 0 0: Sampling at PCLK 0 1: Sampling at PCLK/8 1 0: Sampling at PCLK/32 1 1: Sampling at PCLK/64	R/W

Note 1. The CPBnF[1:0] bits are enabled only when the CPBnFEN bit = 1 (filter is enabled).

36.2.6 Comparator B Mode Select Register (CPBMD)

Address: 0008 C585h



Bit	Symbol	Bit Name	Description	R/W
b0	CPBSPDMD	Comparator B Speed Select	0: High-speed mode 1: Low-speed mode*1	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	RW

Note 1. When rewriting the CPBSPDMD bit, be sure to set the CPBnINI bit (n = 0, 1) in the CPBCNT1 register to 0 in advance.

36.2.7 Comparator B Reference Input Voltage Select Register (CPBREF)

Address: 0008 C586h

Bit	Symbol	Bit Name	Description	R/W
b0	CPB0VRF	Comparator B0 Reference Input Voltage Select	Comparator B0 reference input voltage is CVREFB0 input Comparator B0 reference input voltage is internal reference voltage*1, *2, *3	R/W* ⁴
b3 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	RW
b4	CPB1VRF	Comparator B1 Reference Input Voltage Select	Comparator B1 reference input voltage is CVREFB1 input Comparator B1 reference input voltage is internal reference voltage*1, *2, *3	R/W*4
b7 to b5	_	Reserved	These bits are read as 0. The write value should be 0.	RW

- Note 1. Enabled only when the window function is disabled. When the window function is enabled, the internal reference voltage of comparator B is selected regardless of the setting of this bit.
- Note 2. When the internal reference voltage is selected, the temperature sensor output cannot be selected for the A/D converter.
- Note 3. When the internal reference voltage is selected, the voltage generation circuit operates and current increases by about 75 µA.

 This circuit is not automatically turned off even if the MCU enters software standby mode with the internal reference voltage
- Note 4. Do not rewrite the CPBnVRF bit when CPBCNT2.CPBnWCP = 0.

[Notes on changing the reference input voltage]

- ♦ When changing the reference input voltage from CVREFBn (n = 0, 1) to the internal reference voltage, use the following procedure.
- 1. Set the CPBCNT1.CPBnINI bit to 1.
- 2. Set the CPBCNT2.CPBnWCP bit to 1.
- 3. Set the CPBREF.CPBnVRF bit to 1 to select the internal reference voltage.
- 4. Set the analog select bit (ASEL) in the pin function control register of the port that is used as the CVREFBn pin to 0.
- 5. Wait for the comparator stabilization time (min. 100 μs).
- 6. Set the CPBCNT2.CPBnWCP bit to 0.
- ♦ When changing the reference input voltage from the internal reference voltage to CVREFBn (n = 0, 1), use the following procedure.
- 1. Set the CPBCNT1.CPBnINI bit to 1.
- 2. Set the CPBCNT2.CPBnWCP bit to 1.
- 3. Set the CPBREF.CPBnVRF bit to 0 to select the CVREFBn pin input.
- 4. Set the analog select bit (ASEL) in the pin function control register of the port that is used as the CVREFBn pin to 1.
- 5. Wait for the comparator stabilization time (min. 100 μs).
- 6. Set the CPBCNT2.CPBnWCP bit to 0.

36.2.8 Comparator B Output Control Register (CPBOCR)

Address: 0008 C587h

Bit	Symbol	Bit Name	Description	R/W
b0	CPB0OE	CMPOB0 Pin Output Enable	0: Comparator B0 CMPOB0 pin output disabled*1 1: Comparator B0 CMPOB0 pin output enabled	R/W
b1	CPB0OP	CMPOB0 Output Polarity Select	Output Polarity Select 0: Comparator B0 output is output to CMPOB0 1: Inverted comparator B0 output is output to CMPOB0	
b3, b2	_	Reserved	These bits are read as 0. The write value should be 0.	RW
b4	CPB10E	CMPOB1 Pin Output Enable	DB1 Pin Output Enable 0: Comparator B1 CMPOB1 pin output disabled*1 1: Comparator B1 CMPOB1 pin output enabled	
b5	CPB10P	CMPOB1 Output Polarity Select	Comparator B1 output is output to CMPOB1 Inverted comparator B1 output is output to CMPOB1	RW
b7, b6	_	Reserved	These bits are read as 0. The write value should be 0.	RW

Note 1. When the CPBnOE bit (n = 0, 1) is set to 0 to disable the CMPOBn (n = 0, 1) pin output, 0 is output to CMPOBn (n = 0, 1) regardless of the value of the CPBnOP bit (n = 0, 1).

36.3 Operation

Comparator B0 and comparator B1 operate independently, and their operations are the same. Operation is not guaranteed when the values of registers are changed during comparator operation. Table 36.3 shows the procedure of setting comparator B associated registers when the window function is disabled. Table 36.4 shows the procedure of setting comparator B associated registers when the window function is enabled.

Table 36.3 Procedure for Setting Registers Associated with Comparator B When Window Function is Disabled

Step No.	Register	Bit	Setting	
1	P**PFS of the port to which the CMPBn pin is assigned	ASEL	1	
2	CPBMD	CPBSPDMD	Select the comparator response sp (0: High-speed mode/1: Low-speed	
3	CPBCNT1	CPBnINI (n = 0, 1)	Powered on: 1	
4	CPBCNT2	CPBnWCP (n = 0, 1)	1	*1
5	CPBREF	CPBnVRF (n = 0, 1)	0: Reference input voltage = CVREFBn input*1	1: Reference input voltage = Internal reference voltage
6	P**PFS of the port to which the CVREFBn pin is assigned	ASEL	1	0
7	Waiting for the comparator stabilization time (min. 100 μs)*1			
8	CPBCNT2		*1	
9	CPBF	Select whether to enable or disable the filter and select the sampling clock.		
10	Waiting for the comparator stal	ting for the comparator stabilization time (min. 100 μs)		
11	CPBOCR	CPBnOP, CPBnOE (n = 0, 1)	Set the CMPOBn output (select the disabled).	e polarity and set output enabled or
12	CPBINT	CPBnINTEN (n = 0, 1)	When using an interrupt: 1 (interru	pt enabled)
		CPBnINTEG (n = 0, 1)	When using an interrupt or the EL0 edges or 0 = single edge).	C: Select the input edge (1 = both
		CPBnINTPL (n = 0, 1)		C: For CPBnINTEG = 0 (single edge (1 = rising edge or 0 = falling edge).
13	IPR058 (comparator B0), IPR059 (comparator B1) IPR058 (comparator B1) When using an interrupt: Select the interrupt priority level.		e interrupt priority level.	
	IR058 (comparator B0), IR059 (comparator B1)	IR	When using an interrupt: 0 (no inte	errupt requested: initialization)
	IER07	IEN2 (comparator B0) IEN3 (comparator B1)	When using an interrupt: 1 (interru controller (ICU) side)	pt is enabled on the interrupt

Note 1. This setting is necessary when changing the reference input voltage from the CVREFBn input to the internal reference voltage or from the internal reference voltage to the CVREFBn input. When selecting the CVREFBn input after the reset is released, steps 4, 5, 7, and 8 are not necessary because the initial value of the CPBREF.CPBnVRF bit is 0.

Table 36.4 Procedure for Setting Registers Associated with Comparator B When Window Function is Enabled

Step No.	Register	Bit	Setting
1	P**PFS of the port to which the CMPBn pin is assigned	ASEL	1
2	CPBMD	CPBSPDMD 0 (always specify high-speed mode)	
3	CPBCNT1	CPBnINI (n = 0, 1)	Powered on: 1
4	CPBF	Select whether to enable	e or disable the filter and select the sampling clock.
5	CPBCNT2	CPBnWCP (n = 0, 1)	1 (operation enabled)
6	Waiting for the comparator state	pilization time (min. 100 μ	s)
7	CPBOCR	CPBnOP, CPBnOE Set the CMPOBn output (select the polarity and set output enable (n = 0, 1) disabled).	
8	CPBINT	CPBnINTEN (n = 0, 1)	When using an interrupt: 1 (interrupt enabled)
		CPBnINTEG (n = 0, 1)	When using an interrupt or the ELC: Select the input edge (1 = both edges or 0 = single edge).
		CPBnINTPL (n = 0, 1)	When using an interrupt or the ELC: For CPBnINTEG = 0 (single edge selected), select the input polarity (1 = rising edge or 0 = falling edge).
9	IPR058 (comparator B0), IPR059 (comparator B1)	IPR[3:0]	When using an interrupt: Select the interrupt priority level.
	IR058 (comparator B0), IR059 (comparator B1)	IR	When using an interrupt: 0 (no interrupt requested: initialization)
	IER07	IEN2 (comparator B0) IEN3 (comparator B1)	When using an interrupt: 1 (interrupt enabled)

Figure 36.3 shows an operating example of comparator Bn (n = 0, 1) when window function is disabled.

The reference input voltage (CVREFB0/CVREFB1 or internal reference voltage) and the analog input voltage are compared. If the analog input voltage is higher than the reference input voltage, the CPBFLG.CPBnOUT bit is set to 1. If the analog input voltage is lower than the reference input voltage, the CPBnOUT bit is set to 0.

To use the comparator Bn interrupt, set the CPBINT.CPBnINTEN bit to 1 (interrupt enabled). If the comparison result changes at this time, a comparator Bn interrupt request is generated. For details on interrupts, refer to section 36.4, Comparator B0 and Comparator B1 Interrupts.

Comparator Bn outputs event signals to the ELC to activate other modules. For details on the ELC, refer to section 36.5, Event Link Output.

The values of the registers should not be changed during comparison.

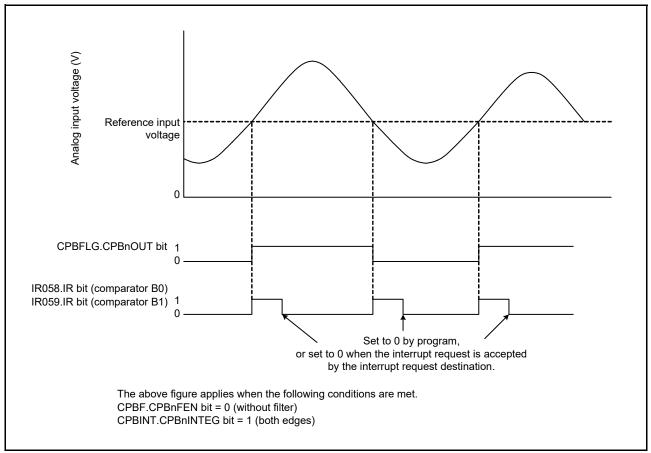


Figure 36.3 Operating Example of Comparator Bn (n = 0, 1) When Window Function is Disabled

Figure 36.4 shows an operation example of comparator Bn (n = 0, 1) when the window function is enabled. The internal reference voltage (VRFH/VRFL) for the window function and the analog input voltage are compared. The CPBnOUT bit is set to 1 when VRFL < the analog input voltage < VRFH, and the CPBnOUT bit is set to 0 when the analog input voltage < VRFL, or VRFH < the analog input voltage.

To use the comparator Bn interrupt, set the CPBINT.CPBnINTEN bit to 1 (interrupt enabled). If the comparison result changes at this time, a comparator Bn interrupt request is generated. For details on interrupts, refer to section 36.4, Comparator B0 and Comparator B1 Interrupts.

Comparator Bn outputs event signals to the ELC to activate other modules. For details on the ELC, refer to section 36.5, Event Link Output.

The values of the registers should not be changed during comparison.

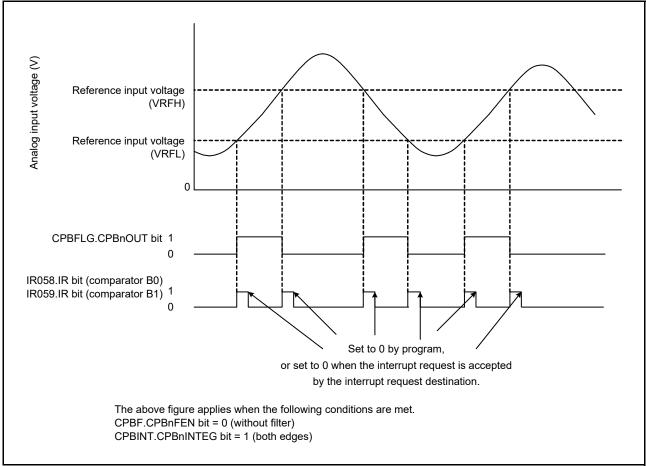


Figure 36.4 Operating Example of Comparator Bn (n = 0, 1) When Window Function is Enabled

36.3.1 Comparator Bn Digital Filter (n = 0, 1)

The sampling clock can be selected by the CPBF.CPBnF[1:0] bits. The CPBnOUT signal (internal signal) output from comparator Bn is sampled at every sampling clock cycle. At the next clock timing after the level matches three times, the IR058.IR bit (when comparator B0 selected) or IR059.IR bit (when comparator B1 selected) is set to 1 (interrupt requested) and an ELC event is output.

Figure 36.5 shows the configuration of the comparator Bn digital filter, and Figure 36.6 shows an operating example of the comparator Bn digital filter.

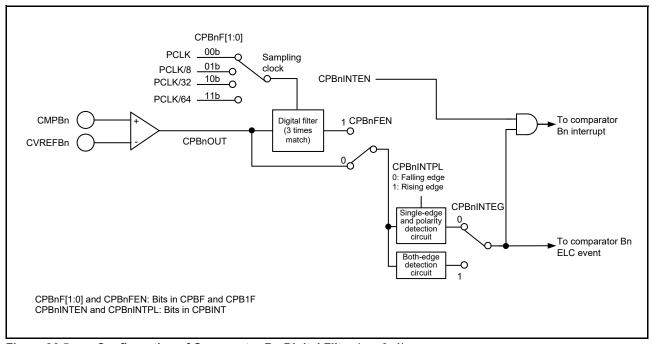


Figure 36.5 Configuration of Comparator Bn Digital Filter (n = 0, 1)

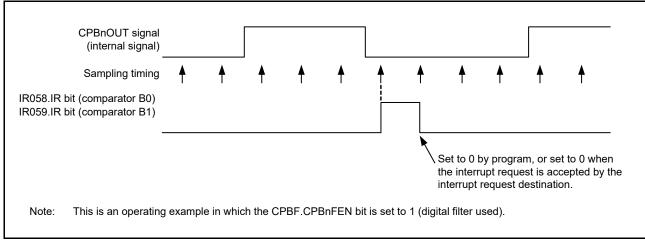


Figure 36.6 Operating Example of Comparator Bn Digital Filter (n = 0, 1)

36.4 Comparator B0 and Comparator B1 Interrupts

Comparator B generates two interrupt requests from sources, comparator B0 and comparator B1. The comparator Bn interrupt (n = 0, 1) uses the IR058.IR bit, IR059.IR bit, IPR058.IPR[3:0] bits, IPR059.IPR[3:0] bits, and the respective single interrupt vector.

To use the comparator Bn interrupt, set the CPBINT.CPBnINTEN bit to 1 (interrupt enabled). In addition, select either single-edge detection or both-edge detection using the CPBINT.CPBnINTEG bit. When single-edge detection is selected, select the polarity using the CPBINT.CPBnINTPL bit.

Inputs can also be passed through the digital filter with four different sampling clocks.

36.5 Event Link Output

Comparator B outputs the following events to the event link controller (ELC).

- (1) Comparison result of comparator B0 is changed.
- (2) Comparison result of comparator B0 or B1 is changed.

If the comparison results of comparators B0 and B1 are output simultaneously or in succession, they are output as a single event.

36.5.1 Relationship between Interrupt Handling and Event Linking

Comparator Bn outputs event signals to the event link controller (ELC) to initiate operations of other modules selected in advance. Event signals to the event link controller (ELC) is output independent of the CPBnINTEN bit value. In the same way as for the interrupt sources, the conditions for generation of the event signals output from comparator Bn to the ELC can be selected as a single-edge detection or both-edge detection by setting the CPBINT.CPBnINTEG bit. When the single-edge detection is selected, the polarity can be selected by the CPBINT.CPBnINTPL bit.

36.5.2 Comparator Bn Output (n = 0, 1) Function

The comparison result from comparator B can be output to external pins. The CPBOCR.CPBnOP and CPBOCR.CPBnOE (n =0, 1) bits can be used to set the output polarity (non-inverted output or inverted output) and output enabled or disabled. For the register settings and corresponding comparator output, refer to section 36.2.8, Comparator B Output Control Register (CPBOCR).

To output the comparator B comparison result to the CMPOB0 or CMPOB1 output pin, use the following procedure to make port settings. Note that the ports are set to input after a reset.

- (1) Set the mode and input for comparator B (steps 1 to 10 listed in Table 36.3 and steps 1 to 6 listed in Table 36.4).
- (2) Select the polarity of the CMPOB0 or CMPOB1 output and enable the output (set the CPBOCR.CPBnOP and CPBOCR.CPBnOE bits).
- (3) Set the port mode register and pin function control register corresponding to the CMPOB0 or CMPOB1 output pin (start outputting from the pin).

36.5.3 Example of Using Comparator B to Exit Software Standby Mode

The following shows an example of using comparator B0 output to exit software standby mode. In this example, it is assumed that the reference input voltage (CVREFB0) > analog input voltage (CMPB0).

Set the following steps (1) to (3) before entering software standby mode.

- (1) Set the registers associated with comparator B0 according to section 36.3, Operation.

 However, set the CPBF.CPB0FEN bit to 'filter is disabled', the CPBOCR.CPB0OE bit to 'output enabled', and the CPBOCR.CPB0OP bit to 'comparator B0 output is output to CMPOB0'.
- (2) Make the IRQ7 interrupt settings according to section 14.4.8, External Pin Interrupts. However, set the IRQFLTE0.FLTEN7 bit to 0 (digital filter disabled) and set the IRQCRi.IRQMD[1:0] bits to the same polarity as that of comparator B0 output. In this example, a rising edge is selected.
- (3) Set the multi-function pin controller to select the CMPOB0 function and enable IRQ7.

When exiting software standby mode, input a voltage from the comparator B0 analog pin (CMPB0) so that the reference input voltage (CVREFB0) is less than the analog input voltage (CMPB0). This allows the IRQ7 interrupt to be generated through the comparator B0 output pin (CMPOB0) and the MCU exits software standby mode.

36.6 Usage Note

36.6.1 Module Stop Function Setting

Operation of comparator B can be disabled or enabled using module stop control register B (MSTPCRB). The initial setting is for comparator B to be halted. Register access is enabled by releasing the module stop state. For details, refer to section 11, Low Power Consumption.

37. Data Operation Circuit (DOC)

37.1 Overview

The data operation circuit (DOC) is used to compare, add, and subtract 16-bit data.

Table 37.1 lists the data operation circuit specifications and Figure 37.1 shows a block diagram of the data operation circuit.

16-bit data is compared and an interrupt can be generated when a selected condition applies.

Table 37.1 DOC Specifications

Item	Description
Data operation function	16-bit data comparison, addition, and subtraction
Lower power consumption function	Module stop state can be set.
Interrupts	An interrupt occurs at the following timings: The compared values either match or mismatch The result of data addition is greater than FFFFh The result of data subtraction is less than 0000h
Event link function (output)	An interrupt occurs at the following timings: • The compared values either match or mismatch • The result of data addition is greater than FFFFh • The result of data subtraction is less than 0000h

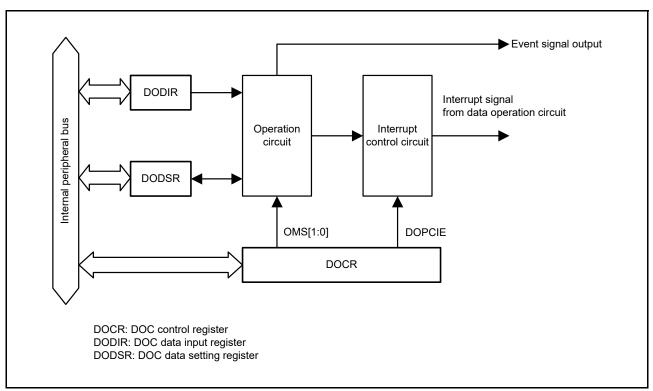


Figure 37.1 DOC Block Diagram

37.2 Register Descriptions

37.2.1 DOC Control Register (DOCR)

Address(es): 0008 B080h

Bit	Symbol	Bit Name	Description	R/W
b1, b0	OMS[1:0]	Operating Mode Select	 b1 b0 0 0: Data comparison mode 0 1: Data addition mode 1 0: Data subtraction mode 1 1: Setting prohibited 	R/W
b2	DCSEL*1	Detection Condition Select	Result of data comparison 0: Data mismatch is detected. 1: Data match is detected.	R/W
b3	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b4	DOPCIE	Data Operation Circuit Interrupt Enable	O: Disables interrupts from the data operation circuit. Enables interrupts from the data operation circuit.	R/W
b5	DOPCF	Data Operation Circuit Flag	Indicates the result of an operation.	R
b6	DOPCFCL	DOPCF Clear	0: Maintains the DOPCF flag state. 1: Clears the DOPCF flag.	R/W
b7	_	Reserved	This bit is read as 0. The write value should be 0.	R/W

Note 1. Valid only when data comparison mode is selected.

OMS[1:0] Bits (Operating Mode Select)

These bits select the operating mode of the data operation circuit.

DCSEL Bit (Detection Condition Select)

This bit is valid only when data comparison mode is selected.

This bit selects the condition for detection in data comparison mode.

DOPCIE Bit (Data Operation Circuit Interrupt Enable)

Setting this bit to 1 enables interrupts from the data operation circuit.

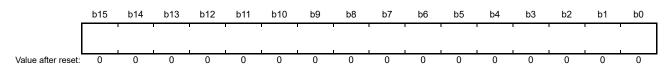
DOPCF Flag (Data Operation Circuit Flag)

[Setting conditions]

- The condition selected by the DCSEL bit is met
- A result of data addition is greater than FFFFh
- A result of data subtraction is less than 0000h

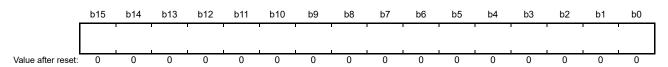
[Clearing condition]

• Writing 1 to the DOPCFCL bit


DOPCFCL Bit (DOPCF Clear)

Setting this bit to 1 clears the DOPCF flag. This bit is read as 0.

37.2.2 DOC Data Input Register (DODIR)


Address(es): 0008 B082h

DODIR is a 16-bit readable/writable register in which 16-bit data for use in the operations are stored.

37.2.3 DOC Data Setting Register (DODSR)

Address(es): 0008 B084h

DODSR is a 16-bit readable/writable register. This register stores 16-bit data for use as a reference in data comparison mode. This register also stores the results of operations in data addition and data subtraction modes.

37.3 Operation

37.3.1 Data Comparison Mode

Figure 37.2 shows an example of the steps involved in data comparison mode operation by the data operation circuit. The following is an example of operation when DCSEL is set to 0 (data mismatch is detected as a result of data comparison).

- (1) Writing 00b to the DOCR.OMS[1:0] bits selects data comparison mode.
- (2) The 16-bit reference data is set in DODSR.
- (3) 16-bit data for comparison is written to DODIR.
- (4) Writing of 16-bit data continues until all data for comparison have been written to DODIR.
- (5) If a value written to DODIR does not match that in DODSR*1, the DOCR.DOPCF flag is set to 1. When the DOCR.DOPCIE bit is 1, a data operation circuit interrupt is also generated.

Note 1. When DOCR.DCSEL = 0

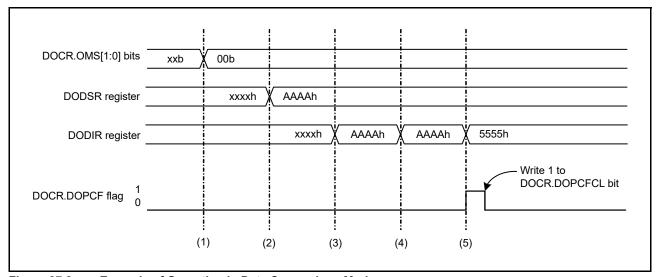


Figure 37.2 Example of Operation in Data Comparison Mode

37.3.2 Data Addition Mode

Figure 37.3 shows an example of the steps involved in data addition mode operation by the data operation circuit.

- (1) Writing 01b to the DOCR.OMS[1:0] bits selects data addition mode.
- (2) 16-bit data is set in the DODSR register as the initial value.
- (3) 16-bit data to be added is written to DODIR. The result of the operation is stored in DODSR.
- (4) Writing of 16-bit data continues until all data for addition have been written to DODIR.
- (5) If the result of an operation is greater than FFFFh, the DOCR.DOPCF flag is set to 1. When the DOCR.DOPCIE bit is 1, a data operation circuit interrupt is also generated.

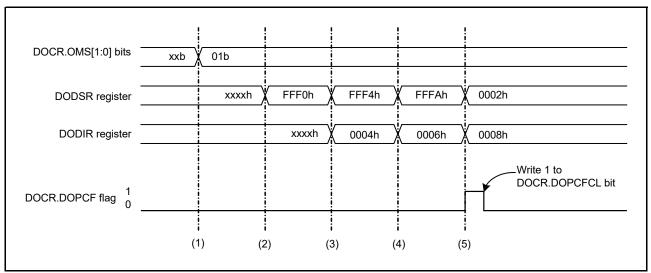


Figure 37.3 Example of Operation in Data Addition Mode

37.3.3 Data Subtraction Mode

Figure 37.4 shows an example of the steps involved in data subtraction mode operation by the data operation circuit.

- (1) Writing 10b to the DOCR.OMS[1:0] bits selects data subtraction mode.
- (2) 16-bit data is set in the DODSR register as the initial value.
- (3) 16-bit data to be subtracted is written to DODIR. The result of the operation is stored in DODSR.
- (4) Writing of 16-bit data continues until all data for subtraction have been written to DODIR.
- (5) If the result of an operation is less than 0000h, the DOCR.DOPCF flag is set to 1. When the DOCR.DOPCIE bit is 1, a data operation circuit interrupt is also generated.

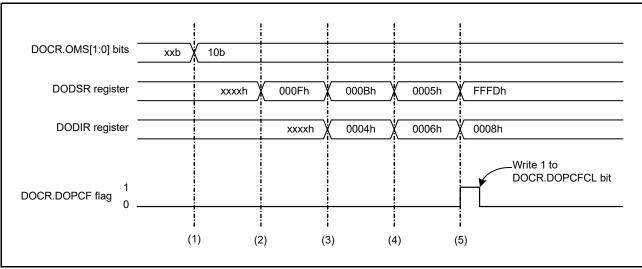


Figure 37.4 Example of Operation in Data Subtraction Mode

37.4 Interrupt Requests

The data operation circuit generates the data operation circuit interrupt as an interrupt request. When an interrupt source is generated, the data operation circuit flag corresponding to the interrupt is set to 1. Table 37.2 describes the interrupt request.

Table 37.2 Interrupt Request from Data Operation Circuit

Interrupt Request	Data Operation Circuit Flag	Interrupt Generation Timing
Data operation circuit interrupt	DOPCF	 The compared values either match or mismatch The result of data addition is greater than FFFFh The result of data subtraction is less than 0000h

37.5 Event Link Output

The DOC outputs event signals for the event link controller (ELC) under the following conditions, and these can be used to initiate operations by other modules selected in advance.

- The compared values either match or mismatch
- The result of data addition is greater than FFFFh
- The result of data subtraction is less than 0000h

37.5.1 Interrupt Handling and Event Linking

The DOC has a bit to enable or disable interrupts. An interrupt request signal is output for the CPU when an interrupt source is generated while the corresponding enable bit is enabled.

In contrast, an event link output signal is sent to other modules as an event signal via the ELC when an interrupt source is generated, regardless of the setting of the corresponding interrupt enable bit.

37.6 Usage Note

37.6.1 Module Stop Function Setting

Operation of the data operation circuit can be disabled or enabled using module stop control register B (MSTPCRB). The initial setting is for the data operation circuit to be stopped. Register access is enabled by releasing the module stop state. For details, refer to section 11, Low Power Consumption.

RX130 Group 38. RAM

38. RAM

This MCU has an on-chip high-speed static RAM.

38.1 Overview

Table 38.1 lists the specifications of the RAM.

Table 38.1 RAM Specifications

Item	Description
RAM capacity	Max. 48 Kbytes*2
Access	 Single-cycle access is possible for both reading and writing. RAM can be enabled or disabled.*1
Low power consumption function	Module stop state can be set.

Note 1. Selectable by the SYSCR1.RAME bit. For details on the SYSCR1 register, refer to section 3.2.2, System Control Register 1 (SYSCR1).

Note 2. The capacity of RAM differs depending on the products.

RAM Capacity	RAM Address
48 Kbytes	RAM0: 0000 0000h to 0000 BFFFh
32 Kbytes	RAM0: 0000 0000h to 0000 7FFFh
16 Kbytes	RAM0: 0000 0000h to 0000 3FFFh
10 Kbytes	RAM0: 0000 0000h to 0000 27FFh

38.2 Operation

38.2.1 Low Power Consumption Function

Power consumption can be reduced by setting module stop control register C (MSTPCRC) to stop supply of the clock signal to the RAM.

Setting the MSTPCRC.MSTPC0 bit to 1 stops supply of the clock signal to RAM0.

Stopping supply of the clock signal places the RAM0 in the module stop state. The RAM operates after the value is initialized by a reset.

The RAM is not accessible in the module stop state. Do not make a transition to the module stop state while the RAM is being accessed.

For details on the MSTPCRC register, refer to section 11, Low Power Consumption.

39. Flash Memory

This MCU has packages with 64, 128, 256, 384, and 512 Kbyte flash memory (ROM) for storing code and 8-Kbyte flash memory (E2 DataFlash) for storing data.

In this section, "PCLK" is used to refer to PCLKB.

39.1 Overview

Table 39.1 lists the Flash Memory Specifications.

Table 39.6 lists the I/O Pins Used in Boot Mode.

Table 39.1 Flash Memory Specifications

Item	Description
Memory space	 User area: Up to 512 Kbytes Data area: 8 Kbytes Extra area: Stores the start-up area information, access window information, and unique ID
Software commands	 The following commands are implemented: Program, blank check, block erase, and unique ID read The following commands are implemented for programming the extra area: Start-up area information program and access window information program
Value after erasure	ROM: FFh E2 DataFlash: FFh
Interrupt	An interrupt (FRDYI) is generated upon completion of software command processing or forced stop processing.
On-board programming	Boot mode (SCI Interface)*1 • Channel 1 of the serial communications interface (SCI1) is used for asynchronous serial communication. • The user area and data area are rewritable. Boot mode (FINE interface) • The FINE is used. • The user area and data area are rewritable. Self-programming in single-chip mode • The user area and data area are rewritable using the flash rewrite routine in the user program.
Off-board programming	The user area and data area are rewritable using a flash programmer compatible with this MCU.
ID code protection	 Connection with the serial programmer can be enabled or disabled using ID codes in boot mode. Connection with the on-chip debugging emulator can be enabled or disabled using ID codes.
Start-up program protection	This function is used to safely rewrite block 0 to block 15.
Area protection	This function enables rewriting only the selected blocks in the user area and disables the other blocks during self-programming.
Background Operation (BGO)	Programs on the ROM can be executed while rewriting the E2 DataFlash.

Note 1. Refer to "PG-FP5 Flash Memory Programmer User's Manual" and "Renesas Flash Programmer Flash memory programming software User's Manual" for more details.

39.2 ROM Area and Memory Plane/Block Configuration

The maximum ROM size of this MCU is 512 Kbytes. Note that when the ROM size exceeds 256 Kbytes, the ROM area is divided into two memory planes on a 256-Kbyte boundary. Each plane is divided into 1-Kbyte areas (block) and one plane can have up to 256 blocks. When executing the block erase command, the memory is erased by the block. Figure 39.1 shows the ROM Area and Memory Plane/Block Configuration.

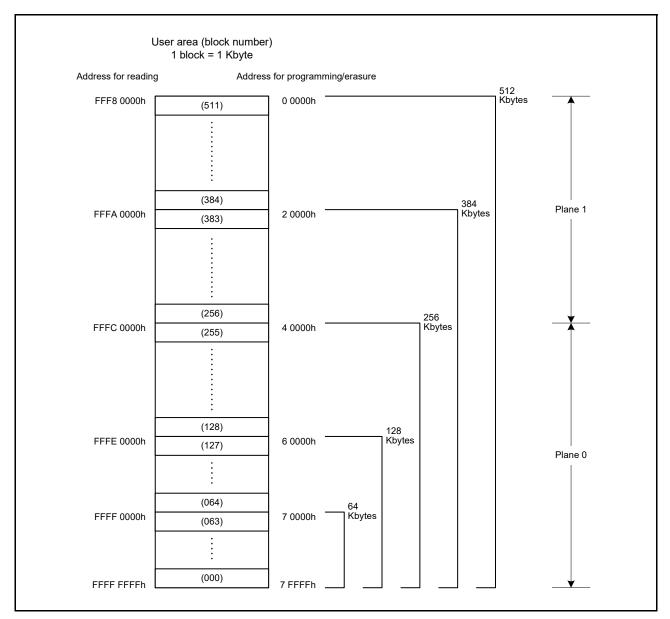


Figure 39.1 ROM Area and Memory Plane/Block Configuration

Table 39.2 Correspondence Between ROM Capacity and Addresses for Reading

ROM Capacity	Addresses for Reading
512 Kbytes	FFF8 0000h to FFFF FFFFh
384 Kbytes	FFFA 0000h to FFFF FFFFh
256 Kbytes	FFFC 0000h to FFFF FFFFh
128 Kbytes	FFFE 0000h to FFFF FFFFh
64 Kbytes	FFFF 0000h to FFFF FFFFh

39.3 E2 DataFlash Area and Block Configuration

The E2 DataFlash is 8 Kbytes in the MCU. The E2 DataFlash is divided into blocks and erased in block units. Figure 39.2 shows the E2 DataFlash Area and Block Configuration.

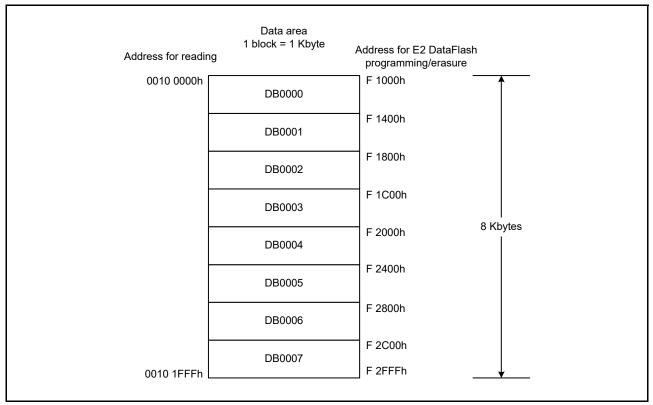



Figure 39.2 E2 DataFlash Area and Block Configuration

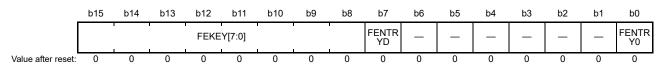
39.4 Register Descriptions

39.4.1 E2 DataFlash Control Register (DFLCTL)

Address(es): 007F C090h

Bit	Symbol	Bit Name	Description	R/W
b0	DFLEN	E2 DataFlash Access Enable	O: Access to E2 DataFlash and access to the extra area in P/E mode*1 disabled 1: Access to E2 DataFlash and access to the extra area in P/E mode*1 enabled	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Note 1. Unique ID read, start-up area information program, and access window information program


The DFLCTL register is used to enable or disable access (read, program, and erase) to the E2 DataFlash and access (unique ID read, start-up area information program, and access window information program) to the extra area in P/E mode.

When reading, programming, and erasing the E2 DataFlash, set the DFLCTL.DFLEN bit to 1 and wait for the E2 DataFlash STOP recovery time (tDSTOP) to elapse before reading the E2 DataFlash and entering E2 DataFlash P/E mode. Do not read the E2 DataFlash or enter E2 DataFlash P/E mode until tDSTOP has elapsed.

Refer to section 39.7.1, Sequencer Modes for details on E2 DataFlash P/E mode. Refer to section 40, Electrical Characteristics for E2 DataFlash STOP recovery time (tDSTOP).

39.4.2 Flash P/E Mode Entry Register (FENTRYR)

Address(es): 007F FFB2h

Bit	Symbol	Bit Name	Description	R/W
b0	FENTRY0	ROM P/E Mode Entry 0	0: ROM is in read mode. 1: ROM can be placed in P/E mode.	R/W
b6 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b7	FENTRYD	E2 DataFlash P/E Mode Entry	0: E2 DataFlash is in read mode. 1: E2 DataFlash can be placed in P/E mode.	R/W
b15 to b8			The FEKEY[7:0] bits are used to control rewriting of the FENTRYR register. When rewriting the value of the lower 8 bits, set the FEKEY[7:0] bits to AAh at the same time (write this register in 16 bits). The FEKEY[7:0] bits are read as 00h.	R/W

To rewrite the ROM or E2 DataFlash, the FENTRYD or FENTRY0 bit must be set to 1 to place the ROM or E2 DataFlash in P/E mode.

When returning to read mode, set the FENTRYR register and confirm that its value has been rewritten before reading the ROM or E2 DataFlash.

Refer to section 39.7.1, Sequencer Modes for details on P/E mode and read mode.

FENTRY0 Bit (ROM P/E Mode Entry 0)

This bit is used to place the ROM in P/E mode.

[Setting condition]

• AA01h is written to the FENTRYR register when the FENTRYR register is 0000h.

Note: When entering ROM P/E mode, the instruction fetch address must be transferred to an area other than the ROM so that instruction fetching is not executed to the ROM. Copy necessary instruction code to the internal RAM and jump to the RAM. Note that E2 DataFlash can be rewritten by a program in the ROM.

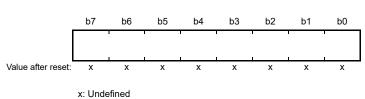
[Clearing condition]

• AA00h is written to the FENTRYR register.

FENTRYD Bit (E2 DataFlash P/E Mode Entry)

This bit is used to place the E2 DataFlash in P/E mode.

[Setting condition]


• AA80h is written to the FENTRYR register when the FENTRYR register is 0000h.

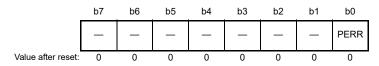
[Clearing condition]

• AA00h is written to the FENTRYR register.

39.4.3 Protection Unlock Register (FPR)

Address(es): 007F C0C0h

This write-only register is used to protect the FPMCR register from being rewritten inadvertently when the CPU runs out of control. Writing to the FPMCR register is enabled only when the following procedure is used to access the register.


Procedure to unlock protection

- (1) Write A5h to the FPR register.
- (2) Write a set value to the FPMCR register.
- (3) Write the inverted set value to the FPMCR register.
- (4) Write a set value to the FPMCR register again.

When a procedure other than the above is used to write data, the FPSR.PERR flag is set to 1.

39.4.4 Protection Unlock Status Register (FPSR)

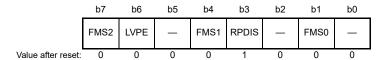
Address(es): 007F C0C1h

Bit	Symbol	Bit Name	Description	R/W
b0	PERR	Protect Error Flag	0: No error 1: An error occurs.	R
b7 to b1	_	Reserved	These bits are read as 0.	R

PERR Flag (Protect Error Flag)

When the FPMCR register is not accessed as described in the procedure to unlock protection, data is not written to the register and this flag is set to 1.

[Setting condition]


• The FPMCR register is not accessed as described in the procedure to unlock protection.

[Clearing condition]

The FPMCR register is accessed according to the procedure to unlock protection described in section 39.4.3,
 Protection Unlock Register (FPR).

39.4.5 Flash P/E Mode Control Register (FPMCR)

Address(es): 007F FF80h

Bit	Symbol	Bit Name	Description	R/W
b0	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b1	FMS0	Flash Operating Mode Select 0	FMS2 FMS1 FMS0 0 0 0: ROM/E2 DataFlash read mode 0 1 0: E2 DataFlash P/E mode 0 1 1: Discharge mode 1 1 0 1: ROM P/E mode 1 1 1: Discharge mode 2 Settings other than above are prohibited.	R/W
b2	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b3	RPDIS	ROM P/E Disable	ROM programming/erasure enabled ROM programming/erasure disabled	R/W
b4	FMS1	Flash Operating Mode Select 1	See the FMS0 bit.	R/W
b5	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b6	LVPE	Low-Voltage P/E Mode Enable	0: Low-voltage P/E mode disabled 1: Low-voltage P/E mode enabled	R/W
b7	FMS2	Flash Operating Mode Select 2	See the FMS0 bit.	R/W

The FPMCR register is used to set the operating mode of the flash memory.

This register is protected. Set its value using the procedure to unlock protection. For details, refer to section 39.4.3, Protection Unlock Register (FPR).

When entering discharge mode 2 or ROM P/E mode, or during either of these modes, an instruction must be executed on the RAM.

FMS0, FMS1, and FMS2 Bits (Flash Operating Mode Select 0 to Flash Operating Mode Select 2)

These bits are used to set the operating mode of the flash memory.

[Transition from read mode to ROM P/E mode]

Set the FMS2 bit = 0, the FMS1 bit = 1, the FMS0 bit = 1, and the RPDIS bit = 0.

Wait for ROM mode transition wait time 1 (tDIS, refer to section 40, Electrical Characteristics).

Set the FMS2 bit = 1, the FMS1 bit = 1, the FMS0 bit = 1, and the RPDIS bit = 0.

Set the FMS2 bit = 1, the FMS1 bit = 0, the FMS0 bit = 1, and the RPDIS bit = 0.

Wait for ROM mode transition wait time 2 (tMS, refer to section 40, Electrical Characteristics).

[Transition from ROM P/E mode to read mode]

Set the FMS2 bit = 1, the FMS1 bit = 1, the FMS0 bit = 1, and the RPDIS bit = 0.

Wait for ROM mode transition wait time 1 (tDIS, refer to section 40, Electrical Characteristics).

Set the FMS2 bit = 0, the FMS1 bit = 1, the FMS0 bit = 1, and the RPDIS bit = 0.

Set the FMS2 bit = 0, the FMS1 bit = 0, the FMS0 bit = 0, and the RPDIS bit = 1.

Wait for ROM mode transition wait time 2 (tMS, refer to section 40, Electrical Characteristics).

[Transition from read mode to E2 DataFlash P/E mode]

Set the FMS2 bit = 0, the FMS1 bit = 1, the FMS0 bit = 0, and the RPDIS bit = 0.

[Transition from E2 DataFlash P/E mode to read mode]

Set the FMS2 bit = 0, the FMS1 bit = 0, the FMS0 bit = 0, and the RPDIS bit = 1.

Wait for ROM mode transition wait time 2 (tMS, refer to section 40, Electrical Characteristics).

RPDIS Bit (ROM P/E Disable)


This bit is used to disable the execution of ROM programming/erasure with software.

LVPE Bit (Low-Voltage P/E Mode Enable)

Set this bit to 0 for programming/erasure in high-speed mode, and set this bit to 1 for programming/erasure in middle-speed mode.

39.4.6 Flash Initial Setting Register (FISR)

Address(es): 007F C0B6h

Bit	Symbol	Bit Name	Description	R/W
b4 to b0	PCKA[4:0]	Peripheral Clock Notification	These bits are used to set the frequency of the FlashIF clock (FCLK).	R/W
b5	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b7, b6	SAS[1:0]	Start-Up Area Select	 b7 b6 0 x: The start-up area is selected according to the start-up area settings of the extra area. 1 0: The start-up area is switched to the default area temporarily. 1 1: The start-up area is switched to the alternate area temporarily. 	R/W

x: Don't care

Data can be written to the FISR register in ROM P/E mode or E2 DataFlash P/E mode.

PCKA[4:0] Bits (Peripheral Clock Notification)

These bits are used to set the frequency of the FlashIF clock (FCLK) when programming/erasing the ROM/E2 DataFlash.

Set the FCLK frequency in the PCKA[4:0] bits before programming/erasure. Do not change the frequency during programming/erasure of the ROM/E2 DataFlash.

[When FCLK is higher than 4 MHz]

Set a rounded-up value for a non-integer frequency.

For example, set 32 MHz (PCKA[4:0] bits = 11111b) when the frequency is 31.5 MHz.

[When FCLK is 4 MH or lower]

Do not use a non-integer frequency.

Use the FCLK at a frequency of 1, 2, 3, or 4 MHz.

Note: When the PCKA[4:0] bits are set to a frequency different from the FCLK, the data in the ROM/E2 DataFlash may be damaged.

Table 39.3 Example of FlashIF Clock Frequency Settings

FlashIF Clock Frequency (MHz)	PCKA[4:0] Bit Setting	FlashIF Clock Frequency (MHz)	PCKA[4:0] Bit Setting	FlashIF Clock Frequency (MHz)	PCKA[4:0] Bit Setting
32	11111b	31	11110b	30	11101b
29	11100b	28	11011b	27	11010b
26	11001b	25	11000b	24	10111b
23	10110b	22	10101b	21	10100b
20	10011b	19	10010b	18	10001b
17	10000b	16	01111b	15	01110b
14	01101b	13	01100b	12	01011b
11	01010b	10	01001b	9	01000b
8	00111b	7	00110b	6	00101b
5	00100b	4	00011b	3	00010b
2	00001b	1	00000b	_	_

SAS[1:0] Bits (Start-Up Area Select)

These bits are used to select the start-up area. To change the start-up area, the following three methods can be used.

(1) When selecting the start-up area according to the start-up area settings of the extra area With the SAS[1:0] bits set to 00b or 01b, the start-up area is selected according to the start-up area settings of the extra area. The settings are enabled after a reset is released.

(2) When switching the start-up area to the default area temporarily

When 10b is written to the SAS[1:0] bits, the start-up area is switched to the default area immediately after data is written to the register, regardless of the start-up area settings of the extra area.

When a reset is generated after this, the area is selected according to the start-up area settings of the extra area.

(3) When switching the start-up area to the alternative area temporarily

When 11b is written to the SAS[1:0] bits, the start-up area is switched to the alternative area, regardless of the start-up area settings of the extra area.

When a reset is generated after this, the area is selected according to the start-up area settings of the extra area.

39.4.7 Flash Reset Register (FRESETR)

Address(es): 007F FF89h

Bit	Symbol	Bit Name	Description	R/W
b0	FRESET	Flash Reset	0: Flash control circuit reset is released.1: Flash control circuit is reset.	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

FRESET Bit (Flash Reset)

When this bit is set to 1, registers FASR, FSARH, FSARL, FEARH, FEARL, FWBH, FWBL, FCR, and FEXCR are reset. Also, the values of registers FEAMH and FEAML are undefined. Do not access these registers during a reset. To release the reset, set this bit to 0.

Do not write to this register while executing a software command or rewriting the extra area.

39.4.8 Flash Area Select Register (FASR)

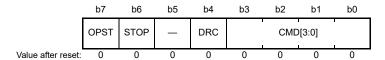
Address(es): 007F FF81h

Bit	Symbol	Bit Name	Description	R/W
b0	EXS	Extra Area Select	0: User area or data area 1: Extra area	R/W
b7 to b1	_	Reserved	These bits are read as 0. The write value should be 0.	R/W

Data can be written to the FASR register in ROM P/E mode or E2 DataFlash P/E mode.

This register is initialized by a reset or setting the FRESETR.FRESET bit to 1.

Data cannot be written to this register while the FRESETR.FRESET bit is 1.


EXS Bit (Extra Area Select)

Set this bit to 1 before issuing a software command (unique ID read, start-up area information program, or access window information program) for the extra area. Set this bit to 0 before issuing a software command (program, blank check, or block erase) for the user area.

After issuing a software command, do not change the value until changing it for issuing the next software command.

39.4.9 Flash Control Register (FCR)

Address(es): 007F FF85h

Bit	Symbol	Bit Name	Description	R/W
b3 to b0	CMD[3:0]	Software Command Setting	b3 b0 0 0 0 1: Program 0 0 1 1: Blank check 0 1 0 0: Block erase 0 1 0 1: Unique ID read Settings other than above are prohibited.*1	R/W
b4	DRC	Data Read Completion	0: Start data read. 1: Complete data read.	R/W
b5	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b6	STOP	Forced Processing Stop	When this bit is set to 1, the processing being executed can be forcibly stopped.	R/W
b7	OPST	Processing Start	Processing stops. Processing starts.	R/W

Note 1. This does not include set the FCR register to 00h when the FSTATR1.FRDY flag is 1.

Data can be written to the FCR register when in ROM P/E mode and the ROM can be programmed/erased or in E2 DataFlash P/E mode.

This register is initialized by a reset or setting the FRESETR.FRESET bit to 1. Data cannot be written to this register while the FRESETR.FRESET bit is 1.

Note that this register cannot be initialized by the FRESETR.FRESET bit while a software command is being executed. [Products with 384-Kbyte or 512-Kbyte ROM]

• Blank check or block erase cannot be executed across the memory planes (256-Kbyte boundary).

CMD[3:0] Bits (Software Command Setting)

These bits are used to set a software command (program, blank check, block erase, or unique ID read).

The function of each command is described below.

[Program]

- Write the value set in registers FWBH and FWBL to the address set in registers FSARH and FSARL. [Blank check]
- Check whether there is data in the area from the address set in registers FSARH and FSARL to the address set in registers FEARH and FEARL. Confirm that data is not programmed in the area. This command does not guarantee whether the area remains erased.

[Block erase]

• Erase consecutive areas in the same memory plane by the blocks. Set the beginning address of the block in registers FSARH and FSARL and the end address in registers FEARH and FEARL.

[Unique ID read]

• When executing the unique ID read after setting registers FSARH, FSARL, FEARH, and FEARL to 00h, 0850h, 00h, and 086Fh, respectively, the unique ID is stored in registers FRBH and FRBL sequentially.

DRC Bit (Data Read Completion)

This bit is used with the unique ID read command to control the state of the sequencer.

When issuing the unique ID read command with this bit set to 0, data is read from the address set in registers FSARH and FSARL, and the data is stored in registers FRBH and FRBL.

When issuing the unique ID read command with this bit set to 1 after reading data from registers FRBH and FRBL, the sequencer ends the read cycle and enters the wait state.

When issuing the unique ID read command again with this bit set to 0, the internal address of the sequencer is incremented by 4, and the next data is read.

STOP Bit (Forced Processing Stop)

This bit is used to forcibly stop the processing (blank check or block erase) being executed.

After setting this bit to 1, wait until the FSTATR1.FRDY flag is 1 (processing completed) before setting the OPST bit to 0.

OPST Bit (Processing Start)

This bit is used to execute the command set in the CMD[2:0] bits.

This bit is not set to 0 again even when the processing is completed. Confirm that the FSTATR1.FRDY flag is 1 (processing completed) before setting the OPST bit to 0 again. After that, confirm that the FRDY flag is 0 before executing the next processing.

39.4.10 Flash Extra Area Control Register (FEXCR)

Address(es): 007F C0B7h

Bit	Symbol	Bit Name	Description	R/W
b2 to b0	CMD[2:0]	Software Command Setting	b2 b0 0 0 1: Start-up area information program 0 1 0: Access window information program Settings other than above are prohibited.*1	R/W
b6 to b3	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b7	OPST	Processing Start	Processing stops. Processing starts.	R/W

Note 1. This does not include set the FEXCR register to 00h when the FSTATR1.EXRDY flag is 1.

Data can be written to the FEXCR register when in ROM P/E mode and the ROM can be programmed/erased. This register is initialized by a reset or setting the FRESETR.FRESET bit to 1. Data cannot be written to this register while the FRESETR.FRESET bit is 1.

Note that this register cannot be initialized by the FRESETR.FRESET bit while a software command is being executed.

CMD[2:0] Bits (Software Command Setting)

These bits are used to set a software command (start-up area information program or access window information program).

The details of each command are described below.

[Start-up area information program]

This command is used to switch the start-up area used for start-up program protection.

- When setting the start-up area to the default area Set registers FWBH and FWBL to FFFFh, and execute this command.
- When setting the start-up area to the alternative area
 Set the FWBH register to FFFFh, set the FWBL register to FEFFh, and execute this command.

When registers FWBH and FWBL are set to values other than the above, do not execute the start-up area information program.

[Access window information program]

This command is used to set the access window used for area protection.

Set the access window in block units.

Specify the access window start address, which is the beginning address of the access window in the FWBL register, specify the access window end address, which is the next address of the last address of the access window in the FWBH register, and issue this command. Set bit 19 to bit 10 of the address for programming/erasure in each register.

If the same value is set as the start address and address all areas can be accessed. Do not set the start address to a

If the same value is set as the start address and end address, all areas can be accessed. Do not set the start address to a value larger than the value of the end address.

OPST Bit (Processing Start)

This bit is used to execute the command set in the CMD[2:0] bits.

This bit is not set to 0 again even when the processing is completed. Confirm that the FSTATR1.EXRDY flag is 1 (processing completed) before setting the OPST bit to 0 again. After that, confirm that the FSTATR1.EXRDY flag is 0 before executing the next processing.

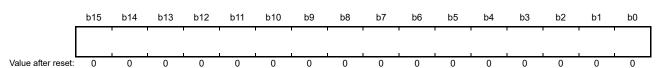
Writing to the extra area is started by writing 1 to the OPST bit. Do not write to the CMD[2:0] bits while a software command is being executed.

39.4.11 Flash Processing Start Address Register H (FSARH)

Address(es): 007F FF84h

The FSARH register is used to set the target processing address or the start address of the target processing range in the flash memory when a software command is executed.

Set bit 19 to bit 16 of the flash memory address for programming/erasure in this register.


Data can be written to this register in ROM P/E mode or E2 DataFlash P/E mode.

This register is initialized by a reset or setting the FRESETR.FRESET bit to 1. Data cannot be written to this register while the FRESETR.FRESET bit is 1.

If this register is read while executing a software command set by the FEXCR register, an undefined value is read. Refer to Figure 39.1 and Figure 39.2 for details on the addresses of the flash memory.

39.4.12 Flash Processing Start Address Register L (FSARL)

Address(es): 007F FF82h

The FSARL register is used to set the target processing address or the start address of the target processing range in the flash memory when a software command is executed.

Set bit 15 to bit 0 of the flash memory address for programming/erasure in this register.

To set the ROM area, set bit 1 and bit 0 to 00b.

Data can be written to this register in ROM P/E mode or E2 DataFlash P/E mode.

This register is initialized by a reset or setting the FRESETR.FRESET bit to 1. Data cannot be written to this register while the FRESETR.FRESET bit is 1.

If this register is read while executing a software command set by the FEXCR register, an undefined value is read.

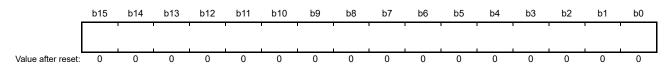
Refer to Figure 39.1 and Figure 39.2 for details on the addresses of the flash memory.

39.4.13 Flash Processing End Address Register H (FEARH)

Address(es): 007F FF88h

The FEARH register is used to set the end address of the target processing range in the flash memory when a software command is executed.

Set bit 19 to bit 16 of the flash memory address for programming/erasure in this register.


Data can be written to this register in ROM P/E mode or E2 DataFlash P/E mode.

This register is initialized by a reset or setting the FRESETR.FRESET bit to 1. Data cannot be written to this register while the FRESETR.FRESET bit is 1.

If this register is read while executing a software command set by the FEXCR register, an undefined value is read. Refer to Figure 39.1 and Figure 39.2 for details on the addresses of the flash memory.

39.4.14 Flash Processing End Address Register L (FEARL)

Address(es): 007F FF86h

The FEARH register is used to set the end address of the target range for processing when a software command is executed.

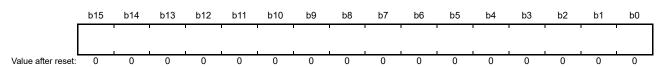
Set bit 15 to bit 0 of the flash memory address for programming/erasure in this register.

When setting the ROM area, set bit 1 and bit 0 to 00b.

Data can be written to this register in ROM P/E mode or E2 DataFlash P/E mode.

This register is initialized by a reset or setting the FRESETR.FRESET bit to 1. Data cannot be written to this register while the FRESETR.FRESET bit is 1.

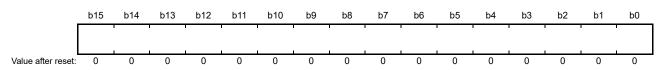
If this register is read while executing a software command set by the FEXCR register, an undefined value is read.


Refer to Figure 39.1 and Figure 39.2 for details on the addresses of the flash memory.

[Products with 384-Kbyte or 512-Kbyte ROM]

• Set addresses in the same memory plane for registers FSARH and FSARL and registers FEARH and FEARL.

39.4.15 Flash Read Buffer Register H (FRBH)


Address(es): 007F C0C4h

This register is used to store the upper 2 bytes of the 4-byte data (part of the unique ID) that is read from the extra area when unique ID read is executed.

39.4.16 Flash Read Buffer Register L (FRBL)

Address(es): 007F C0C2h

This register is used to store the lower 2 bytes of the 4-byte data (part of the unique ID) that is read from the extra area when unique ID read is executed.

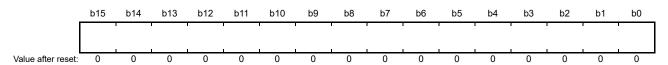
39.4.17 Flash Write Buffer Register H (FWBH)

Address(es): 007F FF8Eh

This register is used to set the upper 16 bits of the data for programming the ROM.

Data can be written to this register in ROM P/E mode or E2 DataFlash P/E mode.

This register is initialized by a reset or setting the FRESETR.FRESET bit to 1. Data cannot be written to this register while the FRESETR.FRESET bit is 1.


The value read from this register is undefined while a software command is being executed.

The data for programming the E2 DataFlash should be specified in the lower 8 bits in the FWBL register.

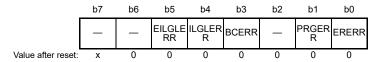
If this register is read while executing a software command set by the FEXCR register, an undefined value is read.

39.4.18 Flash Write Buffer Register L (FWBL)

Address(es): 007F FF8Ch

This register is used to set the lower 16 bits of the data for programming the ROM or the data for programming the E2 DataFlash.

The data for programming the E2 DataFlash should be set in bit 7 to bit 0.


Data can be written to this register in ROM P/E mode or E2 DataFlash P/E mode.

This register is initialized by a reset or setting the FRESETR.FRESET bit to 1. Data cannot be written to this register while the FRESETR.FRESET bit is 1.

If this register is read while executing a software command set by the FEXCR register, an undefined value is read.

39.4.19 Flash Status Register 0 (FSTATR0)

Address(es): 007F FF8Ah

Bit	Symbol	Bit Name	Description	R/W
b0	ERERR	Erase Error Flag	Erasure terminates normally. An error occurs during erasure.	R
b1	PRGERR	Program Error Flag	Programming terminates normally. An error occurs during programming.	R
b2	_	Reserved	The read value is undefined.	R
b3	BCERR	Blank Check Error Flag	Blank checking terminates normally. An error occurs during blank checking.	R
b4	ILGLERR	Illegal Command Error Flag	O: No illegal software command or illegal access is detected. 1: An illegal command or illegal access is detected.	R
b5	EILGLERR	Extra Area Illegal Command Error Flag	O: No illegal command or illegal access to the extra area is detected. 1: An illegal command or illegal access to the extra area is detected.	R
b7, b6	_	Reserved	The read value is undefined.	R

This register is a status register used to confirm the result of executing a software command. Each error flag is set to 0 when the next software command is executed.

ERERR Flag (Erase Error Flag)

This flag indicates the result of the erase processing for the ROM/E2 DataFlash.

[Setting condition]

• An error occurs during erasure.

[Clearing condition]

The next software command is executed.
 The value read from this flag is undefined when the FCR.STOP bit is set to 1 (processing is forcibly stopped) during erasure.

PRGERR Flag (Program Error Flag)

This flag indicates the result of the program processing for the ROM/E2 DataFlash. [Setting condition]

• An error occurs during programming.

[Clearing condition]

• The next software command is executed.

BCERR Flag (Blank Check Error Flag)

This flag indicates the result of the blank check processing for the ROM/E2 DataFlash. [Setting condition]

• An error occurs during blank checking.

[Clearing condition]

• The next software command is executed.

The value read from this flag is undefined when the FCR.STOP bit is set to 1 (processing is forcibly stopped) during blank checking.

ILGLERR Flag (Illegal Command Error Flag)

This flag indicates the result of executing a software command.

[Setting conditions]

- Programming/erasure is executed to an area other than the access window range.
- A blank check or block erase command is executed when the set value of registers FSARH and FSARL is larger than the set value of registers FEARH and FEARL.
- Program and block erase commands are executed when the FASR.EXS bit is 1.
- The E2 DataFlash address is set in registers FSARH and FSARL and a software command is executed when the ROM is in P/E mode.
- The ROM address is set in registers FSARH and FSARL and a software command is executed when the E2 DataFlash is in P/E mode.
- The ROM and E2 DataFlash are set to P/E mode and a software command is executed.

[Clearing condition]

• The next software command is executed.

EILGLERR Flag (Extra Area Illegal Command Error Flag)

This flag indicates the result of executing a software command for the extra area. [Setting condition]

• A software command for the extra area is executed when the FASR.EXS bit is 0.

[Clearing condition]

• The next software command is executed.

39.4.20 Flash Status Register 1 (FSTATR1)

Address(es): 007F FF8Bh

Bit	Symbol	Bit Name	Description	R/W
b0	_	Reserved	This bit is read as 0.	R
b1	DRRDY	Data Read Ready Flag	0: No valid data in registers FRBH and FRBL 1: Valid data in registers FRBH and FRBL	R
b2	_	Reserved	This bit is read as 1.	R
b5 to b3	_	Reserved	These bits are read as 0.	R
b6	FRDY	Flash Ready Flag	O: Other than below 1: 00h can be written to the FCR register (processing to complete the software command).	
b7	EXRDY	Extra Area Ready Flag	O: Other than below 1: 00h can be written to the FEXCR register (processing to complete the software command).	R

This register is a status register used to confirm the result of executing a software command. Each flag is set to 0 when the next software command is executed.

DRRDY Flag (Data Read Ready Flag)

This flag is used to check if the valid read data is stored in registers FRBH and FRBL.

When the sequencer stores data read from the flash memory to registers FRBH and FRBL, the DRRDY flag becomes 1. When issuing the unique ID command with the FCR.DRC bit set to 1, the sequencer ends the read cycle, and the DRRDY flag becomes 0.

Note that, even if issuing the unique ID command with the FCR.DRC bit set to 0 after reading data from the address set in registers FEARH and FEARL, the DRRDY flag does not become 1, but the FRDY flag becomes 1.

FRDY Flag (Flash Ready Flag)

This flag is used to confirm whether a software command is executed.

This flag becomes 1 when processing of the executed software command or the forced stop processing is completed, and this flag becomes 0 when setting the FCR.OPST bit to 0.

Also, an interrupt (FRDYI) is generated when this flag becomes 1.

EXRDY Flag (Extra Area Ready Flag)

This flag is used to confirm whether a software command for the extra area is executed.

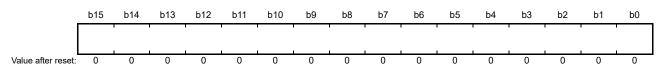
This flag is set to 1 when processing of the executed software command is completed, and 0 when the FEXCR.OPST bit is set to 0.

Also, an interrupt (FRDYI) is generated when this flag becomes 1.

39.4.21 Flash Error Address Monitor Register H (FEAMH)

Address(es): 007F C0BAh

This register is used to check the address where the error has occurred if an error occurs during processing of a software command. This register stores bit 19 to bit 16 of the address where the error has occurred for the program command or blank check command, or it stores bit 19 to bit 16 of the beginning address of the area where the error has occurred for the block erase command.


Since this register value becomes undefined if setting the FRESETR.FRESET bit to 1, read the value before error processing.

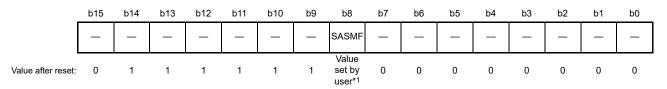
If the software command terminates normally, this register stores bit 19 to bit 16 of the end address at execution of the command.

Refer to Figure 39.1 and Figure 39.2 for details on the addresses of the flash memory.

39.4.22 Flash Error Address Monitor Register L (FEAML)

Address(es): 007F C0B8h

This register is used to check the address where the error has occurred if an error occurs during processing of a software command. This register stores bit 15 to bit 0 of the address where the error has occurred for the program command or blank check command, or it stores bit 15 to bit 0 of the beginning address of the area where the error has occurred for the block erase command.


Since this register value becomes undefined if setting the FRESETR.FRESET bit to 1, read the value before error processing.

When the software command is normally completed, this register stores bit 15 to bit 0 of the last address at execution of the command.

When executing a software command for the ROM or the unique ID read command, lower 2 bits become 00b. Refer to Figure 39.1 and Figure 39.2 for details on the addresses of the flash memory.

39.4.23 Flash Start-Up Setting Monitor Register (FSCMR)

Address(es): 007F C0B0h

Bit	Symbol	Bit Name	Description	R/W
b7 to b0	_	Reserved	These bits are read as 0.	R
b8	SASMF	Start-Up Area Setting Monitor Flag	Setting to start up using the alternative area Setting to start up using the default area	R
b14 to b9	_	Reserved	These bits are read as 1. Writing to these bits has no effect.	R
b15	_	Reserved	This bit is read as 0. Writing to this bit has no effect.	R

Note 1. The value of the blank product is 1. It is set to the same value set in bit 8 in the FWBL register after the start-up area information program command is executed.

SASMF Flag (Start-Up Area Setting Monitor Flag)


This flag is used to confirm the settings of the start-up area.

When this flag is 0, the user program is set to start up using the alternative area.

When this flag is 1, the user program is set to start up using the default area.

39.4.24 Flash Access Window Start Address Monitor Register (FAWSMR)

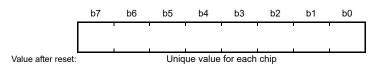
Address(es): 007F C0B2h

Note 1. The value of the blank product is 1. It is set to the same value set in bit 9 to bit 0 the FWBL register after the access window information program command is executed.

This register is used to confirm the set value of the access window start address used for area protection.

39.4.25 Flash Access Window End Address Monitor Register (FAWEMR)

Address(es): 007F C0B4h



Note 1. The value of the blank product is 1. It is set to the same value set in bit 9 to bit 0 in the FWBH register after the access window information program command is executed.

This register is used to confirm the set value of the access window end address used for area protection.

39.4.26 Unique ID Register n (UIDRn) (n = 0 to 31)

Address(es): 0850h to 086Fh (extra area)

The UIDRn register stores a 32-byte ID code (unique ID) for identifying the individual MCU.

The unique ID is stored in the extra area of the flash memory and cannot be rewritten by the user. Use the unique ID read command to read the register value.

39.5 Start-Up Program Protection

When rewriting the start-up program*1 by self-programming, if the rewrite operation is interrupted due to temporary blackout, the start-up program may not be successfully programmed and the user program may not start properly. This problem can be avoided by rewriting the start-up program without erasing the existing start-up program using the start-up program protection. This function is available in products with a 32-Kbyte or larger ROM.

Figure 39.3 shows the Overview of the Start-Up Program Protection. In this figure, the default area indicates block 0 to block 15, and the alternate area indicates block 16 to block 31.

Note 1. Program to perform operation to start the user program. It includes the fixed vector table.

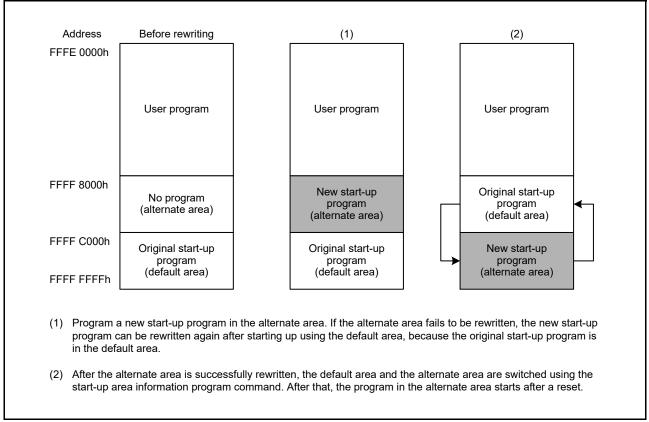


Figure 39.3 Overview of the Start-Up Program Protection

39.6 Area Protection

Area protection enables rewriting only the selected blocks (access window) in the user area and disables rewriting the other blocks during self-programming. The access window cannot be set in the data area.

Specify the start address and end address to set the access window. While the access window can be set in boot mode or by self-programming, area protection is enabled only during self-programming in single-chip mode.

Figure 39.4 shows the Area Protection Overview (When Blocks 4 to 6 are Set as the Access Window in Products with 128-Kbyte ROM).

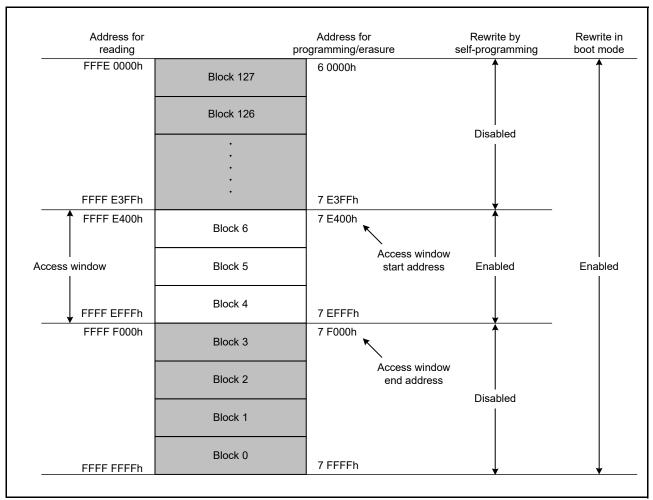


Figure 39.4 Area Protection Overview (When Blocks 4 to 6 are Set as the Access Window in Products with 128-Kbyte ROM)

39.7 Programming and Erasure

The ROM and E2 DataFlash can be programmed and erased by changing the mode of the dedicated sequencer for programming and erasure, and by issuing commands for programming and erasure.

The mode transitions and commands required to program or erase the ROM and E2 DataFlash are described below. The descriptions apply in common to boot mode and single-chip mode.

39.7.1 Sequencer Modes

The sequencer has four modes. Transitions between modes are caused by writing to the DFLCTL and FENTRYR registers and setting the FPMCR register. Figure 39.5 is a diagram of mode transitions of the flash memory.

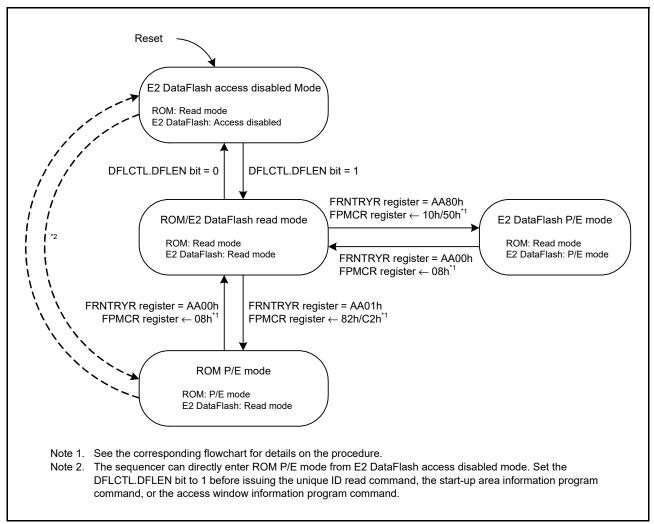


Figure 39.5 Mode Transitions of the Flash Memory

39.7.1.1 E2 DataFlash Access Disabled Mode

In E2 DataFlash access disabled mode, access to the E2 DataFlash is disabled. After a reset, the sequencer enters this mode.

When setting the DFLCTL.DFLEN bit to 1, the E2 DataFlash is placed in read mode.

39.7.1.2 Read Mode

Read mode is for high-speed reading of the ROM/E2 DataFlash. Reading from a ROM address for reading can be accomplished in one ICLK clock.

(1) ROM/E2 DataFlash Read Mode

In this mode, both the ROM and E2 DataFlash are in read mode. The sequencer enters this mode from P/E mode when setting the FPMCR register to 08h, setting the FENTRYR.FENTRYD bit to 0, and setting the FENTRYR.FENTRYO bit to 0.

39.7.1.3 P/E Modes

The P/E mode is for programming and erasure of the ROM/E2 DataFlash.

(1) ROM P/E Mode

In this mode, the ROM is in P/E mode, and the E2 DataFlash is in read mode. The sequencer enters this mode when setting the FENTRYR.FENTRYD to 0, setting the FENTRYR.FENTRYO bit to 1, and setting the FPMCR register 82h or C2h.

(2) E2 DataFlash P/E Mode

In this mode, the ROM is in read mode, and the E2 DataFlash is in P/E mode. The sequencer enters this mode when the setting the FENTRYR.FENTRYD to 1, setting the FENTRYR.FENTRY0 bit to 0, and setting the FPMCR register 10h or 50h.

39.7.2 Mode Transitions

39.7.2.1 Transition from E2 DataFlash Access Disable Mode to Read Mode

Reading of the E2 DataFlash requires switching from E2 DataFlash access disabled mode to ROM/E2 DataFlash read mode.

Set the DFLCTL.DFLEN bit to 1 to switch to ROM/E2 DataFlash read mode.

Figure 39.6 shows the Procedure for Transition from E2 DataFlash Access Disabled Mode to ROM/E2 DataFlash Read Mode.

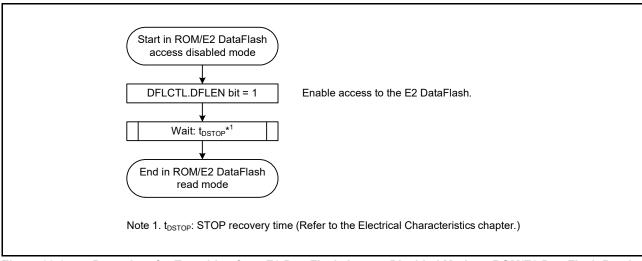


Figure 39.6 Procedure for Transition from E2 DataFlash Access Disabled Mode to ROM/E2 DataFlash Read Mode

39.7.2.2 Transition from Read Mode to P/E Mode

Switching to ROM P/E mode is required before executing a software command for the ROM.

Figure 39.7 shows the Procedure for Transition from ROM/E2 DataFlash Read Mode to ROM P/E Mode. Figure 39.8 shows the Procedure for Transition from ROM/E2 DataFlash Read Mode to E2 DataFlash P/E Mode.



Figure 39.7 Procedure for Transition from ROM/E2 DataFlash Read Mode to ROM P/E Mode

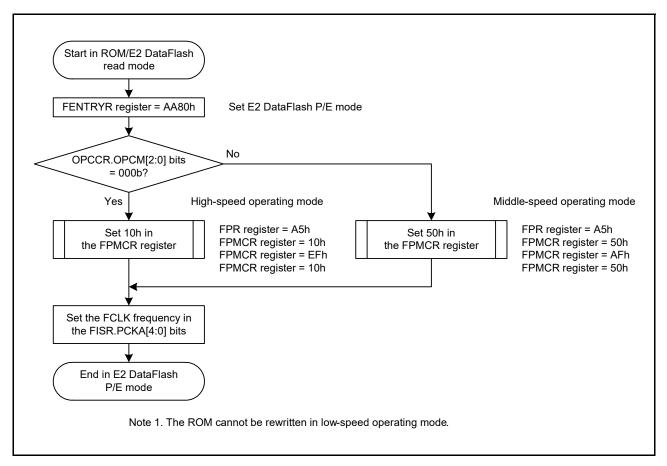


Figure 39.8 Procedure for Transition from ROM/E2 DataFlash Read Mode to E2 DataFlash P/E Mode

39.7.2.3 Transition from P/E Mode to Read Mode

High-speed reading of the ROM requires switching to ROM/E2 DataFlash read mode.

Figure 39.9 shows the Procedure for Transition from ROM P/E Mode to ROM/E2 DataFlash Read Mode. Figure 39.10 shows the Procedure for Transition from E2 DataFlash P/E Mode to ROM/E2 DataFlash Read Mode.

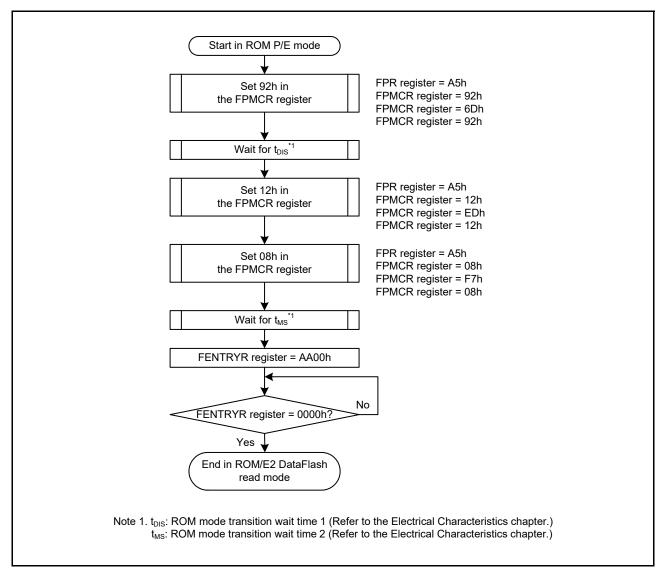


Figure 39.9 Procedure for Transition from ROM P/E Mode to ROM/E2 DataFlash Read Mode

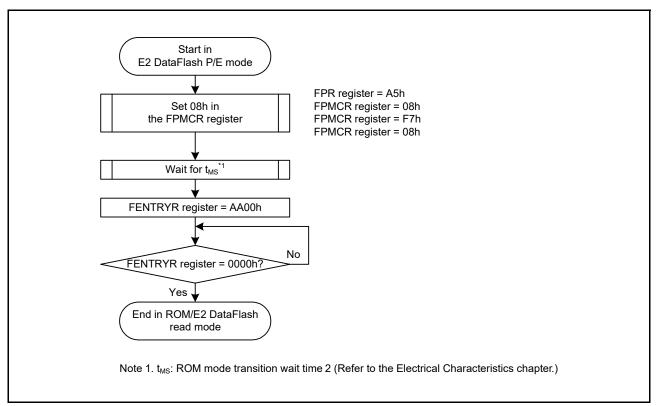


Figure 39.10 Procedure for Transition from E2 DataFlash P/E Mode to ROM/E2 DataFlash Read Mode

39.7.3 Software Commands

Software commands consist of commands for programming and erasure and commands for programming start-up program area information and access window information. Table 39.4 lists the software commands for use with the flash memory.

Table 39.4 Software Commands

Command	Function • ROM programming (4 bytes) • E2 DataFlash programming (1 byte)		
Program			
Block erase	ROM/E2 DataFlash erasure		
Blank check	Check whether the specified area is blank. Confirm that data is not programmed in the area. This command does not guarantee whether the area remains erased.		
Start-up area information program	Rewrite the start-up area switching information used for start-up program protection.		
Access window information program	Set the access window used for area protection.		
Unique ID read	Read the unique ID in the extra area.		

39.7.4 Software Command Usage

This section describes how to use each software command, using flowcharts.

39.7.4.1 Program

Figure 39.11 and Figure 39.12 show the procedure to issue the program command.

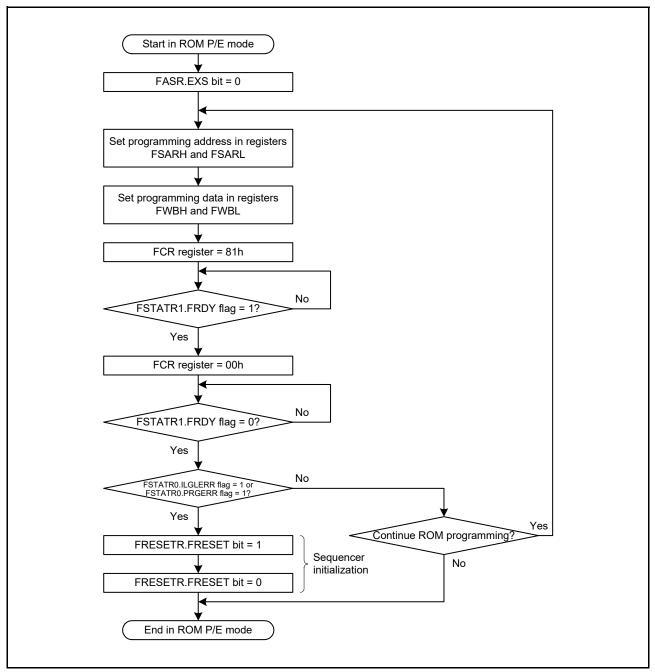


Figure 39.11 Procedure to Issue the Program Command for the ROM

Figure 39.12 Procedure to Issue the Program Command for the E2 DataFlash

39.7.4.2 Block Erase

Figure 39.13 and Figure 39.14 show the procedure to issue the block erase command.

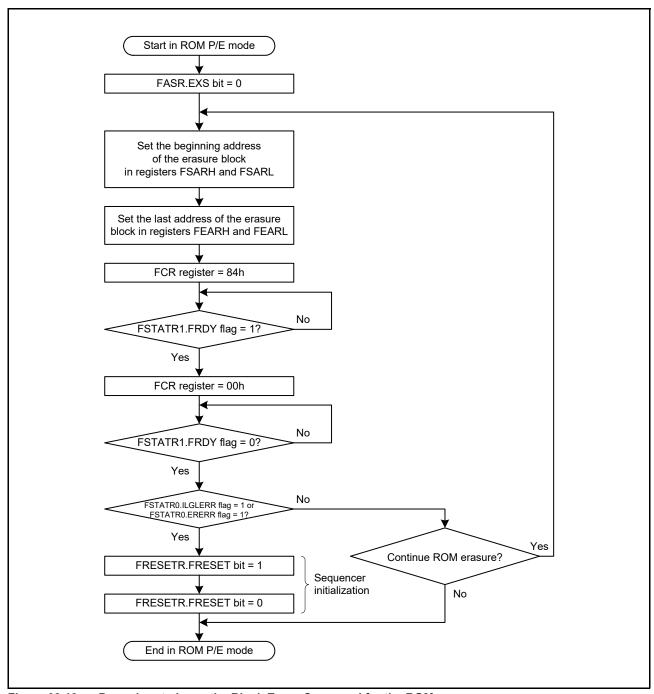


Figure 39.13 Procedure to Issue the Block Erase Command for the ROM

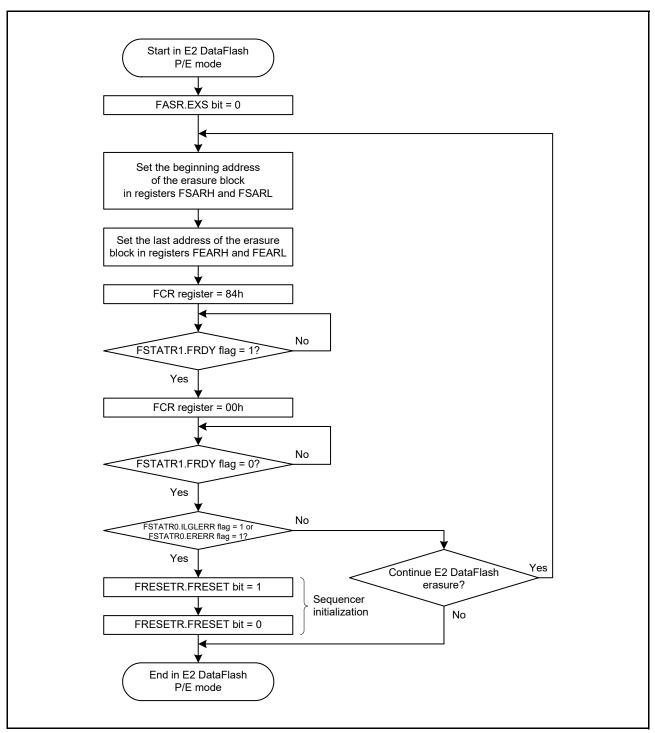


Figure 39.14 Procedure to Issue the Block Erase Command for the E2 DataFlash

39.7.4.3 Blank Check

Figure 39.15 and Figure 39.16 show the procedure to issue the blank check command.

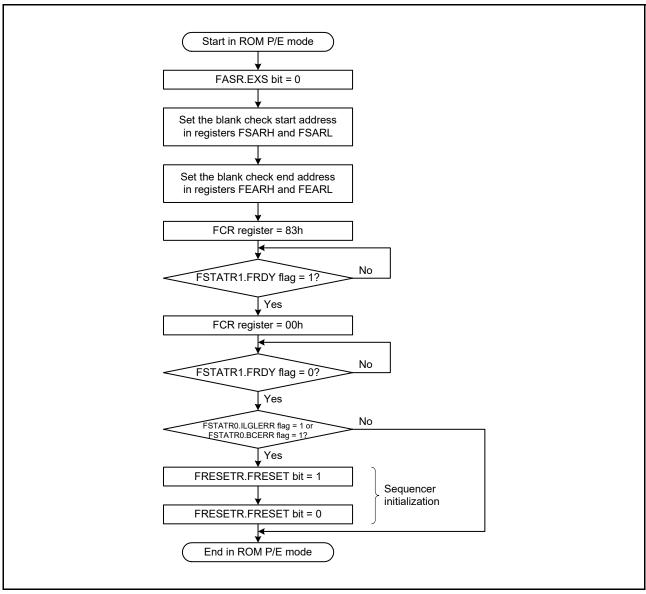


Figure 39.15 Procedure to Issue the Blank Check Command for the ROM

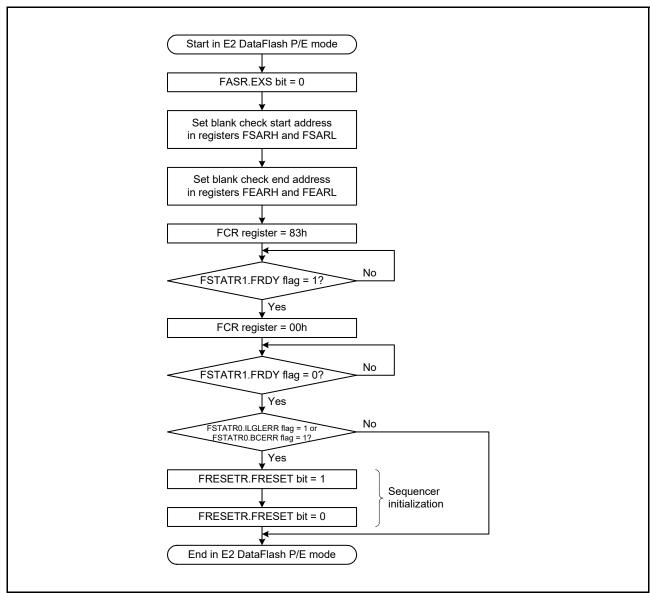


Figure 39.16 Procedure to Issue the Blank Check Command for the E2 DataFlash

39.7.4.4 Start-Up Area Information Program/Access Window Information Program

Figure 39.17 shows the procedure to issue the start-up area information program command and access window information program command.

When the sequencer has directly entered ROM/PE mode from E2 DataFlash access disabled mode, set the DFLCTL.DFLEN bit to 1 at the beginning of the procedure.

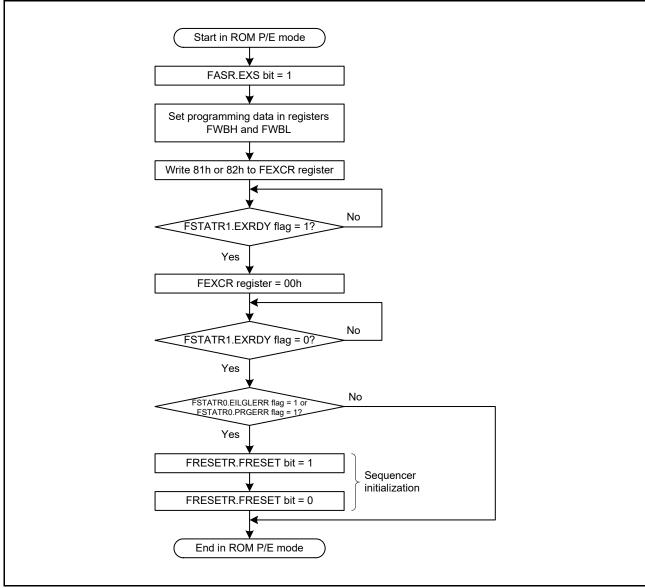


Figure 39.17 Procedure to Issue the Start-Up Area Information Program Command/Access Window Information Program Command

39.7.4.5 Unique ID Read

Figure 39.18 shows the procedure to issue the unique ID read command.

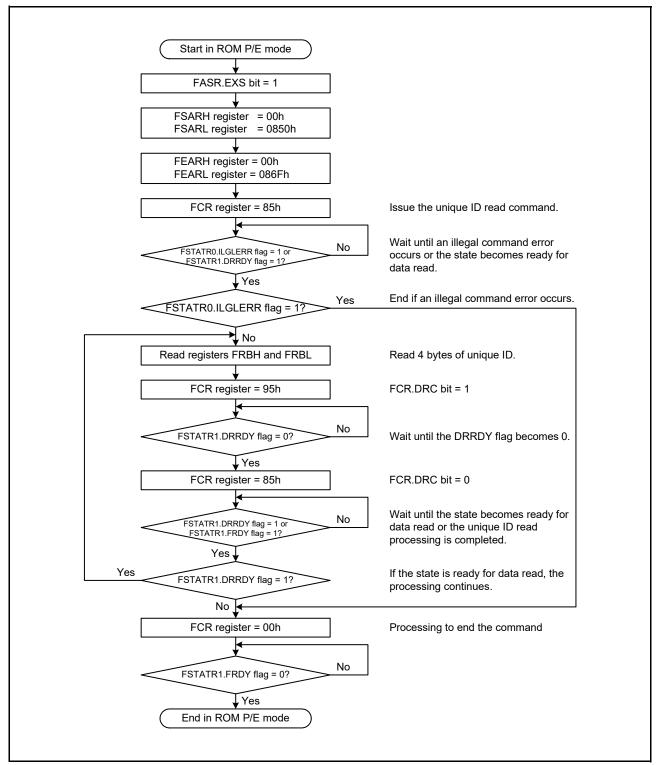


Figure 39.18 Procedure to Issue the Unique ID Read Command

39.7.4.6 Forced Stop of Software Commands

Perform the procedure shown in Figure 39.19 to forcibly stop the blank check command or block erase command. When the command processing is forcibly stopped, registers FEAMH and FEAML store the address at the time of the forced stop. For blank check, the stopped processing can be continued by copying the FEAMH and FEAML register values to registers FSARH and FSARL.

Figure 39.19 Procedure for Forced Stop of Software Commands

39.7.5 Interrupt

When software command processing or forced stop processing is completed, an interrupt (FRDYI) is generated. When the FSTATR1.FRDY flag becomes 0 by setting the FCR.OPST bit to 0 and the FSTATR1.EXRDY flag becomes 0 by setting the FEXCR.OPST bit to 0, the next interrupt (FRDYI) can be accepted.

Clear the IRn.IR flag before setting the IERm.IEN bit of the ICU corresponding to this interrupt.

39.8 Boot Mode

The SCI or FINE interface is used in boot mode.

Table 39.5 lists the Programmable and Erasable Areas and Peripheral Modules Used in Boot Mode. Table 39.6 lists the I/O Pins Used in Boot Mode.

Table 39.5 Programmable and Erasable Areas and Peripheral Modules Used in Boot Mode

	Boot Mode				
Item	SCI Interface	FINE Interface			
Programmable and erasable areas	User area	User area			
-	Data area	Data area			
Peripheral module	SCI1 (asynchronous serial communication)	FINE			

Table 39.6 I/O Pins Used in Boot Mode

Pin Name	I/O	Mode	Description
MD	Input	Boot mode	Select operating mode (refer to section 3, Operating Modes).
MD/FINED	I/O	Boot mode (FINE interface)	Select operating mode, FINE data I/O
P30/RXD1	Input	Boot mode	Receive data*1
P26/TXD1	Output	(SCI interface)	Transmit data*1

Note 1. When using the SCI, connect (pull up) this pin to VCC via a resistor.

39.8.1 Boot Mode (SCI Interface)

The flash memory can be programmed and erased using asynchronous serial communication in boot mode (SCI interface). The user area and data area can be rewritten.

When a reset is released while the MD pin is low, the MCU starts in boot mode (SCI interface).

Contact the manufacturer for details on the serial programmer.

39.8.1.1 Operating Conditions in Boot Mode (SCI Interface)

SCI1 is used to communicate with the serial programmer in boot mode (SCI interface).

Figure 39.20 shows an Example of Pin Connections in Boot Mode (SCI Interface). Table 39.7 lists Pin Handling in Boot Mode (SCI Interface).

An example of pin connections shown in Figure 39.20 is a simplified circuit. Operations are not guaranteed in all systems.

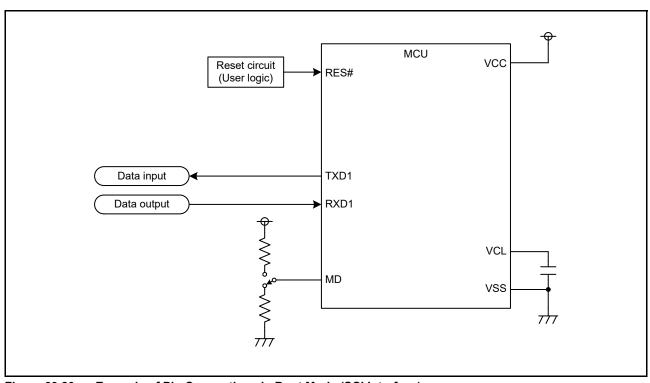


Figure 39.20 Example of Pin Connections in Boot Mode (SCI Interface)

Table 39.7 Pin Handling in Boot Mode (SCI Interface)

,	•	
Name	I/O	Function
Power supply	_	Input 1.8 V or higher to the VCC pin. Input 0 V to the VSS pin.
Decoupling capacitor connect pin	_	Connect to the VSS pin via a decoupling capacitor for stabilizing the internal voltage.
Operating mode control	Input	Input low.
Reset input	Input	Reset pin. Connect to the reset circuit.
Data input RXD	Input	Input pin for serial data
Data output TXD	Output	Output pin for serial data
	Power supply Decoupling capacitor connect pin Operating mode control Reset input Data input RXD	Power supply — Decoupling capacitor connect pin Operating mode control Input Reset input Input Data input RXD Input

As shown in Figure 39.21, set the format to 8-bit data, 1 stop bit, no parity, and LSB first to communicate with the serial programmer.

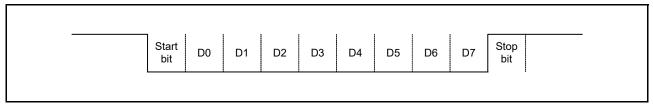


Figure 39.21 Communication Format

Initial communication with the programmer is performed at 9,600 or 19,200 bps. The communication bit rate can be changed after the MCU is connected with the programmer.

Table 39.8 lists the maximum communication bit rates for communication in boot mode (SCI interface).

Table 39.8 Conditions for Communication

Operating Voltage	Maximum Communication Bit Rate	
Lower than 3.0 V	500 kbps	
3.0 V or higher	2 Mbps	

39.8.1.2 Starting Up in Boot Mode (SCI Interface)

To start the MCU in boot mode (SCI interface), a reset must be released by changing the RES# pin from low to high while the MD pin is low. After starting up in boot mode (SCI interface), wait at least 400 ms until communication with the MCU is enabled in boot mode (SCI interface).

As shown in Figure 39.22, keep the signal of each pin unchanged for 400 ms after the reset is released. Use resets according to the range described in section 40.3.2, Reset Timing.

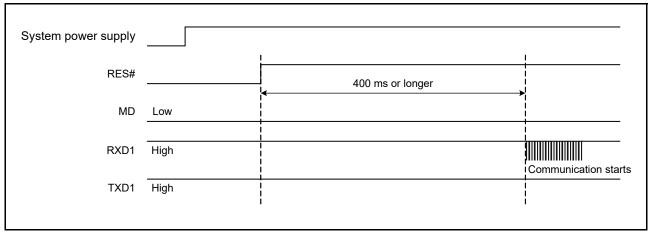


Figure 39.22 Wait Time until Communication Becomes Possible in Boot Mode (SCI Interface)

39.8.2 Boot Mode (FINE Interface)

The flash memory can be programmed and erased using the FINE in boot mode (FINE interface). The user area and data area can be rewritten.

Contact the manufacturer for details on the serial programmer.

39.8.2.1 Operating Conditions in Boot Mode (FINE Interface)

FINE is used to communicate with the serial programmer in boot mode (FINE Interface).

Figure 39.23 shows an Example of Pin Connections in Boot Mode (FINE Interface). Table 39.9 lists Pin Handling in Boot Mode (FINE Interface).

An example of pin connections shown in Figure 39.23 is a simplified circuit. Operations are not guaranteed in all systems.

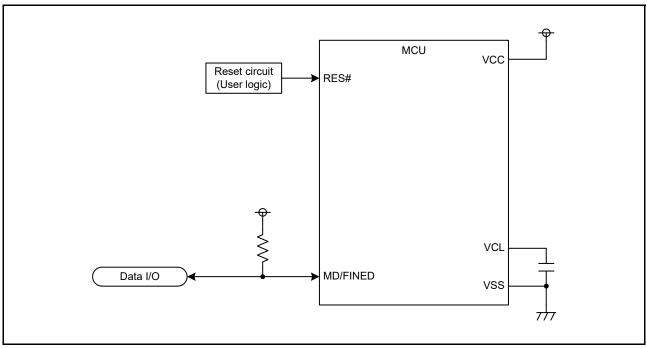


Figure 39.23 Example of Pin Connections in Boot Mode (FINE Interface)

Table 39.9 Pin Handling in Boot Mode (FINE Interface)

Pin Name	Name	I/O	Function
VCC, VSS	Power supply	_	Input 1.8 V or higher to the VCC pin. Input 0 V to the VSS pin.
VCL	Decoupling capacitor connect pin	_	Connect to the VSS pin via a decoupling capacitor for stabilizing the internal voltage.
MD/FINED	Operating mode control/data I/O	I/O	Connect to the VCC pin via a resistor (pull up).
RES#	Reset input	Input	Reset pin. Connect to the reset circuit.

39.9 Flash Memory Protection

Flash memory protection prevents the flash memory from being read or rewritten by the third party.

The boot mode ID code protection is for connecting the serial programmer, and the on-chip debugging emulator ID code protection is for connecting the on-chip debugging emulator.

39.9.1 ID Code Protection

There are two types of ID code protection: Boot mode ID code protection for connecting the serial programmer and onchip debugging emulator ID code protection is for connecting the on-chip debugging emulator. The same ID codes are used for both functions, but operations differ.

ID codes consist of the control code and ID code 1 to ID code 15. Set ID codes to four 32-bit data in 32-bit units. Figure 39.24 shows the ID Code Configuration.

	31 2	4 23 16	15 8	7 0
FFFF FFA0h	Control code	ID code 1	ID code 2	ID code 3
FFFF FFA4h	ID code 4	ID code 5	ID code 6	ID code 7
FFFF FFA8h	ID code 8	ID code 9	ID code 10	ID code 11
FFFF FFACh	ID code 12	ID code 13	ID code 14	ID code 15

Figure 39.24 ID Code Configuration

The following shows a program example for setting ID codes.

This is an example when setting the control code to 45h and setting ID codes to 01h, 02h, 03h, 04h, 05h, 06h, 07h, 08h, 09h, 0Ah, 0Bh, 0Ch, 0Dh, 0Eh, and 0Fh (from the ID code 1 field to the ID code 15 field).

C language:

#pragma address ID_CODE = 0xFFFFFFA0 const unsigned long ID_CODE [4] = {0x45010203, 0x04050607,0x08090A0B, 0x0C0D0E0F};

Assembly language:

- .SECTION ID_CODE,CODE
- .ORG 0FFFFFFA0h
- .LWORD 45010203h
- .LWORD 04050607h
- .LWORD 08090A0Bh
- .LWORD 0C0D0E0Fh

39.9.1.1 Boot Mode ID Code Protection

Boot mode ID code protection disables reading and programming of the user area and data area when the serial programmer is connected by the third party.

When the control code indicates 45h or 52h (boot mode ID code protection is enabled), the MCU compares 16-byte ID code sent from the serial programmer with the ID code in the user area. According to the comparison result, reading and programming the user area and data area are enabled.

When the control code indicates a value other than 45h and 52h (boot mode ID code protection is disabled), all blocks in the user area and data area are erased, and reading and programming the user area and data area are enabled.

The control code is used to enable or disable protection. Table 39.10 lists the specifications of boot mode ID code protection, and Figure 39.25 shows the authentication flow of boot mode ID code protection.

ID code 1 to ID code 15 can be set to any desired value.

However, only when disabling connection with the serial programmer, the ID codes must be set to 50h, 72h, 6Fh, 74h, 65h, 63h, 74h, FFh, FFh, FFh, FFh, FFh, FFh, FFh, and FFh (from the ID code 1 field to the ID code 15 field).

Table 39.10 Boot Mode ID Code Protection Specifications

ID Code		ID Code			
Control Code	ID Code 1 to ID Code 15	Protection	Matching Result	Operation	
45h	Any desired value	Enabled	Matched	Exit the boot mode ID code authentication state and enter the program/erase host command wait state.	
			Not matched	Continue the boot mode ID code authentication state.	
			Not matched three times consecutively	Erase all blocks in the user area and data area, and continue boot mode ID code authentication state.	
52h	50h, 72h, 6Fh, 74h, 65h, 63h, 74h, FFh, , and FFh (8 bytes are all FFh)	Enabled	N/A	Disable reading or rewriting of the flash memory, regardless of the codes sent from the serial programmer.	
	Other than above	_	Matched	Exit the boot mode ID code authentication state and enter the program/erase state.	
			Not matched	Continue the boot mode ID code authentication state.	
Other than above	Any desired value	Disabled	N/A	Erase all blocks in the user area and data area.	

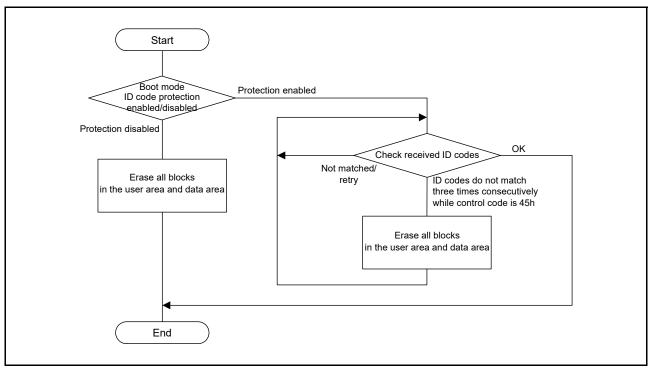


Figure 39.25 Authentication for Boot Mode ID Code Protection

39.9.1.2 On-Chip Debugging Emulator ID Code Protection

On-chip debugging emulator ID code protection enables or disables connection with the on-chip debugging emulator. When the on-chip debugging emulator ID code protection is disabled, connection with the on-chip debugging emulator is enabled. When 16-byte ID codes sent from the on-chip debugging emulator and ID codes in the user area match while on-chip debugging emulator ID code protection is enabled, connection with the on-chip debugging emulator is also enabled.

Table 39.11 lists the specifications of on-chip debugging emulator ID code protection.

Table 39.11 On-Chip Debugging Emulator ID Code Protection Specifications

ID Code			ID Code		
Control Code	ID Code 1 to ID Code 15	Protection	Matching Result	Operation	
FFh	FFh,, and FFh (15 bytes are all FFh)	Disabled	N/A	Enable connection with the on-chip debugging emulator.	
52h	50h, 72h, 6Fh, 74h, 65h, 63h, and 74h + any 8 bytes	Enabled	N/A	Disable connection with the on-chip debugging emulator, regardless of the codes sent from the on-chip debugging emulator.	
Other than	Other than above	Enabled	Matched	Enable connection with the on-chip debugging emulator.	
above			Not matched	Continue the ID code wait state.	

39.10 Communication Protocol

This section describes the protocol used in boot mode. When developing a serial programmer, control with this communication protocol.

39.10.1 State Transition in Boot Mode (SCI Interface)

Figure 39.26 shows the Boot Mode (SCI Interface) State Transition.

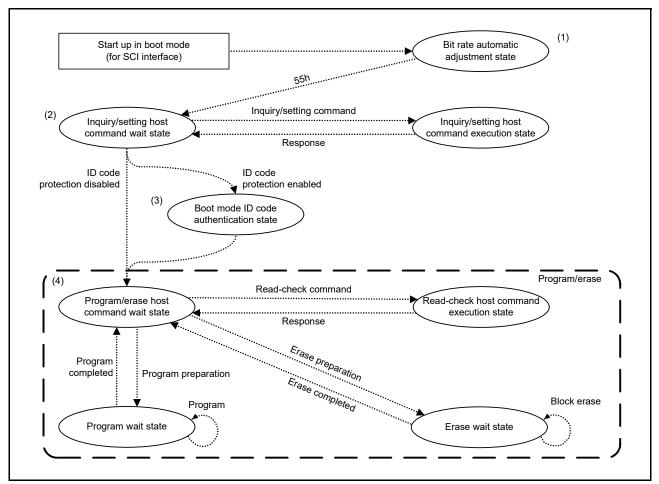


Figure 39.26 Boot Mode (SCI Interface) State Transition

(1) Bit rate automatic adjustment state

In this state, the bit rate is automatically adjusted to 9,600 or 19,200 bps for communication with the host. When the bit rate adjustment is completed, the MCU sends 00h to the host. After that, when the MCU receives 55h sent from the host, the MCU sends E6h to the host, and enters the inquiry/setting host command wait state. The host must not send data until 400 ms elapse after a reset of the MCU is released.

(2) Inquiry/setting host command wait state

In this state, the host can make inquiries for the MCU information including block configuration, size, and addresses where the user area and data area are allocated, and select the endian of data and a bit rate. When the MCU receives the program/erase host state transition command from the host, it determines whether boot mode ID code protection is enabled or disabled. If boot mode ID code protection is disabled, the MCU enters the inquiry/setting host command wait state. If boot mode ID code protection is enabled, the MCU enters the boot mode ID code authentication state.

Refer to section 39.10.5, Inquiry Commands and section 39.10.6, Setting Commands for details on inquiry/setting commands.

- (3) Boot mode ID code authentication state
 - In this state, the MCU accepts the ID code authentication command.
 - When boot mode ID codes do not match, the MCU remains in the boot mode ID code authentication state.
 - Refer to section 39.9.1.1, Boot Mode ID Code Protection for details on boot mode ID code protection. Refer to section 39.10.7, ID Code Authentication Command for details on the ID code authentication command.
- (4) Program/erase state

In this state, the MCU executes program/erase or read-check commands according to commands sent from the host. Refer to section 39.10.8, Program/Erase Commands for details on program/erase commands. Refer to section 39.10.9, Read-Check Commands for details on read-check commands.

39.10.2 Command and Response Configuration

The communication protocol is composed of a "Command" sent from the host to the MCU and a "Response" sent from the MCU to the host. Commands include 1-byte commands and multiple-byte commands. Responses include 1-byte responses, multiple-byte responses, and error responses.

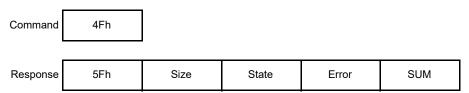
A multiple-byte command and multiple-byte response have "Size" for informing the number of transmit/receive data bytes and "SUM" for detecting communication errors.

"Size" indicates the number of transmit/receive data bytes excluding Command code (the first byte), Size, and SUM. "SUM" indicates byte data that is calculated so the total bytes of Command or Response becomes 00h.

The flash memory addresses for reading are used as the following addresses: the program address specified in the program command, the block start address specified in the block erase command, the AW start and end addresses specified in the access window information program command, and the AW start and end addresses received in the access window read command.

39.10.3 Response to Undefined Commands

When the MCU receives an undefined command, it sends a command error as a response. The contents of the response are shown below. "Command code" in the error response stores the first byte of the command sent from the MCU.


Command code

39.10.4 Boot Mode Status Inquiry

This command is used to check the current state and which type of an error occurred immediately after a command issued in the boot program.

Table 39.12 and Table 39.13 list a state or error that the MCU responds to.

The boot mode status inquiry command can be used in the inquiry/setting host command wait state and program/erase host command wait state.

Size (1 byte): Total bytes of "State" and "Error" (the value is always 02h)

State (1 byte): MCU's current state (see Table 39.12)

Error (1 byte): Information about the error occurred in response to a command issued immediately before (see Table 39.13)

SUM (1 byte): Value that is calculated so the sum of response data is 00h

Table 39.12 Information Regarding the States

Code	State*1	Description
11h	Inquiry/setting host command wait state	Device selection wait state
12h/13h		Operating frequency selection wait state
1Fh		Program/erase host command wait state transition command wait state
31h	Boot mode ID code authentication state	The user area and data area are being erased
3Fh	Program/erase host command wait state	Program/erase command wait state
4Fh		Program data reception wait state
5Fh		Block erase specification wait state

Note 1. Refer to Figure 39.26 for details on the state transitions.

Table 39.13 Error Information

Code	Description
00h	No error
11h	SUM error
21h	Device code error
24h	Bit rate selection error
29h	Block start address error
2Ah	Address error
2Bh	Data length error
51h	Erase error
52h	Not blank (blank check error)
53h	Program error
61h	ID code do not match
63h	ID code do not match and erase error
80h	Command error
FFh	Bit rate automatic adjustment error

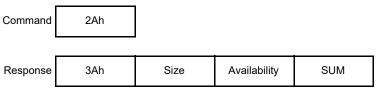
39.10.5 Inquiry Commands

Inquiry commands are used to obtain necessary information for sending setting commands, program/erase commands, and read-check commands. Table 39.14 lists the inquiry commands. These commands can only be used in the inquiry/setting host command wait state.

Table 39.14 Inquiry Commands

Command	Description
Supported device inquiry	Inquiry for the device code and series name
Data area availability inquiry	Inquiry for the availability of the data area
User area information inquiry	Inquiry for the number of user areas, and the start and end addresses of the user area
Data area information inquiry	Inquiry for the number of data areas, and the start and end addresses of the data area
Block information inquiry	Inquiry for the start address, the block size, and the number of blocks of each of the user and data areas

39.10.5.1 Supported Device Inquiry


This command is used to obtain the device information for identifying the endian of developed software. After the MCU receives this command, it sends the device information when developed software uses little endian data and the device information when developed software uses big endian data in this order.

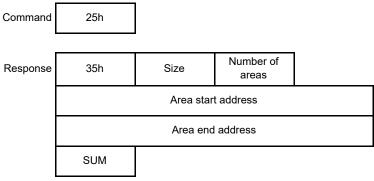
Command	20h				
Response	30h	Size	Number of devices		
	Number of characters	Devic	e code for little e	ndian	Series name for little endian
	Number of characters	Devid	ce code for big e	ndian	Series name for big endian
	SUM				

Size (1 byte): Total bytes of Number of Devices, Characters, Device code, and Series name Number of devices (1 byte): Number of endian types that the MCU supports (the value is always 02h) Number of characters (1 byte): Number of characters for the device code and device name Device code (4 bytes): Identification code indicating the endian of developed software Series name (n bytes): The series name of the MCU (ASCII code) and the classification of little endian/big endian SUM (1 byte): Value that is calculated so the sum of response data is 00h

39.10.5.2 Data Area Availability Inquiry

When the MCU receives this command, it sends the result indicating that the data area is available, area protection can be used, and the data area program command is available.

Size (1 byte): Number of characters of Availability (the value is always 01h)


Availability (1 byte): Availability of the data area (the value is always 1Dh)

1Dh represents the data area is available, area protection can be used, and data area program command is available.

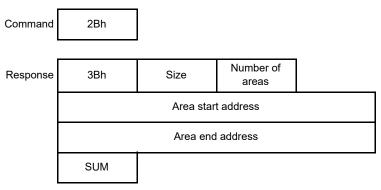
SUM (1 byte): Value that is calculated so the sum of response data is 00h (the value is always A8h)

39.10.5.3 User Area Information Inquiry

When the MCU receives this command, it sends the number of user areas and addresses.

Size (1 byte): Total bytes of Number of areas, Area start address, and Area end address (the value is always 09h)

Number of areas (1 byte): Number of user areas (the value is always 01h)


Area start address (4 bytes): Start address of the user area

Area end address (4 bytes): End address of the user area

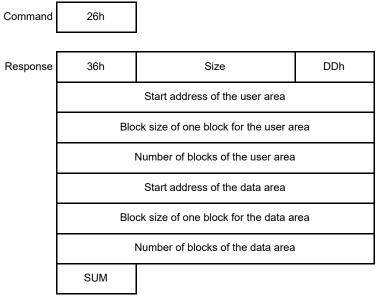
SUM (1 byte): Value that is calculated so the sum of the response data is 00h

39.10.5.4 Data Area Information Inquiry

When the MCU receives this command, it sends the number of data areas and addresses.

Size (1 byte): Total bytes of data of Number of areas, Area start address, and Area end address (the value is always 09h)

Number of areas (1 byte): Number of areas in the data area (the value is always 01h)


Area start address (4 bytes): Start address of the data area (the value is always 0010 0000h)

Area end address (4 bytes): End address of the data area (the value is always 0010 1FFFh)

SUM (1 byte): Value that is calculated so the sum of the response data is 00h (the value is always 7Dh)

39.10.5.5 Block Information Inquiry

When the MCU receives this command, it sends the start address, the size of one block, and the number of blocks in the user area and data area.

Size (2 bytes): Total bytes of data from DDh to Number of blocks of the data area (the value is always 00 19h)

Start address of the user area (4 bytes): Start address of the user area

Block size of one block for the user area (4 bytes): Memory size of one block (the value is always 00 00 08 00h)

Number of blocks of the user area (4 bytes): Number of blocks in the user area

Start address of the data area (4 bytes): Start address of the data area (the value is always 00 10 00 00h)

Block size of one block for the data area (4 bytes): Memory size of one block (the value is always 00 00 04 00h)

Number of blocks of the data area (4 bytes): Number of blocks in the data area (the value is always 00 00 00 08h)

SUM (1 byte): Value that is calculated so the sum of response data is 00h

39.10.6 Setting Commands

Setting commands are used to configure the settings necessary to execute program/erase commands in the MCU. Table 39.15 lists Setting Commands. These commands can be used only in the inquiry/setting host command wait state.

Table 39.15 Setting Commands

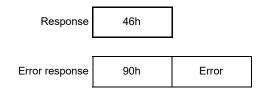
Command	Function
Device select	Select a device code.
Operating frequency select	Change the bit rate for communication.
Program/erase host command wait state transition	Enter the program/erase host command wait state or boot mode ID code authentication state.

39.10.6.1 Device Select

This command is used to specify the endian of developed software. Select a device code from among the device codes obtained in the response to the support device inquiry command.

If the received device code matches the supported device, the MCU sends a response (46h).

If the device is not supported or the SUM of the received command does not match, the MCU sends an error response.


Command	10h	Size	Device code	SUM	
---------	-----	------	-------------	-----	--

Size (1 byte): Number of characters of the device code (the value is always 04h)

Device code (4 bytes): Identification code to identify an endian of the developed software

(code in the response to the support device inquiry command)

SUM (1 byte): Value that is calculated so the sum of command data is 00h

Error (1 byte): Error code 11h: SUM error 21h: Device code error

39.10.6.2 Operating Frequency Select

This command is used to specify the operating frequency of the MCU and a bit rate for communication with the flash memory programmer. The bit rate selected in this command should be set to a value with error of less than 4% compared to the bit rate obtained by dividing 32 or 8 MHz that corresponds to the operating voltage.

If the specified settings can be supported, the MCU sends a response (06h). If the bit rate error is 4% or more or the SUM of the received command does not match, the MCU sends an error response.

After the host receives a response, wait for at least a 1-bit period at the old bit rate, and send communication confirmation data at the new bit rate.

If the MCU successfully receives communication confirmation data, the MCU sends a response (06h). If the MCU fails to receive the communication confirmation data, the MCU sends an error response.

Command	3Fh	Size	Bit r	ate	Dummy data
	Number of clocks	Multiplier 1	Multiplier 2		
	SUM				

Size (1 byte): Total bytes of data of Bit rate, Dummy data, Number of clocks, and Multiplier (the value is always 07h) Bit rate (2 bytes): New bit rate

The value is calculated by dividing the bit rate by 100 (Example: Set 00C0h for 19200 bps)

Dummy data (2 bytes): The value should always be set to 0000h

Number of clocks (1 byte): Types of clocks for multiplier setting (the value is always 02h)

Multiplier 1 (1 byte): Multiplier of the system clock (ICLK) (the value is always 01h)

Multiplier 2 (1 byte): Multiplier of the peripheral module clock (PCLK) (the value is always 01h)

SUM (1 byte): Value that is calculated so the sum of command data including dummy data is 00h

Response	06h	
Error response	BFh	Error
	or code SUM error Bit rate selection	n error
Communication confirmation	06h	
Response	06h	
Error response	FFh	
Enoi response	rrn	

• Bit rate selection error

A bit rate selection error occurs when the bit rate specified with the operating frequency select command cannot be set to a value with error of less than 4%. When the new bit rate specified with the operating frequency select command is B, and 32 (MHz) or 8 (MHz) corresponding to the operating voltage is $P\phi$, the bit rate error is calculated by the following formula:

$$\begin{split} & \text{Error}(\% \) \ = \left(\frac{P\phi \times 10^6}{B \times 32 \times N} - 1 \right) \times 100 \\ & N \ = \ INT \left(\frac{P\phi \times 10^6}{B \times 32} \right) \end{split}$$

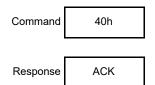
 $P\phi{:}~32~\text{(MHz)}$ when the operating voltage is 3.0~V or above

8 (MHz) when the operating voltage is below 3.0 V

B: New bit rate (bps)

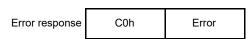
N: Ratio between P ϕ and the new bit rate multiplied by 32 (however, 1 \leq N \leq 256)

39.10.6.3 Program/Erase Host Command Wait State Transition


This command is used for the transition from the inquiry/setting host command wait state to the program/erase host command wait state.

When the MCU receives this command, it determines whether boot mode ID code protection is enabled or disabled.

When boot mode ID code protection is disabled, all blocks in the user area and data area are erased.


When all blocks are successfully erased, the MCU sends a response (06h) and enters the program/erase host command wait state. If not all blocks are successfully erased, the MCU sends an error response.

When boot mode ID code protection is enabled, the MCU sends a response (16h) and enters boot mode ID code authentication state.

ACK (1 byte): ACK code

06h: ID code protection is disabled.16h: ID code protection is enabled.

Error (1 byte): Error code 51h: Erase error

39.10.7 ID Code Authentication Command

This command is used for ID code authentication when boot mode ID code protection is enabled.

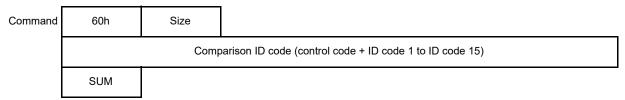
Table 39.16 lists ID code authentication command. This command can be used only in the boot mode ID code authentication state.

Table 39.16 ID Code Authentication Command

Command	Function
ID code check	Compare the 16-byte code sent from the host and ID code.

39.10.7.1 ID Code Check

This command is used to unlock boot mode ID code protection.

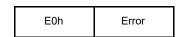

The comparison ID code specified with the command should be set to the same value as the control code and ID code 1 to ID code 15.

If the comparison ID code sent from the host matches the ID code programmed in the user area, the MCU sends a response (06h) and enters program/erase host command wait state.

If the codes do not match or the SUM of the received command does not match, the MCU sends an error response.


When the ID codes do not match three times consecutively while the control code is 45h, all blocks in the user area and data area are erased. If an error occurs during erasure, the MCU sends an error response.

Also, even if all blocks are successfully erased, the MCU sends an error response and continues the boot mode ID code state. Reset the MCU to enter the program/erase host command wait state.


Size (1 byte): Number of bytes of ID codes (the value is always 10h)
ID code (16 bytes): Control code (1 byte) + ID code 1 to ID code 15 (15 bytes)

SUM (1 byte): Value that is calculated so the sum of the command data is 00h

ACK (1 byte): ACK code

06h: The MCU enters the program/erase host command wait state.

Error (1 byte): Error code

11h: SUM error

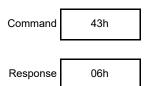
61h: ID codes do not match

63h: ID codes do not match and erase error

39.10.8 Program/Erase Commands

Program/erase commands are used to program or erase the user area or data area based on the response to inquiry commands. Table 39.17 lists commands used in each of the program/erase host command wait state, program wait state, and erase wait state. Table 39.18 lists commands that can be accepted in each state.

When a command that is not listed in Table 39.18 is received in each state, the MCU sends a command error response.

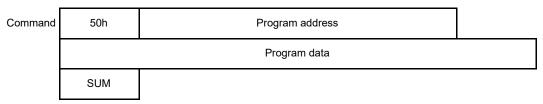

Table 39.17 Program/Erase Commands

Command	Function		
User/data area program preparation	Select the user area or data area to program, and enter the program wait state.		
Program	Program the specified data to the selected area in the user area or data area. Or enter the program/erase host command wait state (end of program).		
Data area program	Program the specified-size data to the selected area in the data area. Or enter the program/erase host command wait state (end of program).		
Erase preparation	Enter the erase wait state.		
Block erase	Erase the selected block, or enter the program/erase host command wait state (end of erase).		

State	Acceptable Command
Program/erase host command wait state	User/data area program preparation command, and erase preparation command
Program wait state	Program command, and data area program command
Erase wait state	Block erase command

39.10.8.1 User/Data Area Program Preparation

This command is used to prepare for accepting the program command and the data area program command. When the MCU receives this command, it recognizes that an instruction to prepare for the program command is issued from the host. Then, the MCU enters the program wait state, where only the program command to the user area or data area can be accepted, and sends a response (06h).



39.10.8.2 Program

This command is used to program the specified data to the user area or data area. Set the lower 8 bits to 0 for the program address selected in this command. When the data length is shorter than 256 bytes, the data cannot be programmed. Fill the gaps with FFh.

When the program from the selected address is successfully completed, the MCU sends a response (06h). If the SUM of the received command does not match or an error occurs during a program operation, the MCU sends an error response.

To enter the program/erase host command wait state after the program operation ends, send 50h FFh FFh FFh B4h from the host. The MCU sends a response (06h), and enters the program/erase host command wait state.

Program address (4 bytes): Address for program destination

Set the lower 8 bits to 0

Set FFFF FFFFh for end of program

Program data (n bytes): Program data (n = 256, 0 for end of program)

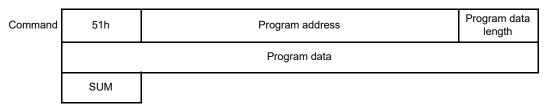
When the program data is less than n bytes, set FFh for the missing data.

No program data for the end of program

SUM (1 byte): Value that is calculated so the sum of command data is 00h

Error (1 byte): Error code

11h: SUM error


2Ah: Address error (the address is not in the selected area.) 53h: Program error (the data cannot be programmed.)

39.10.8.3 Data Area Program

This command is used to program the specified data to the data area. Set the lower 2 bits to 0 for the program address selected in this command. When the data length is shorter than 4 bytes, the data cannot be programmed. Fill the gaps with FFh.

When the program from the selected address is successfully completed, the MCU sends a response (06h). If the SUM of the received command does not match or an error occurs during a program operation, the MCU sends an error response.

To enter the program/erase host command wait state after the program operation ends, send 51h FFh FFh FFh FFh B4h from the host. The MCU sends a response (06h), and enters the program/erase host command wait state.

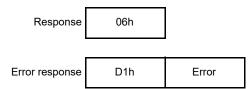
Program address (4 bytes): Address for program destination

Set the lower 2 bits of the selected address to 0 Set FFFF FFFFh for end of data area program

Program data length (1 byte): Size of program data

Set 4-byte data

Set 00h for end of data area program


Program data (n bytes): Program data for the data area (n = program data length, 0 for end of program)

Set data of the program data length

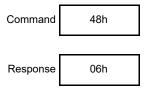
When the program is less than n bytes, set FFh for the missing data.

No program data for the end of data area program

SUM (1 byte): Value that is calculated so the sum of command data is 00h

Error (1 byte): Error code

11h: SUM error


2Ah: Address error (the address is not in the selected area.)

2Bh: Program data length error

53h: Program error (the data or program data cannot be programmed.)

39.10.8.4 Erase Preparation

This command is used to prepare for accepting the block erase command. When the MCU receives this command, it recognizes that an instruction to prepare for the erase command is issued from the host. Then, the MCU enters the erase wait state, where only the block erase command can be accepted, and sends a response (06h).

39.10.8.5 Block Erase

This command is used to erase the selected block in the user area or data area. Specify the block start address selected in the command by calculating the address based on the response to the block information inquiry command. When the block selected in the block start address is successfully erased, the MCU sends an error response (06h). If the SUM of the received command does not match or an error occurs during an erase operation, the MCU sends an error response.

To enter the program/erase host command wait state after the erase operation ends, send 59h 04h FFh FFh FFh A7h from the host. The MCU enters the program/erase host command wait state and sends a response (06h).

Size (1 byte): Total bytes of Block start address (the value is always 04h)
Block start address (4 bytes): Start address of the block that is erased
Set FFFF FFFFh for end of erase

SUM (1 byte): Value that is calculated so the sum of response data is 00h

Error (1 byte): Error code

11h: SUM error

29h: Block start address error

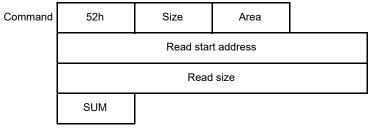
51h: Erase error (the selected block cannot be erased)

39.10.9 Read-Check Commands

Read-check commands are used to read data or check whether data is programmed in the user area or data area in the MCU based on the response to inquiry commands.

Table 39.19 lists read-check commands used in the program/erase host command wait state.

Table 39.19 Read-Check Commands


Command	Function
Memory read	Read data from the user area or data area.
User area checksum	Obtain the checksum of the entire user area.
Data area checksum	Obtain the checksum of the entire data area.
User area blank check	Check whether data is programmed in the user area.
Data area blank check	Check whether data is programmed in the data area.
Access window information program	Set the access window.
Access window read	Read the settings of the access window.

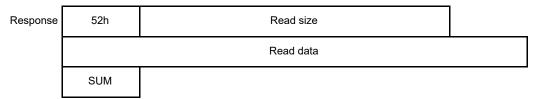
39.10.9.1 Memory Read

This command is used to read data programmed in the user area or data area. For a read start address selected in the command, set a value within the range from the area start address to the area end address received in the response to the user area information inquiry command or the data area information inquiry command.

For a read size selected in the command, set a value so the sum of the read start address and the read size is within the range from the area start address to the area end address in the response to the user area information inquiry command or the data area information inquiry command.

When the MCU performs a read successfully, it sends data of the specified range. If the SUM of the received command does not match or the MCU fails to perform a read successfully, it sends an error response.

Size (1 byte): Total bytes for Read start address and Read size


Area (1 byte): Area that is read

01h: User area or data area

Read start address (4 bytes): Start address of the area that is read

Read size (4 bytes): Size of data that is read (in bytes)

SUM (1 byte): Value that is calculated so the sum of response data is 00h

Read size (4 bytes): Size of Data that is read (in bytes)

Read data (n bytes): Data read from the specified range (n = read size) SUM (1 byte): Value that is calculated so the sum of response data is 00h

Error response D2h Error

Error (1 byte): Error code

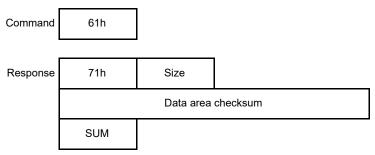
11h: SUM error 2Ah: Address error


- A value other than 01h is set for the "Area" field.
- The read start address is not in the selected area.

2Bh: Size error

- The read size is set to 0000 0000h.
- The read size exceeds the area size.
- The address calculated from the read start address and read size is not in the selected area.

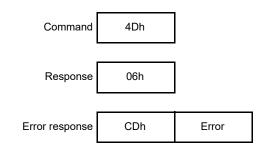
39.10.9.2 User Area Checksum


This command used to obtain the checksum of the entire user area. When the MCU receives this command, it adds data from the start address to the end address in bytes in the user area, and sends the calculated result (checksum) as a response.

Size (1 byte): Number of bytes for checksum of the user area (the value is always 04h) User area checksum (4 bytes): Calculated result of the data in the user area in bytes SUM (1 byte): Value that is calculated so the sum of response data is 00h

39.10.9.3 Data Area Checksum

This command used to obtain the checksum of the entire data area. When the MCU receives this command, it adds data from the start address to the end address in bytes in the data area, and sends the calculated result (checksum) as a response.

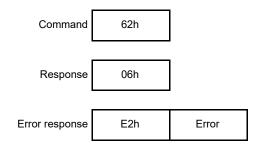


Size (1 byte): Number of bytes for checksum of the data area (the value is always 04h) Data area checksum (4 bytes): Calculated result of the data in the data area in bytes SUM (1 byte): Value that is calculated so the sum of response data is 00h

39.10.9.4 User Area Blank Check

This command is used to check whether data is programmed in the user area.

When the MCU receives this command, it checks whether there is data in the entire user area. If there is no programmed data, the MCU sends a response (06h). If there is at least 1 byte of programmed data, the MCU sends an error response.



Error (1 byte): Error code 52h: Not blank

39.10.9.5 Data Area Blank Check

This command is used to check whether data is programmed in the user area.

When the MCU receives this command, it checks whether there is programmed data in the entire user area. If there is no programmed data, the MCU sends a response (06h). If there is at least 1 byte of programmed data, the MCU sends an error response.

Error (1 byte): Error code 52h: Not blank

39.10.9.6 Access Window Information Program

This command is used to set the access window used for area protection. For the access window start address selected in the command, set the start address of the start block. For the access window end address, set the end address of the end block.

When the specified access window settings are successfully completed, the MCU sends a response (06h). If the SUM of the received command does not match or an error occurs during the access window settings, the MCU sends an error response.

For details on the access window, see section 39.6, Area Protection.

Command	74h	05h	Access window	
	Access window start address LH	Access window start address HL	Access window end address LH	Access window end address HL
	SUM			

Access window (1 byte): Set the access window or clear the access window settings

Set 00h to set the access window

Set FFh to clear the access window settings

Access window start address LH (1 byte): Start address of the access window (A15 to A8)

Set A15 to A8 of the start address of the start block.

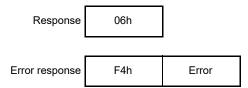
Set FFh to clear the access window settings

Access window start address HL (1 byte): Start address of the access window (A23 to A16)

Set A23 to A16 of the start address of the start block.

Set FFh to clear the access window settings

Access window end address LH (1 byte): End address of the access window (A15 to A8)


Set A15 to A8 of the end address of the end block.

Set FFh to clear the access window settings Access window end address HL (1 byte): End address of the access window (A23 to A16)

Set A23 to A16 of the end address of the end block.

Set FFh to clear the access window settings

SUM (1 byte): Value that is calculated so the sum of response data is 00h

Error (1 byte): Error code

11h: SUM error

2Ah: Address error (specified address is not in the area) 53h: Program error (access window cannot be set)

39.10.9.7 Access Window Read

This command is used to check the set range of the access window.

When the MCU successfully obtains the access window range, the MCU sends the access window start address and end address that it read. If the SUM of the received command does not match, the MCU sends an error response.

Command	73h	01h	FFh	8Dh
			1	
Response	73h	05h		
	Access window start address LH	Access window start address HL	Access window end address LH	Access window end address HL
	FFh			
	SUM			

Access window start address LH (1 byte): Start address of the access window range (A15 to A8) Access window start address HL (1 byte): Start address of the access window range (A23 to A16) Access window end address LH (1 byte): End address of the access window range (A15 to A8) Access window end address HL (1 byte): End address of the access window range (A23 to A16) SUM (1 byte): Value that is calculated so the sum of response data is 00h

Error response	F3h	Error
----------------	-----	-------

Error (1 byte): Error code 11h: SUM error

39.11 Serial Programmer Operation in Boot Mode (SCI Interface)

The following describes the procedure for the serial programmer to program/erase the user area and data area in boot mode (SCI Interface).

- 1. Automatically adjust the bit rate
- 2. Receive the MCU information*1
- 3. Select the device and change the bit rate
- 4. Enter the program/erase host command wait state
- 5. Unlock boot mode ID code protection
- 6. Erase the user area and data area*2, *3
- 7. Program the user area and data area*2, *3
- 8. Check data in the user area*2
- 9. Check data in the data area*2
- 10. Set the access window in the user area
- 11. Reset the MCU
- Note 1. If the necessary information has been already received, step 2 can be skipped.
- Note 2. Processing steps from 6 to 10 can be proceeded as necessary, and their order can be changed.
- Note 3. When a timeout occurs or invalid response data is received, stop the operation and perform step 11 (reset the MCU).

Refer to section 39.10.5, Inquiry Commands, section 39.10.6, Setting Commands, section 39.10.7, ID Code Authentication Command, section 39.10.8, Program/Erase Commands, and section 39.10.9, Read-Check Commands for details on the commands used in the above steps 2 to 10.

39.11.1 Bit Rate Automatic Adjustment Procedure

The MCU measures the low width of data 00h that is sent from the serial programmer at 9,600 or 19,200 bps to automatically adjust the bit rate.

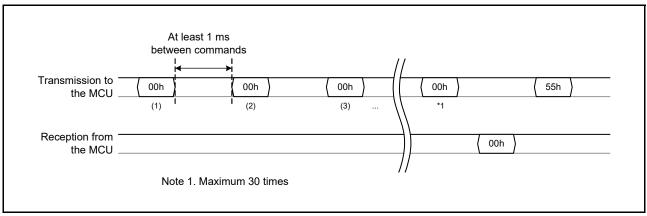


Figure 39.27 Transmit/Receive Data for Bit Rate Automatic Adjustment

After starting up in boot mode, wait for at least 400 ms and then send 00h to the MCU from the serial programmer. When the bit rate adjustment is completed, the MCU sends 00h to the programmer. When the programmer receives 00h, send 55h to the MCU from the programmer. When the programmer can not receive 00h, wait for at least 1 ms and send 00h to the MCU again. When the programmer fails to receive 00h even if it send 00h 30 times, restart the MCU in boot mode and perform the automatic adjustment for the bit rate again.

When the MCU receives 55h, the MCU sends E6h and enters the inquiry/setting command wait state. If the MCU fails to receive 55h, the MCU sends FFh. When the programmer receives FFh, restart the MCU in boot mode, and perform the automatic adjustment for the bit rate again.

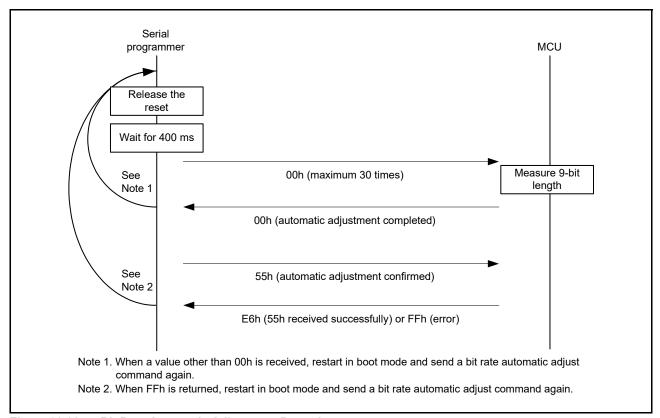


Figure 39.28 Bit Rate Automatic Adjustment Procedure

39.11.2 Procedure to Receive the MCU Information

Procedure to send inquiry commands, and receive the information necessary to send setting commands, program/erase commands, and read-check commands is as follows.

- (1) Send a support device inquiry command (20h) to check what type of endianness the MCU supports. The MCU returns all device codes and series names that it supports.
- (2) Send a user area information inquiry command (25h) to check the start and end addresses of the user area. The MCU returns the start and end addresses of the user area.
- (3) Send a block information inquiry command (26h) to check the block configuration. The MCU returns the start address, the size of one block, and the number of blocks for the user area and data area.
- (4) Send a data area information inquiry command (2Bh) to check the start and end addresses of the data area. The MCU returns the start and end addresses of the data area.

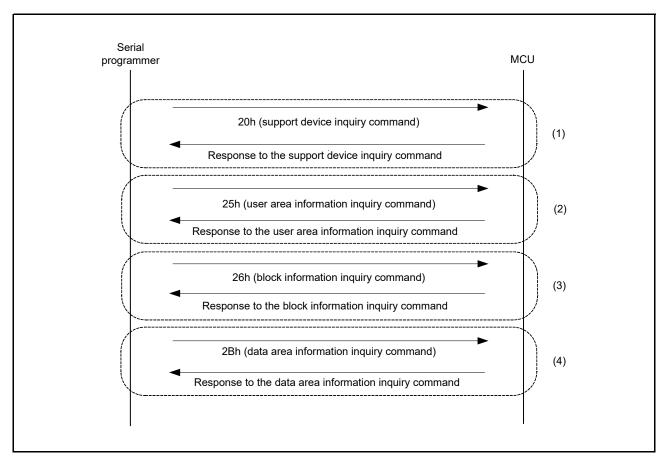


Figure 39.29 Procedure to Receive the MCU Information

39.11.3 Procedure to Select the Device and Change the Bit Rate

Procedure to select the device to connect with the serial programmer and to change the bit rate for communication is as follows.

- (1) Send the device select command (10h). Select the device code according to the endian of developed software.
- (2) Send the operating frequency select command (3Fh) to change the communication bit rate from 9,600 or 19,200 bps.

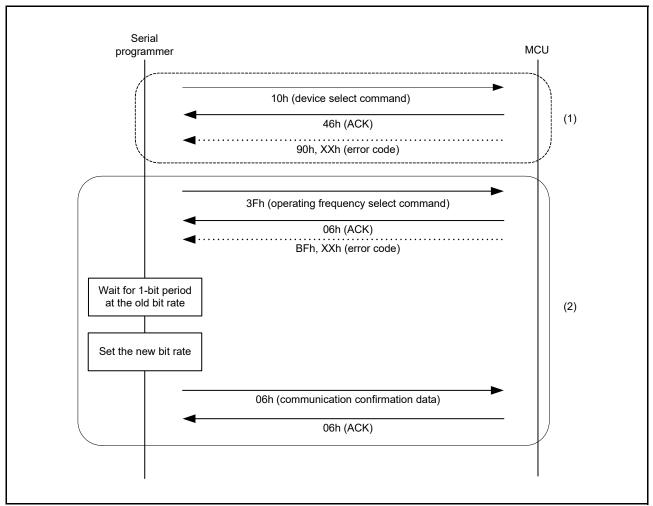


Figure 39.30 Procedure to Select the Device and Change the Bit Rate

39.11.4 Procedure for Transition to the Program/Erase Host Command Wait State

Send the program/erase host command wait state transition command to perform program/erase operations. The MCU sends a response according to whether boot mode ID code protection is enabled or disabled.

- (1) When boot mode ID code protection is disabled, the MCU sends a response (06h), and enters the program/erase host command wait state. Use the serial programmer to start from the operation described in section 39.11.6, Procedure to Erase the User Area and Data Area.
- (2) When the boot mode ID code protection is enabled, the MCU sends a response (16h), and enters the ID code authentication wait state. Use the serial programmer to start from the operation described in section 39.11.5, Procedure to Unlock Boot Mode ID Code Protection.

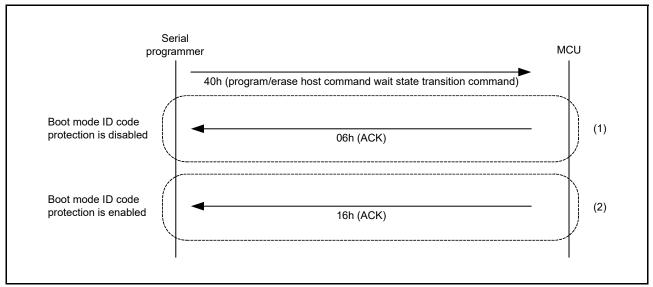


Figure 39.31 Procedure to Transition to the Program/Erase Host Command Wait State

39.11.5 Procedure to Unlock Boot Mode ID Code Protection

Send the ID code check command to unlock boot mode ID code protection.

(1) When ID codes match, the MCU enters the program/erase host command wait state. Data in the user area and data area are not erased. Use the serial programmer to start from the operation described in section 39.11.6, Procedure to Erase the User Area and Data Area.

(2) If ID codes do not match consecutively, the MCU remains in the boot mode ID code authentication state. Reset the MCU, and then use the serial programmer to start again from section 39.11.1, Bit Rate Automatic Adjustment Procedure.

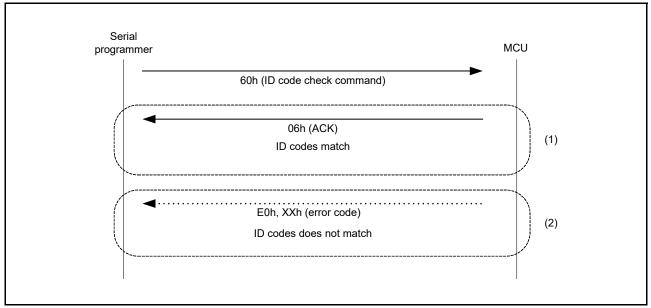


Figure 39.32 Procedure to Unlock ID Code Protection

39.11.6 Procedure to Erase the User Area and Data Area

Procedure to erase blocks that are programmed in the user area and data area to program a user program and data is as follows.

- (1) Send an erase preparation command (48h).
- (2) Send a block erase command (59h).
- (3) To place the MCU in the program/erase host command wait state, send a block erase command for ending the erasure (59h 04h FFh FFh FFh FFh A7h).

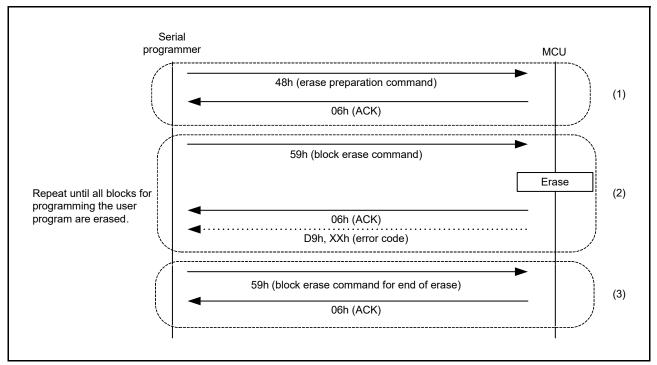


Figure 39.33 Procedure to Erase the User Area and Data Area

39.11.7 Procedure to Program the User Area and Data Area

Procedure to program a user program and data in the user area and data area is as follows.

- (1) Send the user area/data area program preparation command (43h).
- (2) Send the program command (50h) or data area program (51h).
- (3) To place the MCU in the program/erase host command wait state, send the program command (50h FFh FFh FFh FFh B4h) or data area program command (51h FFh FFh FFh FFh FFh 00h B3h) for ending the programming.

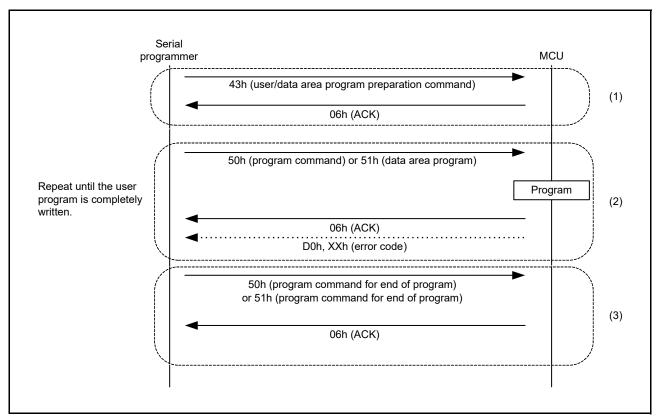


Figure 39.34 Procedure to Program the User Area and Data Area

39.11.8 Procedure to Check Data in the User Area

Procedure to read and check, checksum, and blank check the user area to check the programmed data in the user area is as follows.

- (1) The read and check operation is used to read data in the user area and compare the read data with the programmed data to check if the program operation is performed successfully. Send a memory read command (52h) to read data in the user area.
- (2) Send the user area checksum command (4Bh) to check program data using the checksum of user area.
- (3) Send a user area blank check command (4Dh) to check if the user area has data.

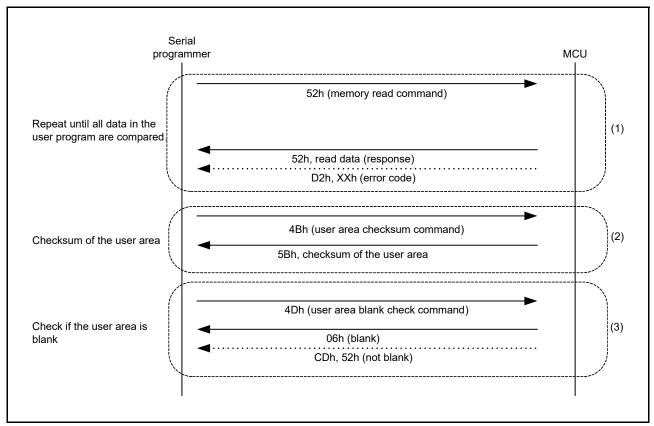


Figure 39.35 Procedure to Check Data in the User Area

39.11.9 Procedure to Check Data in the Data Area

Procedure to read and check, checksum, and blank check the data area to check the programmed data in the data area is as follows.

- (1) The read and check operation is used to read data in the data area and compare the read data with the programmed data to check if the program operation is performed successfully. Send a memory read command (52h) to read data in the data area.
- (2) Send the data area checksum command (61h) to check program data using the checksum of data area.
- (3) Send the data area blank check command (62h) to check if the data area has data.

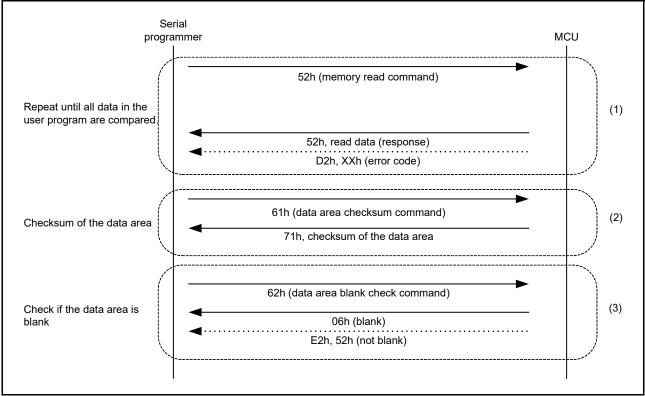


Figure 39.36 Procedure to Check Data in the Data Area

39.11.10 Procedure to Set the Access Window in the User Area

Procedure to set the access window to avoid unintentionally rewriting the user area during the self-programming is as follows.

- (1) Send the access window program command (74h) to set the access window settings.
- (2) Send the access window read command (73h) to confirm the access window settings.

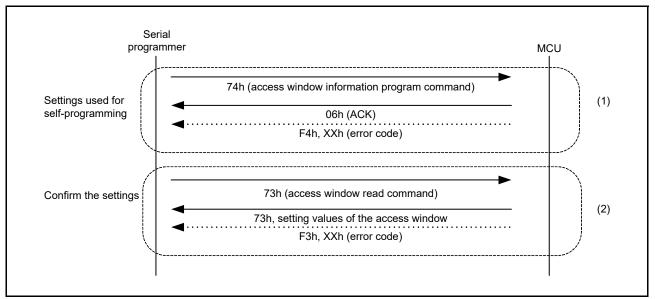


Figure 39.37 Procedure to Set the Access Window in the User Area

39.12 Rewriting by Self-Programming

39.12.1 Overview

The MCU supports rewriting of the flash memory by the user program. The ROM and E2 DataFlash can be rewritten by preparing a routine to rewrite the flash memory (flash rewrite routine) in the user program.

When rewriting the E2 DataFlash, the BGO can be used to execute the flash rewrite routine on the ROM. The E2 DataFlash can also be rewritten by executing the flash rewrite routine that is transferred on the RAM in advance.

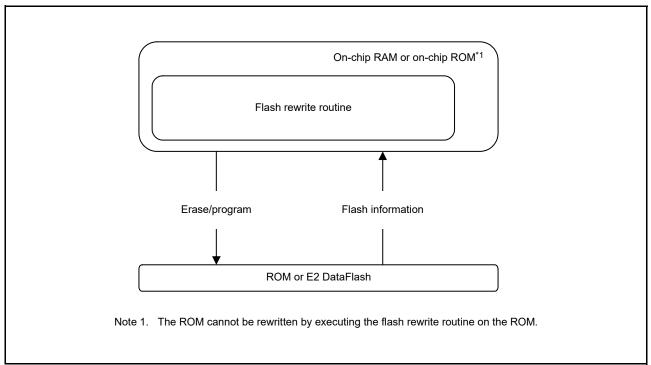


Figure 39.38 Self-Programming Overview

39.13 Usage Notes

(1) Access the Block Where Erase Operation is Forcibly Stopped

When forcibly stopping an erase operation, data in the block where the erase operation is aborted is undefined. To avoid malfunctions caused by reading undefined data, do not execute instructions or read data in the block where an erase operation is forcibly stopped.

(2) Processing After Forced Stop of Erase Operation

When an erase operation is forcibly stopped, issue a block erase command again to the same block.

(3) Additional Programming Disabled

The same address cannot be programmed more than once. When programming an area that has been already programmed, erase the area first.

(4) Reset during Program/Erase

If inputting a reset from the RES# pin, release the reset after reset input time of at least tRESW (refer to section 40, Electrical Characteristics) within the range of the operating voltage defined in the electrical characteristics. The IWDT reset and software reset can be used regardless of tRESW.

(5) Non-maskable Interrupt Disabled during Program/Erase

When a non-maskable interrupt (NMI pin interrupt, oscillation stop detection interrupt, IWDT underflow/refresh error, voltage monitoring 1 interrupt, or voltage monitoring 2 interrupt) occurs during a program/erase operation, the vectors are fetched from the ROM, and undefined data is read. Therefore, do not generate a non-maskable interrupt during a program/erase operation on the ROM.

(The description in (5) applies only to the ROM.)

(6) Location of Interrupt Vectors during a Program/Erase Operation

When an interrupt occurs during a program/erase operation, the vector may be fetched from the ROM. To avoid fetching the vector from the ROM, set the destination for fetching interrupt vectors to an area other than the ROM with the CPU interrupt table register (INTB).

(7) Program/Erase in Low-Speed Operating Mode

Do not program or erase the flash memory when low-speed operating mode is selected by the SOPCCR register for low-power consumption functions.

(8) Abnormal Termination during Program/Erase

When the voltage exceeds the range of the operating voltage during a program/erase operation or when a program/erase operation is not completed successfully due to a reset or prohibited actions described in (9), erase the area again.

(9) Actions Prohibited during Program/Erase

To prevent the damage to the flash memory, comply with the following instructions.

- Do not use the MCU power supply that is outside the operating voltage range.
- Do not update the value of the OPCCR.OPCM[2:0] bits.
- Do not update the value of the SOPCCR.SOPCM bit.
- Do not change the clock source select bit in the SCKCR3 register.
- Do not enable switching clock sources by setting the RSTCKCR.RSTCKEN bit when exiting sleep mode.
- Do not change the division ratio of the flash interface clock (FCLK).
- Do not place the MCU in deep sleep mode or software standby mode.
- Do not access the E2 DataFlash during a program/erase operation to the ROM.
- Do not change the DFLCTL.DFLEN bit value during a program/erase operation to the E2 DataFlash.

(10) FCLK during Program/Erase

For programming/erasure by self-programming, set the frequency of the FlashIF clock (FCLK), and specify an integer FCLK frequency (MHz) in FISR.PCKA[4:0] bits. Note that when the FCLK is 4 to 32 MHz, a rounded-up value should be set for a non-integer frequency such as 12.5 MHz (i.e. 12.5 MHz should be set rounded up to 13 MHz). If the FCLK is equal to or less than 4 MHz, only 1, 2, 3, or 4 MHz can be used.

39.14 Usage Notes in Boot Mode

- (1) Notes on Communication Errors in Boot Mode

 When communication with the MCU cannot be performed properly, reset and start up in boot mode again.
- (2) Notes on Power Supply Voltage in Boot Mode (SCI Interface)
 When the bit rate exceeds 500 kbps in boot mode (SCI Interface), use a voltage that is 3.0 V or higher.
- (3) Notes on Option-Setting Memory in Boot Mode

 The settings of option function select register 0 (OFS0), option function select register 1 (OFS1), and endian select register (MDE) are disabled in boot mode.
- (4) Notes on Switching the Start-Up Area Switch the start-up area by self-programming.

40. Electrical Characteristics

40.1 Absolute Maximum Ratings

Table 40.1 Absolute Maximum Ratings

Conditions: VSS = AVSS0 = VREFL0 = 0 V

Item		Symbol	Value	Unit	
Power supply vo	oltage	VCC	-0.3 to +6.5	V	
Input voltage	Ports for 5 V tolerant*1	V _{in}	-0.3 to +6.5	V	
	Ports P03 to P07, Ports P40 to P47, Ports PJ6, PJ7		-0.3 to AVCC0 + 0.3	V	
	Ports other than above		-0.3 to VCC + 0.3		
Reference power	er supply voltage	VREFH0	-0.3 to AVCC0 + 0.3	V	
Analog power s	upply voltage	AVCC0	-0.3 to +6.5	V	
Analog input voltage	When AN000 to AN007 used	V_{AN}	-0.3 to AVCC0 + 0.3	V	
	When AN016 to AN031 used		-0.3 to VCC + 0.3		
Operating tempor	erature* ²	T _{opr}	-40 to +85 -40 to +105	°C	
Storage temperature		T _{stg}	-55 to +125	°C	

Caution: Permanent damage to the MCU may result if absolute maximum ratings are exceeded.

To preclude any malfunctions due to noise interference, insert capacitors of high frequency characteristics between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, and between the VREFH0 and VREFL0 pins. Place capacitors of about 0.1 μ F as close as possible to every power supply pin and use the shortest and heaviest possible traces.

Connect the VCL pin to a VSS pin via a $4.7~\mu F$ capacitor. The capacitor must be placed close to the pin, refer to section 40.13.1, Connecting VCL Capacitor and Bypass Capacitors

Do not input signals or an I/O pull-up power supply to ports other than 5-V tolerant ports while the device is not powered.

The current injection that results from input of such a signal or I/O pull-up may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements.

Even if -0.3 to +6.5 V is input to 5-V tolerant ports, it will not cause problems such as damage to the MCU.

Note 1. Ports P12, P13, P16, and P17 are 5 V tolerant.

Note 2. The upper limit of operating temperature is 85°C or 105°C, depending on the product. For details, refer to section 1.2, List of Products.

Table 40.2 Recommended Operating Voltage Conditions

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Power supply voltages	VCC*1, *2, *3		1.8	_	5.5	V
	VSS		_	0	_	
Analog power supply voltages	AVCC0*1, *2		1.8	_	5.5	V
	AVSS0		_	0	_	
	VREFH0		1.8	_	AVCC0	
	VREFL0		_	0	_	

- Note 1. Use AVCC0 and VCC under the following conditions: AVCC0 and VCC can be set individually within the operating range when VCC ≥ 2.0 V AVCC0 = VCC when VCC < 2.0 V
- Note 2. When powering on the VCC and AVCC0 pins, power them on at the same time or the VCC pin first and then the AVCC0 pin. Note 3. When VCC < 2.4 V, some functions of the REMC and CTSU are restricted. For details, refer to section 28, Remote Control Signal Receiver (REMC) and section 32, Capacitive Touch Sensing Unit (CTSUa).

40.2 DC Characteristics

Table 40.3 DC Characteristics (1)

Conditions: $2.7 \text{ V} \le \text{VCC} \le 5.5 \text{ V}$, $2.7 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}$, VSS = AVSS0 = 0 V, $\text{T}_{\text{a}} = -40 \text{ to } +105 ^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	RIIC input pin (except for SMBus)	V _{IH}	VCC × 0.7	_	5.8	V	
	Ports P12, P13, P16, P17 (5 V tolerant)		VCC × 0.8	_	5.8		
	Ports P14, P15, Ports P20 to P27, Ports P30 to P37, Ports P50 to P55, Ports PA0 to PA7, Ports PB0 to PB7, Ports PC0 to PC7, Ports PD0 to PD7, Ports PE0 to PE7, Ports PH0 to PH3, Ports PJ1, PJ3, RES#		VCC × 0.8	_	VCC + 0.3		
	Ports P03 to P07, Ports P40 to P47, Ports PJ6, PJ7	-	AVCC0 × 0.8	_	AVCC0 + 0.3		
	RIIC input pin (except for SMBus)	V _{IL}	-0.3	_	VCC × 0.3		
	Ports P03 to P07, Ports P40 to P47, Ports PJ6, PJ7		-0.3	_	AVCC0 × 0.2		
	Ports other than above		-0.3	_	VCC × 0.2		
	RIIC input pin (except for SMBus)	ΔV_{T}	VCC × 0.05	_	_		
	Ports P12, P13, P16, P17 (5 V tolerant)		VCC × 0.05	_	_		
	Ports P03 to P07, Ports P40 to P47, Ports PJ6, PJ7		AVCC0 × 0.1	_	_		
	Ports other than above		VCC × 0.1	_	_		
Input level	MD	V _{IH}	VCC × 0.9	_	VCC + 0.3	V	
voltage (except for Schmitt	EXTAL (external clock input)		VCC × 0.8	_	VCC + 0.3		
trigger input	RIIC input pin (SMBus)		2.1	_	VCC + 0.3		
pins)	MD	V _{IL}	-0.3	_	VCC × 0.1		
	EXTAL (external clock input)		-0.3	_	VCC × 0.2		
	RIIC input pin (SMBus)		-0.3	_	0.8		_

Table 40.4 DC Characteristics (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} < 2.7 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} < 2.7 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{Ta} = -40 \text{ to} +105 ^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Schmitt trigger input voltage	Ports P12, P13, P16, P17 (5 V tolerant)	V _{IH}	VCC × 0.8	_	5.8	V	
	Ports P14, P15, Ports P20 to P27, Ports P30 to P37, Ports P50 to P55, Ports PA0 to PA7, Ports PB0 to PB7, Ports PC0 to PC7, Ports PD0 to PD7, Ports PE0 to PE7, Ports PH0 to PH3, Ports PH1, PJ3, RES#		VCC × 0.8	-	VCC + 0.3		
	Ports P03 to P07, Ports P40 to P47, Ports PJ6, PJ7		AVCC0 × 0.8	_	AVCC0 + 0.3		
	Ports P03 to P07, Ports P40 to P47, Ports PJ6, PJ7	V _{IL}	-0.3	_	AVCC0 × 0.2		
	Ports other than above		-0.3	_	VCC × 0.2		
	Ports P03 to P07, Ports P40 to P47, Ports PJ6, PJ7	ΔV _T	AVCC0 × 0.01	_	_		
	Ports other than above		VCC × 0.01	_	_		
Input level	MD	V _{IH}	VCC × 0.9	_	VCC + 0.3	V	
voltage (except for Schmitt	EXTAL (external clock input)		VCC × 0.8	_	VCC + 0.3		
trigger input	MD	V _{IL}	-0.3	_	VCC × 0.1		
pins)	EXTAL (external clock input)		-0.3		VCC × 0.2		

Table 40.5 DC Characteristics (3)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{Ta} = -40 \text{ to} +105 ^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Input leakage current	RES#, MD, port P35	I _{in}	_	_	1.0	μΑ	V _{in} = 0V, VCC
Three-state leakage cur-	Ports for 5-V tolerant	I _{TSI}	_	_	1.0	μΑ	V _{in} = 0V, 5.8V
rent (off-state)	Ports except for 5 V tolerant		_	_	0.2		V _{in} = 0V, VCC
Input capacitance	All input pins (except for port P35)	C _{in}	_	_	15	pF	V _{in} = 0mV, f = 1MHz,
	port P35		_	_	30		T _a = 25°C

Table 40.6 DC Characteristics (4)

	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Input pull-up resistor	All ports (except for port P35)	R _U	10	20	50	kΩ	V _{in} = 0 V

[Products with 128 Kbytes of flash memory or less (except for 100-pin packages)]

Table 40.7 DC Characteristics (5)

		ŀ	tem		Symbol	Тур.	Max.	Unit	Test Conditions
Supply	High-speed	Normal	No peripheral	ICLK = 32MHz	I _{cc}	3.1	_	mA	
current*1	operating mode	operating mode	operation* ²	ICLK = 16MHz		2.1	_		
	111040	mode		ICLK = 8MHz		1.6	_		
			All peripheral	ICLK = 32MHz		10.0	_		
			operation: Normal*3	ICLK = 16MHz		5.7	_		
				ICLK = 8MHz		3.5	_		
			All peripheral operation: Max.*3	ICLK = 32MHz		_	17.5		
		Sleep mode	No peripheral	ICLK = 32MHz		1.6	_		
			operation*2	ICLK = 16MHz		1.2	_		
				ICLK = 8MHz		1.1	_		
			All peripheral	ICLK = 32MHz		5.3	_		
			operation: Normal*3	ICLK = 16MHz		3.2	_		
				ICLK = 8MHz		2.0	_		
		Deep sleep	No peripheral	ICLK = 32MHz		1.0	_		
		mode	operation* ²	ICLK = 16MHz		0.9	_		
				ICLK = 8MHz		0.8	_		
			All peripheral	ICLK = 32MHz		4.2	_		
			operation: Normal*3	ICLK = 16MHz		2.5	_		
				ICLK = 8MHz		1.7	_]	
		Increase duri	ng flash rewrite* ⁵			2.5	_		
	Middle-speed		No peripheral	ICLK = 12MHz	I _{CC}	1.9	_	mA	
	operating modes	operating mode	operation* ⁶	ICLK = 8MHz		1.2	_		
				ICLK = 4MHz		0.6	_		
				ICLK = 1MHz		0.3	_		
			All peripheral	ICLK = 12MHz		4.6	_		
			operation: Normal* ⁷	ICLK = 8MHz		3.2	_		
				ICLK = 4MHz		2.0	_		
				ICLK = 1MHz		0.9	_		
			All peripheral operation: Max.*7	ICLK = 12MHz		_	8.2		
		Sleep mode	No peripheral	ICLK = 12MHz	I _{CC}	1.2	—	mA	
			operation* ⁶	ICLK = 8MHz		0.8	_		
				ICLK = 4MHz		0.3	_	-	
				ICLK = 1MHz		0.2	_		
			All peripheral	ICLK = 12MHz		2.7	_		
			operation: Normal* ⁷	ICLK = 8MHz		1.9			
				ICLK = 4MHz		1.2	_		
				ICLK = 1MHz		0.7	_		

		I	tem		Symbol	Тур.	Max.	Unit	Test Conditions
Supply	Middle-speed	Deep sleep	No peripheral	ICLK = 12 MHz	I _{CC}	1.0	_	mA	
current*1	operating modes	mode	operation*6	ICLK = 8 MHz		0.7	_		
	modes			ICLK = 4 MHz		0.2	_		
				ICLK = 1 MHz		0.1	_		
			All peripheral	ICLK = 12 MHz		2.3	_		
			operation: Normal* ⁷	ICLK = 8 MHz		1.6	_		
				ICLK = 4 MHz		1.0	_		
				ICLK = 1 MHz		0.7	_		
	In	Increase duri	ng flash rewrite*5			2.5	_		
	Low-speed operating	Normal operating	No peripheral operation*8	ICLK = 32.768 kHz	I _{CC}	3.8	_	μΑ	
	mode		All peripheral operation: Normal*10	ICLK = 32.768 kHz		10.9	_		
		All peripheral operation: Max.*10		ICLK = 32.768 kHz			29.2		
			No peripheral operation*8	ICLK = 32.768 kHz		2.1	_		
			All peripheral operation: Normal*9	ICLK = 32.768 kHz		6.0	_		
		Deep sleep mode	No peripheral operation*8	ICLK = 32.768 kHz		1.6	_		
			All peripheral operation: Normal*9	ICLK = 32.768 kHz		5.0	_		

- Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.
- Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to divided by 64.
- Note 3. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to the same frequency as ICLK.
- Note 4. Values when VCC = 3.3 V.
- Note 5. This is the increase for programming or erasure of the ROM or E2 DataFlash during program execution.
- Note 6. Clock supply to the peripheral function is stopped. The clock source is PLL when ICLK is 12 MHz, HOCO when ICLK is 8 MHz, and LOCO otherwise. FCLK and PCLK are set to divided by 64.
- Note 7. Clocks are supplied to the peripheral functions. The clock source is PLL when ICLK is 12 MHz, HOCO when ICLK is (MHz, and LOCO otherwise. FCLK and PCLK are set to the same frequency as ICLK.
- Note 8. Clock supply to the peripheral functions is stopped. The clock source is the sub-clock oscillator. FCLK and PCLK are set to divided by 64.
- Note 9. Clocks are supplied to the peripheral functions. The clock source is the sub-clock oscillator. FCLK and PCLK are set to the same frequency as ICLK.
- Note 10. Values when the MSTPCRA.MSTPA17 bit (12-bit A/D converter module stop bit) is set to "transition to the module stop state is made"

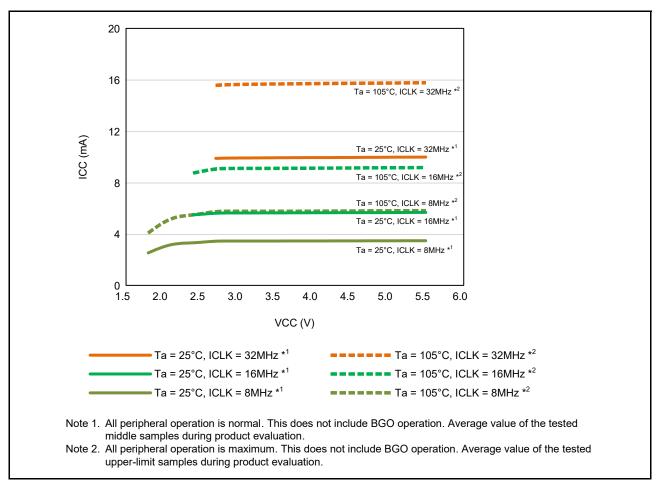


Figure 40.1 Voltage Dependency in High-Speed Operating Mode (Reference Data)

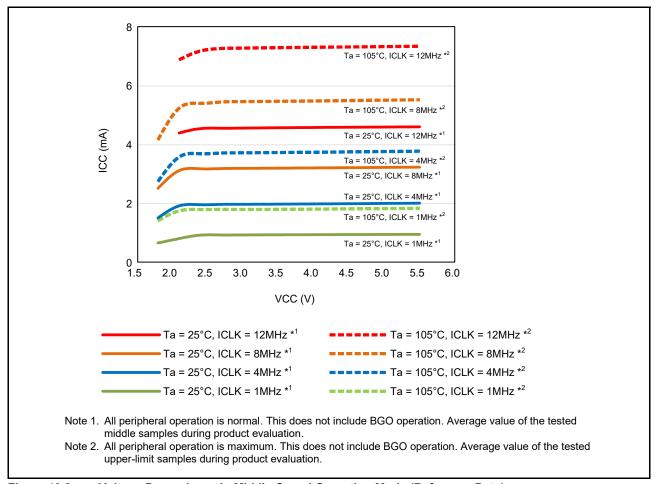


Figure 40.2 Voltage Dependency in Middle-Speed Operating Mode (Reference Data)

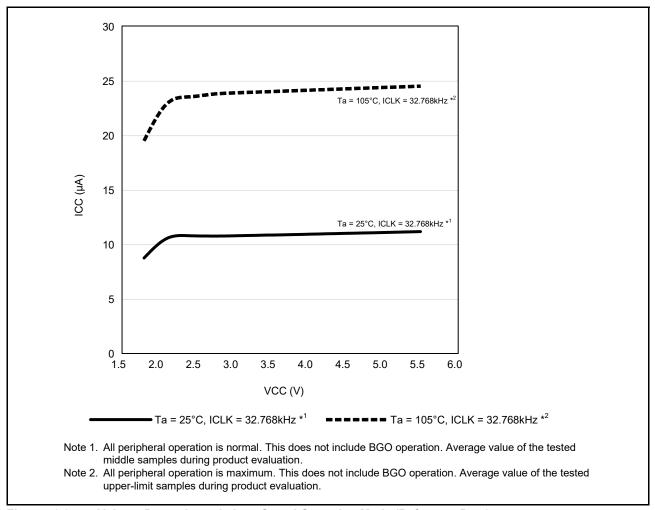


Figure 40.3 Voltage Dependency in Low-Speed Operating Mode (Reference Data)

[Products with at least 256 Kbytes of flash memory or 100-pin packages]

DC Characteristics (5)

		ŀ	tem		Symbol	Тур.	Max.	Unit	Test Conditions
Supply	High-speed	Normal	No peripheral	ICLK = 32MHz	I _{CC}	3.5	_	mA	
current*1	operating mode	operating mode	operation*2	ICLK = 16MHz		2.4	_		
	111000	mode		ICLK = 8MHz		1.8	_		
			All peripheral	ICLK = 32MHz		12.4	_		
			operation: Normal*3	ICLK = 16MHz		7.0	_		
				ICLK = 8MHz		4.3	_		
			All peripheral operation: Max.*3	ICLK = 32MHz		_	25.4		
		Sleep mode	No peripheral	ICLK = 32MHz		1.8	_		
			operation*2	ICLK = 16MHz		1.4	_		
				ICLK = 8MHz		1.2	_		
			All peripheral	ICLK = 32MHz		6.5	_		
			operation: Normal*3	ICLK = 16MHz		3.8	_		
				ICLK = 8MHz		2.5	_		
		Deep sleep	No peripheral	ICLK = 32MHz		1.1	_		
		mode	operation*2	ICLK = 16MHz		0.9	_		
				ICLK = 8MHz		0.8	_	-	
			All peripheral	ICLK = 32MHz		5.2	_		
			operation: Normal*3	ICLK = 16MHz		3.0	_		
				ICLK = 8MHz		1.9	_		
		Increase duri	ng flash rewrite*5			2.5	_		
	Middle-speed	lle-speed Normal No periphera	No peripheral	ICLK = 12MHz	I _{CC}	2.1	_	mA	
	operating modes	operating mode	operation* ⁶	ICLK = 8MHz		1.4	_		
	1110000	mode		ICLK = 4MHz		0.7	_		
				ICLK = 1MHz		0.3	_		
			All peripheral	ICLK = 12MHz		5.5	_		
			operation: Normal* ⁷	ICLK = 8MHz		3.9	_		
				ICLK = 4MHz		2.4	_		
				ICLK = 1MHz		1.1	_		
			All peripheral operation: Max.*7	ICLK = 12MHz		_	11.6		
		Sleep mode	No peripheral	ICLK = 12MHz	I _{CC}	1.4	_	mA	
			operation*6	ICLK = 8MHz		0.8	_		
				ICLK = 4MHz		0.3	_		
				ICLK = 1MHz		0.2	_		
			All peripheral	ICLK = 12MHz	1	3.2	_		
			operation: Normal* ⁷	ICLK = 8MHz	1	2.2	_		
				ICLK = 4MHz	1	1.4			
				ICLK = 1MHz	1	0.8	_		

		I	tem		Symbol	Тур.	Max.	Unit	Test Conditions
Supply	Middle-speed	Deep sleep	No peripheral	ICLK = 12 MHz	I _{CC}	1.1	_	mA	
current*1	operating modes	mode	operation*6	ICLK = 8 MHz		0.7	_		
	modes			ICLK = 4 MHz		0.2	_		
				ICLK = 1 MHz		0.1	_		
			All peripheral	ICLK = 12 MHz		2.6	_		
			operation: Normal* ⁷	ICLK = 8 MHz		1.8	_		
				ICLK = 4 MHz		1.1	_		
				ICLK = 1 MHz		0.7	_		
		Increase duri	ng flash rewrite*5		2.5	_			
	Low-speed operating	Normal operating	No peripheral operation*8	ICLK = 32.768 kHz	I _{CC}	4.3	_	μΑ	
	mode		All peripheral operation: Normal*10	ICLK = 32.768 kHz		13.4	_		
		All peripheral operation: Max.*10		ICLK = 32.768 kHz		_	51.3		
		Sleep mode	No peripheral operation*8	ICLK = 32.768 kHz		2.2	_		
			All peripheral operation: Normal*9	ICLK = 32.768 kHz		7.2	_		
			No peripheral operation*8	ICLK = 32.768 kHz		1.7	_		
		All peripheral operation: Normal*9		ICLK = 32.768 kHz		6.0	_		

- Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up MOSs are in the off state.
- Note 2. Clock supply to the peripheral functions is stopped. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to divided by 64.
- Note 3. Clocks are supplied to the peripheral functions. This does not include BGO operation. The clock source is PLL. FCLK and PCLK are set to the same frequency as ICLK.
- Note 4. Values when VCC = 3.3 V.
- Note 5. This is the increase for programming or erasure of the ROM or E2 DataFlash during program execution.
- Note 6. Clock supply to the peripheral function is stopped. The clock source is PLL when ICLK is 12 MHz, HOCO when ICLK is 8 MHz, and LOCO otherwise. FCLK and PCLK are set to divided by 64.
- Note 7. Clocks are supplied to the peripheral functions. The clock source is PLL when ICLK is 12 MHz, HOCO when ICLK is (MHz, and LOCO otherwise. FCLK and PCLK are set to the same frequency as ICLK.
- Note 8. Clock supply to the peripheral functions is stopped. The clock source is the sub-clock oscillator. FCLK and PCLK are set to divided by 64.
- Note 9. Clocks are supplied to the peripheral functions. The clock source is the sub-clock oscillator. FCLK and PCLK are set to the same frequency as ICLK.
- Note 10. Values when the MSTPCRA.MSTPA17 bit (12-bit A/D converter module stop bit) is set to "transition to the module stop state is made"

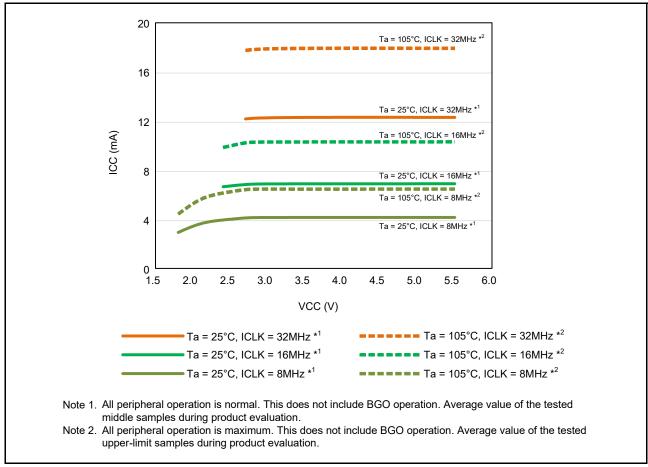


Figure 40.4 Voltage Dependency in High-Speed Operating Mode (Reference Data)

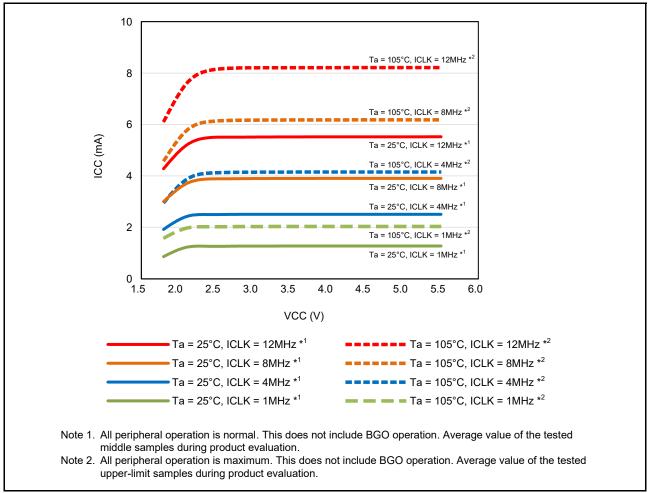


Figure 40.5 Voltage Dependency in Middle-Speed Operating Mode (Reference Data)

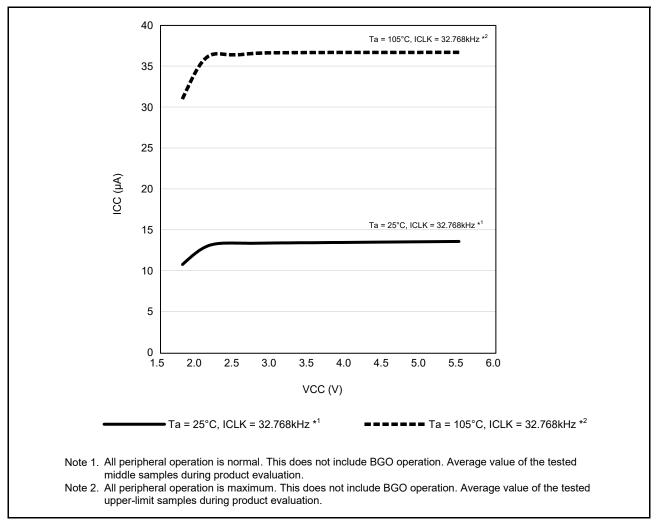


Figure 40.6 Voltage Dependency in Low-Speed Operating Mode (Reference Data)

[Products with 128 Kbytes of flash memory or less (except for 100-pin packages)]

Table 40.9 DC Characteristics (6)

	Item		Symbol	Typ.*3	Max.	Unit	Test Conditions
Supply	Software standby	T _a = 25°C	I _{CC}	0.37	0.71	μA	
current*1	mode*2	T _a = 55°C		0.50	1.70		
		T _a = 85°C		1.20	8.00		
		T _a = 105°C		2.30	19.60		
	Increment for RTC	operation*4		0.40	_		RCR3.RTCDV[2:0] set to low drive capacity
				1.21	_		RCR3.RTCDV[2:0] set to normal drive capacity
	Increment for low-poperation	oower timer		0.37	_		LPTCR1.LPCNTCKSEL set to IWDT-dedicated on-chip oscillator
	Increment for Inde Watchdog Timer o			0.37	_		

- Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.
- Note 2. The IWDT, LVD, and CMPB are stopped.
- Note 3. VCC = 3.3 V.
- Note 4. Includes the oscillation circuit.

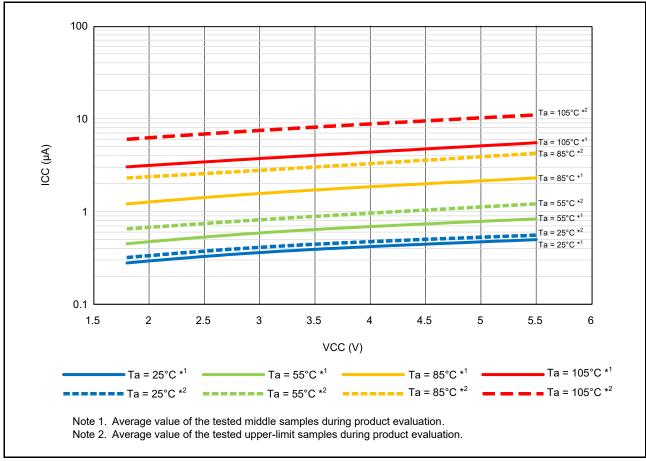


Figure 40.7 Voltage Dependency in Software Standby Mode (Reference Data)

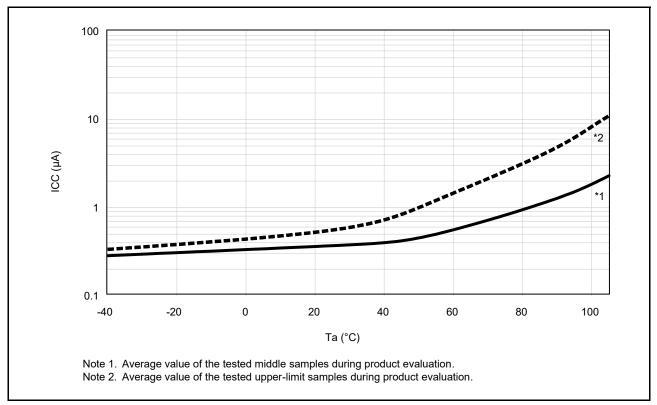


Figure 40.8 Temperature Dependency in Software Standby Mode (Reference Data)

[Products with at least 256 Kbytes of flash memory or 100-pin packages]

Table 40.10 DC Characteristics (6)

	ltem		Symbol	Typ.*3	Max.	Unit	Test Conditions
Supply	Software standby	T _a = 25°C	I _{CC}	0.41	0.98	μA	
current*1	mode*2	T _a = 55°C	1	0.66	2.78		
		T _a = 85°C	1	1.69	9.65	1	
		T _a = 105°C	1	4.08	25.04		
	Increment for RTC	operation*4	1	0.40	_	1	RCR3.RTCDV[2:0] set to low drive capacity
				1.21	_		RCR3.RTCDV[2:0] set to normal drive capacity
	Increment for low-poperation	oower timer		0.37	_		LPTCR1.LPCNTCKSEL set to IWDT-dedicated on-chip oscillator
	Increment for Inde Watchdog Timer o			0.37	_		
	Increment for REM	IC operation		0.44*4	_		REMCON1.CSRC[3:0] set to Sub-clock RCR3.RTCDV[2:0] set to low drive capacity
				1.34*4	_		REMCON1.CSRC[3:0] set to Sub-clock RCR3.RTCDV[2:0] set to normal drive capacity
				235	_	1	REMCON1.CSRC[3:0] set to HOCO clock/512

- Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state.
- Note 2. The IWDT, LVD, and CMPB are stopped.
- Note 3. VCC = 3.3 V.
- Note 4. Includes the oscillation circuit.

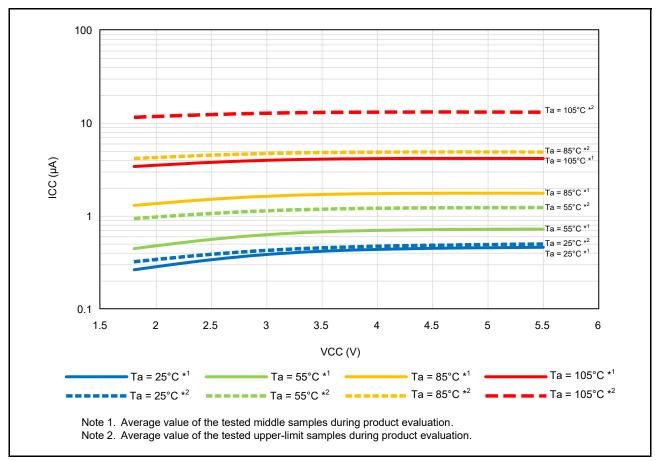


Figure 40.9 Voltage Dependency in Software Standby Mode (Reference Data)

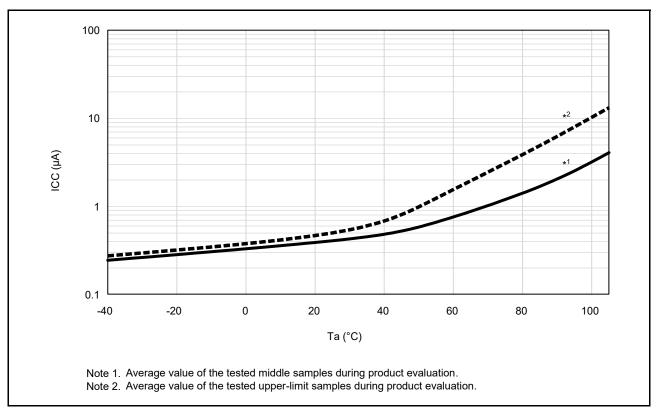


Figure 40.10 Temperature Dependency in Software Standby Mode (Reference Data)

Table 40.11 DC Characteristics (7)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} \le 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}$

Item	Symbol	Тур.	Max.	Unit	Test Conditions
Permissible total power consumption*1	P _d	_	300	mW	D version
		_	105		G version

Note: Please contact a Renesas Electronics sales office for information on the derating of the G-version product. Derating is the systematic reduction of load to improve reliability.

Note 1. Total power dissipated by the entire chip (including output currents)

Table 40.12 DC Characteristics (8)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ Ta} = -40 \text{ to} +105 ^{\circ}\text{C}$

	Item	Symbol	Min.	Typ.*4	Max.	Unit	Test Conditions
Analog power	During A/D conversion (at high-speed conversion)	I _{AVCC}	_	0.7	1.7	mA	
supply current	During A/D conversion (at low-speed conversion)		_	0.6	1.0		
	During D/A conversion (per channel)*1	1	_	_	1.5		
	Waiting for A/D and D/A conversion (all units)		_	_	0.4	μA	
Reference	During A/D conversion (at high-speed conversion)	I _{REFH0}	_	25	150	μΑ	
power supply current	Waiting for A/D conversion (all units)		_	_	60	nA	
LVD0	_	I _{LVD}	_	0.1	_	μA	
LVD1, 2	Per channel		_	0.15	_	μA	
Temperature sensor*3	_	I _{TEMP}	_	75	_	μA	
Comparator B	Window function enabled	I _{CMP} *2	_	12.5	28.6	μΑ	
operating cur- rent* ³	Comparator high-speed mode (per channel)		_	3.2	16.2	μA	
Tone	Comparator low-speed mode (per channel)		_	1.7	4.4	μΑ	
CUSU operating current	During measurement (CPU is in sleep mode) Base clock: 2 MHz Pin capacity: 50 pF	I _{CTSU}	—	150	_	μA	

- Note 1. The value of the D/A converter is the value of the power supply current including the reference current.
- Note 2. Current consumed only by the comparator B module.
- Note 3. ICurrent consumed by the power supply (VCC).
- Note 4. When VCC = AVCC0 = 3.3 V.

Table 40.13 DC Characteristics (9)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ Ta} = -40 \text{ to} +105 ^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
RAM standby voltage	V_{RAM}	1.8	_	_	V	

Table 40.14 DC Characteristics (10)

	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Power-on VCC rising	At normal startup*1	SrVCC	0.02	_	20	ms/V	
gradient	During fast startup time*2		0.02	_	2		
	Voltage monitoring 0 reset enabled at startup*3, *4		0.02	_	_		

- Note 1. When OFS1.(FASTSTUP, LVDAS) = 11b.
- Note 2. When OFS1.(FASTSTUP, LVDAS) = 01b.
- Note 3. When OFS1.LVDAS = 0.
- Note 4. Turn on the power supply voltage according to the normal startup rising gradient because the register settings set by OFS1 are not read in boot mode.

Table 40.15 DC Characteristics (11)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{Ta} = -40 \text{ to}$

+105°C

The ripple voltage must meet the allowable ripple frequency $f_{r \text{ (VCC)}}$ within the range between the VCC upper limit and lower limit. When VCC change exceeds VCC ±10%, the allowable voltage change rising/falling gradient dt/dVCC must be met.

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Allowable ripple frequency	f _{r (VCC)}	_	_	10	kHz	Figure 40.11 $V_{r \text{ (VCC)}} \le VCC \times 0.2$
		_	_	1	MHz	Figure 40.11 V _{r (VCC)} ≤ VCC × 0.08
		_	_	10	MHz	Figure 40.11 V _{r (VCC)} ≤ VCC × 0.06
Allowable voltage change rising/falling gradient	dt/dVCC	1.0	_	_	ms/V	When VCC change exceeds VCC ±10%

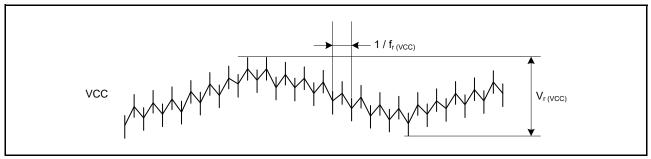


Figure 40.11 Ripple Waveform

Table 40.16 DC Characteristics (12)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{Ta} = -40 \text{ to}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Permissible error of VCL pin external capacitance	C _{VCL}	1.4	4.7	7.0	μF	

Note: The recommended capacitance is 4.7 µF. Variations in connected capacitors should be within the above range.

Table 40.17 Permissible Output Currents (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ Ta} = -40 \text{ to} +85^{\circ}\text{C}$

	Item		Symbol	Max.	Unit	
Permissible output low current (average value per pin)	Ports P03 to P07, Ports P40 to P47, Ports PJ6	s, PJ7	I _{OL}	4.0	mA	
	Ports other than above	Normal output mode		4.0		
		High-drive output mode		8.0		
Permissible output low current (maximum value per pin)	Ports P03 to P07, Ports P40 to P47, Ports PJ6	5, PJ7		4.0		
	Ports other than above	Normal output mode		4.0		
		High-drive output mode		8.0		
Permissible output low current	Total of Ports P03 to P07, Ports P40 to P47, Ports PJ6, PJ7	Σl _{OL}	40			
	Total of Ports P12 to P17, Ports P20 to P27, Ports P30 to P37, Ports PH2, PH3, Ports PJ1, PJ3	Ports P20 to P27, Ports P30 to P37, Ports PH2, PH3,				
	Total of Ports P50 to P55, Ports P80 to P87, Ports PC0 to PC7, Ports PH0, PH1		40			
	Total of Ports PA0 to PA7, Ports PD0 to PD7, Ports PE0 to PE7			40		
	Total of all output pins		80			
Permissible output high current (average value per pin)	Ports P03 to P07, Ports P40 to P47, Ports PJ6	I _{OH}	-4.0			
	Ports other than above	Normal output mode		-4.0		
		High-drive output mode		-8.0		
Permissible output high current (maximum value per pin)	Ports P03 to P07, Ports P40 to P47, Ports PJ6	s, PJ7		-4.0		
verage value per pin) ermissible output high current aximum value per pin)	Ports other than above	Normal output mode		-4.0		
		High-drive output mode		-8.0		
Permissible output high current	Total of Ports P03 to P07, Ports P40 to P47, Ports PJ6, PJ7		Σl _{OH}	-40		
	Total of Ports P12 to P17, Ports P20 to P27, Ports P30 to P37, Ports PH2, PH3, Ports PJ1, PJ3	Total of Ports P12 to P17, Ports P20 to P27, Ports P30 to P37, Ports PH2, PH3,				
	Total of Ports P50 to P55, Ports P80 to P87, Ports PC0 to PC7, Ports PH0, PH1		-4 0			
	Total of Ports PA0 to PA7, Ports PD0 to PD7, Ports PE0 to PE7	Ports PD0 to PD7,				
	Total of all output pins			-80		

Do not exceed the permissible total supply current. Note:

Table 40.18 Permissible Output Currents (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} \le 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{Ta} = -40 \text{ to} +105 ^{\circ}\text{C}$

	Item		Symbol	Max.	Unit	
Permissible output low current (average value per pin)	Ports P03 to P07, Ports P40 to P47, Ports PJ6	, PJ7	I _{OL}	4.0	mA	
	Ports other than above	Normal output mode		4.0		
		High-drive output mode		8.0		
Permissible output low current (maximum value per pin)	Ports P03 to P07, Ports P40 to P47, Ports PJ6	, PJ7		4.0		
	Ports other than above	Normal output mode		4.0		
		High-drive output mode		8.0		
Permissible output low current	Total of Ports P03 to P07, Ports P40 to P47, Ports PJ6, PJ7	Ports P40 to P47,				
	Total of Ports P12 to P17, Ports P20 to P27, Ports P30 to P37, Ports PH2, PH3, Ports PJ1, PJ3			30		
	Total of Ports P50 to P55, Ports PB0 to PB7, Ports PC0 to PC7, Ports PH0, PH1		30			
	Total of Ports PA0 to PA7, Ports PD0 to PD7, Ports PE0 to PE7			30		
			60			
Permissible output high current (average value per pin)	Ports P03 to P07, Ports P40 to P47, Ports PJ6	Ports P03 to P07, Ports P40 to P47, Ports PJ6, PJ7				
	Ports other than above	Normal output mode		-4.0		
		High-drive output mode		-8.0		
Permissible output high current (maximum value per pin)	Ports P03 to P07, Ports P40 to P47, Ports PJ6	, PJ7		-4.0		
	Ports other than above	Normal output mode		-4.0		
		High-drive output mode		-8.0		
Permissible output high current	Total of Ports P03 to P07, Ports P40 to P47, Ports PJ6, PJ7		ΣI _{OH}	-30		
	Total of Ports P12 to P17, Ports P20 to P27, Ports P30 to P37, Ports PH2, PH3, Ports PJ1, PJ3	Total of Ports P12 to P17, Ports P20 to P27, Ports P30 to P37, Ports PH2, PH3,				
	Ports PB0 to PB7, Ports PC0 to PC7,					
	Total of Ports PA0 to PA7, Ports PD0 to PD7, Ports PE0 to PE7	Ports PD0 to PD7,				
	Total of all output pins] [-60		

Note: Do not exceed the permissible total supply current.

Table 40.19 Output Values of Voltage (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} < 2.7 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} < 2.7 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{Ta} = -40 \text{ to}$

+105°C

	Item			Symbol	Min.	Max.	Unit	Test Conditions
Output low	·			V _{OL}	_	0.8	V	I _{OL} = 0.5 mA
(except fo	(except for RIIC)	High-drive output mode			_	0.8		I _{OL} = 1.0 mA
Output high	All output ports	Normal output mode	P03 to P07, P40 to P47, PJ6, PJ7	V _{OH}	AVCC0 - 0.5	_	V	I _{OH} = -0.5 mA
			Ports other than above		VCC - 0.5	_		
		High-drive output mode			VCC - 0.5	_		I _{OH} = -1.0 mA

Table 40.20 Output Values of Voltage (2)

Conditions: $2.7 \text{ V} \le \text{VCC} < 4.0 \text{ V}, 2.7 \text{ V} \le \text{AVCC0} < 4.0 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{T}_a = -40 \text{ to } +105 ^{\circ}\text{C}$

	Item			Symbol	Min.	Max.	Unit	Test Conditions
·	All output ports	Normal output mode	Normal output mode		_	0.8	V	I _{OL} = 1.0 mA
	(except for RIIC)	High-drive output mo	de		_	0.8		I _{OL} = 2.0 mA
	RIIC pins	Standard mode (Normal output mode	· -		_	0.4		I _{OL} = 3.0 mA
		Fast mode (High-drive output mo	ode)	-	_	0.4		I _{OL} = 6.0 mA
Output high	All output ports	'	P03 to P07, P40 to P47, PJ6, PJ7	V _{OH}	AVCC0 - 0.8	_	V	I _{OH} = -1.0 mA
			Ports other than above		VCC - 0.8	_		
		High-drive output mode			VCC - 0.8	_		I _{OH} = -2.0 mA

Table 40.21 Output Values of Voltage (3)

Conditions: $4.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}$, $4.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}$, VSS = AVSS0 = 0 V, $\text{T}_{a} = -40 \text{ to } +105 ^{\circ}\text{C}$

	Item			Symbol	Min.	Max.	Unit	Test Conditions
	All output ports Normal output mode			V _{OL}	_	0.8	V	I _{OL} = 2.0 mA
	(except for RIIC)	High-drive output mode			_	0.8		I _{OL} = 4.0 mA
	RIIC pins	Standard mode (Normal output mode			_	0.4		I _{OL} = 3.0 mA
		Fast mode (High-drive output mo	ode)		_	0.6		I _{OL} = 6.0 mA
Output high	All output ports	P4	P03 to P07, P40 to P47, PJ6, PJ7	V _{OH}	AVCC0 - 0.8	_	_ V	I _{OH} = -2.0 mA
			Ports other than above		VCC - 0.8	_		
		High-drive output mode			VCC - 0.8	_		I _{OH} = -4.0 mA

40.2.1 Normal I/O Pin Output Characteristics (1)

Figure 40.12 to Figure 40.16 show the characteristics when normal output is selected by the drive capacity control register.

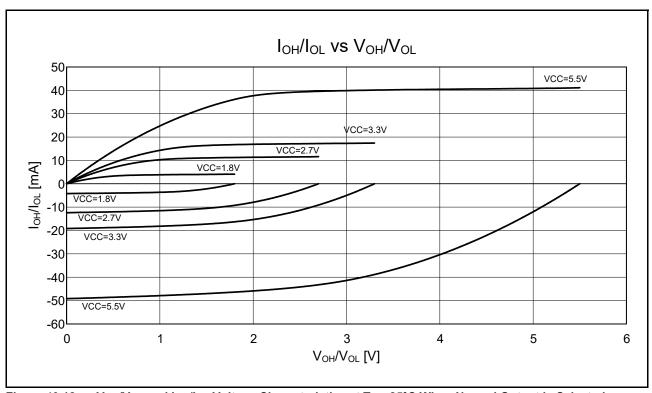


Figure 40.12 V_{OH}/V_{OL} and I_{OH}/I_{OL} Voltage Characteristics at $T_a = 25^{\circ}$ C When Normal Output is Selected (Reference Data)

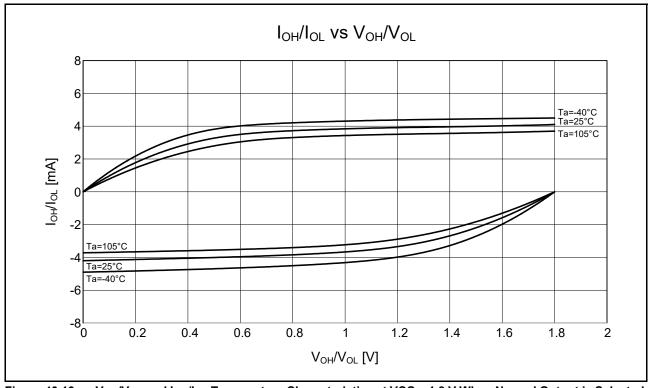


Figure 40.13 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 1.8 V When Normal Output is Selected (Reference Data)

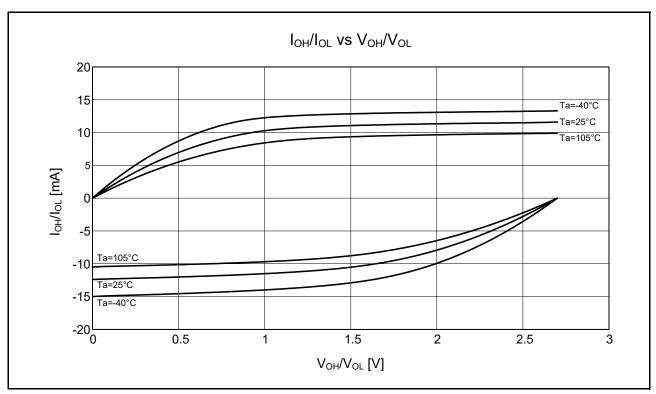


Figure 40.14 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 2.7 V When Normal Output is Selected (Reference Data)

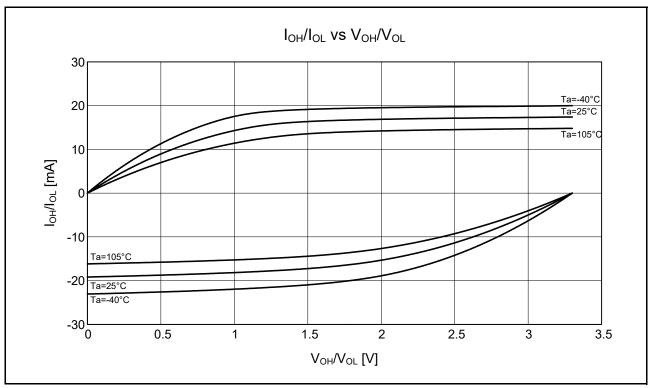


Figure 40.15 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 3.3 V When Normal Output is Selected (Reference Data)

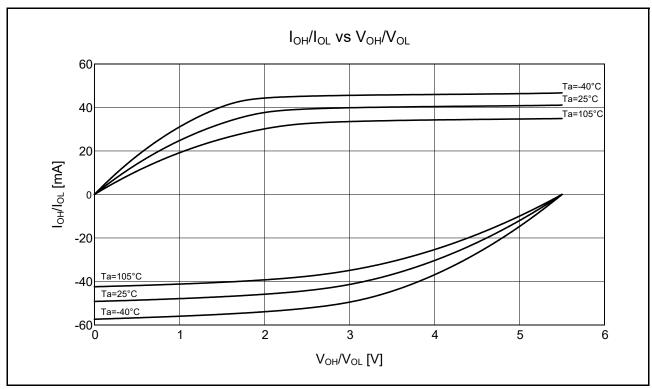


Figure 40.16 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 5.5 V When Normal Output is Selected (Reference Data)

40.2.2 Normal I/O Pin Output Characteristics (2)

Figure 40.17 to Figure 40.21 show the characteristics when high-drive output is selected by the drive capacity control register.

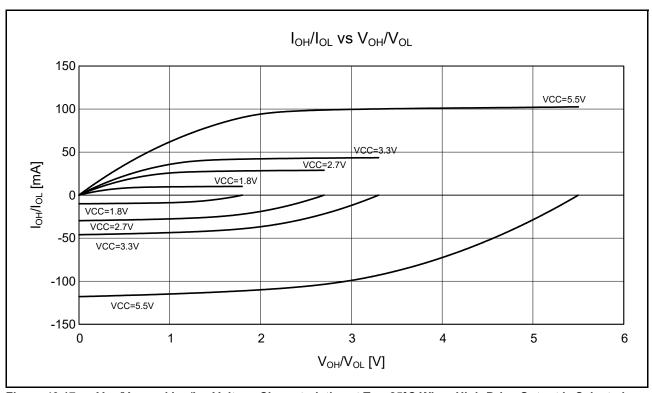


Figure 40.17 V_{OH}/V_{OL} and I_{OH}/I_{OL} Voltage Characteristics at T_a = 25°C When High-Drive Output is Selected (Reference Data)

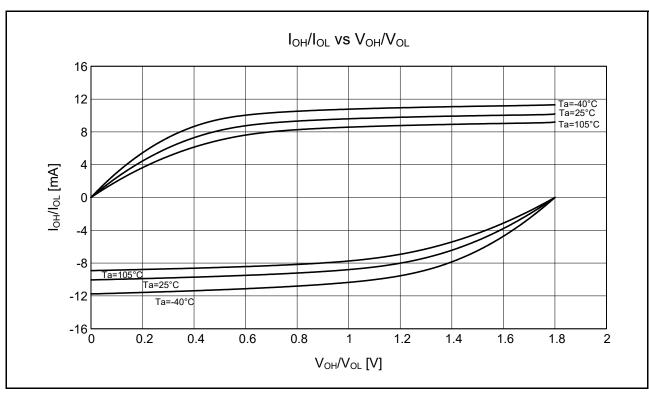


Figure 40.18 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 1.8 V When High-Drive Output is Selected (Reference Data)

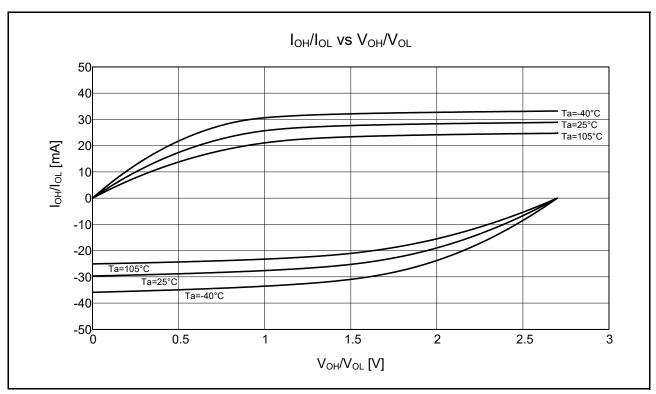


Figure 40.19 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 2.7 V When High-Drive Output is Selected (Reference Data)

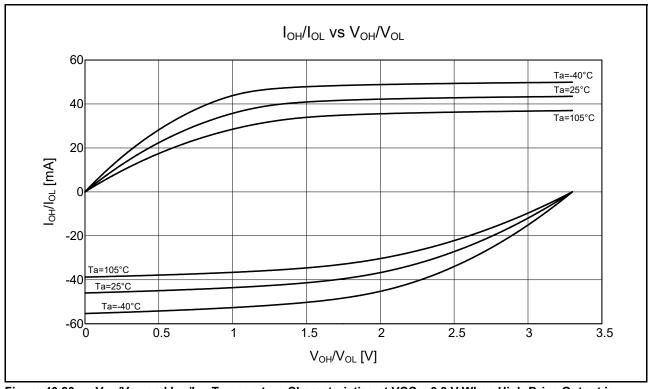


Figure 40.20 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 3.3 V When High-Drive Output is Selected (Reference Data)

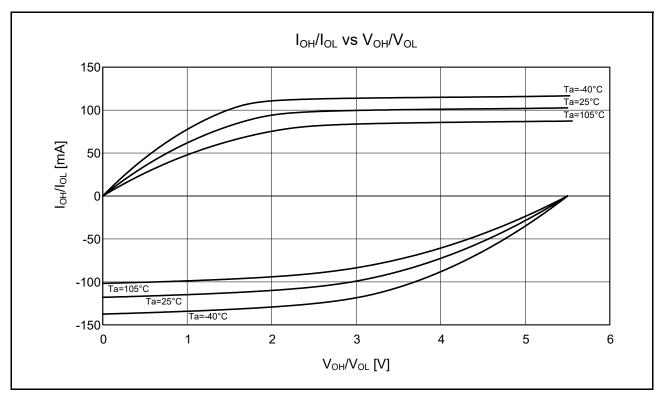


Figure 40.21 V_{OH}/V_{OL} and I_{OH}/I_{OL} Temperature Characteristics at VCC = 5.5 V When High-Drive Output is Selected (Reference Data)

40.2.3 Normal I/O Pin Output Characteristics (3)

Figure 40.22 to Figure 40.25 show the characteristics of the RIIC output pin.

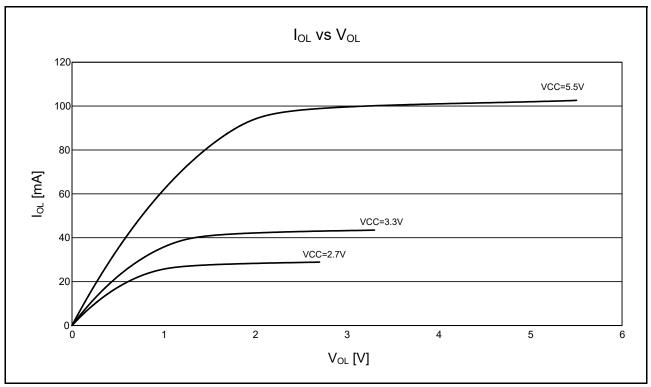


Figure 40.22 V_{OL} and I_{OL} Voltage Characteristics of RIIC Output Pin at $T_a = 25^{\circ}$ C (Reference Data)

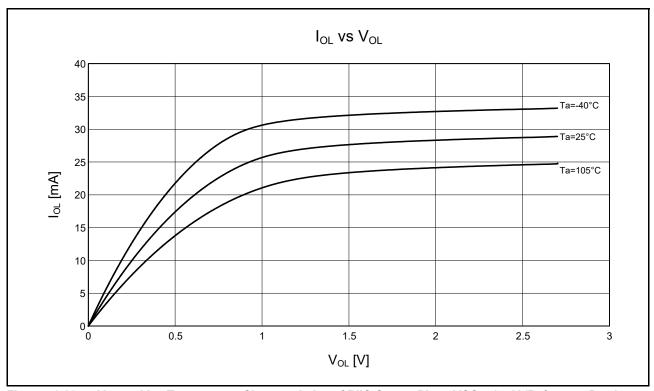


Figure 40.23 V_{OL} and I_{OL} Temperature Characteristics of RIIC Output Pin at VCC = 2.7 V (Reference Data)

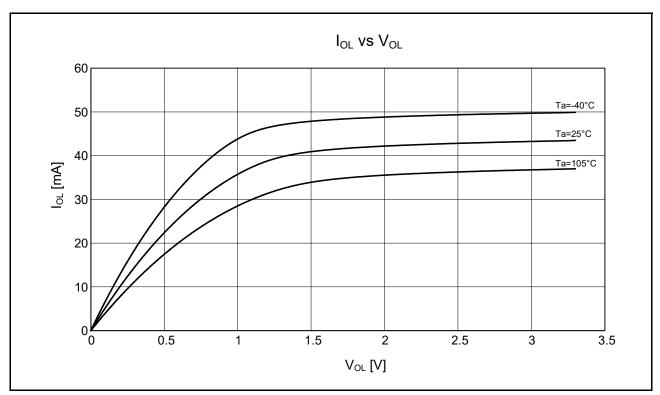


Figure 40.24 V_{OL} and I_{OL} Temperature Characteristics of RIIC Output Pin at VCC = 3.3 V (Reference Data)

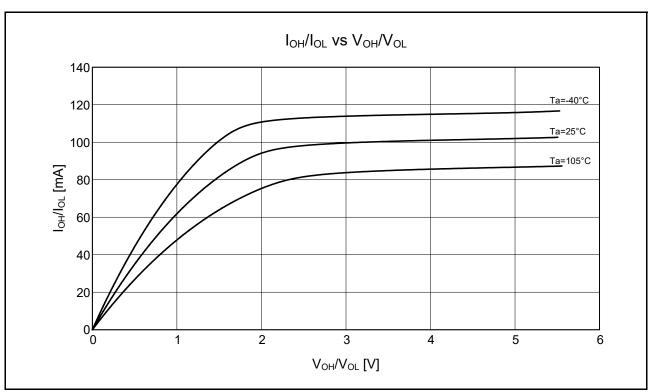


Figure 40.25 V_{OL} and I_{OL} Temperature Characteristics of RIIC Output Pin at VCC = 5.5 V (Reference Data)

40.3 AC Characteristics

40.3.1 Clock Timing

Table 40.22 Operating Frequency Value (High-Speed Operating Mode)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} \le 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{Ta} = -40 \text{ to}$

+105°C

			VCC				
ltem		Symbol	1.8 V ≤ VCC < 2.4 V	2.4 V ≤ VCC < 2.7 V	2.7 V ≤ VCC ≤ 5.5 V	Unit	
Maximum operating frequency*4	System clock (ICLK)	f _{max}	8	16	32	MHz	
	FlashIF clock (FCLK)*1, *2		8	16	32	- - -	
	Peripheral module clock (PCLKB)		8	16	32		
	Peripheral module clock (PCLKD)*3		8	16	32		

- Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.
- Note 2. The frequency accuracy of FCLK should be ±3.5%.
- Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the A/D converter is in use.
- Note 4. The maximum operating frequency does not include HOCO error or PLL jitter. See Table 40.25, Clock Timing.

Table 40.23 Operating Frequency Value (Middle-Speed Operating Mode)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{Ta} = -40 \text{ to}$

Item		Symbol	1.8 V ≤ VCC < 2.4 V	2.4 V ≤ VCC < 2.7 V	2.7 V ≤ VCC ≤ 5.5 V	Unit
Maximum operating frequency*4	System clock (ICLK)	f _{max}	8	12	12	MHz
	FlashIF clock (FCLK)*1, *2		8	12	12	
	Peripheral module clock (PCLKB)		8	12	12	
	Peripheral module clock (PCLKD)*3	1	8	12	12	

- Note 1. The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.
- Note 2. The frequency accuracy of FCLK should be ±3.5%.
- Note 3. The lower-limit frequency of PCLKD is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the A/D converter is in use.
- Note 4. The maximum operating frequency does not include HOCO error or PLL jitter. See Table 40.25, Clock Timing

Table 40.24 Operating Frequency Value (Low-Speed Operating Mode)

			VCC				
	Item		1.8 V ≤ VCC < 2.4 V	2.4 V ≤ VCC < 2.7 V	2.7 V ≤ VCC ≤ 5.5 V	Unit	
Maximum	System clock (ICLK)	f _{max}			kHz		
operating frequency	FlashIF clock (FCLK)*1		32.768				
noquonoy	Peripheral module clock (PCLKB)		32.768				
	Peripheral module clock (PCLKD)*2		32.768				

- Note 1. Programming and erasing the flash memory is impossible.
- Note 2. The A/D converter cannot be used.

Table 40.25 Clock Timing

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ Ta} = -40 \text{ to} +105 ^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
EXTAL external clock input cycle	t _{Xcyc}	50	_	_	ns	Figure 40.26	
EXTAL external clock input high p	t _{XH}	20	_	_	ns		
EXTAL external clock input low p	t _{XL}	20	_	_	ns		
EXTAL external clock rise time	t _{Xr}	_	_	5	ns		
EXTAL external clock fall time	EXTAL external clock fall time			_	5	ns	
EXTAL external clock input wait t	ime*1	t _{XWT}	0.5	_	_	μs	
Main clock oscillator oscillation	2.4 ≤ VCC ≤ 5.5	f _{MAIN}	1	_	20	MHz	
frequency*2	1.8 ≤ VCC < 2.4		1	_	8		
Main clock oscillation stabilization	time (crystal)*2	t _{MAINOSC}	_	3	_	ms	Figure 40.27
Main clock oscillation stabilization resonator)*2	t _{MAINOSC}	_	50	_	μs		
LOCO clock oscillation frequency	f _{LOCO}	3.44	4.0	4.56	MHz		
LOCO clock oscillation stabilization	t _{LOCO}	_	_	0.5	μs	Figure 40.28	
IWDT-dedicated clock oscillation	frequency	f _{ILOCO}	12.75	15	17.25	kHz	
IWDT-dedicated clock oscillation	stabilization time	t _{ILOCO}	_	_	50	μs	Figure 40.29
HOCO clock oscillation frequency	/	f _{HOCO}	31.52	32	32.48	MHz	$T_a = -40 \text{ to } + 85^{\circ}\text{C}$
		(32 MHz)	31.68	32	32.32		$T_a = 0 \text{ to } + 55^{\circ}\text{C}$
			31.36	32	32.64		$T_a = -40 \text{ to } +105^{\circ}\text{C}$
HOCO clock oscillation stabilizati	t _{HOCO}		_	30	μs	Figure 40.31	
PLL input frequency*3	f _{PLLIN}	4	_	8	MHz		
PLL circuit oscillation frequency*	f _{PLL}	24	_	32	MHz		
PLL clock oscillation stabilization	t _{PLL}		_	50	μs	Figure 40.32	
PLL free-running oscillation frequ	f _{PLLFR}		8	_	MHz		
Sub-clock oscillator oscillation fre	f _{SUB}	_	32.768	_	kHz		
Sub-clock oscillation stabilization	t _{SUBOSC}	_	0.5		s	Figure 40.33	

- Note 1. Time until the clock can be used after the main clock oscillator stop bit (MOSCCR.MOSTP) is set to 0 (operating).
- Note 2. Reference values when an 8-MHz resonator is used.
 - When specifying the main clock oscillator stabilization time, set the MOSCWTCR register with a stabilization time value that is equal to or greater than the resonator-manufacturer-recommended value.
 - After changing the setting of the MOSCCR.MOSTP bit so that the main clock oscillator operates, read the OSCOVFSR.MOOVF flag to confirm that is has become 1, and then start using the main clock.
- Note 3. The VCC range should be 2.4 to 5.5 V when the PLL is used.
- Note 4. Reference value when a 32.768-kHz resonator is used.

After changing the setting of the SOSCCR.SOSTP bit or RCR3.RTCEN bit so that the sub-clock oscillator operates, only start using the sub-clock after the sub-clock oscillation stabilization wait time that is equal to or greater than the oscillator-manufacturer-recommended value has elapsed.

Note 5. Only 32.768-kHz can be used.

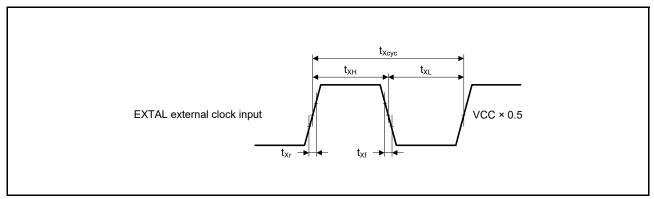


Figure 40.26 EXTAL External Clock Input Timing

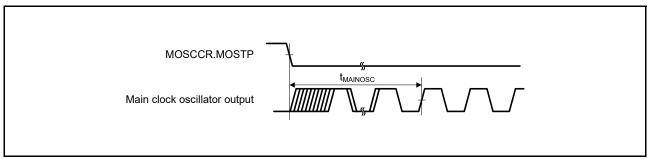


Figure 40.27 Main Clock Oscillation Start Timing

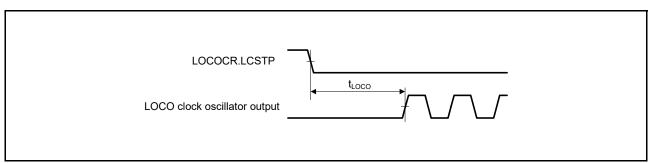


Figure 40.28 LOCO Clock Oscillation Start Timing

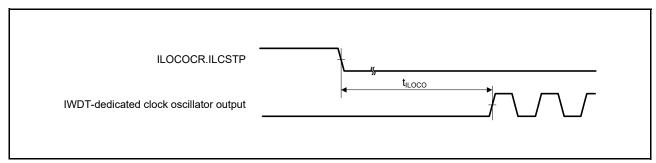


Figure 40.29 IWDT-Dedicated Clock Oscillation Start Timing

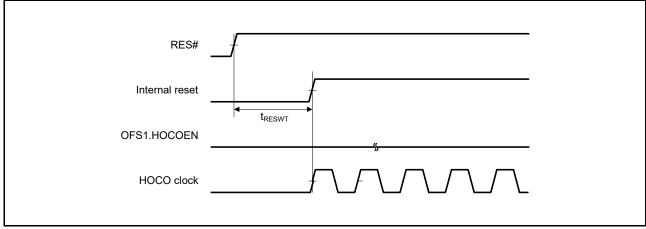


Figure 40.30 HOCO Clock Oscillation Start Timing (After Reset is Canceled by Setting OFS1.HOCOEN Bit to 0)

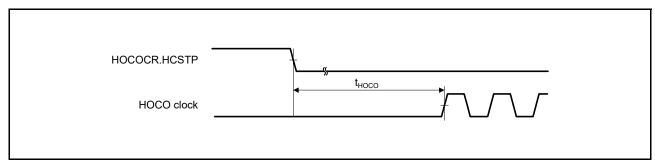


Figure 40.31 HOCO Clock Oscillation Start Timing (Oscillation is Started by Setting HOCOCR.HCSTP Bit)

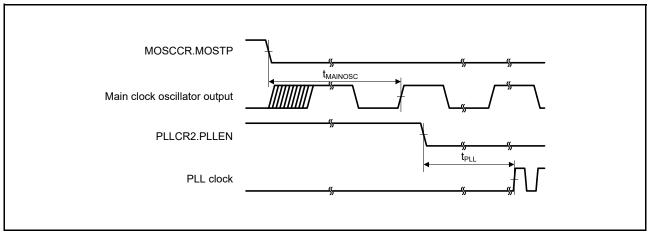


Figure 40.32 PLL Clock Oscillation Start Timing (PLL is Operated after Main Clock Oscillation Has Settled)

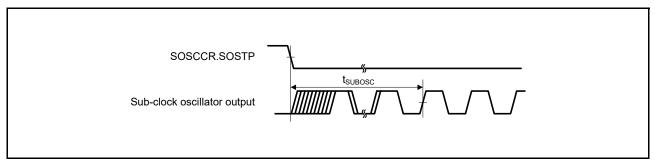


Figure 40.33 Sub-Clock Oscillation Start Timing

40.3.2 Reset Timing

Table 40.26 Reset Timing

Item			Min.	Тур.	Max.	Unit	Test Conditions	
RES# pulse width	At power-on	t _{RESWP}	3	_	_	ms	Figure 40.34	
	Other than above	t _{RESW}	30	_	_	μs	Figure 40.35	
Wait time after RES#	At normal startup*1	t _{RESWT}	_	8.5	_	ms	Figure 40.34	
cancellation (at power-on)	During fast startup time*2	t _{RESWT}	_	560	_	μs		
Wait time after RES# cancellation (during powered-on state)		t _{RESWT}	_	120	_	μs	Figure 40.35	
Independent watchdog	t _{RESWIW}	_	1	_	IWDT clock cycle	Figure 40.36		
Software reset period	t _{RESWSW}	_	1	_	ICLK cycle			
Wait time after independent watchdog timer reset cancellation*3			_	300	_	μs		
Wait time after software reset cancellation			_	170	_	μs		

- Note 1. When OFS1.(LVDAS, FASTSTUP) = 11b.
- Note 2. When OFS1.(LVDAS, FASTSTUP) = a value other than 11b.
- Note 3. When IWDTCR.CKS[3:0] = 0000b.

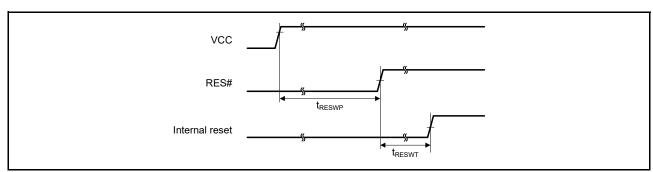


Figure 40.34 Reset Input Timing at Power-On

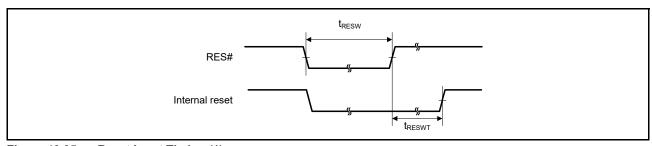


Figure 40.35 Reset Input Timing (1)

Figure 40.36 Reset Input Timing (2)

40.3.3 Timing of Recovery from Low Power Consumption Modes

Table 40.27 Timing of Recovery from Low Power Consumption Modes (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{Ta} = -40 \text{ to} +105 ^{\circ}\text{C}$

Item			Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Recovery time from software standby mode*1	High-speed mode	Crystal connected to main clock oscillator	Main clock oscillator operating*2	t _{SBYMC}	_	2	3	ms	Figure 40.37
			Main clock oscillator and PLL circuit operating*3	t _{SBYPC}	_	2	3	ms	
		to main clock oscillator	Main clock oscillator operating*4	t _{SBYEX}	_	35	50	μs	
			Main clock oscillator and PLL circuit operating*5	t _{SBYPE}	_	70	95	μs	
		Sub-clock oscillator operating		t _{SBYSC}	_	650	800	μs	
		HOCO clock oscillato	r operating	t _{SBYHO}		40	55	μs	
		LOCO clock oscillator operating		t _{SBYLO}		40	55	μs	

- Note: Note Values when the frequencies of PCLKB, PCLKD, and FCLK are not divided.
- Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. The above table applies when only the corresponding clock is operating.
- Note 2. When the frequency of the crystal is 20 MHz.
 - When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.
- Note 3. When the frequency of PLL is 32 MHz.
 - When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.
- Note 4. When the frequency of the external clock is 20 MHz.
 - When the main clock oscillator wait control register (MOSCWTCR) is set to 00h.
- Note 5. When the frequency of PLL is 32 MHz.
 - When the main clock oscillator wait control register (MOSCWTCR) is set to 00h.

Table 40.28 Timing of Recovery from Low Power Consumption Modes (2)

Item			Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Recovery time from software standby mode*1 Middle-speed mode mode		Crystal connected to main clock oscillator	Main clock oscillator operating*2	t _{SBYMC}	_	2	3	ms	Figure 40.37
		Main clock oscillator and PLL circuit operating*3	t _{SBYPC}	_	2	3	ms		
		External clock input to main clock	Main clock oscillator operating*4	t _{SBYEX}	_	3	4	μs	
		Main clock oscillator and PLL circuit operating*5	t _{SBYPE}	_	65	85	μs		
	Sub-clock oscillator operating		t _{SBYSC}	_	600	750	μs		
		HOCO clock oscillator operating LOCO clock oscillator operating		t _{SBYHO}	_	40	50	μs	
				t _{SBYLO}	_	5	7	μs	

- Note: Note Values when the frequencies of PCLKB, PCLKD, and FCLK are not divided.
- Note 1. The recovery time varies depending on the state of each oscillator when the WAIT instruction is executed. The recovery time when multiple oscillators are operating varies depending on the operating state of the oscillators that are not selected as the system clock source. The above table applies when only the corresponding clock is operating.
- Note 2. When the frequency of the crystal is 12 MHz.
 - When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.
- Note 3. When the frequency of PLL is 12 MHz.
 - When the main clock oscillator wait control register (MOSCWTCR) is set to 04h.
- Note 4. When the frequency of the external clock is 12 MHz.
 - When the main clock oscillator wait control register (MOSCWTCR) is set to 00h.
- Note 5. When the frequency of PLL is 12 MHz.

When the main clock oscillator wait control register (MOSCWTCR) is set to 00h.

Table 40.29 Timing of Recovery from Low Power Consumption Modes (3)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ Ta} = -40 \text{ to} +105 ^{\circ}\text{C}$

Item			Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from software standby mode*1	Low-speed mode	Sub-clock oscillator operating	t _{SBYSC}	1	600	750	μs	Figure 40.37

Note: Note Values when the frequencies of PCLKB, PCLKD, and FCLK are not divided.

Note 1. The sub-clock continues oscillating in software standby mode during low-speed mode.

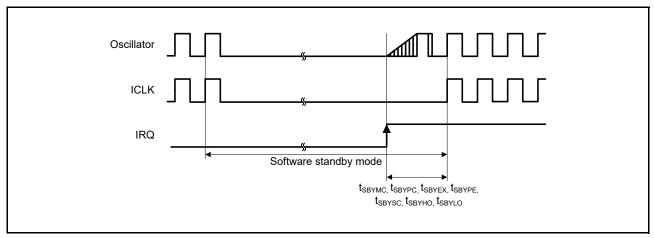


Figure 40.37 Software Standby Mode Recovery Timing

Table 40.30 Timing of Recovery from Low Power Consumption Modes (4)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ Ta} = -40 \text{ to} +105 ^{\circ}\text{C}$

Item		Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Recovery time from deep sleep mode*1	High-speed mode*2	t _{DSLP}	_	2	3.5	μs	Figure 40.38
	Middle-speed mode*3	t _{DSLP}	_	3	4	μs	
	Low-speed mode*4	t _{DSLP}	_	400	500	μs	

Note: Note Values when the frequencies of PCLKB, PCLKD, and FCLK are not divided.

- Note 1. Oscillators continue oscillating in deep sleep mode.
- Note 2. When the frequency of the system clock is 32 MHz.
- Note 3. When the frequency of the system clock is 12 MHz.
- Note 4. When the frequency of the system clock is 32.768 kHz.

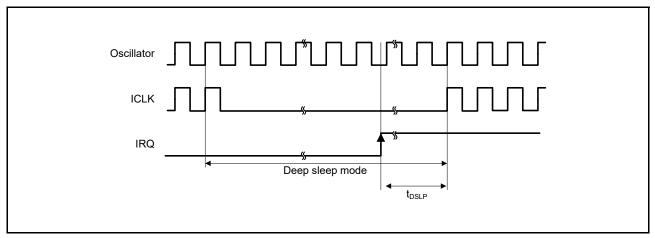


Figure 40.38 Deep Sleep Mode Recovery Timing

Table 40.31 Operating Mode Transition Time

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{Ta} = -40 \text{ to} +105 ^{\circ}\text{C}$

Mode before Transition	Mode after Transition	ICLK Fraguanay	Tr	Unit		
Wode belore Transition	Wode after Transition	ICLK Frequency	Min.	Тур.	Max.	Offic
High-speed operating mode	Middle-speed operating modes	8 MHz	_	10	_	μs
Middle-speed operating modes	High-speed operating mode	8 MHz	_	37.5	_	μs
Low-speed operating mode	Middle-speed operating mode, high-speed operating mode	32.768 kHz	_	215	_	μs
Middle-speed operating mode, high-speed operating mode	Low-speed operating mode	32.768 kHz	_	185	_	μs

Note: Values when the frequencies of PCLKB, PCLKD, and FCLK are not divided.

40.3.4 Control Signal Timing

Table 40.32 Control Signal Timing

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{Ta} = -40 \text{ to} +105^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Cond	ditions
NMI pulse width	t _{NMIW}	200	_	_	ns	NMI digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns
		t _{Pcyc} × 2*1	_	_		(NMIFLTE.NFLTEN = 0)	t _{Pcyc} × 2 > 200 ns
		200	_	_		NMI digital filter enabled	t _{NMICK} × 3 ≤ 200 ns
		t _{NMICK} × 3.5*2	_	_		(NMIFLTE.NFLTEN = 1)	t _{NMICK} × 3 > 200 ns
IRQ pulse width	t _{IRQW}	200	_	_	ns	IRQ digital filter disabled	t _{Pcyc} × 2 ≤ 200 ns
		t _{Pcyc} × 2*1	_	_		(IRQFLTE0.FLTENi = 0)	t _{Pcyc} × 2 > 200 ns
		200	_	_		IRQ digital filter enabled	t _{IRQCK} × 3 ≤ 200 ns
		t _{IRQCK} × 3.5*3	× 3.5*3 — — (IRQFLTE0.FLTENi = 1)		(IRQFLTE0.FLTENi = 1)	t _{IRQCK} × 3 > 200 ns	

Note: 200 ns minimum in software standby mode.

- Note 1. t_{Pcyc} indicates the cycle of PCLKB.
- Note 2. $t_{\mbox{\scriptsize NMICK}}$ indicates the cycle of the NMI digital filter sampling clock.
- Note 3. t_{IRQCK} indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 7).

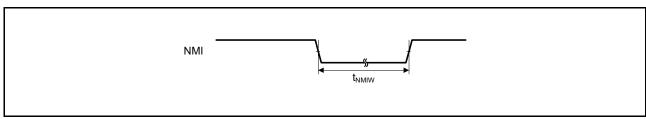


Figure 40.39 NMI Interrupt Input Timing

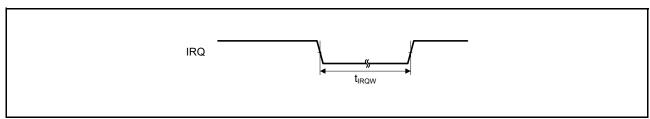


Figure 40.40 IRQ Interrupt Input Timing

40.3.5 Timing of On-Chip Peripheral Modules

Table 40.33 Timing of On-Chip Peripheral Modules (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} \le 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{Ta} = -40 \text{ to}$

+105°C

	Ite	m		Symbol	Min.	Max.	Unit *1	Test Conditions
I/O ports	Input data pulse width			t _{PRW}	1.5	_	t _{Pcyc}	Figure 40.41
MTU2	Input capture input pulse	width	Single-edge setting	t _{TICW}	1.5	_	t _{Pcyc}	Figure
			Both-edge setting	1	2.5	_		40.42
	Input capture input rise/fa	II time		t _{TICr} , t _{TICf}	_	0.1	µs/V	
	Timer clock pulse width		Single-edge setting	t _{TCKWH} ,	1.5	_	t _{Pcyc}	Figure
			Both-edge setting	t _{TCKWL}	2.5	_		40.43
			Phase counting mode	1	2.5	_		
	Timer clock rise/fall time		•	t _{TCKr} , t _{TCKf}	_	0.1	µs/V	
POE2	POE# input pulse width			t _{POEW}	1.5	_	t _{Pcyc}	Figure
	POE# input rise/fall time			t _{POEr} , t _{POEf}	_	0.1	μs/V	40.44
TMR	Timer clock pulse width		Single-edge setting	t _{TMCWH} ,	1.5	_	t _{Pcyc}	Figure
			Both-edge setting	t _{TMCWL}	2.5	_		40.45
	Timer clock rise/fall time			t _{TMCr} , t _{TMCf}	_	0.1	µs/V	
SCI	Input clock cycle time		Asynchronous	t _{Scyc}	4	_	t _{Pcyc}	Figure
			Clock synchronous		6	_		40.46
	Input clock pulse width			t _{SCKW}	0.4	0.6	t _{Scyc}	
	Input clock rise time		t _{SCKr}	_	20	ns		
	Input clock fall time	t _{SCKf}	_	20	ns			
	Output clock cycle time Asynchronous				16	_	t _{Pcyc}	Figure
		Clock synchronous		4	_		40.47	
	Output clock pulse width	Output clock pulse width					t _{Scyc}	
	Output clock rise time			t _{SCKr}	_	20	ns	
	Output clock fall time			t _{SCKf}	_	20	ns	
	Transmit data delay time (master)	Clock synchror	nous	t _{TXD}	_	40	ns	
	Transmit data delay time	Clock	2.7 V or above		_	65	ns	
	(slave)	synchronous	1.8 V or above		_	100	ns	
	Receive data setup time	Clock	2.7 V or above	t _{RXS}	65	_	ns	
	(master)	synchronous	1.8 V or above		90	_	ns	
	Receive data setup time (slave)	Clock synchror	nous		40	_	ns	
	Receive data hold time	Receive data hold time Clock synchronous				_	ns	
A/D converter	Trigger input pulse width			t _{TRGW}	1.5	_	t _{Pcyc}	Figure 40.48
CAC	CACREF input pulse widt	h	$t_{Pcyc} \le t_{cac}^{*2}$ $t_{Pcyc} > t_{cac}^{*2}$	t _{CACREF}	4.5 t _{cac} + 3 t _{Pcyc} 5 t _{cac} + 6.5 t _{Pcyc}	_	ns	
	CACREF input rise/fall tin	ne	1. Syo cao	t _{CACREFr} ,	—	0.1	µs/V	1

Table 40.33 **Timing of On-Chip Peripheral Modules (1)**

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} \le 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{Ta} = -40 \text{ to}$

	Item		Symbol	Min.	Max.	Unit *1	Test Conditions
CLKOUT	CLKOUT pin output cycle*4	VCC = 2.7 V or above	t _{Ccyc}	62.5	_	ns	Figure
		VCC = 1.8 V or above		125			40.49
	CLKOUT pin high pulse width*3	VCC = 2.7 V or above	t _{CH}	15	_	ns	
		VCC = 1.8 V or above		30			
	CLKOUT pin low pulse width*3	VCC = 2.7 V or above	t _{CL}	15	_	ns	
		VCC = 1.8 V or above		30			
	CLKOUT pin output rise time	VCC = 2.7 V or above	t _{Cr}	_	12	ns	
		VCC = 1.8 V or above			25		
	CLKOUT pin output fall time	VCC = 2.7 V or above	t _{Cf}	_	12	ns	1
		VCC = 1.8 V or above	1		25		

Note 1. t_{Pcyc}: PCLK cycle
Note 2. t_{cac}: CAC count clock source cycle

Note 3. When the LOCO is selected as the clock output source (CKOCR.CKOSEL[3:0] bits = 0000b), set the clock output division ratio selection to divided by 2 (CKOCR.CKODIV[2:0] bits = 001b).

Note 4. When the XTAL external clock input or an oscillator is used with divided by 1 (CKOCR.CKOSEL[3:0] bits = 010b and CKOCR.CKODIV[2:0] bits = 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to 55%.

Table 40.34 Timing of On-Chip Peripheral Modules (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} \le 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ Ta} = -40 \text{ to} +105^{\circ}\text{C}, \text{ C} = 30 \text{ pF}, \text{ when high-drive output is selected by the drive capacity register}$

			Item	Symbol	Min.	Max.	Unit	Test Conditions
		Master		t _{SPcyc}	2	4096	t _{Pcyc} *1	Figure 40.5
	clock cycle	Slave			8	_		
	RSPCK clock high	Master		t _{SPCKW}	$(t_{SPCyc} - t_{SPCKr} - t_{SPCKf})/2 - 3$	_	ns	
	pulse width	Slave			(t _{SPcyc} – t _{SPCKr} – t _{SPCKf})/2	_		
	clock low	Master		t _{SPCKW}	$(t_{SPCyc} - t_{SPCKr} - t_{SPCKf})/2 - 3$	_	ns	
	pulse width	Slave			(t _{SPcyc} - t _{SPCKr} - t _{SPCKf})/2	_		
	RSPCK	Output	2.7 V or above	t _{SPCKr} ,	_	10	ns	S
	clock rise/ fall time		1.8 V or above	t _{SPCKf}	_	15		
	iaii time	Input	1		_	0.1	μs/V	
ŀ	Data input	Master	2.7 V or above	t _{SU}	10	_	ns	Figure 40.5
	setup time		1.8 V or above		30	_		to
		Slave			25 – t _{Pcyc}	_		Figure 40.5
	Data input hold time	Master	RSPCK set to a division ratio other than PCLKB divided by 2	t _H	t _{Pcyc}	_	ns	
			RSPCK set to PCLKB divided by 2	t _{HF}	0	_		
		Slave	1	t _H	20 + 2 × t _{Pcvc}	_		
ŀ	SSL setup	Master		t _{LEAD}	-30 + N*2 × t _{SPcyc}	_	ns	
	time	Slave			2	_	t _{Pcyc}	
f	SSL hold	Master		t _{LAG}	-30 + N*3 × t _{SPcyc}	_	ns	
	time	Slave		ve		_	t _{Pcyc}	
ľ	Data output	Master	2.7 V or above	t _{OD}	_	14	ns	
	delay time		1.8 V or above		_	30		
		Slave	2.7 V or above		_	3 × t _{Pcyc} + 65		
			1.8 V or above		_	3 × t _{Pcyc} +105		
ľ	Data output	Master	1	t _{OH}	0	_	ns	
	hold time	Slave			0	_		
	transmissio	Master		t _{TD}	t _{SPcyc} + 2 × t _{Pcyc}	8 × t _{SPcyc} + 2 × t _{Pcyc}	ns	
	n delay time	Slave			4 × t _{Pcyc}	_		
	MOSI and	Output	2.7 V or above	t _{Dr} , t _{Df}	_	10	ns	1
- 1	MISO rise/ fall time		1.8 V or above	1	_	15		
	iaii uiiie	Input		1	_	1	μs	
		Output	2.7 V or above	t _{SSLr} ,	_	10	ns	1
ľ	time	1.8 V or above		t _{SSLf}	_	15	ns]
		Input	•	1	_	1	μs	1
İ	Slave access	time	2.7 V or above	t _{SA}	_	6	t _{Pcyc}	Figure 40.5
			1.8 V or above		_	7	1	Figure 40.5
- 1	Slave output rel	release			_	5	t _{Pcyc}	1
1	time		1.8 V or above	t _{REL}	_	6	1 1	

Note 1. t_{Pcyc}: PCLK cycle

Note 2. N: An integer from 1 to 8 that can be set by the RSPI clock delay register (SPCKD)

Note 3. N: An integer from 1 to 8 that can be set by the RSPI slave select negation delay register (SSLND)

Table 40.35 Timing of On-Chip Peripheral Modules (3)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{Ta} = -40 \text{ to} +105 ^{\circ}\text{C}$

	Item		Symbol	Min.	Max.	Unit*1	Test Conditions
Simple	SCK clock cycle output (master)		t _{SPcyc}	4	65536	t _{Pcyc}	Figure 40.50
SPI	SCK clock cycle input (slave)			6	_	t _{Pcyc}	
	SCK clock high pulse width		t _{SPCKWH}	0.4	0.6	t _{SPcyc}	
	SCK clock low pulse width		t _{SPCKWL}	0.4	0.6	t _{SPcyc}	
	SCK clock rise/fall time		t _{SPCKr} , t _{SPCKf}	_	20	ns	
	Data input setup time (master)	2.7 V or above	t _{SU}	65	_	ns	Figure 40.51,
		1.8 V or above		95	_		Figure 40.52
	Data input setup time (slave)] [40	_			
	Data input hold time	t _H	40	_	ns		
	SSL input setup time	t _{LEAD}	3	_	t _{SPcyc}	1	
	SSL input hold time	t _{LAG}	3	_	t _{SPcyc}	•	
	Data output delay time (master)	t _{OD}	_	40	ns	1	
	Data output delay time (slave)	2.7 V or above		_	65		
		1.8 V or above		_	100		
	Data output hold time (master)	2.7 V or above	t _{OH}	-10	_	ns	1
		1.8 V or above		-20	_		
	Data output hold time (slave)	•		-10	_		
	Data rise/fall time	t _{Dr} , t _{Df}	_	20	ns	1	
	SSL input rise/fall time	t _{SSLr} , t _{SSLf}	_	20	ns		
	Slave access time	Slave access time			6	t _{Pcyc}	Figure 40.53,
	Slave output release time		t _{REL}	_	6	t _{Pcyc}	Figure 40.54

Note 1. t_{Pcyc}: PCLK cycle

Table 40.36 Timing of On-Chip Peripheral Modules (4)

Conditions: $2.7 \text{ V} \le \text{VCC} \le 5.5 \text{ V}$, $2.7 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}$, VSS = AVSS0 = 0 V, $\text{T}_a = -40 \text{ to } +105 ^{\circ}\text{C}$

	Item	Symbol	Min.*1, *2	Max.	Unit	Test Conditions
RIIC	SCL cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 1300	_	ns	Figure 40.55
(Standard mode, SMBus)	SCL high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300	_	ns	
mode, embas)	SCL low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	_	ns	=
	SCL, SDA rise time	t _{Sr}	_	1000	ns	
	SCL, SDA fall time	t _{Sf}	_	300	ns	=
	SCL, SDA spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA bus free time	t _{BUF}	3 (6) × t _{IICcyc} + 300	_	ns	
	START condition hold time	t _{STAH}	t _{IICcyc} + 300	_	ns	
	Repeated START condition setup time	t _{STAS}	1000	_	ns	
	STOP condition setup time	t _{STOS}	1000	_	ns	•
	Data setup time	t _{SDAS}	t _{IICcyc} + 50 —		ns	
	Data hold time	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	C _b	_	400	pF	=
RIIC	SCL cycle time	t _{SCL}	6 (12) × t _{IICcyc} + 600	_	ns	Figure 40.55
(Fast mode)	SCL high pulse width	t _{SCLH}	3 (6) × t _{IICcyc} + 300 —		ns	
	SCL low pulse width	t _{SCLL}	3 (6) × t _{IICcyc} + 300	_	ns	1
	SCL, SDA rise time	t _{Sr}	_	300	ns	=
	SCL, SDA fall time	t _{Sf}	_	300	ns	
	SCL, SDA spike pulse removal time	t _{SP}	0	1 (4) × t _{IICcyc}	ns	
	SDA bus free time	t _{BUF}	3 (6) × t _{IICcyc} + 300	_	ns	=
	START condition hold time	t _{STAH}	t _{IICcyc} + 300	_	ns	
	Repeated START condition setup time	t _{STAS}	300	_	ns	
	STOP condition setup time	t _{STOS}	300	_	ns	
	Data setup time	t _{SDAS}	t _{IICcyc} + 50		ns	
	Data hold time	t _{SDAH}	0		ns	
	SCL, SDA capacitive load	C _b	_	400	pF	

Note: t_{IICcyc}: RIIC internal reference count clock (IICφ) cycle
Note 1. The value in parentheses is used when the ICMR3.NF[1:0] bits are set to 11b while a digital filter is enabled with the ICFER.NFE

Note 2. C_b is the total capacitance of the bus lines.

Table 40.37 Timing of On-Chip Peripheral Modules (5)

Conditions: $2.7 \text{ V} \le \text{VCC} \le 5.5 \text{ V}$, $2.7 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}$, VSS = AVSS0 = 0 V, $\text{T}_a = -40 \text{ to } +105 ^{\circ}\text{C}$

	Item	Symbol	Min.*1	Max.	Unit	Test Conditions
Simple I ² C	SDA rise time	t _{Sr}	_	1000	ns	Figure 40.55
(Standard mode)	SDA fall time	t _{Sf}	_	300	ns	
	SDA spike pulse removal time	t _{SP}	0	4 × t _{Pcyc}	ns	
	Data setup time	t _{SDAS}	250	_	ns	
	Data hold time	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	C _b	_	400	pF	
Simple I ² C	SDA rise time	t _{Sr}	_	300	ns	Figure 40.55
(Fast mode)	SDA fall time	t _{Sf}	_	300	ns	
	SDA spike pulse removal time	t _{SP}	0	4 × t _{Pcyc}	ns	
	Data setup time	t _{SDAS}	100	_	ns	
	Data hold time	t _{SDAH}	0	_	ns	
	SCL, SDA capacitive load	C _b	_	400	pF	

 $\label{eq:Note:total} \begin{array}{ll} \text{Note:} & t_{\text{Pcyc}}\text{: PCLK cycle} \\ \text{Note 1.} & C_b \text{ is the total capacitance of the bus lines.} \end{array}$

Table 40.38 Timing of On-Chip Peripheral Modules (6)

Conditions: $2.4 \text{ V} \le \text{VCC} \le 5.5 \text{ V}$, $2.4 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}$, VSS = AVSS0 = 0 V, $\text{T}_a = -40 \text{ to } +105 ^{\circ}\text{C}$

	Item				Test Conditions
REMC	Increase of the operating clock frequency at a transition to software standby mode	_	1.5	%	REMCON1.CSRC[3:0] = x101b (with the HOCO clock/512
	The period for the change in the operating clock frequency at a transition to software standby mode	_	400	μs	selected) HOFCR.HOFXIN = 1 (when the HOCO oscillation is set to be continued)

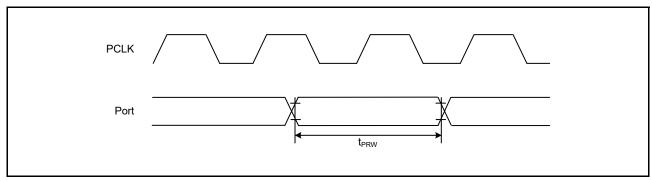


Figure 40.41 I/O Port Input Timing

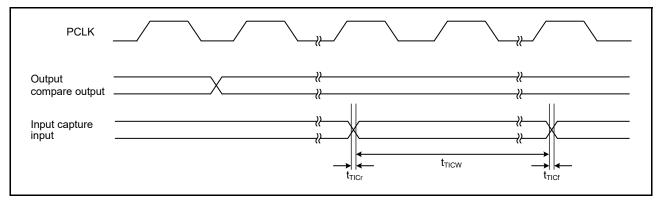


Figure 40.42 MTU2 Input/Output Timing

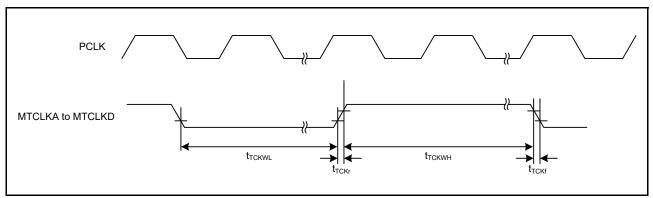


Figure 40.43 MTU2 Clock Input Timing

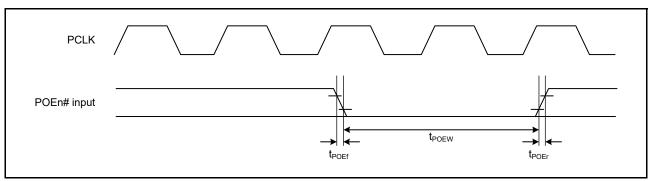


Figure 40.44 POE# Input Timing

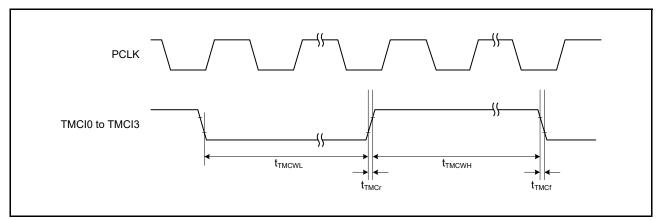


Figure 40.45 TMR Clock Input Timing

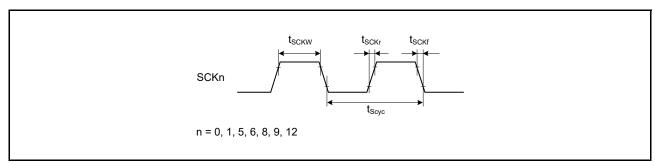


Figure 40.46 SCK Clock Input Timing

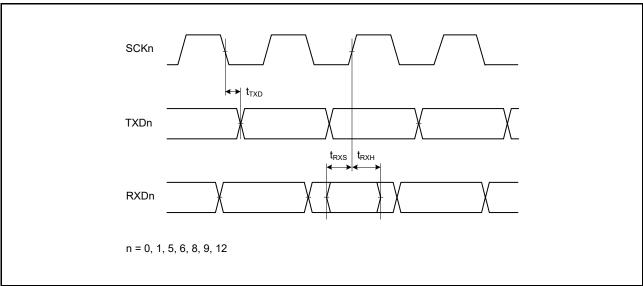


Figure 40.47 SCI Input/Output Timing: Clock Synchronous Mode

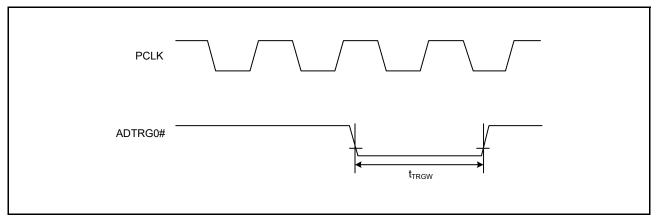


Figure 40.48 A/D Converter External Trigger Input Timing

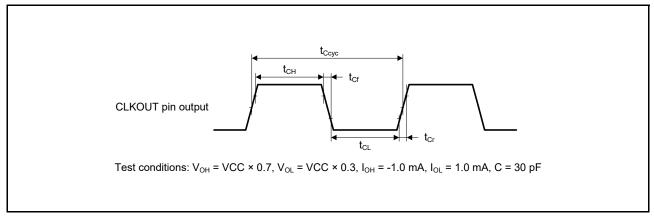


Figure 40.49 CLKOUT Output Timing

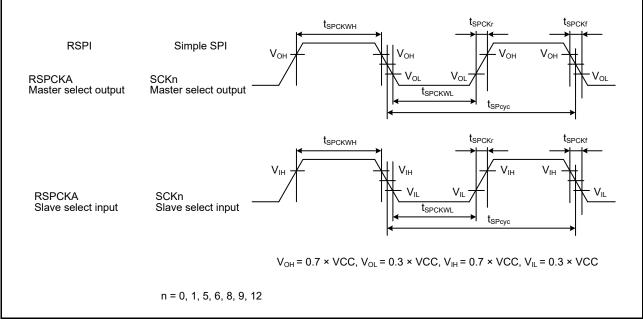


Figure 40.50 RSPI Clock Timing and Simple SPI Clock Timing

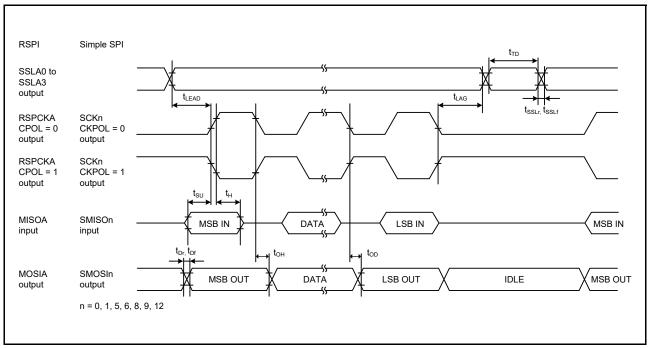


Figure 40.51 RSPI Timing (Master, CPHA = 0) and Simple SPI Clock Timing (Master, CKPH = 1)

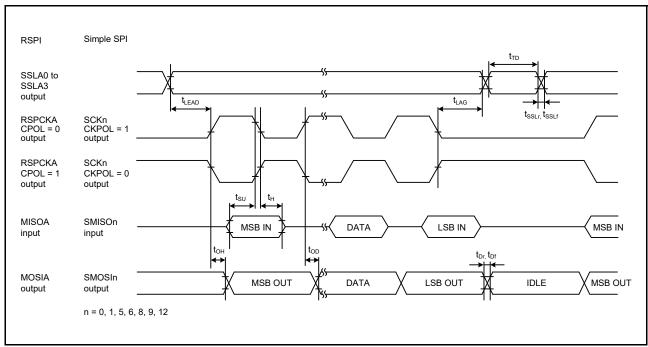


Figure 40.52 RSPI Timing (Master, CPHA = 1) and Simple SPI Clock Timing (Master, CKPH = 0)

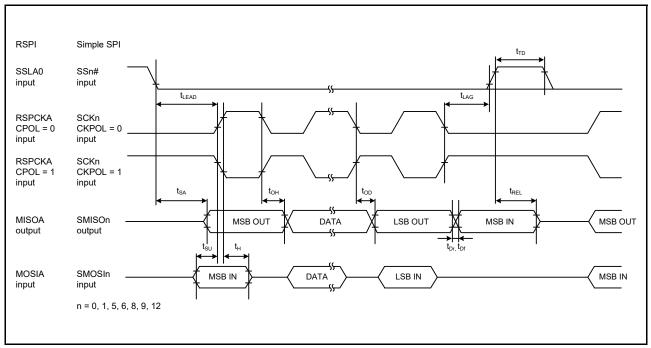


Figure 40.53 RSPI Timing (Slave, CPHA = 0) and Simple SPI Clock Timing (Slave, CKPH = 1)

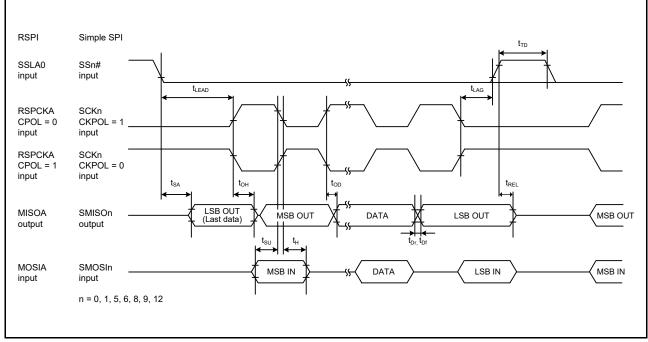


Figure 40.54 RSPI Timing (Slave, CPHA = 1) and Simple SPI Clock Timing (Slave, CKPH = 0)

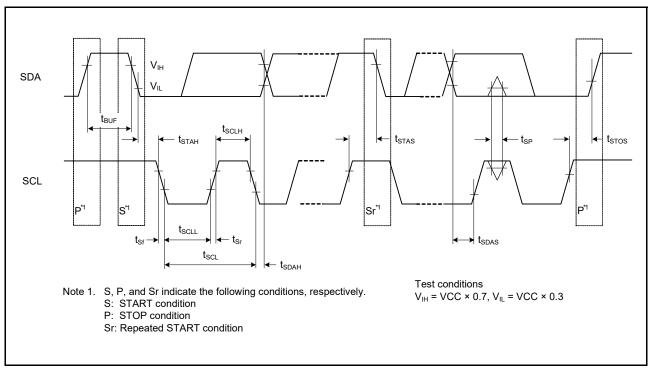


Figure 40.55 RIIC Bus Interface Input/Output Timing and Simple I²C Bus Interface Input/Output Timing

40.4 A/D Conversion Characteristics

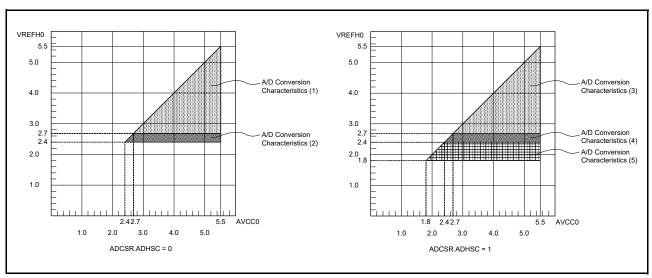


Figure 40.56 AVCC0 to VREFH0 Voltage Range

Table 40.39 A/D Conversion Characteristics (1)

Conditions: $2.7 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{VREFH0} \le \text{AVCC0}, \text{ Reference voltage} = \text{VREFH0}, \text{VSS} = \text{AVSS0} = \text{VREFL0} = 0 \text{ V}, \text{T}_{a} = -40 \text{ to } +105 ^{\circ}\text{C}$

Item	1	Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	_	32	MHz	
Resolution		_	_	12	Bit	
Conversion time*1 (Operation at PCLKD = 32 MHz)	Permissible signal source impedance (Max.) = $0.3 \text{ k}\Omega$	1.41	_	_	μs	High-precision channel ADCSR.ADHSC bit = 0 ADSSTRn = 0Dh
		2.25	_	_	μs	Normal-precision channel ADCSR.ADHSC bit = 0 ADSSTRn = 28h
Analog input capacitance	Cs	_	_	15	pF	Pin capacitance included
Analog input resistance	Rs	_	_	2.5	kΩ	
Analog input effective range	ge	0	_	VREFH0	V	
Offset error		_	±0.5	±4.5	LSB	High-precision channel
				±6.0	LSB	Other than above
Full-scale error		_	±0.75	±4.5	LSB	High-precision channel
				±6.0	LSB	Other than above
Quantization error		_	± 0.5	_	LSB	
Absolute accuracy	Absolute accuracy		±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential nonlineari	ty error	_	±1.0	_	LSB	
INL integral nonlinearity e	rror	_	±1.0	±3.0	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Note 1. The conversion time is the sum of the sampling time and the comparison time. As the test conditions, the number of sampling states is indicated.

Table 40.40 A/D Conversion Characteristics (2)

Conditions: $2.4 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{VREFH0} \le \text{AVCC0}, \text{ Reference voltage} = \text{VREFH0}, \text{VSS} = \text{AVSS0} = \text{VREFL0} = 0 \text{ V}, \text{T}_{a} = -40 \text{ to } +105 ^{\circ}\text{C}$

	Item	Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	_	16	MHz	
Resolution	Resolution		_	12	Bit	
Conversion time*1 (Operation at PCLKD = 16 MHz)	Permissible signal source impedance (Max.) = 1.3 kΩ	2.82	_	_	μs	High-precision channel ADCSR.ADHSC bit = 0 ADSSTRn = 0Dh
		4.5	_	_	μs	Normal-precision channel ADCSR.ADHSC bit = 0 ADSSTRn = 28h
Analog input capacitance	Cs	_	_	15	pF	Pin capacitance included
Analog input resistance	Rs	_	_	2.5	kΩ	
Analog input effective	range	0	_	VREFH0	V	
Offset error		_	±0.5	±4.5	LSB	
Full-scale error		_	±0.75	±4.5	LSB	
Quantization error		_	±0.5	_	LSB	
Absolute accuracy		_	±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential nonlinearity error		_	±1.0	_	LSB	
INL integral nonlinear	ity error	_	±1.0	±4.5	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Table 40.41 A/D Conversion Characteristics (3)

Conditions: $2.7 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, 2.7 \text{ V} \le \text{VREFH0} \le \text{AVCC0}, \text{ Reference voltage} = \text{VREFH0}, \text{VSS} = \text{AVSS0} = \text{VREFL0} = 0 \text{ V}, \text{Ta} = -40 \text{ to} +105 ^{\circ}\text{C}$

	Item	Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	_	27	MHz	
Resolution		_	_	12	Bit	
Conversion time*1 (Operation at PCLKD = 27 MHz)	Permissible signal source impedance (Max.) = 1.1 k Ω	2	_	_	μs	High-precision channel ADCSR.ADHSC bit = 1 ADSSTRn = 0Dh
		3	_	_		Normal-precision channel ADCSR.ADHSC bit = 1 ADSSTRn = 28h
Analog input capacitance	Cs	_	_	15	pF	Pin capacitance included
Analog input resistance	Rs	_	_	2.5	kΩ	
Analog input effective	range	0	_	VREFH0	V	
Offset error		_	±0.5	±4.5	LSB	
Full-scale error		_	±0.75	±4.5	LSB	
Quantization error		_	±0.5	_	LSB	
Absolute accuracy		_	±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential nonlin	nearity error	_	±1.0	_	LSB	
INL integral nonlinear	ity error	_	±1.0	±3.0	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Table 40.42 A/D Conversion Characteristics (4)

Conditions: $2.4 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{VREFH0} \le \text{AVCC0}, \text{ Reference voltage} = \text{VREFH0}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{Ta} = -40 \text{ to} +105 ^{\circ}\text{C}$

	Item	Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	_	16	MHz	
Resolution		_	_	12	Bit	
Conversion time*1 (Operation at PCLKD = 16 MHz)	Permissible signal source impedance (Max.) = 2.2 kΩ	3.38	_	_	μs	High-precision channel ADCSR.ADHSC bit = 1 ADSSTRn = 0Dh
		5.06	_	_		Normal-precision channel ADCSR.ADHSC bit = 1 ADSSTRn = 28h
Analog input capacitance	Cs	_	_	15	pF	Pin capacitance included
Analog input resistance	Rs	_	_	2.5	kΩ	
Analog input effective	range	0	_	VREFH0	V	
Offset error		_	±0.5	±4.5	LSB	
Full-scale error		_	±0.75	±4.5	LSB	
Quantization error		_	±0.5	_	LSB	
Absolute accuracy		_	±1.25	±5.0	LSB	High-precision channel
				±8.0	LSB	Other than above
DNL differential nonlinearity error		_	±1.0	_	LSB	
INL integral nonlinear	ity error	_	±1.0	±3.0	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Table 40.43 A/D Conversion Characteristics (5)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, 1.8 \text{ V} \le \text{VREFH0} \le \text{AVCC0},$ Reference voltage = VREFH0, VSS = AVSS0 = VREFL0 = 0 V, Ta = -40 to +105°C

-	Item	Min.	Тур.	Max.	Unit	Test Conditions
Frequency		1	_	8	MHz	
Resolution		_	_	12	Bit	
Conversion time*1 (Operation at PCLKD = 8 MHz)	Permissible signal source impedance (Max.) = 5 kΩ	edance kΩ		μs	High-precision channel ADCSR.ADHSC bit = 1 ADSSTRn = 0Dh	
		10.13	_	_		Normal-precision channel ADCSR.ADHSC bit = 1 ADSSTRn = 28h
Analog input capacitance	Cs	_	_	15	pF	Pin capacitance included
Analog input resistance	Rs	_	_	2.5	kΩ	
Analog input effective	range	0	_	VREFH0	V	
Offset error		_	±1.0	±7.5	LSB	
Full-scale error		_	±1.5	±7.5	LSB	
Quantization error		_	±0.5	_	LSB	
Absolute accuracy		_	±3.0	±8.0	LSB	
DNL differential nonlinearity error		_	±1.0	_	LSB	
INL integral nonlinear	ity error	_	±1.25	±3.0	LSB	

Note: The characteristics apply when no pin functions other than A/D converter input are used. Absolute accuracy includes quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do not include quantization errors.

Table 40.44 A/D Converter Channel Classification

Classification	Channel	Conditions	Remarks			
High-precision channel	AN000 to AN007	AVCC0 = 1.8 to 5.5 V	Pins AN000 to AN007 cannot be used as digital			
Normal-precision channel	AN016 to AN031		outputs when the A/D converter is in use.			
Internal reference voltage input channel	Internal reference voltage	AVCC0 = 2.0 to 5.5 V				
Temperature sensor input channel	Temperature sensor output	AVCC0 = 2.0 to 5.5 V				

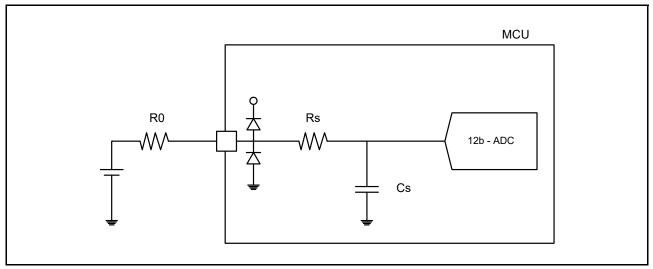


Figure 40.57 Equivalent Circuit

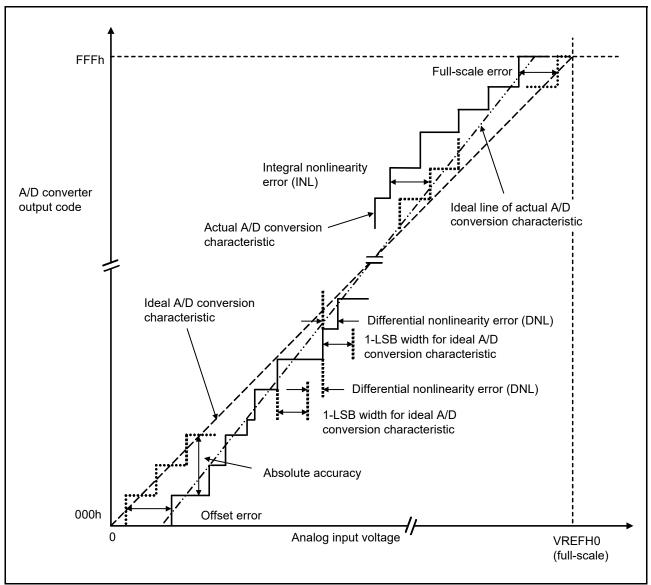


Figure 40.58 Illustration of A/D Converter Characteristic Terms

Absolute accuracy

Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog input voltage (1-LSB width), that can meet the expectation of outputting an equal code based on the theoretical A/D conversion characteristics, is used as an analog input voltage. For example, if 12-bit resolution is used and if reference voltage (VREFH0 = 3.072 V), then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, 1.5 mV, ... are used as analog input voltages.

If analog input voltage is 6 mV, absolute accuracy = ± 5 LSB means that the actual A/D conversion result is in the range of 003h to 00Dh though an output code, 008h, can be expected from the theoretical A/D conversion characteristics.

Integral nonlinearity error (INL)

Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale errors are zeroed, and the actual output code.

Differential nonlinearity error (DNL)

Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics and the width of the actual output code.

Offset error

Offset error is the difference between a transition point of the ideal first output code and the actual first output code.

Full-scale error

Full-scale error is the difference between a transition point of the ideal last output code and the actual last output code.

40.5 D/A Conversion Characteristics

Table 40.45 D/A Conversion Characteristics (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} \le 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V},$

 $T_a = -40 \text{ to } +105^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions	
Resolution		_	_	_	8	Bit		
Conversion	VCC=2.7 to 5.5 V	t _{DCONV}	_	_	3.0	μs	35-pF capacitive load	
time	VCC=1.8 to 2.7 V		_	_	6.0			
Absolute	VCC=2.4 to 5.5 V	_	_	_	±3.0	LSB	2-MΩ resistive load	
accuracy	VCC=1.8 to 2.4 V	_	_	_	±3.5			
	VCC=2.4 to 5.5 V	_	_	_	±2.0	LSB	4-MΩ resistive load	
	VCC=1.8 to 2.4 V	_	_	_	±2.5			
RO output res	sistance			6.4	_	kΩ		

40.6 Temperature Sensor Characteristics

Table 40.46 Temperature Sensor Characteristics

Conditions: $2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}$, $2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}$, VSS = AVSS0 = 0 V, $\text{T}_a = -40 \text{ to } +105 ^{\circ}\text{C}$

•		•		, u		
Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Relative accuracy	_	_	±1.5	_	°C	2.4 V or above
		_	±2.0	_		Below 2.4 V
Temperature slope	_	_	-3.65	_	mV/°C	
Output voltage (25°C)	_	_	1.05	_	V	VCC = 3.3 V
Temperature sensor start time	t _{START}	_	_	5	μs	
Sampling time	_	5	_	_	μs	

Comparator Characteristics 40.7

Comparator Characteristics Table 40.47

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} \le 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{T}_a = -40 \text{ to}$ +105°C

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
CVREFB0 to CVR voltage	CVREFB0 to CVREFB1 input reference voltage		0	_	VCC – 1.4	V	
CMPB0 to CMPB1 input voltage		VI	-0.3	_	VCC + 0.3	V	
Offset	Comparator high-speed mode	_	_	_	50	mV	
	Comparator high-speed mode Window function enabled	_	_	_	60	mV	
	Comparator low-speed mode	_	_	_	40	mV	
Comparator output delay time	Comparator high-speed mode	Td	_	_	1.2	μs	VCC = 3 V, input slew rate ≥ 50 mV/µs
	Comparator high-speed mode Window function enabled	Tdw	_	_	2.0	μs	
	Comparator low-speed mode	Td	_	_	5.0	μs	
High-side reference voltage (comparator high-speed mode, window function enabled)		VRFH	_	VCC × 0.76	_	V	
Low-side reference voltage (comparator high-speed mode, window function enabled)		VRFL	_	VCC × 0.24	_	V	
Operation stabiliza	ation wait time	Tcmp	100	_	_	μs	

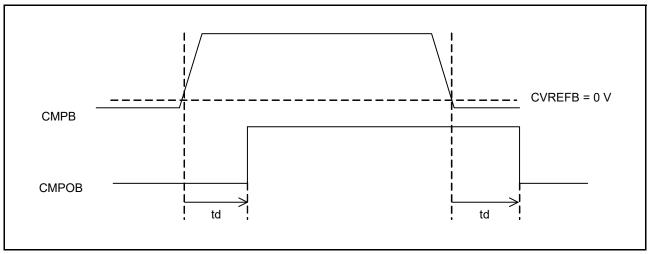


Figure 40.59 Comparator Output Delay Time in Comparator High-Speed Mode and Low-Speed Mode

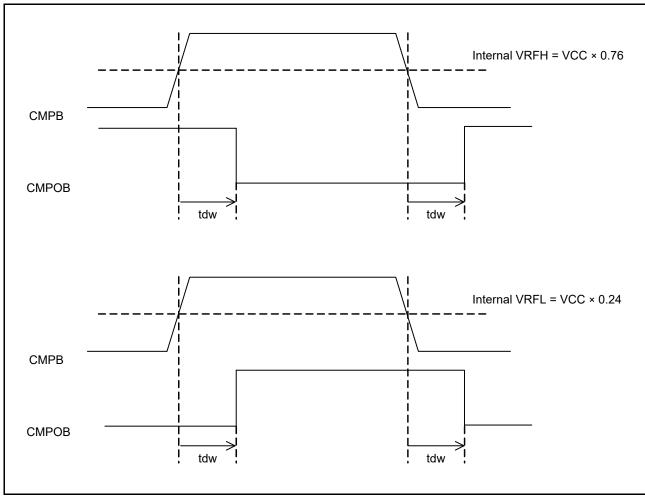


Figure 40.60 Comparator Output Delay Time in High-Speed Mode with Window Function Enabled

40.8 CTSU Characteristics

Table 40.48 CTSU Characteristics

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to}$

+105°C

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
External capacitano	e connected to TSCAP pin	C_{tscap}	9	10	11	nF	
TS pin capacitive load		C _{base}	_	_	50	pF	
Permissible output high/low current P12 to P17, P20 to P27, P30 to P35, P50 to P55, PB1 to PB7, PC0 to PC7, PH0 to PH3	ΣΙ _{ΟΗ} +ΣΙ _{ΟL}	_	_	24	mA	When VXSEL = 0	
	PA0 to PA6, PB0, PD0 to PD2, PE0 to PE5		_	_	16	mA	[Products with 128 Kbytes of flash memory or less (except for 100-pin packages] When VXSEL = 0
	PA0 to PA7, PB0, PD0 to PD7, PE0 to PE7		_	_	12	mA	[Products with at least 256 Kbytes of flash memory or 100-pin packages] When VXSEL = 0

40.9 Power-On Reset Circuit and Voltage Detection Circuit Characteristics

Table 40.49 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{T}_{a} = -40 \text{ to} +105 ^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Voltage detection	Power-on reset (POR)	V _{POR}	1.35	1.50	1.65	V	Figure 40.61, Figure 40.62
level	Voltage detection circuit	V _{det0_0}	3.67	3.84	3.97	V	Figure 40.63
	(LVD0)*1	V _{det0_1}	2.70	2.82	3.00		At falling edge VCC
		V _{det0_2}	2.37	2.51	2.67		
		V _{det0_3}	1.80	1.90	1.99		
	Voltage detection circuit	V _{det1_0}	4.12	4.29	4.42	V	Figure 40.64
(LV	(LVD1)*2	V _{det1_1}	3.98	4.14	4.28		At falling edge VCC
		V _{det1_2}	3.86	4.02	4.16		
		V _{det1_3}	3.68	3.84	3.98		
		V _{det1_4}	2.99	3.10	3.29		
		V _{det1_5}	2.89	3.00	3.19		
		V _{det1_6}	2.79	2.90	3.09		
		V _{det1_7}	2.68	2.79	2.98		
		V _{det1_8}	2.57	2.68	2.87		
		V _{det1_9}	2.47	2.58	2.67		
		V _{det1_A}	2.37	2.48	2.57		
		V _{det1_B}	2.10	2.20	2.30		
		V _{det1_C}	1.86	1.96	2.06		
		V _{det1_D}	1.80	1.86	1.96		

Table 40.49 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (1)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{ T}_{a} = -40 \text{ to}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Voltage detection level Voltage detection circuit (LVD2)*3	Voltage detection circuit	V _{det2_0} *4	4.08	4.29	4.48	V	Figure 40.65
	V _{det2_1}	3.95	4.14	4.35		At falling edge VCC	
		V _{det2_2}	3.82	4.02	4.22		
		V _{det2_3}	3.62	3.84	4.02		

Note: These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD2), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.

- Note 1. n in the symbol Vdet0_n denotes the value of the LVDS1[1:0] bits.
- Note 2. n in the symbol Vdet1_n denotes the value of the LVDLVLR.LVD1LVL[3:0] bits.
- Note 3. n in the symbol Vdet2_n denotes the value of the LVDLVLR.LVD2LVL[1:0] bits.
- Note 4. Vdet2_0 selection can be used only when the CMPA2 pin input voltage is selected, and cannot be used when the power supply voltage (VCC) is selected.

Table 40.50 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (2)

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{T}_a = -40 \text{ to} +105 ^{\circ}\text{C}$

	Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Wait time after	At normal startup*1	t _{POR}	_	9.1	_	ms	Figure 40.62
power-on reset cancellation	During fast startup time*2	t _{POR}	_	1.6	_		
Wait time after voltage monitoring 0 reset cancellation	Power-on voltage monitoring 0 reset disabled*1	t _{LVD0}	_	568	_	μs	Figure 40.63
	Power-on voltage monitoring 0 reset enabled*2		_	100	_		
Wait time after voltage monitoring 1 reset cancellation		t _{LVD1}	_	100	_	μs	Figure 40.64
Wait time after voltage monitoring 2 reset cancellation		t _{LVD2}	_	100	_	μs	Figure 40.65
Response delay time	Response delay time		_	_	350	μs	Figure 40.61
Minimum VCC down t	ime*3	t _{VOFF}	350	_	_	μs	Figure 40.61, VCC = 1.0 V or above
Power-on reset enable	e time	t _{W(POR)}	1	_	_	ms	Figure 40.62, VCC = below 1.0 V
LVD operation stabilizenabled)	ation time (after LVD is	t _{d(E-A)}	_	_	300	μs	Figure 40.64, Figure 40.65
Hysteresis width (pow	er-on rest (POR))	V_{PORH}	_	110	_	mV	
Hysteresis width (LVD	0, LVD1, and LVD2)	V_{LVH}	_	70	_	mV	Vdet0_0 to Vdet0_3 selected
			_	70	_		Vdet1_0 to Vdet1_4 selected
			_	60	_		Vdet1_5 to 9 selected
			_	50	_		Vdet1_A to B selected
			_	40	_		Vdet1_C to D selected
			_	60	_		LVD2 selected

Note: These characteristics apply when noise is not superimposed on the power supply. When a setting is made so that the voltage detection level overlaps with that of the voltage detection circuit (LVD1), it cannot be specified which of LVD1 and LVD2 is used for voltage detection.

- Note 1. When OFS1.(LVDAS, FASTSTUP) = 11b.
- Note 2. When OFS1 (LVDAS, FASTSTUP) ≠ 11b.
- Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels V_{POR} , V_{det0} , V_{det1} , and V_{det2} for the POR/LVD.

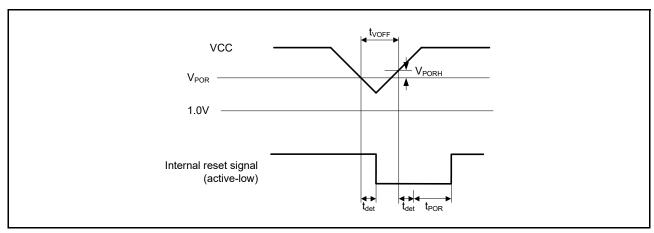


Figure 40.61 Voltage Detection Reset Timing

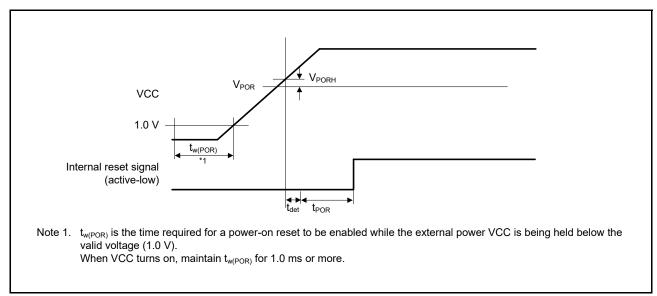


Figure 40.62 Power-On Reset Timing

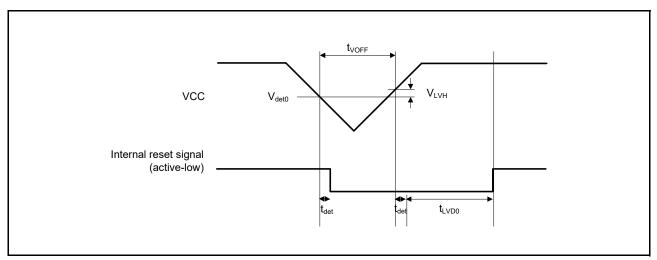


Figure 40.63 Voltage Detection Circuit Timing (V_{det0})

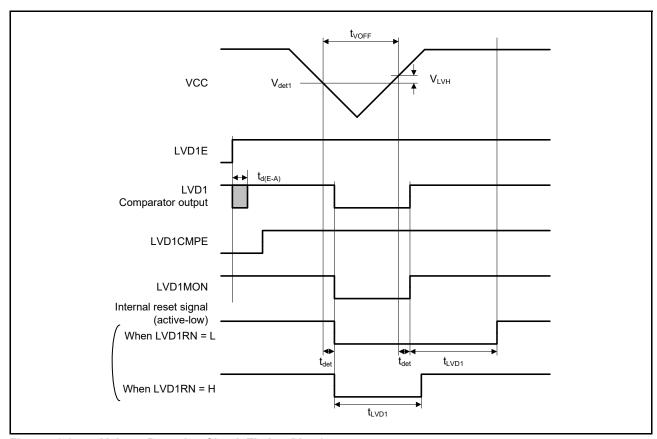


Figure 40.64 Voltage Detection Circuit Timing (V_{det1})

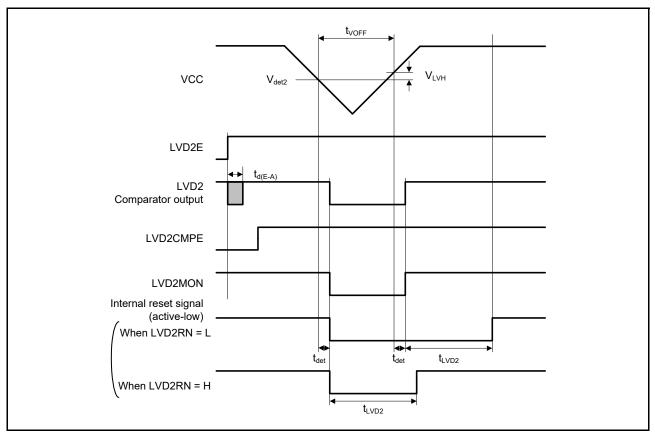


Figure 40.65 Voltage Detection Circuit Timing (V_{det2})

40.10 Oscillation Stop Detection Timing

Table 40.51 Oscillation Stop Detection Timing

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}, \text{T}_a = -40 \text{ to} +105 ^{\circ}\text{C}$

Item	Symbol	Min.	Тур.	Max.	Unit	Test Conditions
Detection time	t _{dr}	_	_	1	ms	Figure 40.66

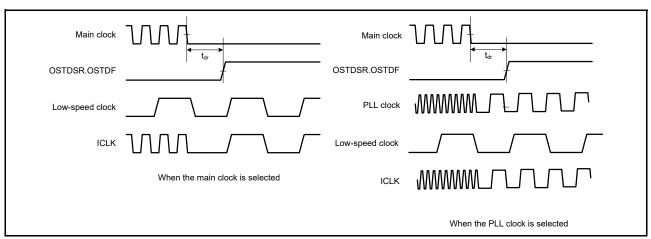


Figure 40.66 Oscillation Stop Detection Timing

40.11 ROM (Flash Memory for Code Storage) Characteristics

Table 40.52 ROM (Flash Memory for Code Storage) Characteristics (1)

	Item	Symbol	Min.	Тур.	Max.	Unit	Conditions
Reprogramming/erasure cycle*1		N _{PEC}	1000	_	_	Times	
Data retention	After 1000 times of N _{PEC}	t _{DRP}	20*2, *3	_	_	Year	T _a = +85°C

Note 1. Definition of reprogram/erase cycle: The reprogram/erase cycle is the number of erasing for each block. When the reprogram/erase cycle is n times (n = 1000), erasing can be performed n times for each block. For instance, when 4-byte programming is performed 256 times for different addresses in 1-Kbyte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited).

Note 2. Characteristic when using the flash memory programmer and the self-programming library provided from Renesas Electronics.

Note 3. This result is obtained from reliability testing.

Table 40.53 ROM (Flash Memory for Code Storage) Characteristics (2) High-Speed Operating Mode

Conditions: 2.7 V ≤ VCC ≤ 5.5 V, 2.7 V ≤ AVCC0 ≤ 5.5 V, VSS = AVSS0 = 0 V

Temperature range for the programming/erasure operation: $T_a = -40$ to +105°C

ltem		Symbol	F	CLK = 1 MH	lz	F	Unit		
		Syllibol	Min.	Тур.	Max.	Min.	Тур.	Max.	Offic
Programming time	4-byte	t _{P4}	_	103	931	_	52	489	μs
Erasure time	1-Kbyte	t _{E1K}	_	8.23	267	_	5.48	214	ms
	256-Kbyte	t _{E256K}	_	407	928	_	39	457	ms
Blank check time	4-byte	t _{BC4}	_	_	48	_	_	15.9	μs
	1-Kbyte	t _{BC1K}	_	_	1.58	_	_	0.127	ms
Erase operation forcible	Erase operation forcible stop time		_	_	21.6	_	_	12.8	μs
Start-up area switching setting time		t _{SAS}	_	12.6	543	_	6.16	432	ms
Access window setting time		t _{AWS}	_	12.6	543	_	6.16	432	ms
ROM mode transition wait time 1		t _{DIS}	2	_	_	2	_	_	μs
ROM mode transition wait time 2		t _{MS}	5	_	_	5	_	_	μs

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.

Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below

4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of FCLK should be ±3.5%.

Table 40.54 ROM (Flash Memory for Code Storage) Characteristics (3) Middle-Speed Operating Mode

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}$

Temperature range for the programming/erasure operation: $T_a = -40$ to +85°C

Item		Symbol	F	CLK = 1 MH	lz	F	Unit		
		Syllibol	Min.	Тур.	Max.	Min.	Тур.	Max.	Offic
Programming time	4-byte	t _{P4}	_	143	1330	_	96.8	932	μs
Erasure time	1-Kbyte	t _{E1K}	_	8.3	269	_	5.85	219	ms
	256-Kbyte	t _{E256K}	_	407	928	_	93	520	ms
Blank check time	4-byte	t _{BC4}	_	_	78	_	_	50	μs
	1-Kbyte	t _{BC1K}	_	_	1.61	_	_	0.369	ms
Erase operation forcible stop time		t _{SED}	_	_	33.6	_	_	25.6	μs
Start-up area switching setting time		t _{SAS}	_	13.2	549	_	7.6	445	ms
Access window setting time		t _{AWS}	_	13.2	549	_	7.6	445	ms
ROM mode transition wait time 1		t _{DIS}	2	_	_	2	_	_	μs
ROM mode transition wait time 2		t _{MS}	3	_	_	3	_	_	μs

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.

Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below

4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of FCLK should be ±3.5%.

40.12 E2 DataFlash Characteristics (Flash Memory for Data Storage)

Table 40.55 E2 DataFlash Characteristics (1)

Item		Symbol	Min.	Тур.	Max.	Unit	Conditions
Reprogramming/erasure cycle*1		N _{DPEC}	100000	1000000	_	Times	
Data retention	After 10000 times of N _{DPEC}	t _{DDRP}	20*2, *3	_	_	Year	T _a = +85°C
After 100000 times of N _{DPEC}			5*2, *3	_	_	Year	
	After 1000000 times of N _{DPEC}		_	1*2, *3	_	Year	T _a = +25°C

Note 1. The reprogram/erase cycle is the number of erasing for each block. When the reprogram/erase cycle is n times (n = 100000), erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1000 times for different addresses in 1-Kbyte block and then the entire block is erased, the reprogram/erase cycle is counted as one. However, programming the same address for several times as one erasing is not enabled (overwriting is prohibited).

Note 2. Characteristic when using the flash memory programmer and the self-programming library provided from Renesas Electronics.

Note 3. These results are obtained from reliability testing.

Table 40.56 E2 DataFlash Characteristics (2): high-speed operating mode

Conditions: $2.7 \text{ V} \le \text{VCC} \le 5.5 \text{ V}$, $2.7 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}$, VSS = AVSS0 = 0 VTemperature range for the programming/erasure operation: $T_a = -40 \text{ to } +105^{\circ}\text{C}$

Item		Symbol	FCL	< = 1 MHz		FCLK	Unit		
		Syllibol	Min.	Тур.	Max.	Min.	Тур.	Max.	Offile
Programming time	1-byte	t _{DP1}	_	86	761	_	40.5	374	μs
Erasure time	1-Kbyte	t _{DE1K}	_	17.4	456	_	6.15	228	ms
	8-Kbyte	t _{DE8K}	_	60.4	499	_	9.3	231	ms
Blank check time	1-byte	t _{DBC1}	_	_	48	_	_	15.9	μs
	1-Kbyte	t _{DBC1K}	_	_	1.58	_	_	0.127	μs
Erase operation forcible stop time		t _{DSED}	_	_	21.5	_	_	12.8	μs
DataFlash STOP recovery time		t _{DSTOP}	5.0		_	5	_		μs

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.

Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below

4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of FCLK should be ±3.5%.

Table 40.57 E2 DataFlash Characteristics (3): middle-speed operating mode

Conditions: $1.8 \text{ V} \le \text{VCC} = \text{AVCC0} < 2.0 \text{ V}, 2.0 \text{ V} \le \text{VCC} \le 5.5 \text{ V}, 2.0 \text{ V} \le \text{AVCC0} \le 5.5 \text{ V}, \text{VSS} = \text{AVSS0} = 0 \text{ V}$

Temperature range for the programming/erasure operation: $T_a = -40$ to +85°C

Item		Symbol	FCL	< = 1 MHz		FCL	Unit		
		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Offic
Programming time	1-byte	t _{DP1}	_	126	1160	_	85.4	818	μs
Erasure time	1-Kbyte	t _{DE1K}	_	17.5	457	_	7.76	259	ms
	8-Kbyte	t _{DE8K}	_	60.5	500	_	4.2	66.9	ms
Blank check time	1-byte	t _{DBC1}	_	_	78	_	_	50	μs
	1-Kbyte	t _{DBC1K}	_	_	1.61	_	_	0.369	ms
Erase operation forcible stop time		t _{DSED}	_	_	33.5	_	_	25.5	μs
DataFlash STOP recovery time		t _{DSTOP}	720	_	_	720	_	_	ns

Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.

Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing of the flash memory. When using FCLK at below

4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.

Note: The frequency accuracy of FCLK should be ±3.5%.

40.13 Usage Notes

40.13.1 Connecting VCL Capacitor and Bypass Capacitors

This MCU integrates an internal voltage-down circuit, which is used for lowering the power supply voltage in the internal MCU to adjust automatically to the optimum level. A 4.7-µF capacitor needs to be connected between this internal voltage-down power supply (VCL pin) and VSS pin. Figure 40.67 to Figure 40.70 shows how to connect external capacitors. Place an external capacitor close to the pins. Do not apply the power supply voltage to the VCL pin. Insert a multilayer ceramic capacitor as a bypass capacitor between each pair of the power supply pins. Implement a bypass capacitor to the MCU power supply pins as close as possible. Use a recommended value of 0.1 µF as the capacitance of the capacitors. For the capacitors related to crystal oscillation, see section 9, Clock Generation Circuit. For the capacitors related to analog modules, also see section 33, 12-Bit A/D Converter (S12ADE). For notes on designing the printed circuit board, see the descriptions of the application note "Hardware Design Guide" (R01AN1411EJ). The latest version can be downloaded from Renesas Electronics Website.

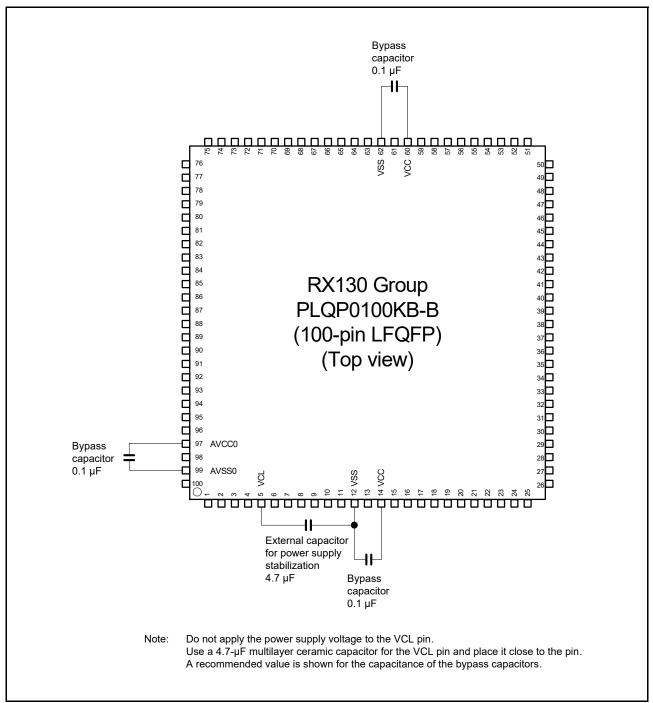


Figure 40.67 Connecting Capacitors (100 Pins)

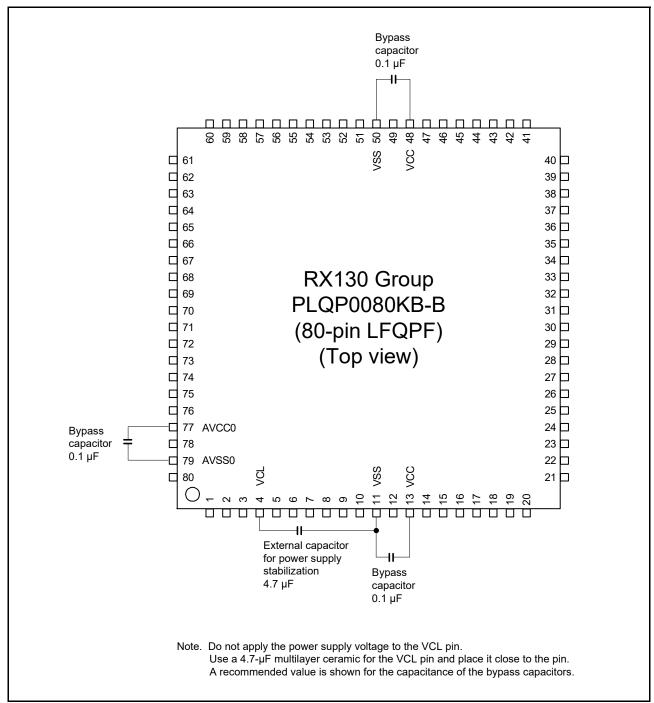


Figure 40.68 Connecting Capacitors (80 Pins)

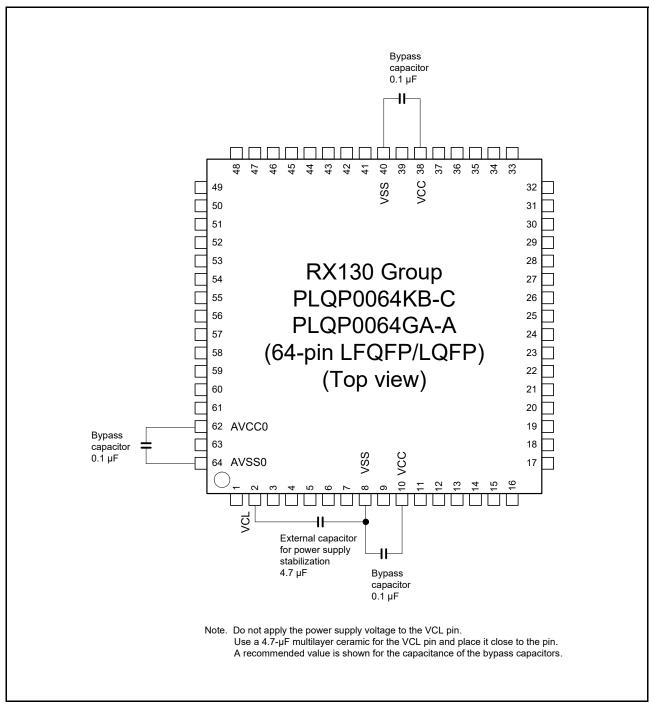


Figure 40.69 Connecting Capacitors (64 Pins)

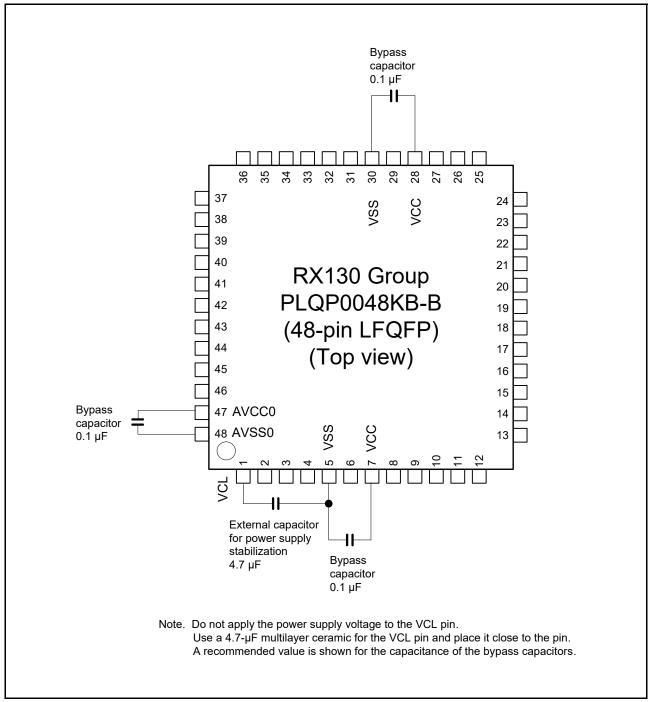


Figure 40.70 Connecting Capacitors (48 Pins)

Appendix 1. Port States in Each Processing Mode

Table 1.1 Port States in Each Processing Mode (1/2)

Port Name (Pin Name)	Reset	Software Standby Mode		
P03 (DA0)	Hi-Z	DA0 output (DA0E0 = 1)	DA output retained	
		Other than the above (DAOE0 = 0)	Keep-O	
P05 (DA1)	Hi-Z	DA1 output (DAOE1 = 1)	DA output retained	
		Other than the above (DAOE0 = 0)	Keep-O	
P04, P06, P07	Hi-Z		Keep-O	
P12 (IRQ2)	Hi-Z	1	Keep-O*1	
P13 (IRQ3)	Hi-Z	1	Keep-O*1	
P14 (IRQ4)	Hi-Z		Keep-O*1	
P15 (IRQ5)	Hi-Z		Keep-O*1	
P16 (IRQ6/RTCOUT)	Hi-Z	RTCOUT output	RTCOUT output	
		Other than the above	Keep-O*1	
P17 (IRQ7)	Hi-Z		Keep-O*1	
P20 to P27	Hi-Z		Keep-O	
P30 (IRQ0)	Hi-Z		Keep-O*1	
P31 (IRQ1)	Hi-Z		Keep-O*1	
P32 (IRQ2/RTCOUT)	Hi-Z	RTCOUT output	RTCOUT output	
		Other than the above	Keep-O*1	
P33 (IRQ3)	Hi-Z		Keep-O*1	
P34 (IRQ4)	Hi-Z	1	Keep-O* ¹	
P35 (NMI)	Hi-Z		Keep*1	
P36, P37	Hi-Z		Keep-O	
P40 to P47	Hi-Z		Keep-O	
P50, P53 to P55	Hi-Z		Keep-O	
P51(PMC0)	Hi-Z	-	Keep-O* ²	
P52(PMC1)	Hi-Z	-	Keep-O* ²	
PA0, PA1, PA2	Hi-Z		Keep-O	
PA3 (IRQ6)	Hi-Z	I	Keep-O*1	
PA4 (IRQ5)	Hi-Z	I	Keep-O*1	
PA5 to PA7	Hi-Z		Keep-O	
PB0	Hi-Z		Keep-O	
PB1 (IRQ4/CMPOB1)	Hi-Z	CMPOB1 output	CMPOB1 output	
		Other than the above	Keep-O*1	
PB2 to PB7	Hi-Z		Keep-O	
PC0 to PC7	Hi-Z		Keep-O	
PD0 (IRQ0)	Hi-Z		Keep-O*1	
PD1 (IRQ1)	Hi-Z		Keep-O*1	
PD2 (IRQ2)	Hi-Z		Keep-O*1	
PD3 (IRQ3)	Hi-Z		Keep-O*1	
PD4 (IRQ4)	Hi-Z		Keep-O*1	
PD5 (IRQ5)	Hi-Z		Keep-O*1	
PD6 (IRQ6)	Hi-Z		Keep-O*1	
PD7 (IRQ7)	Hi-Z		Keep-O*1	
PE0, PE1	Hi-Z		Keep-O	

Table 1.1 Port States in Each Processing Mode (2/2)

Port Name (Pin Name)	Reset	Software Standby Mode	
PE2 (IRQ7)	Hi-Z		Keep-O*1
PE3, PE4 (CLKOUT)	Hi-Z	CLKOUT output	CLKOUT output
		Other than the above	Keep-O
PE5 (IRQ5/CMPOB0)	Hi-Z	CMPOB0 output	CMPOB0 output
		Other than the above	Keep-O
PE6 (IRQ6)	Hi-Z		Keep-O*1
PE7 (IRQ7)	Hi-Z		Keep-O*1
PH0	Hi-Z		Keep-O
PH1 (IRQ0)	Hi-Z		Keep-O*1
PH2 (IRQ1)	Hi-Z		Keep-O*1
PH3	Hi-Z		Keep-O
PJ1, PJ3, PJ6, PJ7	Hi-Z		Keep-O

Keep-O: Output pins retain their previous values, and input pins become high-impedance.

Hi-Z: High-impedance

Input is enabled if the pin is specified as the software standby mode canceling source while it is used as an external interrupt pin. Input is enabled even in software standby mode when it is used as an REMC external pulse signal input pin. Note 1. Note 2.

Appendix 2. Package Dimensions

Information on the latest version of the package dimensions or mountings has been displayed in "Packages" on Renesas Electronics Corporation website.

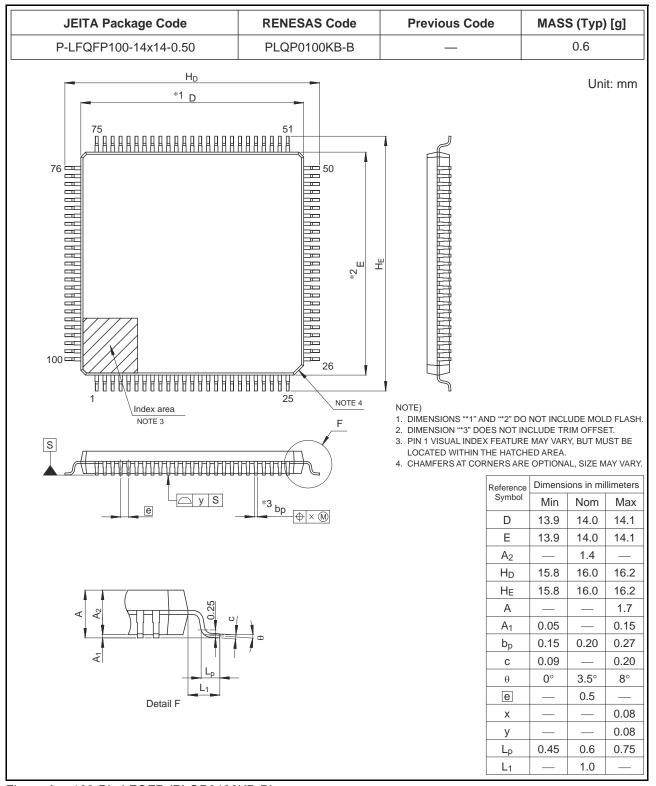


Figure A 100-Pin LFQFP (PLQP0100KB-B)

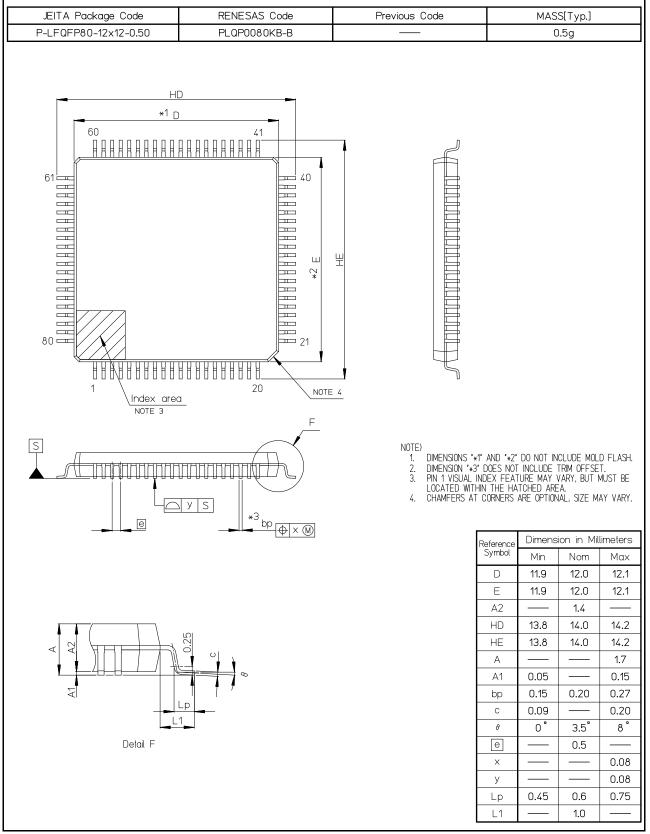


Figure B 80-Pin LFQFP (PLQP0080KB-B)

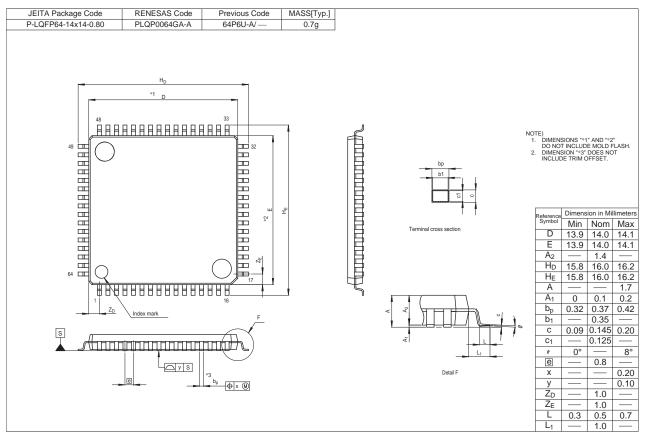


Figure C 64-Pin LQFP (PLQP0064GA-A)

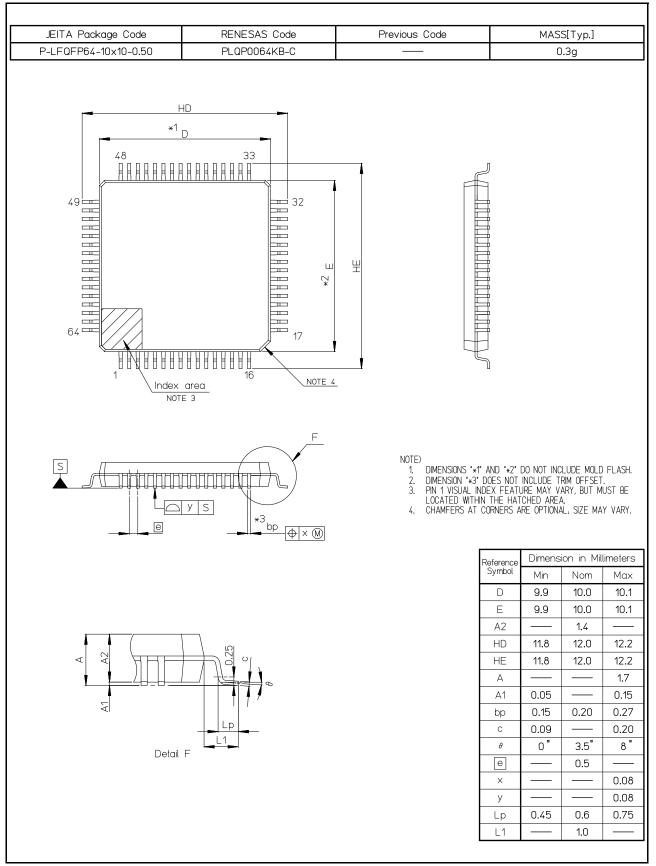


Figure D 64-Pin LFQFP (PLQP0064KB-C)

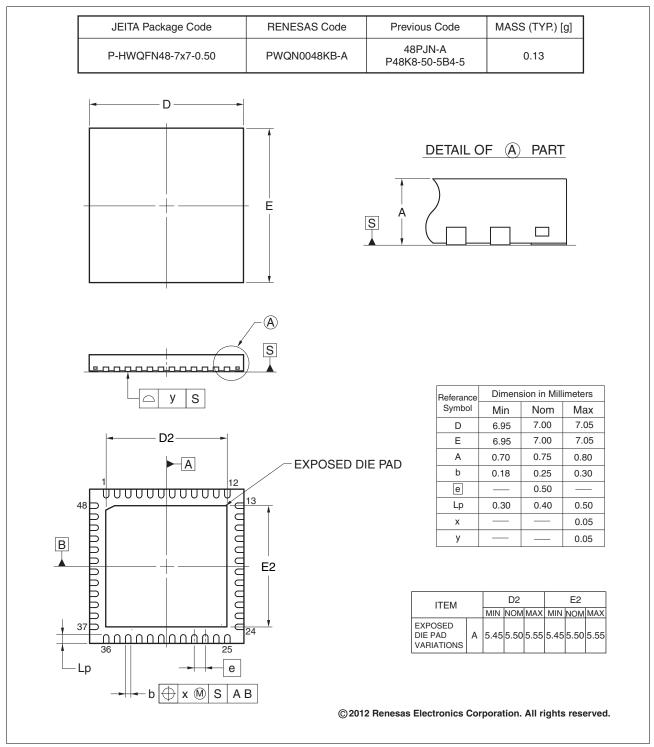


Figure E 48-Pin HWQFN (PWQN0048KB-A)

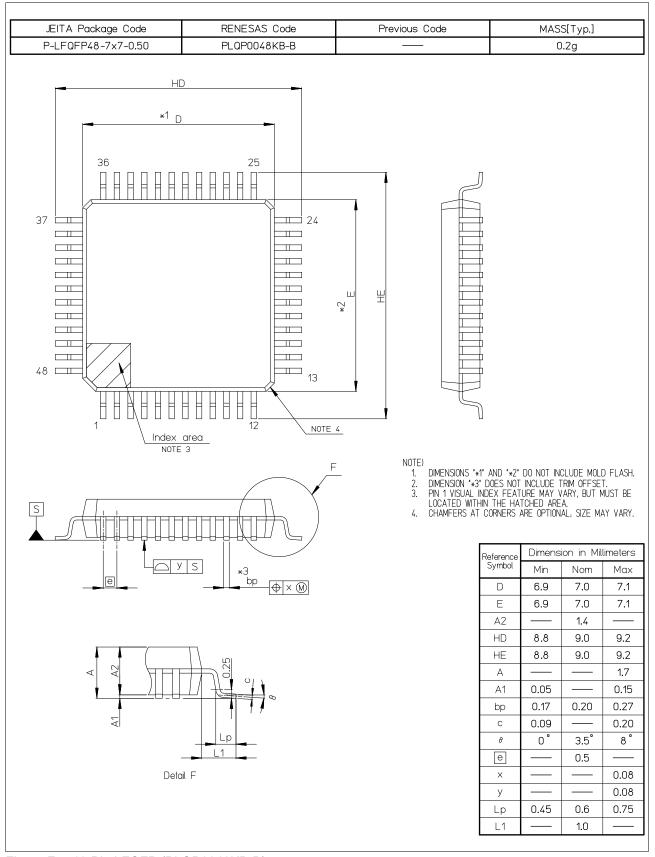


Figure F 48-Pin LFQFP (PLQP0048KB-B)

RX130 Group REVISION HISTORY

REVISION HISTORY	RX130 Group User's Manual: Hardware
------------------	-------------------------------------

Classifications

- Items with Technical Update document number: Changes according to the corresponding issued Technical Update
- Items without Technical Update document number: Minor changes that do not require Technical Update to be issued

Rev.	Date		Description	Classification	
		Page	Summary		
1.00	Oct 30, 2015	_	First edition, issued		
2.00	Sep 01, 2017	All	Products with at least 256 Kbytes of code flash memory and 100-pin		
		F I/O Danieta	packages added		
		5. I/O Registers 110 Table 5.1 List of I/O Registers (Address Order), changed TN-RX*-A179A/E			
		110	TN-RX*-A179A/E		
		11. Low Powe			
		208, 210	OPCCR and SOPCCR, descripton changed ction Timer Pulse Unit 2 (MTU2a)		
			TN D)/* A 4 40 A /E		
		414	Table 20.28 TIORU, TIORV, and TIORW (MTU5), changed	TN-RX*-A148A/E	
		546	20.7.3 Overview of Pin Initialization Procedures and Mode Transitions in		
		Case of Error during Operation, changed 21. Port Output Enable 2 (POE2a)			
		•	,		
		579	21.2.2 Output Level Control/Status Register 1 (OCSR1), description of the OSF1 flag added		
		24 Realtime	Clock (RTCc)		
		653	Figure 24.7 Using Alarm Function, description added		
			mmunications Interface (SCIg, SCIh)		
		771	27.5.2 CTS and RTS Functions, description added		
		836	27.14.15 Note on Stopping Reception When Using the RTS Function in	TN-RX*-A151A/E	
			Asynchronous Mode, added	71101711	
		28. Remote C	Control Signal Receiver (REMC)		
		837 to 883	Added		
		30. Serial Peripheral Interface (RSPIa)			
		1024	30.3.10.1 Master Mode Operation (a) Transmit Processing Flow, description added		
		32 Capacitive	e Touch Sensing Unit (CTSUa)		
			Specifications added	TN-RX*-A168A/E	
		33 12-Bit A/F	Converter (S12ADE)		
		1107	33.2.11 A/D Control Extended Register (ADCER), DIAGVAL[1:0] Bits (Self-		
			Diagnosis Conversion Voltage Select), description added		
		1174	33.8.8 Pin Setting when the 12-bit A/D Converter is Used, added	TN-RX*-A179A/E	
		1175	33.8.10 ADHSC Bit Rewriting Procedure Note, deleted		
		40. Electrical	Characteristics		
		1296	Table 40.2 Recommended Operating Voltage Conditions Note 3, added		
		1304 to 1308	The characteristics of products with at least 256 Kbytes of flash memory or		
			100-pin packages added		
		1311, 1312	The characteristics of products with at least 256 Kbytes of flash memory or 100-pin packages added		
		1337	Table 40.34 Timing of On-Chip Peripheral Modules (2), changed	TN-RX*-A179A/E	
		1338	Table 40.35 Timing of On-Chip Peripheral Modules (3), changed		
		1340	Table 40.38 Timing of On-Chip Peripheral Modules (6), added		
		1358	Table 40.48 CTSU Characteristics, item for products with at least 256 Kbytes		
			of flash memory or 100-pin packages added		
		1360	Table 40.50 Power-On Reset Circuit and Voltage Detection Circuit Characteristics (2), item with Vdet0_0 to Vdet0_3 selected added		
		1364	Table 40.53 ROM (Flash Memory for Code Storage) Characteristics (2)		
			High-Speed Operating Mode, erasure time (128-Kbyte) deleted and erasure time (256-Kbyte) added		
		1365	Table 40.54 ROM (Flash Memory for Code Storage) Characteristics (3) Middle-Speed Operating Mode, erasure time (128-Kbyte) deleted and erasure time (256-Kbyte) added		

RX130 Group REVISION HISTORY

Rev.	Date	Description		Classification
		Date	Page Summary	Summary
3.00	Aug 09, 2018	1. Overview		
		45, 46	Table 1.3 List of Products, changed	TN-RX*-A199A/E
		8. Voltage De	etection Circuit (LVDAb)	
		147	Table 8.3 Procedures for Setting Bits Related to the Voltage Monitoring 1 Interrupt and Voltage Monitoring 1 Reset, changed	TN-RX*-A194A/E
		149	Table 8.5 Procedures for Setting Bits Related to the Voltage Monitoring 2 Interrupt and Voltage Monitoring 2 Reset, changed	TN-RX*-A194A/E
		27. Serial Co	mmunications Interface (SCIg, SCIh)	
		782, 783	27.6.5 SCI Initialization (Smart Card Interface Mode), changed	
		789	27.6.8 Clock Output Control, changed	
		800	27.7.7 Recovery from Bus Hang-up, added	
		29. I ² C-bus II	nterface (RIICa)	
		913	Table 29.5 Examples of ICBRH/ICBRL Settings for Transfer Rate, changed	TN-RX*-A193A/E

RX130 Group User's Manual: Hardware

Rev.1.00 Publication Date:

Oct 30, 2015 Aug 09, 2018 Rev.3.00

Published by: Renesas Electronics Corporation

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A. Tel: +1-408-432-8888, Fax: +1-408-434-5351

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea Tel: +82-2-558-3737, Fax: +82-2-558-5338

RX130 Group

