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SPI™ EEPROM access thru SCI Emulation 

Introduction  
The application note shows how the Serial Communication Interface (SCI3) in SLP series can be co
detail communication between a SLP and a SPI EEPROM in order to reduce the system designer’s l

 

The Serial Peripheral Interface (SPI) provides a channel of full-duplex, synchronous, 8-bit serial com
slave or peripheral devices. The SPI can be programmed from a host CPU using the Serial Commun

 

The Serial Communication Interface 3(SCI3) hardware on the H8/300L Super Low Power (SLP) ser
connection to an SPI serial EEPROM. 

 

 

Target Device  
H8/300L Super Low Power (SLP) series – H8/38024 
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1. SPI™ Interface Overview   
The SPI requires two control lines (CS and SCK1) and two data lines (SI1 and SO1).  With CS (Chip-Select) the corresponding 
peripheral device is selected. This pin is mostly active-low. In the unselected state the SO1 lines are hi-Z and therefore inactive. 

The master decides with which peripheral device it wants to communicate. The clock line SCK1 is brought to the device whether it is 
selected or not. The clock serves as synchronization of the data communication. 

(The general features of SPI is discussed in the Application Note on SPI and I2C) 

 

1.1  SPI EEPROM Control @ 
The sample code used M95640, a 64 Kbit Serial SPR Bus EEPROM with high speed clock from STMicroelectronics. M95640 
implements a SPI protocol for serial EEPROM control. 

The instruction set is shown below: 

Instruction Description Instruction Format 

WREN Write Enable 0000 0110 (0x06) 

WRDI Write Disable 0000 0100 (0x40) 

RDSR Read Status Register 0000 0101 (0x05) 

WRSR Write Status Register 0000 0001 (0x01) 

READ Read from Memory Array 0000 0011 (0x03) 

WRITE Write to Memory Array 0000 0010 (0x02) 

*    the sample code in this application note only uses four of the six commands:- WREN, 

RDSR, READ and WRITE 

 

The WREN and WRDI control commands are single byte commands. No extra data needs to be transmitted or returned. 

 

The RDSR and WRSR control commands require a second byte transfer to complete the operation. 

 

The READ and WRITE commands require multiple byte transfer. Both command have the following protocol: 

<instruction> <address> <N- Byte data> 

The <address> field is a 2-byte start address from which the data read/write will begin. The data may be then read/written 
sequentially with the source/destination address being incremented automatically by the EEPROM. Please note that for this device, 
the WREN is cleared automatically after each write operation has completed. 

 

1.2 Bit Reverse 
The SPI serial EEPROM communications protocol specifies that data will be transmitted starting with most significant bit (MSB) 
first. In synchronous mode, the SCI interface on SLP series shift data in and out starting with the least significant bit (LSB) first. 

To overcome this, a look up table has been implemented to perform the swapping of the data to be transmitted over the SCI 
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1.3 Status Register @ 
The Status Register in ST M95640 contains a number of status and control bits that can be read or set (as appropriate) by specific 
instructions as following: 
 

 

 

 

 

 

 

1. WIP bit. The Write In Progress (WIP) bit indicates whether the memory is busy with a Write or Write Status Register 
cycle. 

 
2. WEL bit. The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch. 

 
3. BP1, BP0 bits. The Block Protect (BP1, BP0) bits are non-volatile. They define the size of the area to be software 

protected against Write instructions. 
 

4. SRWD bit. The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write Protect (W) signal. 
The Status Register Write Disable (SRWD) bit and Write Protect (W) signal allow the device to be put in the Hardware 
Protected mode. In this mode, the non-volatile bits of the Status Register (SRWD, BP1, BP0) become read-only bits. 

 

1.4  SPI Implementation @ 
The SPI interface was designed noting the following points: 

• The WREN must be set for each write operation. 

• The CS line cannot go high until all bytes have been successfully read/written from/to the EEPROM. 

• The operation is only completed when the CS line goes high 

• Write operation may take up to 10ms(worst case) internally in the EEPROM after the write data transfer has completed. 
Thus the EEPROM may appear “busy” for some time after a write transfer has completed. 

• The “busy” state is denoted by the Status Register being read as 0xFF. 

• The format of the read/write instructions is basically the same, only the data line changes. Thus a similar coding 
methodology could be used for both types of operation. 

• When the SI line is being driven by the controller, the SO line remain high. 

• When the SO line is being driven by the EEPROM, the SI line not sampled by the EEPROM. 

 

Because there is no official specification, what exactly SPI is and what not, it is necessary to consult the data sheets of the 
components one wants to use. 
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1.5 CS Line Control and Implementation 
CS line must be carefully controlled to ensure correct operation since the application must be able to determine the precise point at 
which this should occur. When using the synchronous serial port of SLP, there are two methods which maybe used:- 

i) The Transmit End Interrupt Enable (TEIE) maybe used to signal to the CPU that the last bit has been shifted out of 
the Transmit Shift Register (TSR) and that there is no data waiting to be transmitted in the Transmit Data Register 
(TDR). 

ii) If the receiver is enabled, data is received in synchronous with transmission, as they both use the SCK line, thus the 
application code can determine when a byte has been transmitted by the fact that one has also been received. 

 

As the majority of the SPI operations are two-way, the second option is most desirable, as this will automatically give both two-way 
data exchange and CS line control with minimal code/data overhead. The TEIE based solution would require an extra interrupt 
handler. 

 

1.6 Read/Write Control and Implementation 
To read data, the relevant instruction and address data are transmitted to the EEPROM, and the required data read in- this is achieved 
by transmitting “dummy” data bytes until the required amount has been read in. The dummy data maybe random or initialized to 
0xFF (as in this sample code). A receive interrupt handler is used to read data and control the CS line. A count is maintained of the 
number of bytes which are expected to be received, when this count has expired the CS line is taken high and further receive 
interrupt disabled. 

 

To write data, the relevant instruction and address data are transmitted, followed by the write data. Once again the receive interrupt 
handler decrements a count and controls the CS lone when the required number of bytes has been written, in this instance the 
received data is irrelevant (and will in fact be all 0xFF values). 

 

1.7 Connecting to the SPI Bus @ 
ST M95640 is fully compatible with the SPI protocol. All instructions, addresses and input data bytes are shifted in to the device, 
most significant bit first. The Serial Data Input (D) is sampled on the first rising edge of the Serial Clock (C) after Chip Select (S) 
goes Low. 
 
 
All output data bytes are shifted out of the device, most significant bit first. The Serial Data Output (Q) is latched on the first falling 
edge of the Serial Clock (C) after the instruction (such as the Read from Memory Array and Read Status Register instructions) have 
been clocked into the device. 

 

 
@ Note: 

The explanations given in this section is based on ST M95640 and is device dependent. It might be different from the 
EEPROM user is using. Please consult the respective data sheet and specification for clarification. 
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2. Hardware Design 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



H8/300L  
SPI™ EEPROM access (SPIeeprom) 

AN0303013/Rev1.00 September 2003 Page 7 of 20 

PRELIMINARY

3. Function Overview 
Functions in spi.c: 

• void SPISetup (void) 

• uchar ReadSR (void) 

• void SetWREN (void) 

• void Write (ushort, ushort, uchar *) 

• void WriteByte (ushort, uchar) 

• void Read (ushort, ushort, uchar *) 

• void main (void) 

 

Function in intprg.c (__interrupt(vect=18): 

• void INT_SCI3(void) 

 

void SPISetup (void) 

This routine initializes the entire initialization for: 

i) Serial Communication Interface (SCI)  

a) baud rate(BRR),  

b) data transfer format(SMR),  

c) serial control setting(SCR), and  

d) serial status(SSR)  

                   *please refer to the Hardware Manual for details about SCI setting 

 

ii)  EEPROM by setting the CS line (PDR8). 

 

uchar ReadSR (void) 

The Read Status Register (RDSR) instruction allows the Status Register to be read. CS line must be set to low to initialize EEPROM 
and set to high after completed reading the register. 

 

void SetWREN (void) 

This routine must be called before it can proceed to any write operation. The routine will issue the set write enable instruction (to set 
the WREN). After the write operation has completed and the CS line has gone high, the EEPROM will automatically resets the 
WREN bit, so this function must be called before all write operation. 
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void WriteByte (ushort, uchar) 

Parameters:  
address to write data to (ushort), 
data to be written (uchar) 
The WriteByte routine issues a write command, followed by the address passed as a parameter. Then the data parameter is written 
into the EEPROM. This allows only a single byte to be written. The RX interrupt is used to set the CS line on completion. 

 

void Write (ushort, ushort, uchar *) 

Parameters:  
address to write data to (ushort) 
number of data bytes to be written (uchar) 
address of buffer containing data (uchar *) 

The Write function transmits the WRITE instruction, plus the bit reversed of two byte address to the EEPROM, then uses a polled 
loop to transmit the rest of the data from the buffer passes as parameter 3 (*DataPtr). 

 

void Read (ushort, ushort, uchar *) 

Parameters:  
address to read data from (ushort) 
number of data bytes to be read (uchar) 
address of buffer for data store (uchar *) 

The Read function transmits the Read instruction, plus the bit reversed two byte address to the EEPROM, then uses a polled loop to 
read the rest of the data. The receive interrupt is used to keep count of the transmitted bytes and then to take the CS line high on 
completion, in addition to store the received data in the buffer defined by parameter 3 (*Buffer). 

 

void main() 

The main function demonstrates/tests the usage of the EEPROM control and communication functions by writing a single byte to the 
address before reading back the data from EEPROM. 

Then the function will write a series of data into EEPROM and read back the data from EEPROM. 

 

void INT_SCI3(void) 

The Receive Interrupt is to be used to monitor the number of bytes, which have been shifted out from the TSR register (completed 
the transmission). The exact time when the full read cycle has completed can be determined when the CS line taken high. The 
received data is always placed into the RxBuffer, as the overhead of saving unwanted data is minimal, and this will also removed the 
need for an extra test. This function should be inserted in the interrupt program, vector 18. 
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4. Program Analysis 

4.1 READ Status 
The following figure shows the operation of Read Status: - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The average time for reading the status register is *0.34ms. 

 

4.2 Byte WRITE 
The following figure shows the operation of writing a byte of data: - 

 

 

 

 

 

 

 

 

 

 

 

 

 

The average time for writing a byte of data is *0.85ms. 
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4.3 Page WRITE 
The following figure shows the operation of writing a page of data: - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The average time for writing a page of 32 bytes of data is *5.5ms. 

 

4.4 Byte READ 
The following figure shows the operation of reading a byte of data: - 

 

 

 

 

 

 

 

 

 

 

 

 

The average time for reading a byte of data is *0.53ms. 
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4.5 Page READ 
The following figure shows the operation of reading a page of 32 bytes data: - 

 

 

 

 

 

 

 

 

 

 

 

 

 

The average time for reading a page of data is *4.6ms. 

 

*Note: 

All the average times given were measured using a 10MHz clock and ½ system clock divider. 
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5. Sample Code 
/***********************************************************************/ 
/*                                                                     */ 
/*  FILE        :SPI.c                                                 */ 
/*  DATE        :Fri, Dec 20, 2002                                     */ 
/*  DESCRIPTION :Main Program                                          */ 
/*  CPU TYPE    :H8/38024F                                             */ 
/*                                                                     */ 
/*  This file is generated by Hitachi Project Generator (Ver.2.1).     */ 
/*                                                                     */ 
/***********************************************************************/ 
#include "iodefine.h" 
#include "applicationdemo.h" 
#include <machine.h> 
#include <stdio.h> 
 
 
//Function Prototypes 
void moreByte_access(void); 
void byte_access(void); 
void delay(void); 
void SPISetup (void); 
uchar ReadSR (void); 
void SetWREN (void); 
void Write (ushort, ushort, uchar *); 
void WriteByte (ushort, uchar); 
void Read (ushort, ushort, uchar *); 
 
  
//Global Data 
ushort RxCount;             //No. of bytes to be received 
ushort TxCount;             //No. of bytes to be transmitted 
uchar TxBuffer[MAXRXCOUNT]; //Buffer used to store transmit data 
uchar *RxBuffer_ptr;        //buffer for received data 
uchar *TxBuffer_ptr;        //pointer to data for transmission 
uchar RxBuffer[MAXTXCOUNT]; 
int i=0; 
 
const char table[256] = { 
0x00,0x80,0x40,0xC0,0x20,0xA0,0x60,0xE0, 
0x10,0x90,0x50,0xD0,0x30,0xB0,0x70,0xF0, 
0x08,0x88,0x48,0xC8,0x28,0xA8,0x68,0xE8, 
0x18,0x98,0x58,0xD8,0x38,0xB8,0x78,0xF8, 
0x04,0x84,0x44,0xC4,0x24,0xA4,0x64,0xE4, 
0x14,0x94,0x54,0xD4,0x34,0xB4,0x74,0xF4, 
0x0C,0x8C,0x4C,0xCC,0x2C,0xAC,0x6C,0xEC, 
0x1C,0x9C,0x5C,0xDC,0x3C,0xBC,0x7C,0xFC, 
0x02,0x82,0x42,0xC2,0x22,0xA2,0x62,0xE2, 
0x12,0x92,0x52,0xD2,0x32,0xB2,0x72,0xF2, 
0x0A,0x8A,0x4A,0xCA,0x2A,0xAA,0x6A,0xEA, 
0x1A,0x9A,0x5A,0xDA,0x3A,0xBA,0x7A,0xFA, 
0x06,0x86,0x46,0xC6,0x26,0xA6,0x66,0xE6, 
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0x16,0x96,0x56,0xD6,0x36,0xB6,0x76,0xF6, 
0x0E,0x8E,0x4E,0xCE,0x2E,0xAE,0x6E,0xEE, 
0x1E,0x9E,0x5E,0xDE,0x3E,0xBE,0x7E,0xFE, 
0x01,0x81,0x41,0xC1,0x21,0xA1,0x61,0xE1, 
0x11,0x91,0x51,0xD1,0x31,0xB1,0x71,0xF1, 
0x09,0x89,0x49,0xC9,0x29,0xA9,0x69,0xE9, 
0x19,0x99,0x59,0xD9,0x39,0xB9,0x79,0xF9, 
0x05,0x85,0x45,0xC5,0x25,0xA5,0x65,0xE5, 
0x15,0x95,0x55,0xD5,0x35,0xB5,0x75,0xF5, 
0x0D,0x8D,0x4D,0xCD,0x2D,0xAD,0x6D,0xED, 
0x1D,0x9D,0x5D,0xDD,0x3D,0xBD,0x7D,0xFD, 
0x03,0x83,0x43,0xC3,0x23,0xA3,0x63,0xE3, 
0x13,0x93,0x53,0xD3,0x33,0xB3,0x73,0xF3, 
0x0B,0x8B,0x4B,0xCB,0x2B,0xAB,0x6B,0xEB, 
0x1B,0x9B,0x5B,0xDB,0x3B,0xBB,0x7B,0xFB, 
0x07,0x87,0x47,0xC7,0x27,0xA7,0x67,0xE7, 
0x17,0x97,0x57,0xD7,0x37,0xB7,0x77,0xF7, 
0x0F,0x8F,0x4F,0xCF,0x2F,0xAF,0x6F,0xEF, 
0x1F,0x9F,0x5F,0xDF,0x3F,0xBF,0x7F,0xFF 
}; 
 
uchar message[] = "EEPROM SPI Access "; 
 
 
int main (void) 
{ 
  SPISetup(); 
 
  byte_access(); 
 
  moreByte_access(); 
 
while(1); 
 

return (0); 
} 
 
 
void byte_access(void) 
{ 
while(ReadSR() == 0xFF);     //check that we are talking 
WriteByte(0x0001,0x33);      //try writing a byte 
 
while(ReadSR() == 0xFF);     //check that we are talking 
while(ReadSR()&01 == 0x01);  //wait until write completed(WIP=0) 
Read(0x0001,1,&RxBuffer[0]); //read it back 
} 
 
 
void moreByte_access(void) 
{ 
while(ReadSR() == 0xFF);      //check that we are talking 
Write (0x0000,15,&message[0]);//write a 15 byte message 
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while (ReadSR() == 0xFF);     //wait on the internal operation 
while(ReadSR()&01 == 0x01);   //wait until write completed(WIP=0) 
Read(0x0000,15,&RxBuffer[0]); //read back the message 
} 
 
 
void SPISetup (void) 
{ 
int i; 
 
//the Null buffer could be a constant table to save RAM 
 
for (i=0;i<MAXRXCOUNT;i++) 
TxBuffer[i] = 0xFF; 
 
P_SCI3.BRR = 249;        //50K bps 
P_SCI3.SMR.BYTE = 0x80;  //sync mode; 8 bits 
P_SCI3.SSR.BYTE &=0x87;  //clear error flags 
P_SPCR.BYTE = 0xE0;      //select pin P42/TXD is used as TXD 
P_SCI3.SCR3.BYTE = 0x30; //enb tx, rx, SCK out 
 
P_IO.PCR8 = 0x04;       //set as output 
P_IO.PDR8.BYTE |= 0x04;  //set CS line high 
delay(); 
P_IO.PDR8.BYTE &= 0xFB;  //set CS line low to initialise EEPROM 
delay(); 
P_IO.PDR8.BYTE |= 0x04;  //set CS line high 
} 
 
 
void delay(void)        //delay time approximately 42µs 
{     
   for(i=0;i<10;i++) 
   ; 
 } 
 
 
//Returns: SR bits as unsigned char 
uchar ReadSR (void) 
{ 
unsigned char dummy; 
 
P_SCI3.SSR.BYTE &= 0xBF;            //clear RDRF 
P_IO.PDR8.BYTE &= 0xFB;                   //set CS line low to initialise 
EEPROM 
 
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until ready to Tx 
P_SCI3.TDR = READSR;                      //send readSR instruction (05) 
 
while ((P_SCI3.SSR.BYTE & 0x40) != 0x40); //wait to get data0 
P_SCI3.SSR.BYTE &= 0xBF;                  //clear RDRF 
dummy=P_SCI3.RDR;        //do dummy read 
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while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDRE 
P_SCI3.TDR = 0xff;                        //send dummy byte to receive data 
 
 
while ((P_SCI3.SSR.BYTE & 0x40) != 0x40); //wait to get data1 
P_SCI3.SSR.BYTE &= 0xBF;                 //clear RDRF 
 
P_IO.PDR8.BYTE |= 0x04;                   //set CS line high 
 
return(P_SCI3.RDR); 
} 
 
 
void SetWREN (void) 
{ 
P_SCI3.SSR.BYTE &= 0xBF;                  //clear RDRF 
P_SCI3.SCR3.BYTE &= 0x20;                //disable RE 
P_IO.PDR8.BYTE &= 0xFB;                   //set CS line low to init. EEPROM 
 
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until ready to TX instruction 
P_SCI3.TDR = SETWREN;                     //send setWREN instruction (06) 
 
while ((P_SCI3.SSR.BYTE & 0x04) != 0x04); //wait to finish TX (denoted by RX) 
P_SCI3.SCR3.BYTE = 0x30;                  //enable TE and RE 
P_IO.PDR8.BYTE |= 0x04;                   //set CS line high to complete 
} 
 
 
void WriteByte (ushort Adrs, uchar Data) 
{ 
unsigned char dummycount; 
 
SetWREN();                                //set write enable flag 
P_SCI3.SSR.BYTE &= 0xBF;                  //clear RDRF 
P_SCI3.SCR3.BYTE = 0x20;                  //disable RE  
P_IO.PDR8.BYTE &= 0xFB;                   //set CS line low to start operation 
 
//First write the instruction 
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until ready to tx 
P_SCI3.TDR = WRITE;                       //write ins (02) 
 
//Then send the address 
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDRE 
P_SCI3.TDR = swap((uchar)Adrs>>8);        //MSB of address 
 
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDRE 
P_SCI3.TDR = swap((uchar)Adrs);           //LSB of address 
 
//Finally write data byte 
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDRE 
P_SCI3.TDR = swap(Data);                  //write data byte 
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while ((P_SCI3.SSR.BYTE & 0x04) != 0x04); //wait until TEND 
P_SCI3.SCR3.BYTE = 0x30;                  //enable RE 
P_IO.PDR8.BYTE |= 0x04;                   //set CS line high to complete 
} 
 
 
void Write (ushort Adrs, ushort Count, uchar *DataPtr) 
{ 
SetWREN();                               //set write enable flag 
P_SCI3.SSR.BYTE &= 0xBF;                 //clear RDRF 
P_SCI3.SCR3.BYTE &= 0x20;                //disable RE 
P_IO.PDR8.BYTE &= 0xFB;                  //reset CS line to start operation 
 
//issue the Write Instruction 
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDR empty 
P_SCI3.TDR = WRITE;                       //Write ins (02) 
 
//send MSB of address 
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDR empty 
P_SCI3.TDR = swap((uchar)Adrs>>8); 
 
//send LSB of address 
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDR empty 
P_SCI3.TDR = swap((uchar)Adrs); 
 
//now set up for interrupt transfer 
TxBuffer_ptr = DataPtr; //Set transmit buffer pointer 
 
//the following is for polled 
for (i=0;i<Count;i++) 
{ 
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDR empty 
P_SCI3.TDR = swap(*TxBuffer_ptr); 
TxBuffer_ptr++; 
} 
 
while ((P_SCI3.SSR.BYTE & 0x04) != 0x04); //wait until TEND 
P_SCI3.SCR3.BYTE = 0x30; //enable RE 
P_IO.PDR8.BYTE |= 0x04; //set CS line high to complete 
} 
 
 
 
void Read (ushort Adrs, ushort Count, uchar *Buffer) 
{ 
int i; 
 
RxCount = Count;          //total bytes to be transferred 
RxBuffer_ptr = Buffer;    //set pointer to receive buffer 
P_SCI3.SCR3.BYTE = 0x20;  //disable RE 
P_SCI3.SSR.BYTE &= 0xBF;  //clear RDRF 
P_IO.PDR8.BYTE &= 0xFB;   //reset CS line to start operation 
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//issue the Read Instruction 
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDR empty 
P_SCI3.TDR = READ;                        //send Read instruction (03) 
 
//send MSB of address 
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80);  //wait until TDR empty 
P_SCI3.TDR = swap((uchar)Adrs>>8); 
 
//send LSB of address 
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80);  //wait until TDR empty 
P_SCI3.TDR = swap((uchar)Adrs); 
 
while ((P_SCI3.SSR.BYTE & 0x04) != 0x04);  //wait until TX end 
P_SCI3.SCR3.BYTE = 0x70;                   //enable RE, TE and RE Interrupts 
 
//now set up for interrupt transfer 
TxBuffer_ptr = TxBuffer; //transmit null data 
 
//the following is for polled 
for (i=0;i<Count;i++) 
{ 
  while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDR empty 
    P_SCI3.TDR = *TxBuffer_ptr;             //swap not required for null data 
    TxBuffer_ptr++; 
} 
 
while(RxCount); 
P_SCI3.SCR3.BYTE = 0x30;      //enable RE, TE and disable RE Interrupts 
P_IO.PDR8.BYTE |= 0x04;       //set CS line high 
}        
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/***************************************************************/ 
/*  FILE        :applicationdemo.h                             */ 
/*  DATE        :Fri, Dec 20, 2002                             */ 
/*  DESCRIPTION :Definition of variable                        */ 
/*  CPU TYPE    :H8/38024F                                     */ 
/***************************************************************/               
 
//Type definitions 
typedef unsigned char uchar; 
typedef unsigned short ushort; 
 
//bit patterns for EEPROM access instructions 
#define READSR 0xA0               /* (bit reversed 05) */ 
#define SETWREN 0x60              /* (bit reversed 06) */ 
#define WRITE 0x40                /* (bit reversed 02) */ 
#define READ 0xC0                 /* (bit reversed 03) */ 
 
//system constants 
#define MAXRXCOUNT 35 
#define MAXTXCOUNT 35             /* 32 bytes of data plus ins & address */ 
 
#define swap(x) (table[x])        /* swap macro */ 
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1. These materials are intended as a reference to assist our customers in the selection of the Renesas 
Technology Corporation product best suited to the customer's application; they do not convey any 
license under any intellectual property rights, or any other rights, belonging to Renesas Technology 
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any 
third-party's rights, originating in the use of any product data, diagrams, charts, programs, 
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and 
algorithms represents information on products at the time of publication of these materials, and are 
subject to change by Renesas Technology Corporation without notice due to product improvements 
or other reasons.  It is therefore recommended that customers contact Renesas Technology 
Corporation or an authorized Renesas Technology Corporation product distributor for the latest 
product information before purchasing a product listed herein. 
The information described here may contain technical inaccuracies or typographical errors. 
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss 
rising from these inaccuracies or errors. 
Please also pay attention to information published by Renesas Technology Corporation by various 
means, including the Renesas Technology Corporation Semiconductor home page 
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, 
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total 
system before making a final decision on the applicability of the information and products.  Renesas 
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting 
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a 
device or system that is used under circumstances in which human life is potentially at stake.  
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation 
product distributor when considering the use of a product contained herein for any specific 
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, 
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce 
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must 
be exported under a license from the Japanese government and cannot be imported into a country 
other than the approved destination. 
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the 
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the 
products contained therein.

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products 
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble 
with semiconductors may lead to personal injury, fire or property damage. 
Remember to give due consideration to safety when making your circuit designs, with appropriate 
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or 
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs! 

Notes regarding these materials
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