

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology

Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

 AP

AN0303013/Rev1.00 September 2003

SPI™ EEPROM access thru SCI Emulation

Introduction
The application note shows how the Serial Communication Interface (SCI3) in SLP series can be co
detail communication between a SLP and a SPI EEPROM in order to reduce the system designer’s l

The Serial Peripheral Interface (SPI) provides a channel of full-duplex, synchronous, 8-bit serial com
slave or peripheral devices. The SPI can be programmed from a host CPU using the Serial Commun

The Serial Communication Interface 3(SCI3) hardware on the H8/300L Super Low Power (SLP) ser
connection to an SPI serial EEPROM.

Target Device
H8/300L Super Low Power (SLP) series – H8/38024
PRELIMINARY

PLICATION NOTE

Page 1 of 20

nfigured to support SPI and
earning curve.

munication between master and
ication Interface (SCI).

ies provides a simple three-wire

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 2 of 20

PRELIMINARY

Contents

1. SPI™ Interface Overview.. 3
1.1 SPI EEPROM Control @.. 3
1.2 Bit Reverse.. 3
1.3 Status Register @ .. 4
1.4 SPI Implementation @ ... 4
1.5 CS Line Control and Implementation.. 5
1.6 Read/Write Control and Implementation... 5
1.7 Connecting to the SPI Bus @ .. 5

2. Hardware Design .. 6

3. Function Overview .. 7

4. Program Analysis .. 9
4.1 READ Status... 9
4.2 Byte WRITE .. 9
4.3 Page WRITE ... 10
4.4 Byte READ.. 10
4.5 Page READ... 11

5. Sample Code .. 12

Reference.. 18

Revision Record.. 19

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 3 of 20

PRELIMINARY

1. SPI™ Interface Overview
The SPI requires two control lines (CS and SCK1) and two data lines (SI1 and SO1). With CS (Chip-Select) the corresponding
peripheral device is selected. This pin is mostly active-low. In the unselected state the SO1 lines are hi-Z and therefore inactive.

The master decides with which peripheral device it wants to communicate. The clock line SCK1 is brought to the device whether it is
selected or not. The clock serves as synchronization of the data communication.

(The general features of SPI is discussed in the Application Note on SPI and I2C)

1.1 SPI EEPROM Control @
The sample code used M95640, a 64 Kbit Serial SPR Bus EEPROM with high speed clock from STMicroelectronics. M95640
implements a SPI protocol for serial EEPROM control.

The instruction set is shown below:

Instruction Description Instruction Format

WREN Write Enable 0000 0110 (0x06)

WRDI Write Disable 0000 0100 (0x40)

RDSR Read Status Register 0000 0101 (0x05)

WRSR Write Status Register 0000 0001 (0x01)

READ Read from Memory Array 0000 0011 (0x03)

WRITE Write to Memory Array 0000 0010 (0x02)

* the sample code in this application note only uses four of the six commands:- WREN,

RDSR, READ and WRITE

The WREN and WRDI control commands are single byte commands. No extra data needs to be transmitted or returned.

The RDSR and WRSR control commands require a second byte transfer to complete the operation.

The READ and WRITE commands require multiple byte transfer. Both command have the following protocol:

<instruction> <address> <N- Byte data>

The <address> field is a 2-byte start address from which the data read/write will begin. The data may be then read/written
sequentially with the source/destination address being incremented automatically by the EEPROM. Please note that for this device,
the WREN is cleared automatically after each write operation has completed.

1.2 Bit Reverse
The SPI serial EEPROM communications protocol specifies that data will be transmitted starting with most significant bit (MSB)
first. In synchronous mode, the SCI interface on SLP series shift data in and out starting with the least significant bit (LSB) first.

To overcome this, a look up table has been implemented to perform the swapping of the data to be transmitted over the SCI

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 4 of 20

PRELIMINARY

1.3 Status Register @
The Status Register in ST M95640 contains a number of status and control bits that can be read or set (as appropriate) by specific
instructions as following:

1. WIP bit. The Write In Progress (WIP) bit indicates whether the memory is busy with a Write or Write Status Register
cycle.

2. WEL bit. The Write Enable Latch (WEL) bit indicates the status of the internal Write Enable Latch.

3. BP1, BP0 bits. The Block Protect (BP1, BP0) bits are non-volatile. They define the size of the area to be software

protected against Write instructions.

4. SRWD bit. The Status Register Write Disable (SRWD) bit is operated in conjunction with the Write Protect (W) signal.
The Status Register Write Disable (SRWD) bit and Write Protect (W) signal allow the device to be put in the Hardware
Protected mode. In this mode, the non-volatile bits of the Status Register (SRWD, BP1, BP0) become read-only bits.

1.4 SPI Implementation @
The SPI interface was designed noting the following points:

• The WREN must be set for each write operation.

• The CS line cannot go high until all bytes have been successfully read/written from/to the EEPROM.

• The operation is only completed when the CS line goes high

• Write operation may take up to 10ms(worst case) internally in the EEPROM after the write data transfer has completed.
Thus the EEPROM may appear “busy” for some time after a write transfer has completed.

• The “busy” state is denoted by the Status Register being read as 0xFF.

• The format of the read/write instructions is basically the same, only the data line changes. Thus a similar coding
methodology could be used for both types of operation.

• When the SI line is being driven by the controller, the SO line remain high.

• When the SO line is being driven by the EEPROM, the SI line not sampled by the EEPROM.

Because there is no official specification, what exactly SPI is and what not, it is necessary to consult the data sheets of the
components one wants to use.

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 5 of 20

PRELIMINARY

1.5 CS Line Control and Implementation
CS line must be carefully controlled to ensure correct operation since the application must be able to determine the precise point at
which this should occur. When using the synchronous serial port of SLP, there are two methods which maybe used:-

i) The Transmit End Interrupt Enable (TEIE) maybe used to signal to the CPU that the last bit has been shifted out of
the Transmit Shift Register (TSR) and that there is no data waiting to be transmitted in the Transmit Data Register
(TDR).

ii) If the receiver is enabled, data is received in synchronous with transmission, as they both use the SCK line, thus the
application code can determine when a byte has been transmitted by the fact that one has also been received.

As the majority of the SPI operations are two-way, the second option is most desirable, as this will automatically give both two-way
data exchange and CS line control with minimal code/data overhead. The TEIE based solution would require an extra interrupt
handler.

1.6 Read/Write Control and Implementation
To read data, the relevant instruction and address data are transmitted to the EEPROM, and the required data read in- this is achieved
by transmitting “dummy” data bytes until the required amount has been read in. The dummy data maybe random or initialized to
0xFF (as in this sample code). A receive interrupt handler is used to read data and control the CS line. A count is maintained of the
number of bytes which are expected to be received, when this count has expired the CS line is taken high and further receive
interrupt disabled.

To write data, the relevant instruction and address data are transmitted, followed by the write data. Once again the receive interrupt
handler decrements a count and controls the CS lone when the required number of bytes has been written, in this instance the
received data is irrelevant (and will in fact be all 0xFF values).

1.7 Connecting to the SPI Bus @
ST M95640 is fully compatible with the SPI protocol. All instructions, addresses and input data bytes are shifted in to the device,
most significant bit first. The Serial Data Input (D) is sampled on the first rising edge of the Serial Clock (C) after Chip Select (S)
goes Low.

All output data bytes are shifted out of the device, most significant bit first. The Serial Data Output (Q) is latched on the first falling
edge of the Serial Clock (C) after the instruction (such as the Read from Memory Array and Read Status Register instructions) have
been clocked into the device.

@ Note:

The explanations given in this section is based on ST M95640 and is device dependent. It might be different from the
EEPROM user is using. Please consult the respective data sheet and specification for clarification.

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 6 of 20

PRELIMINARY

2. Hardware Design

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 7 of 20

PRELIMINARY

3. Function Overview
Functions in spi.c:

• void SPISetup (void)

• uchar ReadSR (void)

• void SetWREN (void)

• void Write (ushort, ushort, uchar *)

• void WriteByte (ushort, uchar)

• void Read (ushort, ushort, uchar *)

• void main (void)

Function in intprg.c (__interrupt(vect=18):

• void INT_SCI3(void)

void SPISetup (void)

This routine initializes the entire initialization for:

i) Serial Communication Interface (SCI)

a) baud rate(BRR),

b) data transfer format(SMR),

c) serial control setting(SCR), and

d) serial status(SSR)

 *please refer to the Hardware Manual for details about SCI setting

ii) EEPROM by setting the CS line (PDR8).

uchar ReadSR (void)

The Read Status Register (RDSR) instruction allows the Status Register to be read. CS line must be set to low to initialize EEPROM
and set to high after completed reading the register.

void SetWREN (void)

This routine must be called before it can proceed to any write operation. The routine will issue the set write enable instruction (to set
the WREN). After the write operation has completed and the CS line has gone high, the EEPROM will automatically resets the
WREN bit, so this function must be called before all write operation.

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 8 of 20

PRELIMINARY

void WriteByte (ushort, uchar)

Parameters:
address to write data to (ushort),
data to be written (uchar)
The WriteByte routine issues a write command, followed by the address passed as a parameter. Then the data parameter is written
into the EEPROM. This allows only a single byte to be written. The RX interrupt is used to set the CS line on completion.

void Write (ushort, ushort, uchar *)

Parameters:
address to write data to (ushort)
number of data bytes to be written (uchar)
address of buffer containing data (uchar *)

The Write function transmits the WRITE instruction, plus the bit reversed of two byte address to the EEPROM, then uses a polled
loop to transmit the rest of the data from the buffer passes as parameter 3 (*DataPtr).

void Read (ushort, ushort, uchar *)

Parameters:
address to read data from (ushort)
number of data bytes to be read (uchar)
address of buffer for data store (uchar *)

The Read function transmits the Read instruction, plus the bit reversed two byte address to the EEPROM, then uses a polled loop to
read the rest of the data. The receive interrupt is used to keep count of the transmitted bytes and then to take the CS line high on
completion, in addition to store the received data in the buffer defined by parameter 3 (*Buffer).

void main()

The main function demonstrates/tests the usage of the EEPROM control and communication functions by writing a single byte to the
address before reading back the data from EEPROM.

Then the function will write a series of data into EEPROM and read back the data from EEPROM.

void INT_SCI3(void)

The Receive Interrupt is to be used to monitor the number of bytes, which have been shifted out from the TSR register (completed
the transmission). The exact time when the full read cycle has completed can be determined when the CS line taken high. The
received data is always placed into the RxBuffer, as the overhead of saving unwanted data is minimal, and this will also removed the
need for an extra test. This function should be inserted in the interrupt program, vector 18.

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 9 of 20

PRELIMINARY

4. Program Analysis

4.1 READ Status
The following figure shows the operation of Read Status: -

The average time for reading the status register is *0.34ms.

4.2 Byte WRITE
The following figure shows the operation of writing a byte of data: -

The average time for writing a byte of data is *0.85ms.

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 10 of 20

PRELIMINARY

4.3 Page WRITE
The following figure shows the operation of writing a page of data: -

The average time for writing a page of 32 bytes of data is *5.5ms.

4.4 Byte READ
The following figure shows the operation of reading a byte of data: -

The average time for reading a byte of data is *0.53ms.

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 11 of 20

PRELIMINARY

4.5 Page READ
The following figure shows the operation of reading a page of 32 bytes data: -

The average time for reading a page of data is *4.6ms.

*Note:

All the average times given were measured using a 10MHz clock and ½ system clock divider.

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 12 of 20

PRELIMINARY

5. Sample Code
/***/
/* */
/* FILE :SPI.c */
/* DATE :Fri, Dec 20, 2002 */
/* DESCRIPTION :Main Program */
/* CPU TYPE :H8/38024F */
/* */
/* This file is generated by Hitachi Project Generator (Ver.2.1). */
/* */
/***/
#include "iodefine.h"
#include "applicationdemo.h"
#include <machine.h>
#include <stdio.h>

//Function Prototypes
void moreByte_access(void);
void byte_access(void);
void delay(void);
void SPISetup (void);
uchar ReadSR (void);
void SetWREN (void);
void Write (ushort, ushort, uchar *);
void WriteByte (ushort, uchar);
void Read (ushort, ushort, uchar *);

//Global Data
ushort RxCount; //No. of bytes to be received
ushort TxCount; //No. of bytes to be transmitted
uchar TxBuffer[MAXRXCOUNT]; //Buffer used to store transmit data
uchar *RxBuffer_ptr; //buffer for received data
uchar *TxBuffer_ptr; //pointer to data for transmission
uchar RxBuffer[MAXTXCOUNT];
int i=0;

const char table[256] = {
0x00,0x80,0x40,0xC0,0x20,0xA0,0x60,0xE0,
0x10,0x90,0x50,0xD0,0x30,0xB0,0x70,0xF0,
0x08,0x88,0x48,0xC8,0x28,0xA8,0x68,0xE8,
0x18,0x98,0x58,0xD8,0x38,0xB8,0x78,0xF8,
0x04,0x84,0x44,0xC4,0x24,0xA4,0x64,0xE4,
0x14,0x94,0x54,0xD4,0x34,0xB4,0x74,0xF4,
0x0C,0x8C,0x4C,0xCC,0x2C,0xAC,0x6C,0xEC,
0x1C,0x9C,0x5C,0xDC,0x3C,0xBC,0x7C,0xFC,
0x02,0x82,0x42,0xC2,0x22,0xA2,0x62,0xE2,
0x12,0x92,0x52,0xD2,0x32,0xB2,0x72,0xF2,
0x0A,0x8A,0x4A,0xCA,0x2A,0xAA,0x6A,0xEA,
0x1A,0x9A,0x5A,0xDA,0x3A,0xBA,0x7A,0xFA,
0x06,0x86,0x46,0xC6,0x26,0xA6,0x66,0xE6,

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 13 of 20

PRELIMINARY

0x16,0x96,0x56,0xD6,0x36,0xB6,0x76,0xF6,
0x0E,0x8E,0x4E,0xCE,0x2E,0xAE,0x6E,0xEE,
0x1E,0x9E,0x5E,0xDE,0x3E,0xBE,0x7E,0xFE,
0x01,0x81,0x41,0xC1,0x21,0xA1,0x61,0xE1,
0x11,0x91,0x51,0xD1,0x31,0xB1,0x71,0xF1,
0x09,0x89,0x49,0xC9,0x29,0xA9,0x69,0xE9,
0x19,0x99,0x59,0xD9,0x39,0xB9,0x79,0xF9,
0x05,0x85,0x45,0xC5,0x25,0xA5,0x65,0xE5,
0x15,0x95,0x55,0xD5,0x35,0xB5,0x75,0xF5,
0x0D,0x8D,0x4D,0xCD,0x2D,0xAD,0x6D,0xED,
0x1D,0x9D,0x5D,0xDD,0x3D,0xBD,0x7D,0xFD,
0x03,0x83,0x43,0xC3,0x23,0xA3,0x63,0xE3,
0x13,0x93,0x53,0xD3,0x33,0xB3,0x73,0xF3,
0x0B,0x8B,0x4B,0xCB,0x2B,0xAB,0x6B,0xEB,
0x1B,0x9B,0x5B,0xDB,0x3B,0xBB,0x7B,0xFB,
0x07,0x87,0x47,0xC7,0x27,0xA7,0x67,0xE7,
0x17,0x97,0x57,0xD7,0x37,0xB7,0x77,0xF7,
0x0F,0x8F,0x4F,0xCF,0x2F,0xAF,0x6F,0xEF,
0x1F,0x9F,0x5F,0xDF,0x3F,0xBF,0x7F,0xFF
};

uchar message[] = "EEPROM SPI Access ";

int main (void)
{
 SPISetup();

 byte_access();

 moreByte_access();

while(1);

return (0);
}

void byte_access(void)
{
while(ReadSR() == 0xFF); //check that we are talking
WriteByte(0x0001,0x33); //try writing a byte

while(ReadSR() == 0xFF); //check that we are talking
while(ReadSR()&01 == 0x01); //wait until write completed(WIP=0)
Read(0x0001,1,&RxBuffer[0]); //read it back
}

void moreByte_access(void)
{
while(ReadSR() == 0xFF); //check that we are talking
Write (0x0000,15,&message[0]);//write a 15 byte message

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 14 of 20

PRELIMINARY

while (ReadSR() == 0xFF); //wait on the internal operation
while(ReadSR()&01 == 0x01); //wait until write completed(WIP=0)
Read(0x0000,15,&RxBuffer[0]); //read back the message
}

void SPISetup (void)
{
int i;

//the Null buffer could be a constant table to save RAM

for (i=0;i<MAXRXCOUNT;i++)
TxBuffer[i] = 0xFF;

P_SCI3.BRR = 249; //50K bps
P_SCI3.SMR.BYTE = 0x80; //sync mode; 8 bits
P_SCI3.SSR.BYTE &=0x87; //clear error flags
P_SPCR.BYTE = 0xE0; //select pin P42/TXD is used as TXD
P_SCI3.SCR3.BYTE = 0x30; //enb tx, rx, SCK out

P_IO.PCR8 = 0x04; //set as output
P_IO.PDR8.BYTE |= 0x04; //set CS line high
delay();
P_IO.PDR8.BYTE &= 0xFB; //set CS line low to initialise EEPROM
delay();
P_IO.PDR8.BYTE |= 0x04; //set CS line high
}

void delay(void) //delay time approximately 42µs
{
 for(i=0;i<10;i++)
 ;
 }

//Returns: SR bits as unsigned char
uchar ReadSR (void)
{
unsigned char dummy;

P_SCI3.SSR.BYTE &= 0xBF; //clear RDRF
P_IO.PDR8.BYTE &= 0xFB; //set CS line low to initialise
EEPROM

while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until ready to Tx
P_SCI3.TDR = READSR; //send readSR instruction (05)

while ((P_SCI3.SSR.BYTE & 0x40) != 0x40); //wait to get data0
P_SCI3.SSR.BYTE &= 0xBF; //clear RDRF
dummy=P_SCI3.RDR; //do dummy read

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 15 of 20

PRELIMINARY

while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDRE
P_SCI3.TDR = 0xff; //send dummy byte to receive data

while ((P_SCI3.SSR.BYTE & 0x40) != 0x40); //wait to get data1
P_SCI3.SSR.BYTE &= 0xBF; //clear RDRF

P_IO.PDR8.BYTE |= 0x04; //set CS line high

return(P_SCI3.RDR);
}

void SetWREN (void)
{
P_SCI3.SSR.BYTE &= 0xBF; //clear RDRF
P_SCI3.SCR3.BYTE &= 0x20; //disable RE
P_IO.PDR8.BYTE &= 0xFB; //set CS line low to init. EEPROM

while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until ready to TX instruction
P_SCI3.TDR = SETWREN; //send setWREN instruction (06)

while ((P_SCI3.SSR.BYTE & 0x04) != 0x04); //wait to finish TX (denoted by RX)
P_SCI3.SCR3.BYTE = 0x30; //enable TE and RE
P_IO.PDR8.BYTE |= 0x04; //set CS line high to complete
}

void WriteByte (ushort Adrs, uchar Data)
{
unsigned char dummycount;

SetWREN(); //set write enable flag
P_SCI3.SSR.BYTE &= 0xBF; //clear RDRF
P_SCI3.SCR3.BYTE = 0x20; //disable RE
P_IO.PDR8.BYTE &= 0xFB; //set CS line low to start operation

//First write the instruction
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until ready to tx
P_SCI3.TDR = WRITE; //write ins (02)

//Then send the address
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDRE
P_SCI3.TDR = swap((uchar)Adrs>>8); //MSB of address

while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDRE
P_SCI3.TDR = swap((uchar)Adrs); //LSB of address

//Finally write data byte
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDRE
P_SCI3.TDR = swap(Data); //write data byte

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 16 of 20

PRELIMINARY

while ((P_SCI3.SSR.BYTE & 0x04) != 0x04); //wait until TEND
P_SCI3.SCR3.BYTE = 0x30; //enable RE
P_IO.PDR8.BYTE |= 0x04; //set CS line high to complete
}

void Write (ushort Adrs, ushort Count, uchar *DataPtr)
{
SetWREN(); //set write enable flag
P_SCI3.SSR.BYTE &= 0xBF; //clear RDRF
P_SCI3.SCR3.BYTE &= 0x20; //disable RE
P_IO.PDR8.BYTE &= 0xFB; //reset CS line to start operation

//issue the Write Instruction
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDR empty
P_SCI3.TDR = WRITE; //Write ins (02)

//send MSB of address
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDR empty
P_SCI3.TDR = swap((uchar)Adrs>>8);

//send LSB of address
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDR empty
P_SCI3.TDR = swap((uchar)Adrs);

//now set up for interrupt transfer
TxBuffer_ptr = DataPtr; //Set transmit buffer pointer

//the following is for polled
for (i=0;i<Count;i++)
{
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDR empty
P_SCI3.TDR = swap(*TxBuffer_ptr);
TxBuffer_ptr++;
}

while ((P_SCI3.SSR.BYTE & 0x04) != 0x04); //wait until TEND
P_SCI3.SCR3.BYTE = 0x30; //enable RE
P_IO.PDR8.BYTE |= 0x04; //set CS line high to complete
}

void Read (ushort Adrs, ushort Count, uchar *Buffer)
{
int i;

RxCount = Count; //total bytes to be transferred
RxBuffer_ptr = Buffer; //set pointer to receive buffer
P_SCI3.SCR3.BYTE = 0x20; //disable RE
P_SCI3.SSR.BYTE &= 0xBF; //clear RDRF
P_IO.PDR8.BYTE &= 0xFB; //reset CS line to start operation

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 17 of 20

PRELIMINARY

//issue the Read Instruction
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDR empty
P_SCI3.TDR = READ; //send Read instruction (03)

//send MSB of address
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDR empty
P_SCI3.TDR = swap((uchar)Adrs>>8);

//send LSB of address
while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDR empty
P_SCI3.TDR = swap((uchar)Adrs);

while ((P_SCI3.SSR.BYTE & 0x04) != 0x04); //wait until TX end
P_SCI3.SCR3.BYTE = 0x70; //enable RE, TE and RE Interrupts

//now set up for interrupt transfer
TxBuffer_ptr = TxBuffer; //transmit null data

//the following is for polled
for (i=0;i<Count;i++)
{
 while ((P_SCI3.SSR.BYTE & 0x80) != 0x80); //wait until TDR empty
 P_SCI3.TDR = *TxBuffer_ptr; //swap not required for null data
 TxBuffer_ptr++;
}

while(RxCount);
P_SCI3.SCR3.BYTE = 0x30; //enable RE, TE and disable RE Interrupts
P_IO.PDR8.BYTE |= 0x04; //set CS line high
}

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 18 of 20

PRELIMINARY

/***/
/* FILE :applicationdemo.h */
/* DATE :Fri, Dec 20, 2002 */
/* DESCRIPTION :Definition of variable */
/* CPU TYPE :H8/38024F */
/***/

//Type definitions
typedef unsigned char uchar;
typedef unsigned short ushort;

//bit patterns for EEPROM access instructions
#define READSR 0xA0 /* (bit reversed 05) */
#define SETWREN 0x60 /* (bit reversed 06) */
#define WRITE 0x40 /* (bit reversed 02) */
#define READ 0xC0 /* (bit reversed 03) */

//system constants
#define MAXRXCOUNT 35
#define MAXTXCOUNT 35 /* 32 bytes of data plus ins & address */

#define swap(x) (table[x]) /* swap macro */

Reference
1. http://www.mct.net/faq/spi.html

2. Leonard Haile ,Interfacing the H8/3644 to a Serial E2PROM.-How to use the SCI Interface to emulate an SPI
interface(Revision 1.0), 8/3/98,Hitachi Semiconductor (America) Inc.

3. M95640/M95320-64/32 Kbit Serial SPI Bus EEPROM With High Speed Clock, 2002, STMicroelectronics.

http://us.st.com/stonline/books/pdf/docs/5711.pdf

4. H8/38024 Series,H8/38024F-ZTZT Hardware Manual(version 2.0), 20 Feb 2002, Renesas Ltd.

http://www.mct.net/faq/spi.html
http://us.st.com/stonline/books/pdf/docs/5711.pdf

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 19 of 20

PRELIMINARY

Revision Record
Description

Rev.

Date Page Summary

1.00 Sep.03 - First edition issued

H8/300L
SPI™ EEPROM access (SPIeeprom)

AN0303013/Rev1.00 September 2003 Page 20 of 20

PRELIMINARY

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corporation product best suited to the customer's application; they do not convey any
license under any intellectual property rights, or any other rights, belonging to Renesas Technology
Corporation or a third party.

2. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any
third-party's rights, originating in the use of any product data, diagrams, charts, programs,
algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corporation without notice due to product improvements
or other reasons. It is therefore recommended that customers contact Renesas Technology
Corporation or an authorized Renesas Technology Corporation product distributor for the latest
product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss
rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various
means, including the Renesas Technology Corporation Semiconductor home page
(http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corporation assumes no responsibility for any damage, liability or other loss resulting
from the information contained herein.

5. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a
device or system that is used under circumstances in which human life is potentially at stake.
Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation
product distributor when considering the use of a product contained herein for any specific
purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear,
or undersea repeater use.

6. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce
in whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corporation for further details on these materials or the
products contained therein.

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products
better and more reliable, but there is always the possibility that trouble may occur with them. Trouble
with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

	SPI(Interface Overview
	SPI EEPROM Control @
	Bit Reverse
	Status Register @
	SPI Implementation @
	CS Line Control and Implementation
	Read/Write Control and Implementation
	Connecting to the SPI Bus @

	Hardware Design
	Function Overview
	Program Analysis
	READ Status
	Byte WRITE
	Page WRITE
	Byte READ
	Page READ

	Sample Code
	Reference

