

# RX63N Group, RX64M Group

R01AN1959EJ0101 Rev.1.01 Oct 26, 2015

## Introduction

This application note is intended as a reference for confirming the points of difference between the I/O registers of the RX63N Group and RX64M Group.

# **Target Devices**

• RX64M Group 177- and 176-pin versions, ROM capacity: 2 MB to 4 MB

Points of Difference Between RX63N Group and RX64M Group

- RX64M Group 145- and 144-pin versions, ROM capacity: 2 MB to 4 MB
- RX64M Group 100-pin version, ROM capacity: 2 MB to 4 MB

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

## Contents

| 1. | Comparison of Functions of RX63N Group and RX64M Group | 2  |
|----|--------------------------------------------------------|----|
|    |                                                        |    |
| 2. | Comparative Overview of Functions                      | 4  |
|    |                                                        |    |
| 3  | Reference Documents                                    | 62 |



# 1. Comparison of Functions of RX63N Group and RX64M Group

A comparison of the functions of the RX63N Group and RX64M Group is provided below. For details of the functions, see 2., Comparative Overview of Functions, and 3., Reference Documents.

Table 1.1 is a comparative listing of the functions of the RX63N and RX64M.

#### Table 1.1 Comparison of Functions of RX63N and RX64M

| Function                                                            | RX63N            | RX64M            |
|---------------------------------------------------------------------|------------------|------------------|
| Operating mode                                                      | $\triangle$      | $\triangle$      |
| Option-setting memory                                               | $\triangle$      | $\triangle$      |
| Voltage detection circuit (LVDA)                                    | Δ                | $\triangle$      |
| Clock generation circuit                                            | Δ                | $\triangle$      |
| Frequency measurement circuit (MCK)                                 | 0                | ×                |
| Clock frequency accuracy measurement circuit (CAC)                  | ×                | 0                |
| Low power consumption function                                      | $\wedge$         | $\wedge$         |
| Battery backup function                                             | 0                | 0                |
| Register write protection function                                  | 0                | 0                |
| Interrupt controller (ICUb): RX63N, (ICUA): RX64M                   | <u> </u>         | <u> </u>         |
| Buses                                                               | 0                | 0                |
| Memory-protection unit (MPU)                                        |                  | <u> </u>         |
| DMA controller (DMACA): RX63N, (DMACAa): RX64M                      | $\wedge$         | $\wedge$         |
| EXDMA controller (EXDMACa):                                         | 0                | 0                |
| Data transfer controller (DTCa)                                     | 0                | 0                |
| Event link controller (ELC)                                         | ×                | 0                |
| I/O port                                                            | ^                | <u> </u>         |
| Multi-function pin controller (MPC)                                 | $\wedge$         | $\wedge$         |
| Multi-function timer pulse unit 2 (MTU2a): RX63N                    | $\wedge$         | $\wedge$         |
| Multi-function timer pulse unit 3 (MTU3a): RX64M                    |                  |                  |
| Port output enable 2 (POE2a): RX63N                                 | $\wedge$         | Δ                |
| Port output enable 3 (POE3a): RX64M                                 |                  |                  |
| General PWM timer (GPTa)                                            | ×                | 0                |
| 16-bit timer pulse unit (TPUa)                                      | 0                | 0                |
| Programmable pulse generator (PPG)                                  | <u>0</u>         | 0                |
| 8-bit timer (TMR)                                                   | <u> </u>         | <u> </u>         |
| Compare match timer (CMT)                                           | $\wedge$         | $\wedge$         |
| Compare match timer W (CMTW)                                        | ×                | 0                |
| Realtime clock (RTCa): RX63N, (RTCd): RX64M                         | <u>^</u>         | <u> </u>         |
| Watchdog timer (WDTA)                                               | 0                | 0                |
| Independent watchdog timer (IWDTa)                                  | 0                | 0                |
| Ethernet controller (ETHERC)                                        | 0                | 0                |
| PTP module for the Ethernet controller (EPTPC)                      | X                | 0                |
| Ethernet controller direct memory access controller (EDMAC): RX63N  | $\Delta$         | $\Delta$         |
| Ethernet controller direct memory access controller (EDMACa): RX64M | $\Delta$         | $\Delta$         |
|                                                                     |                  |                  |
| USB 2.0 Host/Function module (USBa): RX63N                          | $\bigtriangleup$ | $\bigtriangleup$ |
| USB 2.0 FS Host/Function module (USBb): RX64M                       |                  |                  |
| USB 2.0 Full Speed Host/Function module (USBA)                      | ×                | 0                |
| Serial communications interface (SCIc, SCId): RX63N                 | $\bigtriangleup$ | $\triangle$      |
| Serial communications interface (SCIg, SCIh): RX64M                 |                  |                  |
| FIFO embedded serial communications interface (SCIFA)               | ×                | 0                |
| I <sup>2</sup> C bus interface (RIIC): RX63N, (RIICa): RX64M        | $\triangle$      | $\triangle$      |



| Function                                                  | RX63N            | RX64M            |
|-----------------------------------------------------------|------------------|------------------|
| CAN module (CAN)                                          | 0                | 0                |
| Serial peripheral interface (RSPI): RX63N, (RSPIa): RX64M | $\bigtriangleup$ | $\triangle$      |
| Quad serial peripheral interface (QSPI)                   | X                | 0                |
| IEbus controller (IEB)                                    | 0                | ×                |
| CRC calculator (CRC)                                      | 0                | 0                |
| Serial sound interface (SSI)                              | ×                | 0                |
| Sampling rate converter (SRC)                             | X                | 0                |
| SD host interface (SDHI)                                  | X                | 0                |
| Multimedia card interface (MMCIF)                         | X                | 0                |
| Parallel data capture unit (PDC)                          | $\triangle$      | $\triangle$      |
| Boundary scan                                             | 0                | 0                |
| AES                                                       | X                | 0                |
| DES                                                       | ×                | 0                |
| SHA                                                       | ×                | 0                |
| RNG                                                       | X                | 0                |
| 12-bit A/D converter (S12ADa): RX63N, (S12ADC): RX64M     | $\triangle$      | $\bigtriangleup$ |
| 10-bit A/D converter (ADb)                                | 0                | ×                |
| D/A converter (DAa): RX63N                                | $\triangle$      | $\bigtriangleup$ |
| 12-bit D/A converter (R12DA): RX64M                       |                  |                  |
| Temperature sensor                                        | $\triangle$      | $\bigtriangleup$ |
| Data operation circuit (DOC)                              | ×                | 0                |
| RAM                                                       | $\Delta$         | $\triangle$      |
| Standby RAM                                               | ×                | 0                |
| Flash memory                                              | $\Delta$         | $\triangle$      |

Note: O: Function implemented, ×: Function not implemented, △: Differences exist between implementation of function on RX63N and RX4M.



# 2. Comparative Overview of Functions

## 2.1 Operating Modes

Table 2.1 shows a comparative listing of the operating mode registers.

## Table 2.1 Comparative Listing of Operating Mode Registers

| Register | Bit     | RX63N | RX64M                  |
|----------|---------|-------|------------------------|
| SYSCR1   | ECCRAME |       | ECCRAM enable bit      |
|          | SBYRAME | —     | Standby RAM enable bit |

## 2.2 Option-Setting Memory

Table 2.2 shows a comparative listing of the option-setting memory registers.

## Table 2.2 Comparative Listing of Option-Setting Memory Registers

| Register | Bit        | RX63N                    | RX64M                                  |
|----------|------------|--------------------------|----------------------------------------|
| SPCC     | _          |                          | Serial command control register        |
| OSIS     |            | _                        | OCD/serial program ID setting register |
| OFS1     | VDSEL[1:0] |                          | Voltage detection 0 level select bits  |
| MDEB     |            | Endian select register B | —                                      |
| MDES     | —          | Endian select register S | _                                      |
| MDE      | —          |                          | Endian select register                 |
| TMEF     |            |                          | TM enable flag register                |
| TMINF    |            |                          | TM identification data register        |



# 2.3 Voltage Detection Circuit

Table 2.3 shows a comparative listing of the voltage detection circuit specifications, and Table 2.4 shows a comparative listing of the voltage detection circuit registers.

|                                    |                      | RX63N (LVDA)                                                                                               |                                                                                                                                                                                                                        |                                                                                                                                                                                                                        | RX64M (LVDA)                                                                                               |                                                                                                                                                                                                                        |                                                                                                                                                                                                                        |
|------------------------------------|----------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Item                               |                      | Voltage<br>Monitoring 0                                                                                    | Voltage<br>Monitoring 1                                                                                                                                                                                                | Voltage<br>Monitoring 2                                                                                                                                                                                                | Voltage<br>Monitoring 0                                                                                    | Voltage<br>Monitoring 1                                                                                                                                                                                                | Voltage<br>Monitoring 2                                                                                                                                                                                                |
| VCC<br>monitoring                  | Monitored voltage    | Vdet0                                                                                                      | Vdet1                                                                                                                                                                                                                  | Vdet2                                                                                                                                                                                                                  | Vdet0                                                                                                      | Vdet1                                                                                                                                                                                                                  | Vdet2                                                                                                                                                                                                                  |
|                                    | Detection<br>target  | Voltage falls<br>lower than<br>Vdet0.                                                                      | Voltage rises or falls past Vdet1.                                                                                                                                                                                     | Voltage rises or falls past Vdet2.                                                                                                                                                                                     | Voltage falls<br>lower than<br>Vdet0.                                                                      | Voltage rises or falls past Vdet1.                                                                                                                                                                                     | Voltage rises or falls past Vdet2.                                                                                                                                                                                     |
|                                    | Detection<br>voltage | One level fixed                                                                                            | Specify voltage<br>using<br>LVDLVLR.LVD<br>1LVL[3:0] bits                                                                                                                                                              | Specify voltage<br>using<br>LVDLVLR.LVD<br>2LVL[3:0] bits                                                                                                                                                              | Selectable from<br>three levels<br>using<br>OFS1.VDSEL<br>[1:0] bits.                                      | Selectable from<br>three levels<br>using<br>LVDLVLR.LVD1<br>LVL[3:0] bits.                                                                                                                                             | Selectable from<br>three levels<br>using<br>LVDLVLR.LVD2<br>LVL[3:0] bits.                                                                                                                                             |
|                                    | Monitor<br>flag      | _                                                                                                          | LVD1SR.LVD1<br>MON flag:<br>Monitors if<br>higher or lower<br>than Vdet1.<br>LVD1SR.LVD1<br>DET flag:<br>Detects rise or<br>fall past Vdet1.                                                                           | LVD2SR.LVD2<br>MON flag:<br>Monitors if<br>higher or lower<br>than Vdet2.<br>LVD2SR.LVD2<br>DET flag:<br>Detects rise or<br>fall past Vdet2.                                                                           | -                                                                                                          | LVD1SR.LVD1<br>MON flag:<br>Monitors if<br>higher or lower<br>than Vdet1.<br>LVD1SR.LVD1<br>DET flag:<br>Detects rise or<br>fall past Vdet1.                                                                           | LVD2SR.LVD2<br>MON flag:<br>Monitors if<br>higher or lower<br>than Vdet2.<br>LVD2SR.LVD2<br>DET flag:<br>Detects rise or<br>fall past Vdet2.                                                                           |
| Voltage<br>detection<br>processing | Reset                | Voltage<br>monitoring 0<br>reset                                                                           | Voltage<br>monitoring 1<br>reset                                                                                                                                                                                       | Voltage<br>monitoring 2<br>reset                                                                                                                                                                                       | Voltage<br>monitoring 0<br>reset                                                                           | Voltage<br>monitoring 1<br>reset                                                                                                                                                                                       | Voltage<br>monitoring 2<br>reset                                                                                                                                                                                       |
|                                    | Interrupt            | Reset when<br>Vdet0 > VCC:<br>CPU operation<br>restarts a fixed<br>period of time<br>after VCC ><br>Vdet0. | Reset when<br>Vdet1 > VCC:<br>Selectable<br>between CPU<br>operation<br>restarts a fixed<br>period of time<br>after VCC ><br>Vdet1 and CPU<br>operation<br>restarts a fixed<br>period of time<br>after Vdet1 ><br>VCC. | Reset when<br>Vdet2 > VCC:<br>Selectable<br>between CPU<br>operation<br>restarts a fixed<br>period of time<br>after VCC ><br>Vdet2 and CPU<br>operation<br>restarts a fixed<br>period of time<br>after Vdet2 ><br>VCC. | Reset when<br>Vdet0 > VCC:<br>CPU operation<br>restarts a fixed<br>period of time<br>after VCC ><br>Vdet0. | Reset when<br>Vdet1 > VCC:<br>Selectable<br>between CPU<br>operation<br>restarts a fixed<br>period of time<br>after VCC ><br>Vdet1 and CPU<br>operation<br>restarts a fixed<br>period of time<br>after Vdet1 ><br>VCC. | Reset when<br>Vdet2 > VCC:<br>Selectable<br>between CPU<br>operation<br>restarts a fixed<br>period of time<br>after VCC ><br>Vdet2 and CPU<br>operation<br>restarts a fixed<br>period of time<br>after Vdet2 ><br>VCC. |
|                                    | Interrupt            | _                                                                                                          | Voltage<br>monitoring 1<br>interrupt<br>Non-maskable<br>interrupt                                                                                                                                                      | Voltage<br>monitoring 2<br>interrupt<br>Non-maskable<br>interrupt                                                                                                                                                      |                                                                                                            | Voltage<br>monitoring 1<br>interrupt<br>Selectable<br>between non-<br>maskable<br>interrupt and<br>interrupt.                                                                                                          | Voltage<br>monitoring 2<br>interrupt<br>Selectable<br>between non-<br>maskable<br>interrupt and<br>interrupt.                                                                                                          |
|                                    |                      |                                                                                                            | Interrupt request<br>generated both<br>when Vdet1 ><br>VCC and when<br>VCC > Vdet1, or<br>one or the other.                                                                                                            | Interrupt request<br>generated both<br>when Vdet2 ><br>VCC and when<br>VCC > Vdet2, or<br>one or the other.                                                                                                            | -                                                                                                          | Interrupt request<br>generated both<br>when Vdet1 ><br>VCC and when<br>VCC > Vdet1, or<br>one or the other.                                                                                                            | Interrupt request<br>generated both<br>when Vdet2 ><br>VCC and when<br>VCC > Vdet2, or<br>one or the other.                                                                                                            |

## Table 2.3 Comparative Listing of Voltage Detection Circuit Specifications



RX63N Group, RX64M Group

Points of Difference Between RX63N Group and RX64M Group

|                     |                                 | RX63N (LVDA)            |                                              |                                              | RX64M (LVDA)            |                                                              |                                                              |
|---------------------|---------------------------------|-------------------------|----------------------------------------------|----------------------------------------------|-------------------------|--------------------------------------------------------------|--------------------------------------------------------------|
| Item                |                                 | Voltage<br>Monitoring 0 | Voltage<br>Monitoring 1                      | Voltage<br>Monitoring 2                      | Voltage<br>Monitoring 0 | Voltage<br>Monitoring 1                                      | Voltage<br>Monitoring 2                                      |
| Digital filter      | Enable/<br>disable<br>switching |                         | Available                                    | Available                                    | _                       | Available                                                    | Available                                                    |
|                     | Sampling<br>time                | _                       | 1/n LOCO<br>frequency × 2<br>(n: 1, 2, 4, 8) | 1/n LOCO<br>frequency × 2<br>(n: 1, 2, 4, 8) | _                       | 1/n LOCO<br>frequency × 2<br>(n: 2, 4, 8, 16)                | 1/n LOCO<br>frequency × 2<br>(n: 2, 4, 8, 16)                |
| Event link function |                                 | _                       | _                                            | _                                            | _                       | Available: Vdet<br>pass-through<br>detection event<br>output | Available: Vdet<br>pass-through<br>detection event<br>output |

| Table 2.4 Co | Table 2.4 Comparative Listing of Voltage Detection Circuit Registers |              |                                                   |  |  |  |  |  |
|--------------|----------------------------------------------------------------------|--------------|---------------------------------------------------|--|--|--|--|--|
| Register     | Bit                                                                  | RX63N (LVDA) | RX64M (LVDA)                                      |  |  |  |  |  |
| LVD1CR1      | LVD1IRQSEL                                                           | —            | Voltage monitoring 1 interrupt type<br>select bit |  |  |  |  |  |
| LVD2CR1      | LVD2IRQSEL                                                           |              | Voltage monitoring 2 interrupt type<br>select bit |  |  |  |  |  |

## R01AN1959EJ0101 Rev.1.01 Oct 26, 2015



# 2.4 Clock Generation Circuit

Table 2.5 shows a comparative listing of the clock generation circuit specifications, and Table 2.6 shows a comparative listing of the clock generation circuit registers.

| Item | RX63N                                                                                                                                                                                                                                                                                         | RX64M                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Uses | <ul> <li>Generates the system clock (ICLK) supplied to the CPU, DMAC, DTC, code flash memory, and RAM.</li> <li>Generates the peripheral module clocks (PCLK) supplied to the ETHERC, EDMAC, and DEU.</li> </ul>                                                                              | <ul> <li>Generates the system clock (ICLK) supplied to the CPU, DMAC, DTC, code flash memory, and RAM.</li> <li>Generates the peripheral module clocks (PCLK) supplied to the ETHERC, EDMAC, EPTPC, USBHS, RSPI, SCIF, MTU3, GPTA, and AES.</li> </ul>                                                                                                                                                                                     |
|      | <ul> <li>Generates the peripheral module<br/>clocks (PCLKB) supplied to the<br/>peripheral module clocks.</li> </ul>                                                                                                                                                                          | <ul> <li>Generates the peripheral module<br/>clocks (PCLKB) supplied to the<br/>peripheral module clocks.</li> <li>Generates the peripheral module<br/>(analog conversion) clocks (PCLKC:<br/>unit 0, PCLKD: unit 1) to be supplied<br/>to the S12ADC.</li> </ul>                                                                                                                                                                          |
|      | <ul> <li>Generates the FlashIF clock (FCLK) supplied to the FlashIF.</li> <li>Generates the external bus clock (BCLK) supplied to the external bus.</li> <li>Generates the SDRAM clock (SDCLK) supplied to the SDRAM.</li> <li>Generates the USB clock (UCLK) supplied to the USB.</li> </ul> | <ul> <li>Generates the FlashIF clock (FCLK) supplied to the FlashIF.</li> <li>Generates the external bus clock (BCLK) supplied to the external bus.</li> <li>Generates the SDRAM clock (SDCLK) supplied to the SDRAM.</li> <li>Generates the USB clock (UCLK) supplied to the PHY in the USB0 and USBA.</li> <li>Generates the USBHS clock (USBMCLK) supplied to the PHY in the USBA.</li> <li>Generates the CAC clock (CACCLK)</li> </ul> |
|      | <ul> <li>Generates the CAN clock (CANMCLK) supplied to the CAN.</li> <li>Generates the IEBUS clock (IECLK) supplied to the IEBUS.</li> </ul>                                                                                                                                                  | <ul> <li>supplied to the CAC.</li> <li>Generates the CAN clock (CANMCLK) supplied to the CAN.</li> </ul>                                                                                                                                                                                                                                                                                                                                   |
|      | <ul> <li>Generates the RTC-dedicated sub<br/>clock (RTCSCLK) supplied to the RTC.</li> <li>Generates the RTC-dedicated main<br/>clock (RTCMCLK) supplied to the<br/>RTC.</li> </ul>                                                                                                           | <ul> <li>Generates the RTC sub clock<br/>(RTCSCLK) supplied to the RTC.</li> <li>Generates the RTC main clock<br/>(RTCMCLK) supplied to the RTC.</li> </ul>                                                                                                                                                                                                                                                                                |
|      | <ul> <li>Generates the IWDT-dedicated clock<br/>(IWDTCLK) supplied to the IWDT.</li> <li>Generates the JTAG clock (JTAGTCK)<br/>supplied to the JTAG.</li> </ul>                                                                                                                              | <ul> <li>Generates the IWDT-dedicated clock<br/>(IWDTCLK) supplied to the IWDT.</li> <li>Generates the JTAG clock (JTAGTCK)<br/>supplied to the JTAG.</li> </ul>                                                                                                                                                                                                                                                                           |

## Table 2.5 Comparative Listing of Clock Generation Circuit Specifications



| ltem                         | RX63N                                                                            | RX64M                                                                                       |
|------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Operating                    | <ul> <li>ICLK: 100 MHz (max.)</li> </ul>                                         | <ul> <li>ICLK: 120 MHz (max.)</li> </ul>                                                    |
| frequencies                  | <ul> <li>PCLKA: 100 MHz (max.)</li> </ul>                                        | <ul> <li>PCLKA: 120 MHz (max.)</li> </ul>                                                   |
|                              | PCLKB: 50 MHz (max.)                                                             | <ul> <li>PCLKB: 60 MHz (max.)</li> </ul>                                                    |
|                              |                                                                                  | PCLKC: 60 MHz (max.)                                                                        |
|                              |                                                                                  | PCLKD: 60 MHz (max.)                                                                        |
|                              | FCLK: 4 MHz to 50 MHz                                                            | FCLK: 4 MHz to 60 MHz                                                                       |
|                              | (for programming and erasing the                                                 | (for programming and erasing the code                                                       |
|                              | ROM and E2 data flash)                                                           | flash memory and data flash memory)                                                         |
|                              | 50 MHz (max.)                                                                    | 60 MHz (max.)                                                                               |
|                              | (for reading from the E2 data flash)                                             | (for reading from the data flash)                                                           |
|                              | <ul> <li>BCLK: 100 MHz (max.)</li> </ul>                                         | <ul> <li>BCLK: <u>120 MHz</u> (max.)</li> </ul>                                             |
|                              | <ul> <li>BCLK pin output: 50 MHz (max.)</li> </ul>                               | <ul> <li>BCLK pin output: 60 MHz (max.)</li> </ul>                                          |
|                              | <ul> <li>SDCLK pin output: 50 MHz (max.)</li> </ul>                              | <ul> <li>SDCLK pin output: 60 MHz (max.)</li> </ul>                                         |
|                              | <ul> <li>UCLK: 48 MHz (max.)</li> </ul>                                          | <ul> <li>UCLK: 48 MHz (max.)</li> </ul>                                                     |
|                              |                                                                                  | USBMCLK: 20 MHz, 24 MHz                                                                     |
|                              |                                                                                  | CACCLK: Same frequency as each                                                              |
|                              |                                                                                  | oscillator                                                                                  |
|                              | CANMCLK: 20 MHz (max.)                                                           | <ul> <li>CANMCLK: 24 MHz (max.)</li> </ul>                                                  |
|                              | IECLK: 50 MHz (max.)                                                             |                                                                                             |
|                              | <ul> <li>RTCSCLK: 32.768 kHz</li> </ul>                                          | <ul> <li>RTCSCLK: 32.768 kHz</li> </ul>                                                     |
|                              | <ul> <li>RTCMCLK: 4 MHz to 16 MHz</li> </ul>                                     | <ul> <li>RTCMCLK: 8 MHz to 16 MHz</li> </ul>                                                |
|                              | <ul> <li>IWDTCLK: 125 kHz</li> </ul>                                             | <ul> <li>IWDTCLK: 120 kHz</li> </ul>                                                        |
|                              | <ul> <li>JTAGTCK: 10 MHz (max.)</li> </ul>                                       | JTAGTCK: 10 MHz (max.)                                                                      |
| Main clock                   | Resonator frequency:                                                             | Resonator frequency:                                                                        |
| oscillator                   | 4 MHz to 16 MHz                                                                  | 8 MHz to 24 MHz                                                                             |
|                              | External clock input frequency:                                                  | External clock input frequency:                                                             |
|                              | 20 MHz (max.)                                                                    | 24 MHz (max.)                                                                               |
|                              | Connectable resonator or additional                                              | Connectable resonator or additional                                                         |
|                              | circuit: Ceramic resonator, crystal<br>resonator                                 | circuit: Ceramic resonator, crystal<br>resonator                                            |
|                              |                                                                                  |                                                                                             |
|                              | Connection pins: EXTAL, XTAL                                                     | <ul><li>Connection pins: EXTAL, XTAL</li><li>Oscillation stop detection function:</li></ul> |
|                              | Oscillation stop detection function:     When oscillation stop of the main clock | Oscillation stop detection function:     When oscillation stop of the main clock            |
|                              | is detected, the system clock source is                                          | is detected, the system clock source is                                                     |
|                              | switched to LOCO, and MTU output                                                 | switched to LOCO, MTU, and GPT                                                              |
|                              | can be forcedly driven to high-                                                  | output can be forcedly driven to high-                                                      |
|                              | impedance.                                                                       | impedance.                                                                                  |
| Sub-clock                    | Resonator frequency: 32.768 kHz                                                  | Resonator frequency: 32.768 kHz                                                             |
| oscillator                   | Connectable resonator or additional                                              | Connectable resonator or additional                                                         |
|                              | circuit: crystal resonator                                                       | circuit: crystal resonator                                                                  |
|                              | <ul> <li>Connection pins: XCIN, XCOUT</li> </ul>                                 | Connection pins: XCIN, XCOUT                                                                |
| PLL                          | <ul> <li>Input clock source: Main clock</li> </ul>                               | Input clock source: Main clock, HOCO                                                        |
|                              | <ul> <li>Input pulse frequency division ratio:</li> </ul>                        | <ul> <li>Input pulse frequency division ratio:</li> </ul>                                   |
|                              | Selectable from 1, 2, and 4                                                      | Selectable from 1, 2, and 3                                                                 |
|                              | <ul> <li>Input frequency: 4 MHz to 16 MHz</li> </ul>                             | <ul> <li>Input frequency: 8 MHz to 24 MHz</li> </ul>                                        |
|                              | <ul> <li>Frequency multiplication ratio:</li> </ul>                              | <ul> <li>Frequency multiplication ratio:</li> </ul>                                         |
|                              | Selectable within range from 8, 10, 12,                                          | Selectable within range from 10 to 30                                                       |
|                              | 16, 20, 24, 25, 50                                                               |                                                                                             |
|                              | VCO oscillation frequency: 104 MHz to                                            | PLL frequency synthesizer output                                                            |
| I link an a st               | 200 MHz                                                                          | clock frequency: 120 MHz to 240 MHz                                                         |
| High-speed                   | Oscillation frequency: 50 MHz                                                    | Oscillation frequency: Selectable from     16 MHz, 18 MHz, and 20 MHz                       |
| on-chip oscillator<br>(HOCO) | <ul> <li>HOCO power supply control</li> </ul>                                    | 16 MHz, 18 MHz, and 20 MHz                                                                  |
|                              |                                                                                  | HOCO power supply control                                                                   |



| Item                                      | RX63N                                                                    | RX64M                                                                    |
|-------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Low-speed on-chip oscillator (LOCO)       | Oscillation frequency: 125 kHz                                           | Oscillation frequency: 240 kHz                                           |
| IWDT-dedicated<br>on-chip oscillator      | Oscillation frequency: 125 kHz                                           | Oscillation frequency: 120 kHz                                           |
| External clock<br>input (TCK) for<br>JTAG | Input clock frequency: 10 MHz (max.)                                     | Input clock frequency: 10 MHz (max.)                                     |
| Control of output<br>on BCLK pin          | <ul> <li>BCLK clock output or high output is<br/>selectable</li> </ul>   | <ul> <li>BCLK clock output or high output is<br/>selectable</li> </ul>   |
|                                           | <ul> <li>BCLK or BCLK/2 is selectable as the<br/>output clock</li> </ul> | <ul> <li>BCLK or BCLK/2 is selectable as the<br/>output clock</li> </ul> |
| Control of output<br>on SDCLK pin         | SDCLK clock output or high output is<br>selectable                       | SDCLK clock output or high output is<br>selectable                       |
| Event link function (output)              | _                                                                        | Main clock oscillator oscillation stop<br>detection                      |
| Event link function (input)               |                                                                          | Switching of clock source to low-speed<br>on-chip oscillator             |

#### Table 2.6 Comparative Listing of Clock Generation Circuit Registers

| Register  | Bit       | RX63N                                                       | RX64M                                                       |
|-----------|-----------|-------------------------------------------------------------|-------------------------------------------------------------|
| SCKCR     | PCKD      |                                                             | Peripheral module clock D<br>(PCLKD) select bit             |
|           | PCKC      | _                                                           | Peripheral module clock C<br>(PCLKC) select bit             |
| SCKCR2    | IEBCK     | IEBUS clock (IECLK) select bit                              |                                                             |
| PLLCR     | PLLSRCSEL | _                                                           | PLL clock source select bit                                 |
| HOCOCR2   |           | _                                                           | High-speed on-chip oscillator<br>control register 2         |
| OSCOVFSR  |           |                                                             | Oscillation stabilization flag register                     |
| MOSCWTCR* | MSTS      | Bits 0 to 4: Main clock oscillator<br>wait time select bits | Bits 0 to 7: Main clock oscillator<br>wait time select bits |
| SOSCWTCR* | SSTS      | Bits 0 to 4: Sub-clock oscillator wait time select bits     | Bits 0 to 7: Sub-clock oscillator wait time select bits     |
| MOFCR     | MODRV2    |                                                             | Main clock oscillator drive capability                      |
|           | [1:0]     |                                                             | 2 switch bits                                               |
|           | MOSEL     |                                                             | Main clock oscillator switch bit                            |

Note: \* In the User's Manual: Hardware of the RX63N Group, MOSCWTCR and SOSCWTCR are described in section 11, Low Power Consumption.



# 2.5 Low Power Consumption Functions

Table 2.7 shows a comparative listing of the low power consumption, and Table 2.8 shows a comparative listing of the low power consumption function registers.

| ltem                                                           | RX63N                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RX64M                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reduction of power<br>consumption by<br>clock switching        | The frequency division ratio can be set<br>independently for the system clock<br>(ICLK), peripheral module clock (ICLKA<br>and PCLKB), external bus clock (BCLK),<br>and Flash interface clock (FCLK).                                                                                                                                                                                                                                                 | The frequency division ratio can be set<br>independently for the system clock<br>(ICLK), peripheral module clock (ICLKA,<br>PCLKB, PCLKC, and PCLKD), external<br>bus clock (BCLK), and Flash interface<br>clock (FCLK).                                                                                                                                                                                                                               |
| BCLK output control function                                   | BCLK output or high-level output can be selected.                                                                                                                                                                                                                                                                                                                                                                                                      | BCLK output or high-level output can be selected.                                                                                                                                                                                                                                                                                                                                                                                                      |
| SDCLK output<br>control function                               | SDCLK output or high-level output can be selected.                                                                                                                                                                                                                                                                                                                                                                                                     | SDCLK output or high-level output can be selected.                                                                                                                                                                                                                                                                                                                                                                                                     |
| Module stop<br>function                                        | Each peripheral module can be stopped independently.                                                                                                                                                                                                                                                                                                                                                                                                   | Each peripheral module can be stopped independently.                                                                                                                                                                                                                                                                                                                                                                                                   |
| Function for<br>transition to low<br>power consumption<br>mode | It is possible to transition to a low power<br>consumption mode in which the CPU,<br>peripheral modules, or oscillators are<br>stopped.                                                                                                                                                                                                                                                                                                                | It is possible to transition to a low power<br>consumption mode in which the CPU,<br>peripheral modules, or oscillators are<br>stopped.                                                                                                                                                                                                                                                                                                                |
| Low power<br>consumption modes                                 | <ul> <li>Sleep mode</li> <li>All-module clock stop mode</li> <li>Software standby mode</li> <li>Deep software standby mode</li> </ul>                                                                                                                                                                                                                                                                                                                  | <ul> <li>Sleep mode</li> <li>All-module clock stop mode</li> <li>Software standby mode</li> <li>Deep software standby mode</li> </ul>                                                                                                                                                                                                                                                                                                                  |
| Operating power<br>reduction function                          | <ul> <li>Power consumption can be reduced<br/>in normal operation, sleep mode, and<br/>all-module clock stop mode by<br/>selecting an appropriate operating<br/>power consumption control mode<br/>according to the operating frequency<br/>and operating voltage.</li> <li>Operating power control modes: 3         <ul> <li>High-speed operating mode</li> <li>Low-speed operating mode 1</li> <li>Low-speed operating mode 2</li> </ul> </li> </ul> | <ul> <li>Power consumption can be reduced<br/>in normal operation, sleep mode, and<br/>all-module clock stop mode by<br/>selecting an appropriate operating<br/>power consumption control mode<br/>according to the operating frequency<br/>and operating voltage.</li> <li>Operating power control modes: 3         <ul> <li>High-speed operating mode</li> <li>Low-speed operating mode 1</li> <li>Low-speed operating mode 2</li> </ul> </li> </ul> |

| Table 2.7 | Comparative Listing of Low Power Consumption Functions |
|-----------|--------------------------------------------------------|
|-----------|--------------------------------------------------------|



| Register | Bit     | RX63N                                                   | RX64M                                                                                                         |
|----------|---------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| MSTPCRA  | MSTPA0  | _                                                       | Compare match timer W (unit 1) module stop bit                                                                |
|          | MSTPA1  | _                                                       | Compare match timer W (unit 0) module stop bit                                                                |
|          | MSTPA7  |                                                         | General PWM timer                                                                                             |
|          | MSTPA12 | 16-bit timer pulse unit 1 (unit 1)<br>module stop bit   | _                                                                                                             |
|          | MSTPA16 | _                                                       | 12-bit A/D converter (unit 1) module stop bit                                                                 |
|          | MSTPA23 | 10-bit A/D converter module stop bit                    | _                                                                                                             |
| MSTPCRB  | MSTPB6  | _                                                       | Data operation circuit module stop<br>bit                                                                     |
|          | MSTPB9  |                                                         | Event link controller module stop bit                                                                         |
|          | MSTPB12 | _                                                       | Universal serial bus 2.0 FS interface module stop bit                                                         |
|          | MSTPB14 |                                                         | Ethernet controller, Ethernet<br>controller direct memory access<br>controller (channel 1) module stop<br>bit |
|          | MSTPB16 | Serial peripheral interface 1 module stop bit           | _                                                                                                             |
|          | MSTPB18 | Universal serial bus interface (port 1) module stop bit | —                                                                                                             |
|          | MSTPB20 | I <sup>2</sup> C bus interface 1 module stop bit        |                                                                                                               |
|          | MSTPC1  | RAM1 module stop bit                                    | _                                                                                                             |
| MSTPCRC  | MSTPC6  |                                                         | ECCRAM module stop bit                                                                                        |
|          | MSTPC7  |                                                         | Standby RAM module stop bit                                                                                   |
|          | MSTPC16 | I <sup>2</sup> C bus interface 3 module stop bit        |                                                                                                               |
|          | MSTPC18 | IEBUS module stop bit                                   |                                                                                                               |
|          | MSTPC22 | Serial peripheral interface 2 module stop bit           | _                                                                                                             |
|          | MSTPC23 | _                                                       | Quad serial parallel interface module stop bit                                                                |
|          | MSTPC24 | Serial communication interface 11 module stop bit       | FIFO embedded communication<br>interface 11 module stop bit                                                   |
|          | MSTPC25 | Serial communication interface 10 module stop bit       | FIFO embedded communication<br>interface 10 module stop bit                                                   |
|          | MSTPC26 | Serial communication interface 9 module stop bit        | FIFO embedded communication<br>interface 9 module stop bit                                                    |
|          | MSTPC27 | Serial communication interface 8 module stop bit        | FIFO embedded communication<br>interface 8 module stop bit                                                    |
| MSTPCRD  | MSTPD0  |                                                         | Module stop D0 setting bit                                                                                    |
|          | MSTPD1  |                                                         | Module stop D1 setting bit                                                                                    |
|          | MSTPD2  |                                                         | Module stop D2 setting bit                                                                                    |
|          | MSTPD3  |                                                         | Module stop D3 setting bit                                                                                    |
|          | MSTPD4  |                                                         | Module stop D4 setting bit                                                                                    |
|          | MSTPD5  |                                                         | Module stop D5 setting bit                                                                                    |
|          | MSTPD6  |                                                         | Module stop D6 setting bit                                                                                    |
|          | MSTPD7  |                                                         | Module stop D7 setting bit                                                                                    |

#### Table 2.8 Comparative Listing of Low Power Consumption Function Registers

| Register       | Bit           | RX63N                                                       | RX64M                                                    |
|----------------|---------------|-------------------------------------------------------------|----------------------------------------------------------|
| MSTPCRD        | MSTPD14       | _                                                           | Serial sound interface 1 module stop bit                 |
|                | MSTPD15       | _                                                           | Serial sound interface 0 module stop bit                 |
|                | MSTPD19       |                                                             | SD host interface module stop bit                        |
|                | MSTPD21       |                                                             | MMC host interface module stop bit                       |
|                | MSTPD23       |                                                             | Sampling rate converter module                           |
|                |               |                                                             | stop bit                                                 |
|                | MSTPD31       | Data encryption unit (DEU) module<br>stop bit               | _                                                        |
| MOSCWTCR*      | _             | Bits 0 to 4: Main clock oscillator wait<br>time select bits | Bits 0 to 7: Main clock oscillator wait time select bits |
| SOSCWTCR*      |               | Bits 0 to 4: Main clock oscillator wait time select bits    | Bits 0 to 7: Main clock oscillator wait time select bits |
| PLLWTCR        |               | PLL wait control register                                   |                                                          |
| Noto: * Soo th | na Clack Gana | ration Circuit section of RX64M Group L                     | leer's Manual: Hardware for a                            |

Note: \* See the Clock Generation Circuit section of RX64M Group User's Manual: Hardware for a description of MOSCWTCR and SOSCWTCR.



# 2.6 Interrupt Controller

Table 2.9 shows a comparative listing of the interrupt controller specifications, and Table 2.10 shows a comparative listing of the interrupt controller registers.

| Item      |                                      | RX63N (ICUb)                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RX64M (ICUA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------|--------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interrupt | Peripheral<br>function<br>interrupts | <ul> <li>Interrupt source is from peripheral modules</li> <li>Interrupt detection: Edge detection/level detection (detection method is fixed for each interrupt source)</li> <li>Interrupt grouping: Multiple interrupt sources can be grouped together and treated as a single interrupt source.</li> <li>Number of groups for edge detection interrupts: 7 (groups 0 to 6)</li> <li>Number of groups for edge detection interrupts: 1 (group 12)</li> </ul> | <ul> <li>Interrupts from peripheral modules</li> <li>Interrupt detection: Edge detection/level detection (detection method is fixed for each interrupt source)</li> <li>Interrupt grouping: Multiple interrupt sources can be grouped together and treated as a single interrupt source.</li> <li>Group BE0 interrupt: Peripheral module interrupt source using PCLKB as operation clock (edge detection)</li> <li>Group BL0 and BL1 interrupts: Peripheral module interrupt sources using PCLKB as operation clock (level detection)</li> <li>Group AL0 and AL1 interrupts: Peripheral module interrupt sources using PCLKA as operation clock (level detection)</li> <li>Group AL0 and AL1 interrupts: Peripheral module interrupt sources using PCLKA as operation clock (level detection)</li> <li>Selectable interrupt B: For each interrupt vector number from 128 to 207, one peripheral module interrupt source using PCLKB as operation clock may be assigned.</li> <li>Selectable interrupt A: For each interrupt vector number from 208 to 255, one peripheral module interrupt source using PCLKA as operation clock may be assigned.</li> </ul> |
|           |                                      | two interrupt requests can be<br>selected as the interrupt<br>request source.<br>Number of units: 6                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

## Table 2.9 Comparative Listing of Interrupt Controller Specifications



| ltem                           | _                                            | RX63N (ICUb)                                                                                                                                                                                                                                                                                     | RX64M (ICUA)                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interrupt                      | External pin<br>interrupts                   | <ul> <li>Interrupts from signals input to IRQi pins (i = 0 to 15)</li> <li>Interrupt detection: Low level, falling edge, rising edge, and rising and falling edges. One of these detection methods can be set for each source.</li> <li>Digital filter may be used to suppress noise.</li> </ul> | <ul> <li>Interrupts from signals input to<br/>IRQi pins (i = 0 to 15)</li> <li>Interrupt detection: Low level,<br/>falling edge, rising edge, and<br/>rising and falling edges. One of<br/>these detection methods can<br/>be set for each source.</li> <li>Digital filter may be used to<br/>suppress noise.</li> </ul>                                                           |
|                                | Software<br>interrupt                        | <ul> <li>Interrupts can be generated by writing to a register.</li> <li>Interrupt sources: 1</li> </ul>                                                                                                                                                                                          | <ul> <li>Interrupts can be generated by writing to a register.</li> <li>Interrupt sources: 2</li> </ul>                                                                                                                                                                                                                                                                            |
|                                | Interrupt priority<br>level                  | Specified in interrupt source priority register (IPR)                                                                                                                                                                                                                                            | Specified in interrupt source priority register (IPR)                                                                                                                                                                                                                                                                                                                              |
|                                | Fast interrupt function                      | Shorter CPU response time can be specified for a single interrupt source.                                                                                                                                                                                                                        | Shorter CPU response time can be specified for a single interrupt source.                                                                                                                                                                                                                                                                                                          |
|                                | DTC and DMAC control                         | The DTC and DMAC can be activated by interrupt sources.                                                                                                                                                                                                                                          | The DTC and DMAC can be activated by interrupt sources.                                                                                                                                                                                                                                                                                                                            |
|                                | EXDMAC control                               |                                                                                                                                                                                                                                                                                                  | <ul> <li>EXDMAC0 can be activated by<br/>the interrupt specified in<br/>selectable interrupt B selection<br/>register 144 or selectable<br/>interrupt A selection register<br/>208.</li> <li>EXDMAC1 can be activated by<br/>the interrupt specified in<br/>selectable interrupt B selection<br/>register 145 or selectable<br/>interrupt A selection register<br/>209.</li> </ul> |
| Non-<br>maskable<br>interrupts | NMI pin interrupt                            | <ul> <li>Interrupts from signals input to<br/>NMI pin</li> <li>Interrupt detection:<br/>Falling edge/rising edge</li> <li>Digital filter may be used to</li> </ul>                                                                                                                               | <ul> <li>Interrupts from signals input to<br/>NMI pin</li> <li>Interrupt detection:<br/>Falling edge/rising edge</li> <li>Digital filter may be used to</li> </ul>                                                                                                                                                                                                                 |
|                                | Oscillation stop<br>detection<br>interrupt   | suppress noise.<br>Interrupt on detection of oscillation<br>stop buy main clock oscillator                                                                                                                                                                                                       | suppress noise.<br>Interrupt on detection of oscillation<br>stop buy main clock oscillator                                                                                                                                                                                                                                                                                         |
|                                | WDT<br>underflow/refresh<br>error interrupt  | Interrupt on an underflow or refresh error of the watchdog timer                                                                                                                                                                                                                                 | Interrupt on an underflow or refresh error of the watchdog time                                                                                                                                                                                                                                                                                                                    |
|                                | IWDT<br>underflow/refresh<br>error interrupt | Interrupt on an underflow or refresh error of the watchdog timer                                                                                                                                                                                                                                 | Interrupt on an underflow or refresh error of the watchdog time                                                                                                                                                                                                                                                                                                                    |
|                                | Voltage<br>monitoring 1<br>interrupt         | Interrupt triggered by voltage detection circuit 1 (LVD1)                                                                                                                                                                                                                                        | Interrupt triggered by voltage detection circuit 1 (LVD1)                                                                                                                                                                                                                                                                                                                          |
|                                | Voltage<br>monitoring 2<br>interrupt         | Interrupt triggered by voltage detection circuit 2 (LVD2)                                                                                                                                                                                                                                        | Interrupt triggered by voltage detection circuit 1 (LVD2)                                                                                                                                                                                                                                                                                                                          |
|                                | RAM error                                    | _                                                                                                                                                                                                                                                                                                | This interrupt occurs when an ECC error is detected in the ECCRAM.                                                                                                                                                                                                                                                                                                                 |



RX63N Group, RX64M Group

Points of Difference Between RX63N Group and RX64M Group

| ltem                     |                               | RX63N (ICUb)                                                                                                                                                                                                                                          | RX64M (ICUA)                                                                                                                                                                                                                                                                            |
|--------------------------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Return from<br>low power | Sleep mode                    | Return is initiated by any interrupt source.                                                                                                                                                                                                          | Return is initiated by any interrupt source.                                                                                                                                                                                                                                            |
| consumption<br>modes     | All-module clock<br>stop mode | Return is initiated by NMI pin<br>interrupts, external pin interrupts,<br>and peripheral function interrupts<br>(voltage monitor 1, voltage monitor<br>2, oscillation stop detection, USB<br>resume, RTC alarm, RTC period,<br>IWDT, TMR interrupts). | Return is initiated by NMI pin<br>interrupts, external pin interrupts,<br>and peripheral function interrupts<br>(voltage monitor 1, voltage monitor<br>2, oscillation stop detection, USB<br>resume, RTC alarm, RTC period,<br>IWDT, USBA resume, selectable<br>interrupts 146 to 157). |
|                          | Software standby mode         | Return is initiated by NMI pin<br>interrupts, external pin interrupts,<br>and peripheral function interrupts<br>(voltage monitor 1, voltage monitor<br>2, USB resume, RTC alarm, RTC<br>period, IWDT).                                                | Return is initiated by NMI pin<br>interrupts, external pin interrupts,<br>and peripheral function interrupts<br>(voltage monitor 1, voltage monitor<br>2, USB resume, RTC alarm, RTC<br>period, IWDT, USBA resume).                                                                     |
|                          | Deep software<br>standby mode | Return is initiated by NMI pin<br>interrupts, external pin interrupts,<br>voltage monitor 1, voltage monitor<br>2, USB resume interrupts, RTC<br>alarm, RTC period interrupts.                                                                        | Return is initiated by NMI pin<br>interrupts, some external pin<br>interrupts, and peripheral function<br>interrupts (voltage monitor 1,<br>voltage monitor 2, USB resume,<br>RTC alarm, RTC period, USBA<br>resume).                                                                   |



| Register | Bit      | RX63N (ICUb)                                                  | RX64M (ICUA)                                                             |
|----------|----------|---------------------------------------------------------------|--------------------------------------------------------------------------|
| SWINT2R  |          |                                                               | Software interrupt 2 activation                                          |
|          |          |                                                               | register                                                                 |
| DMRSR4   |          |                                                               | DMAC activation request select                                           |
|          |          |                                                               | register 4                                                               |
| DMRSR5   |          | —                                                             | DMAC activation request select                                           |
|          |          |                                                               | register 5                                                               |
| DMRSR6   |          | —                                                             | DMAC activation request select                                           |
|          |          |                                                               | register 6                                                               |
| DMRSR7   |          | —                                                             | DMAC activation request select                                           |
|          |          |                                                               | register 7                                                               |
| NMISR    | ECCRAMST |                                                               | RAM ECC error interrupt status flag                                      |
| NMIER    | ECCRAMEN |                                                               | RAM ECC error interrupt enable bit                                       |
| GRPm     | —        | Group m interrupt source register<br>(m = 0 to 6, 12)         | —                                                                        |
| GRPBE0   |          |                                                               | Group BE0 interrupt request register                                     |
| GRPBL0   |          | —                                                             | Group BL0 interrupt request register                                     |
| GRPBL1   |          |                                                               | Group BL1 interrupt request register                                     |
| GRPAL0   |          |                                                               | Group AL0 interrupt request register                                     |
| GRPAL1   |          |                                                               | Group AL1 interrupt request register                                     |
| GENm     | —        | Group m interrupt enable register $(m = 0 \text{ to } 6, 12)$ |                                                                          |
| GENBE0   |          |                                                               | Group BE0 interrupt enable register                                      |
| GENBL0   |          |                                                               | Group BL0 interrupt enable register                                      |
| GENBL1   |          |                                                               | Group BL1 interrupt enable register                                      |
| GENAL0   |          |                                                               | Group AL0 interrupt enable register                                      |
| GENAL1   |          |                                                               | Group AL1 interrupt enable register                                      |
| GCRm     | —        | Group m interrupt clear register<br>(m = 0 to 6)              |                                                                          |
| GCRBE0   |          |                                                               | Group BE0 interrupt clear register                                       |
| SEL      |          | Unit selecting register                                       |                                                                          |
| PIBRk    |          |                                                               | Selectable interrupt B request                                           |
|          |          |                                                               | register k (k = 0h to Ah)                                                |
| PIARk    |          |                                                               | Selectable interrupt A request                                           |
|          |          |                                                               | register k (k = 0h to Ah)                                                |
| SLIBXRn  |          | —                                                             | Selectable interrupt B select register                                   |
|          |          |                                                               | Xn (n = 128 to 143)                                                      |
| SLIBRn   |          | —                                                             | Selectable interrupt B select register                                   |
|          |          |                                                               | n (n = 144 to 207)                                                       |
| SLIARn   | —        | —                                                             | Selectable interrupt A select register                                   |
|          |          |                                                               | n (n = 208 to 255)                                                       |
| SELEXDR  |          | —                                                             | EXDMAC activation interrupt select                                       |
|          |          |                                                               | register<br>Selectable interrupt source select                           |
| SLIPRCR  |          | —                                                             | Selectable interrupt source select<br>register write protection register |

#### Table 2.10 Comparative Listing Interrupt Controller Registers



# 2.7 Memory Protection Unit

Table 2.11 shows a comparative listing of the memory protection unit registers.

| Register | Bit   | RX63N                                             | RX64M                                             |
|----------|-------|---------------------------------------------------|---------------------------------------------------|
| MPESTS   | IA    | Instruction memory protection error generated bit | _                                                 |
|          | DA    | Data memory protection error generated bit        | _                                                 |
|          | IMPER | _                                                 | Instruction memory protection error generated bit |
|          | DMPER | _                                                 | Data memory protection error<br>generated bit     |

## Table 2.11 Comparative Listing of Memory Protection Unit Registers



# 2.8 DMA Controller

Table 2.12 shows a comparative overview of the DMA controller specifications, and Table 2.13 shows a comparative listing of the DMA controller registers.

#### Table 2.12 Comparative Overview of DMA Controller

| ltem                   |                                     | RX63N (DMACA)                                                                                                                                                                                                                                                                                           | RX64M (DMACAa)                                                                                                                                                                                                                                                                                          |
|------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of              | channels                            | 4 (DMACm (m = 0 to 3))                                                                                                                                                                                                                                                                                  | 8 (DMACm (m = 0 to 7))                                                                                                                                                                                                                                                                                  |
| Transfer space         |                                     | 512 MB<br>(00000000h to 0FFFFFFh and<br>F0000000h to FFFFFFFh,<br>excluding reserved areas)                                                                                                                                                                                                             | 512 MB<br>(00000000h to 0FFFFFFFh and<br>F0000000h to FFFFFFFFh,<br>excluding reserved areas)                                                                                                                                                                                                           |
| Maximum tr             | ansfer data count                   | 1 M data units<br>(maximum number of transfers in<br>block transfer mode: 1,024 data units<br>× 1,024 blocks)                                                                                                                                                                                           | 64 M data units<br>(maximum number of transfers in<br>block transfer mode: 1,024 data units<br>$\times$ 65,536 blocks)                                                                                                                                                                                  |
| DMA reque              | st sources                          | <ul> <li>Activation source selectable for each channel</li> <li>Software trigger</li> <li>Interrupt requests from peripheral modules or trigger input to external interrupt input pins</li> </ul>                                                                                                       | <ul> <li>Activation source selectable for each channel</li> <li>Software trigger</li> <li>Interrupt requests from peripheral modules or trigger input to external interrupt input pins</li> </ul>                                                                                                       |
| Channel pri            | ority                               | Channel 0 > channel 1 > channel 2 > channel 3 (channel 0: highest)                                                                                                                                                                                                                                      | Channel 0 > channel 1 > channel 2 ><br>channel 3 > channel 7 (channel 0:<br>highest)                                                                                                                                                                                                                    |
| Transfer               | 1 data unit                         | Bit length: 8, 16, 32 bits                                                                                                                                                                                                                                                                              | Bit length: 8, 16, 32 bits                                                                                                                                                                                                                                                                              |
| data                   | Block size                          | Number of data units: 1 to 1,024 data units                                                                                                                                                                                                                                                             | Number of data units: 1 to 1,024 data units                                                                                                                                                                                                                                                             |
| Transfer<br>modes      | Normal<br>transfer mode             | <ul> <li>One data transfer per DMA<br/>transfer request</li> <li>Setting in which total number of<br/>data transfers is not specified<br/>(free running mode) is available.</li> </ul>                                                                                                                  | <ul> <li>One data transfer per DMA<br/>transfer request</li> <li>Setting in which total number of<br/>data transfers is not specified<br/>(free running mode) is available.</li> </ul>                                                                                                                  |
|                        | Repeat<br>transfer mode             | <ul> <li>One data transfer per DMA<br/>transfer request</li> <li>Program returns to the transfer<br/>start address on completion of the<br/>repeat size of data transfer<br/>specified for the transfer source<br/>or destination.</li> <li>Maximum settable repeat size:<br/>1,024</li> </ul>          | <ul> <li>One data transfer per DMA<br/>transfer request</li> <li>Program returns to the transfer<br/>start address on completion of the<br/>repeat size of data transfer<br/>specified for the transfer source<br/>or destination.</li> <li>Maximum settable repeat size:<br/>1,024</li> </ul>          |
|                        | Block transfer mode                 | <ul> <li>One block data transfer per DMA<br/>transfer request</li> <li>Maximum settable block size:<br/>1,024 data units</li> </ul>                                                                                                                                                                     | <ul> <li>One block data transfer per DMA<br/>transfer request</li> <li>Maximum settable block size:<br/>1,024 data units</li> </ul>                                                                                                                                                                     |
| Selective<br>functions | Extended<br>repeat area<br>function | <ul> <li>Function in which data can be transferred by repeating the address values in the specified range with the upper bit values in the transfer address register fixed</li> <li>Area of 2 bytes to 128 MB separately settable as extended repeat area for transfer source or destination</li> </ul> | <ul> <li>Function in which data can be transferred by repeating the address values in the specified range with the upper bit values in the transfer address register fixed</li> <li>Area of 2 bytes to 128 MB separately settable as extended repeat area for transfer source or destination</li> </ul> |



RX63N Group, RX64M Group Points of Difference Between RX63N Group and RX64M Group

| ltem                 |                                     | RX63N (DMACA)                                                                                             | RX64M (DMACAa)                                                                                                                   |
|----------------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Interrupt<br>request | Transfer end interrupt              | Generated when transfer of the data<br>count set in the transfer counter is<br>completed.                 | Generated when transfer of the data count set in the transfer counter is completed.                                              |
|                      | Transfer<br>escape end<br>interrupt | Generated when the repeat size of<br>data transfer is completed or the<br>extended repeat area overflows. | Generated when the repeat size of data transfer is completed or the extended repeat area overflows.                              |
| Event link a         | ctivation                           |                                                                                                           | Event link request generated after<br>one data transfer (or after one block<br>transfer in case of block transfer<br>operation). |
| Low power function   | consumption                         | It is possible to specify the module stop state.                                                          | It is possible to specify the module stop state.                                                                                 |

#### Table 2.13 Comparative Listing of DMA Controller Registers

| Register | Bit | RX63N (DMACA) | RX64M (DMACAa)                  |
|----------|-----|---------------|---------------------------------|
| DMIST    |     |               | DMAC74 interrupt status monitor |
|          |     |               | register                        |

## 2.9 I/O Ports

Table 2.14 shows a comparative listing of the I/O port registers.

#### Table 2.14 Comparative Listing of I/O Port Registers

| Register | Bit | RX63N                     | RX64M |  |
|----------|-----|---------------------------|-------|--|
| PSRA     |     | Port switching register A | —     |  |
| PSRB     |     | Port switching register B |       |  |

## 2.10 Multi-Function Pin Controller

Table 2.15 shows a comparative listing of the multi-function pin controller port registers.

### Table 2.15 Comparative Listing of Multi-Function Pin Controller Registers

| Register | Bit      | RX63N                     | RX64M                          |
|----------|----------|---------------------------|--------------------------------|
| PFBCR0   | ADRHMS2  |                           | A18 to A20 output enable bit   |
|          | BCLKO    |                           | BCLK forced output bit         |
|          | ALES     |                           | ALE select bit                 |
| PFENET   | PHYMODE  | Ethernet mode setting bit | —                              |
|          | PHYMODE0 |                           | Ethernet channel 0 setting bit |
|          | PHYMODE1 |                           | Ethernet channel 1 setting bit |
| PFUSB0   |          | USB0 control register     | —                              |
| PFUSB1   |          | USB1 control register     | —                              |
|          |          |                           |                                |



# 2.11 Multi-Function Timer Pulse Unit

Table 2.16 shows a comparative overview of multi-function timer pulse unit specifications, and Table 2.17 shows a comparative listing of the multi-function timer pulse unit registers.

| Item                    | RX63N (MTU2a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RX64M (MTU3a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pulse input/output      | Maximum 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Maximum 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Pulse input             | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Count clocks            | 7 and 8 clocks for each channel<br>(4 clocks for MTU5)                                                                                                                                                                                                                                                                                                                                                                                                                                         | 11 clocks for each channel<br>(14 clocks for MTU0, 12 clocks for MTU1<br>and MTU2, and 10 clocks for MTU5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Operating<br>frequency  | Up to 50 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Up to 120 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Available<br>operations | <ul> <li>[MTU0 to MTU4]</li> <li>Waveform output on compare match</li> <li>Input capture function (noise filter setting available)</li> <li>Counter-clearing operation</li> <li>Simultaneous writing to multiple timer counters (TCNT)</li> <li>Simultaneous clearing on compare match or input capture</li> <li>Simultaneous input and output to registers in synchronization with counter operations</li> <li>Up to 12-phase PWM output in combination with synchronous operation</li> </ul> | <ul> <li>[MTU0 to MTU4, MTU6, MTU7, and<br/>MTU8]</li> <li>Waveform output on compare match</li> <li>Input capture function (noise filter<br/>setting available)</li> <li>Counter-clearing operation</li> <li>Simultaneous writing to multiple timer<br/>counters (TCNT) (excluding MTU8)</li> <li>Simultaneous clearing on compare<br/>match or input capture (excluding<br/>MTU8)</li> <li>Simultaneous input and output to<br/>registers in synchronization with<br/>counter operations (excluding MTU8)</li> <li>Up to 12-phase PWM output in<br/>combination with synchronous<br/>operation (excluding MTU8)</li> </ul> |
|                         | [MTU0, MTU3 and MTU4]                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [MTU0, MTU3, MTU4, MTU6, MTU7, and<br>MTU8]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                         | Buffer operation specifiable                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>Buffer operation specifiable<br/>[MTU3 and MTU4 only]</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                         | • AC synchronous motor (brushless DC motor) drive mode using complementary PWM output or reset-synchronized PWM output is available and selection between two types of waveform output (chopping or level) is possible.                                                                                                                                                                                                                                                                        | • AC synchronous motor (brushless DC motor) drive mode using complementary PWM output or reset-synchronized PWM output is available and selection between two types of waveform output (chopping or level) is possible.                                                                                                                                                                                                                                                                                                                                                                                                      |

| Table 2.16 | Comparative Overview of Multi-Function Timer Pulse Unit |
|------------|---------------------------------------------------------|
|------------|---------------------------------------------------------|



| ıp | Points of Difference Between RX63N Group and RX64M Group |
|----|----------------------------------------------------------|
|    |                                                          |

| Item                                                          | RX63N (MTU2a)                                                                                                                                                                                                                                             | RX64M (MTU3a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Available<br>operations                                       | <ul> <li>[MTU1 and MTU2]</li> <li>Phase counting mode can be specified independently.</li> <li>Cascade connection operation available</li> <li>MTU1 and MTU2 interlocked operation in 32-bit phase counting mode is available (TMDR3.LWA = 1).</li> </ul> | <ul> <li>[MTU1 and MTU2]</li> <li>Phase counting mode can be specified independently.</li> <li>Cascade connection operation available</li> <li>MTU1 and MTU2 interlocked operation in 32-bit phase counting mode is available (TMDR3.LWA = 1).</li> <li>[MTU0/MTU5, MTU1, MTU2, MTU8]</li> <li>MTU1 or MTU2 can be used in combination with MTU0/MTU5 or</li> </ul>                                                                                                                                                                                                                     |
|                                                               | <ul> <li>[MTU3 and MTU4]</li> <li>6-phase waveform output consisting of<br/>three phases each for positive and<br/>negative complementary PWM or<br/>reset PWM output, can be achieved<br/>with linked operation.</li> </ul>                              | <ul> <li>MTU8 to enable 32-bit phase coefficient mode.</li> <li>[MTU3, MTU4, MTU6, and MTU7]</li> <li>12-phase waveform output consisting of six phases each for positive and negative complementary PWM or reset PWM output, can be achieved with linked operation.</li> <li>In complementary PWM mode, transfer of values from buffer registers to temporary registers is supported at peaks and troughs of the timer-counter values or when writing to the buffer registers (MTU4.TGRD and MTU7.TGRD).</li> <li>Double-buffering is selectable in complementary PWM mode.</li> </ul> |
|                                                               | [MTU5]<br>Dead-time compensation counter                                                                                                                                                                                                                  | [MTU5]<br>Dead-time compensation counter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Interrupt skipping<br>function<br>(complementary<br>PWM mode) | In complementary PWM mode, interrupts<br>at counter peaks and troughs and triggers<br>to start conversion by the A/D converter<br>can be skipped.                                                                                                         | In complementary PWM mode, interrupts<br>at counter peaks and troughs and triggers<br>to start conversion by the A/D converter<br>can be skipped.                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Interrupt sources                                             | 28                                                                                                                                                                                                                                                        | 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Buffer operation<br>Trigger generation                        | Automatic transfer of register data<br>A/D converter start triggers can be<br>generated.                                                                                                                                                                  | Automatic transfer of register data<br>A/D converter start triggers can be<br>generated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                               | Programmable pulse generator (PPG)<br>output trigger generation is available.<br>An A/D converter start request delaying<br>function enables the A/D converter to be<br>started at user-defined timing and to be<br>synchronized with PWM output.         | Programmable pulse generator (PPG)<br>output trigger generation is available.<br>An A/D converter start request delaying<br>function enables the A/D converter to be<br>started at user-defined timing and to be<br>synchronized with PWM output.                                                                                                                                                                                                                                                                                                                                       |
| Low power<br>consumption<br>function                          | It is possible to specify the module stop state.                                                                                                                                                                                                          | It is possible to specify the module stop state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



| Register | Bit   | RX63N (MTU2a)                                            | RX64M (MTU3a)                                                                      |
|----------|-------|----------------------------------------------------------|------------------------------------------------------------------------------------|
| TCR2     |       |                                                          | Timer control register 2                                                           |
| TCR2U    |       |                                                          | Timer control register 2                                                           |
| TCR2V    |       |                                                          | Timer control register 2                                                           |
| TCR2W    |       |                                                          | Timer control register 2                                                           |
| TMDR     |       | Timer mode register                                      | —                                                                                  |
| TMDR1    |       |                                                          | Timer mode register 1                                                              |
| TMDR2A   |       |                                                          | Timer mode register 2A                                                             |
| TMDR2B   |       |                                                          | Timer mode register 2B                                                             |
| TMDR3    |       |                                                          | Timer mode register 3                                                              |
| TIER     | TGIEC | TGR interrupt enable C bit (MTU0 to MTU4)                | TGR interrupt enable C bit<br>(MTU0, MTU3, MTU4, MTU6,<br>MTU7, MTU8)              |
|          | TGIED | TGR interrupt enable D bit<br>(MTU0 to MTU4)             | TGR interrupt enable D bit<br>(MTU0, MTU3, MTU4, <mark>MTU6,</mark><br>MTU7, MTU8) |
|          | TGIEU | Underflow interrupt enable bit (MTU0 to MTU4)            | Underflow interrupt enable bit (MTU1, MTU2)                                        |
|          | TTGE2 | A/D converter start request enable 2 bit (MTU0 to MTU4)  | A/D converter start request enable 2 bit (MTU4, MTU7)                              |
|          | TTGE  | A/D converter start request enable<br>bit (MTU0 to MTU4) | A/D converter start request enable<br>bit (MTU0 to MTU4, MTU6, MTU7)               |
| TIER2    | TTGE2 |                                                          | A/D converter start request enable 2 bit (MTU0)                                    |
| TSR      | TCFD  | Count direction flag<br>(MTU0 to MTU4)                   | Count direction flag<br>(MTU1 to MTU4, MTU6, MTU7)                                 |
| TBTM     | TTSA  | Timing select A bit<br>(MTU0, MTU3, MTU4)                | Timing select A bit (MTU0, MTU3, MTU4, MTU6, MTU7)                                 |
|          | TTSB  | Timing select B bit<br>(MTU0, MTU3, MTU4)                | Timing select B bit (MTU0, MTU3, MTU4, MTU6, MTU7)                                 |
|          | TTSE  | Timing select E bit<br>(MTU0, MTU3, MTU4)                | Timing select E bit (MTU0)                                                         |
| TSYCR    |       | —                                                        | Timer synchro clear register                                                       |
| TCNTLW   |       | —                                                        | Timer longword counter                                                             |
| TGRA     |       | Timer general register A<br>(MTU0 to MTU4)               | Timer general register A (MTU0 to MTU4, MTU6, MTU7, MTU8)                          |
| TGRB     |       | Timer general register B<br>(MTU0 to MTU4)               | Timer general register B (MTU0 to MTU4, MTU6, MTU7, MTU8)                          |
| TGRC     |       | Timer general register C<br>(MTU0, MTU3, MTU4)           | Timer general register C<br>(MTU0, MTU3, MTU4, <mark>MTU6,</mark><br>MTU7, MTU8)   |
| TGRD     |       | Timer general register D<br>(MTU0, MTU3, MTU4)           | Timer general register D<br>(MTU0, MTU3, MTU4, MTU6,<br>MTU7, MTU8)                |
| TGRE     |       | Timer general register E<br>(MTU0)                       | Timer general register E (MTU0,<br>MTU3, MTU4, MTU6, MTU7)                         |
| TGRF     |       | Timer general register F<br>(MTU0)                       | Timer general register F<br>(MTU0, MTU4, MTU7)                                     |
| TGRALW   |       |                                                          | Timer longword general register                                                    |
| TGRBLW   | _     |                                                          | Timer longword general register                                                    |
| TSTR     |       | Timer start register                                     | - <b>•</b>                                                                         |

#### Table 2.17 Comparative Listing of Multi-Function Timer Pulse Unit Registers



Points of Difference Between RX63N Group and RX64M Group

| Register | Bit | RX63N (MTU2a)                          | RX64M (MTU3a)                            |
|----------|-----|----------------------------------------|------------------------------------------|
| TSTRA    |     | —                                      | Timer start register                     |
|          |     |                                        | (MTU0 to MTU4, MTU8)                     |
| TSTRB    |     |                                        | Timer start register (MTU6, MTU7)        |
| TSYR     |     | Timer synchro register                 |                                          |
| TSYRA    |     | —                                      | Timer synchro register<br>(MTU0 to MTU4) |
| TSYRB    |     | _                                      | Timer synchro register<br>(MTU6, MTU7)   |
| TCSYSTR  |     |                                        | Timer counter synchro start register     |
| TRWER    |     | Timer read/write enable register       | _                                        |
| TRWERA   |     |                                        | Timer read/write enable register         |
| TRWERB   |     |                                        | Timer read/write enable register         |
| TOER     |     | Timer output master enable register    |                                          |
| TOERA    |     |                                        | Timer output master enable register      |
| TOERB    |     |                                        | Timer output master enable register      |
| TOCR1    |     | Timer output control register 1        |                                          |
| TOCR1A   |     |                                        | Timer output control register 1          |
| TOCR1B   |     |                                        | Timer output control register 1          |
| TOCR2    |     | Timer output control register 2        |                                          |
| TOCR2A   |     |                                        | Timer output control register 2          |
| TOCR2B   |     |                                        | Timer output control register 2          |
| TOLBR    |     | Timer output level buffer register     |                                          |
| TOLBR    |     |                                        | Timer output level buffer register       |
| TOLBRA   |     |                                        |                                          |
|          |     | Times acts control to sister           | Timer output level buffer register       |
| TGCR     |     | Timer gate control register            |                                          |
| TGCRA    |     |                                        | Timer gate control register A            |
| TCNTS    |     | Timer sub-counter                      |                                          |
| TCNTSA   |     |                                        | Timer sub-counter                        |
| TCNTSB   |     |                                        | Timer sub-counter                        |
| TCDR     |     | Timer period data register             |                                          |
| TCDRA    |     |                                        | Timer period data register               |
| TCDRB    |     |                                        | Timer period data register               |
| TCBR     |     | Timer period buffer register           |                                          |
| TCBRA    |     | <u> </u>                               | Timer period buffer register             |
| TCBRB    |     |                                        | Timer period buffer register             |
| TDDR     |     | Timer dead time data register          | —                                        |
| TDDRA    |     | —                                      | Timer dead time data register            |
| TDDRB    |     | —                                      | Timer dead time data register            |
| TDER     |     | Timer dead time enable register        |                                          |
| TDERA    |     |                                        | Timer dead time enable register          |
| TDERB    |     |                                        | Timer dead time enable register          |
| TBTER    |     | Timer buffer transfer setting register |                                          |
| TBTERA   |     |                                        | Timer buffer transfer setting register   |
| TBTERB   |     |                                        | Timer buffer transfer setting register   |
| TWCR     |     | Timer waveform control register        |                                          |
| TWCRA    |     |                                        | Timer waveform control register          |
| TWCRB    |     |                                        | Timer waveform control register          |
| NFCR     |     | Noise filter control register          |                                          |
| NFCR0    |     |                                        | Noise filter control register 0          |
| NFCR1    |     |                                        | Noise filter control register 1          |
|          |     |                                        |                                          |



| Register | Bit | RX63N (MTU2a)                         | RX64M (MTU3a)                           |
|----------|-----|---------------------------------------|-----------------------------------------|
| NFCR2    |     | —                                     | Noise filter control register 2         |
| NFCR3    |     |                                       | Noise filter control register 3         |
| NFCR4    |     |                                       | Noise filter control register 4         |
| NFCR6    |     |                                       | Noise filter control register 6         |
| NFCR7    |     | _                                     | Noise filter control register 7         |
| NFCR8    |     | —                                     | Noise filter control register 8         |
| NFCRC    |     |                                       | Noise filter control register C         |
| NFCR5    |     |                                       | Noise filter control register 5         |
| TITMRA   |     | —                                     | Timer interrupt skipping mode register  |
| TITMRB   |     | _                                     | Timer interrupt skipping mode register  |
| TITCR    |     | Timer interrupt skipping set register |                                         |
| TITCNT   |     | Timer interrupt skipping counter      |                                         |
| TITCR1A  |     | _                                     | Timer interrupt skipping set register 1 |
| TITCR1B  |     |                                       | Timer interrupt skipping set register 1 |
| TITCNT1A |     |                                       | Timer interrupt skipping counter 1      |
| TITCNT1B |     | _                                     | Timer interrupt skipping counter 1      |
| TITCR2A  |     |                                       | Timer interrupt skipping set register 2 |
| TITCR2B  |     |                                       | Timer interrupt skipping set register 2 |
| TITCNT2A |     |                                       | Timer interrupt skipping counter 2      |
| TITCNT2B |     |                                       | Timer interrupt skipping counter 2      |



# 2.12 Port Output Enable

Table 2.18 shows a comparative overview of port output enable specifications, and Table 2.19 shows a comparative listing of the port output enable registers.

| Item      | RX63N (POE2a)                                                                                                                                                                                                                                           | RX64M (POE3)                                                                                                                                                                                                                                                                                               |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Functions | <ul> <li>Each of the POE0# to POE3# and<br/>POE8# input pins can be set for falling<br/>edge, PCLK/8 × 16, PCLK/16 × 16, or<br/>PCLK/128 × 16 low-level sampling.</li> </ul>                                                                            | <ul> <li>Each of the POE0#, POE4#, POE8#,<br/>POE10#, and POE11# input pins can<br/>be set for falling edge, PCLK/8 × 16,<br/>PCLK/16 × 16, or PCLK/128 × 16 low-<br/>level sampling.</li> </ul>                                                                                                           |
|           | • Pins for the MTU complementary<br>PWM output and MTU0 pins can be<br>placed in the high-impedance state by<br>the POE0# to POE3#, POE8# falling-<br>edge or low-level sampling.                                                                       | <ul> <li>Pins for the MTU complementary<br/>PWM output, MTU0, GPT output, and<br/>GPT3 pins can be placed in the high-<br/>impedance state by the POE0#,<br/>POE4#, POE8#, POE10#, and<br/>POE11# falling-edge or low-level<br/>sampling.</li> </ul>                                                       |
|           | • Pins for complementary PWM output<br>from the MTU and output pins for<br>MTU0 can be placed in the high-<br>impedance state when oscillation by<br>the clock generation circuit stops.                                                                | • Pins for MTU complementary PWM<br>output and the MTU0, GPT output, and<br>GPT3 pins can be placed in the high-<br>impedance state when stopped<br>oscillation of the clock generator is<br>detected.                                                                                                     |
|           | • Pins for the MTU complementary<br>PWM output can be placed in the high-<br>impedance state when output levels of<br>the MTU complementary PWM output<br>pins are compared and simultaneous<br>active-level output continues for one<br>cycle or more. | • Pins for the MTU complementary<br>PWM output or GPT output (GPT0 to<br>GPT2) can be placed in the high-<br>impedance state when output levels of<br>the MTU complementary PWM output<br>pins or GPT output pins are compared<br>and simultaneous active-level output<br>continues for one cycle or more. |
|           | <ul> <li>Pins for the MTU complementary<br/>PWM output and MTU0 pins can be<br/>placed in the high-impedance state by<br/>modifying the settings in the POE<br/>registers.</li> </ul>                                                                   | <ul> <li>Pins for the MTU complementary<br/>PWM output, MTU0, GPT output, and<br/>GPT3 pins can be placed in the high-<br/>impedance state by modifying the<br/>settings in the POE registers.</li> </ul>                                                                                                  |
|           | <ul> <li>Interrupts can be generated by input<br/>level sampling or output level<br/>comparison.</li> </ul>                                                                                                                                             | <ul> <li>Interrupts can be generated by input<br/>level sampling or output level<br/>comparison.</li> </ul>                                                                                                                                                                                                |

#### Table 2.18 Comparative Overview of Port Output Enable



| Register | Bit        | RX63N (POE2a)                            | RX64M (POE3)                                                     |
|----------|------------|------------------------------------------|------------------------------------------------------------------|
| ICSR1    | POE1M[1:0] | POE1 mode select bits                    |                                                                  |
|          | POE2M[1:0] | POE2 mode select bits                    |                                                                  |
|          | POE3M[1:0] | POE3 mode select bits                    |                                                                  |
|          | POE1F      | POE1 flag                                |                                                                  |
|          | POE2F      | POE2 flag                                |                                                                  |
|          | POE3F      | POE3 flag                                |                                                                  |
| ICSR2    | POE4M[1:0] |                                          | POE4 mode select bits                                            |
|          | POE4F      |                                          | POE4 flag                                                        |
|          | POE8M[1:0] | POE8 mode select bits                    |                                                                  |
|          | POE8E      | POE8 high-impedance enable bit           |                                                                  |
|          | POE8F      | POE8 flag                                |                                                                  |
| ICSR3    | POE8M[1:0] |                                          | POE8 mode select bits                                            |
|          | PIE3       |                                          | Port interrupt enable 3 bit                                      |
|          | POE8E      |                                          | POE8 high-impedance enable bit                                   |
|          | POE8F      |                                          | POE8 flag                                                        |
|          | OSTSTE     | OSTST high-impedance enable bit          |                                                                  |
|          | OSTSTE     | OSTST high-impedance flag                |                                                                  |
| CSR4     | 031311     | OSTST high-impedance hag                 | Input level control/status register 4                            |
| ICSR4    |            |                                          |                                                                  |
|          |            |                                          | Input level control/status register 5                            |
| CSR6     |            |                                          | Input level control/status register 6                            |
| OCSR2    |            | —                                        | Output level control/status register                             |
| ALR1     |            |                                          | Active level register 1                                          |
| SPOER    | CH34HIZ    | MTU3 and MTU4 output high-               | Active level register 1                                          |
| SPUER    |            | impedance enable bit                     |                                                                  |
|          | CH0HIZ     | MTU0 output high-impedance<br>enable bit | —                                                                |
|          | MTUCH34HIZ | —                                        | MTU3, MTU4, and GPT0 to GPT2<br>output high-impedance enable bit |
|          | MTUCH67HIZ | _                                        | MTU6 and MTU7 output high-<br>impedance enable bit               |
|          | MTUCH0HIZ  | _                                        | MTU0 output high-impedance<br>enable bit                         |
|          | GPT01HIZ   |                                          | GPT0 and GPT1 output high-<br>impedance enable bit               |
|          | GPT23HIZ   | _                                        | GPT2 and GPT3 output high-<br>impedance enable bit               |
| POECR1   | PE0ZE      | MTIOC0A high-impedance enable<br>bit     |                                                                  |
|          | PE1ZE      | MTIOC0B high-impedance enable bit        | _                                                                |
|          | PE2ZE      | MTIOC0C high-impedance enable bit        | _                                                                |
|          | PE3ZE      | MTIOC0D high-impedance enable bit        | _                                                                |
|          | MTU0AZE    |                                          | MTIOC0A high-impedance enable<br>bit                             |
|          | MTU0BZE    |                                          | MTIOC0B high-impedance enable<br>bit                             |

#### Table 2.19 Comparative Listing of Port Output Enable Registers

Points of Difference Between RX63N Group and RX64M Group

| Register | Bit      | RX63N (POE2a)                           | RX64M (POE3)                            |
|----------|----------|-----------------------------------------|-----------------------------------------|
| POECR1   | MTU0CZE  |                                         | MTIOC0C high-impedance enable<br>bit    |
|          | MTU0DZE  |                                         | MTIOC0D high-impedance enable bit       |
| POECR2   | P3CZEA   | MTU port 3 high-impedance enable<br>bit |                                         |
|          | P2CZEA   | MTU port 2 high-impedance enable<br>bit |                                         |
|          | P1CZEA   | MTU port 1 high-impedance enable<br>bit | —                                       |
|          | MTU7BDZE | _                                       | MTIOC7B/7D high-impedance<br>enable bit |
|          | MTU7ACZE |                                         | MTIOC7A/7C high-impedance<br>enable bit |
|          | MTU6BDZE |                                         | MTIOC6B/6D high-impedance<br>enable bit |
|          | MTU4BDZE |                                         | MTIOC4B/4D high-impedance enable bit    |
|          | MTU4ACZE |                                         | MTIOC4A/4C high-impedance enable bit    |
|          | MTU3BDZE |                                         | MTIOC3B/3D high-impedance enable bit    |
| POECR3   |          |                                         | Port output enable control register 3   |
| POECR4   |          |                                         | Port output enable control register 4   |
| POECR5   |          |                                         | Port output enable control register 5   |
| POECR6   |          |                                         | Port output enable control register 6   |
| G0SELR   |          |                                         | GPT0 pin select register 0              |
| G1SELR   | _        |                                         | GPT1 pin select register 1              |
| G2SELR   |          | _                                       | GPT2 pin select register 2              |
| G3SELR   |          |                                         | GPT3 pin select register 3              |
| M0SELR1  |          |                                         | MTU0 pin select register 1              |
| M0SELR2  |          |                                         | MTU0 pin select register 2              |
| M3SELR   |          |                                         | MTU3 pin select register                |
| M4SELR1  |          |                                         | MTU4 pin select register 1              |
| M4SELR2  |          |                                         | MTU4 pin select register 2              |
| MGSELR   |          |                                         | MTU and GPT pin select register         |



# 2.13 8-Bit Timer

Table 2.20 shows a comparative overview of 8-bit timer specifications, and Table 2.21 shows a comparative listing of the 8-bit timer registers.

| Item                                               | RX63N                                                                                                                                                                                                                     | RX64M                                                                                                                                                                                                 |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Count clocks                                       | <ul> <li>Frequency-divided clock:<br/>PCLK/1, PCLK/2, PCLK/8, PCLK/32,<br/>PCLK/64, PCLK/1,024, PCLK/8,192</li> </ul>                                                                                                     | <ul> <li>Frequency-divided clock:<br/>PCLK/1, PCLK/2, PCLK/8, PCLK/32,<br/>PCLK/64, PCLK/1,024, PCLK/8,192</li> </ul>                                                                                 |
|                                                    | External clock                                                                                                                                                                                                            | External clock                                                                                                                                                                                        |
| Number of channels                                 | (8 bits $\times$ 2 channels) $\times$ 2 units                                                                                                                                                                             | (8 bits $\times$ 2 channels) $\times$ 2 units                                                                                                                                                         |
| Compare match                                      | <ul> <li>8-bit mode<br/>(compare match A, compare match<br/>B)</li> <li>16-bit mode<br/>(compare match A, compare match</li> </ul>                                                                                        | <ul> <li>8-bit mode<br/>(compare match A, compare match<br/>B)</li> <li>16-bit mode<br/>(compare match A, compare match</li> </ul>                                                                    |
|                                                    | (compare match A, compare match<br>B)                                                                                                                                                                                     | (compare match A, compare match<br>B)                                                                                                                                                                 |
| Counter clear                                      | Selectable among compare match A, compare match B, and external reset signal.                                                                                                                                             | Selectable among compare match A,<br>compare match B, and external reset<br>signal.                                                                                                                   |
| Timer output                                       | Output pulses with a user-defined duty cycle or PWM output                                                                                                                                                                | Output pulses with a user-defined duty cycle or PWM output                                                                                                                                            |
| Cascading of two channels                          | <ul> <li>16-bit count mode         <ul> <li>16-bit timer using TMR0 for the upper</li> <li>8 bits and TMR1 for the lower 8 bits</li> <li>(TMR2 for the upper 8 bits and TMR3 for the lower 8 bits)</li> </ul> </li> </ul> | <ul> <li>16-bit count mode</li> <li>16-bit timer using TMR0 for the upper</li> <li>8 bits and TMR1 for the lower 8 bits</li> <li>(TMR2 for the upper 8 bits and TMR3 for the lower 8 bits)</li> </ul> |
|                                                    | <ul> <li>Compare match count mode</li> <li>TMR1 can be used to count TMR0 compare matches (TMR3 can be used to count TMR2 compare matches).</li> </ul>                                                                    | <ul> <li>Compare match count mode<br/>TMR1 can be used to count TMR0<br/>compare matches (TMR3 can be<br/>used to count TMR2 compare<br/>matches).</li> </ul>                                         |
| Interrupt sources                                  | Compare match A, compare match B, and overflow                                                                                                                                                                            | Compare match A, compare match B, and overflow                                                                                                                                                        |
| Event link function (output)                       | _                                                                                                                                                                                                                         | Compare match A, compare match B, and overflow (TMR0 to TMR3)                                                                                                                                         |
| Event link function<br>(input)                     | _                                                                                                                                                                                                                         | Ability to perform one of three actions<br>according to accepted event<br>(1) Counter start (TMR0 to TMR3)<br>(2) Event counter (TMR0 to TMR3)<br>(3) Counter restart (TMR0 to TMR3)                  |
| DTC activation                                     | The DTC can be activated by compare match A interrupts or compare match B interrupts.                                                                                                                                     | The DTC can be activated by compare match A interrupts or compare match B interrupts.                                                                                                                 |
| Generation of trigger<br>to start A/D<br>converter | Compare match A of TMR0 or TMR2                                                                                                                                                                                           | Compare match A of TMR0 or TMR2                                                                                                                                                                       |
| Generation of baud<br>rate clock for SCI           | Generation of baud rate clock for SCI                                                                                                                                                                                     | Generation of baud rate clock for SCI                                                                                                                                                                 |
| Low power<br>consumption<br>function               | The module stop state can be specified in each unit.                                                                                                                                                                      | The module stop state can be specified in each unit.                                                                                                                                                  |



#### Table 2.21 Comparative Listing of 8-Bit Timer Registers

| Register | Bit | RX63N | RX64M                       |
|----------|-----|-------|-----------------------------|
| TCSTR    |     | —     | Time counter start register |

## 2.14 Compare Match Timer

Table 2.22 shows a comparative overview of the compare match timer specifications.

#### Table 2.22 Comparative Overview of Compare Match Timer

| ltem                        | RX63N                                                                     | RX64M                                                                                          |
|-----------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Count clocks                | Four frequency-divided clocks                                             | Four frequency-divided clocks                                                                  |
|                             | One clock from among PCLK/8,                                              | One clock from among PCLK/8,                                                                   |
|                             | PCLK/32, PCLK/128, and PCLK/512 can                                       | PCLK/32, PCLK/128, and PCLK/512 can                                                            |
|                             | be selected individually for each channel.                                | be selected individually for each channel.                                                     |
| Interrupt                   | A compare match interrupt can be requested individually for each channel. |                                                                                                |
| Event link function         | —                                                                         | Event signal output at CMT1 compare                                                            |
| (output)                    |                                                                           | match                                                                                          |
| Event link function (input) | _                                                                         | <ul> <li>Support for linked operation of<br/>specified module</li> </ul>                       |
|                             |                                                                           | • Support for count start, event counter,<br>or count restart when a specified<br>event occurs |
| Low power                   | The module stop state can be specified                                    | The module stop state can be specified                                                         |
| consumption<br>function     | in each unit.                                                             | in each unit.                                                                                  |



# 2.15 Realtime Clock

Table 2.23 shows a comparative overview of the realtime clock specifications, and Table 2.24 shows a comparative listing of the realtime clock registers.

## Table 2.23 Comparative Overview of Realtime Clock

| ltem                            | RX63N (RTCa)                                                                                                                                                                                                                                                                                                                                                                                                                                    | RX64M (RTCd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Count modes                     | Calendar count mode                                                                                                                                                                                                                                                                                                                                                                                                                             | Calendar count mode, binary count mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Count source                    | Sub-clock (XCIN) or main clock (EXTAL)                                                                                                                                                                                                                                                                                                                                                                                                          | Sub-clock (XCIN) or main clock (EXTAL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Clock and calendar<br>functions | <ul> <li>Calendar count mode         <ul> <li>Year, month, date, day of the week, hours, minutes, and seconds are counted and represented in BCD format</li> <li>Selection of 12- or 24-hour mode</li> <li>30-second adjustment (30 seconds or less are rounded down to 00 seconds, and 30 seconds or more are rounded up to one minute.)</li> <li>Automatic leap year adjustment</li> </ul> </li> </ul>                                        | <ul> <li>Calendar count mode         <ul> <li>Year, month, date, day of the week, hours, minutes, and seconds are counted and represented in BCD format</li> <li>Selection of 12- or 24-hour mode</li> <li>30-second adjustment (30 seconds or less are rounded down to 00 seconds, and 30 seconds or more are rounded up to one minute.)</li> <li>Automatic leap year adjustment</li> </ul> </li> <li>Binary count mode 32-bit counting and binary display of seconds</li> <li>Common to both modes</li> </ul> |
|                                 | <ul> <li>Start/stop function</li> <li>Binary display of digits below seconds (1 Hz, 2 Hz, 4 Hz, 8 Hz, 16 Hz, 32 Hz, 64 Hz)</li> <li>Time error adjustment function</li> <li>Clock (1 Hz) output</li> </ul>                                                                                                                                                                                                                                      | <ul> <li>Start/stop function</li> <li>Binary display of digits below<br/>seconds (1 Hz, 2 Hz, 4 Hz, 8 Hz,<br/>16 Hz, 32 Hz, 64 Hz)</li> <li>Time error adjustment function</li> <li>Clock (1 Hz/64 Hz) output</li> </ul>                                                                                                                                                                                                                                                                                        |
| Interrupt                       | <ul> <li>Alarm interrupt (ALM)<br/>Year, month, date, day of the week,<br/>hours, minutes, and seconds can be<br/>selected as conditions for the alarm<br/>interrupt.</li> <li>Periodic interrupt (PRD)<br/>2 seconds, 1 second, 1/2 second, 1/4</li> </ul>                                                                                                                                                                                     | <ul> <li>Alarm interrupt (ALM)<br/>Any of the following can be selected<br/>as conditions for the alarm interrupt:</li> <li>Calendar count mode: Year,<br/>month, date, day of the week,<br/>hours, minutes, and seconds</li> <li>Binary count mode: Each bit of<br/>32-bit binary counter</li> <li>Periodic interrupt (PRD)<br/>2 seconds, 1 second, 1/2 second, 1/4</li> </ul>                                                                                                                                |
|                                 | <ul> <li>Second, 1/8 second, 1/16 second, 1/32 second, 1/64 second, 1/128 second, or 1/256 second can be selected as the interrupt period.</li> <li>Carry interrupt (CUP) Generates interrupt requests at either of the following times: <ul> <li>At occurrence of a carry to the seconds counter from the 64 Hz counter</li> <li>At coincidence of a change in the 64 Hz counter and read access to the R64CNT register</li> </ul> </li> </ul> | <ul> <li>second, 1/8 second, 1/16 second, 1/32 second, 1/64 second, 1/128 second, or 1/256 second can be selected as the interrupt period.</li> <li>Carry interrupt (CUP) Generates interrupt requests at either of the following times: <ul> <li>At occurrence of a carry to the seconds counter from the 64 Hz counter</li> <li>At coincidence of a change in the 64 Hz counter and read access to the R64CNT register</li> </ul> </li> </ul>                                                                 |

RENESAS

| Item                  | RX63N (RTCa)                                                                                                                                                   | RX64M (RTCd)                                                                                                                                                   |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interrupt             | <ul> <li>Recovery from software standby<br/>mode or deep software standby mode<br/>can be performed by an alarm<br/>interrupt or periodic interrupt</li> </ul> | <ul> <li>Recovery from software standby<br/>mode or deep software standby mode<br/>can be performed by an alarm<br/>interrupt or periodic interrupt</li> </ul> |
| Time-capture function | Time capture using edge detection on the time capture event input pin is available.                                                                            | Time capture using edge detection on the time capture event input pin is available.                                                                            |
|                       | At each input event the month, date, hour, minute, and second is captured.                                                                                     | At each input event the month, date,<br>hour, minute, and second is captured, or<br>the 32 -bit counter value is captured.                                     |
| Event link function   |                                                                                                                                                                | Periodic event output                                                                                                                                          |

## Table 2.24 Comparative Listing of Realtime Clock Registers

| Register | Bit   | RX63N (RTCa) | RX64M (RTCd)                              |
|----------|-------|--------------|-------------------------------------------|
| BCNT0    |       |              | Binary counter 0                          |
| BCNT1    |       |              | Binary counter 1                          |
| BCNT2    |       |              | Binary counter 2                          |
| BCNT3    |       | _            | Binary counter 3                          |
| BCNT0AR  |       |              | Binary counter 0 alarm register           |
| BCNT1AR  |       |              | Binary counter 1 alarm register           |
| BCNT2AR  |       | _            | Binary counter 2 alarm register           |
| BCNT3AR  |       |              | Binary counter 3 alarm register           |
| BCNT0AER |       |              | Binary counter 0 alarm enable             |
|          |       |              | register                                  |
| BCNT1AER |       | —            | Binary counter 1 alarm enable<br>register |
| BCNT2AER |       |              | Binary counter 2 alarm enable             |
|          |       |              | register                                  |
| BCNT3AER |       |              | Binary counter 3 alarm enable             |
|          |       |              | register                                  |
| RCR1     | RTCOS |              | RTCOUT output select bit                  |
| RCR2     | CNTMD |              | Count mode select bit                     |
| BCNT0CP0 |       |              | BCNT0 capture register 0                  |
| BCNT0CP1 |       |              | BCNT0 capture register 1                  |
| BCNT0CP2 |       |              | BCNT0 capture register 2                  |
| BCNT1CP0 |       |              | BCNT1 capture register 0                  |
| BCNT1CP1 |       |              | BCNT1 capture register 1                  |
| BCNT1CP2 |       |              | BCNT1 capture register 2                  |
| BCNT2CP0 |       |              | BCNT2 capture register 0                  |
| BCNT2CP1 |       |              | BCNT2 capture register 1                  |
| BCNT2CP2 |       |              | BCNT2 capture register 2                  |
| BCNT3CP0 |       |              | BCNT3 capture register 0                  |
| BCNT3CP1 |       |              | BCNT3 capture register 1                  |
| BCNT3CP2 |       |              | BCNT3 capture register 2                  |
|          |       |              |                                           |



## 2.16 Ethernet Controller Direct Memory Access Controller

Table 2.25 shows a comparative overview of the Ethernet controller direct memory access controller specifications, and Table 2.26 shows a comparative listing of the Ethernet controller direct memory access controller registers.

| ltem                               | RX63N (EDMAC)                                                                                                                                                                                                                                                                         | RX64M (EDMACa)                                                                                                                                                                                                                                                                        |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of channels                 | One channel for ETHERC                                                                                                                                                                                                                                                                | <ul> <li>One channel for ETHERC0</li> <li>One channel for ETHERC1</li> <li>One channel for EPTPC</li> </ul>                                                                                                                                                                           |
| Data transmission<br>and reception | <ul> <li>Control of data transmission and<br/>reception according to descriptors</li> <li>Support for single-buffer frame<br/>transmission and reception (one<br/>buffer per frame) and multi-buffer<br/>frame transmission and reception<br/>(multiple buffers per frame)</li> </ul> | <ul> <li>Control of data transmission and<br/>reception according to descriptors</li> <li>Support for single-buffer frame<br/>transmission and reception (one<br/>buffer per frame) and multi-buffer<br/>frame transmission and reception<br/>(multiple buffers per frame)</li> </ul> |
| Functions                          | <ul> <li>Minimizing of system bus occupation<br/>time using block transfers (32-byte<br/>units)</li> <li>Write-back of transmit/receive frame<br/>state to descriptors</li> <li>Insertion of padding in receive data</li> </ul>                                                       | <ul> <li>Minimizing of system bus occupation<br/>time using block transfers (32-byte<br/>units)</li> <li>Write-back of transmit/receive frame<br/>state to descriptors</li> <li>Insertion of padding in receive data</li> </ul>                                                       |
| Low power<br>consumption function  | The module stop state can be specified in each unit.                                                                                                                                                                                                                                  | The module stop state can be specified in each unit.                                                                                                                                                                                                                                  |

## Table 2.25 Comparative Overview of Ethernet Controller Direct Memory Access Controller

#### Table 2.26 Comparative Listing of Ethernet Controller Direct Memory Access Controller Registers

| Register        | Bit    | RX63N (EDMAC)                                       | RX64M (EDMACa)                                |
|-----------------|--------|-----------------------------------------------------|-----------------------------------------------|
| PTPEDMAC.EESR   | _      | —                                                   | PTP/EDMAC status register                     |
| PTPEDMAC.EESIPR |        |                                                     | PTP/EDMAC status interrupt<br>enable register |
|                 |        |                                                     |                                               |
| TRSCER          | CERFCE | CERF bit copy directive bit                         |                                               |
|                 | PRECE  | PRE bit copy directive bit                          | —                                             |
|                 | RTSFCE | RTSF bit copy directive bit                         | _                                             |
|                 | RTLFCE | RTLF bit copy directive bit                         |                                               |
|                 | TROCE  | TRO bit copy directive bit                          |                                               |
|                 | CDCE   | CD bit copy directive bit                           |                                               |
|                 | DLCCE  | DLC bit copy directive bit                          |                                               |
|                 | CNDCE  | CND bit copy directive bit                          |                                               |
| RMCR            | RNC    | Receive request bit non-reset<br>mode directive bit | _                                             |



# 2.17 USB 2.0 Host/Function Module

Table 2.27 shows a comparative overview of the USB 2.0 Host/Function module specifications, and Table 2.28 shows a comparative listing of the USB 2.0 Host/Function module registers.

| Item                | RX63N (USBa)                                                                                                                                                                                                                                                 | RX64M (USBb)                                                                                                                                                                                      |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Ports               | 2                                                                                                                                                                                                                                                            | 1                                                                                                                                                                                                 |  |
| Features            | <ul> <li>Integrated USB Device Controller<br/>(UDC) and transceiver for USB 2.0</li> <li>USB0:<br/>Support for Host controller,<br/>Function controller, and on-the-go<br/>(OTG) functionality</li> <li>USB1:<br/>Support for Function controller</li> </ul> | <ul> <li>Integrated USB Device Controller<br/>(UDC) and transceiver for USB 2.0</li> <li>— Support for Host controller,<br/>Function controller, and on-the-go<br/>(OTG) functionality</li> </ul> |  |
|                     | Software can switch between the Host controller and Function controller modes.                                                                                                                                                                               | • Software can switch between the Host controller and Function controller modes.                                                                                                                  |  |
|                     | • Self-power mode or bus-power mode can be selected.                                                                                                                                                                                                         | <ul> <li>Self-power mode or bus-power mode<br/>can be selected.</li> </ul>                                                                                                                        |  |
|                     | When Host controller operation is selected:                                                                                                                                                                                                                  | When Host controller operation is<br>selected:                                                                                                                                                    |  |
|                     | <ul> <li>Full-speed transfer (12 Mbps) is<br/>supported.</li> </ul>                                                                                                                                                                                          | • Full-speed transfer (12 Mbps) and low-<br>speed transfer (1.5 Mbps) are<br>supported.                                                                                                           |  |
|                     | <ul> <li>Automatic scheduling of SOF and<br/>packet transmissions</li> </ul>                                                                                                                                                                                 | <ul> <li>Automatic scheduling of SOF and<br/>packet transmissions</li> </ul>                                                                                                                      |  |
|                     | <ul> <li>Transfer interval setting function for<br/>isochronous and interrupt transfers</li> <li>Communication with multiple<br/>peripheral devices connected via a<br/>single hub</li> </ul>                                                                | <ul> <li>Transfer interval setting function for<br/>isochronous and interrupt transfers</li> <li>Communication with multiple<br/>peripheral devices connected via a<br/>single hub</li> </ul>     |  |
|                     | When Function controller operation is<br>selected:                                                                                                                                                                                                           | When Function controller operation is<br>selected:                                                                                                                                                |  |
|                     | <ul> <li>Support for full-speed transfer (12<br/>Mbps)</li> </ul>                                                                                                                                                                                            | <ul> <li>Support for full-speed transfer (12<br/>Mbps)*</li> </ul>                                                                                                                                |  |
|                     | <ul><li>Control transfer stage control function</li><li>Device state control function</li></ul>                                                                                                                                                              | <ul><li>Control transfer stage control function</li><li>Device state control function</li></ul>                                                                                                   |  |
|                     | <ul> <li>Auto response function for<br/>SET_ADDRESS requests</li> <li>SOF interpolation function</li> </ul>                                                                                                                                                  | <ul> <li>Auto response function for<br/>SET_ADDRESS requests</li> <li>SOF interpolation function</li> </ul>                                                                                       |  |
| Communication       | Control transfer                                                                                                                                                                                                                                             | Control transfer                                                                                                                                                                                  |  |
| data transfer types | <ul> <li>Bulk transfer</li> </ul>                                                                                                                                                                                                                            | <ul> <li>Bulk transfer</li> </ul>                                                                                                                                                                 |  |
|                     | <ul> <li>Interrupt transfer</li> </ul>                                                                                                                                                                                                                       | <ul> <li>Interrupt transfer</li> </ul>                                                                                                                                                            |  |
|                     | <ul> <li>Isochronous transfer</li> </ul>                                                                                                                                                                                                                     | <ul> <li>Isochronous transfer</li> </ul>                                                                                                                                                          |  |
| Pipe configuration  | On-chip buffer memory for USB communications                                                                                                                                                                                                                 | On-chip buffer memory for USB communications                                                                                                                                                      |  |
|                     | <ul> <li>Up to ten pipes can be selected<br/>(including the default control pipe).</li> <li>Endpoint numbers can be assigned</li> </ul>                                                                                                                      | <ul> <li>Up to ten pipes can be selected<br/>(including the default control pipe).</li> <li>Endpoint numbers can be assigned</li> </ul>                                                           |  |
|                     | flexibly to PIPE1 to PIPE9.                                                                                                                                                                                                                                  | flexibly to PIPE1 to PIPE9.                                                                                                                                                                       |  |

## Table 2.27 Comparative Overview of USB 2.0 Host/Function Module

| ltem                                 | RX63N (USBa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RX64M (USBb)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pipe configuration                   | <ul> <li>Transfer conditions that can be set for each pipe:</li> <li>PIPE0:<br/>Control transfer only (default control pipe: DPC), buffer size: 8, 16, 32, and 64 bytes (single buffer)</li> <li>PIPE1 and PIPE2:<br/>Bulk transfer or isochronous transfer, bulk transfer buffer size: 8, 16, 32, and 64 bytes (support for double buffer setting), isochronous transfer buffer size: 1 to 256 bytes (support for double buffer setting)</li> <li>PIPE3 to PIPE5:<br/>Bulk transfer only, buffer size: 8, 16, 32, and 64 bytes (support for double buffer setting)</li> <li>PIPE3 to PIPE5:<br/>Bulk transfer only, buffer size: 8, 16, 32, and 64 bytes (support for double buffer setting)</li> <li>PIPE6 to PIPE9:<br/>Interrupt transfer only: buffer size: 1 to 64 bytes (single buffer)</li> </ul> | <ul> <li>Transfer conditions that can be set for each pipe:</li> <li>PIPE0:<br/>Control transfer only (default control pipe: DPC), buffer size: 64 bytes (single buffer)</li> <li>PIPE1 and PIPE2:<br/>Bulk transfer or isochronous transfer, bulk transfer buffer size: 64 bytes (support for double buffer setting), isochronous transfer buffer size: 256 bytes (support for double buffer size: 256 bytes (support for double buffer setting)</li> <li>PIPE3 to PIPE5:<br/>Bulk transfer only, buffer size: 64 bytes (support for double buffer size: 64 bytes (support for double buffer setting)</li> <li>PIPE3 to PIPE5:<br/>Bulk transfer only, buffer size: 64 bytes (support for double buffer setting)</li> <li>PIPE6 to PIPE9:<br/>Interrupt transfer only: buffer size: 64 bytes (single buffer)</li> </ul> |
| Other functions                      | <ul> <li>Reception end function using transaction count</li> <li>Function that changes the BRDY interrupt event notification timing (BFRE)</li> <li>Function that automatically clears the buffer memory after the data for the pipe specified at the DnFIFO (n = 0 or 1) port has been read (DCLRM)</li> <li>NAK setting function for response PID generated by end of transfer (SHTNAK)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Reception end function using transaction count</li> <li>Function that changes the BRDY interrupt event notification timing (BFRE)</li> <li>Function that automatically clears the buffer memory after the data for the pipe specified at the DnFIFO (n = 0 or 1) port has been read (DCLRM)</li> <li>NAK setting function for response PID generated by end of transfer (SHTNAK)</li> <li>On-chip DP/DM pull-up and pull-down resistors</li> </ul>                                                                                                                                                                                                                                                                                                                                                              |
| Low power<br>consumption<br>function | It is possible to specify the module stop state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | It is possible to specify the module stop state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Note: \* Low-speed transfer (1.5 Mbps) is not supported when Function controller operation is selected.



| Register | Bit     | RX63N (USBa)                         | RX64M (USBb)                                        |
|----------|---------|--------------------------------------|-----------------------------------------------------|
| SYSSTS0  | SOFEA   | _                                    | Host controller operation SOF active<br>monitor bit |
| PHYSLEW  |         |                                      | PHY crosspoint adjustment register                  |
| DPUSR0R  | RPUE0   |                                      | DP pull-up resistor control bit                     |
|          | DRPD0   |                                      | D+/D- pull-down resistor control bit                |
|          | SRPC1   | USB1 single end receiver control bit |                                                     |
|          | FIXPHY1 | USB1 transceiver output fix bit      |                                                     |
|          | DP1     | USB1 DP input                        |                                                     |
|          | DM1     | USB1 DM input                        |                                                     |
|          | DVBSTS1 | USB1 VBUS input                      | _                                                   |
| DPUSR1R  | DPINTE1 | USB1 DP interrupt enable/clear bit   | —                                                   |
|          | DMINTE1 | USB1 DM interrupt enable/clear bit   |                                                     |
|          | DVBSE1  | USB1 VBUS interrupt enable/clear     | _                                                   |
|          |         | bit                                  |                                                     |
|          | DPINT1  | USB1 DP interrupt source recovery    | —                                                   |
|          |         | bit                                  |                                                     |
|          | DMINT1  | USB1 DM interrupt source recovery    | —                                                   |
|          |         | bit                                  |                                                     |
|          | DVBINT1 | USB1 VBUS interrupt source           | —                                                   |
|          |         | recovery bit                         |                                                     |

#### Table 2.28 Comparative Listing of USB 2.0 Host/Function Module Registers



## 2.18 Serial Communication Interface

The RX63N Group and RX631 Group have 13 independent serial communications interface (SCI) channels (SCIc: 12 channels, SCId: 1 channel).

The RX64M Group has 9 independent serial communications interface (SCI) channels (SCIg: 8 channels, SCIh: 1 channel).

Table 2.29 shows a comparative listing of the SCIc and SCIg specifications, Table 2.30 shows a comparative listing of the SCId and SCIh specifications, Table 2.31 shows a comparative listing of the SCI channel specifications, and Table 2.32 shows a comparative listing of the serial communications interface registers.

## Table 2.29 Comparative Listing of SCIc and SCIg Specifications

| Item                           |                         | RX63N (SCIc)                                                                                                                                                                                                     | RX64M (SCIg)                                                                                                                                                                                                     |
|--------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of channels             |                         | 12 channels                                                                                                                                                                                                      | 8 channels                                                                                                                                                                                                       |
| Serial communication modes     |                         | <ul> <li>Asynchronous</li> <li>Clock synchronous</li> <li>Smart card interface</li> <li>Simple I<sup>2</sup>C bus</li> <li>Simple SPI bus</li> </ul>                                                             | <ul> <li>Asynchronous</li> <li>Clock synchronous</li> <li>Smart card interface</li> <li>Simple l<sup>2</sup>C bus</li> <li>Simple SPI bus</li> </ul>                                                             |
| Transfer speed                 |                         | Bit rate specifiable by on-chip baud rate generator.                                                                                                                                                             | Bit rate specifiable by on-chip baud<br>rate generator.<br>(The settable bit rates will differ due<br>to differences in the electrical<br>characteristics. See the user's<br>manual for details.)                |
| Full-duplex communication      |                         | <ul> <li>Transmitter:<br/>Continuous transmission<br/>possible using double-buffer<br/>configuration.</li> <li>Receiver:<br/>Continuous reception possible<br/>using double-buffer<br/>configuration.</li> </ul> | <ul> <li>Transmitter:<br/>Continuous transmission<br/>possible using double-buffer<br/>configuration.</li> <li>Receiver:<br/>Continuous reception possible<br/>using double-buffer<br/>configuration.</li> </ul> |
| Data transfer                  |                         | Selectable between LSB-first or<br>MSB-first transfer.*                                                                                                                                                          | Selectable between LSB-first or<br>MSB-first transfer.*                                                                                                                                                          |
| Interrupt sources              |                         | Transmit end, transmit data empty,<br>receive data full, receive error,<br>completion of generation of start<br>condition, restart condition, or stop<br>condition (simple I <sup>2</sup> C mode)                | Transmit end, transmit data empty,<br>receive data full, receive error,<br>completion of generation of start<br>condition, restart condition, or stop<br>condition (simple l <sup>2</sup> C mode)                |
| Low power consumption function |                         | The module stop state can be specified for each channel.                                                                                                                                                         | The module stop state can be specified for each channel.                                                                                                                                                         |
| Synchronous<br>mode            | Data length             | 7 or 8 bits                                                                                                                                                                                                      | 7, 8, or <mark>9</mark> bits                                                                                                                                                                                     |
|                                | Transmission stop bits  | 1 or 2 bits                                                                                                                                                                                                      | 1 or 2 bits                                                                                                                                                                                                      |
|                                | Parity                  | Even parity, odd parity, or no parity                                                                                                                                                                            | Even parity, odd parity, or no parity                                                                                                                                                                            |
|                                | Receive error detection | Parity, overrun, and framing errors                                                                                                                                                                              | Parity, overrun, and framing errors                                                                                                                                                                              |
|                                | Hardware flow control   | The CTSn# and RTSn# pins can be used to control transmission and reception.                                                                                                                                      | The CTSn# and RTSn# pins can be used to control transmission and reception.                                                                                                                                      |
|                                | Start bit detection     | Low level detection                                                                                                                                                                                              | Selectable between low level and falling edge.                                                                                                                                                                   |



| Item                            |                           | RX63N (SCIc)                                                                                             | RX64M (SCIg)                                                                                             |
|---------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Synchronous                     | Break detection           | When a framing error occurs, a                                                                           | When a framing error occurs, a                                                                           |
| mode                            |                           | break can be detected by reading                                                                         | break can be detected by reading                                                                         |
|                                 |                           | the RXDn pin level directly.                                                                             | the RXDn pin level directly.                                                                             |
|                                 | Clock source              | An internal or external clock can be selected.                                                           | An internal or external clock can be selected.                                                           |
|                                 |                           | Transfer rate clock input from the TMR can be used (SCI5 and SCI6).                                      | Transfer rate clock input from the TMR can be used (SCI5 and SCI6).                                      |
|                                 | Double-speed<br>mode      | _                                                                                                        | Baud rate generator double-speed mode is selectable.                                                     |
|                                 | Multi-processor           | Serial communication among                                                                               | Serial communication among                                                                               |
|                                 | communication<br>function | multiple processors                                                                                      | multiple processors                                                                                      |
|                                 | Noise<br>cancellation     | The signal paths from input on the RXDn pins incorporate on-chip digital noise filters.                  | The signal paths from input on the RXDn pins incorporate on-chip digital noise filters.                  |
| Clock                           | Data length               | 8 bits                                                                                                   | 8 bits                                                                                                   |
| synchronous<br>mode             | Receive error detection   | Overrun error                                                                                            | Overrun error                                                                                            |
|                                 | Hardware flow control     | The CTSn# and RTSn# pins can be used to control transmission and reception.                              | The CTSn# and RTSn# pins can be used to control transmission and reception.                              |
| Smart card<br>interface<br>mode | Error<br>processing       | An error signal can be transmitted<br>automatically when a parity error is<br>detected during reception. | An error signal can be transmitted<br>automatically when a parity error is<br>detected during reception. |
|                                 |                           | Data can be retransmitted<br>automatically when an error signal<br>is received during transmission.      | Data can be retransmitted<br>automatically when an error signal<br>is received during transmission.      |
|                                 | Data type                 | Both direct convention and inverse convention are supported.                                             | Both direct convention and inverse convention are supported.                                             |
| Simple I <sup>2</sup> C<br>mode | Communication format      | I <sup>2</sup> C bus format                                                                              | I <sup>2</sup> C bus format                                                                              |
|                                 | Operating mode            | Master                                                                                                   | Master                                                                                                   |
|                                 |                           | (single-master operation only)                                                                           | (single-master operation only)                                                                           |
|                                 | Transfer speed            | Fast mode is supported.                                                                                  | Fast mode is supported.                                                                                  |
|                                 | Noise canceler            | The signal paths from input on the<br>SSCLn and SSDAn pins                                               | The signal paths from input on the SSCLn and SSDAn pins                                                  |
|                                 |                           | incorporate on-chip digital noise                                                                        | incorporate on-chip digital noise                                                                        |
|                                 |                           | filters, and the noise cancellation                                                                      | filters, and the noise cancellation                                                                      |
|                                 |                           | bandwidth is adjustable.                                                                                 | bandwidth is adjustable.                                                                                 |
| Simple SPI                      | Data length               | 8 bits                                                                                                   | 8 bits                                                                                                   |
| mode                            | Error detection           | Overrun error                                                                                            | Overrun error                                                                                            |
|                                 | SS input pin<br>function  | Applying a high-level signal to the SSn# pin causes the output pins to enter the high-impedance state.   | Applying a high-level signal to the SSn# pin causes the output pins to enter the high-impedance state.   |
|                                 | Clock settings            | Selectable among four clock phase and clock polarity settings.                                           | Selectable among four clock phase and clock polarity settings.                                           |
| Bit rate modula                 | ation function            |                                                                                                          | On-chip baud rate generator output correction can reduce errors.                                         |
| Event link fund                 | tion                      |                                                                                                          | Error (receive error, error signal detection) event output                                               |
|                                 |                           |                                                                                                          | Receive data full event output                                                                           |
|                                 |                           |                                                                                                          | Transmit data empty event output                                                                         |
|                                 |                           |                                                                                                          | Transmit end event output                                                                                |
|                                 |                           |                                                                                                          |                                                                                                          |

Note: \* Only MSB-first is available in simple I<sup>2</sup>C mode.

| Item                       |                                              | RX63N (SCId)                                                                                                                                                                                                                              | RX64M (SCIh)                                                                                                                                                                                                                              |
|----------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of channels         |                                              | 1 channel                                                                                                                                                                                                                                 | 1 channel                                                                                                                                                                                                                                 |
| Serial communication modes |                                              | <ul> <li>Asynchronous</li> <li>Clock synchronous</li> <li>Smart card interface</li> <li>Simple I<sup>2</sup>C bus</li> <li>Simple SDI bus</li> </ul>                                                                                      | <ul> <li>Asynchronous</li> <li>Clock synchronous</li> <li>Smart card interface</li> <li>Simple I<sup>2</sup>C bus</li> <li>Simple SPI bus</li> </ul>                                                                                      |
| Transfer speed             | Ł                                            | • Simple SPI bus<br>Bit rate specifiable by on-chip baud                                                                                                                                                                                  | Simple SPI bus Bit rate specifiable by on-chip baud tate specifiable by on-chip baud                                                                                                                                                      |
| Full-duplex communication  |                                              | <ul> <li>rate generator.</li> <li>Transmitter:<br/>Continuous transmission<br/>possible using double-buffer<br/>configuration.</li> <li>Receiver:<br/>Continuous reception possible<br/>using double-buffer<br/>configuration.</li> </ul> | <ul> <li>rate generator.</li> <li>Transmitter:<br/>Continuous transmission<br/>possible using double-buffer<br/>configuration.</li> <li>Receiver:<br/>Continuous reception possible<br/>using double-buffer<br/>configuration.</li> </ul> |
| Data transfer              |                                              | Selectable between LSB-first or<br>MSB-first transfer.*                                                                                                                                                                                   | Selectable between LSB-first or<br>MSB-first transfer.*                                                                                                                                                                                   |
| Interrupt sources          |                                              | Transmit end, transmit data empty,<br>receive data full, receive error,<br>completion of generation of start<br>condition, restart condition, or stop<br>condition (simple I <sup>2</sup> C mode)                                         | Transmit end, transmit data empty,<br>receive data full, receive error,<br>completion of generation of start<br>condition, restart condition, or stop<br>condition (simple I <sup>2</sup> C mode)                                         |
| Low power cor<br>function  | nsumption                                    | It is possible to specify the module stop state.                                                                                                                                                                                          | It is possible to specify the module stop state.                                                                                                                                                                                          |
| Synchronous<br>mode        | Data length<br>Transmission<br>stop bits     | 7 or 8 bits<br>1 or 2 bits                                                                                                                                                                                                                | 7, 8, or <mark>9</mark> bits<br>1 or 2 bits                                                                                                                                                                                               |
|                            | Parity<br>Receive error<br>detection         | Even parity, odd parity, or no parity<br>The CTSn# and RTSn# pins can<br>be used to control transmission and                                                                                                                              | Even parity, odd parity, or no parity<br>The CTSn# and RTSn# pins can<br>be used to control transmission and                                                                                                                              |
|                            | Hardware flow control                        | reception.<br>The CTSn# and RTSn# pins can<br>be used to control transmission and<br>reception.                                                                                                                                           | reception.<br>The CTSn# and RTSn# pins can<br>be used to control transmission and<br>reception.                                                                                                                                           |
|                            | Start bit detection                          | Low level detection                                                                                                                                                                                                                       | Selectable between low level and falling edge.                                                                                                                                                                                            |
|                            | Break detection                              | When a framing error occurs, a break can be detected by reading the RXDn pin level directly.                                                                                                                                              | When a framing error occurs, a<br>break can be detected by reading<br>the RXDn pin level directly.                                                                                                                                        |
|                            | Clock source                                 | An internal or external clock can be<br>selected.<br>Transfer rate clock input from the<br>TMR can be used (SCI5 and SCI6).                                                                                                               | An internal or external clock can be<br>selected.<br>Transfer rate clock input from the<br>TMR can be used (SCI5 and SCI6).                                                                                                               |
|                            | Double-speed<br>mode                         |                                                                                                                                                                                                                                           | Baud rate generator double-speed mode is selectable.                                                                                                                                                                                      |
|                            | Multi-processor<br>communication<br>function | Serial communication among multiple processors                                                                                                                                                                                            | Serial communication among multiple processors                                                                                                                                                                                            |
|                            | Noise<br>cancellation                        | The signal paths from input on the RXDn pins incorporate on-chip digital noise filters.                                                                                                                                                   | The signal paths from input on the RXDn pins incorporate on-chip digital noise filters.                                                                                                                                                   |

#### Table 2.30 Comparative Listing of SCId and SCIh Specifications



RX63N Group, RX64M Group

Points of Difference Between RX63N Group and RX64M Group

| Item                            |                             | RX63N (SCId)                                                                                                                                                                                           | RX64M (SCIh)                                                                                                                                                                                           |
|---------------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clock                           | Data length                 | 8 bits                                                                                                                                                                                                 | 8 bits                                                                                                                                                                                                 |
| synchronous<br>mode             | Receive error detection     | Overrun error                                                                                                                                                                                          | Overrun error                                                                                                                                                                                          |
|                                 | Hardware flow control       | The CTSn# and RTSn# pins can be used to control transmission and reception.                                                                                                                            | The CTSn# and RTSn# pins can be used to control transmission and reception.                                                                                                                            |
| Smart card<br>interface<br>mode | Error<br>processing         | An error signal can be transmitted<br>automatically when a parity error is<br>detected during reception.                                                                                               | An error signal can be transmitted<br>automatically when a parity error is<br>detected during reception.                                                                                               |
|                                 |                             | Data can be retransmitted<br>automatically when an error signal<br>is received during transmission.                                                                                                    | Data can be retransmitted<br>automatically when an error signal<br>is received during transmission.                                                                                                    |
|                                 | Data type                   | Both direct convention and inverse convention are supported.                                                                                                                                           | Both direct convention and inverse convention are supported.                                                                                                                                           |
| Simple I <sup>2</sup> C<br>mode | Communication format        | I <sup>2</sup> C bus format                                                                                                                                                                            | I <sup>2</sup> C bus format                                                                                                                                                                            |
|                                 | Operating mode              | Master<br>(single-master operation only)                                                                                                                                                               | Master<br>(single-master operation only)                                                                                                                                                               |
|                                 | Transfer speed              | Fast mode is supported.                                                                                                                                                                                | Fast mode is supported.                                                                                                                                                                                |
|                                 | Noise canceler              | The signal paths from input on the<br>SSCLn and SSDAn pins<br>incorporate on-chip digital noise<br>filters, and the noise cancellation<br>bandwidth is adjustable.                                     | The signal paths from input on the<br>SSCLn and SSDAn pins<br>incorporate on-chip digital noise<br>filters, and the noise cancellation<br>bandwidth is adjustable.                                     |
| Simple SPI                      | Data length                 | 8 bits                                                                                                                                                                                                 | 8 bits                                                                                                                                                                                                 |
| mode                            | Error detection             | Overrun error                                                                                                                                                                                          | Overrun error                                                                                                                                                                                          |
|                                 | SS input pin function       | Applying a high-level signal to the SSn# pin causes the output pins to enter the high-impedance state.                                                                                                 | Applying a high-level signal to the SSn# pin causes the output pins to enter the high-impedance state.                                                                                                 |
|                                 | Clock settings              | Selectable among four clock phase and clock polarity settings.                                                                                                                                         | Selectable among four clock phase and clock polarity settings.                                                                                                                                         |
| Extended serial mode            | Start frame<br>transmission | <ul> <li>Output of the break field low<br/>width and generation of an<br/>interrupt on detection</li> <li>Detection of bus collisions and<br/>the generation of interrupts on<br/>detection</li> </ul> | <ul> <li>Output of the break field low<br/>width and generation of an<br/>interrupt on detection</li> <li>Detection of bus collisions and<br/>the generation of interrupts on<br/>detection</li> </ul> |



| ltem                    |                          | RX63N (SCId)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RX64M (SCIh)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Extended<br>serial mode | Start frame<br>reception | <ul> <li>Detection of the break field low width and generation of an interrupt on detection</li> <li>Comparison of data in control fields 0 and 1 and generation of an interrupt when the two match</li> <li>Two kinds of data for comparison (primary and secondary) can be set in control field 1.</li> <li>A priority interrupt bit can be set in control field 1.</li> <li>Support for handling of start frames that do not include a break field</li> <li>Support for handling of start frames that do not include control field 0</li> <li>Function for measuring bit rates</li> </ul> | <ul> <li>Detection of the break field low width and generation of an interrupt on detection</li> <li>Comparison of data in control fields 0 and 1 and generation of an interrupt when the two match</li> <li>Two kinds of data for comparison (primary and secondary) can be set in control field 1.</li> <li>A priority interrupt bit can be set in control field 1.</li> <li>Support for handling of start frames that do not include a break field</li> <li>Support for handling of start frames that do not include control field 0</li> <li>Function for measuring bit rates</li> </ul> |
|                         | I/O control<br>functions | <ul> <li>Selectable polarity for TXDX12<br/>and RXDX12 signals</li> <li>Ability to enable digital filter<br/>function for RXDX12</li> <li>Half-duplex operation employing<br/>RXDX12 and TXDX12 signals<br/>multiplexed on the same pin</li> <li>Selectable timing for the<br/>sampling of data received<br/>through RXDX12</li> <li>Signals received on RXDX12<br/>can be passed through to SCIc<br/>when the extended serial mode<br/>control section is off.</li> </ul>                                                                                                                   | <ul> <li>Selectable polarity for TXDX12<br/>and RXDX12 signals</li> <li>Ability to enable digital filter<br/>function for RXDX12</li> <li>Half-duplex operation employing<br/>RXDX12 and TXDX12 signals<br/>multiplexed on the same pin</li> <li>Selectable timing for the<br/>sampling of data received<br/>through RXDX12</li> <li>Signals received on RXDX12<br/>can be passed through to SCIc<br/>when the extended serial mode<br/>control section is off.</li> </ul>                                                                                                                   |
|                         | Timer function           | Usable as a reloading timer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Usable as a reloading timer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Bit rate modul          | ation function           | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | On-chip baud rate generator output correction can reduce errors.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Note: \* Only MSB-first is available in simple I<sup>2</sup>C mode.



#### Table 2.31 Comparative Listing of SCI Channel Specifications

| ltem                         | RX63N (SCIc, SCId) | RX64M (SCIg, SCIh)  |
|------------------------------|--------------------|---------------------|
| Synchronous mode             | SCI0 to SCI12      | SCI0 to SCI7, SCI12 |
| Clock synchronous mode       | SCI0 to SCI12      | SCI0 to SCI7, SCI12 |
| Smart card interface mode    | SCI0 to SCI12      | SCI0 to SCI7, SCI12 |
| Simple I <sup>2</sup> C mode | SCI0 to SCI12      | SCI0 to SCI7, SCI12 |
| Simple SPI mode              | SCI0 to SCI12      | SCI0 to SCI7, SCI12 |
| Extended serial mode         | SCI12              | SCI12               |
| TMR clock input              | SCI5, SCI6, SCI12  | SCI5, SCI6, SCI12   |
| Event link function          |                    | SCI5                |

#### Table 2.32 Comparative Listing of Serial Communication Interface Registers

| Register | Bit     | RX63N (SCIc, SCId) | RX64M (SCIg, SCIh)                                  |
|----------|---------|--------------------|-----------------------------------------------------|
| RDRHL    |         | —                  | Receive data register HL                            |
| TDRHL    |         |                    | Transmit data register HL                           |
| SSR      | RDRF    | —                  | Receive data full flag                              |
|          | TDRF    | —                  | Transmit data empty flag                            |
| SCMR     | CHR1    |                    | Character length bit 1                              |
| MDDR     |         |                    | Modulation duty register                            |
| SEMR     | BRME    | —                  | Bit rate modulation enable bit                      |
|          | BGDM    | _                  | Baud rate generator double-speed mode select bit    |
|          | RXDESEL |                    | Asynchronous start bit edge<br>detection select bit |



### 2.19 I<sup>2</sup>C Bus Interface

Table 2.33 shows a comparative overview of the  $I^2C$  bus interface specifications, and Table 2.34 shows a comparative listing of the  $I^2C$  bus interface registers.

| ltem                             | RX63N (RIIC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RX64M (RIICa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of channels               | 4 channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2 channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Communication<br>format          | <ul> <li>I<sup>2</sup>C bus format or SMBus format</li> <li>Selectable between master mode or<br/>slave mode.</li> <li>Automatic securing of the various<br/>setup times, hold times, and bus-free<br/>times for the transfer rate</li> </ul>                                                                                                                                                                                                                                                                        | <ul> <li>I<sup>2</sup>C bus format or SMBus format</li> <li>Selectable between master mode or<br/>slave mode.</li> <li>Automatic securing of the various<br/>setup times, hold times, and bus-free<br/>times for the transfer rate</li> </ul>                                                                                                                                                                                                                                |
| Transfer speed                   | Fast mode is supported.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fast mode is supported.                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SCL clock                        | For master operation, the duty cycle of the SCL clock is selectable in the range from 4% to 96%.                                                                                                                                                                                                                                                                                                                                                                                                                     | For master operation, the duty cycle of the SCL clock is selectable in the range from 4% to 96%.                                                                                                                                                                                                                                                                                                                                                                             |
| Issuing and detection conditions | Start, restart, and stop conditions are<br>generated automatically. Start conditions<br>(including restart conditions) and stop<br>conditions are detectable.                                                                                                                                                                                                                                                                                                                                                        | Start, restart, and stop conditions are<br>generated automatically. Start conditions<br>(including restart conditions) and stop<br>conditions are detectable.                                                                                                                                                                                                                                                                                                                |
| Slave addresses                  | <ul> <li>Up to three different slave addresses can be set.</li> <li>7-bit and 10-bit address formats are supported (along with the use of both at once).</li> <li>General call addresses, device ID addresses, and SMBus host addresses are detectable.</li> </ul>                                                                                                                                                                                                                                                   | <ul> <li>Up to three different slave addresses can be set.</li> <li>7-bit and 10-bit address formats are supported (along with the use of both at once).</li> <li>General call addresses, device ID addresses, and SMBus host addresses are detectable.</li> </ul>                                                                                                                                                                                                           |
| Acknowledgement                  | <ul> <li>For transmission, the acknowledge bit is loaded automatically.         <ul> <li>Transfer of the next data for transmission can be suspended automatically on reception of a not-acknowledge bit.</li> </ul> </li> <li>For reception, the acknowledge bit is transmitted automatically.         <ul> <li>If a wait between the eighth and ninth clock cycles has been selected, software control of the value in the acknowledge field in response to the received value is possible.</li> </ul> </li> </ul> | <ul> <li>For transmission, the acknowledge bit is loaded automatically.</li> <li>Transfer of the next data for transmission can be suspended automatically on reception of a not-acknowledge bit.</li> <li>For reception, the acknowledge bit is transmitted automatically.</li> <li>If a wait between the eighth and ninth clock cycles has been selected, software control of the value in the acknowledge field in response to the received value is possible.</li> </ul> |
| Wait function                    | <ul> <li>For reception, the following wait periods<br/>can be obtained by holding the SCL clock<br/>at the low level:</li> <li>Wait between the eighth and ninth<br/>clock cycles</li> <li>Wait between the ninth and first clock<br/>cycles (wait function)</li> </ul>                                                                                                                                                                                                                                              | <ul> <li>For reception, the following wait periods can be obtained by holding the SCL clock at the low level:</li> <li>Wait between the eighth and ninth clock cycles</li> <li>Wait between the ninth and first clock cycles</li> </ul>                                                                                                                                                                                                                                      |
| SDA output delay function        | Timing of the output of transmitted data,<br>including the acknowledge bit, can be<br>delayed.                                                                                                                                                                                                                                                                                                                                                                                                                       | Timing of the output of transmitted data,<br>including the acknowledge bit, can be<br>delayed.                                                                                                                                                                                                                                                                                                                                                                               |

#### Table 2.33 Comparative Overview of I<sup>2</sup>C Bus Interface

| ltem                                 | RX63N (RIIC)                                                                                                                                                                                                                                                                                                                                                                                                          | RX64M (RIICa)                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Arbitration                          | <ul> <li>Multi-master support         Operation to synchronize the SCL clock in cases of conflict with the SCL clock from another master is possible.         When issuing a start condition, loss of arbitration is detected by testing for non-matching of the signals for the SDA line.         In master operation, loss of arbitration is detected by testing for non-matching of transmit data.     </li> </ul> | <ul> <li>Multi-master support         Operation to synchronize the SCL clock in cases of conflict with the SCL clock from another master is possible.         When issuing a start condition, loss of arbitration is detected by testing for non-matching of the signals for the SDA line.         In master operation, loss of arbitration is detected by testing for non-matching of transmit data.     </li> </ul>       |
|                                      | <ul> <li>Loss of arbitration due to detection of<br/>a start condition while the bus is busy<br/>is detectable (to prevent the issuing of<br/>double start conditions).</li> <li>Loss of arbitration in transfer of a not-<br/>acknowledge bit due to the signals for<br/>the SDA line not matching is<br/>detectable.</li> </ul>                                                                                     | <ul> <li>Loss of arbitration due to detection of<br/>a start condition while the bus is busy<br/>is detectable (to prevent the issuing of<br/>double start conditions).</li> <li>Loss of arbitration in transfer of a not-<br/>acknowledge bit due to the signals for<br/>the SDA line not matching is<br/>detectable.</li> </ul>                                                                                           |
|                                      | <ul> <li>Loss of arbitration due to non-<br/>matching of data is detectable in slave<br/>transmission.</li> </ul>                                                                                                                                                                                                                                                                                                     | <ul> <li>Loss of arbitration due to non-<br/>matching of data is detectable in slave<br/>transmission.</li> </ul>                                                                                                                                                                                                                                                                                                           |
| Timeout detection<br>function        | The internal timeout function is capable of detecting long-interval stop of the SCL clock.                                                                                                                                                                                                                                                                                                                            | The internal timeout function is capable of detecting long-interval stop of the SCL clock.                                                                                                                                                                                                                                                                                                                                  |
| Noise canceler                       | The interface incorporates digital noise<br>filters for both the SCL and SDA inputs,<br>and the bandwidth for noise cancellation<br>by the filters is adjustable by software.                                                                                                                                                                                                                                         | The interface incorporates digital noise<br>filters for both the SCL and SDA inputs,<br>and the bandwidth for noise cancellation<br>by the filters is adjustable by software.                                                                                                                                                                                                                                               |
| Interrupt sources                    | <ul> <li>Four sources</li> <li>Communication error or event occurrence<br/>Arbitration detection, NACK detection, timeout detection, start condition detection (including restart condition), stop condition detection</li> <li>Receive data full (including matching with a slave address)</li> <li>Transmit data empty (including matching with a slave address)</li> <li>Transmit end</li> </ul>                   | <ul> <li>Four sources</li> <li>Communication error or event<br/>occurrence<br/>Arbitration detection, NACK detection,<br/>timeout detection, start condition<br/>detection (including restart condition),<br/>stop condition detection</li> <li>Receive data full (including matching<br/>with a slave address)</li> <li>Transmit data empty (including<br/>matching with a slave address)</li> <li>Transmit end</li> </ul> |
| Low power<br>consumption<br>function | I ransmit end It is possible to specify the module stop state.                                                                                                                                                                                                                                                                                                                                                        | I ransmit end     It is possible to specify the module stop     state.                                                                                                                                                                                                                                                                                                                                                      |
| Event link function                  |                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Communication error/event<br/>generation</li> <li>Receive data full</li> <li>Transmit data empty</li> <li>Transmit end</li> </ul>                                                                                                                                                                                                                                                                                  |



| Register | Bit  | RX63N (RIIC)                                 | RX64M (RIICa) |  |
|----------|------|----------------------------------------------|---------------|--|
| ICMR2    | TMWE | Timeout internal counter write<br>enable bit | _             |  |
| TMOCNTL  |      | Timeout internal counter L                   |               |  |
| TMOCNTU  |      | Timeout internal counter U                   |               |  |

#### Table 2.34 Comparative Listing of I<sup>2</sup>C Bus Interface Registers

### 2.20 Serial Peripheral Interface

Table 2.35 shows a comparative overview of the serial peripheral interface specifications, and Table 2.36 shows a comparative listing of the serial peripheral interface registers.

| Item                       | RX63N (RSPI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RX64M (RSPIc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Number of channels         | 3 channels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 channel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RSPI transfer<br>functions | <ul> <li>Use of MOSI (master out/slave in),<br/>MISO (master in/slave out), SSL<br/>(slave select), and RSPCK (RSPI<br/>clock) signals allows serial<br/>communication through SPI operation<br/>(4-wire method) or clock synchronous<br/>operation (3-wire method).</li> <li>Transmit-only operation is available.</li> <li>Communication mode: Full-duplex or<br/>transmit-only can be selected.</li> <li>Switching of the polarity of RSPCK is<br/>supported.</li> <li>Switching of the phase of RSPCK is</li> </ul> | <ul> <li>Use of MOSI (master out/slave in),<br/>MISO (master in/slave out), SSL<br/>(slave select), and RSPCK (RSPI<br/>clock) signals allows serial<br/>communication through SPI operation<br/>(4-wire method) or clock synchronous<br/>operation (3-wire method).</li> <li>Transmit-only operation is available.</li> <li>Communication mode: Full-duplex or<br/>transmit-only can be selected.</li> <li>Switching of the polarity of RSPCK is<br/>supported.</li> <li>Switching of the phase of RSPCK is</li> </ul> |
| Data format                | <ul><li>supported.</li><li>Selectable between MSB-first and</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul><li>supported.</li><li>Selectable between MSB-first and</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                            | <ul> <li>LSB-first.</li> <li>Transfer bit length is selectable among 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits.</li> <li>128-bit transmit/receive buffers</li> <li>Up to four frames can be transferred in one round of transmission/reception (with each frame consisting of up to 32 bits).</li> </ul>                                                                                                                                                                                                     | <ul> <li>LSB-first.</li> <li>Transfer bit length is selectable among 8, 9, 10, 11, 12, 13, 14, 15, 16, 20, 24, or 32 bits.</li> <li>128-bit transmit/receive buffers</li> <li>Up to four frames can be transferred in one round of transmission/reception (with each frame consisting of up to 32 bits).</li> </ul>                                                                                                                                                                                                     |
| Bit rate                   | <ul> <li>In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from 2 to 4,096).</li> <li>In slave mode, the minimum PCLK clock divided by 8 can be input as RSPCK (the maximum frequency of RSPCK is PCLK divided by 8). Width at high level: 4 cycles of PCLK; width at low level: 4 cycles of PCLK</li> </ul>                                                                                                                                        | <ul> <li>In master mode, the on-chip baud rate generator generates RSPCK by frequency-dividing PCLK (the division ratio ranges from 2 to 4,096).</li> <li>In slave mode, the minimum PCLK clock divided by 8 can be input as RSPCK (the maximum frequency of RSPCK is PCLK divided by 8). Width at high level: 4 cycles of PCLK; width at low level: 4 cycles of PCLK</li> </ul>                                                                                                                                        |
|                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (The settable bit rates will differ due to<br>differences in the electrical<br>characteristics. See the user's manual<br>for details.)                                                                                                                                                                                                                                                                                                                                                                                  |

 Table 2.35
 Comparative Overview of Serial Peripheral Interface



| Item                          | RX63N (RSPI)                                                                                                                                                                                                       | RX64M (RSPIc)                                                                                                                                                                                                                                                                       |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Buffer configuration          | <ul> <li>The transmit and receive buffers have<br/>a double buffer configuration.</li> <li>The transmit and receive buffers are<br/>each 128 bits in size.</li> </ul>                                              | <ul> <li>The transmit and receive buffers have<br/>a double buffer configuration.</li> <li>The transmit and receive buffers are<br/>each 128 bits in size.</li> </ul>                                                                                                               |
| Error detection               | <ul><li>Mode fault error detection</li><li>Overrun error detection</li></ul>                                                                                                                                       | <ul> <li>Mode fault error detection</li> <li>Overrun error detection         When master receive and the RSPCK auto-stop function are enabled, the transfer clock stops at the point in time when overrun error detection occurs, so no overrun error is generated.     </li> </ul> |
| SSL control function          | <ul> <li>Parity error detection</li> <li>Four SSL signals (SSLn0 to SSLn3) for each channel</li> <li>In single-master mode, SSLn0 to SSL n2 signals are subput</li> </ul>                                          | <ul> <li>Parity error detection</li> <li>Four SSL pins (SSLA0 to SSLA3) for<br/>each channel</li> <li>In single-master mode, SSLA0 to<br/>SSLA2 ping are subjut</li> </ul>                                                                                                          |
|                               | <ul> <li>SSLn3 signals are output.</li> <li>In multi-master mode: SSLn0 signal is input, and SSLn1 to SSLn3 signals are either output or unused.</li> </ul>                                                        | <ul> <li>SSLA3 pins are output.</li> <li>In multi-master mode: SSLA0 pin is input, and SSLA1 to SSLA3 pins are either output or unused.</li> </ul>                                                                                                                                  |
|                               | <ul> <li>In slave mode: SSLn0 signal is input,<br/>and SSLn1 to SSLn3 signals are<br/>unused.</li> </ul>                                                                                                           | <ul> <li>In slave mode: SSLA0 pin is input,<br/>and SSLA1 to SSLA3 pins are<br/>unused.</li> </ul>                                                                                                                                                                                  |
|                               | <ul> <li>Controllable delay from SSL output<br/>assertion to RSPCK operation<br/>(RSPCK delay)</li> <li>Setting range: 1 to 8 RSPCK cycles<br/>(set in RSPCK-cycle units)</li> </ul>                               | <ul> <li>Controllable delay from SSL output<br/>assertion to RSPCK operation<br/>(RSPCK delay)</li> <li>Setting range: 1 to 8 RSPCK cycles<br/>(set in RSPCK-cycle units)</li> </ul>                                                                                                |
|                               | <ul> <li>Controllable delay from RSPCK stop<br/>to SSL output negation (SSL negation<br/>delay)</li> <li>Setting range: 1 to 8 RSPCK cycles<br/>(set in RSPCK-cycle units)</li> </ul>                              | Controllable delay from RSPCK stop                                                                                                                                                                                                                                                  |
|                               | <ul> <li>Controllable wait for next-access SSL<br/>output assertion (next-access delay)<br/>Setting range: 1 to 8 RSPCK cycles<br/>(set in RSPCK-cycle units)</li> </ul>                                           | <ul> <li>Controllable wait for next-access SSL<br/>output assertion (next-access delay)<br/>Setting range: 1 to 8 RSPCK cycles<br/>(set in RSPCK-cycle units)</li> </ul>                                                                                                            |
|                               | <ul> <li>SSL polarity-change function</li> </ul>                                                                                                                                                                   | <ul> <li>SSL polarity-change function</li> </ul>                                                                                                                                                                                                                                    |
| Control in master<br>transfer | <ul> <li>Transfers of up to eight commands<br/>can be performed sequentially in<br/>looped execution.</li> </ul>                                                                                                   | <ul> <li>Transfers of up to eight commands<br/>can be performed sequentially in<br/>looped execution.</li> </ul>                                                                                                                                                                    |
|                               | • For each command, the following can<br>be set: SSL signal value, bit rate,<br>RSPCK polarity/phase, transfer data<br>length, LSB/MSB-first, burst, RSPCK<br>delay, SSL negation delay, and next-<br>access delay | • For each command, the following can<br>be set: SSL signal value, bit rate,<br>RSPCK polarity/phase, transfer data<br>length, LSB/MSB-first, burst, RSPCK<br>delay, SSL negation delay, and next-<br>access delay                                                                  |
|                               | <ul><li>A transfer can be initiated by writing<br/>to the transmit buffer.</li><li>The MOSI signal value when SSL is</li></ul>                                                                                     | <ul><li>A transfer can be initiated by writing<br/>to the transmit buffer.</li><li>The MOSI signal value when SSL is</li></ul>                                                                                                                                                      |
|                               | negated can be specified.                                                                                                                                                                                          | <ul><li>negated can be specified.</li><li>RSPCK auto-stop function</li></ul>                                                                                                                                                                                                        |



| ltem                              | RX63N (RSPI)                                                                                                                                                                                          | RX64M (RSPIc)                                                                                                                                                                                                                                                                                           |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interrupt sources                 | <ul> <li>Receive buffer full interrupt</li> <li>Transmit buffer empty interrupt</li> <li>RSPI error interrupt (mode fault, overrun, parity error)</li> <li>RSPI idle interrupt (RSPI idle)</li> </ul> | <ul> <li>Receive buffer full interrupt</li> <li>Transmit buffer empty interrupt</li> <li>RSPI error interrupt (mode fault, overrun, parity error)</li> <li>RSPI idle interrupt (RSPI idle)</li> </ul>                                                                                                   |
| Event link function<br>(output)   |                                                                                                                                                                                                       | <ul> <li>The following events can be output to the event link controller:</li> <li>Receive buffer run event signal</li> <li>Transmit buffer empty event signal</li> <li>Mode fault, overrun, or parity error event signal</li> <li>RSPI idle event signal</li> <li>Transmit end event signal</li> </ul> |
| Other functions                   | <ul> <li>Function for switching between<br/>CMOS output and open-drain output</li> <li>Function for initializing the RSPI</li> <li>Loopback mode function</li> </ul>                                  | <ul> <li>Function for switching between<br/>CMOS output and open-drain output</li> <li>Function for initializing the RSPI</li> <li>Loopback mode function</li> </ul>                                                                                                                                    |
| Low power<br>consumption function | It is possible to specify the module stop state.                                                                                                                                                      | It is possible to specify the module stop state.                                                                                                                                                                                                                                                        |

### Table 2.36 Comparative Listing of Serial Peripheral Interface Registers

| Register | Bit    | RX63N (RSPI) | RX64M (RSPIa)                       |
|----------|--------|--------------|-------------------------------------|
| SPSR     | SPTEF  |              | Transmit buffer empty flag          |
|          | SPRF   |              | Receive buffer full flag            |
| SPCR2    | SCKASE |              | RSPCK auto-stop function enable bit |



## 2.21 Parallel Data Capture Unit

Table 2.37 shows a comparative overview of the parallel data capture unit interface specifications.

| ltem                                     | RX63N (PDC)                                                                                                                                                                                                                       | RX64M (PDC)                                                                                                                                                                                                                       |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Capture range                            | User-specified amounts of parallel data<br>within the following ranges in the vertical<br>and horizontal directions:<br>Vertical direction: 1 to 4,095 lines<br>Horizontal direction: 4 to 4,095 bytes                            | User-specified amounts of parallel data<br>within the following ranges in the vertical<br>and horizontal directions:<br>Vertical direction: 1 to 4,095 lines<br>Horizontal direction: 4 to 4,095 bytes                            |
| Parallel transfer<br>clock (PIXCLK)      | Operating frequency: 1 to 27 MHz                                                                                                                                                                                                  | Operating frequency: 1 to 27 MHz                                                                                                                                                                                                  |
| Interrupt sources                        | <ul> <li>Receive data ready</li> <li>Frame end</li> <li>Overrun</li> <li>Underrun</li> <li>Error in the setting for the number of vertical lines</li> <li>Error in setting for the number of horizontal bytes per line</li> </ul> | <ul> <li>Receive data ready</li> <li>Frame end</li> <li>Overrun</li> <li>Underrun</li> <li>Error in the setting for the number of vertical lines</li> <li>Error in setting for the number of horizontal bytes per line</li> </ul> |
| DTC/DMAC<br>activation                   | Support for activation by receive data ready interrupt                                                                                                                                                                            | Support for activation by receive data ready interrupt                                                                                                                                                                            |
| Parallel transfer<br>clock output (PCKO) | <ul> <li>Operating frequency: 1 to 25 MHz</li> <li>Clock source: Peripheral module clock B (PCLKB)</li> <li>Frequency division ratio: Selectable among 2, 4, 6, 8, 10, 12, 14, and 16</li> </ul>                                  | <ul> <li>Operating frequency: 1 to 30 MHz</li> <li>Clock source: Peripheral module clock B (PCLKB)</li> <li>Frequency division ratio: Selectable among 2, 4, 6, 8, 10, 12, 14, and 16</li> </ul>                                  |
| Other functions                          | <ul> <li>PDC reset function</li> <li>Selectable polarity for VSYNC and<br/>HSYNC signals</li> <li>Monitoring of VSYNC and HSYNC<br/>signals</li> <li>Endianness selection function</li> </ul>                                     | <ul> <li>PDC reset function</li> <li>Selectable polarity for VSYNC and<br/>HSYNC signals</li> <li>Monitoring of VSYNC and HSYNC<br/>signals</li> <li>Endianness selection function</li> </ul>                                     |
| Low power<br>consumption<br>function     | It is possible to specify the module stop state.                                                                                                                                                                                  | It is possible to specify the module stop state.                                                                                                                                                                                  |
| Internal bus<br>interface                | Connected to internal peripheral bus 3                                                                                                                                                                                            | Connected to internal peripheral bus 3                                                                                                                                                                                            |

 Table 2.37
 Comparative Overview of Parallel Data Capture Unit Interface



### 2.22 12-Bit A/D Converter

Table 2.38 shows a comparative overview of the 12-bit A/D converter specifications, and Table 2.39 shows a comparative listing of the 12-bit A/D converter registers.

| ltem                                  | RX63N (S12ADa)                                          | RX64M (S12ADC)                                                                           |
|---------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------|
| Number of units                       | 1 unit                                                  | 2 units                                                                                  |
| Input channels                        | 21 channels                                             | Unit 0: 8 channels                                                                       |
|                                       |                                                         | Unit 1: 21 channels + one extended                                                       |
|                                       |                                                         | channel                                                                                  |
| Extended analog                       | Temperature sensor output, internal                     | Temperature sensor output, internal                                                      |
| function                              | reference voltage                                       | reference voltage                                                                        |
| A/D conversion<br>method              | Successive approximation method                         | Successive approximation method                                                          |
| Resolution                            | 12 bits                                                 | 12 bits                                                                                  |
| Conversion time                       | 1.0 µs per channel                                      | <ul> <li>(0.48 μs) per channel</li> </ul>                                                |
|                                       | (when operating with A/D conversion                     | (12-bit conversion mode)                                                                 |
|                                       | clock ADCLK = 50 MHz)                                   | <ul> <li>(0.45 μs) per channel</li> </ul>                                                |
|                                       |                                                         | (10-bit conversion mode)                                                                 |
|                                       |                                                         | • (0.42 µs) per channel                                                                  |
|                                       |                                                         | (8-bit conversion mode)                                                                  |
|                                       |                                                         | (Operating with A/D conversion clock<br>ADCLK = 60 MHz)                                  |
| A/D conversion clock                  | 4 clocks: PCLK, PCLK/2, PCLK/4,                         | Peripheral module clock PCLKB and A/D                                                    |
| (ADCLK)                               | PCLK/8                                                  | conversion clock ADCLK can be set so                                                     |
| , , , , , , , , , , , , , , , , , , , |                                                         | that the division ratio is one of the                                                    |
|                                       |                                                         | following:                                                                               |
|                                       |                                                         | PCLKB: ADCLK division ratio = 1:1, 1:2,                                                  |
|                                       |                                                         | 1:4, 1:8                                                                                 |
|                                       |                                                         | ADCLK is set using the clock generation                                                  |
|                                       |                                                         | circuit (CPG).                                                                           |
| Data register                         | For analog input: 21 data registers                     | • For analog input: 29 data registers                                                    |
|                                       |                                                         | (unit 0: 8 data registers, unit 1: 21                                                    |
|                                       |                                                         | data registers), one data register for                                                   |
|                                       |                                                         | each unit for A/D conversion data                                                        |
|                                       |                                                         | multiplexing in double trigger mode,<br>two data registers for each unit for             |
|                                       |                                                         | A/D conversion data multiplexing in                                                      |
|                                       |                                                         | double trigger mode extended                                                             |
|                                       |                                                         | operation                                                                                |
|                                       | For temperature sensor: One data                        | For temperature sensor: One data                                                         |
|                                       | register                                                | register (unit 1 only)                                                                   |
|                                       | <ul> <li>For internal reference voltage: One</li> </ul> | <ul> <li>For internal reference voltage: One</li> </ul>                                  |
|                                       | data register                                           | data register (unit 1 only)                                                              |
|                                       | <ul> <li>The results of A/D conversion are</li> </ul>   | <ul> <li>The results of A/D conversion are</li> </ul>                                    |
|                                       | stored in 12-bit A/D data registers.                    | stored in 12-bit A/D data registers.                                                     |
|                                       |                                                         | <ul> <li>Output of A/D conversion results at<br/>8-, 10-, or 12-bit precision</li> </ul> |
|                                       | <ul> <li>In A/D-converted value addition</li> </ul>     | • The value obtained by adding up A/D-                                                   |
|                                       | mode, A/D conversion results are                        | converted results is stored as a value                                                   |
|                                       | stored in a 14-bit A/D data register.                   | (number of conversion accuracy bits                                                      |
|                                       |                                                         | + 2 bits) in the A/D data registers in                                                   |
|                                       |                                                         | A/D-converted value addition mode.                                                       |

#### Table 2.38 Comparative Overview of 12-Bit A/D Converter



| ltem           | RX63N (S12ADa)                                                                                                                                                                                                                                                                                                                       | RX64M (S12ADC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data register  |                                                                                                                                                                                                                                                                                                                                      | <ul> <li>Double trigger mode (selectable in single scan and group scan modes):<br/>The first piece of A/D-converted analog-input data on one selected channel is stored in the data register for the channel, and the second piece is stored in the duplication register.</li> <li>Extended operation in double trigger mode (available for specific triggers):<br/>A/D-converted analog-input data on one selected channel is stored in the duplication for specific triggers):</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Operating mode | <ul> <li>Single scan mode:         <ul> <li>A/D conversion is performed only once on the analog inputs of up to 21 user-selected channels.</li> <li>A/D conversion is performed only once on the temperature sensor output.</li> <li>A/D conversion is performed only once on the internal reference voltage.</li> </ul> </li> </ul> | <ul> <li>Single scan mode:         <ul> <li>A/D conversion is performed only once on the analog inputs of up to 8 (unit 0) or up to 12 (unit 1) userselected channels.</li> <li>A/D conversion is performed only once on the temperature sensor output (unit 1 only).</li> <li>A/D conversion is performed only once on the internal reference voltage (unit 1 only).</li> <li>A/D conversion is performed only once on the extended analog input (unit 1 only).</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | <ul> <li>Continuous scan mode:         <ul> <li>A/D conversion is performed repeatedly on the analog inputs of up to 21 user-selected channels. (Continuous scan mode should not be used when temperature sensor output or the internal reference voltage is selected.)</li> </ul> </li> </ul>                                       | <ul> <li>Continuous scan mode:         <ul> <li>A/D conversion is performed repeatedly on the analog inputs of up to 8 (unit 0) or up to 21 (unit 1) user-selected channels, the temperature sensor output (unit 1 only), or the internal reference voltage (unit 1 only).</li> <li>A/D conversion is performed repeatedly on the extended analog input (unit 1 only).</li> </ul> </li> <li>Group scan mode:         <ul> <li>The analog inputs of up to 8 (unit 0) or up to 21 (unit 1) user-selected channels, the temperature sensor output (unit 1 only), and the internal reference voltage (unit 1 only) are divided up among group A and group B, and A/D conversion is performed only once on the analog inputs selected as a group unit.</li> <li>The scanning start conditions (synchronous triggers) can be selected independently for group A and group B, allowing conversion to start at a different time for each group.</li> </ul></li></ul> |



| ltem                            | RX63N (S12ADa)                                                                                                                                                                                                              | RX64M (S12ADC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating mode                  |                                                                                                                                                                                                                             | <ul> <li>Group scan mode (with group A priority control selected):</li> <li>If a group A trigger is input when A/D conversion on group B is in progress, scanning of group B is stopped and scanning of group A starts.</li> <li>Restart of A/D conversion on group B (rescan) after completion of A/D conversion on group A can be enabled.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A/D conversion start conditions | <ul> <li>Software trigger</li> <li>Synchronous trigger<br/>Conversion start is triggered by the<br/>MTU, TPU, and TMR.</li> <li>Asynchronous trigger<br/>A/D conversion can be triggered by<br/>the ADTRG0# pin.</li> </ul> | <ul> <li>Software trigger</li> <li>Synchronous trigger<br/>Conversion start is triggered by the<br/>MTU, TPU, TMR, GPT, and ELC.</li> <li>Asynchronous trigger<br/>A/D conversion can be started by the<br/>external trigger ADTRG0# pin (unit 0)<br/>or ADTRG1# pin (unit 1).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Functions                       | <ul> <li>Sample-and-hold function</li> <li>Variable sampling state count</li> <li>Selectable A/D-converted value adding mode</li> </ul>                                                                                     | <ul> <li>Sample-and-hold function</li> <li>Channel-dedicated sample-and-hold function (3 channels: unit 1)</li> <li>Variable sampling state count</li> <li>Self-diagnostic function for 12-bit A/D converter</li> <li>Selectable A/D-converted value adding mode or averaging mode</li> <li>Analog input disconnection detection function (discharge function/precharge function)</li> <li>Double trigger mode (duplication of A/D conversion data)</li> <li>Function for switching among 12-, 10-, and 8-bit conversion</li> <li>A/D data register auto-clear function</li> <li>Extended analog input function</li> <li>Digital comparison (comparison of values in the comparison register and the data register, and comparison between values in the data registers)</li> </ul> |
| Interrupt sources               | <ul> <li>An scan end interrupt request<br/>(S12ADI0) can be generated on<br/>completion of A/D conversion.</li> </ul>                                                                                                       | <ul> <li>In modes other than double trigger mode and group scan mode, an A/D scan end interrupt request (S12ADI) can be generated on completion of a single scan.</li> <li>In double trigger mode, an A/D scan end interrupt request (S12ADI) can be generated on completion of a double scan.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



| Item                           | RX63N (S12ADa)                                        | RX64M (S12ADC)                                                                                                                                                                                                                                                                    |
|--------------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Interrupt sources              |                                                       | <ul> <li>In group scan mode, a scan end<br/>interrupt request (S12ADI) can be<br/>generated on completion of a group A<br/>scan. On completion of a group B<br/>scan a dedicated group B scan end<br/>interrupt request (S12GBADI) can be<br/>generated.</li> </ul>               |
|                                |                                                       | • When double trigger mode is selected<br>in group scan mode, a scan end<br>interrupt request (S12ADI) can be<br>generated on completion of two scans<br>of group A. On completion of a group<br>B scan a dedicated scan end interrupt<br>request (S12GBADI) can be<br>generated. |
|                                |                                                       | • A compare interrupt (S12CMPI) can<br>be generated when the digital<br>compare function comparison<br>conditions are met.                                                                                                                                                        |
|                                | A S12ADI0 interrupt can activate the<br>DMAC and DTC. | The DMAC or DTC can be activated<br>by the S12ADI or S12GBADI<br>interrupt.                                                                                                                                                                                                       |
| Event link function            |                                                       | <ul> <li>In group scan mode an ELC event<br/>can be generated on completion of<br/>scans other than group B scan.</li> <li>Scanning can be started by a trigger<br/>from the ELC.</li> </ul>                                                                                      |
| Low power consumption function | It is possible to specify the module stop state.      | It is possible to specify the module stop state.                                                                                                                                                                                                                                  |



| Register | Bit              | RX63N (S12ADa)                                                                | RX64M (S12ADC)                                                                          |
|----------|------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| ADDBLDR  |                  | _                                                                             | A/D data duplication register                                                           |
| ADDBLDRA |                  | _                                                                             | A/D data duplication register A                                                         |
| ADDBLDRB |                  | _                                                                             | A/D data duplication register B                                                         |
| ADRD     |                  | _                                                                             | A/D self-diagnostic data register                                                       |
| ADCSR    | DBLANS[4:0]      |                                                                               | Double trigger channel select bits                                                      |
|          | GBADIE           |                                                                               | Group B scan end interrupt enable bit                                                   |
|          | DBLE             |                                                                               | Double trigger mode select bit                                                          |
|          | EXTRG            | Trigger select bit                                                            | Trigger select bit                                                                      |
|          | TRGE             | Trigger start enable bit                                                      | Trigger start enable bit                                                                |
|          | CKS[1:0]         | A/D conversion clock select bits                                              |                                                                                         |
|          | ADIE             | Scan end interrupt enable bit                                                 | Scan end interrupt enable bit                                                           |
|          | ADCS             | Scan mode select bit                                                          |                                                                                         |
|          | ADCS[1:0]        |                                                                               | Scan mode select bits                                                                   |
|          | ADST             | A/D conversion start bit                                                      | A/D conversion start bit                                                                |
| ADANS0   |                  | A/D channel select register 0                                                 | _                                                                                       |
| ADANS1   |                  | A/D channel select register 1                                                 |                                                                                         |
| ADANSA0  |                  |                                                                               | A/D channel select register A0                                                          |
| ADANSA1  |                  |                                                                               | A/D channel select register A1                                                          |
| ADANSB0  |                  |                                                                               | A/D channel select register B0                                                          |
| ADANSB1  |                  |                                                                               | A/D channel select register B1                                                          |
| ADADS0   |                  | A/D-converted value addition mode                                             | A/D-converted value                                                                     |
| 101000   |                  | select register 0                                                             | addition/averaging mode select<br>register 0                                            |
| ADADS1   | _                | A/D-converted value addition mode select register 1                           | A/D-converted value<br>addition/averaging mode select<br>register 1                     |
| ADADC    | AVEE             |                                                                               | Average mode enable bit                                                                 |
| ADCER    | ADPRC[1:0]       |                                                                               | A/D conversion precision setting bits                                                   |
|          | ACE              | Automatic clearing enable bit                                                 | A/D data register automatic<br>clearing enable bit                                      |
|          | DIAGVAL<br>[1:0] | _                                                                             | Self-diagnostic conversion voltage select bits                                          |
|          | DIAGLD           |                                                                               | Self-diagnostic mode select bit                                                         |
|          | DIAGM            |                                                                               | Self-diagnostic enable bit                                                              |
| ADSTRGR  | ADSTRS<br>[3:0]  | A/D conversion start trigger select<br>bits                                   | _                                                                                       |
|          | TRSB[5:0]        |                                                                               | A/D conversion start trigger for group B select bits                                    |
|          | TRSA[5:0]        |                                                                               | A/D conversion start trigger select bits                                                |
| ADEXICR  | TSSAD            | Temperature sensor output A/D-<br>converted value addition mode<br>select bit | Temperature sensor output A/D-<br>converted value addition/averaging<br>mode select bit |
|          | OCSAD            | Internal reference voltage A/D conversion select bit                          | Internal reference voltage A/D-<br>converted value addition/average<br>mode select bit  |
|          | TSS              | Temperature sensor output A/D<br>conversion select bit                        |                                                                                         |

#### Table 2.39 Comparative Listing of 12-Bit A/D Converter Registers

Points of Difference Between RX63N Group and RX64M Group

| Register          | Bit        | RX63N (S12ADa)                                          | RX64M (S12ADC)                                                       |
|-------------------|------------|---------------------------------------------------------|----------------------------------------------------------------------|
| ADEXICR           | TSSA       | —                                                       | Temperature sensor output A/D<br>conversion select bit               |
|                   | OCS        | Internal reference voltage A/D-<br>converted select bit |                                                                      |
|                   | OCSA       |                                                         | Internal reference voltage A/D<br>conversion select bit              |
|                   | TSSB       |                                                         | Temperature sensor output A/D conversion select bit                  |
|                   | OCSB       | _                                                       | Internal reference voltage A/D conversion select bit                 |
|                   | EXSEL[1:0] |                                                         | Extended analog input select bits                                    |
|                   | EXOEN      | _                                                       | Extended analog output control bit                                   |
| ADSSTR01          |            | A/D sampling state register 01                          | Extended analog input select bits                                    |
| ADSSTR23          |            | A/D sampling state register 23                          |                                                                      |
| ADSSTR0           |            |                                                         | A/D sampling state register 0                                        |
| ADSSTR1           |            | _                                                       | A/D sampling state register 1                                        |
| ADSSTR2           |            |                                                         | A/D sampling state register 2                                        |
| ADSSTR3           |            |                                                         | A/D sampling state register 3                                        |
| ADSSTR4           |            |                                                         | A/D sampling state register 4                                        |
| ADSSTR5           |            |                                                         | A/D sampling state register 5                                        |
| ADSSTR6           |            |                                                         | A/D sampling state register 6                                        |
| ADSSTR7           |            |                                                         | A/D sampling state register 7                                        |
| ADSSTRI           |            |                                                         | A/D sampling state register /                                        |
| ADSSTRL           |            |                                                         |                                                                      |
|                   |            |                                                         | A/D sampling state register T                                        |
| ADSSTRO<br>ADSHCR |            |                                                         | A/D sampling state register O<br>A/D sample-and-hold circuit control |
|                   |            |                                                         | register                                                             |
| ADDISCR           |            | _                                                       | A/D disconnection detection control<br>register                      |
| ADGSPCR           |            |                                                         | A/D group scan priority control<br>register                          |
| ADCMPCR           |            |                                                         | A/D compare control register                                         |
| ADCMPANSR0        |            | _                                                       | A/D compare channel select<br>register 0                             |
| ADCMPANSR1        |            | —                                                       | A/D compare channel select<br>register 1                             |
| ADCMPANSER        | —          |                                                         | A/D compare select extended register                                 |
| ADCMPLR0          |            | _                                                       | A/D compare level register 0                                         |
| ADCMPLR1          |            | _                                                       | A/D compare level register 1                                         |
| ADCMPLER          |            | _                                                       | A/D compare level extended register                                  |
| ADCMPDR0          |            |                                                         | A/D compare data register 0                                          |
| ADCMPDR0          |            |                                                         | A/D compare data register 0                                          |
|                   |            |                                                         |                                                                      |
| ADCMPSR0          |            |                                                         | A/D compare status register 0                                        |
| ADCMPSR1          |            |                                                         | A/D compare status register 1                                        |
| ADCMPSER          | —          | _                                                       | A/D compare status extended<br>register                              |

## 2.23 D/A Converter

Table 2.40 shows a comparative overview of the D/A converter specifications, and Table 2.41 shows a comparative listing of the D/A converter registers.

| ltem                                                                | RX63N (DAa)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RX64M (R12DA)                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resolution                                                          | 10 bits                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12 bits                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Output channel                                                      | 2 channels                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2 channels                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Measure against<br>mutual interference<br>between analog<br>modules | Measure against interference between<br>D/A and A/D conversion: D/A converted<br>data update timing is controlled by the<br>10-bit A/D converter synchronous D/A<br>conversion enable input signal output by<br>the the 10-bit A/D converter.<br>(Degradation of A/D converter.<br>(Degradation of A/D conversion<br>accuracy caused by interference is<br>reduced by controlling the D/A converter<br>inrush current generation timing with the<br>enable signal.) | Measure against interference between<br>D/A and A/D conversion: D/A converted<br>data update timing is controlled by the<br>12-bit A/D converter synchronous D/A<br>conversion enable input signal output by<br>the the 12-bit A/D converter (unit 1).<br>Degradation of 12-bit A/D conversion<br>accuracy caused by interference is<br>reduced by controlling the D/A converter<br>inrush current generation timing with the<br>enable signal. |
| Low power consumption function                                      | It is possible to specify the module stop state.                                                                                                                                                                                                                                                                                                                                                                                                                    | It is possible to specify the module stop state.                                                                                                                                                                                                                                                                                                                                                                                                |
| Event link function<br>(input)                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ability to activate DA0 by event signal input                                                                                                                                                                                                                                                                                                                                                                                                   |
| D/A output mode switching                                           | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Switchable between output amplifier and output amplifier though output                                                                                                                                                                                                                                                                                                                                                                          |

#### Table 2.40 Comparative Overview of D/A Converter

| Table 2.41 | Comparative Listing of D/A Converter | Registers |
|------------|--------------------------------------|-----------|
|------------|--------------------------------------|-----------|

| Register | Bit | RX63N (DAa) | RX64M (R12DA)                         |
|----------|-----|-------------|---------------------------------------|
| DAAMPCR  |     | —           | D/A output amplifier control register |
| DAADUSR  |     |             | D/A-A/D sync unit select register     |



### 2.24 Temperature Sensor

Table 2.42 shows a comparative overview of the temperature sensor specifications, and Table 2.43 shows a comparative listing of the temperature sensor registers.

#### Table 2.42 Comparative Overview of Temperature Sensor

| ltem                                                | RX63N                                                                                                                                 | RX64M                                            |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| Temperature sensor voltage output                   | Output to 12-bit A/D converter                                                                                                        | Output to 12-bit A/D converter (unit 1)          |
| Low power consumption function                      | It is possible to specify the module stop state.                                                                                      | It is possible to specify the module stop state. |
| Temperature sensor<br>calibration data<br>registers | When shipped from the factory the registers contain temperature sensor calibration data based on measurement of each individual chip. | _                                                |

#### Table 2.43 Comparative Listing of Temperature Sensor Registers

| Register | Bit | RX63N                                        | RX64M |
|----------|-----|----------------------------------------------|-------|
| TSCDRH   | —   | Temperature sensor calibration data register | _     |
| TSCDRL   | —   | Temperature sensor calibration data register | _     |



### 2.25 RAM

Table 2.44 shows a comparative overview of the RAM specifications, and Table 2.45 shows a comparative listing of the RAM registers.

#### Table 2.44 Comparative Overview of RAM

|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | RX64M                                                                                                                          |                                                                                                                                                                                                                                                                              |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Item         | RX63N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | No ECC Error Correction                                                                                                        | ECC Error Correction<br>(ECCRAM)                                                                                                                                                                                                                                             |
| RAM capacity | <ul> <li>64 KB<br/>RAM0: 64 KB</li> <li>128 KB<br/>RAM0: 64 KB, RAM1: 64 KB</li> <li>192 KB<br/>RAM0: 64 KB, RAM1: 128 KB</li> <li>256 KB<br/>RAM0: 64 KB, RAM1: 192 KB</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                     | • 512 KB<br>RAM0: 512 KB                                                                                                       | 32 KB                                                                                                                                                                                                                                                                        |
| RAM address  | <ul> <li>When the RAM capacity is 64<br/>KB<br/>RAM0: 0000 0000h to 0000<br/>FFFFh (64 KB)<br/>RAM1: None</li> <li>When the RAM capacity is<br/>128 KB<br/>RAM0: 0000 0000h to 0000<br/>FFFFh (64 KB)<br/>RAM1: 0001 0000h to 0001<br/>FFFFh (64 KB)</li> <li>When the RAM capacity is<br/>192 KB<br/>RAM0: 0000 0000h to 0000<br/>FFFFh (64 KB)<br/>RAM1: 0001 0000h to 0002<br/>FFFFh (128 KB)</li> <li>When the RAM capacity is<br/>256 KB<br/>RAM0: 0000 0000h to 0000<br/>FFFFh (64 KB)<br/>RAM1: 0001 0000h to 0000<br/>FFFFh (64 KB)<br/>RAM1: 0001 0000h to 0003<br/>FFFFh (192 KB)</li> </ul> | RAM0: 0000 0000h to<br>0007 FFFFh                                                                                              | ECCRAM: 00FF 8000h to<br>00FF FFFFh                                                                                                                                                                                                                                          |
| Access       | <ul> <li>Single-cycle access is possible for both reading and writing.</li> <li>The RAM can be enabled or disabled.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>Single-cycle access is possible for both reading and writing.</li> <li>The RAM can be enabled or disabled.</li> </ul> | <ul> <li>Without ECC error<br/>correction: Access is<br/>done in two cycles for<br/>both reading and<br/>writing.</li> <li>With ECC error<br/>correction (when no<br/>error has occurred):<br/>Access is done in two<br/>cycles for both reading<br/>and writing.</li> </ul> |



|                                      |                                                                            | RX64M                                                                                               |                                                                                                                                                                                                                                                        |  |
|--------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Item                                 | RX63N                                                                      | No ECC Error Correction                                                                             | <ul> <li>ECC Error Correction<br/>(ECCRAM)</li> <li>With ECC error<br/>correction (when an<br/>error has occurred):<br/>Access is done in two<br/>cycles for both reading<br/>and writing.</li> <li>The RAM can be<br/>enabled or disabled.</li> </ul> |  |
| Access                               |                                                                            |                                                                                                     |                                                                                                                                                                                                                                                        |  |
| Data retention function              | Data in RAM0 can be retained in deep software standby mode.                | Data is not retained in<br>deep software standby<br>mode. (Data can be<br>retained in standby RAM.) | Data is not retained in<br>deep software standby<br>mode. (Data can be<br>retained in standby RAM.)                                                                                                                                                    |  |
| Low power<br>consumption<br>function | The module-stop state is<br>independently selectable for<br>RAM0 and RAM1. | It is possible to specify the module stop state.                                                    | It is possible to specify the module stop state.                                                                                                                                                                                                       |  |
| Error<br>checking<br>function        | None                                                                       | None                                                                                                | <ul> <li>Correction of 1-bit<br/>errors and detection of<br/>2-bit errors</li> <li>Generation of non-<br/>maskable interrupt or<br/>interrupt when an error<br/>occurs</li> </ul>                                                                      |  |

| Register     | Bit     | RX63N | RX64M                          |
|--------------|---------|-------|--------------------------------|
| SYSCR1*      | ECCRAME | _     | ECCRAM enable bit              |
|              | SBYRAME | _     | Standby RAM enable bit         |
| ECCRAMMODE   |         |       | ECCRAM operating mode control  |
|              |         |       | register                       |
| ECCRAM2STS   |         |       | ECCRAM 2-bit error status      |
|              |         |       | register                       |
| ECCRAM1STSEN | —       | —     | ECCRAM 1-bit error information |
|              |         |       | update enable register         |
| ECCRAM1STS   |         | _     | ECCRAM 1-bit error status      |
|              |         |       | register                       |
| ECCRAMPRCR   |         | —     | ECCRAM protect register        |
| ECCRAM2ECAD  |         |       | ECCRAM 2-bit error address     |
|              |         |       | capture register               |
| ECCRAM1ECAD  |         |       | ECCRAM 1-bit error address     |
|              |         |       | capture register               |
| ECCRAMPRCR2  |         |       | ECCRAM protect register 2      |
| ECCRAMETST   |         |       | ECCRAM test control register   |

Note: \* See the Operating Modes section of RX64M Group User's Manual: Hardware for a description of ECCRAME and SBYRAME.

### Table 2.45 Comparative Listing of RAM Registers



### 2.26 Flash Memory

Table 2.46 shows a comparative listing of the flash memory specifications, and Table 2.47 shows a comparative listing of the flash memory registers.

|                                           | RX63N                                                                                                                                                                                     |                                                                                                             | RX64M                                                                                                                                                                                                       |                                                                                                        |  |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|
| ltem                                      | ROM                                                                                                                                                                                       | E2 Data Flash                                                                                               | Code Flash Memory                                                                                                                                                                                           | Data Flash Memory                                                                                      |  |
| Memory space                              | <ul> <li>User area:<br/>Maximum 2 MB</li> <li>User boot area:<br/>16 KB</li> </ul>                                                                                                        | Data area: 32 KB                                                                                            | <ul> <li>User area:<br/>Maximum 4 MB</li> <li>User boot area:<br/>32 KB</li> </ul>                                                                                                                          | Data area: <mark>64 KB</mark>                                                                          |  |
| Read cycle                                | High-speed read<br>operation using 1<br>cycle of ICLK is<br>supported.                                                                                                                    | A read operation<br>takes six cycles of<br>FCLK for word or<br>byte access.                                 | High-speed read<br>operation using 1<br>cycle of ICLK is<br>supported.                                                                                                                                      | A read operation<br>takes eight cycles of<br>FCLK for word or<br>byte access.                          |  |
| Value after<br>erase                      | FFh                                                                                                                                                                                       | Undefined value                                                                                             | FFh                                                                                                                                                                                                         | Undefined value                                                                                        |  |
| Programming/<br>erasing<br>method         | <ul> <li>On-chip dedicated sequencer (FCU) for programming the ROM and E2 data flash</li> <li>Programming and erasing the ROM and E2 data flash by issuing commands to the FCU</li> </ul> |                                                                                                             | memory and data flash memory can be accomplished with FACI commands                                                                                                                                         |                                                                                                        |  |
| Security function                         | Prevents unauthorized modification or reading of data.                                                                                                                                    |                                                                                                             | Prevents unauthorized modification or reading of data.                                                                                                                                                      |                                                                                                        |  |
| Protection<br>function                    | Prevents unintentiona flash memory.                                                                                                                                                       | I programming of the                                                                                        | Prevents unintentional flash memory.                                                                                                                                                                        | programming of the                                                                                     |  |
| Trusted<br>Memory (TM)                    | _                                                                                                                                                                                         |                                                                                                             | Prevents unauthorized and 9 in the code flash                                                                                                                                                               |                                                                                                        |  |
| Background<br>operation<br>(BGO) function | Data can be read from<br>E2 data flash is being                                                                                                                                           |                                                                                                             | <ul> <li>The code flash mer<br/>while the data flash<br/>programmed.</li> <li>The code flash mer<br/>while the code flash<br/>programmed (with I<br/>combinations of add<br/>reading and writing</li> </ul> | memory is being<br>nory can be read<br>n memory is being<br>imitations on the<br>dress ranges in which |  |
| Units of<br>programming<br>and erasure    | <ul> <li>Programming the user area and user boot area: 128 bytes</li> <li>Erasing the user area: One block</li> <li>Erasing the user boot area: 16 KB</li> </ul>                          | <ul> <li>Programming<br/>the data area:<br/>2 bytes</li> <li>Erasing the data<br/>area: 32 bytes</li> </ul> | <ul> <li>Programming the user area and user boot area: 256 bytes</li> <li>Erasing the user area: One block</li> <li>Erasing the user boot area: 32 KB</li> </ul>                                            | <ul> <li>Programming the data area:<br/>4 bytes</li> <li>Erasing the data area: 64 bytes</li> </ul>    |  |

### Table 2.46 Comparative Listing of Flash Memory Specifications

|                                                                    | RX63N                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                    | RX64M                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                         |  |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| ltem                                                               | ROM                                                                                                                                                                                                                                                                                                                                                       | E2 Data Flash                                                                                                                                      | Code Flash Memory                                                                                                                                                                                                                                                                                                                                            | Data Flash Memory                                                                                                                                                                                                                                                                       |  |
| Other<br>functions                                                 | Ability to accept interr<br>programming<br>Ability to specify initia                                                                                                                                                                                                                                                                                      | I settings for the                                                                                                                                 | Ability to accept interrupts during self-<br>programming<br>Ability to specify initial settings for the                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                         |  |
| On-board<br>programming<br>(four types)                            | <ul> <li>(SCI1) is used.</li> <li>The communic adjusted autom</li> <li>The user boot a programmed.</li> <li>Programming in U</li> <li>USB0 is used.</li> <li>Dedicated hard so direct conner possible.</li> <li>Programming in use</li> <li>Users can creat programs.</li> <li>Programming by a E2 data flash programs</li> <li>This allows RC</li> </ul> | oot mode<br>ous serial interface<br>ation speed is<br>natically.<br>area can also be<br>SB boot mode<br>ware is not required,<br>ection to a PC is | <ul> <li>automatically.</li> <li>The user boot a programmed.</li> <li>Programming in US <ul> <li>USBb is used.</li> <li>Dedicated hardw so direct connect possible.</li> </ul> </li> <li>Programming in use <ul> <li>Users can creat programs.</li> </ul> </li> <li>Programming by a memory or data flas programming within — This allows program</li> </ul> | ot mode<br>ous serial interface<br>tion speed is adjusted<br>rea can also be<br>SB boot mode<br>ware is not required,<br>ction to a PC is<br>er boot mode<br>e their own boot<br>routine for code flash<br>sh memory<br>n the user program<br>gramming of the code<br>data flash memory |  |
| Off-board<br>programming<br>(products with<br>100 pins or<br>more) | A flash programmer<br>can be used to<br>program the user<br>area and user boot<br>area.                                                                                                                                                                                                                                                                   | A flash programmer<br>cannot be used to<br>program the data<br>area.                                                                               | A flash programmer<br>can be used to<br>program the user<br>area and user boot<br>area.                                                                                                                                                                                                                                                                      | A flash programmer<br>cannot be used to<br>program the data<br>area.                                                                                                                                                                                                                    |  |



| Register | Bit        | RX63N                                                            | RX64M                              |
|----------|------------|------------------------------------------------------------------|------------------------------------|
| FWEPROR  | FLWE[1:0]  | Flash programming/erasure bits                                   | Flash write/erase bits             |
| FMODR    |            | Flash mode register                                              |                                    |
| FASTAT   | DFLWPE     | E2 data flash programming/erasure                                |                                    |
|          |            | protection violation flag                                        |                                    |
|          | ECRCT      |                                                                  | Error flag                         |
|          | DFLRPE     | E2 data flash read protection                                    | —                                  |
|          |            | violation flag                                                   |                                    |
|          | DFLAE      | E2 data flash access violation flag                              | —                                  |
|          | DFAE       | _                                                                | Data flash memory access violation |
|          |            |                                                                  | flag                               |
|          | CMDLK      | FCU command lock flag                                            | Command lock flag                  |
|          | ROMAE      | ROM access violation flag                                        |                                    |
|          | CFAE       | —                                                                | Code flash memory access           |
|          |            |                                                                  | violation flag                     |
| FAEINT   | DFLWPEIE   | E2 data flash programming/erasure                                |                                    |
|          |            | protection violation interrupt enable                            |                                    |
|          |            | bit                                                              | Emericate must everle bit          |
|          | ECRCTIE    |                                                                  | Error interrupt enable bit         |
|          | DFLRPEIE   | E2 data flash read protection                                    | —                                  |
|          | DFLAEIE    | violation interrupt enable bit<br>E2 data flash access violation |                                    |
|          | DFLAEIE    | interrupt enable bit                                             |                                    |
|          | DFAEIE     |                                                                  | Data flash memory access violation |
|          | DIALL      |                                                                  | interrupt enable bit               |
|          | CMDLKIE    | FCU command lock interrupt                                       | Command lock interrupt enable bit  |
|          |            | enable bit                                                       |                                    |
|          | ROMAEIE    | ROM access violation interrupt                                   |                                    |
|          |            | enable bit                                                       |                                    |
|          | CFAEIE     | —                                                                | Code flash memory access           |
|          |            |                                                                  | violation interrupt enable bit     |
| DFLRE0   |            | E2 data flash read enable register 0                             |                                    |
| DFLRE1   |            | E2 data flash read enable register 1                             |                                    |
| DFLWE0   |            | E2 data flash P/E enable register 0                              | —                                  |
| DFLWE0   |            | E2 data flash P/E enable register 1                              | —                                  |
| FSADDR   |            | —                                                                | FACI command processing start      |
|          |            |                                                                  | address register                   |
| FEADDR   |            | —                                                                | FACI command processing end        |
|          |            |                                                                  | address register                   |
| FCURAME  | FRAMTRAN   |                                                                  | FCURAM transfer mode bit           |
| FSTATR0  |            | Flash status register 0                                          |                                    |
| FSTATR1  |            | Flash status register 1                                          |                                    |
| FSTATR   |            |                                                                  | Flash status register              |
| FENTRYR  | FENTRY0    | ROM P/E mode entry bit 0                                         | <u> </u>                           |
|          | FENTRYC    |                                                                  | Code flash P/E mode entry bit      |
|          | FENTRY1    | ROM P/E mode entry bit 1                                         |                                    |
|          | FENTRY2    | ROM P/E mode entry bit 2                                         |                                    |
|          | FENTRY3    | ROM P/E mode entry bit 3                                         |                                    |
|          | FENTRYD    | E2 data flash P/E mode entry bit                                 | Data flash P/E mode entry bit      |
|          | FEKEY[7:0] | Key code                                                         | `                                  |
|          | KEY[7:0]   |                                                                  | Key code bits                      |
|          | L -1       |                                                                  | · · · ·                            |

#### Table 2.47 Comparative Listing of Flash Memory Registers



RX63N Group, RX64M Group

Points of Difference Between RX63N Group and RX64M Group

| Register  | Bit        | RX63N                                         | RX64M                                                     |
|-----------|------------|-----------------------------------------------|-----------------------------------------------------------|
| FPROTR    | FPKEY[7:0] | Key code                                      |                                                           |
|           | KEY[7:0]   |                                               | Key code bits                                             |
| FRESETR   |            | Flash reset register                          |                                                           |
| FSUINITR  | _          |                                               | Flash sequencer setting<br>initialization register        |
| FLKSTAT   |            |                                               | Lock bit status register                                  |
| FCMDR     |            | FCU command register                          | FACI command register                                     |
| FCPSR     |            | FCU processing switching register             | Flash sequencer processing switching register             |
| DFLBCCNT  | _          | E2 data flash blank check control<br>register | _                                                         |
| FPESTAT   |            | P/E error status bits                         | P/E error status flag                                     |
| DFLBCSTAT |            | E2 data flash blank check status<br>register  | _                                                         |
| FBCCNT    |            |                                               | Data flash blank check control register                   |
| FBCSTAT   |            |                                               | Data flash blank check status register                    |
| FPSADDR   |            |                                               | Data flash write start address register                   |
| PCKAR     |            | Peripheral clock notification register        |                                                           |
| FPCKAR    |            |                                               | Flash sequencer processing clock<br>notification register |
| UIDRn*    |            | Unique ID register n                          |                                                           |

Note: \* Implemented on G product versions only.



### 3. Reference Documents

User's Manual: Hardware

RX63N Group, User's Manual: Hardware Rev.1.80 (R01UH0041EJ0180) (The latest version can be downloaded from the Renesas Electronics website.)

RX64M Group User's Manual: Hardware Rev.1.00 (R01UH0377EJ0100) (The latest version can be downloaded from the Renesas Electronics website.)

Technical Update/Technical News

(The latest version can be downloaded from the Renesas Electronics website.)



### Website and Support

Renesas Electronics Website <u>http://www.renesas.com/</u> Inquiries <u>http://www.renesas.com/contact/</u>

All trademarks and registered trademarks are the property of their respective owners.



# **Revision History**

|      |               | Description |                                                               |  |
|------|---------------|-------------|---------------------------------------------------------------|--|
| Rev. | Date          | Page        | Summary                                                       |  |
| 1.00 | Apr. 04, 2014 | _           | First edition issued                                          |  |
| 1.01 | Oct. 26, 2015 |             | Application note amended to reflect updates to user's manuals |  |
|      |               | 2, 3        | Table 1.1 amended                                             |  |
|      |               | 4           | 2.1 Operating Modes added                                     |  |
|      |               |             | 2.2 Option-Setting Memory added                               |  |
|      |               | 6           | Table 2.4 amended                                             |  |
|      |               | 7 to 9      | Table 2.5 amended                                             |  |
|      |               | 9           | Table 2.6 amended                                             |  |
|      |               | 11, 12      | Table 2.8 amended                                             |  |
|      |               | 13 to 15    | Table 2.9 amended                                             |  |
|      |               | 17          | 2.7 Memory Protection Unit added                              |  |
|      |               | 18, 19      | Table 2.12 amended                                            |  |
|      |               | 19          | 2.9 I/O Ports added                                           |  |
|      |               |             | 2.10 Multi-Function Pin Controller added                      |  |
|      |               | 20, 21      | Table 2.16 amended                                            |  |
|      |               | 22 to 24    | Table 2.17 amended                                            |  |
|      |               | 28, 29      | 2.13 8-Bit Timer added                                        |  |
|      |               | 29          | 2.14 Compare Match Timer added                                |  |
|      |               | 30, 31      | Table 2.23 amended                                            |  |
|      |               | 32          | Table 2.26 amended                                            |  |
|      |               | 33, 34      | Table 2.27 amended                                            |  |
|      |               | 35          | Table 2.28 amended                                            |  |
|      |               | 36, 37      | Table 2.29 amended                                            |  |
|      |               | 38 to 40    | Table 2.30 amended                                            |  |
|      |               | 41          | Table 2.32 amended                                            |  |
|      |               | 42, 43      | Table 2.33 amended                                            |  |
|      |               | 46          | Table 2.36 amended                                            |  |
|      |               | 47          | 2.21 Parallel Data Capture Unit added                         |  |
|      |               | 48 to 51    | Table 2.38 amended                                            |  |
|      |               | 52, 53      | Table 2.39 amended                                            |  |
|      |               | 55          | 2.24 Temperature Sensor added                                 |  |
|      |               | 56, 57      | Table 2.44 amended                                            |  |
|      |               | 58          | Table 2.45 amended                                            |  |
|      |               | 60, 61      | Table 2.47 amended                                            |  |
|      |               | 62          | 3. Reference Documents amended                                |  |

### General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

- 1. Handling of Unused Pins
  - Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.
  - The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.
- 2. Processing at Power-on
  - The state of the product is undefined at the moment when power is supplied.
  - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.

In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.

- 3. Prohibition of Access to Reserved Addresses
  - Access to reserved addresses is prohibited.
  - The reserved addresses are provided for the possible future expansion of functions. Do not access
    these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

 When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

### 5. Differences between Products

Before changing from one product to another, i.e. to a product with a different type number, confirm that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

|    | 10000                                                                                                                                                                                                              |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. | Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for  |
|    | the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the     |
|    | use of these circuits, software, or information.                                                                                                                                                                   |
| 2. | Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics             |
|    | assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.                                                                        |
| 3. | Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or    |
|    | technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or       |
|    | others.                                                                                                                                                                                                            |
| 4. | You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or      |
|    | third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.                                                                                       |
| 5. | Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on             |
|    | the product's quality grade, as indicated below.                                                                                                                                                                   |
|    | "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic                      |
|    | equipment; and industrial robots etc.                                                                                                                                                                              |
|    | "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.                                         |
|    | Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical |
|    | implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it        |
|    | in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses        |
|    | incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.                                                             |
| 6. | You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage              |
|    | range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the    |
|    | use of Renesas Electronics products beyond such specified ranges.                                                                                                                                                  |
| 7. | Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and        |
|    | malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the             |
|    | possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to     |
|    | redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,      |
|    | please evaluate the safety of the final products or systems manufactured by you.                                                                                                                                   |
| 8. | Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics              |
|    | products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes      |
|    | no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.                                                                                               |
| 9. | Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or        |

Notice

- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Refer to "http://www.renesas.com/" for the latest and detailed information



#### SALES OFFICES

**Renesas Electronics Corporation** 

http://www.renesas.com

 Renesse Electronics America Inc.

 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.

 Tei: +1-408-588-6000, Fax: +1-408-588-6130

 Renesse Electronics Canada Limited

 9251 Yonge Street, Suite 3309 Richmond Hill, Ontario Canada L4C 913

 Tei: +1-905-237-2004

 Renesse Electronics Europe Limited

 Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K

 Tei: +44-1628-585-100, Fax: +44-1628-586-900

 Renesse Electronics Europe GmbH

 Arcadiastrasse 10, 40472 Düsseldorf, Germany

 Tei: +49-21-6503-0, Fax: +44-1628-585-900

 Renesse Electronics (China) Co., Ltd.

 Roin 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China

 Tei: +80-21-2226-0899

 Renesse Electronics (Shanghal) Co., Ltd.

 Wint 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghal, P. R. China 200333

 Tei: +80-21-2226-0898, Fax: +86-21-2226-0899

 Renesse Electronics (Shanghal) Co., Ltd.

 Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghal, P. R. China 200333

 Tei: +80-21-2226-0899

 Renesse Electronics Tawan Co., Ltd.

 137, No. 363, Fu Shing North Road, Taipei 10543, Taiwan

 Tei: +806-2175.9607, Fax: +862-217-9670

 Renesse Electronics Singapore Pte. Ltd.
 </

© 2015 Renesas Electronics Corporation. All rights reserved. Colophon 5.0