

RX110, RX111, RX113, RX231 Group

RX Driver Package Ver.1.01

R01AN2670EJ0101 Rev.1.01 Oct 31, 2015

Introduction

This document is the RX110, RX111, RX113, RX231 Group RX Driver Package User's Manual, version 1.01.

This User's Manual describes basic structures, features and usage of RX Driver Package applications, and about the sample application program using the FIT modules included in this package.

Target Device

RX110M Group (Renesas Starter Kit RX110)

RX111M Group (Renesas Starter Kit RX111)

RX113M Group (Renesas Starter Kit RX113)

RX231M Group (Renesas Starter Kit RX231)

When using this application note with your product, careful evaluation is recommended.

And when using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Related Documents

- RX Family Board Support Package Module Using Firmware Integration Technology (R01AN1685EU)
- Firmware Integration Technology User's Manual (R01AN1833EU)
- RX Family Adding Firmware Integration Technology Modules to Projects (R01AN1723EU)
- RX Family Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826EJ)
- The User's Manual provided with the RX Driver Package Application.

Contents

1.	Overview	3
1.1	Applicability	3
1.2	Operating Environment	3
2.	About RX Driver Package	
2.1	System Structure	
2.2	RX Driver Package Features	5
3.	Structure of the RX110, RX111 , RX113 , RX231 Group RX Driver Package	
3.1	Folder Structure	
3.2		
3.3	FIT Modules	8
4.	Usage Procedures	10
4.1	Environment Used	
4.2	Install RX Driver Package in e ² studio	10
4.3	!!	
4.3	3.1 Create a Workspace and a Project	11
4.3	3.2 Install the FIT Modules with the FIT Plugin	17
4.3	3.3 Create an LED Driving Program	20
4.3	3.4 Build and Try Running the Program	21
4.3	3.5 For location of the API information of each FIT module	24
5.	RX Driver Package Application	25
5.1	RX Driver Package Application Structure	25
6.	Supplement	26
6.1	Commercial Version of Middleware and Drivers Supporting FIT	26
Wel	bsite and Support	27
Rev	vision History	1
Ger	neral Precautions in the Handling of MPU/MCU Products	2

1. Overview

1.1 Applicability

This User's Manual applies to the RX110, RX111, RX113, RX231 Group RX Driver Package, version 1.01

1.2 Operating Environment

This package runs under the operating environment described below.

Table 1-1 Operating Environment (RX110)

Microcontroller	RX110 Group
Evaluation board	Renesas Starter Kit RX110
Integrated development environment (IDE)	e ² studio, V4.0.2 or later
Cross tools	RX Family C/C++ Compiler Package V2.03.00 or later
Emulator	E1, E20

Table 1-2 Operating Environment (RX111)

Microcontroller	RX111 Group
Evaluation board	Renesas Starter Kit RX111
Integrated development environment (IDE)	e ² studio, V4.0.2 or later
Cross tools	RX Family C/C++ Compiler Package V2.03.00 or later
Emulator	E1, E20

Table 1-3 Operating Environment (RX113)

Microcontroller	RX113 Group
Evaluation board	Renesas Starter Kit RX113
Integrated development environment (IDE)	e ² studio, V4.0.2 or later
Cross tools	RX Family C/C++ Compiler Package V2.03.00 or later
Emulator	E1, E20

Table 1-4 Operating Environment (RX231)

Microcontroller	RX231 Group
Evaluation board	Renesas Starter Kit RX231
Integrated development environment (IDE)	e ² studio, V4.0.2 or later
Cross tools	RX Family C/C++ Compiler Package V2.03.00 or later
Emulator	E1, E20

2. About RX Driver Package

The RX Driver Package is a software platform (framework) that combines the following modules to be required for development in a single package. Since the package contains multiple modules, you can start developing immediately without having to obtain each module separately.

- Board Support Package (BSP) module
- FIT peripheral function modules (free version)
- FIT middleware modules (free version)
- FIT interface modules

You can develop the user application layer with ease by using the Sample Application Program (RX Driver Package Application) which utilizes the RX Driver Package.

2.1 System Structure

The figure below shows the system structure of the RX Driver Package.

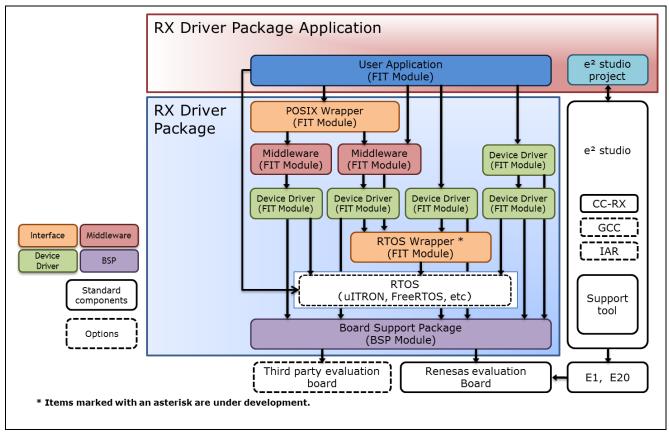


Figure 2-1 System Structure

2.2 RX Driver Package Features

The RX Driver Package has the following features.

(a) Select necessary modules and start developing immediately the application program

You can easily build a system simply by selecting the modules you need from the package. After that, all you have to do is develop the application program.

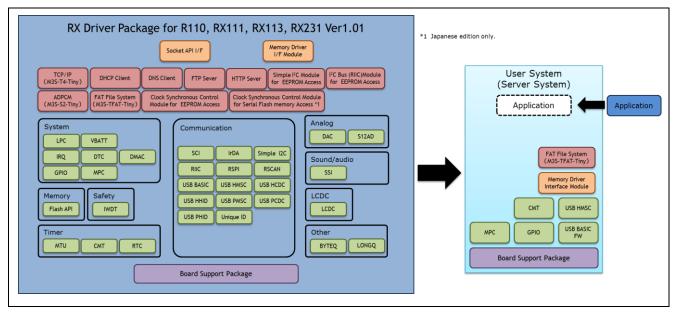


Figure 2-2 An example of system build

(b) Free to use

All the modules included in the RX Driver Package can be used free of charge. Free versions of middleware modules such as TCP/IP and file system are included.

(c) Can upgrade to paid versions of modules

The free versions of modules in the RX Driver Package can be replaced with commercial (paid) versions. By using a commercial (paid) version, all the functionality of the module will be available, as well as support about a commercial version.

(d) Check operation including user application

The RX Driver Package Application is provided as a sample user application that uses the RX Driver Package. The RX Driver Package Application consists of programs for operating each module in the RX Driver Package, and the project files for building the programs. It enables you to start checking the operation of your user application immediately.

3. Structure of the RX110, RX111, RX113, RX231 Group RX Driver Package

3.1 Folder Structure

The folder structure used in this package is shown below.

When the ZIP file for this package is downloaded from the Renesas web site and decompressed, a folder of the same name will be present and it will contain a **FITModules** folder, a **reference_documents** folder, and this document.

The **FITModules** folder contains the FIT modules for the modules shown in Table 3-1(as ZIP files and XML files).

The reference documents folder contains the documentation for using this package in various development

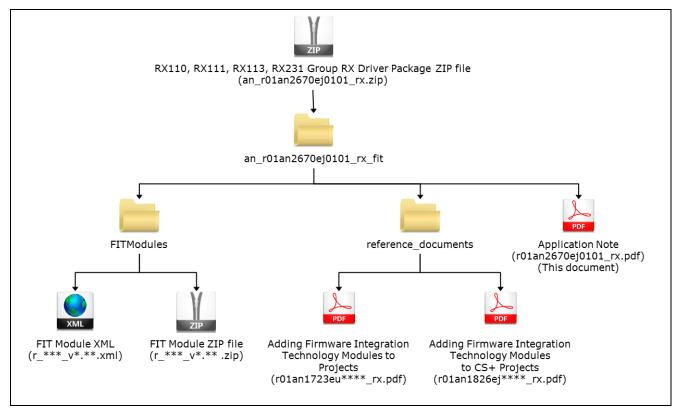


Figure 3-1 Folder Structure of the RX110, RX111, RX113, RX231 Group RX Driver Package

3.2 Module Structure

The figure below shows the types and structure of the FIT modules included in this package.

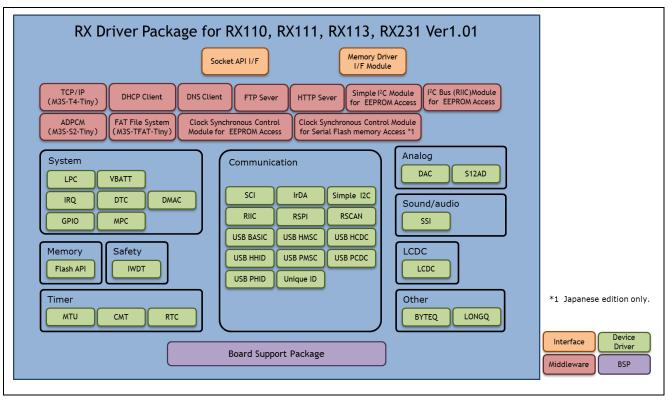


Figure 3-2 RX110, RX111, RX113, RX231 Group RX Driver Package FIT Module Structure

3.3 FIT Modules

The table below lists the FIT modules included in this package.

Table 3-1 RX110, RX111, RX113, RX231 Group RX Driver Package FIT Modules

Туре	Module	FIT Module Name	R X	R X	R X	R X	Rev.
			1	1	1	2	
			1	1	1	3	
			0	1	3	1	
Board Support Package	Board Support Package (BSP)	r_bsp	✓	✓	✓	✓	3.01
Device Driver	Low Power Consumption (LPC)	r_lpc	✓	✓	✓	-	1.30
Device Driver	Battery Backup (VBATT)	r_vbatt	-	-	-	✓	1.01
Device Driver	Interrupt Controller (IRQ)	r_irq_rx	✓	✓	✓	✓	1.70
Device Driver	Data Transfer Controller (DTC)	r_dtc_rx	✓	√	✓	✓	2.03
Device Driver	DMA Controller (DMAC)	r_dmaca_rx	-	-	-	✓	1.03
Device Driver	I/O Ports (GPIO)	r_gpio_rx	✓	✓	✓	✓	1.70
Device Driver	Multi-Function Pin Controller (MPC)	r_mpc_rx	✓	√	✓	✓	1.70
Device Driver	Compare Match Timer (CMT)	r_cmt_rx	✓	✓	✓	✓	2.60
Device Driver	Real-Time Clock (RTC)	r_rtc_rx	✓	✓	✓	✓	2.40
Device Driver	Independent Watchdog Timer (IWDT)	r_iwdt	✓	✓	✓	✓	1.50
Device Driver	Serial Communications Interface (SCI: Asynchronous/Clock Synchronous)	r_sci_rx	√	√	✓	✓	1.70
Device Driver	Serial Communications Interface (SCI: Simple I ² C Bus)	r_sci_iic_rx	✓	✓	✓	✓	1.70
Device Driver	I ² C Bus Interface (RIIC)	r_riic_rx	√	✓	✓	✓	1.70
Device Driver	Serial Peripheral Interface	r_rspi_rx	✓	✓	✓	✓	1.40
Device Driver	Serial Peripheral Interface (RSPI: Device Driver	r_rspi_smstr_rx	✓	✓	✓	✓	1.09
	for Serial Memory Control)						
Device Driver	USB Basic Firmware	r_usb_basic	✓	✓	✓	✓	1.01
Device Driver	USB Host Mass Storage Class	r_usb_hmsc	✓	✓	✓	✓	1.01
Device Driver	USB Host Communication Device Class	r_usb_hcdc	✓	✓	✓	✓	1.01
Device Driver	USB Host Human Interface Device Class	r_usb_hhid	✓	✓	✓	✓	1.01
Device Driver	USB Peripheral Mass Storage Class	r_usb_pmsc	✓	✓	✓	✓	1.01
Device Driver	USB Peripheral Communications Device Class	r_usb_pcdc	✓	✓	✓	✓	1.01
Device Driver	USB Peripheral Human Interface Device Class	r_usb_phid	✓	✓	✓	✓	1.01
Device Driver	IrDA Interface (IrDA)	r_irda_sci	-	-	✓	-	1.01
Device Driver	CAN Module (RSCAN)	r_can	-	-	-	✓	1.00
Device Driver	12-Bit A/D Converter (S12AD)	r_s12ad_rx	✓	✓	✓	✓	2.10
Device Driver	D/A Converter (DAC)	r_dac_rx		✓	✓	✓	2.50
Device Driver	Flash Memory (Flash API)	r_flash_rx	✓	✓	✓	✓	1.30
Device Driver	Serial Sound Interface (SSI)	r_ssi_api_rx	-	-	✓	✓	1.20
Device Driver	LCD Controller/Driver (LCDC)	r_lcdc	-	-	✓	-	1.00
Device Driver	Unique ID Read	r_uid	✓	✓	✓	-	1.00
Device Driver	Byte Queue Buffer (Data Management)	r_byteq	✓	✓	√	✓	1.50
Device Driver	Long Queue Buffer (Data Management)	r_longq	✓	✓	✓	✓	1.50
Interface	POSIX Wrapper	r_posix	✓		-		1.01

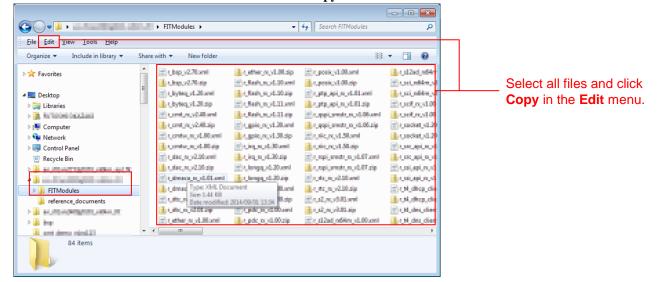
Type	Module	FIT Module Name	R X 1 1	R X 1 1	R X 1 1	R X 2 3	Rev.
Middleware	TCP/IP M3S-T4-Tiny for Embedding	r_t4_rx	<u>√</u>	<u> </u>	-	<u>'</u>	2.02
Interface	Embedded TCP/IP M3S-T4-Tiny Socket API Module	r_socket	✓	✓	-	-	1.22
Middleware	DHCP client using the embedded TCP/IP M3S- T4-Tiny Module	r_t4_dhcp_client_rx	✓	✓	-	-	1.03
Middleware	DNS client using the embedded TCP/IP M3S- T4-Tiny Module	r_t4_dns_client_rx	✓	✓	-	-	1.02
Middleware	FTP server using the embedded TCP/IP M3S- T4-Tiny Module	r_t4_ftp_server_rx	✓	✓	-	-	1.03
Middleware	Web server using the embedded TCP/IP M3S- T4-Tiny Module	r_t4_http_server_rx	✓	✓	-	-	1.04
Middleware	Sound playback system and compression system (original ADPCM codec)	r_s2_rx	-	✓	✓	✓	3.03
Middleware	M3S-TFAT-Tiny (FAT file system)	r_tfat_rx	-	✓	✓	✓	3.04
Interface	M3S-TFAT-Tiny Memory Driver Interface Module	r_tfat_driver_rx	-	✓	✓	✓	1.02
Middleware	Simple I2C Module for EEPROM Access	r_eeprom_sci_iic	✓	✓	✓	-	1.30
Middleware	I2C Bus Interface (RIIC) Module for EEPROM Access	r_eeprom_riic	✓	✓	✓	-	1.40
Middleware	SPI Serial EEPROM Module	r_eeprom_spi	✓	✓	✓	✓	2.32

Note: This package includes the M3S-T4-Tiny (TCP/IP protocol stack library) of evaluation version. For the commercial version, please go to the below URL.

http://www.renesas.com/mw/t4

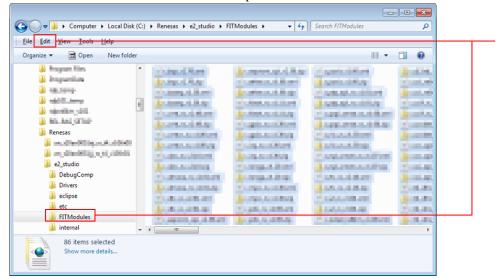
4. Usage Procedures

The RX Driver Package allows programs to be easily constructed by using the FIT plugin included in e² studio. The remainder of this section presents a simple usage example using e² studio. To use CS+, see the document "RX Family Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826EJ)" included in this package.


4.1 Environment Used

The RX231 is used as the target microcontroller and the Renesas Starter Kit RX231 is used as the target board. If a different environment is used, replace the specifics used in the example with the ones for that environment as you read.

4.2 Install RX Driver Package in e² studio


Install the FIT modules in the RX Driver Package into e² studio.

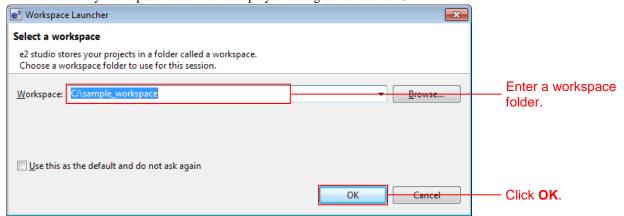
- Decompress the downloaded file an_r01an2670ej0101_rx.zip into an arbitrary directory.
- 2. Open the folder that was decompressed and open the FITModules folder in that folder.
- 3. Select all the files in the **FITModules** folder and click **Copy** in the **Edit** menu.

- 4. Open the e² studio install folder (Usually, this will be c:/Renesas/e2_studio.) and open the **FITModules** folder in that folder.
- 5. Click **Paste** on the **Edit** menu.

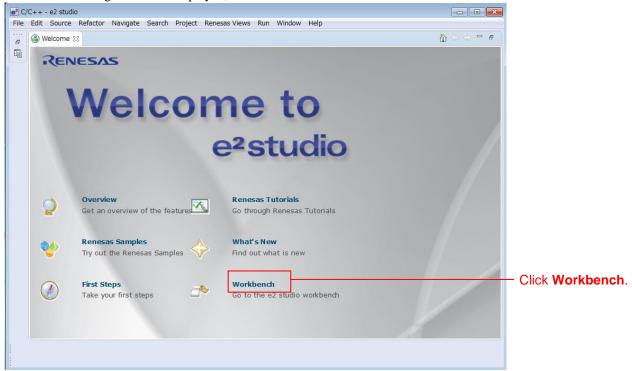
The e² studio **FITModules** folder will be copied to the FIT modules.

Open the **FITModules** folder and click **Paste** on the **Edit** menu.

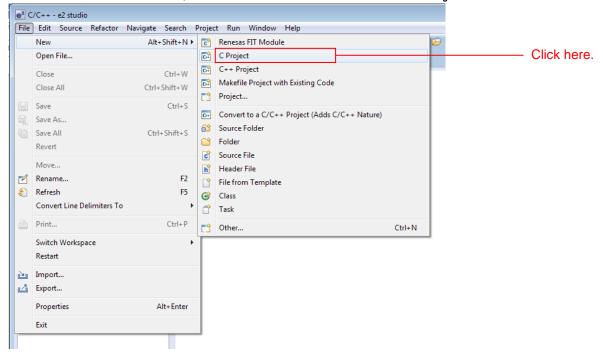
The folder will be copied.

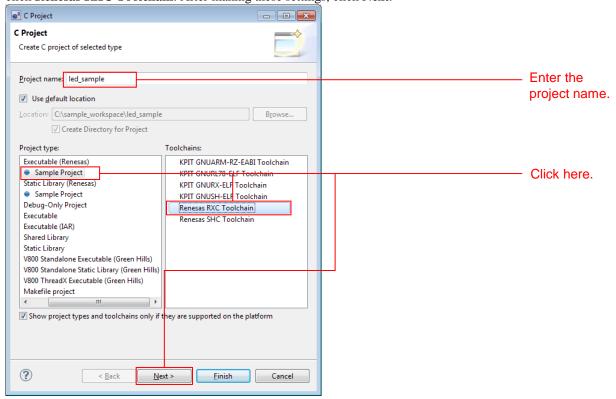

4.3 Application Creation

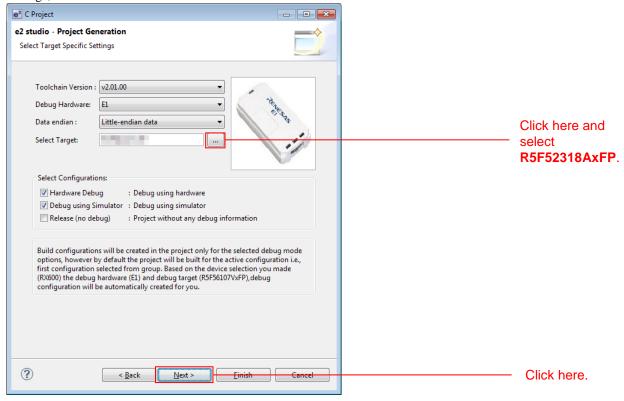
In this section, create a simple application that drives an LED.

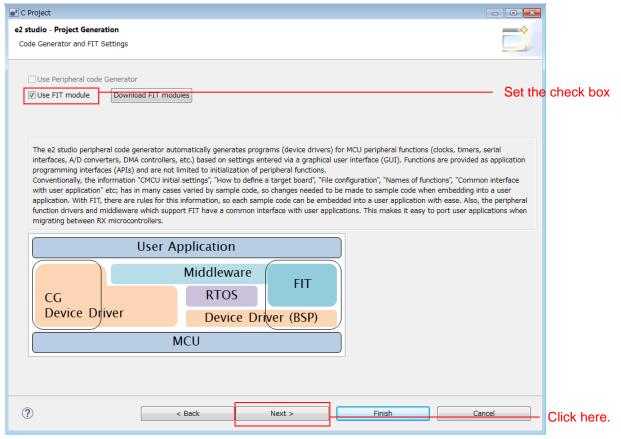

4.3.1 Create a Workspace and a Project

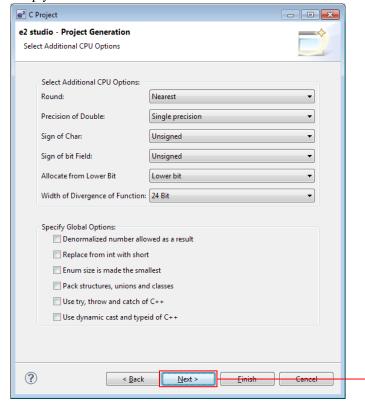
First, create a new workspace and a new project.


- 1. Start e² studio.
- 2. Enter an arbitrary workspace folder in the displayed dialog box and click **OK**.


3. When the following window is displayed, click **Workbench**.


4. When the workbench has started, select New from the File menu and click C Project.

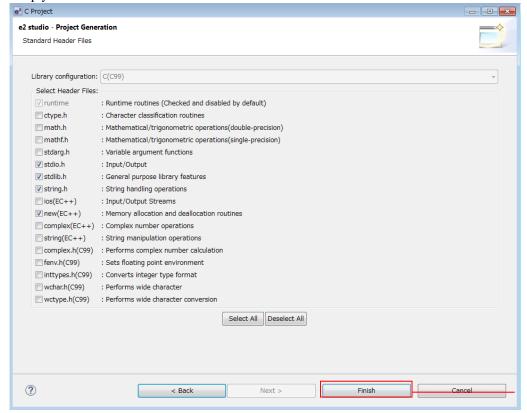

5. Enter the project name. For the project type, click **Sample Project** under **Executable (Renesas)**. For the tool chain, click **Renesas RXC Toolchain**. After making these settings, click **Next**.


6. Select the target. Click the "..." button under **Target Selection** and select **R5F52318AxFP**. After making these settings, click **Next**.

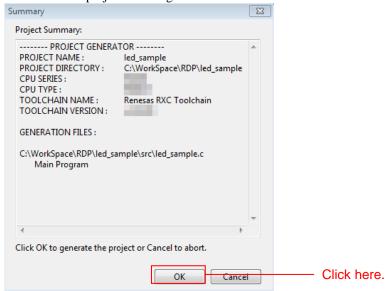
7. Set the check box of "Use FIT module" and click **Next** here.



8. Simply click Next here.


Click here.

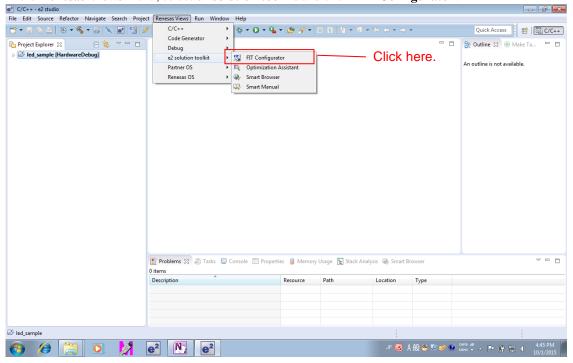
9. Simply click Next here.


Click here.

10. Simply click Finish here.

Click here.

11.Click **OK**. The project will be generated.

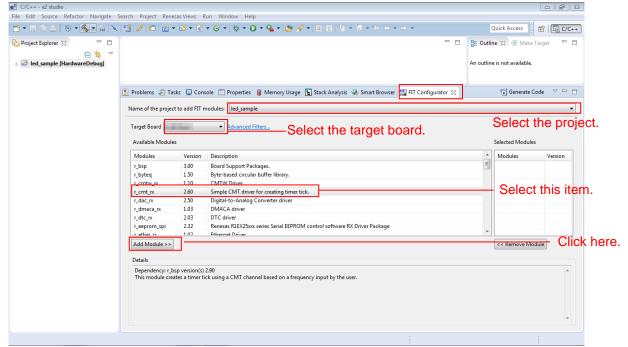


4.3.2 Install the FIT Modules with the FIT Plugin.

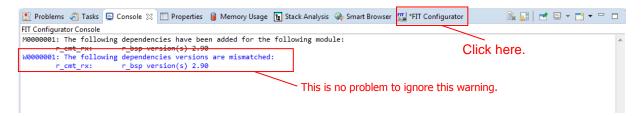
Install the required modules with the FIT plugin into the created project.

Here, install the BSP module (r_bsp) and the compare match timer driver (r_cmt_rx).

1. In the Renesas Views menu, select e2 solution toolkit and click FIT Configurator.

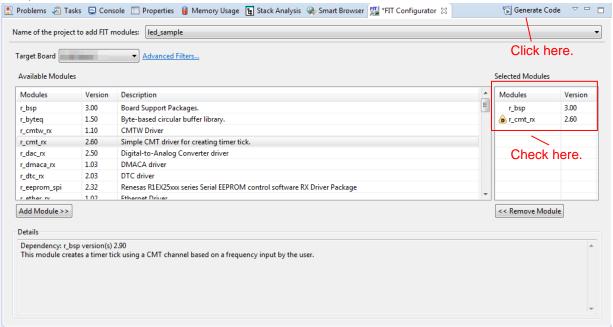


2. In the **FIT Configurator** tab,

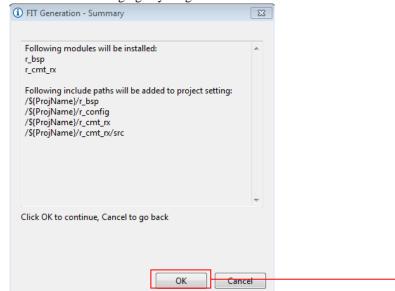

Select the created project with **Project to Add FIT Module** to.

Next, select RX231 under Group and select RSKRX231 from Target Board.

Next, click r_cmt_rx in the module list and click Add Module >>.



- 3. In the **Console** tab,
 - In the current example, the **r_bsp** having a dependency with **r_cmt_rx** is also added at a time. * Click **FIT Configurator** again.
 - *: The **r_bsp** version defined in **r_cmt_rx** is **2.90 version or later**. As **r_bsp** version packaged in the RDP is **3.01**, the Warning (W0000001) occurs on the console screen. However, as the Warning has no impact on adding the module, it can be ignored.


4. Check **r_bsp** and **r_cmt_rx** are added in **Selected Modules**. The mark on **r_cmt_rx** indicates occurrence of the Warning explained in the above 3.

Then, click Generate Code.

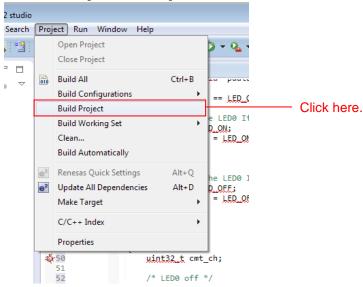
Click here.

5. Click **OK** with changing anything.

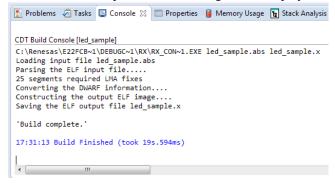
4.3.3 Create an LED Driving Program

Create a program that toggles the LED0 on/off state every 0.5 seconds using the compare match timer.

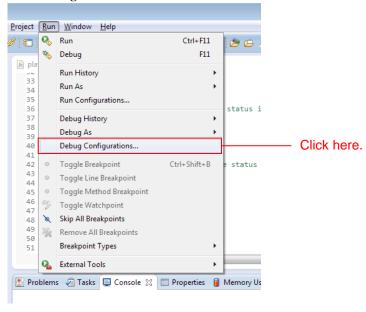
Open the file src/(the project name).c and modify it as shown below.


src/(the project name).c

```
#include "platform.h"
#include "r cmt rx if.h"
/* LED Currently status */
uint32 t ledstatus = LED OFF;
void call_back(void *pdata)
 if (ledstatus == LED OFF)
    /* Turn ON the LED0 If the status is LED_OFF */
  LED0 = LED ON;
  ledstatus = LED ON;
 else
    ^{\prime \star} Turn OFF the LEDO If the status is LED ON ^{\star \prime}
  LED0 = LED OFF;
  ledstatus = LED_OFF;
void main(void)
 uint32 t cmt ch;
 /* LED0 off */
 LED0 =LED OFF;
 /* Create of 0.5 second(2Hz) cyclic timer. */
 R CMT CreatePeriodic(2, &call back, &cmt ch);
 while (1);
}
```

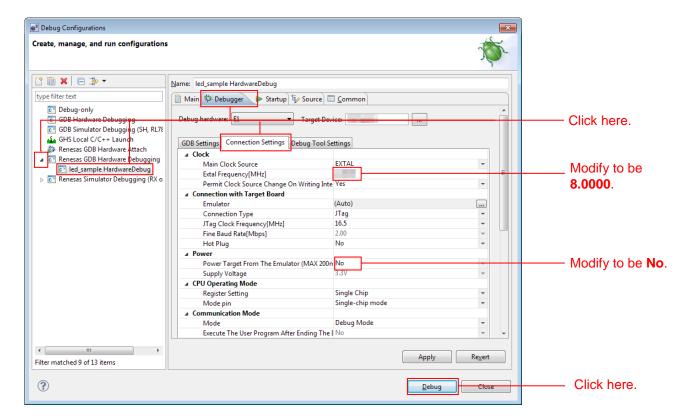

4.3.4 **Build and Try Running the Program**

Build the program just created and verify that it runs.

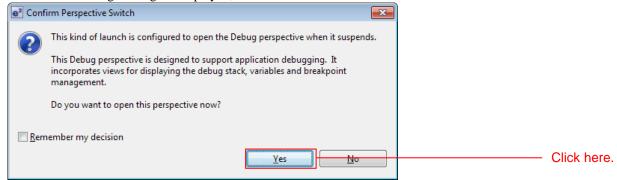

1. Click Build Project on the Project menu.

2. When the build completes, the following will be displayed in **Console** view.

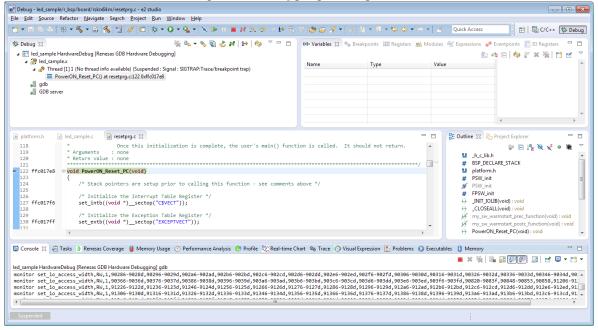
3. Click **Debug Build** on the **Run** menu.

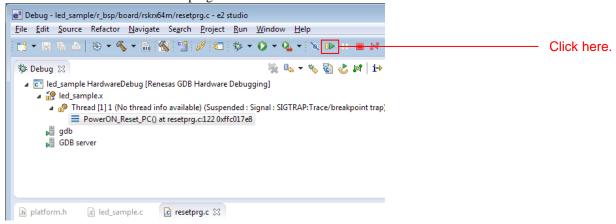


4. Click under the Renesas GDB Hardware Debugging and click led_sample HardwareDebug. Click the Debugger tab and click Connection Setting.


Modify EXTAL Frequency to be 8.0000 and change Provide Power from Emulator to No *.

When these changes have been made, click **Debug**.


Note: This is setting when using an external power supply. When supplying power from the emulator, select Yes.


5. When the following message is displayed, click Yes.

6. When the load module download completes, a **Debug** perspective opens.

7. Click **Restart** on the toolbar. The program will be executed and a break will occur at the start of the main function.

8. After the break at the start of the main function, click **Restart** on the tool bar again. The project will be run and the program will iterate toggling LED0 with a period of 0.5 seconds.

4.3.5 For location of the API information of each FIT module

For the API information of FIT module embedded in the project, refer to the **doc** folder of each FIT module folder.

5. RX Driver Package Application

5.1 RX Driver Package Application Structure

The RX Driver Package Application is a sample application program provided so that users can use the RX Driver Package easily. The RX Driver Package Application consists of an application program that operates using device drivers and middleware included in the RX Driver Package and a project file for building that application. This allows users to start evaluation quickly.

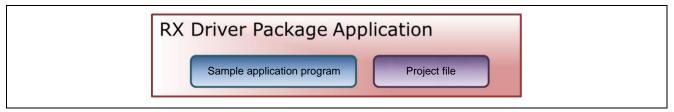


Figure 5-1 RX Driver Package Application Structure

Renesas plans to release a variety of types of this RX Driver Package Application in the future, such as system programs that operate using a combination of multiple drivers and middleware and evaluation programs for independent modules from the RX Driver Package.

For information of the latest RX Driver Package Application, refer to the "Products Supporting RX Driver Package Application" shown in the following URL.

http://www.renesas.com/products/mpumcu/rx/child/fit.jsp

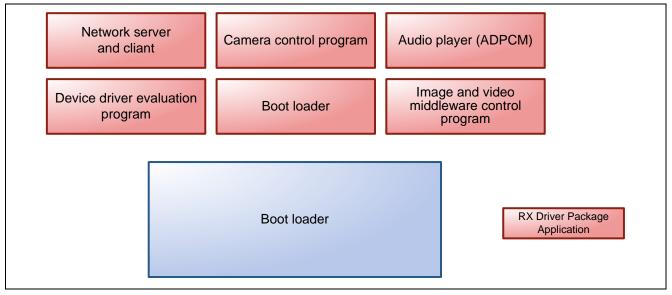


Figure 5-2 Types of RX Driver Package Application

6. Supplement

6.1 Commercial Version of Middleware and Drivers Supporting FIT

A list of the commercial version (paid) Middleware and Drivers for RX family is shown below.

For the information of the latest commercial version (paid) Middleware and Drivers, refer to the page of the Middleware and Drivers shown in the following URL.

Page of Middleware and Drivers: http://www.renesas.com/mw/

Table 6-1 list of the commercial version (paid) Middleware and Drivers for RX family

Commercial Version	URL	FIT
		Compliant
TCP/IP for Embedding	http://www.renesas.com/mw/t4	Available
M3S-T4-Tiny		

Website and Support

Renesas Electronics Website http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision History

Description

Rev.	Date	Page	Summary
1.00	Sep 1, 2014	-	First edition issued
1.01	Oct 31, 2015	-	Updated existing modules to latest modules.
			Added RX110, RX111 and RX231.
			Updated e2studio version and changed set-up procedure.
			Changed document number from R01AN2466EJ0100 to
			R01AN2670EJ0101.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual.

— The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

— The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different type number, confirm that the change will not lead to problems.

— The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below
 - "Standard": Computers: office equipment: communications equipment: test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment: and industrial robots etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.
 - Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.
- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics products
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries. (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tei: +1-905-237-2004

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +86-10-8236-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tel: +852-2265-6688, Fax: +852 2886-9022

x Innovation Centre, Singapore 339949

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Ini

80 Bendemeer Road, Unit #06-02 Hyflux I Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd.

12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2015 Renesas Electronics Corporation. All rights reserved.