LENESAS APPLICATION NOTE

] RO1AN2029EJ0144
RX Family Rev.1.44

Mar 01, 2025
USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

Introduction

This application note describes the USB peripheral mass storage class driver (PMSC), which utilizes Firmware
Integration Technology (FIT). This module operates in combination with the USB Basic Host and Peripheral Driver
(USB-BASIC-FW FIT module).

Target Device

RX65N/RX651 Group
RX64M Group
RX71M Group
RX66T Group
RX72T Group
RX72M Group
RX66N Group
RX72N Group
RX671 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Related Documents

1. Universal Serial Bus Revision 2.0 specification

2. USB Mass Storage Class Specification Overview Revision 1.1

3. USB Mass Storage Class Bulk-Only Transport Revision 1.0, “BOT” protocol
http://www.usb.org/developers/docs/

4. RX64M Group User's Manual: Hardware (Document number. RO1UHO0377)

5. RX71M Group User’s Manual: Hardware (Document number. RO1UH0493)

6. RX65N/RX651 Group User’s Manual: Hardware (Document number. RO1UHO0590)

7

8

9

RX65N/RX651-2M Group User’s Manual: Hardware (Document number. RO1UH0659)
RX66T User's Manual: Hardware (Document number. RO1UH0749)
. RX72T User's Manual: Hardware (Document number. ROIUHO0803)

10. RX72M User's Manual: Hardware (Document number. RO1UH0804)

11. RX66N User's Manual: Hardware (Document number. ROIUH0825)

12. RX72N User's Manual: Hardware (Document number. ROIUH0824)

13. RX671 User's Manual: Hardware (Document number. RO1UH0899)

14. USB Basic Host and Peripheral Driver using Firmware Integration Technology Application Note
(Document number. ROIAN2025)

Renesas Electronics Website
http://www.renesas.com

USB Devices Page
http://www.renesas.com/prod/usb/

RO1AN2029EJ0144 Rev.1.44 Page 1 of 24
Mar 01, 2025 RENESAS

http://www.usb.org/developers/docs/
http://www.renesas.com/
http://www.renesas.com/prod/usb/
http://www.renesas.com/prod/usb/

RX Family UsB

Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

Contents
R © 17T =S 3
2. SOftware CoONFIUIAtioNnccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiesisss 4
TR N I8 101 o T 44 T 1 Te o N 5
4. Class DIiVEr OVEIVIEW......ciiieiiueeeeiiiiiiiiiuseeeeiisiissssseeesisssssssssseeessssssssssssessssssssssssesesssssssssassesesssssssssnsenessens 9
5. Peripheral Device Class Driver (PDCD)ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisiissans 10
LT N I o1 T T T 11
7. Configuration (r_usb_pmsc_cOonfig.h).....cciiiiiiieeiiiiiiiinieeniinicccrneree s sseneee e s s s sssnne e e s s sssssssnnneasaeeas 12
8. Configuration File (When using RIBOOVA)cccciiiiiiiiiiiiiiiiiiiiiiiiiiiiisiissans 13
9. Media Driver INEErfaceccceeeiiiiiiiiiiiiiinncertt e s 14
10. Creating an APPlICAtioNn ...cccciiiiiiiiiiiiiiiiiiiiiinnnnnrrnrr s 23

RO1AN2029EJ0144 Rev.1.44 Page 2 of 24

Mar 01, 2025

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

1. Overview

The USB PMSC FIT module, when used in combination with the USB-BASIC-FW FIT module, operates as a USB
peripheral mass storage class driver (PMSC). The USB peripheral mass storage class driver (PMSC) comprises a USB
mass storage class bulk-only transport (BOT) protocol. When combined with a USB peripheral control driver and
media driver, it enables communication with a USB host as a BOT-compatible storage device.

This module supports the following functions.

Storage command control using the BOT protocol
Response to mass storage device class requests from a USB host

1.1 Please be sure to read

Please refer to the document (Document number: RO1AN2025) for USB Basic Host and Peripheral Driver using
Firmware Integration Technology Application Note when creating an application program using this driver.

This document is located in the "reference_documents" folder within this package.

1.2 Limitation

1. This driver returns the value 0 (zero) to the mass storage command (GetMaxLun) sent from USB Host.

2. The sector size which this driver supports is 512 only.

1.3 Note

1. This driver is not guaranteed to provide USB communication operation. The customer should verify operation
when utilizing it in a system and confirm the ability to connect to a variety of different types of devices.
2. The user needs to implement the media driver function which controls the media area used as the storage area.

14 Terms and Abbreviations

Terms and abbreviations used in this document are listed below.

APL : Application program

BOT : Bulk Only Transport.

DDI : Device Driver Interface, or PMSDD API.

IDE : Integrated Development Environment

Non-OS : USB Driver for OS-less

PCD : Peripheral Control Driver for USB-BASIC-FW

PCI : PCD Interface

PMSCD : Peripheral Mass Storage Class Driver (PMSCF + PCI + DDI)
PMSCF : Peripheral Mass Storage Class Function

PMSDD : Peripheral Mass Storage Device Driver (ATAPI driver)
RSK : Renesas Starter Kits

RTOS : USB Driver for the real-time OS

USB-BASIC-FW : USB Basic Host and Peripheral Driver

1.5 USB PMSC FIT Module

User needs to integrate this module to the project using r_usb_basic. User can control USB H/W by using this module
API after integrating to the project.

RO1AN2029EJ0144 Rev.1.44 Page 3 of 24
Mar 01, 2025

RX Family

USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

2. Software Configuration

PMSC FIT module comprises two layers: PMSCD and PMSDD.
PMSCD comprises three layers: PCD API (PCI), PMSDD API (DDI), and BOT protocol control and data sends and

receives (PMSCF).

PMSCD uses the BOT protocol to communicate with the host via PCD.

PMSDD analyzes and executes storage commands received from PMSCD. PMSDD accesses media data via the

media driver.

Figure 2-1 shows the configuration of the modules.

User Application (APL)

PMSC FIT Module (r_usb_pmsc)

Peripheral Mass Storage Device Driver (PMSDD)

Media Driver API Peripheral Mass Storage Class Driver (PMSCD)

!
!
|
!
| v
!
|

|
|
1 : ; |
|
|
I

r—-——m—m-----"r-—"—--""—-=---- v -_—-
| USB Basic FIT Module (r_usb_basic) |
I
Media Driver : USB Peripheral Control Driver (PCD) |
v * === 4-——— — !
Media USB2.0 Controller (HW)
Figure 2-1 Software Module Structure
Table 2-1 Module Function Overview
Module Description
PMSDD Mass Storage Device Driver
Processes storage commands from the PMSCD
- Accesses media via the media driver
DDI PMSDD-PMSCD interface function
PMSCF Mass Storage Class Driver
- Controls BOT protocol data and responds to class requests.
+ Analyzes CBWs and transmits/receives data.
- Generates CSWs together with the PMSDD/PCD.
PCI PMSCD — PCD interface function
PCD USB Peripheral H/W Control driver
RO1AN2029EJ0144 Rev.1.44 Page 4 of 24

Mar 01, 2025

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

3. API Information

This Driver API follows the Renesas API naming standards.

3.1 Hardware Requirements

This driver requires your MCU support the following features:
® USB

3.2 Software Requirements

This driver is dependent upon the following packages:
® r _bsp

® r_usb_basic

3.3 Operating Confirmation Environment

Table 3-1 shows the operating confirmation environment of this driver.

Table 3-1 Operating Confirmation Environment

Item Contents

C compiler Renesas Electronics C/C++ compiler for RX Family V.3.07.00
(The option "-lang=C99" is added to the default setting of IDE)

GCC for Renesas RX 8.3.0.202411
(The option "-std=gnu99" is added to the default setting of IDE)

IAR C/C++ Compiler for Renesas RX version 5.10.1

Real-Time OS FreeRTOS V.10.0.0
RI600V4
Endian Little Endian, Big Endian
USB Driver Revision Number Rev.1.44
Using Board Renesas Starter Kits for RX64M

Renesas Starter Kits for RX71M

Renesas Starter Kits for RX65N, Renesas Starter Kit for RX65N-2MB
Renesas Starter Kits for RX72T

Renesas Starter Kits for RX72M

Renesas Starter Kits for RX72N

Renesas Starter Kits for RX671

Host Environment The operation of this USB Driver module connected to the following OSes has been
confirmed.

1. Windows® 10

RO1AN2029EJ0144 Rev.1.44 Page 5 of 24
Mar 01, 2025

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

34 Usage of Interrupt Vector

Table 3-2 shows the interrupt vector which this driver uses.

Table 3-2 List of Usage Interrupt Vectors

Device Contents
RX64M USBIO Interrupt (Vector number: 189, Interrupt source number : 62, Software Configurable Interrupt B)
RX71M USB DOFIFOO Interrupt (Vector number: 34) / USB D1FIFOO Interrupt (Vector number: 35)

USBRO Interrupt (Vector number:90)

USBAR Interrupt (Vector number: 94)
USB DOFIFO2 Interrupt (Vector number: 32) / USB D1FIFO2 Interrupt (Vector number: 33)

RX65N USBIO Interrupt (Vector number: 185, Interrupt source number : 62, Software Configurable Interrupt B)
RX651 USB DOFIFQOO Interrupt (Vector number: 34) / USB D1FIFOOQ Interrupt (Vector number: 35)

RX72M USBRO Interrupt (Vector number:90)

RX72N

RX66N

RX66T USBIO Interrupt (Vector number: 174) / USBRO Interrupt (Vector number: 90)

RX72T USB DOFIFOO Interrupt (Vector number: 34) / USB D1FIFOO Interrupt (Vector number: 35)

RX671 USBIO Interrupt (Vector number: 185, Interrupt source number : 62, Software Configurable Interrupt B)

USB DOFIFOO Interrupt (Vector number: 34) / USB D1FIFOO Interrupt (Vector number: 35)
USBRO Interrupt (Vector number:90)

USBI1 Interrupt (Vector number: 182, Interrupt source number : 63, Software Configurable Interrupt B)
USB DOFIFO1 Interrupt (Vector number: 36) / USB D1FIFO1 Interrupt (Vector number: 37)

3.5 Header Files

All API calls and their supporting interface definitions are located in r_usb_basic_if.h and r_usb_pmsc_if.h.

3.6 Integer Types

This project uses ANSI C99 “Exact width integer types” in order to make the code clearer and more portable. These
types are defined in stdint.h.

3.7 Compile Setting

For compile settings, refer to chapter 7, Configuration (r_usb_pmsc_config.h) in this document and chapter
"Configuration” in the document (Document number: RO1AN2025) for USB Basic Host and Peripheral Driver using
Firmware Integration Technology Application Note.

3.8 ROM / RAM Size

The follows show ROM/RAM size of this driver.
1. CC-RX (Optimization Level: Default)

(1). Non-OS
Checks arguments Does not check arguments
ROM size 24.5K bytes (Note 3) 24 1K bytes (Note 4)
RAM size 10.0K bytes 10.0K bytes
(2). RTOS
a. FreeRTOS
| | Checks arguments | Does not check arguments |
RO1AN2029EJ0144 Rev.1.44 Page 6 of 24

Mar 01, 2025

RX Family

USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

ROM size 37.9K bytes (Note 3) 37.5K bytes (Note 4)
RAM size 27.5K bytes 27.5K bytes
b. RI600V4
Checks arguments Does not check arguments
ROM size 39.7K bytes (Note 3) 39.3K bytes (Note 4)
RAM size 16.2K bytes 16.2K bytes

2. GCC (Optimization Level: -O2)

Checks arguments

Does not check arguments

ROM size

30.1K bytes (Note 3)

29.7K bytes (Note 4)

RAM size

9.8K bytes

9.8K bytes

3. IAR (Optimization Level: Medium)

Checks arguments

Does not check arguments

ROM size 23.8K bytes (Note 3) 23.3K bytes (Note 4)
RAM size 8.5K bytes 8.5K bytes
[Note]

1. ROM/RAM size for BSP and USB Basic Driver is included in the above size.
2. The above is the size when specifying RX V2 core option.

3. The ROM size of “Checks arguments” is the value when USB_CFG _ENABLE is specified to
USB CFG_PARAM CHECKING definition in »_usb_basic_config.h file.

4. The ROM size of “Does not check arguments” is the value when USB_CFG DISABLE is specified to
USB_CFG_PARAM CHECKING definition in »_usb_basic_config.h file.

5. The RAM size is the value when 8 (numeric value) is specified to USB_ CFG_PMSC TRANS COUNT
definition in »_usb_pmsc_config.h file.

6. The result of RTOS includes the ROM/RAM size of the real-time OS.

3.9 Argument

For the structure used in the argument of API function, refer to chapter "Structures" in the document (Document
number: ROIAN2025) for USB Basic Host and Peripheral Driver using Firmware Integration Technology
Application Note.

3.10 “for”, “while” and “do while” arguments

LI RT3

In FIT module, when using “for”, “while” and “do while” statements (loop processing) in register reflection waiting
processing, etc., write comments with “WAIT LOOP” as a keyword for these loop processing. Also, write in the FIT
documentation that “WAIT _LOOP” is written as a comment in these loop processes.

3.11 Adding the FIT Module to Your Project

This module must be added to each project in which it is used. Renesas recommends the method using the Smart
Configurator described in (1) or (3) below. However, the Smart Configurator only supports some RX devices. Please
use the methods of (2) or (4) for RX devices that are not supported by the Smart Configurator.
(1) Adding the FIT module to your project using “Smart Configurator” on ¢? studio
By using the Smart Configurator in €? studio, the FIT module is automatically added to your project. Refer to
“Renesas e studio Smart Configurator User Guide (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e* studio

RO1AN2029EJ0144 Rev.1.44 Page 7 of 24
Mar 01, 2025

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

By using the FIT Configurator in €’ studio, the FIT module is automatically added to your project. Refer to
“Adding Firmware Integration Technology Modules to Projects (RO1AN1723)” for details.

(3) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added to your
project. Refer to “Renesas ¢* studio Smart Configurator User Guide (R20AN0451)” for details.

(4) Adding the FIT module to your project on CS+

In CS+, please manually add the FIT module to your project. Refer to “Adding Firmware Integration
Technology Modules to CS+ Projects (RO1AN1826)” for details.

RO1AN2029EJ0144 Rev.1.44 Page 8 of 24
Mar 01, 2025

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

4. Class Driver Overview

4.1 Class Requests
Table 4-1 lists the class requests supported by this driver

Table 4-1 MSC Class Requests

Request Code Description

Bulk-Only Mass Storage Reset OXFF Regets the connection interface to the mass storage
device.

Get Max Lun OxFE | Reports the logical numbers supported by the device.

4.2 Storage Commands

Table 4-2 lists the storage commands supported by this driver. This driver send the STALL or FAIL error (CSW) to
USB HOST when receiving other than the following command.

Table 4-2 Storage Commands

Command Code Description

TEST_UNIT_READY 0x00 | Checks the state of the peripheral device.

REQUEST_SENSE 0x03 Gets the error infprmation of the previous storage

command execution result.

INQUIRY 0x12 | Gets the parameter information of the logical unit.

READ_FORMAT_CAPACITY 0x23 Gets the formattable capacity.

READ_CAPACITY 0x25 | Gets the capacity information of the logical unit.

READ10 0x28 | Reads data.

WRITE10 0x2A | Writes data.

MODE_SENSE10 0x5A | Gets the parameters of the logical unit.
RO1AN2029EJ0144 Rev.1.44 Page 9 of 24

Mar 01, 2025

RX Family

USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

5. Peripheral Device Class Driver (PDCD)

5.1 Basic Functions
The functions of PDCD are to:

1. Supporting SFF-8070i (ATAPI)
2. Respond to mass storage class requests from USB host.

5.2 BOT Protocol Overview

BOT (USB MSC Bulk-Only Transport) is a transfer protocol that, encapsulates command, data, and status (results of
commands) using only two endpoints (one bulk in and one bulk out).

The ATAPI storage commands and the response status are embedded in a “Command Block Wrapper” (CBW) and a
“Command Status Wrapper” (CSW).

Figure 5-1 shows an overview of how the BOT protocol progresses with command and status data flowing between

USB host and peripheral.

Command Block Wrapper CBW transfer stage
Command Transfer (Command packet)
(Host—Device)

L Lo e

Data—Out Data-In Data transfer stage

(Host—Device) (Device—Host) (Data packet)

_ ___v___l _________

Command Status Wrapper CSW transfer stage
Status transfer (Status packet)
(Device—Host)

Figure 5-1 BOT protocol Overview.

Command and status flow between USB host and peripheral.

RO1AN2029EJ0144 Rev.1.44
Mar 01, 2025

Page 10 of 24

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

6. API Functions

For API used in the application program, refer to chapter "API Functions" in the document (Document number:
RO1AN2025) for USB Basic Host and Peripheral Driver using Firmware Integration Technology Application Note.

RO1AN2029EJ0144 Rev.1.44 Page 11 of 24
Mar 01, 2025

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

7. Configuration (r_usb_pmsc_config.h)
Please set the following according to your system.
Note:

Be sure to set »_usb_basic_config.h file as well. For r_usb_basic_config.h file, refer to chapter "Configuration" in
the document (Document number: RO1AN2025) for USB Basic Host and Peripheral Driver using Firmware
Integration Technology Application Note.

1. Setting pipe to be used

Set the pipe number (PIPE1 to PIPES) to use for Bulk IN/OUT transfer. Do not set the same pipe number for the
definitions of USB_CFG _PMSC BULK IN and USB_CFG_PMSC BULK OUT.

#define USB_CFG_PMSC_BULK_IN Pipe number (USB_PIPE1 to USB_PIPE5)
#define USB_CFG_PMSC_BULK_OUT Pipe number (USB_PIPE1 to USB_PIPES5)

2. Setting the response data for Inquiry command.

This driver sends the data specified in the following definitions to the USB Host as the response data of Inquiry
command.

(1). Setting Vendor Information

Specify the vendor information which is response data of Inquiry command. Be sure to enclose data of 8 bytes
with double quotation marks.

#define USB_CFG_PMSC_VENDOR Vendor Information
e.g)
#define USB_CFG_PMSC_VENDOR "Renesas "

(2). Setting Product Information

Specify the product information which is response data of Inquiry command. Be sure to enclose data of 16 bytes
with double quotation marks.

#define USB_CFG_PMSC_PRODUCT Product Information
e.g)
#define USB_CFG_PMSC_PRODUCT "Mass Storage "

(3). Setting Product Revision Level

Specify the product revision level which is response data of Inquiry command. Be sure to enclose data of 4
bytes with double quotation marks.

#define USB_CFG_PMSC_REVISION Product Revision Level
e.g)
#define USB_CFG_PMSC_REVISION "1.00"

3. Setting the number of transfer sector

Specify the maximum sector size to request to PCD (Peripheral Control Driver) at one data transfer. This driver
specifies the value of "1 sector (512) x USB_CFG_PMSC TRANS COUNT" bytes to PCD as the transfer size. By
increasing this value, the number of data transfer requests to the PCD decreases, so the transfer speed performance
may be improved. However, note that "1 sector (512) x USB_ CFG_PMSC TRANS COUNT" bytes of RAM will

be consumed.
#define USB_CFG_PMSC_TRANS_COUNT Number of transfer sectors (1 to 255)

e.g)
#define USB_CFG_PMSC_TRANS_COUNT 4

RO1AN2029EJ0144 Rev.1.44 Page 12 of 24
Mar 01, 2025

RX Family

USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

8. Configuration File (When using RI600V4)

It is necessary to register the OS resource used by USB PMSC driver to RI600V4 when using RI600V4. Please add
the following definition in the configuration file. For how to create the configuration file, refer to the chapter,
"RI600V4(Configuration File Creation)" in the document (Document number: RO1AN2025) for USB Basic Host

and Peripheral Driver using Firmware Integration Technology Application Note.

8.1 Task Definition

name
entry_address
stack_size
initial_start
exinf

8.2 Mailbox Definition

name
wait_queue
message_queue

ID_USB_RTOS_PMSC_TSK
usb_pstd _pmsc_task()

512

OFF

0

ID_USB_RTOS_PMSC_MBX
TA_FIFO
TA_MFIFO

RO1AN2029EJ0144 Rev.1.44
Mar 01, 2025

Page 13 of 24

RX Family

USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

9. Media Driver Interface

PMSC uses a common media driver API function to access to the media drivers with different specifications.

9.1 Overview of Media Driver APl Functions

Media driver API functions are called by the PMSC and the API functions call the media driver function implemented
by the user. This chapter explains the prototype of the media driver API function and the processing necessary for

implementing each function.

Table 9-1 shows the list of the media driver API functions.

Table 9-1 Media Driver API

Media Driver API

Processing Description

R_USB_media_initialize

Initializes the media driver.

R_USB_media_open

Opens the media driver.

R_USB_media_close

Closes the media driver.

R_USB_media_read

Reads from the media.

R_USB_media_write

Writes to the media.

R_USB_media_ioctl

Processing the control instructions specific to the media device.

RO1AN2029EJ0144 Rev.1.44
Mar 01, 2025

Page 14 of 24

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

9.1.1 R_USB_media_initialize

Register the media driver function to the media driver

Format

bool R_USB_media_initialize(media_driver_t * p_media_driver);

Arguments

p_meida_driver Point to the structure area for the media driver

Return Value

TRUE Successfully completed
FALSE Error generated
Description

This API registers the media driver function implemented by the user to the media driver.

Be sure to call this API at the initialization processing etc in the user application program.

Note

1. The user needs to implement the media driver function based on the contents described in the above
"Arguments", "Return Value" and "Description" etc.

2. For how to register of the media driver function implemented by the user, refer to the chapter 9.3,
Registration of the storage media driver.

3. This API does not do the media device initialization processing and does not do the starting operation
processing of the media device. These processing is done by R_USB_media_open function.

4. PMSC does not support the function to register the multiple type media driver function.

Example
if {R_USB_media_initialize(&g_ram_mediadriver))
{
/* Handle the error */
}
result = R_USB_media_open();
if (USB_MEDIA_ RET_OK != result)
{

[* Process the error */

RO1AN2029EJ0144 Rev.1.44 Page 15 of 24
Mar 01, 2025

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

9.1.2 R_USB_media_open

Initialize the media driver and the media device
Format

usb_media_ret_t R_USB_media_open(void);

Arguments

Return Value

USB_MEDIA RET _OK Successfully completed
USB_MEDIA RET_PARAERR Parameter error
USB_MEDIA RET_DEV_OPEN The device was already opened
USB_MEDIA RET_NOTRDY The device is not responding or not present
USB_MEDIA RET_OP_FAIL Any other failure

Description

This API initializes the media device and the media driver and make the media device and the media driver the ready
status.

Be sure to call this API at the initialization processing etc in the user application program.

Note
1. R_USB_media_initialize function has to be called before calling this API.

2. The number of calls this API is only once unless R_USB_media_close is called. After calling
R _USB _media_close function, this API can be called again to return the device to the initial state.

3. The user needs to implement the media driver function based on the contents described in the above
"Arguments", "Return Value" and "Description" etc.
Example
if ({R_USB_media_initialize(&g_ram_mediadriver))
{

/* Handle the error */

result = R_USB_media_open();
if (USB_MEDIA_RET_OK != result)
{

[* Process the error */

RO1AN2029EJ0144 Rev.1.44 Page 16 of 24
Mar 01, 2025

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

9.1.3 R_USB_media_close

Release the resource for the media driver and return the media device to the non active state.

Format

usb_media_ret_t R_USB_media_close(void);

Arguments

Return Value

USB_MEDIA RET _OK Successfully completed

USB_MEDIA RET_PARAERR Parameter error

USB_MEDIA RET_OP_FAIL Any other failure
Description

This API releases the resource for the media driver and return the media device to the non active state.

Note
1. R _USB_media_initialize function has to be called before calling this APIL.

2. The user needs to implement the media driver function based on the contents described in the above
"Arguments", "Return Value" and "Description" etc.

Example
result = R_USB_media_close();
if (USB_MEDIA_RET_OK != result)
{

/* Process the error */

RO1AN2029EJ0144 Rev.1.44 Page 17 of 24
Mar 01, 2025

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

9.1.4 R_USB_media_read

Read the data blocks from the media device

Format

usb_media_ret_t R_USB_media_read(uint8_t *p_buf, uint32_t Iba, uint8_t count);

Argument
p_buf Pointer to the area to store the read data from the media device
Iba Read start logical block address
count Number of read block (Number of sector)

Return Value

USB_MEDIA_RET_OK Successfully completed

USB_MEDIA RET_PARAERR Parameter error

USB_MEDIA_RET_NOTRDY The device is not ready state

USB_MEDIA_RET_OP_FAIL Any other failure
Description

This API reads the data blocks from the media device. (Read the data blocks for the number of blocks specified by the
third argument (count) from the LBA (Logical Block Address) specified by the second argument.)

The read data is stored in the specified area by the first argument (p_buf).

Note
1. R _USB_media_initialize function has to be called before calling this APIL.

2. The user needs to implement the media driver function based on the contents described in the above
"Arguments", "Return Value" and "Description" etc.

Example
result = R_USB_media_read(&buffer, Iba, 1);
if (USB_MEDIA_RET_OK != result)
{

/* Process the error */

RO1AN2029EJ0144 Rev.1.44 Page 18 of 24
Mar 01, 2025

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

9.1.5 R_USB_media_write

Write the data block to the media device

Format

usb_media_ret_t R_USB_media_write(uint8_t *p_buf, uint32_t Iba, uint8_t count);
Arguments

p_buf Pointer to the area where data to be written to the media device is stored

Iba Write start logical block address

count Number of write blocks (Number of sector)

Return Value

USB_MEDIA RET_OK Successfully completed

USB_MEDIA RET_PARAERR Parameter error

USB_MEDIA RET_NOTRDY The device is not ready state

USB_MEDIA_RET_OP_FAIL Any other failure
Description

This API write the data blocks to the media device. (Write the data blocks for the number of blocks specified by the
third argument (count) to the LBA (Logical Block Address) specified by the second argument.)

Store the write data in the area specified by the first argument (p_buf).

Note
1. R _USB_media_initialize function has to be called before calling this API.

2. The user needs to implement the media driver function based on the contents described in the above
"Arguments", "Return Value" and "Description" etc.

Example
result = R_USB_media_write(&buffer, Iba, 1);
if (MEDIA_RET_OK != result)
{

/* Process the error */

}

RO1AN2029EJ0144 Rev.1.44 Page 19 of 24
Mar 01, 2025

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

9.1.6 R_USB_media_ioctl

Get the information of the media driver etc

Format

usb_media_ret_t R_USB_media_ioctl(ioctl_cmd_t command, void *p_data);
Arguments

command Command code

p_data Pointer to the area to store the media information

Return Value

USB_MEDIA RET_OK Successfully completed

USB_MEDIA RET_PARAERR Parameter error

USB_MEDIA RET_NOTRDY The device is not ready state

USB_MEDIA_RET_OP_FAIL Any other failure
Description

This API gets the return information from the media driver by specifying the media driver specific command.
PMSC uses the following commands as the command code to the media driver.

MEDIA _IOCTL_GET_NUM_BLOCKS Number of block for the media area
MEDIA_IOCTL_GET_BLOCK_SIZE 1 block size

Note
1. R_USB media_initialize function has to be called before calling this API.
2. The user can ndefine the command code specified in the argument(command) newly.

3. The user needs to implement the media driver function based on the contents described in the above
"Arguments", "Return Value" and "Description" etc.

Example
uint32_t num_blocks;
uint32_t block_size;

uint64_t capacity;.

result = R_USB_media_ioctl(MEDIA_IOCTL_GET_NUM_BLOCKS, (void *)&num_blocks);
result = R_USB_media_ioctl(MEDIA IOCTL_GET_BLOCK_SIZE, (void *)&block_size);

capacity = (uin64_t)block_size * (uint64_t)num_blocks;

RO1AN2029EJ0144 Rev.1.44 Page 20 of 24
Mar 01, 2025

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

9.2 Structure / Enum type definition

The following shows the structure and enum type used by the media driver APIL.

These are defined in r_usb _media_driver if.h file.

9.2.1 usb_media_driver_t (Structure)
usb_media_driver t is the structure to hold the pointer to the media driver function implemented by the user.
The following shows usb_media_driver_t structure.

typedef struct media_driver_t

{
usb_media_open_t pf_media_open; [* Pointer to the open function */
usb_media_close t pf_media_close; /* Pointer to the close function */
usb_media_read_t pf_media_read; /* Pointer to the read function */
usb_media_write_t pf_media_write; /* Pointer to the write function */
usb_media_ioctl_t pf_media_ctrl; /* Pointer to the control function */

} usb_media_driver_t

9.2.2 usb_media_ret_t (Enum)
The return value is defined in usb_media_ret t (Enum).

typedef enum

{
USB_MEDIA RET_OK =0, [* Successfully Completed */
USB_MEDIA RET_NOTRDY, [* The device is not ready state */
USB_MEDIA RET_PARERR, [* Parameter error */
USB_MEDIA_RET_OP_FAIL, * Any other failure */

USB_MEDIA RET _DEV_OPEN, [* The device was already opened */
} usb_media_ret_t

9.2.3 ioctrl_cmd_t (Enum)
The command code specified in the argument of the R USB_media_ioctl function is defined in ioctl cmd t (Enum).

typedef enum

{
USB_MEDIA IOCTL_GET_NUM_BLOCKS, /* Get the number of the logical block */
USB_MEDIA_IOCTL_GET_BLOCK_SIZE, /* Get the logical block size */
}ioctl_cmd_t

Note:

Please add the command code in the ioct/_cmd_t when adding the user own command code.

RO1AN2029EJ0144 Rev.1.44 Page 21 of 24
Mar 01, 2025

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

9.3 Registration of the storage media driver

To change the PMSC’s storage media from RAM to something else, such as flash memory, the user has to implement
media driver functions to handle reading from and writing to the new storage media and register them to the media
driver API functions.

The example below shows the procedure for changing from RAM media to serial SPI flash.

1. Creating Media Driver Functions

Assume that the following functions are implemented by the user as media driver functions for serial SPI flash.

1. usb_media_ret t spi_flash_open (void)

2. usb_media_ret t spi_flash_close (void)

3. usb_media_ret t spi_flash_read(uint8_t *p_buf,uint32_t Iba, uint8_t count)
4. usb_media_ret t spi_flash_write(uint8_t *p_buf,uint32_t Iba, uint8_t count)
5. usb_media_ret t spi_flash_ioctl(ioctl_cmd_t ioctl_cmd,void * ioctl_data)

2. Registering the Media Driver Functions with the Media API

(1). Define the structure usb_media_driver_t for the serial SPI flash. As the members of this structure, specify
pointers to the relevant media driver functions.

struct media_driver_t g_spi_flash_mediadriver =

{
&spi_flash_open,
&spi_flash_close,
&spi_flash_read,
&spi_flash_write,
&spi_flash_ioctl

|3

(2). Inthe application program, specify the pointer to usb_media_driver t structure to the argument in
R _USB media_initialize function (API), and perform initialization processing.
== Application Program ==
R_USB_media_initialize(& g_spi_flash_mediadriver);

The serial SPI flash function is registered as the media driver function called by the media drvier by doing the
above order.

9.4 Implementation of the strorage media dirver
The user needs to implement the media driver function for controlling the storage media to be used.
The implemented media driver function is called from PMSC via the API described in chapter 9,
Overview of Media Driver API Functions from PMSC.

Note:

For the necessary processing to implement the media driver function, refer to each API specification described in
chapter 9, Overview of Media Driver API Functions.

9.5 Prototype Declaration of Media Driver function

The following shows the prototype declaration of the media driver function.

1. usb_media_ret_t (*media_open_t) (uint8_t); /* Open function type */

2. usb_media_ret_t (*media_close_t)(uint8_t); /* Close function type */

3. usb_media_ret_t (*media_read_t)(uint8_t, uint8_t*, uint32_t, uint8_t); /* Read function type */

4. usb_media_ret_t (*media_write_t)(uint8_t, uint8_t*, uint32_t, uint8_t); /* Write function type */

5. usb_media_ret_t (*media_ioctl_t)(uint8_t, ioctl_cmd_t, void *); [* Control function type */
R0O1AN2029EJ0144 Rev.1.44 Page 22 of 24

Mar 01, 2025

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

10. Creating an Application

Refer to the chapter “Creating an Application Program” in the document (Document number: RO1AN2025) for
USB Basic Host and Peripheral Driver using Firmware Integration Technology Application Note.

Note:

Be sure to call R_USB_media_initialize function (API) and R_USB_media_open function (API) at the initialize processing etc in
the user application program.

RO1AN2029EJ0144 Rev.1.44 Page 23 of 24
Mar 01, 2025

RX Family USB Peripheral Mass Storage Class Driver (PMSC) using Firmware Integration Technology

Website and Support

Renesas Electronics Website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

RO1AN2029EJ0144 Rev.1.44 Page 24 of 24
Mar 01, 2025

http://www.renesas.com/
http://www.renesas.com/
http://www.renesas.com/inquiry
http://www.renesas.com/inquiry

Revision Record

Description
Rev. Date Page Summary
1.00 Aug1, 2014 — First edition issued
1.10 Dec 26, 2014 — RX71M is added in Target Device.
1.11 Sep 30, 2015 — RX63N and RX631 are added in Target Device.
1.20 Sep 30, 2016 — 1. RX65N and RX651 are added in Target Device.
2. Supporting DMA transfer.
3. Supporting USB Host and Peripheral Interface Driver application
note(Document No.RO1AN3293EJ)
1.21 Mar 31, 2017 — 1. Supported Technical Update (Document number. TN-RX*-A172A/E)
2. The chapter API Functions is moved to the document (Document
number: RO1AN2025) of USB Basic Host and Peripheral Driver
Firmware Integration Technology.
1.22 Sep 30,2017 — Supporting RX65N/RX651-2M
1.23 Mar 31, 2018 — Supporting the Smart Configurator.
1.24 Dec 28, 2018 — Supporting RTOS.
1.25 Apr 16, 2019 — Added RX66T/RX72T in Target Device.
1.26 May 31,2019 — 1. Support GCC compiler and IAR compiler.
2. Remove RX63N from Target Device.
1.27 Jul 31, 2019 — RX72M is added in Target Device.
1.30 Mar 1, 2020 — 1. Supported the real time OS (uITRON:RI600V4).
2. Added RX72N/RX66N in Target Device.
1.31 Mar 1, 2021 — Added RX671 in Target Device.
142 Sep 29, 2023 — Added chapter 3.10.
1.44 Mar 01, 2025 — Change Disclaimer.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps
must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be
adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.
Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and
measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of
register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset
pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins
in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an 1/0 pull-up power supply while the device is powered off. The current injection that results from input of such a signal or /0
pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are
generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of
the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program
execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator
during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between Vi
(Max.) and Vin (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between ViL (Max.) and Vi (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSl is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.
The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms
of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,
operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

Notice

1.

10.

11.

12.

13.
14.

(Note1)

Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products
and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.
Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.
You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key
financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.
No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.
Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.
Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.
Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas
Electronics products.

“Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2)

Corporate Headquarters
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

“Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Contact information

For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

© 2025 Renesas Electronics Corporation. All rights reserved.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Please be sure to read
	1.2 Limitation
	1.3 Note
	1.4 Terms and Abbreviations
	1.5 USB PMSC FIT Module

	2. Software Configuration
	3. API Information
	3.1 Hardware Requirements
	3.2 Software Requirements
	3.3 Operating Confirmation Environment
	3.4 Usage of Interrupt Vector
	3.5 Header Files
	3.6 Integer Types
	3.7 Compile Setting
	3.8 ROM / RAM Size
	3.9 Argument
	3.10 “for”, “while” and “do while” arguments
	3.11 Adding the FIT Module to Your Project

	4. Class Driver Overview
	4.1 Class Requests
	4.2 Storage Commands

	5. Peripheral Device Class Driver (PDCD)
	5.1 Basic Functions
	5.2 BOT Protocol Overview

	6. API Functions
	7. Configuration (r_usb_pmsc_config.h)
	8. Configuration File (When using RI600V4)
	8.1 Task Definition
	8.2 Mailbox Definition

	9. Media Driver Interface
	9.1 Overview of Media Driver API Functions
	9.1.1 R_USB_media_initialize
	9.1.2 R_USB_media_open
	9.1.3 R_USB_media_close
	9.1.4 R_USB_media_read
	9.1.5 R_USB_media_write
	9.1.6 R_USB_media_ioctl

	9.2 Structure / Enum type definition
	9.2.1 usb_media_driver_t (Structure)
	9.2.2 usb_media_ret_t (Enum)
	9.2.3 ioctrl_cmd_t (Enum)
	9.3 Registration of the storage media driver
	9.4 Implementation of the strorage media dirver
	9.5 Prototype Declaration of Media Driver function

	10. Creating an Application

