

RL78/G13R01AN1526EG0100
Rev.1.00

High-speed On-chip Oscillator (HOCO) Clock Frequency Correction for

Jun 7, 2013

GNURL78 v13.01 Toolchain

Introduction

This application note explains how to correct the oscillation clock frequency of the high-speed on-chip oscillator (HOCO) by using the high-speed on-chip oscillator trimming register (HIOTRM) incorporated in RL78/G13.

An error in the oscillation frequency of the high-speed on-chip oscillator (HOCO) is detected using a subsystem clock or an external input signal and the high-speed on-chip oscillator trimming register (HIOTRM) is adjusted to set the oscillation frequency of the HOCO close to 32 MHz.

Target Device

RL78/G13

When applying the sample program covered in this application note to another microcomputer, modify the program according to the specifications for the target microcomputer and conduct an extensive evaluation of the modified program.

This application note has been updated for the RSKRL78/G13 hardware platform.

Contents

Inst	allation	3
1.	Specifications	3
1.1	Description of Calibration Methods	4
2.	Operation Check Conditions	6
3.	Related Application Note	6
4.	Description of the Hardware	7
4.1	Hardware Configuration Example	7
4.2	List of Pins to be Used	8
5.	Description of Software	
5.1	Creating the Project Workspace	9
5.2	Opening Sample Code and Source Files	10
5.3	Source Code	10
5.4	Operation Outline	10
6.	User Instructions for calibration using the subsystem clock	
6.1	User Instructions for calibration using the subsystem clock	11
6.2	User Instructions for calibration using the external clock	11
6.2	2.1 Operation detail	11
6.3	List of Option Byte Settings	13
6.4	List of Constants	13
6.5	List of Variables	14
6.6	List of Functions	14
6.7	Function Specifications	15
6.8	Flowcharts	19
6.8	3.1 Initialization Function	20
6.8	3.2 System Function	21
6.8	3.3 I/O Port Setup	22
6.8	3.4 CPU Clock Setup	24
6.8	·	
6.8	3.6 Clock Output/Buzzer Output Control Circuit Setup	47
6.8	·	
6.8		
6.8	3	
6.8	3.10 Calibration with External Input Clock	
	HOCO Correction Function	
7.	Documents for Reference	64

Installation

This application note and associated code has been written to work with GNURL78 v13.01 toolchain.

Create a new folder and name it as 'RSKRL78G13_Workspace'. Copy the zipped file HOCO.zip, available in the Application Note package downloaded from the website, to this folder. Extract the HOCO.zip file to the RSKRL78G13_Workspace folder.

1. Specifications

In this application note, an error in the clock oscillation frequency of the HOCO is detected using a subsystem clock or an external input signal. Then, the HIOTRM register is adjusted to set the oscillation frequency of the HOCO close to 32 MHz.

Whether to use the subsystem clock or the external input signal is determined by the parameter switch (SW2). When the start switch (SW1) is pressed, the timer array unit (TAU) counts the frequency (pulse interval) or the pulse width of the subsystem clock or the external input signal. The HOCO is used for the count clock of the TAU. If the count value measured by the TAU is beyond the target range, the HIOTRM register is adjusted to set the oscillation frequency of the HOCO close to 32 MHz. The HIOTRM register is adjusted so that the count value is within the target range. The target range of the HOCO oscillation frequency is 32 MHz \pm 0.1% (31.968 MHz to 32.032 MHz).

When the subsystem clock is used, the TAU measures the frequency (pulse interval) of the subsystem clock. To enhance accuracy, the pulse interval is measured four times to detect an error in the oscillation frequency of the HOCO.

When the external input signal is used, the TAU measures the low-level width of the timer input signal. A signal with a low-level width of 1.953125 ms (256 Hz, a duty cycle of 50%) is used as the timer input signal.

In this sample code, a pulse of 2 MHz ($f_{MAIN}/2^4$) is output from the clock output/buzzer output control circuit to always check correction results. To check the correction results, refer to the frequency of the output pulse on the PCLBUZ0 pin by using a frequency counter and the like.

Caution: Specified times and calibration methods in this sample code are used as examples. In this sample code, input from the start switch (SW1) is used to start calibration, to simplify processing flows and to provide clear understanding. Adjust the timing of starting calibration and the intervals between start timings according to the system. This application note describes two calibration methods. Select the method most appropriate to the system for use.

Table 1.1 summarizes the peripheral functions to be used and their uses.

Table 1.1 Peripheral Functions to be Used and Their Uses

Peripheral Function	Use
Pin input edge detection interrupt	Used for the correction start switch (SW1).
Subsystem clock	Connects the subsystem clock to be used for calibration.
TAU0 channel 1	Used for calibration with the external input signal.
TAU0 channel 2	Used to prevent chattering on the correction start switch (SW1).
TAU0 channel 5	Used for calibration with the subsystem clock.
Clock output/buzzer output control circuit	Performs 2-MHz clock output.

1.1 Description of Calibration Methods

This section describes the two calibration methods to be used in this application note.

(1) Calibration with the subsystem clock

A calibration method with the subsystem clock is described below.

The subsystem clock cycle is measured on TAU0 channel 5.

The subsystem clock (32.768 kHz, a cycle of $30.517578125 \,\mu s$) is selected as the timer input to be used on TAU0 channel 5, and the HOCO clock (32 MHz) is selected as the count clock. The subsystem clock cycle is measured using the input pulse interval measurement function of the TAU.

To enhance accuracy, the subsystem clock cycle is measured four times, and the four captured values are added up to calculate an error in the HOCO oscillation clock frequency.

The table below lists the calculated count values that are obtained through four times of capture when the frequency is 32 MHz, 32 MHz - 0.1% (31.968 MHz), or 32 MHz + 0.1% (32.032 MHz).

HOCO Clock Frequency (f _{IH})		Count Value Obtained through Four Times of Capture (Calculated Value)		
32 MHz		3906.25		
32 MHz – 0.1%	31.968 MHz	3902.34375		
32 MHz + 0.1%	32.032 MHz	3910.15625		

Table 1.2 Range of Count Values during the Use of Subsystem Clock

According to table 1.2, the target range of the count value obtained through four times of capture is set to 3903 to 3909 when the target frequency range is 32 MHz \pm 0.1% (31.968 to 32.032 MHz). If the obtained count value is 3902 or less, this means that the HOCO clock is slower than the target frequency. If it is 3910 or more, this means that the HOCO clock is faster than the target frequency. Determine the direction of correction of the HIOTRM register value (speeding up/slowing down), according to the count value, and perform calibration by incrementing the HIOTRM register value by \pm 1. When the count value is within the target range, the calibration is completed.

Figure 1.1 gives an example of calibration in which the subsystem clock is used.

Figure 1.1 Example of Calibration in which the Subsystem Clock is Used

(2) Calibration with the external input signal

A calibration method with the external input signal is described below.

The low-level width of the external input signal is measured on TAU0 channel 1.

A signal with a low-level width of 1.953125 ms (256 Hz, a duty cycle of 50%) is input to the TI01 pin, and the HOCO clock (32 MHz) is selected as the count clock. The low-level width of the signal input to the TI01 pin is measured by using the TAU function of measuring the low-level width of input signal.

Accurate measurement of signal low-level width detects an error in the HOCO clock.

The table below lists the calculated count values that are obtained when the frequency is 32 MHz, 32 MHz - 0.1% (31.968 MHz), or 32 MHz + 0.1% (32.032 MHz).

Table 1.3 Count Values for Calibration with External Signal

HOCO Clock Frequ	uency (f⊪)	Count Value (Calculated Value)
32 MHz		62500
32 MHz – 0.1% 31.968 MHz		62437.5
32 MHz + 0.1% 32.032 MHz		62562.5

According to table 1.3, the target range of the count value is set to 62438 to 62561 for the target frequency range 32 MHz \pm 0.1% (31.968 to 32.032 MHz). If the obtained count valued is 62437 or less, this means that the HOCO clock is slower than the target frequency. If it is 62562 or more, this means that the HOCO clock is faster than the target frequency. Determine the direction of correction of the HIOTRM register value (speeding up/slowing down), according to the count value, and perform calibration by incrementing the HIOTRM register value by \pm 1. When the count value is within the target range, the calibration is completed.

Figure 1.2 gives an example of calibration in which the external signal is used.

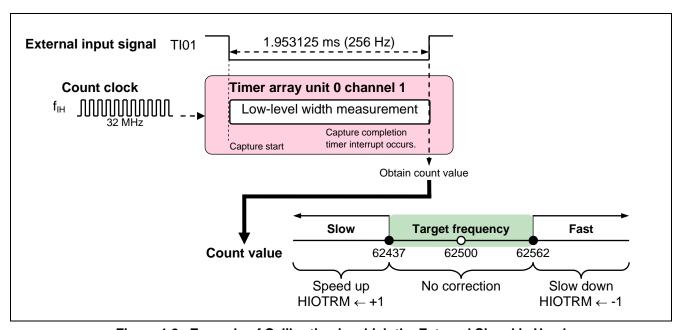


Figure 1.2 Example of Calibration in which the External Signal is Used

Operation Check Conditions 2.

The sample code of this application note has been tested under the following conditions.

Table 2.1 Operation Check Conditions

Item	Description		
Microcontroller	RL78/G13 (R5F100LEA)		
Operating frequency	High-speed on-chip oscillator (HOCO) clock: 32 MHz		
	CPU/peripheral hardware clock: 32 MHz		
Operating voltage	5.0 V (Operable at 2.9 V to 5.5 V)		
	LVD operation (V _{LVI}): Reset mode 2.81 V (2.76 V to 2.87 V)		
Integrated development environment	Renesas Electronics e ² studio 1.1.1.7		
C compiler	GNURL78 v13.01		

Related Application Note 3.

The application note that is related to this application note is shown below. Refer to it together with this application note.

• RL78/G13 Initialization (R01AN1525EG0100) Application Note

4. Description of the Hardware

4.1 Hardware Configuration Example

Figure 4.1 shows an example of hardware configuration that is used for this application note.

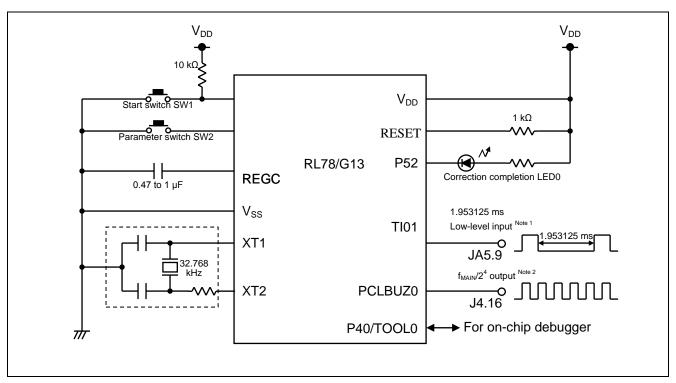


Figure 4.1 Hardware Configuration

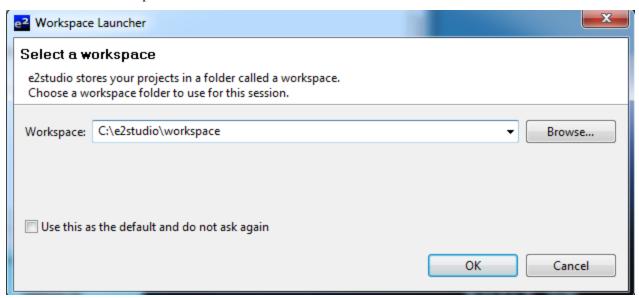
- Notes: 1. Input a signal with a low-level width of 1.953125 ms (256 Hz, a duty cycle of 50%).
 - 2. Calibration sets the output frequency close to 2 MHz. Check the frequency using a frequency counter.

Cautions: 1. The purpose of this circuit is only to provide the connection outline and the circuit is simplified accordingly. When designing and implementing an actual circuit, provide proper pin treatment and make sure that the hardware's electrical specifications are met (connect the input-only ports separately to V_{DD} or V_{SS} via a resistor).

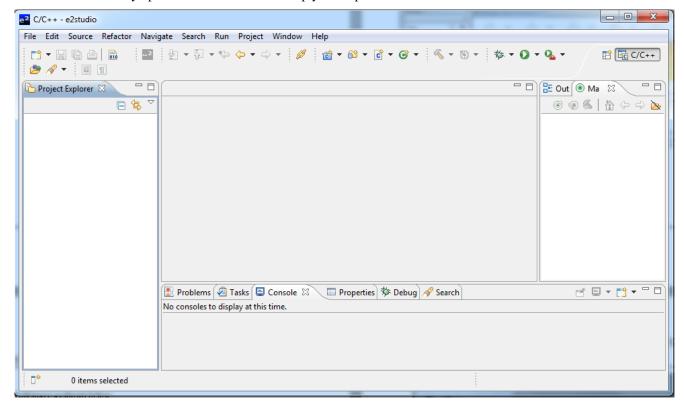
- 2. Connect any pins whose name begins with EV_{SS} to V_{SS} and any pins whose name begins with EV_{DD} to V_{DD} , respectively.
- 3. V_{DD} must be held at not lower than the reset release voltage (V_{LVI}) that is specified as LVD.

4.2 List of Pins to be Used

Table 4.1 lists the pins to be used and their functions.


Table 4.1 Pins to be Used and Their Functions

Pin Name	I/O	Description		
P50/INTP1	Input	SW1 Start switch:		
		Connects the switch for starting calibration.		
P51	Input	SW2 Parameter switch:		
		Connects the switch for selecting a calibration method.		
P52	Output	LED0 Correction completion LED:		
		Connects the LED that indicates correction completion.		
P123/XT1	Input	Subsystem clock:		
P124/XT2	Input	Connects a 32.768-kHz crystal oscillator.		
P16/TI01	Input	External input signal pin:		
Pin 9 of JA5 on RSKRL78G13		Inputs a signal with a low-level width of 1.953125 ms (256 Hz, a		
		duty cycle of 50%).		
P140/PCLBUZ0	Output	Clock output:		
Pin 16 of J4 on RSKRL78G13		Always outputs f _{MAIN} /2 ⁴ (2 MHz).		

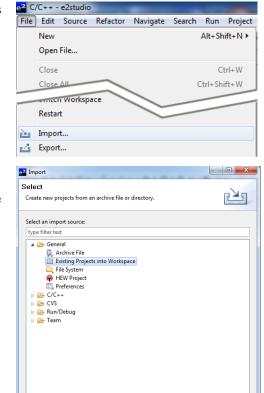

5. Description of Software

5.1 Creating the Project Workspace

Run e²studio by clicking the Windows Start button, select All Programs > Renesas Electronics e2studio > Renesas e2studio. Choose a workspace folder.

This will automatically open e²studio IDE with an empty workspace.

To add the sample code select from the menu bar File > Import as shown:


Choose 'Existing Projects into Workspace'as shown:

Click Next >, a new window will appear. Navigate to the RSKRL78G13_Workspace folder and select the OCO folder.

Make sure that 'Copy projects into workspace' is checked.

Single-click the project file to select it.

Click < Finish > to add the project to the workspace.

< Back Next > Finish Cancel

5.2 Opening Sample Code and Source Files

Once the project has been added, the source code and all dependant files can be opened in the editor by expanding the folders in the Project Explorer window and double clicking the files in the folders. Each source file listed in Workspace window in e²studio can be expanded to reveal its dependant files; as well as the output files.

?

In the Project Explorer sidebar, right-click on the project's name and select Build Configurations > Set Active > HardwareDebug. This ensures that the best debug experience will be made available when trying this sample.

5.3 Source Code

The source code project is specifically written to run on the appropriate RSK. However this source code can be useful as an example even without the RSK.

The project was written using source files containing API functions generated using Applilet. The project will contain a C source file 'r_main.c'. This source file will include the C function main(). All source files and dependant files whose filenames are prefixed with 'r_' were generated using Applilet.

5.4 Operation Outline

In this application note, an error in the clock oscillation frequency of the HOCO is detected using a subsystem clock or an external input signal. Then, the HIOTRM register is adjusted to set the oscillation frequency of the HOCO close to 32 MHz.

Whether to use the subsystem clock or the external input signal is determined by the parameter switch (SW2). When the start switch (SW1) is pressed, the TAU counts the frequency (pulse interval) or the pulse width of the subsystem clock or the external input signal. The HOCO is used for the count clock of the TAU. If the count value measured by the TAU is beyond the target range, the HIOTRM register is adjusted to set the oscillation frequency of the HOCO close to 32 MHz. The HIOTRM register is adjusted so that the count value is within the target range. The target range of the HOCO oscillation frequency is 32 MHz \pm 0.1% (31.968 MHz to 32.032 MHz).

6. User Instructions for calibration using the subsystem clock

6.1 User Instructions for calibration using the subsystem clock

- 1. Compile, download and execute the code.
- 2. Using a frequency counter, measure the oscillation frequency of P140/PCLBUZ0/J4.16. This always outputs $f_{MAIN}/2^4$ (2 MHz).
- 3. Hold SW2 down, then briefly press SW1 before releasing both switches. This initiates calibration using the subsystem clock.
- 4. LED0 will light when calibration is complete.
- 5. Using a frequency counter, measure the adjusted oscillation frequency of P140/PCLBUZ0/J4.16 which is f_{MAIN}/2⁴

6.2 User Instructions for calibration using the external clock

- 1. Ensure the board is powered down.
- 2. Connect a 50% duty cycle, 256Hz signal to JA5-9 (P16/TI01) from a frequency generator or similar.
- 3. Power the board up.
- 4. Compile, download and execute the code.
- 5. Using a frequency counter, measure the oscillation frequency of P140/PCLBUZ0/J4.16 which is f_{MAIN}/2⁴
- 6. Press SW1 to initiate calibration using the external input signal, which should be 256Hz supplied to JA5-9 (P16/TI01).
- 7. LED0 will light when calibration is complete.
- 8. Using a frequency counter, measure the adjusted oscillation frequency of P140/PCLBUZ0/J4.16 which is $f_{MAIN}/2^4$

6.2.1 Operation detail

(1) Initialize TAU0 channel 1.

<Setting Conditions>


- Set the count clock as the operating clock ($f_{MCK} = f_{CLK} = 32 \text{ MHz}$).
- Select the function of measuring the high/low-level width of input signal.
- Select both edges as the valid edge of the TI01 pin (for low-level width measurement). Falling edge and rising edge are selected as the start trigger and the capture trigger, respectively.
- Set the P16/TI01/TO01/INTP5 pin as the TI01 pin.
- (2) Initialize TAU0 channel 2.

<Setting Conditions>

- Set the count clock to the operating $\operatorname{clock}/2^3$ ($f_{MCK} = f_{CLK}/23 = 4$ MHz).
- Select the interval timer function.
- Select the software trigger only.
- Set the timer data register to 39999 (9C3FH).
- (3) Initialize TAU0 channel 5.

<Setting Conditions>

- Set the count clock to the operating clock ($f_{MCK} = f_{CLK} = 32 \text{ MHz}$).
- Select the function of measuring input pulse intervals.
- Use the valid edge of the TI05 pin for both start triggering and capture triggering.

RL78/G13 High-speed On-chip Oscillator (HOCO) Clock Frequency Correction

(4) Initialize the clock output/buzzer output control circuit.

<Setting Conditions>

- Set the output clock to $f_{MAIN}/2^4$ (= 2 MHz).
- (5) Initialize external interrupt.

<Setting Condition>

- Select the falling edges of the INTP1 pin as the valid edge for external interrupt requests.
- (6) Enable clock output and external interrupt and then execute a HALT instruction to enter HALT mode.
- (7) When the start switch (SW1) is pressed, an external interrupt (INTP1) makes the system exit HALT mode. To eliminate chattering, wait for 10 ms by using TAU0 channel 2 and then check the level of the pin (P50/INTP1) to which the start switch is connected.
- (8) If no chattering occurs, check the level of the pin (P50) to which the parameter switch (SW2) is connected, and perform calibration by using the specified method. To use the subsystem clock, perform (9) to (12). To use the external input clock, perform (13) to (15).

Calibration with the Subsystem Clock

- (9) Enable operation of TAU0 channel 5. Ignore the capture value when the first capture completion timer interrupt (INTTM05) occurs.
- (10) After ignoring the first capture value, wait the second and subsequent timer interrupts (INTTM05).
- (11) When an INTTM05 occurs, save the capture value and wait a capture completion timer interrupt again.
- (12) On completion of four times of the measurement of the subsystem clock pulse interval, add up the four count values and perform (16).

Calibration with the External Input Signal

- (13) Input to the TI01 pin a signal with a low-level width of 1.953125 ms (256 Hz, a duty cycle of 50%).
- (14) Wait a capture completion timer interrupt (INTTM01) by TAU0 channel 1.
- (15) After an INTTM01 occurs, save the capture value and then perform (16).

HOCO Correction

- (16) Determine the necessity and correction direction (+1/-1) of the HOCO clock according to the value obtained in (12) or (15), and correct the HOCO clock frequency by adjusting the HIOTRM register value.
- (17) Repeat (9) to (16) so that the HOCO clock frequency is within the target range.

6.3 List of Option Byte Settings

Table 6.1 summarizes the settings of the option bytes.

Table 6.1 Option Byte Settings

Address	Setting	Description	
000C0H/010C0H	11101111B	Disables the watchdog timer.	
		(Stops counting after the release from the reset state.)	
000C1H/010C1H	01111111B	LVD reset mode 2.81 V (2.76 V to 2.87 V)	
000C2H/010C2H	11101000B	HS mode, HOCO: 32 MHz	
000C3H/010C3H	10000100B	Enables the on-chip debugger	

6.4 List of Constants

Table 6.2 lists the constants that are used in this sample program.

Table 6.2 Constants for the Sample Program

Constant Name	Setting	Description		
HIOTRM_MAX	0b00111111	Maximum value of the HIOTRM register		
HIOTRM_MIN	0b0000000	0b00000000 Minimum value of the HIOTRM register		
CCNT_XT1_MAX	3910	3910 Upper threshold of subsystem clock count		
CCNT_XT1_MIN	3902	3902 Lower threshold of subsystem clock count		
CCNT_EXT_MAX	62562	62562 Upper threshold of external input signal count		
CCNT_EXT_MIN	62437	Lower threshold of external input signal count		

6.5 **List of Variables**

Table 6.3 lists the global variables.

Table 6.3 Global Variables

Туре	Variable Name	Contents	Function Used
uint8_t	calibration_count	Calibration count value	R_Main_UseXT1()
			R_Main_ExternalClock()
			R_Trimming_OCO()
uint8_t	calibrate_history	Calibration history	R_Main_UseXT1()
			R_Main_ExternalClock()
			R_Trimming_OCO()
uint16_t	count_value	Count value (Used as an argument of	R_Main_UseXT1()
		R_Trimming_OCO)	R_Main_ExternalClock()
			R_Trimming_OCO()
uint16_t	max	Upper threshold of count	R_Main_UseXT1()
			R_Main_ExternalClock()
			R_Trimming_OCO()
uint16_t	min	Lower threshold of count	R_Main_UseXT1()
			R_Main_ExternalClock()
			R_Trimming_OCO()

6.6 **List of Functions**

Table 6.4 lists the functions that are used in this sample program.

Table 6.4 Functions

Function Name	Outline
R_PCLBUZ0_Start	Clock output start
R_INTC1_Start	Pin input edge detection (INTP1) operation start
R_INTC1_Stop	Pin input edge detection (INTP1) operation stop
R_TAU0_TMIF02_Clear	TAU0 channel 2 interrupt request flag clear processing
R_TAU0_Channel2_Start	TAU0 channel 2 operation start
R_TAU0_Channel2_Stop	TAU0 channel 2 operation stop
R_Main_UseXT1	Calibration with the subsystem clock
R_TAU0_TMIF05_Clear	TAU0 channel 5 interrupt request flag clear processing
R_TAU0_Channel5_Start	TAU0 channel 5 operation start
R_TAU0_Channel5_Stop	TAU0 channel 5 operation stop
R_Main_ExternalClock	Calibration with the external input signal
R_TAU0_TMIF01_Clear	TAU0 channel 1 interrupt request flag clear processing
R_TAU0_Channel1_Start	TAU0 channel 1 operation start
R_TAU0_Channel1_Stop	TAU0 channel 1 operation stop
R_Trimming_OCO	HOCO clock correction

6.7 **Function Specifications**

This section describes the specifications for the functions that are used in this sample program.

[Function Name] R_PCLBUZ0_Start

Clock output start **Synopsis**

Header r_cg_macrodriver.h, r_cg_pclbuz.h, r_cg_userdefine.h

Declaration void R_PCLBUZ0_Start(void)

This function enables clock output operation. **Explanation**

Arguments None Return value None Remarks None

[Function Name] R_INTC1_Start

Pin input edge detection (INTP1) operation start **Synopsis** Header r_cg_macrodriver.h, r_cg_intc.h, r_cg_userdefine.h

Declaration void R_INTC1_Start(void)

Explanation This function clears the INTP1 interrupt request flag and then enables INTP1 interrupts.

Arguments None Return value None Remarks None

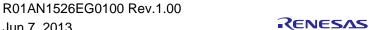
[Function Name] R_INTC0_Stop

Pin input edge detection (INTP1) operation stop **Synopsis** Header r_cg_macrodriver.h, r_cg_intc.h, r_cg_userdefine.h

Declaration void R_INTC1_Stop(void)

This function disables INTP1 interrupts. **Explanation**

Arguments None Return value None Remarks None


[Function Name] R_TAU0_TMIF02_Clear

Synopsis TAU0 channel 2 interrupt request flag clear processing Header r_cg_macrodriver.h, r_cg_timer.h, r_cg_userdefine.h

void R_TAU0_TMIF02_Clear(void) **Declaration**

This function clears the TAU0 channel 2 interrupt request flag. **Explanation**

Arguments None Return value None Remarks None

RL78/G13 High-speed On-chip Oscillator (HOCO) Clock Frequency Correction

[Function Name] R_TAU0_Channel2_Start

TAU0 channel 2 operation start **Synopsis**

Header r_cg_macrodriver.h, r_cg_timer.h, r_cg_userdefine.h

void R_TAU0_Channel2_Start(void) **Declaration**

This function starts count operation on TAU0 channel 2. **Explanation**

Arguments None Return value None Remarks None

[Function Name] R_TAU0_Channel2_Stop

TAU0 channel 2 operation stop **Synopsis**

Header r_cg_macrodriver.h, r_cg_timer.h, r_cg_userdefine.h

Declaration void R_TAU0_Channel2_Stop(void)

Explanation This function stops count operation on TAU 0 channel 2.

Arguments None Return value None Remarks None

[Function Name] R_Main_UseXT1

Calibration with the subsystem clock **Synopsis**

Header r_cg_macrodriver.h, r_cg_cgc.h, r_cg_port.h, r_cg_intc.h, r_cg_timer.h, r_cg_pclbuz.h,

r_cg_userdefine.h

Declaration void R_Main_UseXT1(void)

Explanation This function captures the subsystem clock count value and performs correction processing.

Arguments None Return value None Remarks None

[Function Name] R_TAU0_TMIF05_Clear

Synopsis TAU0 channel 5 interrupt request flag clear processing Header r_cg_macrodriver.h, r_cg_timer.h, r_cg_userdefine.h

Declaration void R_TAU0_TMIF05_Clear(void)

This function clears the TAU0 channel 5 interrupt request flag. **Explanation**

Arguments None Return value None Remarks None

RL78/G13 High-speed On-chip Oscillator (HOCO) Clock Frequency Correction

[Function Name] R_TAU0_Channel5_Start

Synopsis TAU0 channel 5 operation start

Header r_cg_macrodriver.h, r_cg_timer.h, r_cg_userdefine.h

Declaration void R_TAU0_Channel5_Start(void)

Explanation This function starts count operation on TAU 0 channel 5.

Arguments None
Return value None
Remarks None

[Function Name] R_TAU0_Channel5_Stop

Synopsis TAU0 channel 5 operation stop

Header r_cg_macrodriver.h, r_cg_timer.h, r_cg_userdefine.h

Declaration void R_TAU0_Channel5_Stop(void)

Explanation This function stops count operation on TAU 0 channel 5.

Arguments None
Return value None
Remarks None

[Function Name] R_Main_ExternalClock

Synopsis Calibration with the external input signal

Header r_cg_macrodriver.h, r_cg_cgc.h, r_cg_port.h, r_cg_intc.h, r_cg_timer.h, r_cg_pclbuz.h,

r_cg_userdefine.h

Declaration void R_Main_ExternalClock(void)

Explanation This function captures the external input signal count value and performs correction

processing.

Arguments None
Return value None
Remarks None


[Function Name] R_TAU0_TMIF01_Clear

Synopsis TAU0 channel 1 interrupt request flag clear processing **Header** r_cg_macrodriver.h, r_cg_timer.h, r_cg_userdefine.h

Declaration void R_TAU0_TMIF01_Clear(void)

Explanation This function clears the TAU0 channel 1 interrupt request flag.

ArgumentsNoneReturn valueNoneRemarksNone

RL78/G13 High-speed On-chip Oscillator (HOCO) Clock Frequency Correction

[Function Name] R_TAU0_Channel1_Start

Synopsis TAU0 channel 1 operation start

Header r_cg_macrodriver.h, r_cg_timer.h, r_cg_userdefine.h

Declaration void R_TAU0_Channel1_Start(void)

Explanation This function starts count operation on TAU 0 channel 1.

Arguments None
Return value None
Remarks None

[Function Name] R_TAU0_Channel1_Stop

Synopsis TAU0 channel 1 operation stop

Header r_cg_macrodriver.h, r_cg_timer.h, r_cg_userdefine.h

Declaration void R_TAU0_Channel1_Stop(void)

Explanation This function stops count operation on TAU 0 channel 1.

Arguments None
Return value None
Remarks None

[Function Name] R_Trimming_OCO

Synopsis HOCO clock correction

Header r_cg_macrodriver.h, r_cg_cgc.h, r_cg_port.h, r_cg_intc.h, r_cg_timer.h, r_cg_pclbuz.h,

r_cg_userdefine.h

Declaration uint8_t R_Trimming_OCO(uint16_t count)

Explanation This function sets the HIOTRM according to the argument and then determines whether to

continue calibration.

Arguments count : [Target clock count value]

Return value [0]: Calibration ends.

[1]: Calibration continues.

Remarks None

6.8 Flowcharts

Figure 6.1 shows the overall flow of the sample program described in this application note.

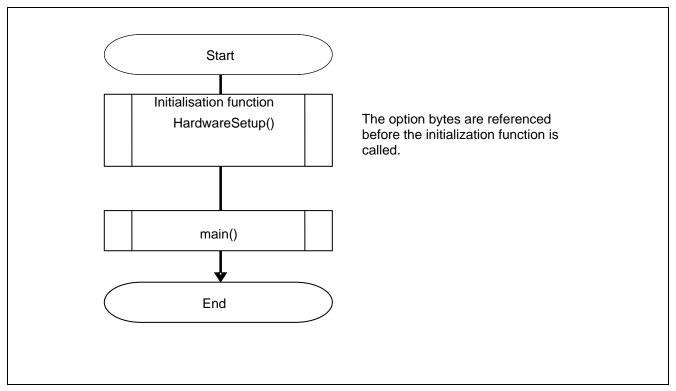


Figure 6.1 Overall Flow

6.8.1 Initialization Function

Figure 6.2 shows the flowchart for the initialization function.

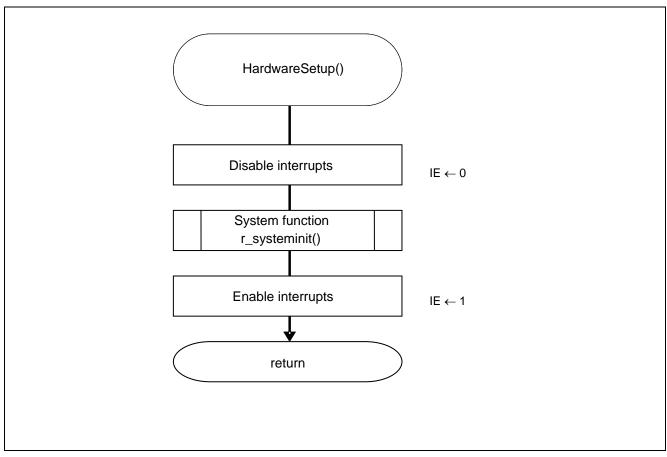


Figure 6.2 Initialization Function

6.8.2 System Function

Figure 6.3 shows the flowchart for the system function.

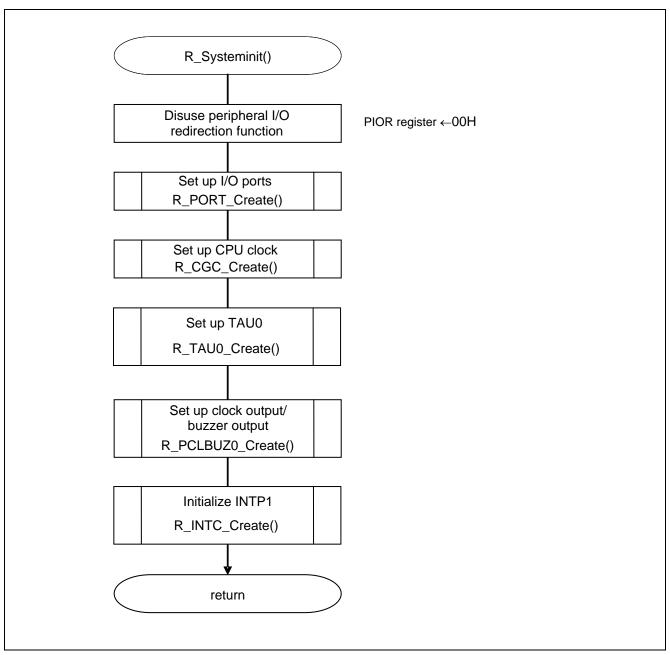


Figure 6.3 System Function

6.8.3 I/O Port Setup

Figure 6.4 shows the flowchart for setting up the I/O ports.

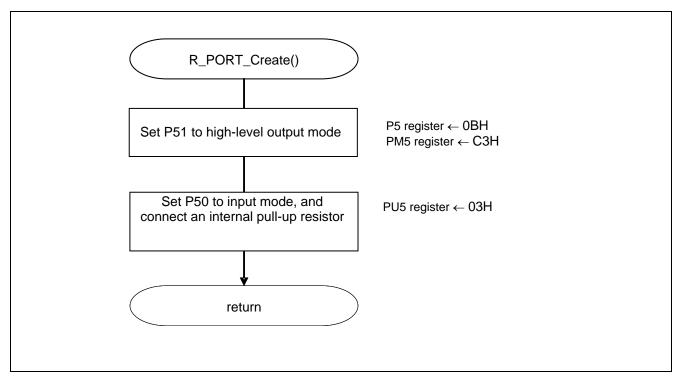


Figure 6.4 I/O Port Setup

Caution: Refer to the section entitled "Flowcharts" in RL78/G13 Initialization Application Note (R01AN0451EJ0100) for the configuration of the unused ports.

Caution: Provide proper treatment for unused pins so that their electrical specifications are observed. Connect each of any unused input-only ports to V_{DD} or V_{SS} via a separate resistor.

Setting up the LED display pin

- Port register 1 (P5)
- Port mode register 1 (PM5)

Symbol: P5

7		6	5	4	3	2	1	0
	P57	P56	P55	P54	P53	P52	P51	P50
	Х	Х	Х	Х	Х	1	Х	Х

Bit 1

P52	P52 output data control
0	Output 0
1	Output 1

Symbol: PM5

7	6	5	4	3	2	1	0
PM57	PM56	PM55	PM54	PM53	PM52	PM51	PM50
Х	Х	Х	Х	Х	0	Х	Х

Bit 1

PM52	PM52 pin I/O mode selection
0	Output mode (output buffer on)
1	Input mode (output buffer off)

6.8.4 **CPU Clock Setup**

Figure 6.5 shows the flowchart for setting up the CPU clock.

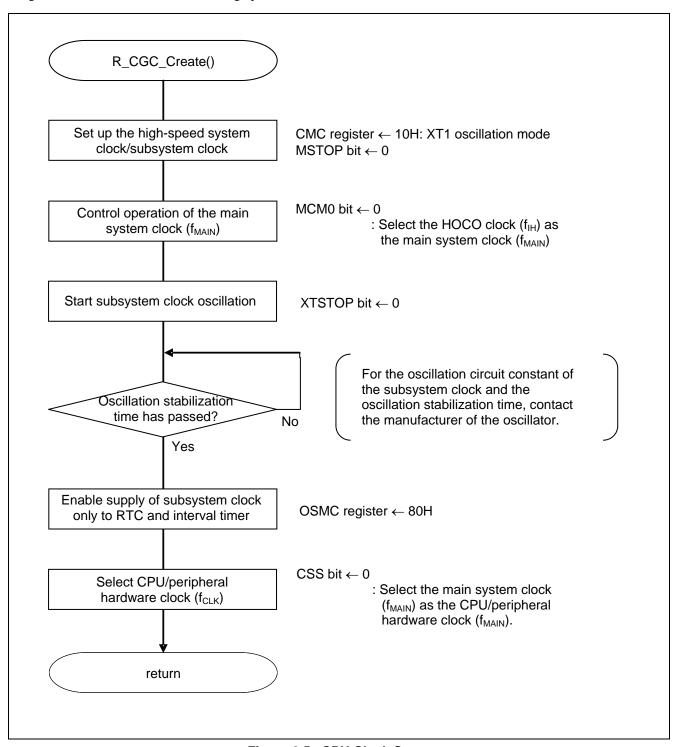


Figure 6.5 CPU Clock Setup

A wait time (about 1 s) is spent on stabilization of subsystem clock oscillation during CPU clock setup Remark: (R_CGC_Create()). The oscillation stabilization time is specified by the constant CGC_SUBWAITTIME in

r_cg_cgc.h.

Caution: For details on the procedure for setting up the CPU clock (R_CGC_Create ()), refer to the section entitled

"Flowcharts" in RL78/G13 Initialization Application Note (R01AN0451EJ0100).

6.8.5 TAU0 Setup

Figures 6.6 and 6.7 show the flowcharts for setting up TAU0.

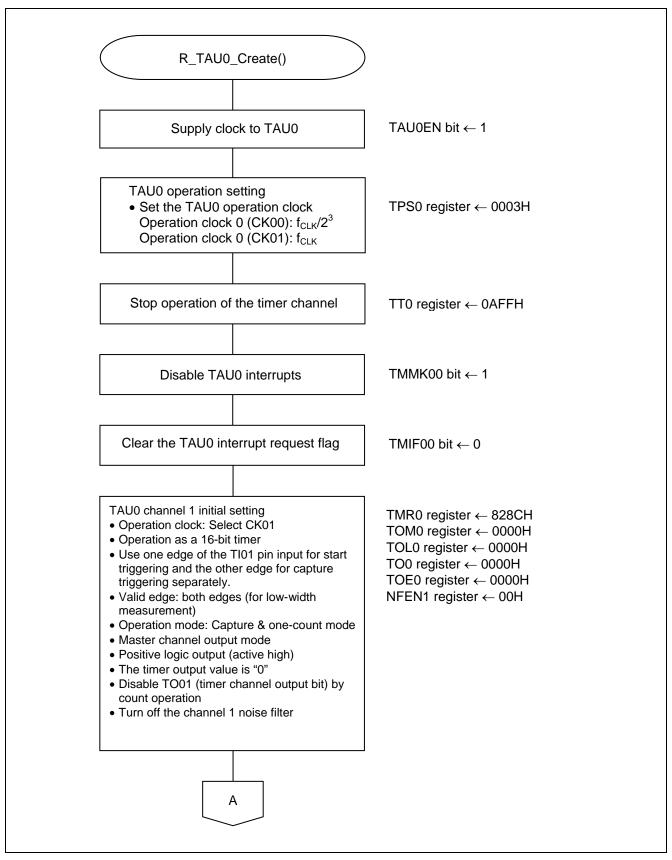


Figure 6.6 TAU0 Setup (1/2)

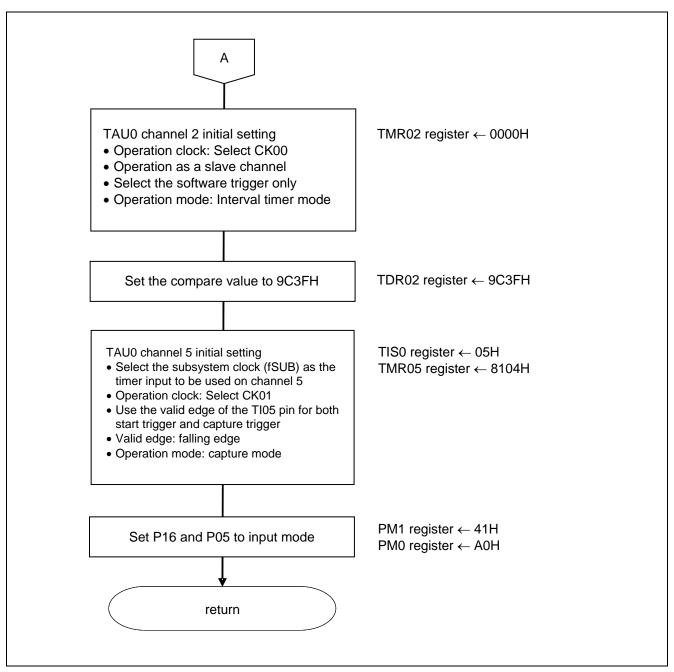


Figure 6.7 TAU0 Setup (2/2)

Enabling supply of clock signals to TAU0

Peripheral enable register 0 (PER0) Enable supply of clock signals to the TAU0.

Symbol: PER0

7	6	5	4	3	2	1	0
RTCEN	IICA1EN	ADCEN	IICA0EN	SAU1EN	SAU0EN	TAU1EN	TAU0EN
Х	Х	Х	Х	Х	Х	Х	1

Bit 0

TAU0E N	Control of timer array unit 0 input clock supply
0	Stops input clock supply SFR used by timer array unit 0 cannot be written Timer array unit 0 is in the reset status.
1	Enables input clock supply SFR used by timer array unit 0 can be read and written.

Selecting the operation clock

• Timer clock select register 0 (TPS0) Select the timer operation clock (CK00 and CK01).

Symbol: TPS0

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	PRS 031	PRS 030	0	0	PRS	PRS	PRS	PRS	PRS	PRS	PRS 003	PRS 002	PRS	PRS
		031	030			021	020	013	012	UII	010	003	002	001	000
0	0	Х	Х	0	0	Х	Х	0	0	0	0	0	0	1	1

Bits 7 to 4

PRS	PRS	PRS	PRS	Selection	election of operation clock (CK01)									
013	012	011	010		f _{CLK} =	f _{CLK} =	f _{CLK} =	f _{CLK} =	f _{CLK} =					
					2 MHz	5 MHz	10 MHz	20 MHz	32 MHz					
0	0	0	0	f _{CLK}	2 MHz	5 MHz	10 MHz	20 MHz	32 MHz					
0	0	0	1	f _{CLK} /2	1 MHz	2.5 MHz	5 MHz	10 MHz	16 MHz					
0	0	1	0	f _{CLK} /2 ²	500 kHz	1.25 MHz	2.5 MHz	5 MHz	8 MHz					
0	0	1	1	f _{CLK} /2 ³	250 kHz	625 kHz	1.25 MHz	2.5 MHz	4 MHz					
0	1	0	0	f _{CLK} /2 ⁴	125 kHz	312.5 kHz	625 kHz	1.25 MHz	2 MHz					
0	1	0	1	f _{CLK} /2 ⁵	62.5 kHz	156.2 kHz	312.5 kHz	625 kHz	1 MHz					
0	1	1	0	f _{CLK} /2 ⁶	31.25 kHz	78.1 kHz	156.2 kHz	312.5 kHz	500 kHz					
0	1	1	1	f _{CLK} /2 ⁷	15.62 kHz	39.1 kHz	78.1 kHz	156.2 kHz	250 kHz					
1	0	0	0	f _{CLK} /2 ⁸	7.81 kHz	19.5 kHz	39.1 kHz	78.1 kHz	125 kHz					
1	0	0	1	f _{CLK} /2 ⁹	3.91 kHz	9.76 kHz	19.5 kHz	39.1 kHz	62.5 kHz					
1	0	1	0	f _{CLK} /2 ¹⁰	1.95 kHz	4.88 kHz	9.76 kHz	19.5 kHz	31.25 kHz					
1	0	1	1	f _{CLK} /2 ¹¹	976 Hz	2.44 kHz	4.88 kHz	9.76 kHz	15.63 kHz					
1	1	0	0	f _{CLK} /2 ¹²	488 Hz	1.22 kHz	2.44 kHz	4.88 kHz	7.81 kHz					
1	1	0	1	f _{CLK} /2 ¹³	244 Hz	610 Hz	1.22 kHz	2.44 kHz	3.91 kHz					
1	1	1	0	f _{CLK} /2 ¹⁴	122 Hz	305 Hz	610 Hz	1.22 kHz	1.95 kHz					
1	1	1	1	f _{CLK} /2 ¹⁵	61 Hz	153 Hz	305 Hz	610 Hz	976 Hz					

Symbol: TPS0

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	PRS	PRS	0	0	PRS	PRS								PRS
Ľ		031	030	Ŭ	Ŭ	021	020	013	012	011	010	003	002	001	000
0	0	Х	Х	0	0	Х	Х	0	0	0	0	0	0	1	1

Bits 3 to 0

PRS	PRS	PRS	PRS	Selection	of operation	on clock (Cl	(00)		
003	002	001	000		f _{CLK} = 2 MHz	f _{CLK} = 5 MHz	f _{CLK} = 10 MHz	f _{CLK} = 20 MHz	f _{CLK} = 32 MHz
0	0	0	0	f _{CLK}	2 MHz	5 MHz	10 MHz	20 MHz	32 MHz
0	0	0	1	f _{CLK} /2	1 MHz	2.5 MHz	5 MHz	10 MHz	16 MHz
0	0	1	0	$f_{CLK}/2^2$	500 kHz	1.25 MHz	2.5 MHz	5 MHz	8 MHz
0	0	1	1	f _{CLK} /2 ³	250 kHz	625 kHz	1.25 MHz	2.5 MHz	4 MHz
0	1	0	0	f _{CLK} /2 ⁴	125 kHz	312.5 kHz	625 kHz	1.25 MHz	2 MHz
0	1	0	1	f _{CLK} /2 ⁵	62.5 kHz	156.2 kHz	312.5 kHz	625 kHz	1 MHz
0	1	1	0	f _{CLK} /2 ⁶	31.25 kHz	78.1 kHz	156.2 kHz	312.5 kHz	500 kHz
0	1	1	1	f _{CLK} /2 ⁷	15.62 kHz	39.1 kHz	78.1 kHz	156.2 kHz	250 kHz
1	0	0	0	f _{CLK} /2 ⁸	7.81 kHz	19.5 kHz	39.1 kHz	78.1 kHz	125 kHz
1	0	0	1	f _{CLK} /2 ⁹	3.91 kHz	9.76 kHz	19.5 kHz	39.1 kHz	62.5 kHz
1	0	1	0	f _{CLK} /2 ¹⁰	1.95 kHz	4.88 kHz	9.76 kHz	19.5 kHz	31.25 kHz
1	0	1	1	f _{CLK} /2 ¹¹	976 Hz	2.44 kHz	4.88 kHz	9.76 kHz	15.63 kHz
1	1	0	0	f _{CLK} /2 ¹²	488 Hz	1.22 kHz	2.44 kHz	4.88 kHz	7.81 kHz
1	1	0	1	f _{CLK} /2 ¹³	244 Hz	610 Hz	1.22 kHz	2.44 kHz	3.91 kHz
1	1	1	0	f _{CLK} /2 ¹⁴	122 Hz	305 Hz	610 Hz	1.22 kHz	1.95 kHz
1	1	1	1	f _{CLK} /2 ¹⁵	61 Hz	153 Hz	305 Hz	610 Hz	976 Hz

Stopping timers

• Timer channel stop register 0 (TT0) Stop the count operation.

Symbol: TT0

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ľ	0	0	0	0	TTH	0	TTH	0	TT0							
					03		01		7	6	5	4	3	2	1	0
Ī	0	0	0	0	1	0	1	0	1	1	1	1	1	1	1	1

Bit 11

ТТН03	Trigger to stop operation of the upper-8-bit timer when channel 3 is in the 8-bit timer mode
0	No trigger operation
1	Operation is stopped (stop trigger is generated).

Bit 9

TTH01	Trigger to stop operation of the upper-8-bit timer when channel 1 is in the 8-bit timer mode
0	No trigger operation
1	Operation is stopped (stop trigger is generated).

Bits 7 to 0

TT0n	Operation stop trigger of channel n
0	No trigger operation
1	Operation is stopped (stop trigger is generated).

Setting up timer interrupt

- Interrupt request flag registers 0H, 1L, 1H, and 2L (IF0H, IF1L, IF1H, and IF2L) Set interrupt request flags.
- Interrupt mask flag registers 0H, 1L ,1H, and 2L (MK0H, MK1L, MK1H, and MK2L) Set interrupt masks.

Symbol: IF0H

7	6	5	4	3	2	1	0
SREIF0	SRIF0	STIF0			005150	SRIF2	STIF2
	CSIIF01	CSIIF00	DMAIF1	DMAIF0	SREIF2 TMIF11H		CSIIF20
TIMIFUTH	IICIF01	IICIF00			INITIA	IICIF21	IICIF20
0	Х	Х	Х	Х	Х	Х	Х

Symbol: IF1L

7	6	5 4		3	2	1	0	
					CDEIEO	SRIF1	STIF1	
TMIF03	TMIF02	TMIF01	TMIF00	IICAIF0	SREIF0 TMIF03H	CSIIF11	CSIIF10	
						IICIF11	IICIF10	
0	0	0	0	Х	0	Х	Х	

Symbol: IF1H

7	6	5	4	3	2	1	0
		SRIF3	STIF3				
TMIF04	TMIF13	CSIIF31	CSIIF30	KRIF	ITIF	RTCIF	ADIF
		IICIF31	IICIF30				
0	Х	Х	Х	Х	Х	Х	Х

Symbol: IF2L

7	6	5	4	3	2	1	0
PIF10	PIF9	PIF8	PIF7	PIF6	TMIF07	TMIF06	TMIF05
Х	Х	Х	Х	Х	0	0	0

TMIF0n TMIF0nH	Interrupt request flag
0	No interrupt request signal is generated
1	Interrupt request signal is generated, interrupt request status

Symbol: MK0H

7	6	5	4	3	2	1	0
SREMK0	SRMK0	STMK0			SREMK2	SRMK2	STMK2
TMMK01H	CSIMK01	CSIMK00	DMAMK1	DMAMK0	TMMK11H	CSMK21	CSIMK20
TIVIIVIKUTH	IICMK01	IICMK00			TIVIIVIKTIH	IICMK21	IICMK20
1	Х	Х	Х	Х	Х	Х	Х

Symbol: MK1L

7	6	5	4	3	2	1	0
					SREMK1	SRMK1	STMK1
TMMK03	TMMK02	TMMK01	TMMK00	IICAMK0	TMMK03	CSIMK11	CSIMK10
					Н	IICMK11	IICMK10
1	1	1	1	Х	1	Х	Х

Symbol: MK1H

7	6	5	4	3	2	1	0
TMMK04	TMMK13		STMK3 CSIMK30 IICMK30	KRMK	ITMK	RTCMK	ADMK
1	Х	Х	Х	Х	Х	X	X

Symbol: MK2L

7	6 5		5 4 3		2 1		0	
PMK10	PMK9	PMK8	PMK7	PMK6	TMMK07	TMMK06	TMMK05	
Х	Х	Х	Х	Х	1	1	1	

TMMK0n TMMK0nH	Interrupt handling control
0	Interrupt handling enabled
1	Interrupt handling disabled

Setting up channel 1 operation mode

Timer mode register 01 (TMR01) Select an operation clock (f_{MCK}). Select a count clock. Select 16/8-bit timer.

Set up start trigger and capture trigger. Select the valid edge of timer input.

Set up the operation mode.

Symbol: TMR01

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CKS	0	CCS	SPL	STS	STS	STS	CIS	CIS	0	0	MD0	MD0	MD0	MD0
011	010		01	IT01	012	011	010	011	010			13	12	11	10
1	0	0	0	0	0	1	0	1	0	0	0	1	1	0	0

Bits 15 and 14

CKS011	CKS010	Selection of operation clock (f _{MCK}) of channel 1
0	0	Operation clock CK00 set by timer clock select register 0 (TPS0)
0	1	Operation clock CK02 set by timer clock select register 0 (TPS0)
1	0	Operation clock CK01 set by timer clock select register 0 (TPS0)
1	1	Operation clock CK03 set by timer clock select register 0 (TPS0)

Bit 12

CCS01	Selection of count clock (f _{TCLK}) of channel 1
0	Operation clock (f _{MCK}) specified by the CKS010 and CKS011 bits
1	Valid edge of input signal input from the TI01 pin

Bit 11

SPLIT01	Selection of 8 or 16-bit timer operation for channel 1
	Operates as 16-bit timer.
0	(Operates in independent channel operation function or as slave
	channel in simultaneous channel operation function.)
1	Operates as 8-bit timer.

Symbol: TMR01

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CKS	0	CCS	SPL	STS	STS	STS	CIS	CIS	0	0	MD0	MD0	MD0	MD0
011	010		01	IT01	012	011	010	011	010			13	12	11	10
1	0	0	0	0	0	1	0	1	0	0	0	1	1	0	0

Bits 10 to 8

STS012	STS011	STS010	Setting of start trigger or capture trigger of channel 1					
0	0	0	Only software trigger start is valid (other trigger sources are unselected).					
0	0	1	Valid edge of the TI01 pin input is used as both the start trigger and capture trigger.					
0	1	0	Both the edges of the TI01 pin input are used as a start trigger and a capture trigger.					
1	0	0	Interrupt signal of the master channel is used (when channel 1 is used as a slave channel with the simultaneous channel operation function).					
Oth	ner than ab	ove	Setting prohibited					

Bits 7 and 6

CIS11	CIS10	Selection of Tl01 pin input valid edge
0	0	Falling edge
0	1	Rising edge
1		Both edges (when low-level width is measured)
'	0	Start trigger: Falling edge, Capture trigger: Rising edge
4	4	Both edges (when high-level width is measured)
I	1	Start trigger: Rising edge, Capture trigger: Falling edge

Symbol: TMR01

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Ī	CKS	CKS	0	CCS	SPL	STS	STS	STS	CIS	CIS	0	0	MD0	MD0	MD0	MD0
	011	010		01	IT01	012	011	010	011	010			13	12	11	10
Ī	1	0	0	0	0	0	1	0	1	0	0	0	1	1	0	0

Bits 3 to 0

MD0 13				Operation mode of channel 1	Corresponding function	Count operation of TCR					
0	0	0	1/0	Interval timer mode	Interval timer / Square wave output / divider function / PWM output (master)	Counting down					
0	1	0	1/0	Capture mode	Input pulse interval measurement	Counting up					
0	1	1	0	Event counter mode	External event counter	Counting down					
1	0	0	1/0	One-count mode	Delay counter / One-shot pulse output / PWM output (slave)	Counting down					
1	1 0 0 Capture & one-count mode			Measurement of high-/low-level width of input signal	Counting up						
Oth	er tha	ın abo	ove	Setting prohibited							

The operation of the MD010 bit varies depending on each operation mode (see the table below).

Operation mode (Value set by the MD013 to MD011 bits (see table above))	MD010	Setting of starting counting and interrupt					
Interval timer mode(0, 0, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).					
• Capture mode (0, 1, 0)	1	Timer interrupt is generated when counting is started (timer output also changes).					
• Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).					
• One-count mode (1, 0, 0)	0	Start trigger is invalid during counting operation. At that time, interrupt is not generated, either.					
	1	Start trigger is valid during counting operation. At that time, interrupt is also generated.					
• Capture & one-count mode (1, 1, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either). Start trigger is invalid during counting operation. At that time, interrupt is not generated, either.					
Other than above	•	Setting prohibited					

Setting up channel 1 timer output mode

• Timer output mode register 0 (TOM0) Control timer output mode.

Symbol: TOM0

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	TO	ТО	TO	TO	TO	TO	TO	0
								M07	M06	M05	M04	M03	M02	M01	
0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х	Х	0	0

Bit 1

TOM01	Control of timer output mode of channel 1					
0 Master channel output mode						
1	Slave channel output mode					

Caution: For details on the register setup procedures, refer to RL78/G13 User's Manual: Hardware.

Specifying the channel 1 timer output value

• Timer output value register 0 (TO0) Specify a timer output value.

Symbol: TO0

_1	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0	TO0							
									7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х	Х	0	Х

Bit 1

TO01	Timer output of channel 1
0	Timer output value is "0".
1	Timer output value is "1".

Enabling channel 1 timer output

Timer output enable register 0 (TOE0) Enable timer output.

Symbol: TOE0

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	0	0	0	0	0	0	0	0	TO	ТО	TO	TO	TO	TO	TO	TO
									E07	E06	E05	E04	E03	E02	E01	E00
Ī	0	0	0	0	0	0	0	0	Х	Х	Х	Х	Х	Х	0	Х

Bit 1

TOE01	Timer output enable/disable of channel 1
0	The TO01 operation stopped by count operation (timer channel output bit).
1	The TO01 operation enabled by count operation (timer channel output bit).

Caution: For details on the register setup procedures, refer to RL78/G13 User's Manual: Hardware.

Setting up channel 1 noise filter

Noise filter enable register 1 (NFEN1) Enable or disable noise filtering on input signal from the timer input pin

Symbol: NFEN1

7	6	5	4	3	2	1	0
TNFEN07	TNFEN06	TNFEN05	TNFEN04	TNFEN03	TNFEN02	TNFEN01	TNFEN00
Х	Х	Х	Х	Х	Х	0	Х

Bit 1

TNFEN01	Use of noise filter of TI01/TO01/P16 pin input signal
0	Noise filter OFF
1	Noise filter ON

Setting up channel 2 operation mode

Timer mode register 02 (TMR02)

Select an operation clock (f_{MCK}).

Select a count clock.

Select 16/8-bit timer.

Set up start trigger and capture trigger.

Select the valid edge of timer input.

Set up the operation mode.

Symbol: TMR02

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CKS	0	CCS	MAS	STS	STS	STS	CIS	CIS	0	0	MD0	MD0	MD0	MD0
021	020		02	TER	022	021	020	021	020			23	22	21	20
				02											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits 15 and 14

CKS021	CKS020	Selection of operation clock (f _{MCK}) of channel 2								
0	0	Operation clock CK00 set by timer clock select register 0 (TPS0								
0	1	Operation clock CK02 set by timer clock select register 0 (TPS0)								
1	0	Operation clock CK01 set by timer clock select register 0 (TPS0)								
1	1	Operation clock CK03 set by timer clock select register 0 (TPS0)								

Bit 12

CCS02	Selection of count clock (f _{TCLK}) of channel 2
0	Operation clock (f _{MCK}) specified by the CKS010 and CKS011 bits
1	Valid edge of input signal input from the TI02 pin

Bit 11

MASTER02	Selection between using channel 2 independently or simultaneously with another channel (as a slave or master)						
	Operates in independent channel operation function or as slave channel in simultaneous channel operation function.						
1	Operates as master channel in simultaneous channel operation function.						

Symbol: TMR02

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CK	CK	0	CC	MA	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
S02	S02		S02	STE	022	021	020	021	020			023	022	021	020
1	0			R02											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits 10 to 8

STS022	STS021	STS020	Setting of start trigger or capture trigger of channel 2					
0	0	0	Only software trigger start is valid (other trigger sources are unselected).					
0	0	1	Valid edge of the TI02 pin input is used as both the start trigger and capture trigger.					
0	0 1 0		Both the edges of the TI02 pin input are used as a start trigger and a capture trigger.					
1	0	0	nterrupt signal of the master channel is used (when channel 2 is used as a slave channel with the simultaneous channel operation function).					
Oth	ner than ab	ove	Setting prohibited					

Symbol: TMR02

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CKS	0	CCS	MAS	STS	STS	STS	CIS	CIS	0	0	MD0	MD0	MD0	MD0
021	020		02	TER	022	021	020	021	020			23	22	21	20
				02											
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bits 3 to 0

MD0 23				Operation mode of channel 2	Corresponding function	Count operation of TCR			
0	0 0 0 1/0		1/0	Interval timer mode	Interval timer / Square wave output / divider function / PWM output (master)	Counting down			
0	1	0	1/0	Capture mode	Input pulse interval measurement	Counting up			
0	1	1	0	Event counter mode	External event counter	Counting down			
1	0	0	1/0	One-count mode	Delay counter / One-shot pulse output / PWM output (slave)	Counting down			
1	1	0	0	Capture & one-count mode	Measurement of high-/low-level width of input signal	Counting up			
Oth	er tha	n abo	ove	Setting prohibited					

The operation of the MD020 bit varies depending on each operation mode (see the table below).

Operation mode (Value set by the MD023 to MD021 bits (see table above))	MD020	Setting of starting counting and interrupt
Interval timer mode(0, 0, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
• Capture mode (0, 1, 0)	1	Timer interrupt is generated when counting is started (timer output also changes).
• Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).
• One-count mode (1, 0, 0)	0	Start trigger is invalid during counting operation. At that time, interrupt is not generated, either.
	1	Start trigger is valid during counting operation. At that time, interrupt is also generated.
• Capture & one-count mode (1, 1, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either). Start trigger is invalid during counting operation. At that time, interrupt is not generated, either.
Other than above	•	Setting prohibited

Specifying the channel 2 count value

Timer data register 02 (TDR02) Specify the interval timer compare register value.

Symbol: TDR02

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
1	0	0	1	1	1	0	0	0	0	1	1	1	1	1	1

Set the interval timer compare value to 39999 (0x9C3F).

Selecting channel 5 timer input

• Timer input select register 1 (TIS0) Select the channel 5 of TAU0 timer input.

Symbol: TIS0

7	6	5	4	3	2	1	0
0	0	0	0	0	TIS02	TIS01	TIS00
0	0	0	0	0	1	0	1

Bits 2 to 0

TIS02	TIS01	TIS00	Selection of timer input used with channel 5
0	0	0	Input signal of timer input pin (TI05)
0	0	1	
0	1	0	
0	1	1	
1	0	0	Internal low-speed on-chip oscillator (LOCO) clock
			(f_{IL})
1	0	1	Subsystem clock (f _{SUB})
Oth	ner than al	oove	Setting prohibited

Setting up channel 5 operation mode

Timer mode register 05 (TMR05)
 Select an operation clock (f_{MCK}).
 Select a count clock.
 Set up start trigger and capture trigger.
 Select the valid edge of timer input.
 Set up the operation mode.

Symbol: TMR05

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CKS	0	CCS	0	STS	STS	STS	CIS	CIS	0	0	MD0	MD0	MD0	MD0
051	050		05		052	051	050	051	050			53	52	51	50
1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0

Bits 15 and 14

CKS051	CKS050	Selection of operation clock (f _{MCK}) of channel 5
0	0	Operation clock CK00 set by timer clock select register 0 (TPS0)
0	1	Operation clock CK02 set by timer clock select register 0 (TPS0)
1	0	Operation clock CK01 set by timer clock select register 0 (TPS0)
1	1	Operation clock CK03 set by timer clock select register 0 (TPS0)

Bit 12

CCS05	Selection of count clock (f _{TCLK}) of channel 5
0	Operation clock (f _{MCK}) specified by the CKS050 and CKS051 bits
1	Valid edge of input signal input from the TI05 pin

Symbol: TMR05

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CKS	0	CCS	0	STS	STS	STS	CIS	CIS	0	0	MD0	MD0	MD0	MD0
051	050		05		052	051	050	051	050			53	52	51	50
1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0

Bits 10 to 8

STS052	STS051	STS050	Setting of start trigger or capture trigger of channel 5
0	0	0	Only software trigger start is valid (other trigger sources are unselected).
0	0	1	Valid edge of the TI05 pin input is used as both the start trigger and capture trigger.
0	1	0	Both the edges of the TI05 pin input are used as a start trigger and a capture trigger.
1	0	0	Interrupt signal of the master channel is used (when channel 5 is used as a slave channel with the simultaneous channel operation function).
Oth	er than ab	ove	Setting prohibited

Bits 7 and 6

CIS51	CIS50	Selection of TI05 pin input valid edge
0	0	Falling edge
0	1	Rising edge
4	0	Both edges (when low-level width is measured)
ı	U	Start trigger: Falling edge, Capture trigger: Rising edge
4	4	Both edges (when high-level width is measured)
1		Start trigger: Rising edge, Capture trigger: Falling edge

Symbol: TMR05

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CKS	0	CCS	0	STS	STS	STS	CIS	CIS	0	0	MD0	MD0	MD0	MD0
051	050		05		052	051	050	051	050			53	52	51	50
1	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0

Bits 3 to 0

MD0 53				Operation mode of channel 5	Corresponding function	Count operation of TCR			
0	0	0	1/0	Interval timer mode	Interval timer / Square wave output / divider function / PWM output (master)	Counting down			
0	1	0	1/0	Capture mode	Input pulse interval measurement	Counting up			
0	1	1	0	Event counter mode	External event counter	Counting down			
1	0	0	1/0	One-count mode	Delay counter / One-shot pulse output / PWM output (slave)	Counting down			
1	1	0	0	Capture & one-count mode	Measurement of high-/low-level width of input signal	Counting up			
Oth	er tha	n abo	ove	Setting prohibited					

The operation of the MD050 bit varies depending on each operation mode (see the table below).

Operation mode (Value set by the MD053 to MD051 bits (see table above))	MD050	Setting of starting counting and interrupt			
• Interval timer mode (0, 0, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).			
• Capture mode (0, 1, 0)	1	Timer interrupt is generated when counting is started (timer output also changes).			
• Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when counting is started (timer output does not change, either).			
• One-count mode (1, 0, 0)	0	Start trigger is invalid during counting operation. At that time, interrupt is not generated, either.			
	1	Start trigger is valid during counting operation. At that time, interrupt is also generated.			
• Capture & one-count mode (1, 1, 0)	0	Timer interrupt is not generated when counting is started (timer output does not change, either). Start trigger is invalid during counting operation. At that time, interrupt is not generated, either.			
Other than above	•	Setting prohibited			

Setting up TI01 and TI05 pin ports

- Port mode register 0 (PM0)
- Port mode register 1 (PM1) Select the I/O modes of the TI01 pin (P16) and the TI05 pin (P05).

Symbol: PM1

7	6	5	4	3	2	1	0
PM17	PM16	PM15	PM14	PM13	PM12	PM11	PM10
Х	1	Х	Х	Х	Х	Х	Х

Bit 6

PM16	P16 pin I/O mode selection
0	Output mode (output buffer on)
1	Input mode (output buffer off)

Symbol: PM0

7	6	5	4	3	2	1	0
PM07	PM06	PM05	PM04	PM03	PM02	PM01	PM00
Х	Х	1	Х	Х	Х	Х	Х

Bit 5

PM05	P05 pin I/O mode selection					
0	Output mode (output buffer on)					
1	Input mode (output buffer off)					

6.8.6 **Clock Output/Buzzer Output Control Circuit Setup**

Figure 6.8 shows the flowchart for setting up the clock output/buzzer output control circuit.

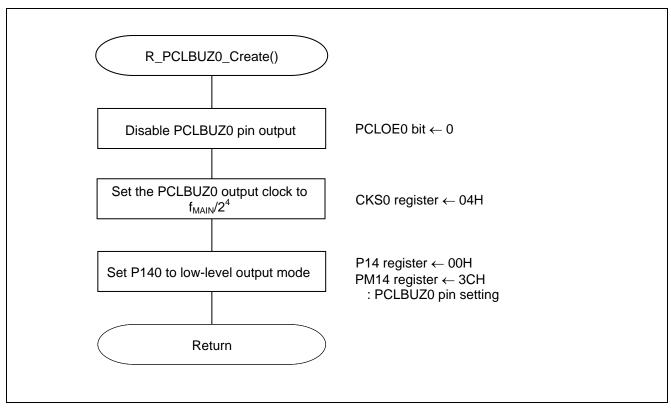


Figure 6.8 Clock Output/Buzzer Output Control Circuit Setup

Selecting output clock

Clock output select register 0 (CKS0) Select PCLBUZ0 pin output clock.

Symbol: CKS0

7	6	5	4	3	2	1	0
PCLOE0	0	0	0	CSEL0	CCS02	CCS01	CCS00
0	0	0	0	0	1	0	0

Bit 7

PCLOE0	PCLBUZ0 pin output enable/disable specification			
0	Output disabled.			
1	Output enabled.			

Bits 3 to 0

CSEL0	CCS02	CCS01	CCS00	CS00 PCLBUZ0 pin output clock selection					
					f _{MAIN} =	$f_{MAIN} =$	f _{MAIN} =	f _{MAIN} =	
					5 MHz	10 MHz	20 MHz	32 MHz	
0	0	0	0	f _{MAIN}	5 MHz	10 MHz	Setting prohibited	Setting prohibited	
0	0	0	1	f _{MAIN} /2	2.5 MHz	5 MHz	10 MHz	16 MHz	
0	0	1	0	$f_{MAIN}/2^2$	1.25 MHz	2.5 MHz	5 MHz	8 MHz	
0	0	1	1	$f_{MAIN}/2^3$	625 kHz	1.25 MHz	2.5 MHz	4 MHz	
0	1	0	0	f _{MAIN} /2 ⁴	312.5 kHz	625 kHz	1.25 kHz	2 MHz	
0	1	0	1	$f_{MAIN}/2^{11}$	2.44 kHz	4.88 kHz	9.77 kHz	15.63 kHz	
0	1	1	1	$f_{MAIN}/2^{12}$	1.22 kHz	2.44 kHz	4.88 kHz	7.81 kHz	
1	0	0	0	$f_{MAIN}/2^{13}$	610 Hz	1.22 kHz	2.44 kHz	3.91 kHz	
1	0	0	0	f _{SUB}		32.76	8 kHz		
1	0	0	1	f _{SUB} /2		16.38	34 kHz		
1	0	1	0	$f_{SUB}/2^2$		8.19	2 kHz		
1	0	1	1	f _{SUB} /2 ³					
1	1	0	0	f _{SUB} /2 ⁴					
1	1	0	1	f _{SUB} /2 ⁵					
1	1	1	0	f _{SUB} /2 ⁶					
1	1	1	1	f _{SUB} /2 ⁷		256	6 Hz		

Setting up PCLBUZ0 pin port

- Port mode register 14 (PM14)
- Port register 14 (P14) Set up the PCLBUZ0 (P140) I/O mode and output data.

Symbol: PM14

7	6	5	4	3	2	1	0
PM147	PM146	1	1	1	1	PM141	PM140
Х	Х	1	1	1	1	Х	0

Bit 0

PM140	PM140 pin I/O mode selection					
0	Output mode (output buffer on)					
1	Input mode (output buffer off)					

Symbol: P14

7	6	5	4	3	2	1	0
P147	P146	P145	P144	P143	P142	P141	P140
Х	Х	Х	Х	Х	Х	Х	0

Bit 0

P140	P140 output data control			
0	Output 0			
1	Output 1			

6.8.7 **Initialization of INTP0**

Figure 6.9 shows the flowchart for initializing INTP0.

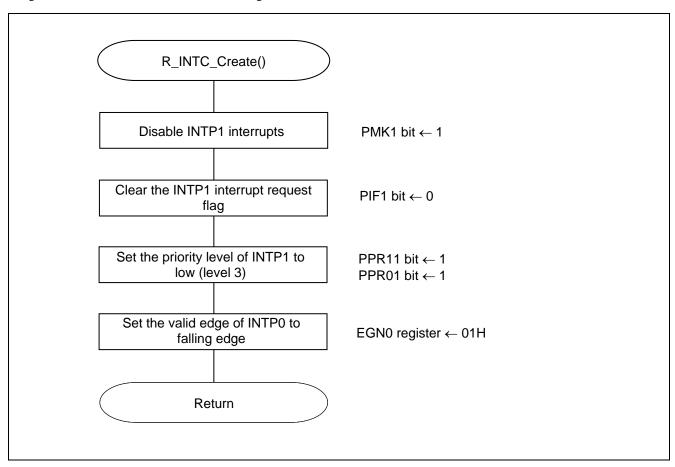
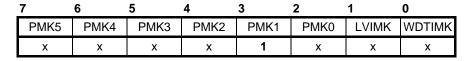
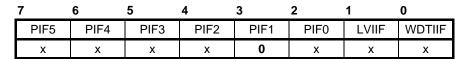



Figure 6.9 Initialization of INTP0

Setting up INTP1 interrupt handling

• Interrupt mask flag register (MK0L, MK2L, and MK2H) Mask interrupts.

Symbol: MK0L


PMK1	Interrupt handling control
0	Interrupt handling is enabled
1	Interrupt handling is disabled

Caution: For details on the register setup procedures, refer to RL78/G13 User's Manual: Hardware.

Setting up INTP1 interrupt request flag

• Interrupt request flag register (IF0L, IF2L, IF2H) Set up interrupt request.

Symbol: IF0L

PIF1	Interrupt request flag
0	No interrupt request signal is generated
1	Interrupt request signal is generated,
'	interrupt request status

Setting the priority level of INTP1

• Priority specification flag register (PR01L and PR11L) Set interrupt priority levels.

Symbol: PR00L

7	6	5	4	3	2	1	0	
PPR05	PPR04	PPR03	PPR02	PPR01	PPR00	LVIPR0	WDTIPR0	
Х	Х	Х	Х	1	Х	Х	Х	

Symbol: PR10L

7	6	5	4	3	2	1	0
PPR15	PPR14	PPR13	PPR12	PPR11	PPR10	LVIPR1	WDTIPR1
Х	Х	Х	Х	1	Х	Х	Х

PPR11	PPR01	Priority level selection
0	0	Specify level 0 (high priority level)
0	1	Specify level 1
1	0	Specify level 2
1	1	Specify level 3 (low priority level)

Selecting the valid edge of INTP1

- External interrupt rising edge enable register (EGP1)
- External interrupt falling edge enable register (EGN1) Select the valid edge of an external interrupt.

Symbol: EGP1

7	6 5 4		4	3	2	1	0
EGP7	EGP6	EGP5	EGP4	EGP3	EGP2	EGP1	EGP0
Х	Х	Х	Х	Х	Х	0	Х

Symbol: EGN1

7	6 5		4	3	2	1	0
EGN7	EGN6	EGN5	EGN4	EGN3	EGN2	EGN1	EGN0
Х	Х	Х	Х	Х	Х	1	Х

EGP1	EGN1	INTP1 pin valid edge selection
0	0	Edge detection disabled
0	1	Falling edge
1	0	Rising edge
1	1	Both falling and rising edges

6.8.8 **Main Processing**

Figures 6.10 and 6.11 show the flowcharts for the main processing.

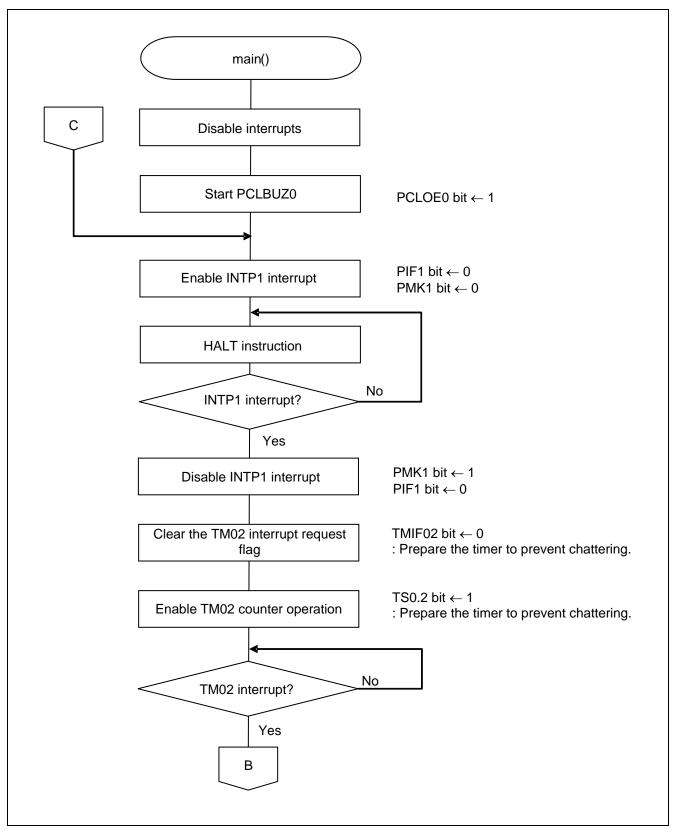


Figure 6.10 Main Processing (1/2)

Figure 6.11 Main Processing (2/2)

6.8.9 **Calibration with XT1 Oscillation**

Figures 6.12 and 6.13 show the flowcharts for calibration with XT1 oscillation.

Figure 6.12 Calibration with XT1 Oscillation (1/2)

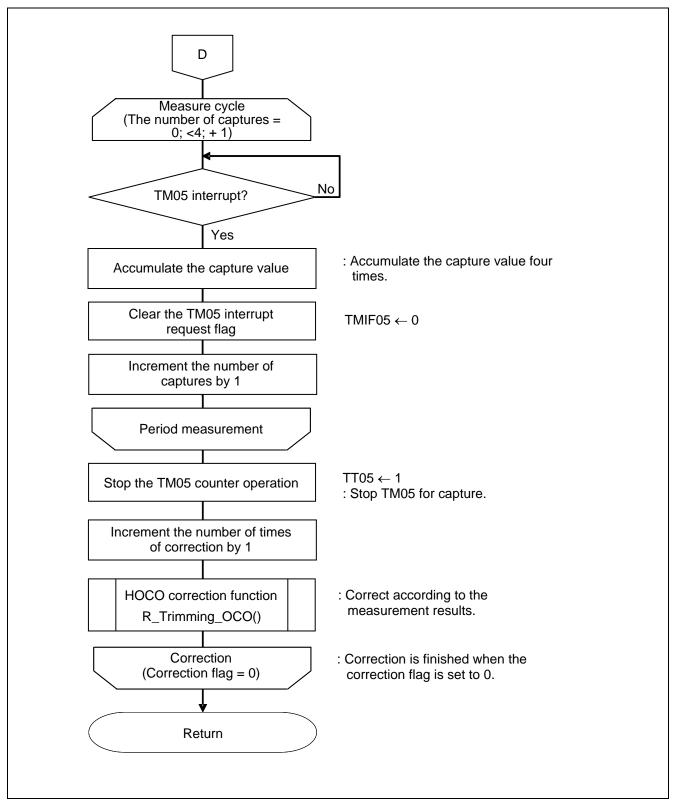


Figure 6.13 Calibration with XT1 Oscillation (2/2)

6.8.10 Calibration with External Input Clock

Figure 6.14 shows the flowchart for calibration with an external input clock.

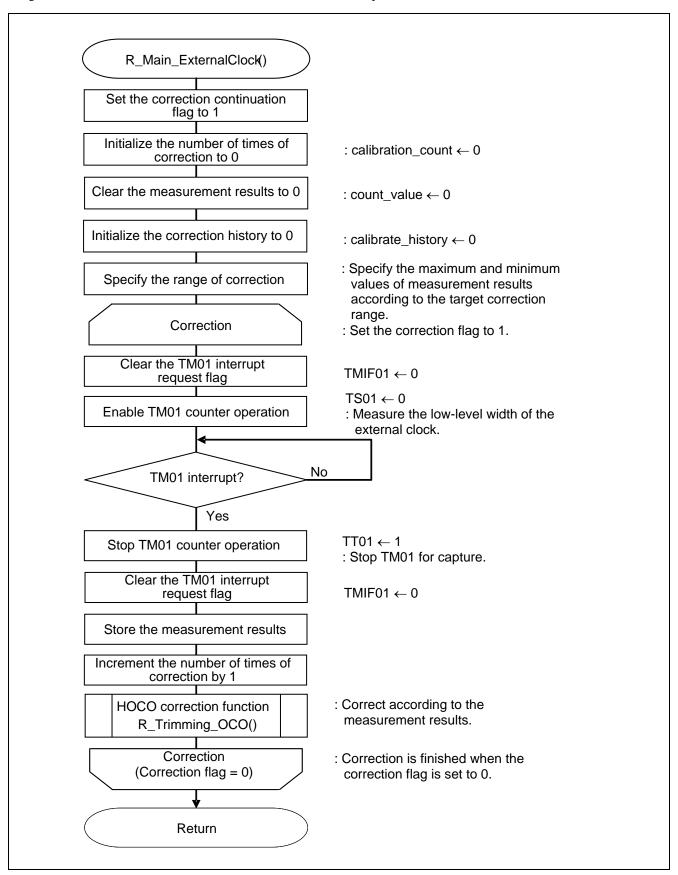


Figure 6.14 Calibration with External Input Clock

Obtaining the TAU0 capture value

Timer data register 05 (TDR05) Measurement results of the subsystem clock pulse interval

Timer data register 01 (TDR01) Measurement results of the low-level width of the TI01 pin pulse

Symbol: TDR05

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

The count of the pulse interval of the subsystem clock is (TDR05 register value + 1).

Symbol: TDR01

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

The count of the low-level width of the TI01 pin pulse is (TDR01 register value + 1).

Caution: For details on the register setup procedures, refer to RL78/G13 User's Manual: Hardware.

Starting timer channel operation

Timer channel start register 0 (TS0) Timer start setting

Symbol: TS0

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	TS	0	TS	0	TS0							
					H03		H01		7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0	Х	Х	1/0	Х	Х	Х	1/0	Х

Bit 5

TS05	Operation enable (start) trigger of channel 5
0	No trigger operation
1	The TE05 bit is set to 1 and the count operation becomes enabled.

Bit 1

TS01	Operation enable (start) trigger of channel 1
0	No trigger operation
1	The TE01 bit is set to 1 and the count operation becomes enabled.

Stopping timer channel operation

• Timer channel stop register 0 (TT0) Timer stop setting

Symbol: TT0

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	0	0	0	0	TTH	0	TTH	0	TT0							
					03		01		7	6	5	4	3	2	1	0
I	0	0	0	0	0	0	0	0	х	х	1/0	х	Х	х	1/0	Х

Bit 5

TT05	Operation stop trigger of channel 5
0	No trigger operation
1	Operation is stopped (stop trigger is generated).

Bit 1

TT01	Operation stop trigger of channel 1
0	No trigger operation
1	Operation is stopped (stop trigger is generated).

6.8.11 HOCO Correction Function

Figures 6.15 and 6.16 show the flowcharts for the HOCO correction function.

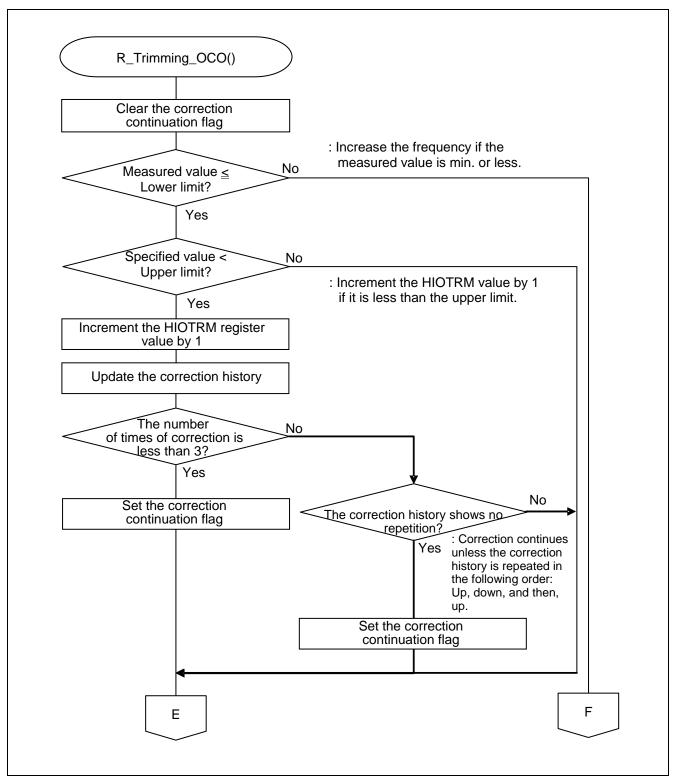


Figure 6.15 HOCO Correction Function (1/2)

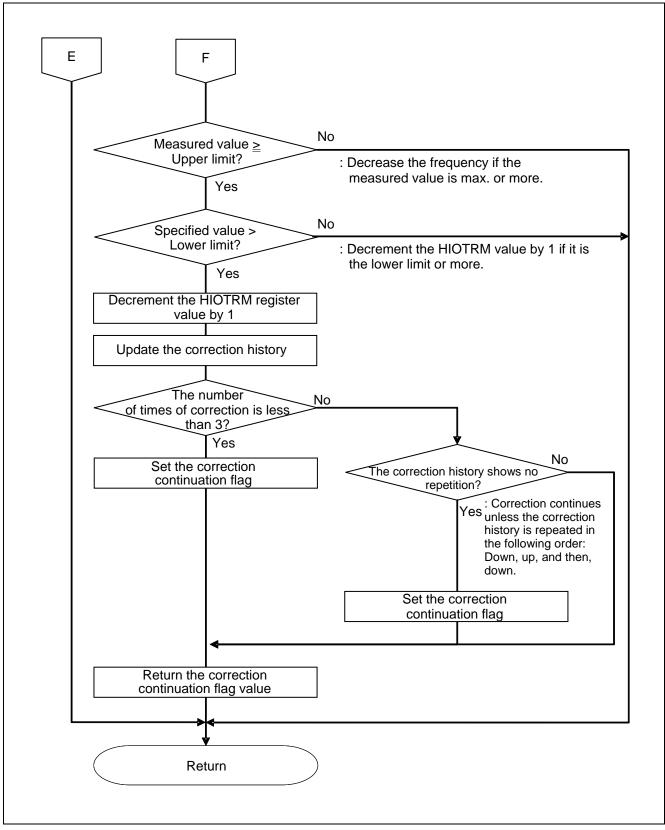


Figure 6.16 HOCO Correction Function (2/2)

Correcting the HOCO clock frequency

• High-speed on-chip oscillator trimming register (HIOTRM) Correct the HOCO clock frequency.

Symbol: HIOTRM

7	6	5	4	3	2	1	0
0	0	HIOTRM5	HIOTRM4	HIOTRM3	HIOTRM2	HIOTRM1	HIOTRM0
0	0	1/0	1/0	1/0	1/0	1/0	1/0

Bits 5 to 0

HIOTRM5	HIOTRM4	HIOTRM3	HIOTRM2	HIOTRM1	HIOTRM0	Internal high-speed oscillator
0	0	0	0	0	0	Minimum speed
0	0	0	0	0	1	†
0	0	0	0	1	0	
0	0	0	0	1	1	
0	0	0	1	0	0	
			· ·			
1	1	1	1	1	0	*
1	1	1	1	1	1	Maximum speed

7. Documents for Reference

RL78/G13 User's Manual: Hardware Rev.1.00 (R01UH0146EJ0100)

RL78 Family User's Manual: Software Rev.1.00 (R01US0015EJ0100)

RL78/G13 Renesas Starter Kit User's Manual Rev.1.00 (R20UT0459EG0100)

(The latest versions of the documents are available on the Renesas Electronics Website.)

Technical Updates/Technical Brochures

(The latest versions of the documents are available on the Renesas Electronics Website.)

RL78/G13 High-speed On-chip Oscillator (HOCO) Clock Frequency Correction

Website, Inquiries and Support

Renesas Electronics Website http://www.renesas.com/

Inquiries

http://www.renesas.com/contact/

All trademarks and registered trademarks are the property of their respective owners.

Revision Record

Description

nmarv
ginal document updated for e ² studio IDE and GNURL78 .01 toolchain
_

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.

- 1. Handling of Unused Pins
- Handle unused pins in accord with the directions given under Handling of Unused Pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual. The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each other, the description in the body of the manual takes precedence.
- 2. Processing at Power-on
- The state of the product is undefined at the moment when power is supplied.
 - The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 - In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed.
 - In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses
- Access to reserved addresses is prohibited.
 - The reserved addresses are provided for the possible future expansion of functions. Do not access these addresses; the correct operation of LSI is not guaranteed if they are accessed.
- 4. Clock Signals
- After applying a reset, only release the reset line after the operating clock signal has become stable.
 When switching the clock signal during program execution, wait until the target clock signal has stabilized.
 - When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
 Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.
- 5. Differences between Products
- Before changing from one product to another, i.e. to one with a different type number, confirm that

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

"High Quality": Transportation equipment (automobiles, trains, ships, etc.): traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by you.
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations.
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada Tel: +1-905-898-5441, Fax: +1-905-898-3220

Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804

Renesas Electronics Europe GmbH Arcadiastrasse 10, 40472 Düsseldorf, Germany Tel: +49-211-65030, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China Tel: +86-10-8235-1155, Fax: +86-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898

Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong Tei: +852-2886-9318, Fax: +852 2886-9022/9044

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tei: +60-3-7955-9390, Fax: +60-3-7955-9310

Renesas Electronics Korea Co., Ltd. 11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea Tel: +82-2-558-3737, Fax: 482-2-558-5141