
 Application Note

R11AN0604EU0120 Rev.1.20 Page 1 of 28
Sept.09.24

Renesas RA Family

RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular
Introduction
This application note describes IoT Cloud connectivity solutions in general, provides a brief introduction to
IoT Cloud providers like Amazon Web Services (AWS), and covers the FSP MQTT/TLS module and its
features. The application example provided in the package uses AWS IoT Core. The detailed steps in this
document show first-time AWS IoT Core users how to configure the AWS IoT Core platform to run this
application example.

This application note enables developers to effectively use the FSP MQTT/TLS modules in end-product
design. Upon completion of this guide, developers will be able to add the “AWS Core MQTT,” “Mbed TLS,”
and “AWS Cellular Sockets Wrapper” using the Cellular interface, configure them correctly for the target
application, and write code using the included application example code as a reference for an efficient
starting point.

References to detailed API descriptions and other application projects that demonstrate more advanced uses
of the module are in the FSP User’s Manual (available at https://renesas.github.io/fsp/), which is a valuable
resource for creating more complex designs.

This MQTT/TLS AWS Cloud Connectivity solution is supported on the CK-RA6M5 v2 Kit.

Applies to:
RA6M5 MCU Group

Required Resources
The following resources are needed to build and run the MQTT/TLS application example.

Development tools and software
• Flexible Software Package (FSP) v5.3.0 and required tools (renesas.com/us/en/software-tool/flexible-

software-package-fsp)

Hardware
• Renesas CK-RA6M5 v2 kit (renesas.com/ra/ck-ra6m5)
• PC running Windows® 10 and an installed web browser (Google Chrome, Internet Explorer, Microsoft

Edge, Mozilla Firefox, or Safari)
• Micro USB cable (included as part of the kit. See CK-RA6M5 v2 — User’s Manual)
• USB-C cable for Power supply (See CK-RA6M5 v2 — User’s Manual)
• Renesas LTE Cat-M1 Cellular IoT Module (RYZ014A - LTE Cat-M1 Cellular IoT Module | Renesas)

Note: Renesas has discontinued the existing Sequans-sourced LTE module, part number RYZ014A, and will no longer ship this
product. If you have one of these in a current design or production, the Sequans part number GM01Q is a pin and functionally
compatible replacement for RYZ014A. The below Cellular driver works with the alternate product combination.
- RYZ014A Cellular control module: Sequans GM01Q is the compatible module.
Regarding EOL notice of the RYZ014A, please see:
[The link] https://www.renesas.com/document/eln/plc-240004-end-life-eol-process-select-part-numbers?r=1503996
[The product page] https://www.renesas.com/us/en/products/wireless-connectivity/cellular-iot-modules/ryz014a-lte-cat-m1-cellular-iot-
module

https://www.renesas.com/ra/ck-ra6m5
https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp
https://www.renesas.com/us/en/software-tool/flexible-software-package-fsp
https://www.renesas.com/ra/ck-ra6m5
https://www.renesas.com/us/en/products/wireless-connectivity/cellular-iot-modules/ryz014a-lte-cat-m1-cellular-iot-module
https://www.renesas.com/document/eln/plc-240004-end-life-eol-process-select-part-numbers?r=1503996
https://www.renesas.com/us/en/products/wireless-connectivity/cellular-iot-modules/ryz014a-lte-cat-m1-cellular-iot-module
https://www.renesas.com/us/en/products/wireless-connectivity/cellular-iot-modules/ryz014a-lte-cat-m1-cellular-iot-module

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 2 of 28
Sept.09.24

Prerequisites and Intended Audience
This application note assumes that the user is adept at operating the Renesas e2 studio IDE with Flexible
Software Package (FSP). If not, we recommend reading and following the procedures in the FSP User's
Manual sections for ‘Starting Development,’ including ‘Debug the Blinky Project.’ Doing so enables
familiarization with e2 studio and FSP and validates proper debug connection to the target board. In addition,
this application note assumes prior knowledge of MQTT/TLS and its communication protocols and
knowledge of Cellular modems.

The intended audience is users who want to develop applications with MQTT/TLS modules using Cellular
modules on Renesas RA6 MCU Series.

Note: If you are a first-time user of e2 studio and FSP, we highly recommend you install e2 studio and FSP
on your system to run the Blinky Project and to get familiar with the e2 studio and FSP development
environment before proceeding to the following sections.

Note: This Application Project and Application Note can only use versions FSP v5.3.0.

Note: If you want to build and run the attached application quickly, please jump to section (2. Running the
MQTT/TLS Cellular Application Example).

Prerequisites

1. Access to online documentation is available in the Cloud Connectivity References section.
2. Access to the latest documentation for the identified Renesas Flexible Software Package.
3. Prior knowledge of operating e2 studio and built-in (or standalone) RA Configurator.
4. Access to associated hardware documentation such as User Manuals, Schematics, and other relevant

kit information (renesas.com/ra/ck-ra6m5).

Contents

1. Introduction to Components for Cloud Connectivity ... 4
1.1 General Overview .. 4
1.2 Cloud Service Provider .. 4
1.3 Cloud Dashboard... 4
1.3.1 Data Monitoring ... 5
1.3.2 Device Management ... 5
1.4 AWS IoT Core ... 5
1.5 MQTT Protocol Overview .. 5
1.6 TLS Protocol Overview .. 5
1.7 Device Certificates, CA, and Keys .. 6

2. Running the MQTT/TLS Cellular Application Example ... 6

3. AWS Core MQTT with Cellular Interface .. 6
3.1 AWS Core MQTT .. 6
3.2 Transport Layer Implementation ... 8
3.3 Mbed TLS .. 9
3.4 MQTT Module APIs Usage ... 10

4. Cloud Connectivity Application Example .. 10
4.1 Overview .. 10
4.2 MQTT/TLS Application Software Overview ... 12
4.3 Creating the Application Project using the FSP Configurator ... 15

https://www.renesas.com/ra/ck-ra6m5

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 3 of 28
Sept.09.24

4.4 MQTT/TLS Configuration .. 23

5. Sensor Stabilization Time .. 24

6. MQTT/TLS Module Next Steps .. 25

7. References .. 25

8. Known Issues and Troubleshooting ... 26

9. Debugging ... 26

Revision History .. 28

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 4 of 28
Sept.09.24

1. Introduction to Components for Cloud Connectivity
1.1 General Overview
The Internet-of-Things (IoT) is a global infrastructure for the information society, enabling advanced services
by interconnecting (physical and virtual) things based on existing and evolving interoperable information and
communication technologies. The ‘things’ in this definition are objects in the physical world (physical objects)
or information world (virtual) that can be identified and integrated into communication networks. In the
context of the IoT, a ‘device’ is a piece of equipment with the mandatory capabilities of communication and
the optional capabilities of sensing, actuation, data capture, data storage, and data processing.
Communication is often performed with providers of network-hosted services, infrastructure, and business
applications to process/analyze the generated data and manage the devices. Such providers are called
Cloud Service Providers. While there are many manufacturers of devices and cloud service providers, for the
context of this application note, the device is a Renesas RA Microcontroller (MCU) connecting to services
provided by Amazon Web Services (AWS) for IoT.

1.2 Cloud Service Provider
AWS IoT provides the cloud services that connect your IoT devices to other devices and AWS cloud services
As a Cloud Service Provider, AWS IoT provides the ability to:

• Connect and manage devices.
• Secure device connections and data.
• Process and act upon device data.
• Read and set the device state at any time.

Figure 1. Summarizes the features provided by AWS IoT.

Figure 1. AWS IoT Features, Service Components, and Data Flow Diagram
A key feature provided by AWS is the AWS IoT Software Development Kit (SDK) written in C, which allows
devices such as sensors, actuators, embedded microcontrollers, or smart appliances to connect,
authenticate, and exchange messages with AWS IoT using the MQTT, HTTP, or WebSocket protocols. This
application note focuses on configuring and using the AWS IoT Device SDK and the MQTT protocol
included, which is available through the Renesas Flexible Software Package (FSP) for Renesas RA MCUs.

1.3 Cloud Dashboard
A cloud dashboard is a monitoring and control GUI for multiple services that you can build and access on a
web browser. It has key advantages over on-premises software, such as being easier to deploy, requiring
little to no IT support, and being accessible on multiple devices.

The Dashboard provides a high-level view of your entire fleet of devices and allows you to act quickly on
individual devices. You can view graphical representations of relevant device information for your fleet, such
as device ownership type, compliance statistics, and platform and OS breakdowns. You can access each set
of devices in the presented categories by selecting any of the available data views from the Device
Dashboard.

https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 5 of 28
Sept.09.24

1.3.1 Data Monitoring
Data monitoring on the dashboard is a cloud data analytics monitoring solution that lets you track your
performance metrics and easily visualize your data sets. You can get a high-level view of your metrics or drill
down and analyze the details.

For instance, sensor data can come from the device in the form of temperature, pressure, and so forth.

1.3.2 Device Management
Device Management provides high-level control to configure the devices in bulk for the entire fleet or to
control the individual devices.

Note: All the Dashboard-specific details for this Application Project are discussed in the (RA AWS Cloud
Connectivity on CK-RA6M5v2 with Cellular – Getting Started Guide) document.

1.4 AWS IoT Core
AWS IoT Core is a managed cloud service that lets connected devices easily and securely interact with
cloud applications and other devices. It can support billions of devices and trillions of messages. It can
reliably and securely process and route messages to AWS endpoints and other devices. With AWS IoT
Core, customer applications can keep track of all devices simultaneously, even when devices are not
connected.

AWS IoT Core addresses security concerns for the infrastructure by implementing mutual authentication and
encryption. AWS IoT Core provides automated configuration and authentication upon a device’s first
connection to AWS IoT Core, as well as end-to-end encryption throughout all points of connection so that
data is only exchanged between devices and AWS IoT Core with proven identity.

This application note focuses on complementing the security needs of AWS IoT Core by installing a proven
identity for the RA MCU by storing an X.509 certificate and asymmetric cryptography keys in Privacy
Enhanced Mail (PEM) format in the onboard flash. The RA MCU has on-chip security features, such as Key
Wrapping, to protect the private key associated with the public key and the certificate associated with the
device1. Additionally, RA MCUs can also generate asymmetric keys using features of the Secure
Cryptography Engine (SCE) and API available through the FSP. The SCE accelerates symmetric
encryption/decryption of data between the connected device and AWS IoT, allowing the ARM Cortex-M
processor to perform other application-specific computations.

1.5 MQTT Protocol Overview
This application notes feature Message Queuing Telemetry Transport (MQTT) as it is a lightweight
communication protocol specifically designed to tolerate intermittent connections, minimize the code footprint
on devices, and reduce network bandwidth requirements. MQTT uses a publish/subscribe architecture,
which is intended to be open and easy to implement, with up to thousands of remote clients capable of being
supported by a single server. These characteristics make MQTT ideal for use in constrained environments
where network bandwidth is low or where there is high latency and with remote devices that might have
limited processing capabilities and memory. The RA MCU device in this application note implements a Core
MQTT service that communicates with AWS IoT and exchanges example telemetry information, such as
temperature, pressure, humidity, accelerometer, gyroscope, and many more types of sensor data.

1.6 TLS Protocol Overview
The primary goal of the Transport Layer Security (TLS) protocol is to provide privacy and data integrity
between two communicating applications or endpoints. AWS IoT mandates the use of secure
communication. Consequentially, all traffic to and from AWS IoT is sent securely using TLS. TLS protocol
version 1.2 or later ensures the confidentiality of the application protocols supported by AWS IoT. A variety of
TLS Cipher Suites are supported. This application note configures the RA Flexible Software Package for the
MCU-based device to provide the following capabilities, and AWS IoT negotiates the appropriate TLS Cipher
Suite configuration to maximize security.

1 This application note does not focus on using Key Wrapping for securely storing the private key for devices
deployed in a production environment.

https://docs.aws.amazon.com/iot/latest/developerguide/iot-gs.html

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 6 of 28
Sept.09.24

Table 1. TLS with Crypto Capabilities in RA FSP

Secure Crypto Hardware Acceleration Supported
Key Format Supported AES, ECC, RSA
Hash SHA-256
Cipher AES
Public Key Cryptography ECC, ECDSA, RSA
Message Authentication Code (MAC) HKDF

In addition to these supported features, Mbed Crypto middleware also supports various features that can be
enabled through the RA Configurator. Refer to the FSP User’s Manual section for the Crypto Middleware
(rm_psa_crypto).
1.7 Device Certificates, CA, and Keys
Device Certificates, Certificate Authorities (CA), and Asymmetric Key Pairs create the foundation for trust
needed for a secure environment. The background information on these commonly used components in
AWS is provided in this section.

A digital certificate is a document in a known format that provides information about the identity of a device.
The X.509 standard includes the format definition for public-key certificate, attribute certificate, certificate
revocation list (CRL), and attribute certificate revocation list (ACRL). X.509-defined certificate formats (X.509
Certificates) are commonly used on the internet and in AWS IoT for authenticating a remote entity/endpoint,
a Client, and/or Server. In this application note, an X.509 certificate and asymmetric cryptography key pair
(public and private keys) are generated from AWS IoT and installed (during binary compilation) into the RA
MCU device running the Core MQTT to establish a known identity. In addition, a root Certification Authority
(CA) certificate is also downloaded and used by the device to authenticate the connection to the AWS IoT
gateway.

Certification authority (CA) certificates are certificates issued by a CA to itself or to a second CA to create a
defined relationship between the two CAs. The root CA certificate allows devices to verify that they're
communicating with AWS IoT Core and not another server impersonating AWS IoT Core.
The public and private keys downloaded from AWS IoT use RSA algorithms for encryption, decryption,
signing, and verification2. These key pairs and certificates are used together in the TLS process to:

1. Verify device identity.
2. Exchange symmetric keys for algorithms such as AES for encrypting and decrypting data transfers

between endpoints.

2. Running the MQTT/TLS Cellular Application Example
Refer to RA AWS Cloud Connectivity on CK-RA6M5 v2 with Cellular - Getting Started Guide as part of this
project bundle for details on running the project and visualizing the sensor data on the Renesas AWS
dashboard.

3. AWS Core MQTT with Cellular Interface
3.1 AWS Core MQTT
The AWS MQTT library included in RA FSP can connect to either AWS MQTT or any third-party MQTT
broker such as Mosquitto. The complete documentation for the library can be found on the AWS IoT Device
SDK C: MQTT website. Primary features supported by the library are:

• MQTT connections over TLS to an AWS IoT Endpoint, Mosquitto server, or other MQTT broker.

The AWS Core MQTT can be directly imported into a Thread stack. It is configured through the RA
Configuration Perspective. To add the AWS Core MQTT to a new thread, open Configuration.xml with
the RA Configuration. While ensuring that the correct thread is selected on the left, use the tab for Stacks >
New Stack > Search and search for the keyword AWS Core MQTT.

2 Public Key length used is 2048 bits.

https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html#mqtt-sdk
https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html#mqtt-sdk

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 7 of 28
Sept.09.24

Figure 2. AWS Core MQTT Module Selection
Adding the AWS Core MQTT stack results in the default configuration with some unmet dependencies, as
shown in the following Figure 3. FSP offers different Transport interfaces to the users. In this application
note, we will be covering the Cellular Interface, which uses the AWS Transport Interface on
MbedTLS/PKCS11, as shown in the Figure 4.

Figure 3. AWS Core MQTT Stack View
While the AWS Core MQTT stack shown contains a lot of dependencies and configurable properties, most
default settings can be used as-is. The following change is needed to meet all unmet dependencies (marked
in red) for the AWS Core MQTT stack added to a new project (as shown above):

• Enable Mutex and Recursive Mutex usage support as needed by IoT SDK and FreeRTOS in the created
Thread properties.

Upon completion of the above step, the AWS Core MQTT is ready to accept a socket implementation, which
has dependencies on using a TLS Session and an underlying TCP/IP implementation.

Additional documentation on the AWS Core MQTT is available in the FSP User’s Manual under RA Flexible
Software Package Documentation > API Reference > Modules > Networking > AWS MQTT.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 8 of 28
Sept.09.24

3.2 Transport Layer Implementation
The FSP AWS Transport Interface provides options for Wi-Fi, Cellular, and Ethernet. AWS Transport
Interface on MbedTLS11 module is used for the Cellular Interface. While the RA FSP contains a Secure
Socket Implementation for Wi-Fi, Cellular and Ethernet, this application and application note focuses on the
use of the Cellular Interface.

Cellular Sockets can be added to the Thread Stack by clicking on Add Sockets Wrapper > New > AWS
Cellular Sockets Wrapper.

Figure 4. Adding Cellular Interface to the Core MQTT Module
In addition, the needed stack is complete and has unmet dependencies for the dependent modules.

Now, hover the cursor over the red blocks and the error will pop up. Make the appropriate settings.

• AWS Transport Interface on MbedTLS/PKCS11 errors:
 For error: Requires FreeRTOS heap implementation 4 or 5, choose the heap implementation using New

Stack > RTOS > FreeRTOS Heap 4. Also, set Dynamic Memory allocation in Thread’s properties:
using New Thread > Properties > Common > Memory Allocation > Support Dynamic Allocation >
Enabled.

 For error: Mutexes must be enabled in the FreeRTOS thread, enable mutexes in Thread’s properties:
using New Thread > Properties > Common > General > Use Mutexes > Enabled.

• For AWS PKCS11 to MbedTLS error: MBEDTLS_CMAC_C must be defined, using MbedTLS (Crypto
Only) > Common > Message Authentication Code (MAC) > MBEDTLS_CMAC_C > Define.

• For MbedTLS error: MBEDTLS_ECDH_C must be defined, using MbedTLS (Crypto Only) > Common
> Public Key Cryptography (PKC) > ECC > MBEDTLS_ECDH_C > Define.

• MbedTLS (Crypto Only) errors relate to minimum RTOS heap, set Heap Memory allocation using New
Thread > Properties > Common > Memory Allocation > Total Heap Size > 0x20000.

• For LittleFS error: A heap is required to use Malloc, add heap under BSP Tab > Properties > RA
Common > Heap size (bytes) > 0x20000.

• Mutexes must be enabled using New Thread > Common > General > Use Mutexes > Enabled.
• Mutexes must be enabled using New Thread > Common > General > Use Recursive Mutexes >

Enabled.
• UART specific errors can be resolved by enabling the Flow control and selecting the appropriate RTS and

CTS pin selection.

Note: These are the basic settings required to remove the error from the configurator. More specific
configurations are listed in the specific module and its usage.

After all the appropriate settings have taken care of the errors due to the missing configuration, the new
configurator screenshot looks clean with no errors as shown in the Figure 5.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 9 of 28
Sept.09.24

Figure 5. Expanded Cellular Socket Interface Module

3.3 Mbed TLS
Mbed TLS is Arm®’s implementation of the TLS protocols as well as the cryptographic primitives required by
those implementations. Mbed TLS is also solely used for its cryptographic features even if the TLS/SSL
portions are not used.

TLS Support uses FreeRTOS+Crypto which eventually uses Mbed TLS. Use of Mbed TLS requires
configuration and operation of the Mbed Crypto module which in turn operates the SCE on the MCU.

The following underlying mandatory changes are needed to the project using the Cellular Sockets on
FreeRTOS+Crypto module:

1. Use FreeRTOS heap implementation scheme 4 (first fit algorithm with coalescence algorithm) or scheme
5 (first fit algorithm with coalescence algorithm with heap spanning over multiple non-adjacent/non-
contiguous memory regions.

2. Enable support for dynamic memory allocation in FreeRTOS.
3. Enable Mbed TLS platform memory allocation layer.
4. Enable the Mbed TLS generic threading layer that handles default locks and mutexes for the user and

abstracts the threading layer to use an alternate thread library.
5. Enable the Elliptic Curve Diffie Hellman (ECDH) library.
6. Change FreeRTOS Total Heap Size to a value greater than 0x20000.
7. Add Persistent Storage on LittleFS.

Additional documentation on the Mbed TLS is available in the FSP User’s Manual under RA Flexible
Software Package Documentation > API Reference > Modules > Security > Mbed Crypto H/W Acceleration
(rm_psa_crypto).

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 10 of 28
Sept.09.24

3.4 MQTT Module APIs Usage
Table 2 lists APIs provided by AWS Core MQTT that are used as a part of the Application Example.

Table 2. MQTT Module APIs

API Description
MQTT_Init Initializes an MQTT context
MQTT_Connect Establishes an MQTT session
MQTT_Subscribe Sends MQTT SUBSCRIBE for the given list of topic filters to

the broker
MQTT_Publish Publishes a message to the given topic name
MQTT_Ping Sends an MQTT PINGREQ to broker
MQTT_Unsubscribe Sends MQTT UNSUBSCRIBE for the given list of topic

filters to the broker
MQTT_Disconnect Disconnect an MQTT session
MQTT_ProcessLoop Loop to receive packets from the transport interface.

Handles keep-alive
MQTT_ReceiveLoop Loop to receive packets from the transport interface. Does

not handle keep-alive
MQTT_GetPacketId Get a packet ID that is valid according to the MQTT 3.1.1

specification.
MQTT_MatchTopic A utility function that determines whether the passed topic

filter and topic name match according to the MQTT 3.1.1
protocol specification.

MQTT_GetSubAckStatusCodes Parses the payload of an MQTT SUBACK packet that
contains status codes corresponding to topic filter
subscription requests from the original subscribe packet

MQTT_Status_strerror Error code to string conversion for MQTT statuses.

4. Cloud Connectivity Application Example
4.1 Overview
This application project demonstrates the use of APIs available through the Renesas FSP-integrated
modules for Amazon IoT SDK C, Mbed TLS module, Amazon FreeRTOS, and HAL Drivers operating on
Renesas RA MCUs. Network connectivity is established using the Cellular module. The application running
on a Renesas Cloud Kit also serves as a guide for the operation of Core MQTT, Mbed TLS/Crypto, and
Cellular configuration, using the FSP configurator. The application may be used as a starting point for
inspiring other customized cloud-based solutions using Renesas RA MCUs. In addition, it simply
demonstrates the operation and setup of cloud services available through the cloud service provider.

The upcoming sub-sections show step-by-step creation of a device and security credentials policies as
required by the AWS IOT on the cloud side to communicate with the end devices. The example
accompanying this documentation demonstrates the Subscribe and Publish messaging between Core MQTT
and MQTT Broker, on-demand publication of sensor data, and asynchronous publication of a “sensor data”
event from the MCU to the Cloud. The device is also subscribed to receive actuation events (LED indication)
from the Cloud.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 11 of 28
Sept.09.24

Figure 6. MQTT Publish/Subscribe to/from AWS IoT Core

Figure 7. Hardware Setup

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 12 of 28
Sept.09.24

4.2 MQTT/TLS Application Software Overview
The following files from this application project serve as a reference, as shown in Table 3.

Table 3. Application Project Files

No. Filename Purpose
1. src/app_thread_entry.c Contains initialization code and has the main

thread used in the Cloud Connectivity
application.

2. src/cellular_setup.c Contains Cellular Specific init functions and
data structures.

3. src/common_init.c Contains code used to initialize common
peripherals across the project.

4. src/common_init.h Contains macros, data structures, and
functions prototypes used to initialize common
peripherals across the project.

5. src/common_utils.c Contains code commonly used across the
project.

6. src/common_utils.h Contains macros, data structures, and
functions prototypes commonly used across
the project.

7. src/console_thread_entry.c Contains the code for the command line
interface and flash memory operations.

8. src/icm.h Contains user-defined data types and function
prototypes which have an implementation in
RA_ICM42605.c

9. src/ICM42605.c Contains driver codes for the 6 Axis sensor
(Gyroscope, Accelerometer)

10. src/ICM42605.h Contains the Data structure function
prototypes for the 6 Axis sensor (Gyroscope,
Accelerometer)

11. src/ICP_20100.c Contains the driver codes for Barometric
Pressure and Temperature Sensor.

12. src/ ICP_20100.h Contains the Data structure and function
prototypes for Barometric Pressure and
Temperature Sensor

13. src/icp.h Contains user-defined data types and function
prototypes which have an implementation in
RA_ICP20100.c

14. src/mqtt_demo_helpers.c Contains code and functions used in the
MQTT interface for Cloud Connectivity.

15. src/mqtt_demo_helpers.h Accompanying header for exposing
functionality provided by
mqtt_demo_helpers.c.

16. src/oximeter_thread_entry.c Contains codes for the oximeter sensor
thread’s operation.

17. src/oximeter.c Contains codes for the oximeter sensor’s
initialization and measurement.

18. src/oximeter.h Contains the Data structure and function
prototypes for the oximeter sensor.

19. src/r_typedefs.h Contains the common derived data types
20. src/RA_HS3001.c Contains the code and function for Renesas

Relative Humidity and Temperature Sensor.
21. src/RA_HS3001.h Contains the common data structure’s

function prototypes for the Renesas Relative
Humidity and Temperature sensors.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 13 of 28
Sept.09.24

No. Filename Purpose
22. src/RA_ICM42605.c Contains codes for 6 Axis sensor (Gyroscope,

Accelerometer) sensor’s initialization and
measurement.

23. src/RA_ICP20100.c Contains codes for Barometric Pressure and
Temperature sensor’s initialization and
measurement.

24. src/RA_ZMOD4XXX_Common.c Contains the common code for the Renesas
ZMOD sensors

25. src/RA_ZMOD4XXX_Common.h Contains the common data structure’s
function prototypes for the Renesas ZMOD
sensors

26. src/RA_ZMOD4XXX_IAQ1stGen.c Contains the common code for the Renesas
ZMOD Internal Air Quality sensors

27. src/RA_ZMOD4XXX_OAQ1stGen.c Contains the common code for the Renesas
ZMOD Outer Air Quality sensors

28. src/RmcI2C.c Contains the I2C wrapper functions for the
third-party sensors not integrated with FSP

29. src/RmcI2C.h Contains the I2C function prototypes for
wrapper functions for the third-party sensors
not integrated with FSP

30. src/sensors_thread_entry.c Contains the Code to access the Sensor data
from the different sensors and order topic to
publish.

31. src/uart_CATM.c Contains the code to access the UART
interface to the CATM module for back access
to the SIM info for activation

32. src/uart_CATM.h Contains the Function prototypes to access
the UART interface to the CATM module for
back access to the SIM info for activation

33. src/ user_choice.c Contains the code for the user’s choice of
sensors and user configurations

34. src/user_choice.h Contains the Function prototypes for the
Sensor and its user configuration for the
different sensors and its data accessibility.

35. src/usr_config.h To customize the user configuration to run the
application.

36. src/usr_data.h Accompanying header file for the application
thread.

37. src/usr_hal.c Contains data structures and functions used
for the Hardware Abstraction Layer (HAL)
initialization and associated utilities.

38. src/usr_hal.h Accompanying header for exposing
functionality provided by usr_hal.c.

39. src/zmod_thread_entry.c Contains the code for indoor air and outdoor
air quality sensors

40. src/SEGGER_RTT/SEGGER_RTT.c Implementation of SEGGER real-time transfer
(RTT) allows real-time communication with
targets that support debugger memory access
while the CPU is running.

41. src/SEGGER_RTT/SEGGER_RTT.h
42. src/SEGGER_RTT/SEGGER_RTT_Conf.h
43. src/SEGGER_RTT/SEGGER_RTT_printf.c
44. src/backoffAlgorithm/backoff_algor

ithm.c
Retry algorithms with random back off for the
next retry attempt

45. src/backoffAlgorithm/backoff_algor
ithm.h

Retry algorithms with random back off for the
next retry attempt header file

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 14 of 28
Sept.09.24

No. Filename Purpose
46. src/subcription_manager/mqtt_subsc

ription_manager.c
MQTT Subscription manager, which handles
the callback

47. src/subcription_manager/mqtt_subsc
ription_manager.h

Associated header file for MQTT Subscription
manager, which handles the callback.

48. src/console_menu/console.c Contains data structures and functions used
to print data on the console using UART

49. src/console_menu/console.h Contains the Function prototypes used to print
data on the console using UART

50. src/console_menu/menu_catm.c Contains functions to get SIM info of the
CATM1 from the main menu on the CLI

51. src/console_menu/menu_catm.h Contains function prototypes to get SIM info of
the CATM1 from the main menu on CLI

52. src/console_menu/menu_flash.c Contains data structures and functions used
to provide CLI flash memory-related menu

53. src/console_menu/menu_flash.h Contains the Function prototypes and macros
used to provide CLI flash memory-related
menu

54. src/console_menu/menu_kis.c Contains functions to get the FSP version, get
UUID, and help option for the main menu on
the CLI

55. src/console_menu/menu_kis.h Contains the function prototypes and macros
used to get the FSP version, get uuid, and
help option for the main menu on CLI

56. src/console_menu/menu_main.c Contains data structures and functions used
to provide CLI main menu options

57. src/console_menu/menu_main.h Contains the Function prototypes and macros
used to provide CLI main menu options

58. src/flash/ flash_hp.c Contains data structures and functions used
to perform flash memory-related operations

59. src/flash/ flash_hp.h Contains the Function prototypes and macros
used to perform flash memory-related
operations

60. src/ob1203_bio/KALMAN/kalman.c Contains algorithm for Heart Rate, Blood
Oxygen Concentration, Pulse Oximetry,
Proximity, Light and Color Sensor sample
calculations

61. src/ob1203_bio/KALMAN/kalman.h
62. src/ob1203_bio/SAVGOL/SAVGOL.c
63. src/ob1203_bio/SAVGOL/SAVGOL.h
64. src/ob1203_bio/SPO2/SPO2.c
65. src/ob1203_bio/SPO2/SPO2.h
66. src/ob1203_bio/ob1203_bio.c Contain codes for OB1203 sensor’s

implementation to use with FSP stacks.
67. src/ob1203_bio/ob1203_bio.h Contain user data structure and function

prototypes used in ob1203_bio.c
68. src/hal_entry.c Contains hal level functions used in the

application

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 15 of 28
Sept.09.24

Figure 8. Application Example Implementation Details

4.3 Creating the Application Project using the FSP Configurator
Complete the steps to create the project from the start using the e2 studio and FSP configurator. Table 4
shows the step-by-step process of creating the project. It is assumed that the user is familiar with the
e2 studio and FSP configurator. Launch the installed e2 studio for the FSP.

Table 4. Step-by-step Details for Creating the Application Project for Cellular

 Steps Intermediate Steps
1 Project Creation: File → New → C/C++ Project
2 Project Template: Templates for New RA C/C++ Project →

Renesas RA C/C++ Project → Next

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 16 of 28
Sept.09.24

 Steps Intermediate Steps
3 e2 studio - Project Configuration (RA

C Executable Project) →
Project Name (Name for the Project)
Note: Input your desired name for the project → Next

4 Device Selection → FSP Version: 5.3.0
Board: CK-RA6M5 V2
Device: R7FA6M5BH3CFC
Language: C

5 Select Tools Toolchain: GNU ARM Embedded (Default)
Toolchain version: 13.2.1.arm-13-7
Debugger: J-Link ARM Next

5a Project Type Selection Flat (Non-TrustZone) Project Next
6 Build Artifact and RTOS Selection Artifact Selection: Executable

RTOS Selection: FreeRTOS(v10.6.1+fsp5.3.0) → Next
6a Project Template Selection Project Template Selection: FreeRTOS – Minimal – Static

Allocation → Finish
7 Clock HOCO 20MHz →PLL Src: HOCO → PLL Div/2 →PLL Mul

x20.0 → PLL 200MHz
8

Create and configure for App Thread
Stacks Tab→ Threads → New Thread
Config Thread Properties→

Symbol: app_thread
Name: App Thread
Stack size (bytes): 0x12000
Priority: 3
Thread Context: NULL
Memory Allocation: Static

8a Generic RTOS configs under thread (Additional configuration on top of the Default Config provided by
FSP)
Common → General Use Mutexes: Enabled

Use Recursive Mutexes: Enabled
Common → Memory Allocation Support Dynamic Allocation: Enabled

Total Heap Size: 0x20000

Common → Optional Functions xTimerPendFunctionCall () Function: Enabled
Common → Logging Print String Function: printf(x)

9 Add the Heap Implementation in HAL/Common
New Stack → RTOS → FreeRTOS Heap 4

10 Adding the AWS MQTT Wrapper Module to the Application Thread
Note: Now the Newly created thread (Application thread) is ready to add a new stack (Here, the AWS
Core MQTT is added)
New Stack → Networking → AWS Core MQTT

10a Under the AWS Transport Interface
on MbedTLS/PKCS11 → Add
Sockets Wrapper, add

New → AWS Cellular Sockets Wrapper

10b Under the SCE Compatibility Mode
→ Add Key Injection for PSA Crypto
(Optional), add

New → Key Injection for PSA Crypto

10c AWS Core MQTT → Common → Retry count for reading CONNACK from
network → 10

11 Adding persistent storage support for AWS PKCS11 and resolving the error in the configurator by
selecting the Heap size in the BSP Tab.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 17 of 28
Sept.09.24

 Steps Intermediate Steps
Under the MbedTLS (Crypto only) →
Add Persistent Storage on LittleFS
(Optional) →

Use → LittleFS

BSP Tab → RA Common → Heap size (bytes): 0x20000
11a LittleFS on Flash → Block count → (BSP_DATA_FLASH_SIZE_BYTES/256)
12 Some dependencies related to TLS Support need to be resolved to remove the error in the FSP

configurator by modifying the MbedTLS (Crypto Only) property settings.
Common → Platform → MBEDTLS_PLATFORM_MEMORY: Define
Common → General → MBEDTLS_THREADING_C: Define
Common → General → MBEDTLS_THREADING_ALT: Define
Common → Public Key
Cryptography (PKC) →

ECC → MBEDTLS_ECDH_C: Define

Common →Hardware acceleration
→ Public key cryptography (PKC)

RSA 3072 → Verification: Enabled

Common →Hardware acceleration
→ Public key cryptography (PKC)

RSA 4096 → Verification: Enabled

Common → Storage → MBEDTLS_FS_IO: Define
Common → Storage → MBEDTLS_PSA_CRYPTO_STORAGE_C: Define
Common → Storage → MBEDTLS_PSA_ITS_FILE_C: Define
Common → Message
Authentication Code (MAC)→

MBEDTLS_CMAC_C: Define

13

AWS Cellular Sockets Wrapper Configuration
Note: This is only applicable to the Cellular application project. Most of the default settings remain the
same, except a few default configurations need to be changed.
AWS Cellular Interface on RYZ
(rm_cellular_ryz_aws) →

Module Reset Pin (Port Number): 01
Module Reset Pin (Pin Number): 01

Config for Reset Pin → Pins Tab →
Ports → P1 → P101

Mode: Output mode (Initial Low)

13a AWS Cellular Interface Common →
Common

EDRX List Max Size: 16
RAT Priority Count: 1
Comm Interface Receive Timeout (ms): 200
Static Allocation Context: Enabled
Comm Interface Static Allocation Context: Enabled
Static Socket Context: Enabled

14 Cellular Comm Interface on UART
Module Cellular Comm Interface on
UART → Name →

g_cellular_comm_interface_on_uart

Common → Receive Buffer: 65536
Receive Transfer Size: 512

15 g_uart0 UART
Common → FIFO Support: Enable

DTC Support: Enable
Flow Control Support: Enable

Module g_uart0 UART
General→ Name: g_uart0

Channel: 0
Baud→ Baud Rate: 921600

Baud Rate Modulation: Disabled
Flow Control→ Software RTS Port: 04

Software RTS Pin: 12
Interrupts→ Receive Interrupt Priority: Priority 1

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 18 of 28
Sept.09.24

 Steps Intermediate Steps
Transmit Data Empty Interrupt Priority: Priority 2
Transmit End Interrupt Priority: Priority 2
Error Interrupt Priority: Priority 2

16 Adding the HAL Modules as required for the Application Project: Clock Generation Circuit and GPT
Timer1 for control publishing sensor value into MQTT
HAL/Common Stacks → New Stack → System → Clock Generation Circuit (r_cgc)
Module g_cgc0 Clock Generation
Circuit (r_cgc)

Name: g_cgc0

Pin Setting for r_cgc → Pins Tab →
Peripherals → System:CGC →CGC0

Operation Mode: Main+Sub Osc

HAL/Common Stacks → New Stack → Timers → Timer, General PWM (r_gpt)
Module g_timer0 Timer, General
PWM (r_gpt) → General

Name: g_timer1
Channel: 1
Mode: Periodic
Period: 1
Period Unit: Seconds

Interrupts→ Callback: g_user_timer_cb
Overflow/Crest Interrupt Priority: Priority 5

17 Modifying the BSP Settings - RA Common for (Main stack, Heap, and Subclock Settings)
BSP Tab → Property Settings for RA
Common

Main stack size (bytes): 0x2000
Heap size (bytes): 0x20000
Subclock Populated: Not Populated

18 Adding FreeRTOS Objects for the Application and Sensors
Stacks Tab → Objects → New Object → Queue
Property Settings for the Queue Symbol: g_topic_queue

Item Size (Bytes): 65
Queue Length (Items): 16
Memory Allocation: Static

Stacks Tab → Objects → New Object → Mutex
Property Settings for the Mutex Symbol: g_console_out_mutex

Type: Mutex
Memory Allocation: Static

Stacks Tab → Objects → New Object → Queue
Property Settings for the Queue Symbol: g_hs3001_queue

Item Size (Bytes): 8
Queue Length (Items): 1
Memory Allocation: Static

Stacks Tab → Objects → New Object → Queue
Property Settings for the Queue Symbol: g_iaq_queue

Item Size (Bytes): 12
Queue Length (Items): 1
Memory Allocation: Static

Stacks Tab → Objects → New Object → Queue
Property Settings for the Queue Symbol: g_oaq_queue

Item Size (Bytes): 4
Queue Length (Items): 1
Memory Allocation: Static

Stacks Tab → Objects → New Object → Queue
Property Settings for the Queue Symbol: g_icm_queue

Item Size (Bytes): 72

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 19 of 28
Sept.09.24

 Steps Intermediate Steps
Queue Length (Items): 1
Memory Allocation: Static

Stacks Tab → Objects → New Object → Queue
Property Settings for the Queue Symbol: g_icp_queue

Item Size (Bytes): 16
Queue Length (Items): 1
Memory Allocation: Static

Stacks Tab → Objects → New Object → Queue
Property Settings for the Queue Symbol: g_ob1203_queue

Item Size (Bytes): 10
Queue Length (Items): 1
Memory Allocation: Static

19 Create and add a Console processing Thread.
Stacks tab (Part of the FSP
Configurator)

Threads → New Thread

Config Thread Properties→ Symbol: console_thread
Name: Console Thread
Stack size (bytes): 4096
Priority: 3
Thread Context: NULL
Memory Allocation: Static

19a Adding UART to Console Thread
New Stack → Connectivity→ UART (r_sci_uart)
Common → FIFO Support: Enable

DTC Support: Enable
Flow Control Support: Enable

Module UART → General → Name: g_console_uart
Channel: 5
Data Bits: 8bits
Parity: None
Stop Bits: 1bit

Module UART → Baud → Baudrate: 115200
Module UART → Interrupts → Callback: user_uart_callback
Pins → TXD5: P501

RXD5: P502
19b Adding Flash to Console Thread

New Stack → Storage → Flash
Module Flash → Name: user_flash

Data Flash Background Operation: Disabled
Callback: flash_callback
Flash Ready Interrupt Priority: Priority 2
Flash Error Interrupt Priority: Priority 2

19c Adding CATM1 Uart to Console Thread
New Stack → Connectivity → UART (r_sci_uart)
Module UART → General → Name: g_catm1_uart

Channel: 0
Data Bits: 8bits
Parity: None
Stop Bits: 1bit

Module UART → Baud → Baudrate: 921600
Module UART → Interrupts → Callback: catm1_uart_callback

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 20 of 28
Sept.09.24

 Steps Intermediate Steps
Pins → TXD: P411

RXD: P100
CTSRTS0: P413

20

Add Sensors Thread: This thread is used to access the sensor values of HS3001, ICP-20100, and
ICM-42605 and prepare topics to publish messages using timer1 and g_topic_queue.
Stacks Tab → Threads New Thread
Config Thread Properties → Symbol: sensors_thread

Name: Sensors Thread
Stack size (bytes): 8192
Priority: 3
Thread Context: NULL
Memory Allocation: Static

20a Adding the HS300X Temperature/Humidity Sensor Module to the Sensors Thread
New Stack → Sensor → HS300X Temperature/Humidity Sensor
Config HS300X
Temperature/Humidity sensor→

Name: g_hs300x_sensor0
Callback: hs300x_callback

Under I2C Shared Bus → Add I2C
Communications Peripheral →

New → I2C Master(r_iic_master)

Config for I2C Master → Name: g_i2c_master0
Channel: 0
Rate: Fast-mode
Interrupt Priority Level: Priority 5

20b Adding ICP-20100 and ICM-42605 sensors to the Sensors Thread.
Note: FSP doesn’t provide an integrated module for ICP-20100 and ICM-42605 sensors. This needs to
be integrated manually via the i2c communication device and external IRQ. Also, its related sensor
driver code needs to be added to the src folder.
New Stack → Connectivity → I2C Communication Device
Config I2C Communication Device
→

Name: g_comms_i2c_device4
Slave Address: 0x63
Callback: ICP_comms_i2c_callback

Under the I2C Communication
Device → Add I2C Shared Bus →

Use → g_comms_i2c_bus0 I2C Shared Bus

New Stack → Input → External IRQ
Config for External IRQ Name: g_external_irq6

Channel: 6
Trigger: Falling
Callback: ICP_IRQ_CALLBACK

20c Adding I2C Communication Device and External IRQ for ICM-42605 into Sensors Thread
New Stack → Connectivity → I2C Communication Device
Config I2C Communication Device
→

Name: g_comms_i2c_device5
Slave Address: 0x68
Callback: ICM_comms_i2c_callback

Under the I2C Communication
Device → Add I2C Shared Bus →

Use → g_comms_i2c_bus0 I2C Shared Bus

New Stack → Input → External IRQ
Config for External IRQ Name: g_external_irq3

Channel: 3
Trigger: Falling
Callback: ICM_42605_Callback2

New Stack → Input → External IRQ
Config for External IRQ Name: g_external_irq12

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 21 of 28
Sept.09.24

 Steps Intermediate Steps
Channel: 12
Trigger: Falling
Callback: ICM_42605_Callback1

21

Add Oximeter Thread for OB1203 sensor’ handling.
Stacks Tab → Threads New Thread
Config Thread Properties → Symbol: oximeter_thread

Name: Oximeter Thread
Stack size (bytes): 2048
Priority: 4
Thread Context: NULL
Memory Allocation: Static

21a Add the OB1203 sensor module, PPG mode to the Oximeter Thread.
New Stack → Sensor → OB1203 Light/Proximity/PPG Sensor

Config OB1203 Light/Proximity/PPG
Sensor →

Name: g_ob1203_sensor0

Under the OB1203
Light/Proximity/PPG Sensor → Add
Requires OB1203 Operation mode
→

New → OB1203 PPG mode

Under the OB1203 PPG mode → I2C
Communication Device →

Name: g_comms_i2c_device3

Under the I2C Communication
Device → Add I2C Shared Bus →

New → I2C Shared Bus

Config I2C Shared Bus → Name: g_comms_i2c_bus1
Under I2C Shared Bus → Add I2C
Communications Peripheral →

New → I2C Master (r_iic_master)

Config I2C Master → Name: g_i2c_master1
Channel: 1
Rate: Standard
Interrupt Priority Level: Priority 12

Under the OB1203
Light/Proximity/PPG Sensor → Add
IRQ Driver for measurement →

New → External IRQ

Config for External IRQ → Name: g_external_irq14
Channel: 14
Trigger: Falling

21b Add the OB1203 sensor module and Proximity mode to the Oximeter Thread.
New Stack → Sensor → OB1203 Light/Proximity/PPG Sensor

Config OB1203 Light/Proximity/PPG
Sensor →

Name: g_ob1203_sensor1

Under the OB1203
Light/Proximity/PPG Sensor → Add
Requires OB1203 Operation mode
→

New → OB1203 Proximity mode

Under the OB1203 Proximity mode
→ I2C Communication Device →

Name: g_comms_i2c_device6

Under the I2C Communication
Device → Add I2C Share Bus →

Use → g_comms_i2c_bus1 I2C Shared Bus

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 22 of 28
Sept.09.24

 Steps Intermediate Steps
Under the OB1203
Light/Proximity/PPG Sensor → Add
IRQ Driver for measurement →

Use → g_external_irq14 External IRQ

22

Add Zmod Thread for ZMOD4410 IAQ and ZMOD4510 OAQ sensors’ handling.
Stacks Tab → Threads New Thread
Config Thread Properties → Symbol: zmod_thread

Name: Zmod Thread
Stack size (bytes): 1024
Priority: 3
Thread Context: NULL
Memory Allocation: Static

22a Adding the ZMOD4XXX Gas Sensor module (ZMOD4410 IAQ) to the Zmod Thread.
New Stack → Sensor → ZMOD4XXX Gas Sensor

Config ZMOD4XXX Gas Sensor→ Name: g_zmod4xxx_sensor0

Callback: zmod4xxx_comms_i2c_callback
IRQ Callback: zmod4xxx_irq0_callback

Under the ZMOD4XXX Gas Sensor
→ Add Requires ZMOD Library →

New → ZMOD4410 IAQ 1st Generation

Under the ZMOD4410 IAQ 1st
Generation → I2C Communication
Device →

Name: g_comms_i2c_device1

Under the I2C Communication
Device → Add I2C Share Bus →

New → I2C Shared Bus

Config I2C Shared Bus → Name: g_comms_i2c_bus2
Under I2C Shared Bus → Add I2C
Communications Peripheral →

New → I2C Master (r_iic_master)

Config I2C Master → Name: g_i2c_master2
Channel: 2
Rate: Fast-mode
Interrupt Priority Level: Priority 5

Under the ZMOD4XXX Gas Sensor →
Add IRQ Driver for measurement
[optional] →

New → External IRQ

Config External IRQ Name: g_external_irq4
Channel: 4
Trigger: Falling
Pin Interrupt Priority: Priority 3

22b Adding the ZMOD4XXX Gas Sensor module (ZMOD4510 OAQ) to the Zmod Thread.
New Stack → Sensor → ZMOD4XXX Gas Sensor

Config ZMOD4XXX Gas Sensor→ Name: g_zmod4xxx_sensor1

Callback: zmod4xxx_comms_i2c1_callback
IRQ Callback: zmod4xxx_irq1_callback

Under the ZMOD4XXX Gas Sensor
→ Add Requires ZMOD Library →

New → ZMOD4510 OAQ 1st Generation

Under the ZMOD4510 OAQ 1st
Generation → I2C Communication
Device →

Name: g_comms_i2c_device2

Under the I2C Communication
Device → Add I2C Share Bus →

Use → g_comms_i2c_bus2 I2C Shared Bus

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 23 of 28
Sept.09.24

 Steps Intermediate Steps
Under the ZMOD4XXX Gas Sensor
→ Add IRQ Driver for measurement
→

New → External IRQ

Config External IRQ Name: g_external_irq15
Channel: 15
Trigger: Falling
Pin Interrupt Priority: Priority 12

22 Enable “Use float with nano printf” to print float values and add flag.

Project → Properties → C/C++ Build
→ Settings → Tool Settings tab →
GNU ARM Cross C Linker →
Miscellaneous

→Check the box: Use float with nano printf (-u
_printf_float)
Other linker flags: --specs=rdimon.specs

The above configuration is a prerequisite to generate the required stack and features for the cloud
connectivity application provided with this application note. Once the Generate Project Content button is
clicked, it generates the source code for the project. The generated source code contains the required
drivers, stack, and middleware. The user application files must be added to the src folder.

Note: app_thread_entry.c, sensors_thread_entry.c, oximeter_thread_entry.c,
zmod_thread_entry.c and console_thread_entry.c are the auto-generated files as part of
the project creation. Users are required to add code to this file.

Note: To run the application with the supplied code, app_thread_entry.c,
sensors_thread_entry.c, oximeter_thread_entry.c, zmod_thread_entry.c, and
console_thread_entry.c are available parts of this application note bundle that can be merged
or overwritten to the auto-generated files.

Note: FSP-generated code must be called/used from the application, while some of the middleware needs
to be called exclusively as part of the application for proper initialization. For instance, the
Mbedtls_platform_setup()call initializes the SCE and TRNG.

For validation of the created project, the same source files listed in section MQTT/TLS Application Software
Overview (as shown in Table 3) may be added. Users are required to add the directory path and subdirectory
for proper compilation. The following paths need to be added to Project → Properties → C/C++ Build →
Settings → Tool Settings tab → GNU Arm Cross C Compiler → Includes → Include paths (-I). Refer to
the enclosed project for more details.

The details of the configurator, from the default settings to the changed settings, are described in the
following sections, including the reason for the change.

4.4 MQTT/TLS Configuration
This section describes the MQTT and TLS module configuration settings that are done as part of this
application example.

The following table lists changes made to a default configuration populated by the RA Configurator.

"${workspace_loc:/${ProjName}/src/backoffAlgorithm}"
"${workspace_loc:/${ProjName}/src/subcription_manager}"
"${workspace_loc:/${ProjName}/src/SEGGER_RTT}"
"${workspace_loc:/${ProjName}/src/ob1203_bio/KALMAN}"
"${workspace_loc:/${ProjName}/src/ob1203_bio/SAVGOL}"
"${workspace_loc:/${ProjName}/src/ob1203_bio}"
"${workspace_loc:/${ProjName}/src/ob1203_bio/SPO2}"

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 24 of 28
Sept.09.24

Table 5. Default Configuration for CK-RA6M5v2

Property Original Value Changed
Value

Reason for Change

Application Thread
Common → General → Use Mutexes Disabled Enabled This requirement is set by

the AWS IOT SDK C stack
Common → Memory Allocation →
Support Dynamic Allocation

Disabled Enabled This requirement is set by
the AWS IOT SDK C stack

Common → Memory Allocation →
Total Heap Size

0 0x20000 Heap required for the
FreeRTOS, AWS IOT
SDK, Mbed TLS

Mbed TLS (Crypto Only)
Platform →
MBEDTLS_PLATFORM_MEMORY

Undefine Define This selection is required
to support the MbedTLS.

General →
MBEDTLS_THREADING_ALT

Undefine Define This selection is required
to support the MbedTLS to
plug in any thread library.

General →
MBEDTLS_THREADING_C

Undefine Define This selection is required
to support the MbedTLS to
abstract the threading
layer, allowing easy
plugging in any thread-
library.

Public Key Cryptography (PKC) →
ECC → MBEDTLS_ECDH_C

Undefine Define This selection is required
to support the MbedTLS to
enable the ECDH module.

LittleFS (Heap Selection)
BSP → RA Common → Heap Size
(bytes)

0 0x20000 Heap selection for Heap 4
and other usages with
malloc.

5. Sensor Stabilization Time
This table gives the time required for the sensors to sense and provide valid data to the users. Here, you will
see 2 columns: column 1 – when powered up for the first time and column 2 - after software or hard reset. If
the system boots up from a cold start, the time for the sensors to provide the valid data is up to (1 min – 4
hours), whereas if the system bootup from a warm start, the time for the sensors to provide the valid data is
up to (10 sec – 2 hours). For more details, refer to the specific sensor datasheet.

Table 6. Sensor Stabilization Time

Sensor Name When Powered Up First Time After Soft or Hard Reset
ZMOD4410 IAQ Up to 1 minute Up to 1 minute
ZMOD4510 OAQ Up to 4 hours Up to 2 hours
OB1203 Up to 1 minute (after placing the

index finger on the sensor, it may
take up to 60 seconds to sense data)

Up to 10 seconds (after placing the
index finger on the sensor, it may
take up to 60 seconds to sense data)

HS3001 Up to 1 minute Up to 10 seconds
ICP Up to 1 minute Up to 10 seconds
ICM Up to 1 minute Up to 10 seconds

Note: Stabilization time of the sensor provided above is from the point of sensor initialization.

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 25 of 28
Sept.09.24

6. MQTT/TLS Module Next Steps
• For setting up a client using a device certificate signed by a preferred CA certificate, refer to the link:

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html
• For using a self-signed certificate to configure AWS, refer to the link:

https://developer.amazon.com/docs/custom-skills/configure-web-service-self-signed-certificate.html

7. References
[1] International Telecommunication Union, "ITU-T Y.4000/Y.2060 (06/2012)," 15 06 2012. [Online].

Available: http://handle.itu.int/11.1002/1000/11559.

[2] Amazon Web Services, "AWS IoT Core Features," [Online]. Available:
https://www.amazonaws.cn/en/iot-core/features/.

[3] Amazon Web Services, "AWS IoT Core," [Online]. Available: https://www.amazonaws.cn/en/iot-core/.

[4] W. T. L. L. O. S. R. N. S. R. X. G. K. N. K. S. F. M. K. D. L. I. R. Valerie Lampkin, Building Smarter
Planet Solutions with MQTT and IBM WebSphere MQ Telemetry, IBM Redbooks, 2012.

[5] I. E. T. Force, "The Transport Layer Security (TLS) Protocol Version 1.2," [Online]. Available:
https://tools.ietf.org/html/rfc5246.

[6] Amazon Web Services, "AWS IoT Security," [Online]. Available:
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security.html.

[7] Amazon Web Services, "Transport Security in AWS IoT," [Online]. Available:
https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html.

[8] International Telecommunication Union, "X.509 (10/19) Summary," 10 2019. [Online]. Available:
https://www.itu.int/dms_pubrec/itu-t/rec/x/T-REC-X.509-201910-I!!SUM-HTM-E.htm.

[9] Eclipse Foundation, "Eclipse Mosquitto™ - An open source MQTT broker," [Online]. Available:
https://mosquitto.org/.

[10] Amazon Web Services, "AWS IoT Device SDK C: MQTT," [Online]. Available:
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/index.html.

[11] R. Barry, "Mastering the FreeRTOS™ Real Time Kernel," in A Hands-On Tutorial Guide, 2016.

[12] A. I. D. S. C. Documentation, "AWS IoT Device SDK C: MQTT Functions," [Online]. Available:
https://docs.aws.amazon.com/freertos/latest/lib-ref/c-sdk/mqtt/mqtt_functions.html.

[13] Amazon, "Configuring the FreeRTOS Demos," [Online]. Available:
https://docs.aws.amazon.com/freertos/latest/userguide/freertos-configure.html.

[14] "Amazon FreeRTOS mbedTLS," [Online]. Available: https://github.com/aws/amazon-
freertos/blob/master/libraries/3rdparty/mbedtls/utils/mbedtls_utils.c.

[15] Renesas Electronics Corporation, "Renesas Flash Programmer (Programming GUI) - Documentation,"
[Online]. Available: https://www.renesas.com/us/en/products/software-tools/tools/programmer/renesas-
flash-programmer-programming-gui.html#documents.

https://docs.aws.amazon.com/iot/latest/developerguide/device-certs-your-own.html
https://developer.amazon.com/docs/custom-skills/configure-web-service-self-signed-certificate.html

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 26 of 28
Sept.09.24

8. Known Issues and Troubleshooting
• This section talks about the known FSP and tool-related issues. More details can be found at the link:

https://github.com/renesas/fsp/issues.
• It is recommended that you use the dashboard with the Microsoft Edge browser; it does not work properly

with the Google Chrome browser.
• In case of unstable cellular connection or loss of MQTT connection, connect the USB on the RYZ014A

Pmod to the PC to provide additional power to the module. Refer to RYZ014A Pmod Errata.
• When debugging with e2 studio, if the application is rerun multiple times, an issue with the OB1203

sensor's i2c communication might randomly occur. Users need to reconnect the USB cable (J10) and
USB-C cable (J28) to reset the OB1203 sensor and run the application again.

9. Debugging
Enable the USR_LOG_LVL (LOG_DEBUG) macro in the application project for additional information on the
error during debugging.

https://github.com/renesas/fsp/issues
https://www.renesas.com/us/en/document/mah/ryz014a-pmod-expansion-board-errata

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 27 of 28
Sept.09.24

Website and Support
Visit the following vanity URLs to learn about key elements of the RA family, download components and
related documentation, and get support.

CK-RA6M5v2 Kit Information
RA Cloud Solutions
RA Product Information

renesas.com/ra/ck-ra6m5
renesas.com/cloudsolutions
renesas.com/ra

RA Product Support Forum renesas.com/ra/forum
RA Flexible Software Package renesas.com/FSP
Renesas Support renesas.com/support

http://www.renesas.com/ra/ck-ra6m5
http://www.renesas.com/cloudsolutions
http://www.renesas.com/ra
https://www.renesas.com/ra/forum
http://www.renesas.com/FSP
https://www.renesas.com/support

Renesas RA Family RA AWS MQTT/TLS Cloud Connectivity Solution - Cellular

R11AN0604EU0120 Rev.1.20 Page 28 of 28
Sept.09.24

Revision History

Rev. Date
Description
Page Summary

1.10 Sept.09.24 — Initial release
1.02 Mar.15.23 Updated to FSP v4.2.0
1.03 May.08.23 Support for TruPhone SIM and update to FSP 4.4.0
1.10 Feb.01.24 Updated to FSP v5.0.0
1.20 Sept.09.24 Updated to FSP v5.3.0 and CK-RA6M5 v2

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2024 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Introduction to Components for Cloud Connectivity
	1.1 General Overview
	1.2 Cloud Service Provider
	1.3 Cloud Dashboard
	1.3.1 Data Monitoring
	1.3.2 Device Management

	1.4 AWS IoT Core
	1.5 MQTT Protocol Overview
	1.6 TLS Protocol Overview
	1.7 Device Certificates, CA, and Keys

	2. Running the MQTT/TLS Cellular Application Example
	3. AWS Core MQTT with Cellular Interface
	3.1 AWS Core MQTT
	3.2 Transport Layer Implementation
	3.3 Mbed TLS
	3.4 MQTT Module APIs Usage

	4. Cloud Connectivity Application Example
	4.1 Overview
	4.2 MQTT/TLS Application Software Overview
	4.3 Creating the Application Project using the FSP Configurator
	4.4 MQTT/TLS Configuration

	5. Sensor Stabilization Time
	6. MQTT/TLS Module Next Steps
	7. References
	8. Known Issues and Troubleshooting
	9. Debugging
	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

