

To our customers,

Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology
Corporation, and Renesas Electronics Corporation took over all the business of both
companies. Therefore, although the old company name remains in this document, it is a valid
Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010
Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is

subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please
confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to
additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights
of third parties by or arising from the use of Renesas Electronics products or technical information described in this document.
No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights
of Renesas Electronics or others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by
you or third parties arising from the use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control
laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas
Electronics products or the technology described in this document for any purpose relating to military applications or use by
the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and
technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited
under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: “Standard”, “High Quality”, and
“Specific”. The recommended applications for each Renesas Electronics product depends on the product’s quality grade, as
indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular
application. You may not use any Renesas Electronics product for any application categorized as “Specific” without the prior
written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for
which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way
liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an
application categorized as “Specific” or for which the product is not intended where you have failed to obtain the prior written
consent of Renesas Electronics. The quality grade of each Renesas Electronics product is “Standard” unless otherwise
expressly specified in a Renesas Electronics data sheets or data books, etc.

“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual
equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.

“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-
crime systems; safety equipment; and medical equipment not specifically designed for life support.

“Specific”: Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or
systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare
intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a
Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire
control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because
the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system
manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental
compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable
laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS
Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with
applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this
document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

www.renesas-electoronics.com

H8S, H8/300 Series C/C++
Compiler Package
Application Note

A
pplication N

ote

Rev.3.00 2005.09

Renesas Microcomputer Development
Environment System

1. These materials are intended as a reference to assist our customers in the selection of the Renesas
Technology Corp. product best suited to the customer's application; they do not convey any license
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and
algorithms represents information on products at the time of publication of these materials, and are
subject to change by Renesas Technology Corp. without notice due to product improvements or
other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or
an authorized Renesas Technology Corp. product distributor for the latest product information
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means,
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data,
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total
system before making a final decision on the applicability of the information and products. Renesas
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or
system that is used under circumstances in which human life is potentially at stake. Please contact
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when
considering the use of a product contained herein for any specific purposes, such as apparatus or
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must
be exported under a license from the Japanese government and cannot be imported into a country
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and
more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs!

Notes regarding these materials

Preface

This application note explains how to effectively create application programs that run on any of the following family of
microcomputers by using the C/C++ compiler package: H8SX, H8S/2600, H8S/2000, H8/300H, H8/300, and H8/300L.

Further details of the topics covered in this application note may be found in the following related manuals:

High-prformance Embedded Workshop 3 User’s Manual

H8S and H8/300 Series High-prformance Embedded Workshop Tutorial

H8S and H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor User's Manual

H8S and H8/300 Series Simulator Debugger User’s Manual

Hardware and Programming Manuals of each product

This application note is organized as follows:

Section 1 provides an overview and describes installation methods and the programming development procedure.

Section 2 illustrates the debugging process using various samples.

Section 3 explains the expansion functions used for user program development.

Section 4 explains HEW options.

Section 5 explains how to use the optimization feature and the optimization function for the inter-module optimizer.

Section 6 illustrates efficient programming techniques.

Section 7 illustrates the utilizing method using HEW.

Section 8 illustrates efficient C++ programming technique.

Section 9 explains how to use the Optimizing Linkage Editor.

Section 10 provides answers to questions frequently asked by the users.

The appendixes cover the following topics:

A: List of floating-point operation capabilities

B: Added Features

C: List of Limitations

D: ASCII code table

This application note mainly covers HEW3.0 and H8 Compiler Version 6.0. If operations of HEW1.2 and H8 Compiler
Version 3.0 differ, the differences are explained separately.

Symbols and Conventions used in this application note is as follows.

[]: Indicates that the enclosed item can be omitted.

(RET): Indicates the Return (Enter) key is to be pressed.

∆: Indicates one or more spaces or tabs.

Abc: Boldfaced items are to be input by the user.

<>: Items enclosed in these brackets should be specified.

…: Indicates that the immediately preceding item is specified one or more times.

H': Integer constants preceded by H' are in hexadecimal.

0x: Integer constants preceded by 0x are in hexadecimal.

[Menu->Menu Option] : The boldfaced letter and the character -> indicate a menu option.

UNIX is a registered trademark in the United States and other countries, licensed exclusively through X/Open Company
limited.

MS-DOS® is a registered trademark of Microsoft Corporation in the United States and other countries.

Microsoft® WindowsNT® operating system, Microsoft®,Windows®98 and Windows 2000 operating system,
Microsoft® WindowsMe® operating system, Microsoft® WindowsXP® operating system are registered trademarks of
Microsoft Corporation in the United States and other countries.

IBM PC is a registered trademark of International Business Machines Corporation.

Using the application note

Renesas recommends that the application note be read as follows:

Section 1Install

Start up

Execute a sample
program

Debug

Use optimization
function

Modify programs

Using H8S and H8/300 C/C++

compiler package for first time

Develop your program using an

HEW tool for first time HEW

Section 2

Section 3

Section 4

Section 5

Section 6

Section 8

Debug your program using an

HEW tool for first time HEW

Require to know details on

expansion function used for

program development

Require to know the options

Specified on the HEW screen

Change the platform from HIM

Implement an existing

microcomputer program

Improve execution speed or

reduce program size

Require to utilize HEW

Require to utilize C++

Require to utilize MISRA C Rule

Checker

Section 7

Section 10

Questions
Section 11

Use Optimizing
Linkage Editor Section 9

Contents

Section 1 Overview... 1-1
1.1 Summary ..1-1
1.2 Features ..1-2
1.3 Installation Method ..1-3

1.3.1 PC Version ..1-3
1.3.2 UNIX Version...1-4

1.4 Startup Method...1-7
1.4.1 Stating the HEW ...1-7
1.4.2 Starting the Compiler Using a Command ...1-8

1.5 Procedure for Program Development...1-9

Section 2 Procedure for Creating and Debugging a Program... 2-1
2.1 Creating a project ...2-1

2.1.1 Creating a New Workspace 1 (HEW1.2) ..2-1
2.1.2 Creating a New Workspace 2 (HEW2.0) ..2-14
2.1.3 Starting Tools from a Command Line ..2-31

2.2 Introduction of Sample Program..2-34
2.2.1 Initialization Required for ROM Programs...2-34

2.3 Debugging Using the HDI ...2-45
2.3.1 Running with HEW (1) ...2-45
2.3.2 Selecting a Target ...2-46
2.3.3 Allocating Memory Resources..2-47
2.3.4 Downloading a Load Module ...2-48
2.3.5 Operating HDI with HEW (2)...2-49
2.3.6 Displaying a Source Program ...2-51
2.3.7 Setting a Breakpoint..2-52
2.3.8 Displaying the Register Status ..2-53
2.3.9 Referencing to an External Variable ...2-54
2.3.10 ResetGo Command ...2-55
2.3.11 Referencing to a Local Variable ...2-56
2.3.12 Step-Execution of a Program ..2-56
2.3.13 Displaying Memory Contents ...2-57
2.3.14 Operating HDI with HEW (3)...2-58

2.4 Debugging Using the Simulator-Debugger..2-60
2.4.1 Setting Configuration..2-60
2.4.2 Allocating Memory Resources..2-61
2.4.3 Downloading a Sample Program ..2-62
2.4.4 Setting Simulated I/O..2-63
2.4.5 Setting Trace Information Acquisition Conditions ...2-64
2.4.6 Status Window..2-65
2.4.7 Registers Window...2-65
2.4.8 Using Trace...2-66
2.4.9 Displaying Breakpoints...2-67
2.4.10 Displaying Memory Contents ...2-68

Section 3 Compiler ... 3-1
3.1 Specifying an Interrupt Function ...3-1

3.1.1 Stack-Switching Specification ..3-2
3.1.2 Trap Instruction Return Specification...3-3

3.1.3 Interrupt Function Complete Specification...3-4
3.1.4 Vector Table Automatic Generation Functions ..3-5

3.2 Built-in Functions ..3-6
3.2.1 Setting and Referencing the Condition Code Register (CCR) ..3-7
3.2.2 Setting and Referencing an Extended Register ...3-9
3.2.3 Setting Vector Base Register ..3-10
3.2.4 Opration with Overflow (V Flag) Test ...3-11
3.2.5 Transfer Instructions ...3-12
3.2.6 Arithmetic Operation Instructions ..3-14
3.2.7 Shift Instructions...3-18
3.2.8 System Control Instructions..3-19
3.2.9 Block Transfer Instruction ..3-21
3.2.10 Block Transfer Instructions of H8SX ...3-25

3.3 Section Address Operators...3-27
3.4 C++ Language Settings..3-29

3.4.1 Setting an EC++ Class Library ...3-29
3.4.2 Changing the Initialization Method ..3-30
3.4.3 Changing a Structure Boundary Alignment..3-31

3.5 New Expansion Functions of Compiler Ver.4.0 ..3-33
3.5.1 Vector Table Automatic Generation Functions ..3-33
3.5.2 Specifying the Number of Parameter-Passing Registers...3-34
3.5.3 Even Byte access Specification Features ..3-35

3.6 New Expansion Functions of Compiler Ver.6.0 ..3-36
3.6.1 Bit Field Order Specification ..3-36

3.7 New Expansion Functions of Compiler Ver.6.1 ..3-37
3.7.1 legacy=v4..3-37
3.7.2 cpuexpand=v6...3-37
3.7.3 Enabling Register Declarations...3-38
3.7.4 Specifying Absolute Addresses of Variables..3-40
3.7.5 Inter-file Inline Expansion ..3-41
3.7.6 Division of Optimizing Ranges ..3-42

3.8 Features of H8SX...3-43
3.8.1 Address Space...3-43
3.8.2 Specifying 8-bit Absolute Address Space...3-44
3.8.3 Switching Vector Table Address ..3-48

Section 4 HEW ... 4-1
4.1 Specifying Options in HEW1.2 ...4-3

4.1.1 C/C++ Compiler Options..4-3
4.1.2 Assembler Options..4-10
4.1.3 Inter-Module Optimizer Options ..4-16
4.1.4 S-Type Converter Options ..4-23
4.1.5 Librarian Options..4-24

4.2 Specifying Options in HEW2.0 or Later..4-25
4.2.1 C/C++ Compiler Options..4-25
4.2.2 Assembler Options..4-37
4.2.3 Optimizing Linkage editor Options ..4-43
4.2.4 Standard Library Generator Options...4-53
4.2.5 CPU Options ...4-63

4.3 Building Existing Files with HEW ..4-65

Section 5 Using the Optimization Functions.. 5-1
5.1 Optimization for Size...5-5

5.1.1 Default Compilation..5-5
5.1.2 Without Optimization Specification ...5-5
5.1.3 Optimization Tuning...5-5
5.1.4 Using the Inter-Module Optimization Features ..5-8
5.1.5 Selecting Expansion Functions ...5-10
5.1.6 Using CPU-Specific Instructions ..5-13

5.2 Optimization for Speed ..5-18
5.2.1 Specifying the SPEED Option ..5-18
5.2.2 Tuning the Optimization Options..5-19
5.2.3 Using the Inter-Module Optimization Features ..5-21
5.2.4 Selecting Expansion Functions ...5-23
5.2.5 Using the Inline Expansion Features...5-24
5.2.6 Using CPU-Specific Instructions ..5-25

5.3 Combination of Size and Speed Efficiency..5-27
5.4 Details of Optimization Functions ...5-28

5.4.1 Using 1-Byte enum Type ..5-30
5.4.2 Extended Interpretation of Multiplication/Division Specifications ..5-31
5.4.3 Specifying the Number of Parameter-Passing Registers...5-33
5.4.4 Increasing the Number of Variable-Allocation Registers ...5-35
5.4.5 Optimization of External Variables ..5-36
5.4.6 Block Transfer Instruction ..5-38
5.4.7 speed Option ...5-39
5.4.8 Allocating Registers to Global Variables..5-52
5.4.9 Controlling Output of Register Save/Restore Codes at Function Entry/Exit Points5-54
5.4.10 Specifying Inline Expansion of Functions ..5-56
5.4.11 Using 8-Bit Absolute Address Area..5-58
5.4.12 Using 16-Bit Absolute Address Area..5-60
5.4.13 Using Indirect Memory Format ..5-62
5.4.14 Using Extended Indirect Memory Format ..5-64
5.4.15 Specifying 2byte pointer ...5-66
5.4.16 Boundary alignment value and boundary alignment...5-68
5.4.17 Explanation of Inter-Module Optimization Items...5-71
5.4.18 Disable of Inter-Module Optimization..5-75

Section 6 Efficient Programming Techniques .. 6-1
6.1 Type Declarations ..6-3

6.1.1 Using Byte Data Types (char/unsigned char) ...6-3
6.1.2 Using Unsigned Variables ..6-4
6.1.3 Suppressing Redundant Type Conversions...6-6
6.1.4 Using the const Qualifier ..6-7
6.1.5 Using Consistent Variable Sizes ...6-8
6.1.6 Specifying In-File Functions as static Functions ..6-9

6.2 Operations ..6-11
6.2.1 Unifying Common Expressions ..6-11
6.2.2 Improving the Condition Determination...6-12
6.2.3 Condition Determination Using Substitution Values..6-14
6.2.4 Using a Suitable Algorithm...6-15
6.2.5 Using Formulas...6-17
6.2.6 Using Local Variables...6-18
6.2.7 Assigning an f to float-Type Constantss ...6-20
6.2.8 Specifying Constants in Shift Operations ...6-22
6.2.9 Using Shift Operations..6-23
6.2.10 Unifying Consecutive ADD Instructions ..6-25

6.3 Loop Processing...6-26
6.3.1 Selecting a Loop Counter..6-26
6.3.2 Selecting a Repeat Control Statementt..6-28
6.3.3 Moving Invariant Expression from the Inside to the Outside of a Loop...6-29
6.3.4 Merging Loop Conditions...6-31

6.4 Pointers ..6-32
6.4.1 Using Pointer Variables ..6-32

6.5 Data Structures...6-34
6.5.1 Ensuring Data Compatibility ..6-34
6.5.2 Techniques for Data Initialization...6-36
6.5.3 Unifying the Initialization of Array Elements ..6-37
6.5.4 Passing Parameters as a Structure Address...6-39
6.5.5 Assigning Structures to Registers ...6-40

6.6 Functions..6-42
6.6.1 Improving the Program Location in Which Functions Are Defined...6-42
6.6.2 Macro calls..6-44
6.6.3 Declaring a Prototype ...6-45
6.6.4 Optimization of Tail Recursions ...6-47
6.6.5 Improving the Way Parameters Are Passed..6-48

6.7 Branches...6-50
6.7.1 Rewriting switch Statements as Tables...6-50
6.7.2 Coding a Program in Which Case Statements Jump to the Same Label ...6-52
6.7.3 Branching to a Function Coded Directly below a Given Statement ...6-54

Section 7 Using HEW... 7-1
7.1 Builds ...7-2

7.1.1 Regenerating and Editing Automatically Generated Files ..7-2
7.1.2 Makefile Output..7-3
7.1.3 Makefile Input...7-4
7.1.4 Creating Custom Project Types ..7-6
7.1.5 Multi-CPU Feature..7-9
7.1.6 Networking Feature ..7-11
7.1.7 Converting from Old HEW Version ...7-14
7.1.8 Converting a HIM Project to a HEW Project..7-16
7.1.9 Add Supported CPUs..7-19

7.2 Simulations ..7-20
7.2.1 Pseudo-interrupts ..7-20
7.2.2 Convenient Breakpoint Functions...7-21
7.2.3 Coverage Feature ..7-25
7.2.4 File I/O..7-28
7.2.5 Debugger Target Synchronization ..7-30
7.2.6 How to Use Timers ...7-33
7.2.7 Examples of Timer Usage...7-35
7.2.8 Reconfiguration of Debugger Target ..7-38

7.3 Call Walker ..7-39
7.3.1 Making Stack Information File ...7-39
7.3.2 Starting Call Walker ...7-40
7.3.3 File Open and Call Walker Window...7-41
7.3.4 Editing the Stack Information File..7-45
7.3.5 Stack Area Size of Assembly Program ...7-47
7.3.6 Merging Stack Information...7-48
7.3.7 Other Functions...7-50

Section 8 Efficient C++ Programming Techniques .. 8-1
8.1 Initialization Processing/Post-Processing...8-2

8.1.1 Initialization Processing and Post-Processing of Global Class Object..8-2
8.2 Introduction to C++ Functions ...8-4

8.2.1 How to Reference a C Object ...8-4
8.2.2 How to Implement new and delete..8-5
8.2.3 Static Member Variable ..8-6

8.3 How to Use Options...8-8
8.3.1 C++ Language for Embedded Applications..8-8
8.3.2 Run-time Type Information ..8-9
8.3.3 Exception Handling Function ...8-12
8.3.4 Disabling Startup of Prelinker...8-13

8.4 Advantages and Disadvantages of C++ Coding...8-13
8.4.1 Constructor (1) ..8-14
8.4.2 Constructor (2) ..8-15
8.4.3 Default Parameter ...8-17
8.4.4 Inline Expansion ...8-18
8.4.5 Class Member Function ..8-18
8.4.6 operator Operator ...8-21
8.4.7 Overloading of Functions..8-23
8.4.8 Reference Type ...8-25
8.4.9 Static Function ..8-26
8.4.10 Static Member Variable ..8-29
8.4.11 Anonymous union ...8-32
8.4.12 Virtual Function ..8-33

Section 9 Optimizing Linkage Editor ... 9-1
9.1 Input/Output Options ...9-2

9.1.1 Input Options ..9-2
9.1.2 Output Options..9-5

9.2 List Options..9-7
9.2.1 Symbol Information List...9-7
9.2.2 Symbol Reference Count ..9-8
9.2.3 Cross-Reference Information..9-9

9.3 Effective Options ...9-10
9.3.1 Output to Unused Area ...9-10
9.3.2 End Code of S Type File...9-14
9.3.3 Debug Information Compression..9-14
9.3.4 Link Time Reduction ..9-15
9.3.5 Notification of Unreferenced Symbol...9-16
9.3.6 Reduce Empty Areas of Boundary Alignment..9-16

9.4 Optimize Options ...9-18
9.4.1 Optimization at Linkage ...9-18
9.4.2 Unifies Constants/Strings..9-19
9.4.3 Eliminates Unreferenced Variables/Functions..9-20
9.4.4 Uses Short Absolute Addressing Mode ..9-22
9.4.5 Optimizes Register Save/Restore Codes ...9-23
9.4.6 Unifies Common Codes ..9-26
9.4.7 Uses Indirect Addressing Mode..9-28
9.4.8 Optimizes Branch Instructions..9-31
9.4.9 Shortens the Addressing Mode ...9-32
9.4.10 Optimization Partially Disabled..9-34
9.4.11 Confirm Optimization Results ..9-35

Section 10 MISRA C.. 10-1
10.1 MISRA C ...10-1

10.1.1 What Is MISRA C?...10-1
10.1.2 Rule Examples ..10-1
10.1.3 Compliance Matrix ...10-2
10.1.4 Rule Violations ...10-3
10.1.5 MISRA C Compliance..10-3

10.2 SQMlint ...10-3
10.2.1 What Is SQMlint? ...10-3
10.2.2 Using SQMlint ..10-5
10.2.3 Viewing Test Results ..10-5
10.2.4 Development Procedures ..10-6
10.2.5 Supported Compilers ..10-6

Section 11 Q & A ... 11-1
11.1 C/C++ Compiler ..11-2

11.1.1 How to Change Character String Assignment Destinations ...11-2
11.1.2 Failure to Identify 1-bit Data ..11-3
11.1.3 Startup from DOS Screen ...11-4
11.1.4 Runtime Routine Specifications and Execution Speed ...11-5
11.1.5 H8 Family Object Compatibility...11-9
11.1.6 Questions on Host Machines and OSes ..11-10
11.1.7 Failure in C Source-Level Debugging ..11-10
11.1.8 Warning Message Displayed at Inline Expansion ..11-12
11.1.9 Output of "Function not optimized"..11-13
11.1.10 How to Specify Include Files..11-13
11.1.11 Program Coding Using Japanese Fonts ..11-14
11.1.12 Output of "Illegal Value in Operand" from the Cross Assembler...11-16
11.1.13 Deletion of Large Amount of Codes by Optimization..11-17
11.1.14 How to View Values of Local Variables at Debugging..11-18
11.1.15 Regarding Optimization Options ..11-19
11.1.16 Failure to Pass Function Parameters ...11-19
11.1.17 Failure at Bit Operation in Write-Only Register...11-20
11.1.18 Notes on Linking with Assembly Language Programs...11-21
11.1.19 How to Check Coding Which May Cause Incorrect Operation..11-22
11.1.20 Comment Coding..11-23
11.1.21 How to Specify Options for Each File ..11-24
11.1.22 How to Build Programs When the Assembler is Embedded ..11-25
11.1.23 Output of Syntax Errors at Linkage ..11-27
11.1.24 C++ Language Specifications ...11-27
11.1.25 How to View Source Programs after Pre-Processor Expansion..11-28
11.1.26 How to Output Save/Restore Codes for MACH or MACL Register ..11-29
11.1.27 The Program Runs Correctly on the ICE but Fails When Installed on a Real Chip11-30
11.1.28 How to Use C language programs Developed for SH Microcomputers ...11-30
11.1.29 How to Modify Global Options ..11-31
11.1.30 Optimizations That Cause Infinite Loops ...11-32
11.1.31 Read/write Instructions for Bit Fields ...11-34
11.1.32 Common Invalid Instruction Exceptions That Occur
 When Programs Are Run for an Extended Period of Time...11-35
11.1.33 Failure at Integer Multiplication ...11-36

11.2 Optimizing Linkage Editor ..11-37
11.2.1 Output of "Undefined External Symbol" ..11-37
11.2.2 Output of "Relocation Size Overflow" ...11-38

11.2.3 How to Run Programs in RAM...11-39
11.2.4 Fixing Symbol Addresses in Certain Memory Areas for Linking ..11-43
11.2.5 How to Implement Overlay...11-45
11.2.6 How to Specify Output of Undefined Symbol Error...11-47
11.2.7 Unify Output Forms of S Type File ..11-47
11.2.8 Dividing an Output File ..11-47
11.2.9 Output File Format of Optimizing Linkage Editor ...11-48
11.2.10 How to Calculate Program Size (ROM, RAM) ..11-49
11.2.11 Output of "Section Alignment Mismatch" ...11-50

11.3 Library Generator...11-51
11.3.1 Reentrant and Standard Libraries..11-51
11.3.2 Like to Use Reentrant Library Function in Standard Library File ..11-56
11.3.3 There Is No Standard Library File (H8C V4 or Later)..11-56
11.3.4 Warning Message On Building Standard Library...11-57
11.3.5 Size of Memory Used as Heap..11-58
11.3.6 How to Reduce ROM Size for I/O Libraries...11-58
11.3.7 How to Edit Library File...11-59

11.4 HEW ..11-61
11.4.1 Failure to Display Dialog Menu..11-61
11.4.2 Linkage Order of Object Files...11-61
11.4.3 Excluding a Project File..11-63
11.4.4 Specifying the Default Options for Project Files ..11-64
11.4.5 Changing Memory Map..11-64
11.4.6 How to Use HEW on Network ...11-65
11.4.7 Limitations on File and Directory Names Created in HEW..11-65
11.4.8 Failure of Japanese Font Display with the HEW Editor or HDI...11-65
11.4.9 How to Convert Programs from HIM to HEW ...11-67
11.4.10 I Want to Use an Old Compiler (Tool Chain) in the Latest HEW. ...11-67

Appendix A Lists of Floating-Point Arithmetic Operation Performance..................................... A-1
A. Floating-Point Operation Performance ..A-1
A.1 Single-Precision Floating-Point Operation Performance ...A-1

A.1.1 Single-Precision Floating-Point Operation Performance (H8/300,H8/300H,H8S/2600)......................A-1
A.1.2 Single-Precision Floating-Point Operation Performance (H8SX) ..A-4

A.2 Double-Precision Floating-Point Operation Performance..A-7
A.2.1 Double-Precision Floating-Point Operation Performance (H8/300,H8/300H,H8S/2600)A-7
A.2.2 Double-Precision Floating-Point Operation Performance (H8SX)...A-10

Appendix B Added Features ... B-13
B.1 Features Added between Ver. 2.0 and Ver. 3.0..B-13

B.1.1 Addition of Embedded Extended Functions ...B-13
B.1.2 Additional and Improved Functions..B-13
B.1.3 Modification of Language Specifications ...B-14

B.2 Features Added between Ver. 3.0 and Ver. 4.0..B-17
B.2.1 Common Additions and Improvements ..B-17
B.2.2 Added and Improved Compiler Functions ..B-18
B.2.3 Added and Improved Functions for the Assembler...B-21
B.2.4 Added and Improved Functions for the Optimizing Linkage Editor ..B-21

B.3 Added and Improved Features in Upgrade from Ver. 4.0 to Ver. 6.0 ...B-22
B.3.1 Added and Improved Compiler Functions ..B-22
B.3.2 Notes on Optimizing Features of the Compiler Ver. 6.0...B-24
B.3.3 Compatibility between Ver. 4.0 and Ver. 6.0..B-28

B.4. Added and Improved Features in Upgrade from Ver. 6.0 to Ver. 6.1 ...B-29
B.4.1 Added and Improved Compiler Functions..B-29
B.4.2 Notes on Optimizing Features of the Compiler Ver. 6.01 ..B-30
B.4.3 Compatibility between Ver. 4.0 and Ver. 6.01 ...B-33

Appendix C Notes on Version Upgrade ... C-35
C.1 Guaranteed Program Operation ...C-35
C.2 Compatibility with Earlier Version..C-36

Appendix D List of Limitations ... D-37

Appendix E ASCII Code Table .. D-39

Section 1 Overview

Rev.3.00 2005.09.12 1-1
REJ05B0464-0300

Section 1 Overview

1.1 Summary

The H8S and H8/300 C/C++ Compiler enables effective creation in either C or C++ language of programs which takes
advantage of functions and performance of the Renesas Technology H8S and H8/300 series of single-chip microcomputers
for embedded applications.

This compiler supports the following CPUs:

• H8SX Series (H8SX)

• H8S/2600 Series (H8S/2600)

• H8S/2000 Series (H8S/2000)

• H8/300H Series (H8/300H)

• H8/300 Series (H8/300)

• H8/300L Series (H8/300L)

• AE5 Series (AE5)

This document explains procedures for creating application programs using this C/C++ compiler.

This document mainly explains the Compiler Version 6.0 (HEW2.0 or later) and also explains the previous Version 3.0
(HEW1.2) where it is necessary.

Section 1 Overview

Rev.3.00 2005.09.12 1-2
REJ05B0464-0300

1.2 Features

The H8S and H8/300 C/C++ compiler offers the following significant features.

Windows® Version

The H8S and H8/300 C/C++ compiler of Windows® version supports the integrated environment

HEW (High-performance Embedded Workshop) to allow the user to develop the programs thoroughly on the Windows®
display.

The HEW provides the following features.

• Project generator

Automatically generates template software projects for each CPU.

• Combination interface with version management tools

Supports the interface with the version management tools provided by the third party.

• Hierarchy project support

Can define multiple subprojects in a project and hierarchically manage them.

• Network support

Provides development environment under WindowsNT® CSS.

UNIX Version

The H8S and H8/300 C/C++ compiler of UNIX version supports the integrated development manager (IDM) to allow the
user to develop the programs from editing to debugging.

The IDM provides the following features.

• The editor can be started up when an error occurs during compilation or assembly.

(A cursor appears on the source code line where an error occurs.)

• The program development can be automatically executed from assemble/compilation, object module linkage, to
loading to the debugger.

• Debugging at source level is supported using the graphical user interface.

Section 1 Overview

Rev.3.00 2005.09.12 1-3
REJ05B0464-0300

1.3 Installation Method

1.3.1 PC Version

This section describes the operating environment for the Windows®98, Windows®Me, WindoswsNT®4.0,
Windows®2000 or Windows®XP compatible H8S and H8/300 C/C++ Compiler package and the procedures for installing
it on a Windows®98, Windows®Me, WindowsNT®4.0, Windows®2000, or Windows®XP system.

(1) Operating environment

Host computer: IBM-PC compatible machine

(CPU: CPU capable of running Windows®98, Windows®Me, WindowsNT®4.0, Windows®2000, or Windows®XP)

OS: Windows®98, Windows®Me, WindowsNT®4.0, Windows®2000, or Windows®XP

Memory size: 128 MB or more recommended

Hard disk capacity for the integrated development environment: 100 MB or more free disk space required (for full
installation)

Acrobat® Reader: 10 Mbytes or more free disk space required

Display: SVGA or better

I/O device: CD-ROM drive

Others: Mouse or other pointing devices

Perform the following procedures to install the compiler on your PC.
Before commencing the installation procedure, be sure to close all applications:

(a) Installing the H8S and H8/300 C/C++ compiler package:

(i) Insert the CD-ROM for the compiler package into the CD-ROM drive.
(Here it is assumed that the CD-ROM drive is drive D.)

(ii) From the Windows® Start menu, click on [Run …].

(iii)In the [Run…] dialog box, specify Setup.EXE that is in the root directory of the CD-ROM (example: D:\Setup.EXE),
and then click [OK].

(iv)Follow the onscreen installation instructions.

Notes on the installation of the Integrated Development Environment:

Install the Integrated Development Environment in a directory path consisting solely of half-width alphanumeric
characters and half-width underlines. Use a directory path that does not contain full-width characters or spaces.

(i) Be careful not to install HEW (High-performance Embedded Workshop) in the same directory as HIM (Hitachi
Integration Manager) .

(ii) Even when using it on a network, install High-performance Embedded Workshop on each PC drive. The tool chain, the
librarian interface, the Hitachi debugging interface, and the online manual can be installed on a network drive. For
details on procedure to define the tool chain or library interface installed on another PC on your PC, refer to section 5,
Tools Administration, in the High-performance Embedded Workshop V.4.00 User's Manual.

(iii)If [High-performance Embedded Workshop] fails to appear in the [Programs] on the Windows® Start Menu after
HEW has been installed, restart Windows®.

Section 1 Overview

Rev.3.00 2005.09.12 1-4
REJ05B0464-0300

(iv)If the installer terminates abnormally during installation under Windows®98, restart the computer and reinstall.

(b) Installing the Acrobat® Reader:

(i) Insert the CD-ROM for the compiler package into the CD-ROM drive. (Here it is assumed that the CD-ROM drive is
drive D.)

(ii) From the Windows® Start menu, click on [Run …].

(iii)Specify in the [Run …] dialog box either Ar505jpn.exe (Japanese) in the [PDF_READ\Japanese] directory on the CD-
ROM or Ar505eng.exe (English) in the [PDF_read\English] directory (example:
D:\PDF_Read\Japanese\Ar505jpn.exe), and then click [OK].

(iv)Follow the onscreen installation instructions.

(c) Referencing the Online Manual and other documents

• If the Online Manual is installed:

Click either the Online Manual [H8S,H8/300]-English(xx xx) (English) PDF file or the Online Manual [H8S,H8/300]-
Japanese(xx xx) (Japanese) PDF file on the [High-performance Embedded Workshop] menu in the [Programs] on the
Windows® Start menu, where (xx xx) denotes the year and the month.

(Example: Online Manual [H8S,H8/300]-Japanese(01 10))

• If the Online Manual is not installed:

(i) Insert the CD-ROM for the compiler package into the CD-ROM drive. (Here it is assumed that the CD-ROM drive is
drive D.)

(ii) From the Windows® Start menu, click on [Run …].

(iii)Specify in the [Run …] dialog box either jH8_xxxx.PDF (Japanese) or eH8_xxxx.PDF (English) (where xxxx denotes
the year and the month) in the [Manuals] directory on the CD-ROM (example:D:\Manuals\jH8_0110.PDF), and then
click [OK].

1.3.2 UNIX Version

The procedure for installing the H8S and H8/300 C/C++ compiler on a UNIX system is described below.

Caution: Do not use spaces in the name for the installation directory.

(1) Recording medium

The compiler is distributed on a single CD-ROM.

(2) Installation Method

Please use the following procedure to install the compiler. Wherever (RET) appears in the instructions, the Enter (Return)
key is to be pressed.

(a) Installing the compiler package

The procedure for compiler package installation is as follows.

(i) Creating a path for the compiler package

Create a path for storage of the compiler files, using any arbitrary name.
(Hereinafter, installation directory is assumed to be /usr/cross_soft.)

 % mkdir∆∆∆∆/usr/cross_soft (RET)

Section 1 Overview

Rev.3.00 2005.09.12 1-5
REJ05B0464-0300

(ii) Mounting the CD-ROM

Mount the CD-ROM as indicated below. If mounting is performed automatically, the following command is not
required.

[For Solaris]

 % mount∆∆∆∆–r∆∆∆∆–F∆∆∆∆hsfs∆∆∆∆/dev/dsk/c0t6d0s2/h8s_sparc∆∆∆∆/cdrom/h8s_sparc (RET)

[For HP-UX]

 % mount∆∆∆∆/dev/dsk/c201d2s0∆∆∆∆/cdrom (RET)

(iii)Copying the compiler package

Move to the newly created path, and then decompress the files for the SuperH RISC engine C/C++ compiler package
from the CD-ROM to the path created in (i) above.

[For Solaris]

 % cd∆∆∆∆/usr/cross_soft (RET)
 % tar∆∆∆∆xvf∆∆∆∆/cdrom/h8s_sparc/Program.tar (RET)

[For HP-UX]

 % cd∆∆∆∆/usr/cross_soft (RET)
 % tar∆∆∆∆xvf∆∆∆∆/cdrom/"PROGRAM.TAR;1" (RET)

(iv)Changing environment settings

Environment variables and pathnames are set as follows. (Double asterisks ** indicate an appropriate value should be
specified.) For detailed on environment variables, refer to the H8S and H8/300 C/C++ Compiler User's Manual.

The following shows an example to set environment variables and pathnames for C shell.

 % setenv∆∆∆∆CH38∆∆∆∆/usr/cross_soft (RET)

Set the storage area for the system include file.

 % setenv∆∆∆∆CH38TMP∆∆∆∆/usr/tmp (RET)

Specify the directory for storing the intermediate files created by the compiler or by inter-module optimization. (Here
it is assumed to be /usr/tmp.)

If no directory is specified, a current directory is used as default.

 % setenv∆∆∆∆H38CPU∆∆∆∆****:** (RET)

Select the CPU operating mode as among 2000n, 2000a, 2600n, 2600a, 300hn, 300ha, 300, and 3001. If CPU is
selected as 2000a, 2600a, or 300ha, the size of address space can also be specified.
(Example: % setenv H38CPU 2600a:24(RET))

 % setenv∆∆∆∆HLNK_TMP∆∆∆∆/usr/tmp (RET)

Specify the directory for storing the intermediate files created by the linkage editor or by inter-module optimization.
(Here it is assumed to be /usr/tmp)

If no directory is specified, a current directory is used as default.

 % setenv∆∆∆∆HLNK_LIBRARY1∆∆∆∆/usr/cross_soft/******.lib (RET)

 % setenv∆∆∆∆HLNK_LIBRARY2∆∆∆∆/usr/cross_soft/******.lib (RET)

At linkage, a library can be input implicitly without using the LIBRARY option or subcommand option.

For details, refer to the H8S,H8S/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor User's Manual.

(v) Unmount the CD-ROM.

[For Solaris]

 % umount∆∆∆∆/cdrom/h8s_sparc (RET)

[For HP-UX]

 % umount∆∆∆∆/cdrom (RET)

Section 1 Overview

Rev.3.00 2005.09.12 1-6
REJ05B0464-0300

(b) Installing the integrated development manager and the integrated development manager definition files

(i) Load the installer from the tarfile on the CD-ROM. (This assumes that the CD-ROM driver device name is /cdrom.)

 % tar∆∆∆∆xvf∆∆∆∆/cdrom/idm.tar∆∆∆∆idm_install (RET) [For Solaris]

(ii) Start the installer.

 % idm_install (RET)

Follow the onscreen installation instructions. For details, refer to the H8S and H8/300 definition file installer.

(c) Installing the Acrobat® Reader:

The manual can be viewed from within Windows®. The software used to view the manual (the Acrobat® Reader) should
be installed on a computer running Windows®98, Windows®Me, Windows NT®4.0, Windows®2000, or Windows®XP.

Acrobat® Reader copyright © 2002 Adobe Systems Incorporated. All rights reserved.

Adobe and Acrobat are trademarks of Adobe Systems and are registered in specific jurisdictions.

The following procedure is used to execute installation. Any running applications should be terminated before proceeding
with installation.

(i) Insert the CD-ROM for the Integrated Development Environment into the CD-ROM drive. (Here it is assumed that the
CD-ROM drive is drive D.)

(ii) From the Windows® Start menu, click on [Run …].

(iii)Specify in the [Run …] dialog box either Ar40jpn.exe (Japanese) in the [PDF_READ\Japanese] directory on the CD-
ROM or Ar40eng.exe(English) in the [PDF_read\English] directory (example: D:\PDF_Read\Japanese\Ar40jpn.exe),
and then click [OK].

(iv)Follow the onscreen installation instructions.

(d) Referencing the Online Manual and other documents

• If the Online Manual is installed:

Click either the Online Manual [H8S,H8/300]-English(xx xx) (English) PDF file or the Online Manual [H8S,H8/300]-
Japanese(xx xx) (Japanese) PDF file on the [High-performance Embedded Workshop] menu in the [Programs] on the
Windows® Start menu, where (xx xx) denotes the year and the month. (Example: Online Manual [H8S,H8/300]-
Japanese(01 10))

• If the Online Manual is not installed:

(i) Insert the CD-ROM for the Integrated Development Environment into the CD-ROM drive. (Here it is assumed that the
CD-ROM drive is drive D.)

(ii) From the Windows® Start menu, click on [Run …].

(iii)Specify in the [Run …] dialog box either jH8_xxxx.PDF (Japanese) or eH8_xxxx.PDF (English) (where xxxx denotes
the year and the month) in the [Manuals] directory on the CD-ROM (example:D:\Manuals\jH8_0110.PDF), and then
click [OK].

Section 1 Overview

Rev.3.00 2005.09.12 1-7
REJ05B0464-0300

1.4 Startup Method

1.4.1 Stating the HEW

Upon completion of H8S and H8/300 C/C++ compiler package installation, the installer for the High-performance
Embedded Workshop (HEW) creates a folder named "High-performance Embedded Workshop" within the Programs
folder in the Windows® Start menu, and within this folder the program "High-performance Embedded Workshop" can be
started up.

The following Welcome! dialog box appears:

Select the desired project workspace from the above screen:

Create a new project workspace Create a new project workspace

Open a recent project workspace Open an existing workspace that has been used recently.

Browse to another project workspace Open another workspace.

By selecting [Administration], you can register or delete the system tool to be used.

Section 1 Overview

Rev.3.00 2005.09.12 1-8
REJ05B0464-0300

1.4.2 Starting the Compiler Using a Command

In this subsection, the method for executing the H8S and H8/300 C/C++ Compiler is explained, along with examples. For
details on compiler options, refer to section 2, C/C++ Compiler Operating Method, in the H8S and H8/300 Series C/C++
Compiler, Assembler, Optimizing Linkage Editor User’s Manual.

Below the basic procedures for using the compiler are explained.

(1) Starting up the compiler

This command displays a list of command input formats and compiler options on the standard output screen.

ch38 (RET)

(2) Compiling a program

The C source program test1.c is compiled.

ch38∆∆∆∆test1.c (RET)

The C++ source program test2.cpp is compiled.

ch38∆∆∆∆test2.cpp(RET)

Multiple C/C++ programs can be compiled at once.

ch38∆∆∆∆test1.c∆∆∆∆test2.cpp(RET)

(3) Specifying options

Options (goptimize, debug, show=object, allocation, etc.) are prefixed with a hyphen (-), and multiple options are
separated by spaces ((∆).

When specifying multiple suboptions, they should be separated by commas (,).

ch38∆∆∆∆-goptimize∆∆∆∆-debug∆∆∆∆-show=object,allocation∆∆∆∆test1.c (RET)

The following short-format can also be used for option specification.

ch38∆∆∆∆-g∆∆∆∆-deb∆∆∆∆-sh=o,a∆∆∆∆test1.c (RET)

When compiling multiple programs, whether the option is effective on the program differs according to the position where
the option is specified.

<Example 1: The specified option is specified for all source programs>
The option specified prior to the first source program is effective for all source program.

ch38∆∆∆∆-g∆∆∆∆-deb∆∆∆∆-sh=o,a∆∆∆∆test1.c∆∆∆∆test2.cpp (RET)

<Example 2: The option is specified separately for each program>
The option specified following the source program test2.cpp is effective only for test2.cpp.

ch38∆∆∆∆test1.c∆∆∆∆test2.cpp∆∆∆∆-deb∆∆∆∆-sh=o,a (RET)

Note: (1) The compiler distinguishes C and C++ files depending on file extensions, and –lang and lang options. For
details on file extensions, refer to section 8, File Specifications, in the H8S,H8/300 Series C/C++ Compiler,
Assembler, Optimizing Linkage Editor User’s Manual

Section 1 Overview

Rev.3.00 2005.09.12 1-9
REJ05B0464-0300

1.5 Procedure for Program Development

Figure 1.5 shows the procedure used to develop a C/C++ language program.

Software included in
the packageUser C/C++

Source file

H8S,H8/300 series
C/C++ compiler

Standard
include file

User
assembly
program

Assembly
source

program

H8S,H8/300 Series
assembler

Optimizing
linkage editor

ELF/DWARF
format converter Load

module

Relocatable
object file

Standard
library

User library

SYSROF
load module

Debugger

*1

User
Include file

Additional
Information file

Prelinker

H8S,H8/300 series
standard library generator

SYSROF
object/library

ELF
object/library

Profile
information

Stack
information

ERF/DWARF1
load module

Stack analysis tool

Called
information

Notes: : Input/output

: Initiation

 1. Assembly source programs are output depending on option

 specification.

2. Debugging information can also be added depending on option

 specification.

*2

Section 1 Overview

Rev.3.00 2005.09.12 1-10
REJ05B0464-0300

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-1
REJ05B0464-0300

Section 2 Procedure for Creating and Debugging a Program

2.1 Creating a project

Procedures for the creation of a load module vary with the particular working environment in which it is created and HEW
Version. Select your environment from the following list to appropriately create a load module.

The description in section 2.3, Debugging Using the HDI, assumes that a new project created under HEW is used.

2.1.1 Creating a New Workspace 1 (HEW1.2)

To create a new project workspace, select Create a new project workspace from the Welcome! dialog box.

Section 2.1.1Create a new project using HEW1 (HEW1.2).

Create a new project using HEW2 (HEW2.0).

Convert a HIM project to a HEW project.

Use a command line by bypassing HEW.

Create a project in HEW using existing files.

Section 2.1.2

Section 2.1.3

Section 7.1.8

Section 4.3

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-2
REJ05B0464-0300

(1) Setting the Project type

When the following screen appears, enter the desired project name in the Name field:

Then, select the Project type: column.

Project type Description

Application A project type when creating an application that includes C/C++ program files

Assembly Application A project type when creating an application that includes assembly language programs only

Demonstration Sample project type

Empty Application Empty project creation

Library Library creation project type

By clicking the [OK] button after selecting the desired project type, you can move on to the step for initializing the new
project.

The explanation below assumes that you have selected Application as a project type.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-3
REJ05B0464-0300

(2) New project - Step 1

Specify the CPU to be used and press NEXT>.

Specify the CPU series
to be used.

The corresponding CPU
names are displayed.
Select the name of the
CPU to be used.
If the desired CPU name
is not available, select
“Other”.

(3) New project - Step 2

Specify the desired global options and press NEXT>.

Select either Normal or
Advanced as the
operating mode.

When selecting the
Advanced mode, specify
the size of the address
space to be used.

 Select either the code-
optimized library or
speed-optimized library.

The standard C library
name and EC++ class
library name associated
with the specif ied
program execution
method is displayed.

Specify the number of
parameter-passing
registers.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-4
REJ05B0464-0300

The same set of global options should be used for all project files.

The following categories of global options are available:

• CPU Type

• Number of argument-passing registers

To change the global options specified in this dialog box after the new project has been initialized, the specification of the
standard library to be linked should be modified.

For details on how to change the global options and standard library, refer to section 11.2.1, Output of "Undefined
External Symbol".

(4) New project - Step 3

On this screen, specify the contents of an initialization program and press NEXT>.

Specify the maximum
number of f iles to be
opened concurrently.

Check this option w hen
using the memory
management library. *1
 Specify the size of the

memory to be used as a
heap area. *3

Specify whether the main
function to be called by
the initialization function is
to be generated. If the
main function is already
created, remove the check
mark. *2

Check this option w hen
using the f ile I/O library.

Specify whether a definition f ile is
to be used to access the internal
peripheral function for I/O ports. If
not, remove the check mark.

Specify whether a
hardware setup function
is to be generated.
If one is to be generated,
specify whether it is an
assembly-language or C-
language function.

Notes: 1. Available memory library functions are malloc, realloc, calloc, and new.

2. On this dialog box, a main function should not be created. In Step (9), a sample program that contains the main
function is added as a preparation for section 2.3, Debugging Using an HDI.

3. The required size for a heap area can be calculated as follows:

Check this option when
using the file I/O library.

Check this option when
using the memory
management library.*1

Specify whether the main
function to be called by
the initialization function is
to be generated. If the
main function is already
created, remove the check
mark.*2

Specify whether a definition file is
to be used to access the internal
peripheral function for I/O ports. If
not, remove the check mark.

Specify the maximum
number of files to be
opened concurrently.

Specify the size of the
memory to be used as a
heap area.*3

Specify whether a
hardware setup function
is to be generated.
If one is to be generated,
specify whether it is an
assembly-language or C-
language function.

(Heap area size) ≥
 (Area size allocated by memory management library) + (Management area size)

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-5
REJ05B0464-0300

The management area sizes are as follows:

CPU Type Management Area Size

H8S/2600 ADV,H8S/2000 ADV, H8/300H ADV 16 bytes

H8S/2600 NRM,H8S/2000 NRM,H8/300H NRM,H8/300 8 bytes

ADV: advanced mode; NRM: normal mode

To modify the heap area size specified in this section after the new project has been initialized, refer to section 2.2.1 (2),
Allocating a heap area.

(5) New project - Step 4

Set the stack to be used and press NEXT>.

Specify the initial
value for the stack
pointer (SP).

Specify the stack area
size.

The size of the stack to be used can be determined as follows:

Calculate the size of the stack area for the deepest nest of calls in the call relationships among the functions. The
maximum value obtained in this manner is the stack area size.

For example, if the deepest function call nest is the following, sum all the stack sizes:

The stack size in this case will be 60 bytes.

The stack sizes for functions are output when symbol allocation information output is specified as part of a specification
for object list file output.

main function (stack size: 10 bytes) → func function (20 bytes) → sub function (30 bytes)

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-6
REJ05B0464-0300

For a runtime routine, refer to the "List of Stack Sizes Used by the Standard Library" in the manual supplied with the H8S
and H8/300 Series C/C++ Compiler.

When modifying the stack size specified in this section after the new project has been initialized, refer to section 2.2.1 (8),
Setting the stack size.

(6) New project - Step 5

Specify the settings for a vector table and press NEXT>.

Specify whether a
vector table
definition f ile is to be
output.

Displays the handler
names that are
output to the vector
table.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-7
REJ05B0464-0300

(7) New project - Step 6

Displays the files created by the project generator. Press FINISH to go to step 7.

For details on the files created in this section, refer to section 2.2, Introduction of Sample Program.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-8
REJ05B0464-0300

(8) New project - Step7

Specifying “Finish” causes the display of the following screen:

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-9
REJ05B0464-0300

(9) Adding a main file

Add the cmain.c file for main processing to the project that has been completed.

In [Project Add Files…], specify the HEW directory \Tools\HITACHI\H8\3_0a_0\sample \cmain.c.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-10
REJ05B0464-0300

(10) Setting options

Select H8S, H8/300 C/C++ Compiler… from the option menu.

Specify the compiler options for cmain.c.

On this dialog box, specify the output of an inter-module optimizer add-on information file by checking the item indicated
below:

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-11
REJ05B0464-0300

In the next step, select [Options H8S,H8/300 IM Optlinker…] to specify options for the inter-module optimizer.

First, in the Optimize tab, specify All to enable all inter-module optimization features.

On this tab, specify the output of an optimization information list here.

Also specify here the output of symbol optimization information and the number of symbol references to this list.

In the next step, specify in the section tab the way files are to be assigned at linkage.

Here, change the address of section to which section B is assigned to H'00FF00. First click the Address field, and press the
Modify button to specify the address.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-12
REJ05B0464-0300

The address is modified as shown below.

In the next step, in the Verify tab, create CPU information to check the CPU assignment.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-13
REJ05B0464-0300

Selecting the Check in the CPU information check field allows the user to check the CPU information.

Pressing the [Add…] button brings up a dialog box, on which the ROM and RAM areas can be specified as shown below.

(11) Executing the building process

Execute the building process to generate a load module.

A build can be executed by pressing here on the command button.

Double-click on the source f ile name to
initiate the editor.

Build Results are displayed in the output
window.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-14
REJ05B0464-0300

(12) Verifying the generated files

The following files are generated upon completion of the building process:

A directory with the same name as the project name is created under the project directory. The absolute load module is
generated under the name format sample.abs in the debug directory in the new directory.

A map file and an optimization information list file generated during the building process are stored in the same directory,
and these files can be opened and checked by clicking on [File→Open].

The map file is generated under the name sample.map; the optimization information list file is generated under the name
sample.lop.

2.1.2 Creating a New Workspace 2 (HEW2.0)

To create a new project workspace, select Create a new project workspace from the Welcome! dialog box.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-15
REJ05B0464-0300

(1) Setting the Project type

When the following screen appears, enter the desired project name in the Name field:

Then, select the Project type: column.

Project type Description

Application A project type when creating an application that includes C/C++ program files

Assembly Application A project type when creating an application that includes assembly language programs only

Demonstration Sample project type

Empty Application Empty project creation

Library Library creation project type

In this dialog box, set a workspace name (when creating a new workspace project, the project name is the same by
default), CPU type and a project type.

If you enter “sample” in the [Workspace Name] field as the workspace name, the [Project Name] will be “sample” and the
[Directory] will also be “c:\hew2\ sample.”To change the project name, directly type a name in the [Project Name] field.
To change the directory to be used as the workspace, select the Directory by clicking [Browse...] or directly enter a
directory path in the [Directory] field.

By clicking the [OK] button after selecting the desired project type, you can move on to the step for initializing the new
project.

The explanation below assumes that you have selected Application as a project type.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-16
REJ05B0464-0300

(2) New project – 1/9

Specify the CPU to be used and press NEXT>.

Clicking on the [OK] button in New Project Worksapce dialogue box starts up the project generator. First, select the CPU
to be used. The type of CPU to be used ([CPU Type]) is classified for each CPU series ([CPU Series:]). Select the CPU
type for the program to be developed because the files to be generated differ depending on the selection of [CPU Series:]
and [CPU Type:]. If the desired CPU type is not available, select the CPU type with similar hardware specification or
“other”.

Click NEXT> to display the following screen.

Click <Back to display the previous screen or the previous dialog box after this screen.

Click Finish to open the Summary dialog box.

Click Cancel to retrieve New Workspace dialog box.

The functions of <Back, NEXT>, Finish, and Cancel are common on this wizard dialogue box.

Specify the CPU series

to be used

The corresponding CPU

names are displayed.

Select the name of the CPU

to be used.

If the desired CPU name is

not available select “Other”.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-17
REJ05B0464-0300

(3) New project – 2/9

Specify the desired global options and press NEXT>.

On this screen, set the options common to all the project files. Items for setting options may be changed according to the
CPU series that has been selected on the Step 1 screen. If you change the options after the project has been created, you
can do it on [CPU Tab] of [Options->H8S,H8/300 Standard Toolchain] in HEW.

Select either Normal or
Advanced as the
operating mode.

When selecting the Advanced
mode, specify the size of the
address space to be used. Select either the code –

optimized library or speed-
optimized library.

Specify the range of
the stack address.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-18
REJ05B0464-0300

(4) New project – 3/9

On this screen, specify the contents of an initialization program and press NEXT>.

Check this option w hen using
the f ile I/O library.

Check this option w hen
using the memory
management library. *1

Specify whether the main
function to be called by the
initialization function is to be
generated. If the main function
is already created, remove the
check mark.

Specify whether a definition f ile is to
be used to access the internal
peripheral function for I/O ports.
If not, remove the check mark.

Specify the maximum
number of f iles to be
opened concurrently.

Specify the size of the
memory to be used as a
heap area. *2

Specify whether a hardware
setup function is to be
generated.
If one is to be generated,
specify whether it is an
assembly-language or C-
language function.

Notes: 1. Available memory library functions are malloc, realloc, calloc, and new.

2. The required size for a heap area can be calculated as follows:

The management area sizes are as follows:

CPU Type Management Area Size

H8S/2600 ADV,H8S/2000 ADV, H8/300H ADV 16 bytes

H8S/2600 NRM,H8S/2000 NRM,H8/300H NRM,H8/300 8 bytes

ADV: advanced mode; NRM: normal mode

To modify the heap area size specified in this section after the new project has been initialized, refer to section 2.2.1 (2),
Allocating a heap area.

Check this option when using
the file I/O library.

Check this option when
using the memory
management library.*1

Specify whether the main
function to be called by the
initialization function is to be
generated. If the main function
is already created, remove the
check mark.

Specify whether a definition file is to
be used to access the internal
peripheral function for I/O ports.
If not, remove the check mark.

Specify the maximum
number of files to be
opened concurrently.

Specify the size of the
memory to be used as a
heap area.*2

Specify whether a hardware
setup function is to be
generated.
If one is to be generated,
specify whether it is an
assembly-language or C-
language function.

(Heap area size) ≥
 (Area size allocated by memory management library) + (Management area size)

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-19
REJ05B0464-0300

(5) New project – 4/9

On this screen, determine a standard library organization to be used by the C/C++ compiler. If you change the standard
library organization after the project has been created, you can do it on [Standard Library Tab] of [Options->H8S,H8/300
Standard Toolchain...] in HEW.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-20
REJ05B0464-0300

(6) New project – 5/9

Set the stack to be used and press NEXT>.

On this screen, set the stack area. Initialized values to be set as stack area vary with [CPU Type:] on the Step 1 screen.

If you change the stack size after the project has been created, you can do it on [Project->Edit ProjectConfiguration] in
HEW.

The size of the stack to be used can be determined as follows:

Calculate the size of the stack area for the deepest nest of calls in the call relationships among the functions. The
maximum value obtained in this manner is the stack area size.

For example, if the deepest function call nest is the following, sum all the stack sizes:

The stack size in this case will be 60 bytes.

The stack sizes for functions are output when symbol allocation information output is specified as part of a specification
for object list file output.

The maximum space of stack area to be used by C/C++ programs and standard library can be calculated by stack analysis
tools when stack information file is output by specifying the stack option of Optimizing Linkage Editor. For details on
how to use stack analysis tools, refer to section 6, Operating Stack Analysis Tool, in the H8S, H8/300 Series C/C++
Compiler, Assembler, Optimizing Linkage Editor User’s Manual.

Specify the initial value
for The stack pointer(SP).

Specify the stack area
size.

main function (stack size: 10 bytes) → func function (20 bytes) → sub function (30 bytes)

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-21
REJ05B0464-0300

(7) New project – 6/9

Specify the settings for a vector table and press NEXT>.

To modify Handler Program, select the Handler Program name, click on it, and then enter. Note that the reset program
(reserprg.c) is not generated once the Handler Program is modified.

Specify the initial value for
The stack pointer(SP).

Displays the handler
names that are output to
the vector table

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-22
REJ05B0464-0300

(8) New project – 7/9

Specify the debugger target and press NEXT>.

Select (Check) the debugger target to be used from [Target:]. You can select either no debugger target or multiple
debugger targets.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-23
REJ05B0464-0300

(9) New project – 8/9

Set the options for the selected debugger target and press NEXT>.

By default, the HEW creates two configurations, “Release” and “Debug”. When a target for debugging is selected, the
HEW creates another configuration. (The name of the target is included.) The name of the configuration can be modified
in [Configuration name:]. Options to do with the target for debugging are displayed under [Detail options:]. To change the
settings, select [Item] and then click [Modify]. When items for which modification is not possible are selected, [Modify]
remains grayed even if [Item] is selected.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-24
REJ05B0464-0300

(10) New project – 9/9

Displays the files created by the project generator. Then press Finish.

For details on the files created in this section, refer to section 2.2, Introduction of Sample Program.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-25
REJ05B0464-0300

(11) New project - Summary

Clicking [Finish >] on the Step 9 screen causes the project generator to display information on the projects to be generated
in the Summary dialog box. Check them and then click [OK].

The information on the projects displayed in the Summary dialog box can be saved as a text file named “Readme.txt” in
the Project Directory by checking [Generate Readme.txt as a summary file in the project directory].

(12) Other

If demonstration is selected from Project Type, low-level library sample that can be used at simulator debugging will be
included. The files to be added are as follows:

• lowlvl.src (Standard I/O Sample Assembler List)

• lowsrc.c (Low-level Library Source File)

• lowsrc.h (Low-level Library Header File)

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-26
REJ05B0464-0300

(13) Setting options

Select H8S, H8/300 Standard Toolchain... from the options menu.

Specify the compiler options for sample.c.

Select [C/C++ Tab] [Category/Optimize] of [Options->H8S,H8/300 Standard Toolchain] in HEW.

On this dialog box, specify the output of an Inter-module optimizer add-on information by checking the item indicated
below:

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-27
REJ05B0464-0300

In the next step, specify All Loaded Project in the Project File List to select [Link/Library Tab] [Category/Optimize], and
specify the options for inter-module optimizer.

First, in the Optimize tab, specify All to enable all inter-module optimization features.

Also specify here to output an optimization information list on the [Link/Library Tab] [Category/List].

Also specify here the output of symbol optimization information and the number of symbol references to this list.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-28
REJ05B0464-0300

In the next step, specify in the [Link/Library Tab] [Category/Section] the way files are to be assigned at linkage.

Here, change the address of section to which section B is assigned to H’00FF0000. First click the Address field, and press
the Modify button to specify the address.

The address is modified as shown below.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-29
REJ05B0464-0300

In the next step, in the [Link/Library Tab] [Category/Verify], create CPU information to check the CPU assignment.

Selecting the Check in the CPU information check field allows the user to check the CPU information.

Pressing the [Add…] button brings up a dialog box, on which the ROM and RAM areas can be specified as shown below.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-30
REJ05B0464-0300

(14) Executing the building process

Execute the building process to generate a load module.

A build can be executed by pressing here on the command button.

Double-click on the source file
name to initiate the editor.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-31
REJ05B0464-0300

(15) Verifying the generated files

The following files are generated upon completion of the building process:

A directory with the same name as the project name is created under the project directory. The absolute load module is
generated under the name format sample.abs in the debug directory in the new directory.

A map file generated during the building process is stored in the same directory, and this file can be opened and checked
by clicking on [File→Open].

The map file is generated under the name sample.map.

2.1.3 Starting Tools from a Command Line

Tools can be started from a command line as follows:

This example uses an H8S/2600 advanced mode CPU.

In HEW1.2, sample programs are supplied in the HEW directory
¥Tools¥HITACHI\H8¥3_0a_0\sample.

No. HEW1.2 File Description

1 init.c Initialization routine

2 vectbl.c Vector table settings

3 scttbl.c Section initialization routine

4 cmain.c Main function file

5 2600a.cpu CPU information file

6 c2600a.sub Subcommand file for inter-module optimizer

Sample programs are not available with HEW2.0 or later. Therefore the sample programs of user's own make should be
prepared or the following files to be generated when creating sample project should be used as sample programs.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-32
REJ05B0464-0300

Create a sample project by selecting Demonstration as the project type setting according to section 2.1.2, Creating a New
Workspace 2 (HEW2.0).

No. HEW2.0 or later File Description

1 resetprg.c Initialization routine

2 intprg.c Vector table settings

3 dbsct.c Section initialization routine

4 main.c Main function file

5 2600a.sub(user's own make) Subcommand file

(1) Set the desired environment

• PC version

set path=<HEW install directory>\tools\hitachi\h8\v3_0a_0\bin;%path%

set CH38=<HEW install directory>\tools\hitachi\h8\v3_0a_0\include

set hlnk_linrary1=<HEW install directory>\tools\hitachi\h8\v3_0a_0\lib\c8s26a.lib

• unix version

Refer to section 1.3, Installation Method.

(2) Compile

Compile the C program files.

 ch38∆∆∆∆–cpu=2600a∆∆∆∆–debug∆∆∆∆init.c∆∆∆∆vectbl.c∆∆∆∆scttbl.c (RET)

 ch38∆∆∆∆–cpu=2600a∆∆∆∆–debug∆∆∆∆-show=allocation,object∆∆∆∆-goptimize∆∆∆∆cmain.c (RET)

(3) Create a CPU information file. (The address range can be specified only for HEW1.2 and not for HEW2.0 or
later.)

In the unix version, start the cia38 to specify the ROM/RAM address range to be used.

For a description of how to use the cia38, refer to appendix J, Creating a CPU Information File, in the H8S, H8/300 Series
C/C++ Compiler, Assembler, Optimizing Linkage Editor User’s Manual.

In the PC version, you can use the HEW. Refer to section 2.1.1 (10), Setting options.

This example uses the CPU information file 2600a.cpu located in the sample directory.

Create a subcommand file for the inter-module optimization process.

Create the subcommand file to be specified in the inter-module optimization process.

This example uses the c2600a.sub file located in the sample directory. (The file can be used only for HEW1.2. The file of
user's own should be made for HEW2.0 based on the following subcommand files.)

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-33
REJ05B0464-0300

<c2600a.sub> (Modifying the subcommand file)

input init.obj
input vectbl.obj
input scttbl.obj
input cmain.obj

output test.abs

format absolute

debug

sysrof

rom(D,R)
rom($ABS8D,$ABS8R)
rom($ABS16D,$ABS16R)

start Cvect1,Cvect2(0)
start P,C,D,C$BSEC,C$DSEC,$ABS8D,$ABS816(0200)
start R,B(0ED00),S(0FE00)

exit

←Input f iles

←Output f ile

←Specify debug information

←Specify output format

←ROM support function

←Specify section allocation

Use the following subcommand file to execute the inter-module optimization process:

 optlnk38∆∆∆∆–sub=test.sub (RET) (HEW1.2 Command Line)

 optlnk∆∆∆∆–sub=test.sub (RET) (HEW2.0 Command Line)

The optimization process outputs a load module file sample.abs;In HEW1.2 it also outputs memory allocation information
to the linkage list sample.map and symbol optimization information to the optimization information list sample.lop. In
HEW 2.0 it outputs memory allocation information and symbol optimization information to the linkage list sample.map.

(4) Convert the object file.

In order to create a ROM program, convert the object load module (in the SYSROF type in this case) into the S-type
format as follows:

 cnvs∆∆∆∆test.abs (RET) (HEW1.2 Command Line)

As the Optimizing Linkage Editor has Converting Function for HEW2.0 or later, the S-type format can be converted
without using the converter.

Describe form=stype in the subcommand file to output the S-type format.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-34
REJ05B0464-0300

2.2 Introduction of Sample Program

2.2.1 Initialization Required for ROM Programs

The following description revolves around programs created by the project generator as an example.

The following diagram shows the file organizations of programs created by the project generator and sample programs that
are supplied with this product.

(Sample programs are supplied with HEW1.2 and not with HEW2.0 or later. The sample programs vecttbl.c and vect.h are
not generated under HEW2.0 or later any more due to a description of expansion functions of intprg.c.)

Sets data section addresses.

Allocates a heap area.

I/O port definition f ile

Creates interrupt functions.

Creates entry functions.

Sets the stack size.

Project Generator-
created programs

dbsct.c

sbrk.c

sbrk.h

intprg.c

vecttbl.c
 Generates vector tables.

resetprg.c

stacksct.h

vect.h

iodefine.h

init.c

vecttbl.c

secttbl.c

main processing

sample.c

cmain.c

cppmain.cpp

(C)

(C++)

CPU-name.h

Supplied sample
programs(HEW1.2 only)

Description of processing

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-35
REJ05B0464-0300

(1) Setting a data section address

(HEW project file name: dbsct.c, sample program name: scttbl.c)

Sets the addresses of the initialized and uninitialized data sections that are used by a routine that initializes them.

For adding an initialized data area section name, add the section name here as in the preceding line.

For adding an uninitialized data area section name, add the section name here as in the preceding line.

The _ _sectop and _ _secend are enhanced functions used to determine a section address.

These functions will be explained in section 3.3, Section Address Operators.

/***/
/* */
/* FILE :dbsct.c */
/* DATE :Thu, Nov 04, 1999 */
/* DESCRIPTION :Setting of B,R Section */
/* CPU TYPE :H8S/2621 */
/* */
/* This file is generated by Renesas Project Generator (Ver.3.0). */
/* */
/***/

#pragma section $DSEC
static const struct {

char *rom_s; /* Start address of the initialized data section in ROM */
char *rom_e; /* End address of the initialized data section in ROM */
char *ram_s; /* Start address of the initialized data section in RAM */

}DTBL[]= {
{__sectop("D"), __secend("D"), __sectop("R")},
{__sectop("$ABS8D"), __secend("$ABS8D"), __sectop("$ABS8R")},
{__sectop("$ABS16D") , __secend("$ABS16D") , __sectop("$ABS16R") }

};

#pragma section $BSEC
static const struct {

char *b_s; /* Start address of non-initialized data section */
char *b_e; /* End address of non-initialized data section */

}BTBL[]= {
{__sectop("B"), __secend("B")},
{__sectop("$ABS8B"), __secend("$ABS8B")},
{__sectop("$ABS16B"), __secend("$ABS16B")}

};

Sets the section address for an initialized data area.

Sets the section address for an uninitialized data area.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-36
REJ05B0464-0300

(2) Allocating a heap area

(HEW project file names: sbrk.c, sbrk.h, sample program names: sbrk.c, lowsrc.c, otherlb.c)
These programs generate a function that allocates the heap area to be used by the memory management library.

The method for creating low-level interface routines is described in "Low-level interface routines" in section 9.2.2,
Execution Environment Settings, in the H8S, H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor
User's Manual.

/**/
/* */
/* FILE :sbrk.c */
/* DATE :Thu, Nov 04, 1999 */
/* DESCRIPTION :Program of sbrk */
/* CPU TYPE :H8S/2621 */
/* */
/* This file is generated by Renesas Project Generator (Ver.3.0). */
/* */
/**/
#include <stdio.h>
#include "sbrk.h"

//const size_t _sbrk_size= /* Specifies the minimum unit of */
/* the defined heap area */

extern char *_s1ptr;
extern void srand(unsigned int);

static union {
long dummy ; /* Dummy for 4-byte boundary */
char heap[HEAPSIZE]; /* Declaration of the area managed */

/* by sbrk */
 }heap_area ;

static char *brk=(char *)&heap_area; /* End address of area assigned */

/**/
/* sbrk:Data write */
/* Return value:Start address of the assigned area (Pass) */
/* -1 (Failure) */
/**/
char *sbrk(unsigned long size) /* Assigned area size */
{
 char *p;

 if(brk+size>heap_area.heap+HEAPSIZE) /* Empty area size */
 return (char *)-1 ;

 p=brk ; /* Area assignment */
 brk += size ; /* End address update */
 return p ;
}

/**/
/* _INIT_OTHERLIB */
/* Initialize C library Functions, if necessary. */
/* Define OTHERLIB on Assembler Option. */
/**/

void _INIT_OTHERLIB(void)
{

srand(1);
_s1ptr=NULL;

}

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-37
REJ05B0464-0300

(HEW project file name: sbrk.h)

This is an include file that is used for the definition of a low-level routine, sbrk. The include file indicates the size of the
heap area. To change the size of the heap area after the project has been specified, modify this value.

Example: Changing the size of the heap area to 514 (0x202) bytes:

 #define HEAPSIZE 0x202

/***/
/* */
/* FILE :sbrk.h */
/* DATE :Thu, Nov 04, 1999 */
/* DESCRIPTION :Header file of sbrk file */
/* CPU TYPE :H8S/2621 */
/* */
/* This file is generated by Renesas Project Generator (Ver.3.0). */
/* */
/***/
/* size of area managed by sbrk */
#define HEAPSIZE 0x400

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-38
REJ05B0464-0300

(3) Defining an I/O port file

(HEW project file name: iodefine.h, sample program name: <CPU name>.h)
An I/O port file is defined so that I/O ports can be accessed using the variable names.

When not using the project generator, in the samples that are supplied with the product locate the include file and the C
source file that are named identically with the CPU. Use these files after carefully checking that they are the correct files.

/***/
/* */
/* FILE :iodefine.h */
/* DATE :Thu, Nov 04, 1999 */
/* DESCRIPTION :Definition of I/O Register */
/* CPU TYPE :H8S/2621 */
/* */
/* This file is generated by Renesas Project Generator (Ver.3.0). */
/* */
/***/

/***/
/* H8S/2623 Group Include File Ver 1.1 */
/***/
struct st_hcan { /* struct HACN */
 union { /* MCR */
 unsigned char BYTE; /* Byte Access */
 struct { /* Bit Access */
 unsigned char SLPME:1; /* SLPME */
 unsigned char :1; /* */
 unsigned char SLPM :1; /* SLPM */
 unsigned char :2; /* */
 unsigned char MSM :1; /* MSM */
 unsigned char HALT :1; /* HALT */
 unsigned char RST :1; /* RST */
 } BIT; /* */
 } MCR; /* */
 union { /* GSR */
 unsigned char BYTE; /* Byte Access */
 struct { /* Bit Access */
 unsigned char wk :4; /* */
 unsigned char RSF :1; /* RSF */
 unsigned char MSEF:1; /* MSEF */
 unsigned char SRWF:1; /* SRWF */
 unsigned char BOF :1; /* BOF */
 } BIT; /* */
 } GSR; /* */
 (omitted)

#define HCAN (*(volatile struct st_hcan *)0xFFF800) /* HCAN Address*/
#define SCRX (*(volatile union un_scrx *)0xFFFDB4) /* SCRX Address*/
#define SBYCR (*(volatile union un_sbycr *)0xFFFDE4) /* SBYCR Address*/
#define SYSCR (*(volatile union un_syscr *)0xFFFDE5) /* SYSCR Address*/
#define SCKCR (*(volatile union un_sckcr *)0xFFFDE6) /* SCKCR Address*/

 (cont)

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-39
REJ05B0464-0300

/***/
/* */
/* FILE :intprg.c */
/* DATE :Thu, Nov 04, 1999 */
/* DESCRIPTION :Interrupt Program */
/* CPU TYPE :H8S/2621 */
/* */
/* This file is generated by Renesas Project Generator (Ver.3.0). */
/* */
/***/

#include <machine.h>
#include "vect.h"
#pragma section IntPRG
// vector 2 Reserved

// vector 3 Reserved

// vector 4 Reserved

// vector 5 Treace
void INT_Treace(void) {/* sleep(); */}
// vector 6 Reserved

// vector 7 NMI
void INT_NMI(void) {/* sleep(); */}
// vector 8 User breakpoint trap
void INT_TRAP1(void) {/* sleep(); */}
// vector 9 User breakpoint trap
void INT_TRAP2(void) {/* sleep(); */}
// vector 10 User breakpoint trap
void INT_TRAP3(void) {/* sleep(); */}
// vector 11 User breakpoint trap
void INT_TRAP4(void) {/* sleep(); */}
// vector 12 Reserved

// vector 13 Reserved

// vector 14 Reserved

(4) Creating Interrupt Functions

(HEW project file name: intprg.c, sample program name: vecttbl.c)
These programs define functions that make interrupt calls.

<HEW1.2>

Note: If #pragma section IntPRG is specified, the functions are assigned to the section named PIntPRG. Care must be
taken before changing the section name by the inter-module optimizer.

← Defines a section name

↓ Defines interrupt functions

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-40
REJ05B0464-0300

<HEW2.0 or later>

For details on interrupt functions, refer to section3.1, Specifying an Interrupt Function.

/***/
/* */
/* FILE :intprg.c */
/* DATE :Tue, Aug 20, 2002 */
/* DESCRIPTION :Interrupt Program */
/* CPU TYPE :H8S/2612 */
/* */
/* This file is generated by Renesas Project Generator (Ver.3.0). */
/* */
/***/

#include <machine.h>
#pragma section IntPRG
// vector 2 Reserved

// vector 3 Reserved

// vector 4 Reserved

// vector 5 Trace
__interrupt(vect=5) void INT_Trace(void) {/* sleep(); */}
// vector 6 Reserved

// vector 7 NMI
__interrupt(vect=7) void INT_NMI(void) {/* sleep(); */}
// vector 8 User breakpoint trap
__interrupt(vect=8) void INT_TRAP0(void) {/* sleep(); */}
// vector 9 User breakpoint trap
__interrupt(vect=9) void INT_TRAP1(void) {/* sleep(); */}
// vector 10 User breakpoint trap
__interrupt(vect=10) void INT_TRAP2(void) {/* sleep(); */}
// vector 11 User breakpoint trap
__interrupt(vect=11) void INT_TRAP3(void) {/* sleep(); */}
// vector 12 Reserved

// vector 13 Reserved

// vector 14 Reserved

// vector 15 Reserved

The description of _interrupt (vect=5) generates a vector table
automatically.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-41
REJ05B0464-0300

(5) Creating Vector Tables

(HEW project file name: vecttbl.c, sample program name: vecttbl.c)

These programs set the addresses of the interrupt functions in vector tables. (To be generated under HEW1.2 only)

Note: Specifying a section name in the #pragma section causes the name to be appended to the default section name.
Therefore, when assigning an address using the inter-module optimizer, you need to change the section name.

/***/
/* */
/* FILE :vecttbl.c */
/* DATE :Thu, Nov 04, 1999 */
/* DESCRIPTION :Initialize of Vector Table */
/* CPU TYPE :H8S/2621 */
/* */
/* This file is generated by Renesas Project Generator (Ver.3.0). */
/* */
/***/

#include "vect.h"

#pragma section VECTTBL
void *RESET_Vectors[] = {
//;<<VECTOR DATA START (POWER ON RESET)>>
//;0 Power On Reset

PowerON_Reset,
//;<<VECTOR DATA END (POWER ON RESET)>>
//;<<VECTOR DATA START (MANUAL RESET)>>
//;1 Manual Reset

Manual_Reset
//;<<VECTOR DATA END (MANUAL RESET)>>
};
#pragma section INTTBL
void *INT_Vectors[] = {

// 2 Reserved
(void *) Dummy,
// 3 Reserved
(void *) Dummy,
// 4 Reserved
(void *) Dummy,
// 5 Treace
(void *) INT_Treace,
// 6 Reserved
(void *) Dummy,
// 7 NMI
(void *) INT_NMI,
// 8 User breakpoint trap
(void *) INT_TRAP1,
// 9 User breakpoint trap
(void *) INT_TRAP2,
// 10 User breakpoint trap
(void *) INT_TRAP3,
// 11 User breakpoint trap
(void *) INT_TRAP4,
// 12 Reserved
(void *) Dummy,
// 13 Reserved
(void *) Dummy,

(cont)

Creates a vector table named
RESET_Vectors in the CVECTTBL section.

Creates a vector table named INT_Vectors in
the INTTBL section.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-42
REJ05B0464-0300

(6) vect.h

This program declares the prototypes for the built-in function that are referenced when vector tables are set up.

(To be generated under HEW1.2 only)

; /***/
/* */
/* FILE :vect.h */
/* DATE :Thu, Nov 04, 1999 */
/* DESCRIPTION :Definition of Vector */
/* CPU TYPE :H8S/2621 */
/* */
/* This file is generated by Renesas Project Generator (Ver.3.0). */
/* */
/***/

//;<<VECTOR DATA START (POWER ON RESET)>>
//;0 Power On Reset
extern void PowerON_Reset(void);
//;<<VECTOR DATA END (POWER ON RESET)>>
//;<<VECTOR DATA START (MANUAL RESET)>>
//;1 Manual Reset
extern void Manual_Reset(void);
//;<<VECTOR DATA END (MANUAL RESET)>>
// 2 Reserved

// 3 Reserved

// 4 Reserved

// 5 Treace
#pragma interrupt INT_Treace
extern void INT_Treace(void);
// 6 Reserved

// 7 NMI
#pragma interrupt INT_NMI
extern void INT_NMI(void);
// 8 User breakpoint trap
#pragma interrupt INT_TRAP1
extern void INT_TRAP1(void);
// 9 User breakpoint trap
#pragma interrupt INT_TRAP2
extern void INT_TRAP2(void);
// 10 User breakpoint trap
#pragma interrupt INT_TRAP3
extern void INT_TRAP3(void);
// 11 User breakpoint trap
#pragma interrupt INT_TRAP4
extern void INT_TRAP4(void);
// 12 Reserved

// 13 Reserved

(cont)

<-By specifying #pragma interrupt as an interrupt
function, RTE instruction is generated when
returning a function value.
 For details on interrupt functions, refer to section
3.1, Specifying an Interrupt Function.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-43
REJ05B0464-0300

(7) Creating an entry function

(HEW project file name: resetprg.c, sample program name: init.c)

/***/
/* */
/* FILE :resetprg.c */
/* DATE :Thu, Nov 04, 1999 */
/* DESCRIPTION :Reset Program */
/* CPU TYPE :H8S/2621 */
/* */
/* This file is generated by Renesas Project Generator (Ver.3.0). */
/* */
/***/

#include <machine.h>
#include "stacksct.h"

#pragma entry PowerON_Reset

extern void main(void);

#ifdef __cplusplus
extern "C" {
#endif
extern void _INITSCT(void);
#ifdef __cplusplus
}
#endif

//#ifdef __cplusplus // Remove the comment when you use SIM I/O
//extern "C" {
//#endif
//extern void _INIT_IOLIB(void);
//extern void _CLOSEALL(void);
//#ifdef __cplusplus
//}
//#endif

//extern void srand(unsigned int); // Remove the comment when you use
rand()
//extern char *_s1ptr; // Remove the comment when you use strtok()

(cont)

Includes the embedded function include file

Specifies the PowerON_Reset as an entry function.
The compiler outputs a code for initializing the SP to
the entry function.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-44
REJ05B0464-0300

(8) Setting the stack size

(HEW project file name: stacksct.h)

Specify the desired stack size. This specification creates a 512-byte stack section, which has a fixed name of S.

The size of a stack section is equal to the stack size at the deepest nesting level in the function call relations.

Calculate the stack size by referencing the Total Frame Size that is output in the object list allocation information.

To change the stack size specification, modify the value in this program.

(continued from the previous page)

//#ifdef __cplusplus // Remove the comment when you use Hardware Setup
//extern "C" {
//#endif
//extern void HardwareSetup(void);
//#ifdef __cplusplus
//}
//#endif

#pragma section ResetPRG

void PowerON_Reset(void);
void PowerON_Reset(void)
{

 set_imask_ccr(1);

_INITSCT();

// _INIT_IOLIB(); // Remove the comment when you use SIM I/O

// srand(1); // Remove the comment when you use rand()
// _s1ptr=NULL; // Remove the comment when you use strtok()

// HardwareSetup(); // Remove the comment when you use Hardware Setup

main();

// _CLOSEALL(); // Remove the comment when you use SIM I/O

sleep();
}

void Manual_Reset(void);
void Manual_Reset(void)
{
}

Calls the main function

Enters the low power consumption mode

Sets the CCR interrupt flag to enabled

Calls the section initialization routine

/***/
/* */
/* FILE :stacksct.h */
/* DATE :Thu, Nov 04, 1999 */
/* DESCRIPTION :Setting of Stack area */
/* CPU TYPE :H8S/2621 */
/* */
/* This file is generated by Renesas Project Generator (Ver.3.0). */
/* */
/***/
#pragma stacksize 0x200

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-45
REJ05B0464-0300

2.3 Debugging Using the HDI

Let us use the newly created HEW workspace to perform debugging with an HDI. (The HDI can be operated from both
HEW1.2 and HEW2.0 or later.)

2.3.1 Running with HEW (1)

Select Customize... on the Tools in the HEW menu to open the Tools Customize dialog box and specify the location of the
HDI.exe in the HDI location field. Then, the HDI can be started by pressing the Launch Debugger button on the HEW
menu.

Launch Debugger

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-46
REJ05B0464-0300

2.3.2 Selecting a Target

On the following screen, select the desired CPU type and debugger type.

This example, under the previously selected H8S/2600 advanced mode, selects the H8S/2600A Simulator.

After selecting a target, click [OK].

Following the display of a splash window, a Hitachi Debugging Interface window opens:

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-47
REJ05B0464-0300

2.3.3 Allocating Memory Resources

In the next step, allocate memory resources necessary for operating the load module.
Either select [Memory Mapping Window] from the [View] menu or click on the Memory Mapping button on the Toolbar:

Memory Mapping

This displays a Memory Map dialog box:

Press the [Add] button to allocate memory resources on the System Memory Resource Modify screen.

In this case, specify all areas. For a ROM area, specify the memory area from addresses H'0 to H'00FEFFFF; for a RAM
area, specify H'00FF0000 through H'00FFFFFF. For the ROM area and RAM area access types, specify Read and
Read/Write, respectively.

Press the [OK] button.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-48
REJ05B0464-0300

The memory resources are then specified as shown above.

Press the [Close] button to close this window.

2.3.4 Downloading a Load Module

Select [Load Program] from the [File] menu. Select the absolute load module to be debugged. When using a button, click
on the Load Program button on the Toolbar.

Load Program

Select the sample.abs file and click on [Open].

The following screen appears:
The file is loaded. The screen displays information on the memory areas into which the program code is written.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-49
REJ05B0464-0300

2.3.5 Operating HDI with HEW (2)

Select Save Session As… from the File menu.

Selecting Customize... from Tools on the HEW menu opens the Tools Customize dialog box. In this dialog box, specify a
session file name in the Session file field and a load module name in the Download module field. Then, the session can be
loaded when the HDI is started by pressing the Launch Debugger button on the HEW menu.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-50
REJ05B0464-0300

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-51
REJ05B0464-0300

2.3.6 Displaying a Source Program

Click on the Program Source button.

Program file

Select the cmain.c file.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-52
REJ05B0464-0300

2.3.7 Setting a Breakpoint

On the BP column in the program window, double-click on the source line at which a breakpoint is to be set.

For example, double-click here for setting a breakpoint when the main function is started.

The symbol œ is displayed at the line (address) at which the breakpoint has
been set.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-53
REJ05B0464-0300

2.3.8 Displaying the Register Status

Either select [Registers] from the [View] menu or click on the CPU Registers button on the Toolbar.

By opening the Register Window from the [View] menu, you can see the status of the registers.

CPU Register

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-54
REJ05B0464-0300

2.3.9 Referencing to an External Variable

Select the name of the variable of interest. Click on the right button to select Add Watch from the popup menu. On the
Watch Window, you can reference the value of the variable. Alternatively, you can display the value of a variable by
placing the mouse cursor on the variable.

After making these preparations, try to execute the program.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-55
REJ05B0464-0300

2.3.10 ResetGo Command

Selecting RestGo from the [Run] menu causes the system to execute the program until the PC reaches the breakpoint.

ResetGo

On the C source program, right-click to display the popup menu and select Go to Disassembly to display a Disassembly
window. The rightmost column on the Disassembly window is the Source column, where the C source program associated
with the disassembled code is displayed.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-56
REJ05B0464-0300

2.3.11 Referencing to a Local Variable

Selecting [Locals] from the [View] menu causes the system to display a Locals window, which shows the local variables
that can be referenced from the current PC position and their values.

Pressing the Step button allows the user to enter the function. The following section describes the step-execution of
programs.

2.3.12 Step-Execution of a Program

Let us now execute the program in steps by using Step In, Step Over, and Step Out from the [Run] menu.

 In the case of a subroutine call, Step In moves the PC into the subroutine.
 Step Over moves the PC from one a subroutine call line to another.
 Step Out moves the PC from a subroutine call line to the next line.

Step Step Over Step Out

Selecting [Run…] from the [Run] menu causes the system to open the Run dialog box, which allows the user to change
the unit of steps.

In this example, one step corresponds to one line of the C source program.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-57
REJ05B0464-0300

2.3.13 Displaying Memory Contents

Specifying [View Memory…] causes the display of an Open Memory Window dialog box. Enter a symbol name in the
Address field.

The contents of memory can be displayed in the following Byte Memory screen:

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-58
REJ05B0464-0300

2.3.14 Operating HDI with HEW (3)

To start the HDI from the HEW, open the desired file on the HEW Editor by double-clicking on the HDI source window.

Edit and save this file to recompile it. (Note that the sample programs cannot be modified because they are a read-only
file.)

When activated, the HDI displays a message dialog box and asks whether the program is to be reloaded.

Selecting Yes causes the HDI to reload the program.

The debugging process can be performed in this manner.

The HDI also provides the performance analysis function. To measure the performance of a program, select Performance
Analysis from the [View] menu, which opens a Performance Analysis window.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-59
REJ05B0464-0300

To measure performance, select Enable on the popup window:

On the Add Range option of the popup menu, specify the label on which performance is to be measured.

After executing the program, the performance of each label is displayed as a result.

For details of HDI features, refer to the Hitachi Debugging Interface User’s Manual.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-60
REJ05B0464-0300

2.4 Debugging Using the Simulator-Debugger

Debugging became enabled on the HEW beginning with HEW2.0. (Note that it is not available with HEW1.2.)

Use the sample project created by selecting Demonstration as the project type setting to execute the simulator-debugger.

2.4.1 Setting Configuration

• Select [Build Configrations...] from the [Option] menu to invoke the Build configurations screen and select the
environment to be used. In this case, select [SimDebug_H8-2600A].

If you modify the configuration, execute the building process.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-61
REJ05B0464-0300

2.4.2 Allocating Memory Resources

Memory resources should be allocated in order to run an application that has been developed. Check the settings because
memory resources are automatically allocated in the Demonstration Project.

• Select [Simulator Memory Resource...] from the [Option] menu to display the current memory resources.

Readable/writable area from H'00000000 through H'00007FFF is allocated for a program area and the area from
H'00FFEC00 through H'00FFFFFF is allocated for a stack area.

• Click on the [Close] button to close the dialog box.

Memory resources can also be referenced or modified on the [Simulator] tab of H8S, H8/300 Standard Toolchain dialog
box. Mutual modification is reflected.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-62
REJ05B0464-0300

2.4.3 Downloading a Sample Program

Check the settings because a sample program to be downloaded is automatically set in the Demonstration Program.

• Select [Debug Settings...] from the [Option] menu to open the Debug Settings dialog box.

The files set in [Download Modules] will be downloaded.

• Click on the [OK] button to close Debug Settings dialog box.

• Select [Download Modules -> All Download Modules] from the [Debug] menu to download the sample program.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-63
REJ05B0464-0300

2.4.4 Setting Simulated I/O

Check the settings because Simulated I/O is automatically set in the Demonstration Project.

• Select [Simulator -> System] from the [Option] menu to open Simulator System dialog box.

• Check that [Enable] has been selected in [System Call Address].

• Click on the [OK] button to enable Simulated I/O.

• Select [Simulated I/O] from the [View] menu to open the Simulated I/O window.

Without opening the Simulated I/O window, Simulated I/O is not enabled.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-64
REJ05B0464-0300

2.4.5 Setting Trace Information Acquisition Conditions

• Select [Code->Trace] from the [View] menu to open the Trace window. Then right-click on the Trace window to
display the popup menu and select [Acquisition...].

The Trace Acquisition dialog box appears as shown below.

• Set [Enable] for [Trace start/Stop] in the Trace Acquisition dialog box and click on the [OK] button to enable Trace
Information Acquisition.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-65
REJ05B0464-0300

2.4.6 Status Window

The termination cause can be confirmed on a Status window.

• Select [CPU->Status] from the [View] menu to open a Status window. Display [Platform] sheet from within the Status
window.

2.4.7 Registers Window

Values of registers can be confirmed on a Registers window.

• Select [CPU->Registers...] from the [View] menu.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-66
REJ05B0464-0300

2.4.8 Using Trace

(1) Trace Buffer

By using the trace buffer, you can see the history of execution of instructions.

• Select [Code->Trace] from the [View] menu to open a Trace window. Scroll up to the top of the window.

(2) Trace Search

First, right-click on a Trace window to display the popup menu and select [Find...] to open the Trace Search dialog box.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-67
REJ05B0464-0300

Set the search item [Item] and the search content [Value], click on the [OK] button, and execute Trace Search. If you find
the applicable trace information, highlight the first line. If you continue Trace Search for the same search content [Value],
right-click on the Trace window to display the popup menu and select [Find Next]. In the next step, highlight the next line.

2.4.9 Displaying Breakpoints

All the Breakpoints lists set in the program can be displayed on a Eventpoints window.

• Select [Code->Eventpoints] from the [View] menu.

The Eventpoints window allows the user to set Breakpoints, define new Breakpoints and display Breakpoints.

Close the Breakpoints window.

Section 2 Procedure for Creating and Debugging a Program

Rev.3.00 2005.09.12 2-68
REJ05B0464-0300

2.4.10 Displaying Memory Contents

The contents of memory block can be displayed on a Memory window. For example, the procedure for displaying the
memory for the main column in byte size is shown as below.

• Select [CPU->Memory…] from the [View] menu to enter memory area start address in the [Begin] field and end
address in the [End] field.

• Click on the [OK] button to open the Memory window which shows the specified memory area.

Section 3 Compiler

Rev.3.00 2005.09.12 3-1
REJ05B0464-0300

Section 3 Compiler

This section describes effective functions used at the development of C/C++ programs.

The functions described below allow you to perform interrupt processing and other types of processing that cannot be
supported in most C/C++ programs.

3.1 Specifying an Interrupt Function

Description

#pragma interrupt <function name> declares an interrupt function. The declared interrupt function, for which all the
registers used in the function are guaranteed (saved and restored), returns on the RTE instruction. This enables the
interrupt function to return from an exception processing.

[Format]

#pragma interrupt (<function name>[(<interrupt specs>)][,<function name>[(<interrupt specs>)]…])

Example

To declare an interrupt function f1. This function returns on the RTE instruction after completing its processing.

(C/C++ program)

(Compiled assembly-language expansion code)

Remarks and notes

Interrupt function declarations support the following features: stack-switching specification, trap instruction return
specification, interrupt complete function specification, and vector table specification.

extern unsigned char a;
#pragma interrupt (f1)
void f1(void)
{
 a=0;
}

← The function f1 is defined as an interrupt function.

_f1:
 PUSH.W R0
 SUB.B R0L,R0L
 MOV.B R0L,@_a:32
 POP.W R0
 RTE
 .END

← Interrupt function returns on RTE instruction.

Section 3 Compiler

Rev.3.00 2005.09.12 3-2
REJ05B0464-0300

No. Item Format Option Description

1 Stack-
switching
specification

sp= <variable>|

&<variable>|

<constant>|

<variable>+
<constant>|

&<variable>+
<constant>

Specifies a new stack address with a variable or constant.

<valuable>: Valuable (pointer)

&<valuable>: Valuable (object type) address

<constant>: Constant value

2 Trap
instruction
return
specification

tn= <constant> Specifies the end with the TRAPA instruction.

<constant>: Constant value (trap vector number)

3 Interrupt
complete
function
specification

sy= <function
name>|

<constant>|

$<function
name>

Specifies the end with a jump to an interrupt function.

<function name>: Name of interrupt function

<constant>: Absolute address

$< function name>: Name of interrupt function without an
underscore

3.1.1 Stack-Switching Specification

Description

This function specifies a separate interrupt function stack area.

When an external interrupt occurs, the stack-switching specification (sp=) switches the stack pointer to a specified address
so that the interrupt function can be operated using that stack. Upon return, this function resets the pointer to the condition
that existed before the interrupt occurred.

Example

To specify a new stack address with a variable or constant. In the following example, the array STK[100] is set as a stack
to be used by the interrupt function f:

(C/C++ program)

(Compiled assembly-language expansion code)

extern int STK [100];
extern unsigned char a;
#pragma interrupt (f(sp=STK+100))

void f(void)
{
 a=0;
}

← Specifies an interrupt function
and switches the stack pointer.

_f:
 MOV.L SP,@_STK+96:32
 MOV.L #_STK+96:32,SP
 PUSH.W R0
 SUB.B R0L,R0L
 MOV.B R0L,@_a:32
 POP.W R0
 MOV.L @SP,SP
 RTE
 .END

← Interrupt function returns on RTE instruction.

← Changes the stack pointer.

Section 3 Compiler

Rev.3.00 2005.09.12 3-3
REJ05B0464-0300

Remarks and notes

(i) This specification can be set together with a trap instruction return specification or an interrupt function complete
specification.

(ii) The stack-switching specification "sp=" should always be specified in lowercase characters.

3.1.2 Trap Instruction Return Specification

Description

Functions that are declared in #pragma interrupt are normally returned by executing the RTE instruction. However, when a
trap instruction return specification (tn=) is enabled, they are returned by executing the TRAPA instruction.

Example

To initiate a trap exception processing by executing the TRAPA #2 instruction upon completion of the interrupt function:

(C/C++ program)

(Compiled assembly-language expansion code)

Remarks and notes

(i) This specification, which can be set with the stack-switching specification, cannot be set together with an interrupt
function complete specification.

(ii) The trap-instruction return specification "tn=" should always be specified in lowercase characters.

(iii)This specification cannot be used when the CPU operating mode is specified as 300.

extern unsigned char a;
#pragma interrupt (f(tn=2))

void f(void)
{
 a=0;
}

←The interrupt function f is returned on the execution
of TRAPA instruction.

_f1:
 PUSH.W R0
 SUB.B R0L,R0L
 MOV.B R0L,@_a:32
 POP.W R0
 TRAPA #2
 .END

← Returns on the execution of TRAPA instruction.

Section 3 Compiler

Rev.3.00 2005.09.12 3-4
REJ05B0464-0300

3.1.3 Interrupt Function Complete Specification

Description

Functions declared in #pragma interrupt are normally returned by executing the RTE instruction. However, when an
interrupt function complete specification (sy=) is enabled, they jump to the specified address by the JMP instruction.

Example

To jump to the address of function f2 by the JMP instruction:

(C/C++ program)

(Compiled assembly-language expansion code)

Remarks and notes

(i) This specification, which can be set together with a stack-switching specification, cannot be set with a trap instruction
return specification.

(ii) If specified as $<function name>, the function name is referenced by an assembly language program as the name
without an underscore.

(iii)The interrupt function complete specification "sp=" should always be specified in lowercase characters.

extern int f2();
extern unsigned char a;
#pragma interrupt (f1(sy=$ f2))

void f1(void)
{
 a=0;
}

← At the end of interrupt function f1, jumps to
the address of function f2 by executing the
JMP instruction.

_f1:
 PUSH.W R0
 SUB.B R0L,R0L
 MOV.B R0L,@_a:32
 POP.W R0
 JMP @f2:24
 .END

← Returns on the JMP instruction.

Section 3 Compiler

Rev.3.00 2005.09.12 3-5
REJ05B0464-0300

3.1.4 Vector Table Automatic Generation Functions

Description

By specifying the vector number of #pragma interrupt, the vector table of functions is automatically generated.

[Format]

#pragma interrupt (<function name>[(vect=<vector number>)])

Example

To specify a vector number to create a vector table.

(C/C++ program)

(CPU=2600a)

(memory map contents)

Remarks and notes

(i) The vector table specification "vect=" should always be specified in lowercase characters.

(ii) Be careful not duplicate an allocating vector number with other vector tables.

(iii)Vector Table automatic generation functions is supported by C/C++ Compiler Version 4.0 or later.

#pragma entry f1(vect=0)
void f1(){
}
#pragma interrupt (f2(vect=4))
void f2(voed){
}
#pragma indirect (f3(vect=5))
unsigned char f3(voed){
}

← Allocating the entry function f1 to the vector number 0.

← Allocating the interrupt function f2 to the vector number 4.

← Allocating the indirectmemory access function f3 to the
vector number 5.

$VECT0 00000000 00000003
$VECT4 00000010 00000013
$VECT5 00000014 00000017

Section 3 Compiler

Rev.3.00 2005.09.12 3-6
REJ05B0464-0300

3.2 Built-in Functions

CPU instructions that are not supported in the C/C++ language specifications, such as the setting of the condition code
register, are supported as expansion built-in functions.

When using a built-in function, be sure to declare the system include file machine.h.

No. Item Function
Referenced
Section

1 Condition code register (CCR) Sets an interrupt mask 3.2.1

2 References an interrupt mask

3 Sets the CCR

4 References the CCR

5 Logically ANDs the CCR

6 Logically ORs the CCR

7 Logically XORs the CCR

8 Extended register (EXR) Sets an interrupt mask 3.2.2

9 References an interrupt mask

10 Sets the EXR

11 References the EXR

12 Logically ANDs the EXR

13 Logically ORs the EXR

14 Logically XORs the EXR

15 Vector Base Register (VBR)* Setting VBR 3.2.3

16 Operation with overflow test Performs 1-byte addition and sets the CCR according to the
result

3.2.4

17 Performs 2-byte addition and sets the CCR according to the
result

18 Performs 4-byte addition and sets the CCR according to the
result

19 Performs 1-byte subtraction and sets the CCR according to
the result

20 Performs 2-byte subtraction and sets the CCR according to
the result

21 Performs 4-byte subtraction and sets the CCR according to
the result

22 Left-shifts 1-byte data and sets the CCR according to the
result

23 Left-shifts 2-byte data and sets the CCR according to the
result

24 Left-shifts 4-byte data and sets the CCR according to the
result

25 Performs the sign conversion of 1-byte data and sets the
CCR according to the result

26 Performs the sign conversion of 2-byte data and sets the
CCR according to the result

27 Performs the sign conversion of 4-byte data and sets the
CCR according to the result

Section 3 Compiler

Rev.3.00 2005.09.12 3-7
REJ05B0464-0300

No. Item Function
Referenced
Section

28 Transfer instructions MOVFPE instruction 3.2.5

29 MOVTPE instruction

30 Arithmetic instructions Decimal addition 3.2.6

31 Decimal subtraction

32 TAS instruction

33 MAC instruction

34 64-bit multiplication*

35 Shift instruction Rotates 1-byte data to the left 3.2.7

36 Rotates 2-byte data to the left

37 Rotates 4-byte data to the left

38 Rotates 1-byte data to the right

39 Rotates 2-byte data to the right

40 Rotates 4-byte data to the right

41 System control instructions TRAPA instruction 3.2.8

42 SLEEP instruction

EEPMOV instruction43 Block transfer instruction

EEPMOV instruction (Interrupt Request)

3.2.9

MOVMD instruction44 Block transfer instruction
(for H8SX) MOVSD instruction

3.2.10

45 NOP instruction NOP instruction

Note: * Can be used only in the case of H8SX.

3.2.1 Setting and Referencing the Condition Code Register (CCR)

Description

For setting and referencing the condition code register, the compiler provides the functions listed in the table below:

No. Item Format Description

1 Setting an interrupt mask void set_imask_ccr(unsigned
char mask)

Sets a mask value (0 or 1) to the interrupt
mask bit of the CCR.

2 Referencing an interrupt
mask

unsigned char
get_imask_ccr(void)

References the value (0 or 1) of interrupt mask
bit (I) of the CCR.

3 Setting the CCR void set_ccr(unsigned char ccr) Sets the value of ccr (8 bits) to the CCR.

4 Referencing the CCR unsigned char get_ccr(void) References the value of the CCR.

5 ANDing the CCRs void and_ccr(unsigned char ccr) Logically ANDs the CCR and ccr; and stores
the result in the CCR.

6 ORing the CCRs void or_ccr(unsigned char ccr) Logically ORs the CCR and ccr; and stores the
result in the CCR.

7 XORing the CCRs void xor_ccr(unsigned char ccr) Logically XORs the CCR and ccr; and stores
the result in the CCR.

Section 3 Compiler

Rev.3.00 2005.09.12 3-8
REJ05B0464-0300

Example

To operate the condition code register, and then, reset it to the condition existed before the CCR was operated:

(C/C++ program)

(Compiled assembly-language expansion code)

Remarks and notes

The CCR is an 8-bit register that indicates the internal state of the CPU.

<Condition code register>

I: Interrupt mask bit

UI:User bit/interrupt master bit

H: Half carry flag

U: User bit

N: Negative flag

Z: Zero flag

V: Overflow flag

C: Carry flag

#include <machine.h>
void main(void)
{
 unsigned char mask;

 if (mask=get_imask_ccr()){ /* Saves the value of the interrupt mask */
 set_imask_ccr(1); /* Specifies the beginning of exception */
 and_ccr((unsigned char)0xFC) ; /* Stores the AND of CCR and 0xFC. in CCR */
 }
 set_imask_ccr(mask); /* Returns the value of the interrupt mask */
}

←The include file for built-in functions

I UI H U N Z V C

_main: STC.B CCR,R0L
 AND.B #-128:8,R0L
 ROTL.B R0L
 BEQ L48:8
 ORC.B #-128:8,CCR
 ANDC.B #-4:8,CCR
L48: STC.B CCR,R0H
 BLD.B #0,R0L
 BST.B #7,R0H
 LDC.B R0H,CCR
 RTS
 .END

Section 3 Compiler

Rev.3.00 2005.09.12 3-9
REJ05B0464-0300

3.2.2 Setting and Referencing an Extended Register

Description

For setting and referencing an extended register, the compiler provides the following functions:

No. Item Format Description

1 Setting an interrupt
mask

void set_imask_exr(unsigned
char mask)

Sets a mask value (0 to 7) to the interrupt mask bits
(I2 to I0) of the EXR.

2 Referencing an
interrupt mask

unsigned char
get_imask_exr(void)

References the value (0 to 7) of the interrupt mask
bits (I2 to I0) of the EXR.

3 Setting the EXR voir set_exr(unsigned char exr) Sets the value of exr (8 bits) in the EXR.

4 Referencing the
EXR

unsigned char get_exr(void) References the value of the EXR.

5 Taking the AND of
EXRs

void and_exr(unsigned char exr) Logically ANDs the EXR and exr; and stores the
result in the EXR.

6 Taking the OR of
EXRs

void or_exr(unsigned char exr) Logically ORs the EXR and exr; and stores the
result in the EXR.

7 Taking the XOR of
EXRs

void xor_exr(unsigned char exr) Logically XORs the EXR and exr; and stores the
result in the EXR.

Example

To change the status of the EXR with keeping the value of the EXR interrupt mask bits unchanged:

(C/C++ program)

(Compiled assembly-language expansion code)

_main:
 STC.B EXR,R1L
 AND.B #7:8,R1L
 BEQ L49:8
 MOV.B #5:8,R0L
 LDC.B R0L,EXR
 XORC.B #-1:8,EXR
 STC.B EXR,R0L
 MOV.B R0L,@_e:32
L49:
 AND.B #7:8,R1L
 STC.B EXR,R1H
 AND.B #-8:8,R1H
 OR.B R1L,R1H
 LDC.B R1H,EXR
 RTS
 .END

#include <machine.h>
extern unsigned char e;

void main()
{
 unsigned char mask;

 if (mask=get_imask_exr()){
 set_exr((unsigned char)0x05);
 xor_exr((unsigned char)0xff);
 e=get_exr();
 }
 set_imask_exr(mask);
}

←Saves the interrupt mask bits.

←Sets a value in EXR, logically XORs, and
sets the result in external variable e.

←Restores the interrupt mask bits.

Section 3 Compiler

Rev.3.00 2005.09.12 3-10
REJ05B0464-0300

Remarks and notes

The built-in functions for setting and referencing extended registers are valid only when the CPU/operating mode is
2600n, 2600a, 2000n, or 2000a.

<Extended register>

(T) Trace bit

(I2 to I0) Interrupt mask bits

3.2.3 Setting Vector Base Register

Description

H8SX has the function that can allocate the vector area for exception handling at any address.

In H8/300,H8/300H,H8S families, the vector area for exception handling is fixed from zero.

When CPU is H8SX, users can modify the allocation address of the vector area for exception handling by specifying
Vector Base Register (VBR).

For setting Vector Base Register, the compiler provides the following functions:

No. Item Format Description

1 Setting VBR void set_vbr(void* vbr) Sets the value of vbr (32 bits) to VBR.

Example

To set the value of Vector Base Register (VBR):

(C/C++ program)

(Compiled assembly-language expansion code)

T – – – – I2 I1 I0

_main:

 ORC.B #H'80:8,CCR

 SUB.L ER0,ER0

 MOV.W #2:3,E0

 LDC.L ER0,VBR

 ANDC.B #H'7F:8,CCR

 RTS

 .END

#include <machine.h>

void main(void)

{

 set_imask_ccr(1); /* Set interrupt mask bit */

 set_vbr((void*)0x20000); /* Set 0x20000 to VBR */

 set_imask_ccr(0); /* Clear interrupt mask bit */

}

←Include File for Built-in Functions

Section 3 Compiler

Rev.3.00 2005.09.12 3-11
REJ05B0464-0300

Remarks and notes

(1) The built-in functions for setting Vector Base Register are valid only when the CPU/operating mode is H8SXN,
H8SXM, H8SXA, or H8SXX..

(2) When the CPU/operating mode is H8SXN, the lower 16 bits of the specified value for Vector Base Register are valid.

(3) For details about Switching Vector Table Address, refer to section 3.8.3, Switching Vector Table Address.

(4) Switching Vector Base Register (VBR) should be done in the interrupt mask state. Not in the interrupt mask state,
when interrupt process occurs during switching Vector Base Register (VBR), the correct processing of the exception
handling can not be guaranteed.

3.2.4 Opration with Overflow (V Flag) Test

Description

The following built-in functions are available for performing the operation with the overflow (V-flag) test:

(CC: condition code)

No. Item Format Description

1 1-byte addition and
CCR setting

int ovfaddc(char dst,char
src,char *rst)

Adds dst and src, each 1-byte long; stores the result in
area indicated by rst if rst≠0.

2 2-byte addition and
CCR setting

int ovfaddw(int dst,int
src,int *rst)

Adds dst and src, each 2-byte long; stores the result in
area indicated by rst if rst≠0.

3 4-byte addition and
CCR setting

int ovfaddl(long dst,long
src,long *rst)

Adds dst and src, each 4-byte long; stores the result in
area indicated by rst if rst≠0.

4 1-byte subtraction
and CCR setting

int ovfsubc(char dst,char
src,char *rst)

Subtracts src from dst, each 1-byte long; stores the result
in area indicated by rst if rst≠0.

5 2-byte subtraction
and CCR setting

int ovfsubw(int dst,int
src,int *rst)

Subtracts src from dst, each 2-byte long; stores the result
in area indicated by rst if rst≠0.

6 4-byte subtraction
and CCR setting

int ovfsubl(long dst,long
src,long *rst)

Subtracts src from dst, each 4-byte long; stores the result
in area indicated by rst if rst≠0.

7 1-byte left-shift and
CCR setting

int ovfshalc(char dst, char
*rst)

Arithmetically shifts left the 1-byte data dst by 1 bit; stores
the result in area indicated by rst if rst≠0.

8 2-byte left-shift and
CCR setting

int ovfshalw(int dst, int
*rst)

Arithmetically shifts left the 2-byte data dst by 1 bit; stores
the result in area indicated by rst if rst≠0.

9 4-byte left-shift and
CCR setting

int ovfshall(long dst, long
*rst)

Arithmetically shifts left the 4-byte data dst by 1 bit; stores
the result in area indicated by rst if rst≠0.

10 1-byte sign-
conversion and
CCR setting

int ovfnegc(char dst, char
*rst)

Obtains the 2’s complement of 1-byte data dst; stores the
result in the area indicated by rst if rst≠0.

11 2-byte sign-
conversion and
CCR setting

int ovfnegw(int dst, int
*rst)

Obtains the 2’s complement of 2-byte data dst; stores the
result in the area indicated by rst if rst≠0.

12 4-byte sign-
conversion and
CCR setting

int ovfnegl(long dst, long
*rst)

Obtains the 2’s complement of 4-byte data dst; stores the
result in the area indicated by rst if rst≠0.

Section 3 Compiler

Rev.3.00 2005.09.12 3-12
REJ05B0464-0300

_f:
 PUSH.L ER6
 MOV.L #_dst:32,ER6
 MOV.W @ER6,R0
 MOV.W @_src:32,R1
 ADD.W R1,R0
 BVC L48:8
 MOV.W @ER6,R0
 INC.W #1,R0
 BRA L50:8
L48:
 MOV.W @ER6,R0
 DEC.W #1,R0
L50:
 MOV.W R0,@ER6
 POP.L ER6
 RTS
 .END

Example

To test to see whether the result of an addition has overflowed; perform the appropriate processing.

(C/C++ program)

(Compiled assembly-language expansion code)

Remarks and notes

Condition code operation functions can be specified only in expressions that test the conditions in an if, do, while, or for
statement.

3.2.5 Transfer Instructions

Description

The following functions are available to enhance the system control transfer instructions:

No. Item Format Description

1 MOVFPE
instruction

void movfpe(char *addr,char data)
char _movfpe(char *addr) *1

Expands into the MOVFPE instruction that transfers
data in synchronous with the E clock.

2 MOVTPE
instruction

void movtpe(char data ,char *addr) Expands into the MOVTPE instruction that transfers
data in synchronous with the E clock.

Note: 1. valid only with H8SX

#include <machine.h>
extern int dst, src;
void f()
{
 if (ovfaddw(dst,src,0))
 dst++;
 else
 dst--;
}

←Checks whether addition between dst
and src generates an overflow.

Section 3 Compiler

Rev.3.00 2005.09.12 3-13
REJ05B0464-0300

Example

(a) MOVFPE instruction

To load data from the memory address specified by a 16-bit absolute address synchronously with the E clock:_movfpe is
the same as function as movfpe, except that it returns Destination data as its function value.

(C/C++ program)

(Compiled assembly-language expansion code)

(C/C++ program)

(Compiled assembly-language expansion code)

#include <machine.h>
#define P1DR (*(unsigned char *)0x00FFFF60)
extern unsigned char data;
void f()
{
 movfpe((char*)&P1DR,data);
}

←Executes the MOVFPE instruction.

_f:
 MOVFPE.B @16777056:16,R0L
 MOV.B R0L,@_data:32
 RTS
 .END

#include <machine.h>
#define P1DR (*(unsigned char *)0x00FFFF60)
extern unsigned char data;
void f()
{
 data = movfpe((char*)&P1DR);
}

← Executes the MOVFPE instruction.

_f:
 MOVFPE.B @16777056:16,R0L
 MOV.B R0L,@_data:32
 RTS
 .END

Section 3 Compiler

Rev.3.00 2005.09.12 3-14
REJ05B0464-0300

(b) MOVTPE instruction

To store data to the memory area specified by a 16-bit absolute address synchronously with the E clock:

(C/C++ program)

(Compiled assembly-language expansion code)

3.2.6 Arithmetic Operation Instructions

Description

The following functions are available to enhance arithmetic operation instructions:

No. Item Format Description

1 Decimal
addition

void dadd(unsiged char size,
char*ptr1, char*ptr2, char*rst)

Performs decimal addition between size-byte data
starting from ptr1 and size-byte data starting from prt2;
and stores the result to the size-byte area starting from
rst.

2 Decimal
subtraction

void dsub(unsiged char size,
char*ptr1, char*ptr2, char*rst)

Performs decimal subtraction between size-byte data
starting from ptr1 and size-byte data starting from prt2;
and stores the result to the size-byte area starting from
rst.

3 TAS
instruction

void tas(char*addr) Expands into the test-and-set instruction TAS.

4 MAC
instruction

long mac(long val, int*ptr1,int
*ptr2, unsigned long count)

long macl(long val, int*ptr1,
int*ptr2, unsigned long count,
unsigned long mask)

Expands into the multiply-accumulate instruction MAC.

5 64-bit
multiplication*1

long mulsu(long val1,long val2)

unsigned long muluu(unsigned
long val1,unsigned long val2)

Expands into MULS/U,MULU/U

Note: 1. valid only with H8SX

#include <machine.h>
extern unsigned char data;
#define P1DR (*(unsigned char*)0x00FFFF60)
void f()
{
 movtpe(data,(char*)&P1DR);
}

_f:
 MOV.B @_data:32,R0L
 MOVTPE.B R0L,@16777056:16
 RTS
 .END

←Executes the MOVTPE instruction.

Section 3 Compiler

Rev.3.00 2005.09.12 3-15
REJ05B0464-0300

Example

(1) Decimal operation

To add decimally the 6-digit 4-bit BCD data (3 bytes) starting from the address specified by ptr1 to the 4-bit BCD data
starting from the address specified by ptr2 and store the result in a 3-byte area starting from the address specified by rst:

(C/C++ program)

(Compiled assembly-language expansion code)

Remarks and notes

The first parameter for the functions dadd and dsub is a constant 1 to 255.

(2) TAS instruction

To set the MSB (bit 7) of the memory contents to “1” after testing the memory contents (by comparing with 0):

(C/C++ program)

_f: STM.L (ER4-ER6),@-SP
 MOV.L #_ptr1+2:32,ER0
 MOV.L #_ptr2+2:32,ER1
 MOV.L #_rst+3:32,ER5
 MOV.B #3:8,R6L
 ANDC.B #-34:8,CCR
L49: MOV.B @ER0,R4L
 MOV.B @ER1,R4H
 ADDX.B R4H,R4L
 DAA.B R4L
 MOV.B R4L,@-ER5
 DEC.L #1,ER0
 DEC.L #1,ER1
 DEC.B R6L
 BNE L49:8
 LDM.L @SP+,(ER4-ER6)
 RTS

extern unsigned char data;
#define ADR (*(volatile unsigned char *)0x00fff000)
#include <machine.h>
void main()
{
 tas((char*)&ADR);

 if (data=get_ccr())
 and_ccr(data);
 else
 or_ccr(data);
}

←Compares memory contents with 0; sets the result in
CCR.

←Stores either AND or OR to the CCR depending on
memory contents.

#include <machine.h>
char ptr1[3]={0,1,2};
char ptr2[3]={2,1,0};
char rst[3];
void f()
{
 dadd((char)3,ptr1,ptr2,rst);
}

←Outputs DAA instruction.

Section 3 Compiler

Rev.3.00 2005.09.12 3-16
REJ05B0464-0300

(Compiled assembly-language expansion code)

Remarks and notes

The function tas is valid only when the CPU operating mode is 2600a, 2600n, 2000a, or 2000n.

(3) MAC instruction

The H8S/2600 microcomputer contains the multiply-accumulate register (MAC),which is a 64-bit register that stores the
results of multiply-accumulate operations. The following diagram shows how this register is organized.

The MAC instruction performs a multiplication between memory data items and adds the result to the MAC register.
Using this register, 16 × 16 bits + 32 bits = 32 bits multiply-accumulate operations can be performed.

The following interpretations are made in the example given below:

<Function mac>

Assigns the value 100 to the MAC register as an initial value. Multiplies the 2-byte data items indicated by ptr1 and ptr2
on a signed basis, adds the resulting 4-byte data to the MAC register, and increments both ptr1 and ptr2 by 2. Repeats this
operation four times, and at the end returns the contents of the MAC register.

<Function macl >

Performs a multiply-accumulate operation with ~4 because the function uses the data at ptr2 for ring-buffering.

Because the function uses ptr2&mask as an address, ptr2 must be assigned to an address that is an integral multiple of 8.

_main: MOV.L #16773120:32,ER0
 TAS @ER0
 MOV.L #_data:32,ER1
 STC.B CCR,R0L
 MOV.B R0L,@ER1
 BEQ L47:8
 MOV.B @ER1,R1L
 STC.B CCR,R1H
 AND.B R1L,R1H
 LDC.B R1H,CCR
 RTS
L47: MOV.B @ER1,R1L
 STC.B CCR,R1H
 OR.B R1L,R1H
 LDC.B R1H,CCR
 RTS
 .END

MAC
(Code expansion) MAC

MAC

31 0

63 41 32

Section 3 Compiler

Rev.3.00 2005.09.12 3-17
REJ05B0464-0300

(C/C++ program)

(Compiled assembly-language expansion code)

Remarks and notes

The functions mac and macl can be used only when the CPU operating mode is specified as 2600a, 2600n, or H8SX.

(4) MULS/U,MULU/U instruction

mulsu/muluu is expanded to the MULS/U or MULU/U instruction, which performs 32-bit × 32-bit = 64-bit
multiplication.

32-bit parameters (val1 and val2) for this intrinsic function are multiplied and the upper 32 bits are returned as the
operation result.

#include <machine.h>
int ptr1[10]={0,1,2,3,4,5,6,7,8,9};
int ptr2[10]={9,8,7,6,5,4,3,2,1,0};
int ptr3[2]={9,8};
long l1,l2;
void func()
{
 l1=mac(100,ptr1,ptr2,4);
 /* l1=100+0*9+1*8+2*7+3*6 */
 l2=macl(100,ptr1,ptr3,4,~4);
 /* l2=100+0*9+1*8+2*9+3*8 */
}

_func: PUSH.L ER2
 MOV.L #100:32,ER0
 CLRMAC
 LDMAC.L ER0,MACL
 MOV.L #_ptr2:32,ER0
 MOV.L #_ptr1:32,ER1
 MAC @ER1+,@ER0+
 MAC @ER1+,@ER0+
 MAC @ER1+,@ER0+
 MAC @ER1+,@ER0+
 STMAC.L MACL,ER0
 MOV.L ER0,@_l1:32
 MOV.L #100:32,ER0
 CLRMAC
 LDMAC.L ER0,MACL
 MOV.L #_ptr3:32,ER0
 MOV.L #_ptr1:32,ER1
 MOV.L #-5:32,ER2
 MAC @ER1+,@ER0+
 AND.L ER2,ER0
 MAC @ER1+,@ER0+
 AND.L ER2,ER0
 MAC @ER1+,@ER0+
 AND.L ER2,ER0
 MAC @ER1+,@ER0+
 AND.L ER2,ER0
 STMAC.L MACL,ER0
 MOV.L ER0,@_l2:32
 POP.L ER2
 RTS

← a multiply-accumulate
operation

Section 3 Compiler

Rev.3.00 2005.09.12 3-18
REJ05B0464-0300

(C/C++ program)

(Compiled assembly-language expansion code)

Remarks and notes

This function mulsu/muluu is only valid when the CPU is H8SX with H8SX*:{M | MD}.

3.2.7 Shift Instructions

Description

The following built-in functions are available to enhance the rotate instructions:

No. Item Format Description

1 Rotate 1-byte data
to the left

char rotlc(int count,char data) Rotates 1-byte data to the left by count bits; returns the
result.

2 Rotate 2-byte data
to the left

int rotlw(int count,int data) Rotates 2-byte data to the left by count bits; returns the
result.

3 Rotate 4-byte data
to the left

long rotll(int count,long data) Rotates 4-byte data to the left by count bits; returns the
result.

4 Rotate 1-byte data
to the right

char rotrc(int count,char data) Rotates 1-byte data to the right by count bits; returns
the result.

5 Rotate 2-byte data
to the right

int rotrw(int count,int data) Rotates 2-byte data to the right by count bits; returns
the result.

6 Rotate 4-byte data
to the right

long rotrl(int count,long data) Rotates 4-byte data to the right by count bits; returns
the result.

#include <machine.h>
long sval1, sval2, sans;
unsigned long uval1, uval2, uans;
void f(void)
{

sans = mulsu(sval1, sval2);

uans = muluu(uval1, uval2);
}

_f:
 PUSH.L ER2
 MOV.L @sval1:32,ER1
 MOV.L @sval2:32,ER2
 MULS/U.L ER2,ER1
 MOV.L ER1,@sans:32
 MOV.L @uval1:32,ER1
 MOV.L @uval2:32,ER2
 MULU/U.L ER2,ER1
 MOV.L ER1,@uans:32
 RTS/L ER2

←Upper 32 bits of Unsigned 32-bit multiplication

←Upper 32 bits of Signed 32-bit multiplication

Section 3 Compiler

Rev.3.00 2005.09.12 3-19
REJ05B0464-0300

Example

To rotate bits of data.

(C/C++ program)

(Compiled assembly-language expansion code)

3.2.8 System Control Instructions

Description

The following functions are available to enhance system control instructions:

No. Item Format Description

1 TRAPA instruction void trapa(unsigned int
trap_no)

Expands into unconditional trap TRAPA #trap_no.

2 SLEEP instruction void sleep(void) Expands into the low-power-consumption mode
instruction SLEEP.

Example

(1) TRAPA instruction

To branch to the address indicated by the content of the vector address that is associated with a specified vector table
number 0:

(C/C++ program)

#include <machine.h>
extern unsigned char data;
char i;
void func()
{
 i=rotlc(2,data);
}

_func:
 MOV.B @_data:32,R0L
 ROTL.B #2,R0L
 MOV.B R0L,@_i:32
 RTS
 .SECTION B,DATA,ALIGN=2
_i:
 .RES.B 1

#include <machine.h>
#define dummy (void*)0
extern void f1(void);
extern void f2(void);
extern void f3(void);
void (*const vect_table[])(void)={
 f1,dummy,f2,f3
};
void func()
{
 trapa(0);
}

←Rotates left by 2 bits.

←Trap instruction to function f1 Note: In this case, the vector table
should be assigned to an interrupt
vector address.

Section 3 Compiler

Rev.3.00 2005.09.12 3-20
REJ05B0464-0300

(Compiled assembly-language expansion code)

Remarks and notes

(i) Only a constant 0 to 3 can be assigned to the parameter of the function trapa.

(ii) This function is valid only when the CPU operating mode is specified as other than 300.

(2) SLEEP instruction

Issues the SLEEP instruction to place the CPU in the low power consumption mode.

The low power consumption mode maintains the current CPU status, suspends the execution of any instructions after the
SLEEP instruction, and waits until an interrupt request is generated. Upon an interrupt request, the CPU exits the low
power consumption.

(C/C++ program)

(Compiled assembly-language expansion code)

_func:
 TRAPA #0
 RTS
 .SECTION C,DATA,ALIGN=2
_vect_table:
 .DATA.L _f1
 .DATA.L H'00000000
 .DATA.L _f2,_f3
 .END

#include <machine.h>
extern int a;
void func()
{
 while(a);
 sleep();
}

_func:
 MOV.W @_a:32,R0
L49:
 BNE L49:8
 SLEEP
 RTS

←Issues SLEEP instruction.

Section 3 Compiler

Rev.3.00 2005.09.12 3-21
REJ05B0464-0300

3.2.9 Block Transfer Instruction

Description

The following function is available to enhance the system control block transfer instruction:

No. Item Format Description

void eepmov(void*dst, const void*src,
unsigned char size)

void eepmov(void*dst, const void*src,
unsigned int size)

Expands into the block transfer instruction EEPMOV.

void eepmovb(void*dst, const
void*src, unsigned char size) *1

Always expanded to EEPMOV.B.

Size can be a variable.

void eepmovw(void*dst, const
void*src, unsigned int size) *1

Always expanded to EEPMOV.W.

Size can be a variable.

1 EEPMOV
instruction

void eepmovi(void*dst, const
void*src, unsigned int size) *1

Expanded to EEPMOV.

Can resume transfer after an Interrupt.

Size can be a variable.

EEPMOV
instruction

(with ECR
Setting)

void eepromb(void*dst, const
void*src, unsigned char size, volatile
unsigned char*ecr, unsigned char
ecrval)

void eepromw(void*dst, const
void*src, unsigned int size, volatile
unsigned char*ecr, unsigned char
ecrval)

Sets the value to ECR.

Expanded to EEPMOV.B,EEPMOV/P.W.

Size can be a variable.

2

EEPMOV
instruction

(with EPR
and ECR
Setting)

void eepromb_epr(void*dst, const
void*src, unsigned char size, volatile
unsigned char*ecr, unsigned char
ecrval, volatile unsigned char*epr,
unsigned char eprval)

void eepromw_epr(void*dst, const
void*src, unsigned int size, volatile
unsigned char *ecr,unsigned char
ecrval, volatile unsigned char*epr,
unsigned char eprval)

Sets the value to ECR, EPR.

Expanded to EEPMOV.B,EEPMOV/P.W.

Size can be a variable.

Note: 1. valid only with H8SX

Section 3 Compiler

Rev.3.00 2005.09.12 3-22
REJ05B0464-0300

#include <machine.h>
struct STR{
 char a[300];
}ST1;
struct STR ST2={0};
void f()
{
 eepmovi((char*)&ST1,(char*)&ST2,256);
}

←Executes the EEPMOV instruction.

Example

(1) eepmov, eepmovb, eepmovw

To perform a block transfer from the address indicated by the second parameter to the address indicated by the first
parameters in bytes indicated by the third parameter.

(C/C++ program)

(Compiled assembly-language expansion code)

Remarks and notes

(i) When the CPU operating mode is 300, the maximum size of data that can be block-transferred is 255 bytes.

(ii) When the CPU operating mode is other than 300, the maximum size of data that can be block-transferred is 65535
bytes. When the data size is 256 to 65535 bytes, the instruction is expanded into EEPMOV.W, which may be subject
to an NMI interrupt.

For details on this interrupt, refer to the applicable product programming manual.

(2) eepmovi

To perform a block transfer from the address indicated by the second parameter to the address indicated by the first
parameters in bytes indicated by the third parameter.

This function is expanded so that the EEPMOV instruction can resume transfer after returning from an interrupt.

(C/C++ program)

_f:
 STM.L (ER4-ER6),@-SP
 MOV.L #_ST2:32,ER5
 MOV.B #-1:8,R4L
 MOV.L #_ST1:32,ER6
 EEPMOV.B
 LDM.L @SP+,(ER4-ER6)
 RTS

#include <machine.h>
struct STR{
 char a[300];
}ST1;
struct STR ST2={0};
void f()
{
 eepmov((char*)&ST1,(char*)&ST2,255);
}

←Executes the EEPMOV instruction.

Section 3 Compiler

Rev.3.00 2005.09.12 3-23
REJ05B0464-0300

#include <machine.h>
#define ecr_ptr ((volatile unsigned char *)(0x123456))
char a[10], b[10];
unsigned char x;
void f(void)
{
 x = eepromw(b, a, 10, ecr_ptr, 1);
}

←Executes the EEPMOV/P.W instruction.

(Compiled assembly-language expansion code)

Remarks and notes

This function eepmovi is valid only when the CPU is H8SX.

(3) eepromb,eepromw

To perform a block transfer from the address indicated by the second parameter to the address indicated by the first
parameters in bytes indicated by the third parameter.

The eepromb intrinsic function transfers a memory block with the EEPMOV.B instruction, and eepromw with the
EEPMOV/P.W instruction respectively.

These intrinsic functions set the first, second and third parameters to the registers, set ecrval to the address pointed by ecr,
and then transfer the memory block.

If transfer completes successfully, 0 is returned. If transfer fails, the remaining size of the memory block left is returned.

The size of eepromb can take 0 to 255, and size of eepromw can take 0 to 65535. However, if size is 0, no transfer
occurs.

(C/C++ program)

(Compiled assembly-language expansion code)

_f:
 STM.L (ER4-ER6),@-SP
 MOV.L #_ST1,ER6
 MOV.L #_ST2,ER5
 MOV.W #256:16,R4
L28:
 EEPMOV.W
 MOV.W R4,R4
 BNE L28:8
 RTS/L (ER4-ER6)

← Executes, until rest of transfer size is zero.

_f:

 STM.L (ER4-ER6),@-SP

 MOV.L #_b,ER6

 MOV.L #_a,ER5

 MOV.W #H'000A:16,R4

 MOV.B #1:4,@H'00123456:32

 EEPMOV/P.W

 MOV.B R4L,@_x:32

 RTS/L (ER4-ER6)

Section 3 Compiler

Rev.3.00 2005.09.12 3-24
REJ05B0464-0300

#include <machine.h>

#define ecr_ptr ((volatile unsigned char *)(0x123456))

#define epr_ptr ((volatile unsigned char *)(0x123457))

char a[10], b[10];

unsigned char x;

void f(void)

{

 x = eepromw_epr(b, a, 10, ecr_ptr, 1, epr_ptr, 1);

}

←Executes the EEPMOV/P.W instruction.

Remarks and notes

(i) This intrinsic function is valid when the CPU type is AE5, or when H8SX and the -eeprom option is specified.

(ii) Refer to the hardware manual for the details of ECR, EPR and other related issues.

(4) eepromb_epr,eepromw_epr

To perform a block transfer from the address indicated by the second parameter to the address indicated by the first
parameters in bytes indicated by the third parameter.

The eepromb_epr intrinsic function transfers a memory block with the EEPMOV.B instruction, and eepromw_epr with
the EEPMOV/P.W instruction respectively.

These intrinsic functions set the first, second and third parameters to the registers, set eprval to the address pointed by epr,
set ecrval to the address pointed by ecr, and then transfer the memory block.

If transfer completes successfully, 0 is returned. If transfer fails, the remaining size of the memory block left is returned.

The size of eepromb_epr can take 0 to 255, and size of eepromw_epr can take 0 to 65535. However, if size is 0, no
transfer occurs.

(C/C++ program)

(Compiled assembly-language expansion code)

Remarks and notes

(i) This intrinsic function is valid when the CPU type is AE5, or when H8SX and the -eeprom option is specified.

(ii) Refer to the hardware manual for the details of ECR, EPR and other related issues.

_f:

 STM.L (ER4-ER6),@-SP

 MOV.L #_b,ER6

 MOV.L #_a,ER5

 MOV.W #H'000A:16,R4

 MOV.B #1:4,@H'00123457:32

 MOV.B #1:4,@H'00123456:32

 EEPMOV/P.W

 MOV.B R4L,@_x:32
 RTS/L (ER4-ER6)

Section 3 Compiler

Rev.3.00 2005.09.12 3-25
REJ05B0464-0300

3.2.10 Block Transfer Instructions of H8SX

Description

The following function is available to enhance the block transfer instruction of H8SX.

No. Item Format Description

1 MOVMD
instruction

void movmdb(void*dst, const
void*src, unsigned int count)

void movmdw(int*dst, const
int*src, unsigned int count)

void movmdl(long*dst, const
long*src, unsigned int count)

Expands into MOVMD instruction.

2 MOVSD
instruction

unsigned int movsd(char*dst,

const char*src, unsigned

int size)

Expands into MOVSD instruction.

Example

(1) movmdb, movmdw, movmdl

The MOVMD.B, MOVMD.W or MOVMD.L instruction transfers a memory block of 1, 2, or 4 bytes, respectively, the
number of times specified by count from the address specified by src to the address specified by dst.

In the following example, 100 bytes transfer, movmdb transfers 1 byte each 100 times, movmdw transfers 2 byte each 50
times, movmdl transfers 4 byte each 25 times

(C/C++ program)

(Compiled assembly-language expansion code)

#include <machine.h>
char s1[100], d1[100];
int s2[50], d2[50];
long s4[25], d4[25];
void f(void)
{

movmdb(d1, s1, 100);
movmdw(d2, s2, 50);
movmdl(d4, s4, 25);

 }

←Executes the MOVMD instruction.

_f:
 STM.L (ER4-ER6),@-SP
 MOV.L # d1,ER6
 MOV.L # s1,ER5
 MOV.W #100:16,R4
 MOVMD.B
 MOV.L # d2,ER6
 MOV.L # s2,ER5
 MOV.W #50:16,R4
 MOVMD.W
 MOV.L # d4,ER6
 MOV.L # s4,ER5
 MOV.W #25:16,R4
 MOVMD.L
 RTS/L (ER4-ER6)

Section 3 Compiler

Rev.3.00 2005.09.12 3-26
REJ05B0464-0300

Remarks and notes

(i) his function is valid only when the CPU is H8SX.

(ii) count takes the value from zero to 65535. If count is zero, however, it is interpreted as 65536.

(2) movsd

Transfers a memory block using the block transfer instruction MOVSD from the address specified by src to the address
specified by dst either until a byte whose value is zero (H'00) has been transferred or until the transferred size has reached
size. The return value is the value subtracting the size of actually-transferred bytes from the size given by size.

(C/C++ program)

(Compiled assembly-language expansion code)

Remarks and notes

(i) This function is valid only when the CPU is H8SX.

(ii) size takes the value from zero to 65535. If size is zero, however, it is interpreted as 65536.

#include <machine.h>
const char *s = “1234”;
cahr d[100];
unsigned int remain;
void f(void)
{
 remain = movsd(d, s, 100);

}

←Executes the MOVMD instruction
within the limit of 100 bytes.

_f:
 STM.L (ER4-ER6),@-SP
 MOV.L # d,ER6
 MOV.L @ s:32,ER5
 MOV.W #100:16,R4
 MOVSD.B ($+4)
 MOV.W R4,@ remain:32
 RTS/L (ER4-ER6)

←Set the value subtracting the size
actually transferred from the given size.

Section 3 Compiler

Rev.3.00 2005.09.12 3-27
REJ05B0464-0300

3.3 Section Address Operators

Description

Section addresses can be specified with the compiler-supplied _ _sectop and _ _secend operators.

In objects output by the compiler, section addresses usually cannot be specified because the section assignment destination
is undefined. However, with the _ _sectop and _ _secend operators, you can specify the final address of a section that will
be set in the program linked using the Inter-Module Optimization Tool.

These two operators can be specified as follows:

[Format]

 _ _sectop(“<section name>”)

 _ _secend(“<section name>”)

With a section named X, the statements including the operators are expanded as follows:

 __sectop(“X”) → STARTOF X

 __secend(“X”) → STARTOF X+SIZEOF X

STARTOF and SIZEOF are asembler operators.

STARTOF determines the start address of a section set after it has been linked.

SIZEOF determines the size of a section set after it has been linked.

X

__sectop X

__secend X

Example of section status

Section 3 Compiler

Rev.3.00 2005.09.12 3-28
REJ05B0464-0300

Example

To copy the contents of section X to section Y:

(C/C++C/C++ program)

(Compiled assembly-language expansion code)

Remarks

If the section specified by the section address operator does not exist, the operator creates a section of size 0. The attribute
of this section is data, with a boundary alignmet of 2.

_func:
 STM.L (ER4-ER5),@-SP
 MOV.L #_X_END:32,ER4
 MOV.L #STARTOF X:32,ER0
 MOV.L ER0,@_X_BGN:32
 MOV.L #STARTOF X+SIZEOF X:32,ER0
 MOV.L ER0,@ER4
 MOV.L #STARTOF Y:32,ER0
 MOV.L ER0,@_Y_BGN:32
 MOV.L @_X_BGN:32,ER1
 MOV.L ER0,ER5
 BRA L12:8
L11:
 MOV.B @ER1,R0L
 MOV.B R0L,@ER5
 INC.L #1,ER1
 INC.L #1,ER5
L12:
 MOV.L @ER4,ER0
 CMP.L ER0,ER1
 BCS L11:8
 LDM.L @SP+,(ER4-ER5)
 RTS

char *X_BGN;
char *X_END;
char *Y_BGN;
void func(void)
{
 char *p, *q;

 X_BGN=(char *)__sectop("X");
 X_END=(char *)__secend("X");
 Y_BGN=(char *)__sectop("Y");

 for (p=X_BGN,q=Y_BGN;p<X_END;p++,q++)
 *q = *p;
}

Section 3 Compiler

Rev.3.00 2005.09.12 3-29
REJ05B0464-0300

3.4 C++ Language Settings

The C++ language requires the following settings in addition to the settings for the C language:

3.4.1 Setting an EC++ Class Library

In HEW1.2, the C++ language requires the linking of an EC++ class library in addition to the standard library. As in the
case of the standard library, an EC++ class library must be selected as indicated below, depending on the type of the CPU
used, the purpose of the optimization, and the number of parameter-passing registers used. EC++ class libraries that do not
match with the specification of the standard library or from the compiler options cannot be linked.

In HEW2.0 or later, the Standard Library Generator Tool should be used to create an EC++ class library.

Select Category:[Standard Library] EC++ from Standard Library tab for settings.

CPU
Series:

Operating
Mode: Merit of Library:

Change Number of
Parameter … EC++ Class Library

H8S/2600 Normal Code Size 2 ec226n.lib

Speed 2 ec226ns.lib

Code Size 3 ec226n3.lib

Speed 3 ec226ns3.lib

Advanced Code Size 2 ec226a.lib

Speed 2 ec226as.lib

Code Size 3 ec226a3.lib

Speed 3 ec226as3.lib

H8S/2000 Normal Code Size 2 ec226n.lib

Speed 2 ec226ns.lib

Code Size 3 ec226n3.lib

Speed 3 ec226ns3.lib

Advanced Code Size 2 ec226a.lib

Speed 2 ec226as.lib

Code Size 3 ec226a3.lib

Speed 3 ec226as3.lib

H8/300H Normal Code Size 2 ec2hn.lib

Speed 2 ec2hns.lib

Code Size 3 ec2hn3.lib

Speed 3 ec2hns3.lib

Advanced Code Size 2 ec2ha.lib

Speed 2 ec2has.lib

Code Size 3 ec2ha3.lib

Speed 3 ec2has3.lib

H8/300 - Code Size 2 ec2reg.lib

Speed 2 ec2regs.lib

Code Size 3 ec2reg3.lib

Speed 3 ec2regs3.lib

Section 3 Compiler

Rev.3.00 2005.09.12 3-30
REJ05B0464-0300

CPU
Series:

Operating
Mode: Merit of Library:

Change Number of
Parameter … EC++ Class Library

H8/300L - Code Size 2 ec2reg.lib

Speed 2 ec2regs.lib

Code Size 3 ec2reg3.lib

Speed 3 ec2regs3.lib

3.4.2 Changing the Initialization Method

In the C++ language, the initial settings must be modified as indicated below:

The following description illustrates the modification method by using the resetprg.c file in the workspace created in
section 2.1.1, Creating a New Workspace 2 (HEW2.0):

#include <machine.h>
#include "stacksct.h"

#pragma entry PowerON_Reset
extern void main(void);
#ifdef __cplusplus
extern “C” {
#endif
extern void _INITSCT(void);
#ifdef USES_SIMIO
extern void _INIT_IOLIB(void);
extern void _CLOSEALL(void);
#endif
#ifdef OTHERLIB
extern void _INIT_OTHERLIB(void);
#endif
#ifdef HWSETUP
extern void HardwareSetup(void);
#endif
#ifdef __cplusplus
}
#endif

#pragma section ResetPRG
void PowerON_Reset(void);
void PowerON_Reset(void)
{

 set_imask_ccr(1);
_INITSCT();

#ifdef USES_SIMIO
_INIT_IOLIB();

#endif
#ifdef OTHERLIB

_INIT_OTHERLIB();
#endif
#ifdef HWSETUP

HardwareSetup();
#endif
 _call_init();

main();
#ifdef USES_SIMIO

_CLOSEALL();
#endif

 _call_end():
sleep();

}

These functions are called if static data
exists in the C++ program.

 : Added

Section 3 Compiler

Rev.3.00 2005.09.12 3-31
REJ05B0464-0300

The _call_init function initializes the C++ initialized data area that stores the address of the constructor which is called
with respect to a global class object.

The _call_end function initializes the C++ post-processing data area that stores the address of the destructor which is
called with respect to a global class object.

Both functions are supplied in the standard library.

3.4.3 Changing a Structure Boundary Alignment

Description

Either the pack option or #pragma pack1/#pragma pack2/#pragma unpack can be used to change the boundary alignment
for a structure.

These specifications change the boundary alignment as follows:

Specification #pragma pack1 #pragma pack2 #pragma unpack or none

[unsigned]char 1 1 1

[unsigned]short, [unsigned]int, [unsigned]long,
floating-point type, pointer type

1 2 pack option specified

Structures, unions, and classes with a
boundary alignment value of 1.

1 1 1

Structures, unions, and classes with a
boundary alignment value of 2.

1 2 pack option specified

Changing a boundary alignment

When #pragma pack1 is specified, data except 1 byte can be allocated at an odd address in order not to make a space for
boundary alignment. So data size may be reduced.

(C/C++ program)

(Data Allocation)

struct S1{
 char a;
 int b;
 char c;
}

#pragma pack 1
struct S1{
 char a;
 int b;
 char c;
}

a

b

c

space

2 bytes

a

b c

2 bytes

b

Data Size : 6 bytes Data Size : 4 bytes

space

Section 3 Compiler

Rev.3.00 2005.09.12 3-32
REJ05B0464-0300

Remarks

As changing a boundary alignment may reduce data size, it is useful for such as block transfer. However, when #pragma
pack1 is specified, it may increases the necessary access code, which access word or long word members of structures one
byte each.

When CPU is H8SX, word access for word or long word member at an odd address does not occur an address error
because of the device specification. So these members can be accessed by word or long word instructions.

As a result, it does not increase the necessary access code.
When CPU is other than H8SX, members of structures must not be accessed via a pointer as the following example.

(C/C++ program)

struct S {
 char x;
 int y;
} s;
int *p=&s.y;
void test()
{
 s.y=1;

 *p =7;
}

← accessed correctly

← can be accessed incorrectly

← address of s.y can be odd

Section 3 Compiler

Rev.3.00 2005.09.12 3-33
REJ05B0464-0300

3.5 New Expansion Functions of Compiler Ver.4.0

This section explains expansion functions that are newly added to the Compiler ver.4.0.

3.5.1 Vector Table Automatic Generation Functions

Description

By specifying the vector number of #pragma interrupt, #pragma inderect, and #pragma entry, the vector table of functions
is automatically generated.

[Format]

#pragma interrupt (<function name>[(vect=<vector number>)])

#pragma inderect (<function name>[(vect=<vector number>)])

#pragma entry <function name>[(vect=<vector number>)]

Example

To specify a vector number to create a vector table.

(C/C++ program)

(CPU=2600a)

(memory map contents)

Remarks and notes

(i) The vector table specification "vect=" should always be specified in lowercase characters.

(ii) Be careful not duplicate an allocating vector number with other vector tables.

#pragma entry f1(vect=0)
void f1(){
}
#pragma interrupt (f2(vect=4))
void f2(void){
}
#pragma indirect (f3(vect=5))
unsigned char f3(void){
}

← Allocating the entry function f1 to the vector number 0.

← Allocating the interrupt function f2 to the vector
number 4.

← Allocating the indirect memory access function f3 to
the vector number 5.

$VECT0 00000000 00000003
$VECT4 00000010 00000013
$VECT5 00000014 00000017

Section 3 Compiler

Rev.3.00 2005.09.12 3-34
REJ05B0464-0300

3.5.2 Specifying the Number of Parameter-Passing Registers

Description

The number of parameter-passing registers can be specified for each function.

The function that is specified by _ _ regparam2 uses ER0, ER1 (R0 and R1 for H8/300), and the function that is specified
by _ _ regparam3 uses ER0, ER1, ER2 (R0, R1, and R2 for H8/300).

[Format]

<type specifier> _ _ regparam2 <function name>

<type specifier> _ _ regparam3 <function name>

Example

This function specifies to store a variable to stack or allocate it to ER2.

(C/C++ program)

Remarks and notes

(i) This function supports only keyword specifications.

(ii) Using the compiler CPU option regparam=3, parameter-passing registers use ER0, ER1, ER2 (R0, R1, and R2 for
H8/300) for all functions.

void _ _ regparam2 func1(long a, int b, int c, long d);
void _ _ regparam3 func2(long a, int b, int c, long d);
void main(void)
{
 ::

func1(a,b,c,d);
 :
 :
 :

func2(a,b,c,d);
 :
 :
 :
}

Variable allocation patterns
(CPU=2600a)
func1

long a :ER0
int b :E1
int c :R1
long d :stack

func2
long a :ER0
int b :E1
int c :R1
long d :ER2

Section 3 Compiler

Rev.3.00 2005.09.12 3-35
REJ05B0464-0300

_test:
 MOV.W @15733112:32,R0
 BCLR.B #5,R0H
 MOV.W R0,@15733112:32
 RTS

_test:
 BCLR.B #5,@15733112:32
 RTS

3.5.3 Even Byte access Specification Features

Description

This feature always allows to access in even byte (not to access in byte) for 2 or 4 bytes of scalar type of variable/constant.

[Format]

_ _ evenaccess <type specifier> <variable name>

<type specifier> _ _ evenaccess <variable name>

Example

(C/C++ program)

(Compiled assembly-language expansion code)

 _ _ evenaccess is not specified _ _ evenaccess is specified

 Accesses in the word instruction

Remarks and notes

(i) In H8/300, the function allows to access in 2 bytes.

(ii) This function supports only keyword specifications.

#define A (*(volatile unsigned short __evenaccess
*)0xff01178)
void test(void)
{

A &= ~0x2000 ;
}

Section 3 Compiler

Rev.3.00 2005.09.12 3-36
REJ05B0464-0300

7 6 5 4 3 2 1 0

x.a spacex.b

7 6 5 4 3 2 1 0

x.aspace x.b

3.6 New Expansion Functions of Compiler Ver.6.0

This section explains expansion functions that are newly added to the Compiler ver.6.0.

3.6.1 Bit Field Order Specification

Description

#pragma bit_order, bit_order option can specify the order of bit field members.

Sometimes Bit Field Order Rules are different between CPUs, this function may increase the compatibility of programs
between different CPUs. When this option is omitted, BIt_order = Left is selected.

Specification Method

(1) Extended Function Format

#pragma bit_order (left | right)

(2) Option

BIt_order = {Left | Right}

Example

Switches the order of bit field assignment as the following examples.

When left is specified, bit field members are assigned from the most significant bit side.

When right is specified, members are assigned from the least significant bit side.

If #pragma bit_order is specified without left or right specifiler, the interpretation of the bit_order option is effective below
the line.

(C/C++ program)

(Assigned Data Order)

#pragma bit_order left
struct {

unsigned char a:2;
unsigned char b:3;

}x;
void func(void)
{

x.a = 3;
x.b = 5;

}

#pragma bit_order right
struct {

unsigned char a:2;
unsigned char b:3;

}x;
void func(void)
{

x.a = 3;
x.b = 5;

}

assigned from the most significant bit assigned from the least significant bit

Section 3 Compiler

Rev.3.00 2005.09.12 3-37
REJ05B0464-0300

3.7 New Expansion Functions of Compiler Ver.6.1

This section explains options and expansion functions that are newly added to the Compiler Ver.6.1.

3.7.1 legacy=v4

Description

When specified this option, the C/C++ Compiler ver.6.1 outputs objects which are optimized by the same way as Ver.4.0.

This is useful for the process depending on timing, because the objects don’t differ from Ver.4.0.

When NOT specified this option, the objects which are more strongly optimized than Ver.4.0.

Specification Method

Command line: legacy = v4

Notes and Remarks

This option is valid, when CPU type is 2600A,2600N,2000A or 2000N.

When legacy=v4 is specified, the following options are NOT available.

opt_range, del_vacant_loop, max_unroll, infinite_loop, global_alloc, struct_alloc, const_var_propagate,
volatile_loop, scope, strict_ansi, file_inline, file_inline_path, enable_register

3.7.2 cpuexpand=v6

Description

The cpuexpand option generates multiplication and division code for variables by expanding interpretation of the ANSI
standard.

So the objects which are generated by specifying the cpuexpand option may be different between the C/C++ Compiler
Ver.4.0 and Ver.6.0 or later, when CPU type is 2600A,2600N,2000A or 2000N.

If this difference makes some undesirable results, please use cpuexpand=v6 option. The cpuexpand=v6 option doesn’t
make any difference of objects, so no undesirable results are made.

Specification Method

Command line: cpuexpand = [v6]

Expressions influenced

(a) signed long = signed int << constant

(b) signed long = unsigned int << constant

(c) unsigned long = signed int << constant

(d) unsigned long = unsigned int << constant

(e) signed int = (signed int << constant) / signed int

(f) signed int = (unsigned int << constant) / signed int

(g) signed int = (unsigned int << constant) / unsigned int

(h) unsigned int = (signed int << constant) / signed int

Section 3 Compiler

Rev.3.00 2005.09.12 3-38
REJ05B0464-0300

(i) unsigned int = (unsigned int << constant) / signed int

(j) unsigned int = (unsigned int << constant) / unsigned int

Examples of codes

Example of (unsigned signed long = unsigned signed int << constant)

Notes and Remarks

This option is valid, when CPU type is 2600A,2600N,2000A, or 2000N, and legacy=v4 is specified.

3.7.3 Enabling Register Declarations

Description

The compiler allocates registers to variables in order, based on the analysis results in the compiler, regardless of whether
or not the registers are declared.

When the "-enable_register" option is specified, the registers are allocated first to the variables with the register
declaration.

Specification Method

-enable_register

Example of use

int g_i1;
void func()
{
register long Reg_l1 = 999;
long l2 = 126;
long l3 = 248;

switch(g_i1){
case 2:

Reg_l1++;
 break;

case 3:
 l2 += 5;

 break;
case 4:
 l2 += 7;

 break;
case 9:

l3 -= 11;
 break;

case 10:
l3 -= 19;

 break;
}

 printf("%d,%d,%d\n",Reg_l1,l2,l3); // Since the value of 'Reg_l1' is passed to printf via ER1,
 // allocating ER1 to ' Reg_l1' improves efficiency.
}

-cpuexpand- legacy=v4
 MOV.W @_i1:32,R0
 MOV.W #1024,E0
 MULXS.W E0,ER0
 MOV.L ER0,@_l1:32

Shift result is stored to unsigned long.

-cpuexpand=V6 -legacy=v4
 MOV.B @_i1+1:32,R0H
 SUB.B R0L,R0L
 SHLL.W #2,R0
 EXTU.L ER0
 MOV.L ER0,@_l1:32

Shift result is zero expanded, and stored to
unsigned long.

Section 3 Compiler

Rev.3.00 2005.09.12 3-39
REJ05B0464-0300

Examples of codes

Notes and Remarks

If a register is not allocated, the following information message appears:

C0102 (I) Register is not allocated to "variable name" in "function name"

However, this message does not appear if an argument is not allocated to any register.

This option is valid, when CPU type is H8SX or H8S.

-enable_register not specified
_func:
 STM.L (ER4-ER6),@-SP
 SUB.W #8:16,R7
 MOV.L #H'000003E7,ER5
 SUB.L ER6,ER6
 MOV.B #H'7E:8,R6L
 SUB.L ER4,ER4
 MOV.B #H'F8:8,R4L
 MOV.W @_g_i1:16,R0
 MOV.W R0,R1
 MOV.B R0H,R0H
 BNE L26:8
 CMP.B #2:8,R1L
 BEQ L27:8
 CMP.B #3:8,R1L
 BEQ L28:8
 CMP.B #4:8,R1L
 BEQ L29:8
 CMP.B #9:8,R1L
 BEQ L30:8
 CMP.B #H'0A:8,R1L
 BNE L26:8
 MOV.B #H'E5:8,R4L
 BRA L26:8
L30:
 MOV.B #H'ED:8,R4L
 BRA L26:8
L29:
 MOV.B #H'85:8,R6L
 BRA L26:8
L28:
 MOV.B #H'83:8,R6L
 BRA L26:8
L27:
 MOV.B #H'E8:8,R5L
L26:
 MOV.W #LWORD L45:16,R0
 MOV.L ER6,@SP
 MOV.L ER4,@(4:16,SP)
 MOV.L ER5,ER1
 JSR @_printf:16
 ADD.W #8:16,R7
 LDM.L @SP+,(ER4-ER6)
 RTS

-enable_register
_func:
 STM.L (ER4-ER6),@-SP
 SUB.W #8:16,R7
 MOV.L #H'000003E7,ER1
 SUB.L ER4,ER4
 MOV.B #H'7E:8,R4L
 SUB.L ER6,ER6
 MOV.B #H'F8:8,R6L
 MOV.W @_g_i1:16,R0
 MOV.W R0,R5
 MOV.B R0H,R0H
 BNE L26:8
 CMP.B #2:8,R5L
 BEQ L27:8
 CMP.B #3:8,R5L
 BEQ L28:8
 CMP.B #4:8,R5L
 BEQ L29:8
 CMP.B #9:8,R5L
 BEQ L30:8
 CMP.B #H'0A:8,R5L
 BNE L26:8
 MOV.B #H'E5:8,R6L
 BRA L26:8
L30:
 MOV.B #H'ED:8,R6L
 BRA L26:8
L29:
 MOV.B #H'85:8,R4L
 BRA L26:8
L28
 MOV.B #H'83:8,R4L
 BRA L26:8
L27:
 MOV.B #H'E8:8,R1L
L26:
 MOV.W #LWORD L45:16,R0
 MOV.L ER4,@SP
 MOV.L ER6,@(4:16,SP)

 JSR @_printf:16
 ADD.W #8:16,R7
 LDM.L @SP+,(ER4-ER6)
 RTS

Since variable Reg_l1 gives
higher priority, ER1 is allocated.

Section 3 Compiler

Rev.3.00 2005.09.12 3-40
REJ05B0464-0300

3.7.4 Specifying Absolute Addresses of Variables

Description

You can specify the absolute addresses of variables that are referenced externally, using a preprocessor directive. The
compiler allocates the variables declared in the #pramga address directive to the corresponding absolute addresses. This
feature enables easier access via variables to I/O allocated to a specific address.

Format

#pragma address (<variable name> = <address value>[,<variable name> = <address value> ...])

Example of use

Variable”io” is allocated to the absolute address 0x100.

C language code

 #pragma address (io=0x100)

 int io;

 f()

 {

 io = 10;

 }

Expanded into assembly language code

_main:

 MOV.L #H'0A:8,@_io:16

 RTS

 .SECTION $ADDRESS$B100,DATA,LOCATE=H'100

_io:

 .RES.L 1

 .END

Important Information

This option is valid, when CPU type is H8SX or H8S.

(1) You must specify "#pragma address" before the variable declaration.

(2) An error will occur if you specify a compound type member or other than a variable.

(3) An error will occur if you specify an odd address for a variable or structure whose alignment number is 2.

(4) An error will occur if you specify "#pragma address" more than once for the same variable.

(5) An error will occur if you specify the same address for different variables or if you specify the same variable address
more than once.

(6) An error will occur if you specify the following #pragma extensions at the same time, for the same variable:

#pragma section

#pragma abs8/abs16

#pragma global_register

Section 3 Compiler

Rev.3.00 2005.09.12 3-41
REJ05B0464-0300

3.7.5 Inter-file Inline Expansion

Description

The C/C++ Compiler is performed for each file. As a result, if a function is called across files, inline expansion is not
applied to the function, even though the –speed=inline option, #pragma inline or keyword inline is specified in the
function for inline expansion.

When inter-file inline expansion option is specified, inline expansion can be applied to the function, even if that function is
called across files.

If the file, which includes the function for inline expansion, is on the other directory, inline expansion can be applied to the
function by specifying the directory on which the function for inter-file inline expansion exists.

Specification Method

Inter-file Inline Expansion

Dialog menu: C/C++ Tab Category: [Optimize] [Details...][Inline][Inline file path]

Command line: FILe_inline=<file name>[,...]

Inter-file Inline Expansion Directory Specification

Dialog menu: C/C++ Tab Category: [Source] [Show entries for :][File inline path]

Command line: file_inline_path=<path name> [,…]

Files for inter-file inline expansion are searched in the order of the [File inline path] directory and the current directory.

Examples of use

In the following example, the function func, in which keyword inline is specified, is called from other file.

For inline expansion, specify the inter-file inline expansion option at compile of the calling function test_1.c.

(C/C++ program)

ch38 –cpu=h8sxa –file_inline=test_2.c test_1.c

ch38 –cpu=h8sxa test_2.c

[test_1.c]

void main(void);

void func(void);

int si1,si2;

void main(void)

{

 func();

}

[test_2.c]

extern int si1,si2;

void func(void);

__inline void func(void)

{

 si1 = 10;

 si2 = 20;

}

Section 3 Compiler

Rev.3.00 2005.09.12 3-42
REJ05B0464-0300

Examples of codes

When specified the inter-file inline expansion option, codes of test_2.c are expanded in the calling function.

 Not specified Specified

Notes and Remarks

This option is valid only when the CPU type is H8SX or H8S (without legacy=v4 option).

(1) When this option is specified, inline expansion is only applied to the functions specified with #pragma inline or
keyword inline included in the file specified by <file name>. If the –speed=inline option is specified simultaneously,
inline expansion is applied to all possible functions in the file.

(2) If a global function is defined twice or more in some files specified by this option, no operation is guaranteed

(using a single function definition randomly selected for inline expansion)

(3) The extension of the file name specified by <file name> cannot be omitted.

(4) A wild card (* or ?) cannot be specified for <file name>.

(5) If a file has #pragma asm-endasm, #pragma inline_asm or __asm, it will not be expanded.

3.7.6 Division of Optimizing Ranges

Description

When the Division of Optimizing Ranges option is specified, the compiler divides the optimizing ranges of the large-size
functions into some blocks. When the Division of Optimizing Ranges option is NOT specified, the compiler does not
divide the optimizing ranges.

When the optimizing range is expanded, the object performance is generally improved although the compilation time
becomes longer. However, if registers are insufficient, the object performance may not be improved.

Use this option at performance tuning because it affects the object performance depending on the program.

Specification Method

Dialog menu: None

Command line: SCOpe
 : NOSCope

[test_1.c]

_main:
 JMP @_func:24

[test_1.c]

_main:

 MOV.W #H'A:4,@_si1:32

 MOV.W #H'14:8,@_si2:32

 RTS

[test_2.c]

_func:

 MOV.W #H'A:4,@_si1:32

 MOV.W #H'14:8,@_si2:32
 RTS

[test_2.c]

_func:

 MOV.W #H'A:4,@_si1:32

 MOV.W #H'14:8,@_si2:32

 RTS

Section 3 Compiler

Rev.3.00 2005.09.12 3-43
REJ05B0464-0300

Examples of use

In the following example, ROM size of the C program, which has 1000 variable declarations and each variable is set, is
shown. When noscope option is specified, ROM size is reduced by 6 bytes.

The following message is output, when message option* is specified and scope option is specified for Division of
Optimizing Ranges.

Note: * In HEW, C/C++ Tab Category: [Source] [Show entries for :][Messages][Display information level
messages]

(C/C++ program)

cpu=h8sxa

scope specified 8010 bytes
noscope specified 8004 bytes

(Message)

C0101 (I) Optimizing range divided in function "function name"

Notes and Remarks

This option is valid only when the CPU type is H8SX or H8S (without legacy=v4 option).

3.8 Features of H8SX

3.8.1 Address Space

Description

H8/300,H8/300H,H8S/2000,H8S/2600 has two CPU mode at most, H8SX has the following four CPU operating mode.

Each mode is selected with the mode pins of the LSI or other sources.

When compile, it is selected by specifying the CPU type and the operating mode options.

Since the usable modes and areas differ depending on the product, refer to the hardware manual when specifying CPU
mode.

CPU Operating

Mode

Normal Mode

Middle Mode

Advanced Mode

Maximum Mode

Program Area, Data Area 64 kbytes in total

Program Area 16 Mbytes, Data Area 64 kbytes,
16 Mbytes in total

Program Area 16 Mbytes, Data Area 4 Gbytes,
4 Gbytes in total

Program Area, Data Area 4 Gbytes in total

Section 3 Compiler

Rev.3.00 2005.09.12 3-44
REJ05B0464-0300

Address Space

3.8.2 Specifying 8-bit Absolute Address Space

Description

If data are allocated and accessed in 8-bit absolute address space, the objects can be small size and high speed.

When CPU is H8SX, users can modify the access range of this 8-bit absolute address space.

In the old H8 family, 8-bit absolute address space is fixed from H'FFFF00 to H'FFFFFF, and duplicated internal I/O space.

In H8SX, 256 bytes area from any address specified by SBR(Short Address Base Register) is set as 8-bit absolute address
space.

Register Format

SBR (Short Address Base Register) is a 32-bit register that has the valid upper 24 bits. The lower eight bits are reserved
and read as 0s.

07831

Reserved

Normal Mode Middle Mode Advanced Mode Maximum Mode

H'0000 H'000000 H'00000000

H'FFFF

H'FFFFFF

H'FF8000

H'00000000

H'FFFFFFFF H'FFFFFFFF

H'007FFF

H'00FFFFFF

Program
Area
Data Area
(64 kbytes) Data Area

(64 kbytes)

Program
Area
(16 Mbytes)

Program
Area
(16 Mbytes)

Data Area
(4 Gbytes)

Program
Area,
Data Area
(4 Gbytes)

Section 3 Compiler

Rev.3.00 2005.09.12 3-45
REJ05B0464-0300

8-bit absolute address space

Specification Method

Dialog menu: CPU Tab, Specify SBR address

Command line: sbr = <address>

User Application Program

Default 8-bit absolute address
space

H'000000

H'FFFFF

H'200000

H'FFFF00

External Space

User Specified AreaUser Specified 8-bit absolute
address space

Section 3 Compiler

Rev.3.00 2005.09.12 3-46
REJ05B0464-0300

Example

As SBR(Short Address Base Register) can not be accessed from C/C++ language directly, SBR should be written in
assembly instructions.

But by the compiler extended function __asm as follows, assembly-language instructions can be written in C/C++
language.

Though assembly-language instructions can be written by pragma_asm in the old version compiler, they should be
translated into assembly source code after compile.

The assembly program written in the __asm block can be compiled into an object file directly, so the symbols can be
referred in the source-level debugger.

For details about __asm, refer to section 10.2.1(3), in the H8S,H8/300 Series C/C++ Compiler, Assembler, Optimizing
Linkage Editor User’s Manual.

(C/C++ program)

Section Allocation

As 8-bit absolute address space is declared by __abs8, $ABS8B section is output. Optimizing Linkage Editor allocates the
$ABS8B section at 0xa0000 in the above example.

__abs8 unsigned char a,b;
void main(void)
{
__asm{
 mov.l #0xa0000,er0
ldc.l er0,sbr
}
a = 7;
b = -1;
}

← 8-bit absolute address by __abs8

← Set 0xa0000 to SBR.

← Access 8-bit absolute address from 0xa0000

Section 3 Compiler

Rev.3.00 2005.09.12 3-47
REJ05B0464-0300

Examples of C/C++ Program

When using HEW, delete the comments of the following bold type parts in resetprg.c to make them available

When NOT using HEW, add the same expression in the initial routine.

 (8-bit absolute address space is NOT used) (8-bit absolute address space is used)

Examples of assembly expansion code

Examples of H8SX advanced mode 16M

 (8-bit absolute address space is NOT used) (8-bit absolute address space is used)

_main:

MOV.B #7:4,@_c1:32

MOV.B #255:8,@_c2:32

RTS

_main:

MOV.B #7:8,R0L

MOV.B R0L,@_c1:8

MOV.B #255:8,R0L

MOV.B R0L,@_c2:8

RTS

Access 0xa0000 – 0xa00FF

unsigned char c1,c2;

void main(void)

{

c1 = 7;

c2 = -1;

}

__abs8 unsigned char c1,c2;

void main(void)

{

c1 = 7;

c2 = -1;

}

__entry(vect=0) void PowerON_Reset(void)

{

// Remove the comment when you make the initial setting of SBR/VBR

for H8SX

__asm{

mov.l #0xa0000,er0

ldc.l er0,sbr

mov.l #0x00000000,er0

ldc.l er0,vbr

}

 set_imask_ccr(1);

_INITSCT();

 :

Section 3 Compiler

Rev.3.00 2005.09.12 3-48
REJ05B0464-0300

Object Size [byte]

H8SX

CPU type MAX ADV NML

Before Improvement 16 16 12

After Improvement 10 10 10

Execution Speed [cycle]

H8SX

CPU type MAX ADV NML

Before Improvement 12 12 11

After Improvement 11 11 11

3.8.3 Switching Vector Table Address

Description

H8SX has the function that can allocate the vector area for exception handling at any address.

In H8/300,H8/300H,H8S family, the vector area for exception handling is fixed from zero.

When CPU is H8SX, users can modify the allocation address of the vector area for exception handling by specifying
Vector Base Register (VBR).

Merit of Vector Base Register

As the vector area for exception handling can be located at any address by Vector Base Register (VBR), the vector table
can be made in fast internal RAM, even though for internal ROM less chip.

This can improve the response of exception handling.

Register Format

Vector Base Register (VBR) is a 32-bit register that has the valid upper 20 bits. The lower 12 bits of this register are
reserved and read as 0s.

Setting Vector Base Register by Compiler Ver.6.1

The built-in function set_vbr can set Vector Base Register in the C/C++ language.

For details, refer to section 3.2.3, Setting Vector Base Register.

0111231

Reserved

Section 3 Compiler

Rev.3.00 2005.09.12 3-49
REJ05B0464-0300

Example in Compiler Ver.6.0

In Compiler Ver.6.0, Vector Base Register (VBR) can not be accessed from C/C++ language directly, so it should be
written in assembly instructions.

But by using the compiler extended function __asm as follows, assembly-language instructions can be written in C/C++
language.

Though assembly-language instructions can be written by #pragma asm in the old version compiler, they should be
translated into assembly source code after compile.

The assembly program written in the __asm block can be compiled into an object file directly, so the symbols can be
referred in the source-level debugger.

For details about __asm, refer to section 10.2.1(3), in the H8S,H8/300 Series C/C++ Compiler, Assembler, Optimizing
Linkage Editor User’s Manual.

Switching Vector Base Register (VBR) should be done in the interrupt mask state.
Not in the interrupt mask state, when interrupt process occurs during switching Vector Base Register (VBR), the correct
processing of the exception handling can not be guaranteed.

(C/C++ program)

void main(void)

{

__asm{

orc.b #0x80,ccr

mov.l #0xffa000,er0

ldc.l er0,vbr

andc.b #0x7F,ccr

RTS

}

}

← Set interrupt mask bit

← Clear interrupt mask bit

Section 3 Compiler

Rev.3.00 2005.09.12 3-50
REJ05B0464-0300

Section 4 HEW

Rev.3.00 2005.09.12 4-1
REJ05B0464-0300

Section 4 HEW

This section describes the relationship between the option screens and command options supported by the C/C++
compiler, assembler, inter-module optimizer, object converter, and librarian when using the HEW1.2 or 2.0 or later.

For details on each option, refer to the appropriate user’s manual. (For details on options supported in the inter-module
optimizer, refer to the description in the H8S,H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor
User’s Manual.)

Each option screen in HEW1.2 is selected by the following method.

Tool Name Selecting Method

C/C++ Compiler [Options->H8S,H8/300 C/C++ Compiler…]

Cross Assembler [Options->H8S,H8/300 Assembler…]

Inter-Module optimizer [Options->H8S,H8/300 IM Optlinker…]

Object converter [Options->H Series Stype Converter…]

Librarian [Options->H Series Librarian…]

Note: If no appropriate tool is detected in the Options menu, add a tool using the [Options->Build Phases…]

Select H8S, H8/300 Standard Toolchain... from the option menu in HEW2.0 or later.

Select H8S, H8/300 Standard Toolchain... from the build menu in HEW4.0 or later.

Tool Name Selecting Method

C/C++ Compiler [Options->H8S,H8/300 Standard Toolchain…->C/C++ Tab]

Cross Assembler [Options->H8S,H8/300 Standard Toolchain…->Assembly Tab]

Optimizing Linkage Editor [Options->H8S,H8/300 Standard Toolchain…->Link/Library Tab]

Standard Library Generator [Options->H8S,H8/300 Standard Toolchain…->Standard Library Tab]

CPU Option [Options->H8S,H8/300 Standard Toolchain…->CPU Tab]

Section 4 HEW

Rev.3.00 2005.09.12 4-2
REJ05B0464-0300

In addition, Help can be referenced from each option screen.

If ? at the upper right corner is clicked and then an item to be referenced is clicked, a description similar to that shown
above appears.
Please use this help function for quick reference.

Section 4 HEW

Rev.3.00 2005.09.12 4-3
REJ05B0464-0300

4.1 Specifying Options in HEW1.2

For details on specifying options in HEW2.0 or later, refer to section 4.2, Specifying Options in HEW2.0 or later.

4.1.1 C/C++ Compiler Options

(1) Source Tab

Show entries for:

Dialog Menu Command Option Function

Include file directories include Specifies the path name of the include file directory

Preinclude files preinclude Specifies file contents as a include file at the beginning of a
compilation unit

Defines define Defines the macro name

Messages message Outputs an information message

Section 4 HEW

Rev.3.00 2005.09.12 4-4
REJ05B0464-0300

(2) Object Tab

Output file type:

Dialog Menu Command Option Function

Machine code (*.obj) code=machinecode Outputs a machine language program

Assembly source code (*.src) code=asmcode Outputs an assembly language program

Preprocessed source file
(*.p/*.pp)

preprocessor Outputs a source program after preprocessor expansion

Generate debug information

Check Box Command Option Function

 √ debug Outputs debugging information

 _ nodebug Outputs no debugging information

Section:

Dialog Menu Command Option Function

- section Changes the default section name

Store string data in:

Dialog Menu Command Option Function

Const section string=const Outputs string literal to the constant area

Data section string=data Outputs string literal to the initialization data area

Section 4 HEW

Rev.3.00 2005.09.12 4-5
REJ05B0464-0300

Mul/Div operation specifications

Dialog Menu Command Option Function

Based on ANSI (Guarantee 16bit
as a result of 16bit*16bit)

nocpuexpand Develops multiplication or division in codes according to the
ANSI C language specifications

Non ANSI (Guarantee 32bit as a
result of 16bit*16bit)

cpuexpand Develops multiplication or division in codes according to the
CPU instruction specifications

Output directory

Dialog Menu Command Option Function

- object Specifies object file output directory

(3) List Tab

Generate list file

Check Box Command Option Function

 √ list Outputs object list file

 _ nolist Outputs no object list file

Contents: Specifies data to be output to the object file list.

Dialog Menu Command Option Function

Object list show=object Outputs object list

Statictics show=statictics Outputs statics information

Allocation information show=allocation Outputs symbol allocation list

Source code listing show=source Outputs source list

After preprocessor expansion show=expand Outputs list after macro expansion

Section 4 HEW

Rev.3.00 2005.09.12 4-6
REJ05B0464-0300

If the [Enable all] button is pressed, all data items are output. On the other hand, if the [Disable all] button is pressed, all
data items are disabled and no data item is output to the object list file.

(4) Optimize Tab

Optimization

Check Box Command Option Function

 √ optimize=1 Specifies optimization

 _ optimize=0 Specifies no optimization

Speed or size: Specifies the optimization format.

Dialog Menu Command Option Function

Size oriented optimization - Performs optimization in size

Speed oriented optimization speed Performs optimization in speed

Speed sub-
options

Register speed=register Performs register store/restore expansion by the PUSH and
POP instruction at a higher speed

Switch
judgement

speed=switch Develops the switch statement at a higher speed

Shift to multiple speed=shift Develops the shift operation at a higher speed

Struct
assignment

speed=struct Performs the expansion of structures and substitution
expression at a higher speed

Loop
optimization

speed=loop Develops the loop statement at a higher speed

Expression speed=expression Performs arithmetic operation, comparison, and substitution
expression processing at a higher speed

Maximum
nodes of inline
function

speed=inline

[=<data>]

Performs inline expansion automatically at a higher speed

Section 4 HEW

Rev.3.00 2005.09.12 4-7
REJ05B0464-0300

Generate file for inter-module optimization

Check Box Command Option Function

 √ goptimize Outputs inter-module optimization additional information file

 _ - Outputs no inter-module optimization additional information file

Switch statement: Specifies the switch statement expansion method.

Dialog Menu Command Option Function

Auto case=auto Determines switch statement expansion method depending
on the speed option specification

If then case=ifthen Performs switch statement expansion in if_then method

Table case=table Performs switch statement expansion in table jump method

Function call: Selects the function call method.

Dialog Menu Command Option Function

@aa - Selects normal function call

@@aa:8 indirect Selects memory indirect function call

Data access: Selects data access mode.

Dialog Menu Command Option Function

@aa - Selects normal data access

@aa:8 abs8 Selects 8-bit absolute address access

@aa:16 abs16 Selects 16-bit absolute address access

(5) Other Tab

Section 4 HEW

Rev.3.00 2005.09.12 4-8
REJ05B0464-0300

Miscellaneous options:

Dialog Menu Command Option Function

Allow comment nest comment Enables comment nesting

Check against EC++ language
specification

ecpp Checks syntax according to the EC++ language
specifications

Generate browser information browser Outputs browser information

Interrupt handler saves/restores MACH
and MACL registers if used

macsave Guarantees MAC registers

Pack struct, union and class pack=1 | 2 Specifies alignment

Avoid optimizing external symbols
treating them as volatile

volatile Enables or disables external variable optimization

Treat enum as char if it is in the range of
char

byteenum Handles enumeration-type data as char

Increase a register for register variable regexpansion |
noregexpansion

Specifies the number of variable-allocation
registers as 2 or 3

Put common subexpression on a
register temporarily

cmncode Improves the optimization function for common
expression deletion

Use EEPMOV in block copy eepmov Performs structure substitution
using the EEPMOV instruction

User defined options: Specifies the command options.

(6) CPU Tab

Section 4 HEW

Rev.3.00 2005.09.12 4-9
REJ05B0464-0300

CPU: Specifies the CPU types.

CPU Operating Mode Address Space: Specification

Environment variable - - Depends on environment variable H38CPU

Normal cpu=2600N

1 Mbytes cpu=2600A:20

16 Mbytes cpu=2600A:24

256 Mbytes cpu=2600A:28

H8S/2600

Advanced

4 Gbytes cpu=2600A:32

Normal cpu=2000N

1 Mbytes cpu=2000A:20

16 Mbytes cpu=2000A:24

256 Mbytes cpu=2000A:28

H8S/2000

Advanced

4 Gbytes cpu=2000A:32

Normal cpu=300HN

1 Mbytes cpu=300HA:20

H8/300H

Advanced

16 Mbytes cpu=300HA:24

H8/300 - - cpu=300

H8/300L - - cpu=300

Change number of parameter-passing registers from 2 (default) to 3

Check Box Command line Function

 √ regparam=3 Specifies the number of parameter-passing registers as 3

 _ regparam=2 Specifies the number of parameter-passing registers as 2

Section 4 HEW

Rev.3.00 2005.09.12 4-10
REJ05B0464-0300

4.1.2 Assembler Options

(1) Source Tab

Show entries for:

Dialog Menu Command Option Function

Include file directories include Specifies include file directory

Defines define Defines string literal replacement

Preprocessor variable* assigna Defines integer-type preprocessor variable

assignc Defines character-type preprocessor variable

Note: * Specify using the following dialog box.

Section 4 HEW

Rev.3.00 2005.09.12 4-11
REJ05B0464-0300

(2) Object Tab

Debug information:

Dialog Menu Command Option Function

Default - Validates .DEBUG directive only

With debug information debug Enables debugging information output

Without debug information nodebug Disables debugging information output

Generate assembly source file after preprocess

Check Box Command Option Function

 √ expand Outputs preprocessor expansion results

 _ - Outputs no preprocessor expansion results

Optimize

Check Box Command Option Function

 √ optimize Specifies optimization

 _ nooptimize Specifies no optimization

Default of branch displacement size:

Dialog Menu Command Option Function

8bit br_relative=8 Specifies the displacement size as 8 bits if the forward-
reference displacement is selected for the branch instruction

16bit br_relative=16 Specifies the displacement size as 16 bits if the forward-
reference displacement is selected for the branch instruction

Section 4 HEW

Rev.3.00 2005.09.12 4-12
REJ05B0464-0300

Generate file for inter-module optimization

Check Box Command Option Function

 √ goptimize Outputs inter-module optimization information

 _ Outputs no inter-module optimization information

Output directory

Dialog Menu Command Option Function

- object[=<file name>] Specifies object output directory

(3) List Tab

Generate list file

Check Box Command Option Function

 √ list Outputs assembly list

 _ nolist Outputs no assembly list

Section 4 HEW

Rev.3.00 2005.09.12 4-13
REJ05B0464-0300

Contents: Specifies the contents to be output on the list files.

Dialog Menu Command Option Function

Source program source Outputs the source program list corresponding to the
assembly list

Conditionals show=conditionals Outputs the parts in which conditions specified in .AIF or
.AIFDEF are not satisfied

Definitions show=definitions Outputs macro definitions, .AREPEAT and .AWHILE definitions,
and .INCLUDE,.ASSIGNA, and .ASSIGNC directives

Calls show=calls Outputs macro-call statements and .AIF,.AIFDEF, and .AENDI
directives

Expansions show=expansions Outputs macro expansions and .AREPEAT →.AWHILE
expansions

Structured show=structured Outputs structured assembly expansions

Code show=code Outputs the lines that exceed the number of source statement
lines to be displayed in the object code display

Cross reference cross_refernce Outputs a cross-reference list

Section section Outputs a section information list

Note: If default is selected for each option, directive in the source list is specified.

(4) Tuning Tab

Option to set:

Dialog Menu Command Option Function

@aa:8 abs8 Specifies 8-bit absolute address symbol

@aa:16 abs16 Specifies 16-bit absolute address symbol

Note: Selects external reference symbols or external definition symbols.

Section 4 HEW

Rev.3.00 2005.09.12 4-14
REJ05B0464-0300

Specify all symbols

Check Box Function

 √ Assigns the specified size to the external reference symbols and external definition symbols

 _ Assigns a specific size to each symbol or does not assign a size

(5) Other Tab

Miscellaneous options:

Dialog Menu Check Box Command Option Function

Remove unreferenced
external symbols

 √ exclude Disables unreferenced external-reference symbol
information output

 _ noexclude Enables unreferenced external-reference symbol
information output

User defined options:

Describes the command options.

Section 4 HEW

Rev.3.00 2005.09.12 4-15
REJ05B0464-0300

(6) CPU Tab

Dialog Menu

CPU: Operating Mode: Address Space: Command Option Function

default - - - Validates .CPU directive specification

H8S/2600 Normal - cpu=2600n H8S/2600 normal mode

Advanced 1M byte cpu=2600a:20 H8S/2600 advanced mode

16M bytes cpu=2600a[:24] H8S/2600 advanced mode

256M bytes cpu=2600a:28 H8S/2600 advanced mode

4G bytes cpu=2600a:32 H8S/2600 advanced mode

H8S/2000 Normal - cpu=2000n H8S/2000 normal mode

Advanced 1M byte cpu=2000a:20 H8S/2000 advanced mode

16M bytes cpu=2000a[:24] H8S/2000 advanced mode

256M bytes cpu=2000a:28 H8S/2000 advanced mode

4G bytes cpu=2000a:32 H8S/2000 advanced mode

H8/300H Normal - cpu=300hn H8/300H normal mode

Advanced 1M byte cpu=300ha:20 H8/300H advanced mode

16M bytes cpu=300ha[:24] H8/300H advanced mode

H8/300 - - cpu=300 H8/300

H8/300L - - cpu=300l H8/300L

Section 4 HEW

Rev.3.00 2005.09.12 4-16
REJ05B0464-0300

4.1.3 Inter-Module Optimizer Options

(1) Input Tab

Input files: Specifies a load module and library to be linked.

Dialog Menu Subcommand Function

Relocatable files and object files input Specifies input file*

Library files library Specifies library file

Note: * This option is specified when inputting .obj other than a project file or when changing the project file input order.

Defines:

Dialog Menu Subcommand Function

- define Forcibly defines external-reference symbol

Use entry point:

Dialog Menu Subcommand Function

- entry Specifies execution start address

Use external subcommand file

Dialog Menu Subcommand Function

- subcommand Specifies the existing subcommand file

Section 4 HEW

Rev.3.00 2005.09.12 4-17
REJ05B0464-0300

(2) Output Tab

Format of load module: Specifies load module output format.

Dialog Menu Subcommand Function

ELF elf Outputs in ELF format

SYSROF sysrof Outputs in sysrof format

SYSROFPLUS sysrofplus Outputs dwarf debugging information in sysrof format

Type of load module: Specifies load module file output format.

Dialog Menu Subcommand Function

Absolute form∆abs Outputs in absolute format

Relocatable form∆rel Outputs in relocatable format

Debug information: Specifies debugging information output options.

Dialog Menu Subcommand Function

None nodebug Outputs no debugging information

In output load module debug Outputs debugging information to a load module

In separate debug file (*.dbg) sdebug Outputs debugging information to a file

ROM to RAM mapped sections:

Dialog Menu Subcommand Function

- rom Defines initialization data area both in ROM and RAM

Section 4 HEW

Rev.3.00 2005.09.12 4-18
REJ05B0464-0300

Generate map file

Check Box Subcommand Function

 √ print [∆file name] Outputs a linkage list file

 _ - Outputs no linkage list file

Load module directory:

Dialog Menu Subcommand Function

- output Selects a load module output directory

(3) Optimize Tab

Section 4 HEW

Rev.3.00 2005.09.12 4-19
REJ05B0464-0300

Optimize: Specifies optimization items.

Dialog Menu Subcommand Function

All Optimize Enables all optimization items

Speed Optimize∆speed Performs optimization in speed

Safe Optimize∆safe Performs safe optimization

Custom Optimize∆ Enables optimization item selection

Unify strings String_unify Unifies constant or string literal

Eliminate dead code Symbol_delete Deletes unreferenced symbols

Use short addressing Variable_access Uses short-absolute addressing mode

Reallocate registers Register Reallocates registers

Eliminate same code Same_code Eliminates same codes

Eliminated size: Samesize Specifies the object size for same code elimination

Use indirect call/jump Function_call Uses indirect addressing mode

Optimize branches Branch Optimizes branch instructions

None Nooptimize Disables optimization

Output information

Check Box Subcommand Function

 √ information Displays optimized function name

 _ Displays no optimized function name

Generate optimize list

Dialog Menu Subcommand Function

- Mlist [∆file name] Outputs optimization information list

Contents: Symbol show∆symbol Outputs symbol optimization information

Reference show∆reference Outputs symbol reference count

Forbid item:

Dialog Menu Subcommand Function

Elimination of dead code Symbol_forbid Specifies the name of variable or function in which
unreferenced symbol eliminating optimization is
disabled

Elimination of same code Samecode_forbid Specifies the name of the function in which same code
eliminating optimization is disabled

Use of short addressing to Variable_forbid Specifies the name of the variable in which optimization
using short-absolute addressing mode is disabled

Use of indirect call/jump to Function_forbid Specifies the name of the function in which optimization
using indirect addressing mode is disabled

Memory allocation in Absolute_forbid Specifies the address area to which address allocation
is not performed

Section 4 HEW

Rev.3.00 2005.09.12 4-20
REJ05B0464-0300

(4) Section Tab

Relocatable section start address:

Dialog Menu Subcommand Function

- start Specifies each section start address and linkage order

Generate external symbol file:

Dialog Menu Subcommand Function

- fsymbol Outputs external definition symbols processed by linkage function to a file in
assembler directive format

Note: Output file name is <project name>.fsy.

Section 4 HEW

Rev.3.00 2005.09.12 4-21
REJ05B0464-0300

(5) Verify Tab

CPU information check:

Dialog Menu Subcommand Function

No check Checks no CPU allocation

Check Checks memory allocation according to the CPU information file

Use CPU information file CPU Checks memory allocation according to the existing CPU information file

CPU information

Dialog Menu Subcommand Function

- - Cerates or modifies CPU information file CPU

Specifies memory types and then specifies each memory address

CPU information file path

Dialog Menu Subcommand Function

- - Specifies the existing CPU information file

Stop linkage on CPU information warning

Check Box Subcommand Function

 √ CPUCheck Outputs error information during memory allocation check according to
the CPU information file

 _ - Outputs no error information during memory allocation check

Section 4 HEW

Rev.3.00 2005.09.12 4-22
REJ05B0464-0300

(6) Other Tab

Miscellaneous options: Specifies other functions.

Dialog Menu Subcommand Function

Exclude unreferenced external
symbols

Exclude Disables unreferenced library linkage

Align section Align_section Checks sections having different alignments

Check for undefined symbols Udfcheck Outputs error information when undefined symbol is
detected

Check for unlinked sections Check_section Checks sections to which addresses are not assigned

Section 4 HEW

Rev.3.00 2005.09.12 4-23
REJ05B0464-0300

4.1.4 S-Type Converter Options

(1) Output Tab

Data record header:

Dialog Menu Command Option Function

None - -

S1 record=s1 Outputs in S1 data record

S2 record=s2 Outputs in S2 data record

S3 record=s3 Outputs in S3 data record

Always output S9 record at the end

Check Box Command Option Function

 √ s9 Outputs S9 record at the end, even if the entry address exceeds
H'10000

 _ - Always outputs

Divide S type file

Check Box Command Option Function

 √ - Outputs S-type file by separating it into arbitrary address areas

 _ - Outputs S-type file without separation

Section 4 HEW

Rev.3.00 2005.09.12 4-24
REJ05B0464-0300

S type file output directory

Dialog Menu Command Option Function

- - Specifies S-type file output directory

4.1.5 Librarian Options

(1) Output Tab

Library attribute: Specifies the attribute of a library to be output.

Dialog Menu Option/Subcommand Function

User library output Specifies user library as library attribute

System library output Specifies system library as library attribute

Library file output directory:

Dialog Menu Option/Subcommand Function

- output Specifies library output directory

Generate list file: Specifies whether the library list file is output.

Check Box Option/Subcommand Function

 √ list Displays library file contents

 _ - Displays no library file contents

Section 4 HEW

Rev.3.00 2005.09.12 4-25
REJ05B0464-0300

Show external symbol: Specifies the output of external definition symbol names defined in a module.

Check Box Option/Subcommand Function

 √ list Displays external definition symbol names defined in a module

 _ - Displays no external definition symbol names

Generate section list: Specifies section name list file output.

Check Box Option/Subcommand Function

 √ slist Displays section contents

 _ - Displays no section contents

4.2 Specifying Options in HEW2.0 or Later

For details on specifying options in HEW1.2, refer to section 4.1, Specifying Options in HEW1.2.

4.2.1 C/C++ Compiler Options

Select C/C++ Tab from the H8S, H8300 Standard Toolchain dialog box.

(1) Category:[Source]

Section 4 HEW

Rev.3.00 2005.09.12 4-26
REJ05B0464-0300

Show entries for:

Dialog Menu Command Option Function

Include file directories include Specifies the path name of the include file directory

Preinclude files preinclude Specifies file contents as a include file at the beginning of a
compilation unit

Defines define Defines the macro name

Messages message Outputs an information message

Message level charge_message Change message level

File inline path file_inline_path Specifies the path name where obtains a file that has function
definitions to be expanded as inline functions

(2) Category:[Object]

[Object] Category in HEW 4.0 is different from that of the previous versions (HEW 3.0 or earlier).

Both of them are displayed in the following charts.

<HEW2.0 to HEW3.0>

Section 4 HEW

Rev.3.00 2005.09.12 4-27
REJ05B0464-0300

<HEW4.0>

Output file type:

Dialog Menu Command Option Function

Machine code (*.obj) code=machinecode Outputs a machine language program

Assembly source code (*.src) code=asmcode Outputs an assembly language program

Preprocessed source file
(*.p/*.pp)

preprocessor Outputs a source program after preprocessor expansion

Generate debug information

Check Box Command Option Function

 √ debug Outputs debugging Information

 _ nodebug Outputs no debugging information

Section:

Dialog Menu Command Option Function

- section Changes the default section name

Store string data in:

Dialog Menu Command Option Function

Const section string=const Outputs string literal to the constant area

Data section string=data Outputs string literal to the initialization data area

Section 4 HEW

Rev.3.00 2005.09.12 4-28
REJ05B0464-0300

Mul/Div operation specifications

Dialog Menu Command Option Function

Based on ANSI (Guarantee
16bit as a result of 16bit*16bit)

nocpuexpand Develops multiplication or division in codes according to the
ANSI C language specifications

Non ANSI (Guarantee 32bit as
a result of 16bit*16bit)

cpuexpand Develops multiplication or division in codes according to the
CPU instruction specifications

Output directory

Dialog Menu Command Option Function

- object Specifies object file output directory

Template

Dialog Menu Command Option Function

None template=none Does not generates instances

static template=static Generates instance as internal linkage

only for referenced templates

Used template=used Generates instance as external linkage

only for referenced templates

All template=all Generates instances for templates declared or referenced

Auto template=auto Generates instances at linkage

Bit field allocation order (Specify the CPU tab from HEW4.0 or later)

Dialog Menu Command Option Function

Left bit_order=left Stores members from upper bit

Right bit_order=right Stores members from lower bit

Group by alignment

Dialog Menu Command Option Function

None noalign Allocates defined variables in the defined order

Auto align Allocates variables so as to reduce space by boundary
alignment

4byte align=4 Divides a data section into 4,2,1-byte boundary alignment
section, and allocates into multiple of 4,2,1 address, in order
to improve the speed of access

Compatibility of output object code (HEW4.0 or later)

Check Box Command Option Function

 √ legacy=v4 Output objects generated by Ver.4.0 optimization technology
of H8S

 _ - Output objects generated by Ver.6.1 optimization technology
of H8S

Section 4 HEW

Rev.3.00 2005.09.12 4-29
REJ05B0464-0300

(3) Category:[List]

Generate list file

Check Box Command Option Function

 √ list Outputs object list file

 _ nolist Outputs no object list file

Contents: Specifies data to be output to the object file list.

Dialog Menu Command Option Function

Object list show=object Outputs object list

Statistics show=statistics Outputs statics information

Allocation information show=allocation Outputs symbol allocation list

Source code listing show=source Outputs source list

After preprocessor expansion show=expansion Outputs source program listing after macro expansion

If the [Enable all] button is pressed, all data items are output. On the other hand, if the [Disable all] button is pressed, all
data items are disabled and no data item is output to the object list file.

Tab size

Dialog Menu Command Option Function

4 show=tab=4 Specifies Tab size as 4 to appear in listing

8 show=tab=8 Specifies Tab size as 8 to appear in listing

Section 4 HEW

Rev.3.00 2005.09.12 4-30
REJ05B0464-0300

(4) Category:[Optimize]

Optimization

Check Box Command Option Function

 √ optimize=1 Specifies optimization

 _ optimize=0 Specifies no optimization

Speed or size: Specifies the optimization format.

Dialog Menu Command Option Function

Size oriented optimization - Performs optimization in size

Speed oriented optimization speed Performs optimization in speed

Speed sub-
options

Register speed=register Performs register store/restore expansion by the PUSH
and POP instruction at a higher speed

Switch judgement speed=switch Develops the switch statement at a higher speed

Shift to multiple speed=shift Develops the shift operation at a higher speed

Struct assignment speed=struct Performs the expansion of structures and substitution
expression at a higher speed

Expression speed=expression Performs arithmetic operation, comparison, and
substitution expression processing at a higher speed

Loop optimization speed=loop1 Deletion of induction variables

Loop Unrolling speed=loop2 Deletion of induction variables and loop expansion

Inline function
Maximum:node(s)

speed=inline

[=<data>]

Performs or does not perform Automatic inline expansion

Section 4 HEW

Rev.3.00 2005.09.12 4-31
REJ05B0464-0300

Generate file for inter-module optimization

Check Box Command Option Function

 √ goptimize Outputs inter-module optimization add-on information file

 _ - Outputs no inter-module optimization add-on information
file

Switch statement: Specifies the switch statement expansion method.

Dialog Menu Command Option Function

Auto case=auto Determines switch statement expansion method
depending on the speed option specification

If then case=ifthen Performs switch statement expansion in if_then method

Table case=table Performs switch statement expansion in table jump
method

Function call: Selects the function call method.

Dialog Menu Command Option Function

@aa - Selects normal function call

@@aa:8 idirect=normal Selects memory indirect function call

@@vec:7 idirect=extended Selects extended memory indirect function call

Data access: Selects data access mode.

Dialog Menu Command Option Function

@aa - Selects normal data access

@aa:8 abs8 Selects 8-bit absolute address access

@aa:16 abs16 Selects 16-bit absolute address access

Section 4 HEW

Rev.3.00 2005.09.12 4-32
REJ05B0464-0300

(a) [Details] Button: [Inline] Tab

(Supported from HEW 4.0)

Specify optimizing range

Dialog Menu Command Option Function

Inline file path file_inline Specifies a file for inter-faile inline expansion.

(b) [Details] Button: [Global Variables] Tab

Section 4 HEW

Rev.3.00 2005.09.12 4-33
REJ05B0464-0300

Level: Specifies the level of external variable optimization

Dialog Menu Command Option Function

Level 1

volatile

infinite_loop=0

opt_range=noblock

global_alloc=0

const_var_propagate=0

Disables all of the external variable optimization.

 [Treat global …] = [Checked]

 [Delete assignment …] = [Not checked]

 [Specify optimizing …] = [No block]

 [Allocate registers …] = [Disable]

 [Propagate variables …] = [Disable]

Level 2

novolatile

infinite_loop=0

opt_range=noblock

global_alloc=0

const_var_propagate=0

Optimizes external variables that do not have a volatile specifier.

Disables optimization of external variables which extend across loops or
branches.

 [Treat global …] = [Not checked]

 [Delete assignment …] = [Not checked]

 [Specify optimizing …] = [No block]

 [Allocate registers …] = [Disable]

 [Propagate variables …] = [Disable]

Level 3

novolatile

infinite_loop=0

opt_range=all

global_alloc=1

const_var_propagate=1

Optimizes external variables that do not have a volatile specifier within
the entire function.

 [Treat global …] = [Not checked]

 [Delete assignment …] = [Not checked]

 [Specify optimizing …] = [All]

 [Allocate registers …] = [Enable]

 [Propagate variables …] = [Enable]

Custom - Optimizes external variables according to the options specified by user

Section 4 HEW

Rev.3.00 2005.09.12 4-34
REJ05B0464-0300

Treat global variables as volatile qualified

Check Box Command Option Function

 √ volatile Disables external variable optimization.

 _ novolatile Optimizes external variables that do not have a volatile specifier.

Delete assignment to global variables before an infinite loop

Check Box Command Option Function

 √ infinite_loop=1 Eliminates an assignment expression that is located immediately
before an infinite loop and that is an assignment to the external
variable that is not used in the infinite loop.

 _ infinite_loop=0 Disables elimination of an assignment expression for external
variables preceding an infinite loop.

Specify optimizing range

Dialog Menu Command Option Function

All opt_range=all Optimizes external variables within the entire function.

No loop opt_range=noloop External variables in a loop and external variables used in a loop
iteration condition are not to be optimized.

No block opt_range=noblock External variables extending across branches (including loops) are
not to be optimized.

Allocate registers to global variables

Dialog Menu Command Option Function

Disable global_alloc=0 Disables allocation of external variables to registers.

Enable global_alloc=1 Allocates external variables to registers.

Default global_alloc=1 Allocates external variables to registers.

Propagate variables which are const qualified

Dialog Menu Command Option Function

Disable const_var_propagate=0 Disables constant propagation of external constants declared by
const.

Enable const_var_propagate=1 Performs constant propagation of external constants declared by
const.

Default const_var_propagate=1 Performs constant propagation of external constants declared by
const.

Section 4 HEW

Rev.3.00 2005.09.12 4-35
REJ05B0464-0300

(c) [Details] Button: [Miscellaneous] Tab

Delete vacant loop

Check Box Command Option Function

 √ del_vacant_loop=1 Eliminates the loop without statements inside.

 _ del_vacant_loop=0 Disables elimination of vacant loops, even when there is no statements
inside the loop.

Specify maximum unroll factor

Dialog Menu Command Option Function

Default max_unroll=2 or 1 2 or 1 is assumed as the maximum number of loops to be expanded.

Custom max_unroll=
< numeric value >

Specifies the maximum number of loops to be expanded. An integer
from 1 to 32 can be specified for <numeric value>.

Allocate registers to struct/union members

Check Box Command Option Function

 √ struct_alloc=1 Allocates structure/union members to registers.

 _ struct_alloc=0 Disables allocation of structure/union members to registers.

Inline memcpy/strcpy

Check Box Command Option Function

 √ library=intrinsic Performs inline expansion for memcpy and strcpy.

 _ library=function Makes function calls for memcpy and strcpy.

Section 4 HEW

Rev.3.00 2005.09.12 4-36
REJ05B0464-0300

(5) Category:[Other]

Miscellaneous options:

Dialog Menu Command Option Function

Allow comment nest comment Enables comment nesting

Check against EC++ language
specification

ecpp Checks syntax according to the EC++ language
specifications

Interrupt handler saves/restores
MACH and MACL registers if used

macsave Guarantees MAC registers

Treate loop condition as volatile
qualified

volatile_loop Disables optimization of loop iteration condition.

Treat enum as char if it is in the
range of char

byteenum Handles enumeration-type data as char

Increase a register for register
variable

Regexpansion
noregexpansion

Specifies the number of variable-allocation registers as 2 or
3

Put common subexpression on a
register temporarily

cmncode Improves the optimization function for common expression
deletion

Use EEPMOV in block copy eepmov Performs structure substitution
using the EEPMOV instruction

Treats loop condition as volatile
qualified

volatile_loop Disables optimization of loop iteration.

Suppress #line in preprocessed
source file

noline Disables #line output at preprocessor expansion.

Enable register declaration enable_register Preferentially allocates the variables with register storage
class specification to registers.

Obey ansi specifications more
strictly

strict_ansi Conforms to the ANSI standard for the following processing.
- Associative rule of floating-point operations

User defined options: Specifies the command options.

Section 4 HEW

Rev.3.00 2005.09.12 4-37
REJ05B0464-0300

4.2.2 Assembler Options

Select Assembly Tab from the H8S,H8/300 Standard Toolchain dialog box.

(1) Category:[Source]

Show entries for:

Dialog Menu Command Option Function

Include file directories include Specifies include file directory

Defines define Defines string literal replacement

Preprocessor variable* assigna Defines integer-type preprocessor variable

assignc Defines character-type preprocessor variable

Note: * Specify using the following dialog box.

Section 4 HEW

Rev.3.00 2005.09.12 4-38
REJ05B0464-0300

(2) Category:[Object]

Debug information:

Dialog Menu Command Option Function

Default - Validates .DEBUG directive only

With debug information debug Enables debugging information output

Without debug
information

nodebug Disables debugging information output

Generate assembly source file after preprocess

Check Box Command Option Function

 √ expand Outputs preprocessor expansion results

 _ - Outputs no preprocessor expansion results

Optimize

Check Box Command Option Function

 √ optimize Specifies optimization

 _ nooptimize Specifies no optimization

Section 4 HEW

Rev.3.00 2005.09.12 4-39
REJ05B0464-0300

Default of branch displacement size:

Dialog Menu Command Option Function

Default Specified by the directive descriptions in the source files

8bit br_relative=8 Specifies the displacement size as 8 bits if the forward-reference
displacement is selected for the branch instruction

16bit br_relative=16 Specifies the displacement size as 16 bits if the forward-
reference displacement is selected for the branch instruction

Generate file for inter-module optimization

Check Box Command Option Function

 √ goptimize Outputs inter-module optimization information

 _ Outputs no inter-module optimization information

Output directory

Dialog Menu Command Option Function

- object Specifies object output directory

(3) Category:[List]

Generate list file

Check Box Command Option Function

 √ list Outputs assembly list

 _ nolist Outputs no assembly list

Section 4 HEW

Rev.3.00 2005.09.12 4-40
REJ05B0464-0300

Source program:

Dialog Menu Command Option Function

Shown source Outputs source program list

Not shown nosource Outputs no source program list

Cross reference:

Dialog Menu Command Option Function

Shown cross_refernce Outputs cross reference list

Not shown nocross_refernce Outputs no cross reference list

Section:

Dialog Menu Command Option Function

Shown section Outputs section information list

Not shown nosection Outputs no section information list

Source program list Contents: Specifies the contents to be output on the list files.

Dialog Menu Command Option Function

Conditionals show=conditionals Outputs the parts in which conditions specified in .AIF or
.AIFDEF are not satisfied

Definitions show=definitions Outputs macro definitions, .AREPEAT and .AWHILE definitions ,
and .INCLUDE,.ASSIGNA, and .ASSIGNC directives

Calls show=calls Outputs macro-call statements and .AIF,.AIFDEF, and .AENDI
directives

Expansions show=expansions Outputs macro expansions and .AREPEAT .AWHILE expansions

Structured show=structured Outputs structured assembly expansions

Code show=code Outputs the lines that exceed the number of source statement
lines to be displayed in the object code display

Note: If default is selected for each option, directive in the source list is specified.

Section 4 HEW

Rev.3.00 2005.09.12 4-41
REJ05B0464-0300

(4) Category:[Tuning]

Option to set:

Dialog Menu Command Option Function

@aa:8 abs8 Specifies 8-bit absolute address symbol

@aa:16 abs16 Specifies 16-bit absolute address symbol

Note: Selects external reference symbols or external definition symbols.

Specify all symbols

Check Box Function

 √ Assigns the specified size to the external reference symbols and external definition symbols

 _ Assigns a specific size to each symbol or does not assign a size

Section 4 HEW

Rev.3.00 2005.09.12 4-42
REJ05B0464-0300

(5) Category:[Other]

Miscellaneous options:

Dialog Menu Check Box Command Option Function

 √ exclude Disables unreferenced external-reference symbol
information output

Remove
unreferenced
external symbols _ noexclude Enables unreferenced external-reference symbol

information output

User defined options:

Describes the command options.

Section 4 HEW

Rev.3.00 2005.09.12 4-43
REJ05B0464-0300

4.2.3 Optimizing Linkage editor Options

Select Link/Library Tab from the H8S, H8/300 Standard Toolchain dialog box.

(1) Category:[Input]

Show entries for:

Dialog Menu Command Option Function

Library files library Specifies an input library name

Relocatable files and

object files

input Specifies an input file

Binary files binary Specifies an input binary file

Defines define Forcibly defines undefined symbol

Use entry point:

Check Box Command Option Function

 √ entry Specifies entry symbol and entry address

 _ - Specifies no entry symbol and no entry address

Prelinker control:

Dialog Menu Command Option Function

Auto - If there is no instance information file, does not run prelinker

Skip prelinker noprelink Does not run prelinker

Run prelinker - Runs prelinker

Section 4 HEW

Rev.3.00 2005.09.12 4-44
REJ05B0464-0300

(2) Category:[Output]

Type of output file:

Dialog Menu Command Option Function

Absolute(ELF/DWARF) form=absolute Outputs absolute load module in ELF/DWARF format

Absolute(SYSROF) form=absolute

helfcnv.exe

Outputs absolute load module in SYSROF format

Relocatable form=relocate Outputs relocatable load module

System library form=library=s Outputs system library

User library form=library=u Outputs user library

Hex via absolute form=hexadecimal Outputs a HEX file

Stype via absolute form=stype Outputs a S-type file

Binary via absolute form=binary Outputs a binary file

Data record header:

Dialog Menu Command Option Function

- Outputs a record according to each address

H16 record=h16 Outputs a HEX record

H20 record=h20 Outputs an extended HEX record

H32 record=h32 Outputs a 32-bit HEX record

S1 record=s1 Outputs a S1 record

S2 record=s2 Outputs a S2 record

S3 record=s3 Outputs a S3 record

Section 4 HEW

Rev.3.00 2005.09.12 4-45
REJ05B0464-0300

Debug information:

Dialog Menu Command Option Function

None nodebug Outputs no debugging information

In output load module debug Outputs debugging information to a load module

In Separate Debug File sdebug Outputs debugging information to a file

Show entries for:

Dialog Menu Command Option Function

Output file path - Specifies a path for an output file

ROM to RAM mapped
sections

rom Reserves an area of RAM to resolve symbol relocation by address
in RAM

Divided output files - Sets or does not set output range

Specify value filled in
unused area

- Specifies a value to output to unused area

Output messages - Specifies whether information level messages are output

Reduce empty areas - Reduces empty areas generated as the boundary alignment of
sections after compilation

Repressed information level messages:

Check Box Command Option Function

 √ nomessage Outputs no information level messages

 _ message Outputs information level messages

Notify unused symbol:

Check Box Command Option Function

 √ msg_unused Notifies the user of the defined symbol which is never referenced

 _ - NOT notify the user of the defined symbol which is never
referenced

Divided output files:

Check Box Command Option Function

 √ output Specifies an output file name and sets output range

 _ - Specifies an output file name but does not set output range

Output padding data:

Check Box Command Option Function

 √ space=
<numerical value>

Specifies a value to output to unused area

 _ - A value to output to unused area is not specified.

Section 4 HEW

Rev.3.00 2005.09.12 4-46
REJ05B0464-0300

Reduce empty areas of boundary alignment:

Check Box Command Option Function

 √ data_stuff Reduces empty areas generated as the boundary alignment of
sections after compilation

 _ - NOT reduce empty areas generated as the boundary alignment of
sections after compilation

(3) Category:[List]

Generate list file:

Check Box Command Option Function

 √ list Outputs a list file

 _ - Outputs no list file

Contents:

Dialog Menu Command Option Function

Show symbol show=symbol Outputs a list of symbol names

Show reference show=reference Outputs the number of symbol references

Show section sher=section Outputs a list of sections

Show cross reference show=xreference Outputs the cross-reference information

Section 4 HEW

Rev.3.00 2005.09.12 4-47
REJ05B0464-0300

(4) Category:[Optimize]

Show entries for:

Dialog Menu Command Option Function

Optimize items - Specifies optimization

Forbid item - Disables optimization of specific symbol and address
areas

Elimination of dead code Symbol_forbid Specifies the name of variable or function in which
unreferenced symbol eliminating optimization is disabled

Elimination of same code Samecode_forbid Specifies the name of the function in which same code
eliminating optimization is disabled

Use of short addressing to Variable_forbid Specifies the name of the variable in which optimization
using short-absolute addressing mode is disabled

Use of indirect call/jump to Function_forbid Specifies the name of the function in which optimization
using indirect addressing mode is disabled

Memory allocation in Absolute_forbid Specifies the address area to which address allocation is
not performed

Section 4 HEW

Rev.3.00 2005.09.12 4-48
REJ05B0464-0300

Optimize:

Dialog Menu Command Option Function

All Optimize Enables all optimization items

Speed Optimize∆speed Performs optimization in speed

Safe Optimize∆safe Performs safe optimization

Custom Optimize∆ Enables optimization item selection

Unify strings String_unify Unifies constant or string literal

Eliminate dead code Symbol_delete Deletes unreferenced symbols

Use short addressing Variable_access Uses short-absolute addressing mode

Reallocate registers Register Reallocates registers

Eliminate same code Same_code Unifies instruction codes

Use indirect call/jump Function_call Uses indirect addressing mode

Optimize branches Branch Optimizes branch instructions

Eliminated size: Samesize Specifies the object size for same code elimination

None Nooptimize Disables optimization

Include profile

Check Box Command Option Function

 √ profile Specifies a profile information file

 _ - Specifies no profile information file

Cache size:

Dialog Menu Command Option Function

Size cachesize =sized Specifies cache size

Line cachesize =align Specifies cache align size

Section 4 HEW

Rev.3.00 2005.09.12 4-49
REJ05B0464-0300

(5) Category:[Section]

Show entries for:

Dialog Menu Command Option Function

Section start- Specifies each section start address and linkage order

Symbol file fsymbol Outputs external definition symbols processed by linkage function to
a file in assembler directive format

Section 4 HEW

Rev.3.00 2005.09.12 4-50
REJ05B0464-0300

(6) Category:[Verify]

CPU information check:

Dialog Menu Command Option Function

No check - Checks no CPU allocation

Check CPU Checks memory allocation according to the CPU information file

Use CPU information file CPU Checks memory allocation according to the existing CPU
information file

CPU information

Dialog Menu Subcommand Function

- {ROm | RAm}=
<address range>

Cerates or modifies CPU information file CPU

Specifies memory types and then specifies each memory address

CPU information file path

Dialog Menu Subcommand Function

- <File name> Specifies the existing CPU information file

Section 4 HEW

Rev.3.00 2005.09.12 4-51
REJ05B0464-0300

(7) Category:[Other]

Miscellaneous options: Specifies other functions.

Dialog Menu Command Option Function

Always output S9 record at the end S9 Outputs S9 record consistently

Stack information output stack Outputs stack usage information files

compress Compresses debug informationCompress debug information

nocompress Compresses no debug information

Memory=high The occupied memory size is the same as usual.Low memory use during linkage

Memory=low The occupied memory size is reduced.

User defined options: Specifies the command options.

Section 4 HEW

Rev.3.00 2005.09.12 4-52
REJ05B0464-0300

(8) Category:[Subcommand file]

Use external subcommand file

Check Box Command Option Function

 √ Subcommand Specifies option by subcommand file

 _ - Specifies no subcommand file

Section 4 HEW

Rev.3.00 2005.09.12 4-53
REJ05B0464-0300

4.2.4 Standard Library Generator Options

Select Standard Library Tab from the H8S,H8/300 Standard Toolchain dialog box.

(1) Category:[Mode]

Mode:

Dialog Menu Command Option Function

Build a library file(anytime) - Creates a new standard library

Build a library file(Option
Changed)

- Creates a new standard library when option is changed

Use an existing library file - Links an existing standard library

Do not add a library file - Links no standard library

Section 4 HEW

Rev.3.00 2005.09.12 4-54
REJ05B0464-0300

(2) Category:[Standard Library]

Category:

Dialog Menu Command Option Function

runtime Head=RUNTIME Specifies a run-time routine

new Head=NEW Specifies EC++ declared by new

ctype.h Head=CTYPE Specifies ctype.h

math.h Head=MATH Specifies math.h

mathf.h Head=MATHF Specifies mathf.h

stdarg.h Head=STDARG Specifies stdarg.h

stdio.h Head=STDIO Specifies stdio.h

stdlib.h Head=STDLIB Specifies stdlib.h

string.h Head=STRING Specifies string.h

ios(EC++) Head=IOS Specifies ios(EC++)

complex(EC++) Head=COMPREX Specifies complex(EC++)

string(EC++) Head=CPPSTRING Specifies string(EC++)

Section 4 HEW

Rev.3.00 2005.09.12 4-55
REJ05B0464-0300

(3) Category:[Object]

Ver.4.0 Optimization technology generation (supported by the HEW Ver. 4.0 or later)

Check Box Command Option Function

 √ legacy=v4 Output object which is compatible with that generated by Ver.4.0
optimization technology of H8S

 _ - Output object generated by Ver.6.1 optimization technology of
H8S

Generate reentrant library

Check Box Command Option Function

 √ reent Creates reentrant functions

 _ - NOT create reentrant functions

Section:

Dialog Menu Command Option Function

- section Changes the default section name

Store string data in:

Dialog Menu Command Option Function

Const section string=const Outputs string literal to the constant area

Data section string=data Outputs string literal to the initialization data area

Section 4 HEW

Rev.3.00 2005.09.12 4-56
REJ05B0464-0300

Mul/Div operation specifications

Dialog Menu Command Option Function

Based on ANSI (Guarantee
16bit as a result of 16bit*16bit)

nocpuexpand Develops multiplication or division in codes according to the
ANSI C language specifications

Non ANSI (Guarantee 32bit as
a result of 16bit*16bit)

cpuexpand Develops multiplication or division in codes according to the
CPU instruction specifications

Output file path

Dialog Menu Command Option Function

- output Specifies library file output directory

Group by alignment

Dialog Menu Command Option Function

None noalign Allocates defined variables in the defined order

Auto align Allocates variables so as to reduce space by boundary
alignment

4byte align=4 Divides a data section into 4,2,1-byte boundary alignment
section, and allocates into multiple of 4,2,1 address, in order
to improve the speed of access

Section 4 HEW

Rev.3.00 2005.09.12 4-57
REJ05B0464-0300

(4) Category:[Optimize]

Optimization

Check Box Command Option Function

 √ optimize=1 Specifies optimization

 _ optimize=0 Specifies no optimization

Speed or size: Specifies the optimization format.

Dialog Menu Command Option Function

Size oriented optimization - Performs optimization in size

Speed oriented optimization speed Optimization for speed

Speed sub-
options

Register speed=register Performs register store/restore expansion by the PUSH and
POP instruction at a higher speed

Switch
judgement

speed=switch Develops the switch statement at a higher speed

Shift to multiple speed=shift Develops the shift operation at a higher speed

Struct
assignment

speed=struct Performs the expansion of structures and substitution
expression at a higher speed

Expression speed=expression Performs arithmetic operation, comparison, and substitution
expression processing at a higher speed

Loop
optimization

speed=loop1 Deletion of induction variables

Loop unrolling speed=loop2 Deletion of induction variables and loop expansion

Inline function
Maximum:node
(s)

speed=inline
[=<data>]

Automatic inline expansion

Section 4 HEW

Rev.3.00 2005.09.12 4-58
REJ05B0464-0300

Generate file for inter-module optimization

Check Box Command Option Function

 √ goptimize Outputs inter-module optimization add-on information

 _ - Outputs no inter-module optimization add-on information

Switch statement: Specifies the switch statement expansion method.

Dialog Menu Command Option Function

Auto case=auto Determines switch statement expansion method depending
on the speed option specification

If then case=ifthen Performs switch statement expansion in if_then method

Table case=table Performs switch statement expansion in table jump method

Function call: Selects the function call method.

Dialog Menu Command Option Function

@aa - Selects normal function call

@@aa:8 idirect=normal Selects memory indirect function call

@@vec:7 idirect=extended Selects extended memory indirect function call

Data access: Selects data access mode.

Dialog Menu Command Option Function

@aa - Selects normal data access

@aa:8 abs8 Selects 8-bit absolute address access

@aa:16 abs16 Selects 16-bit absolute address access

(a) [Details] Button: [Global variables] Tab

Section 4 HEW

Rev.3.00 2005.09.12 4-59
REJ05B0464-0300

Level: Specifies the level of external variable optimization

Dialog Menu Command Option Function

Level 1

volatile

infinite_loop=0

opt_range=noblock

global_alloc=0

const_var_propagate=0

Disables all of the external variable optimization.

 [Treat global …] = [Checked]

 [Delete assignment …] = [Not checked]

 [Specify optimizing …] = [No block]

 [Allocate registers …] = [Disable]

 [Propagate variables …] = [Disable]

Level 2

novolatile

infinite_loop=0

opt_range=noblock

global_alloc=0

const_var_propagate=0

Optimizes external variables that do not have a volatile specifier.

Disables optimization of external variables which extend across loops or
branches.

 [Treat global …] = [Not checked]

 [Delete assignment …] = [Not checked]

 [Specify optimizing …] = [No block]

 [Allocate registers …] = [Disable]

 [Propagate variables …] = [Disable]

Level 3

novolatile

infinite_loop=0

opt_range=all

global_alloc=1

const_var_propagate=1

Optimizes external variables that do not have a volatile specifier within
the entire function.

 [Treat global …] = [Not checked]

 [Delete assignment …] = [Not checked]

 [Specify optimizing …] = [All]

 [Allocate registers …] = [Enable]

 [Propagate variables …] = [Enable]

Custom - Optimizes external variables according to the options specified by user

Section 4 HEW

Rev.3.00 2005.09.12 4-60
REJ05B0464-0300

Treat global variables as volatile qualified

Check Box Command Option Function

 √ volatile Disables external variable optimization.

 _ novolatile Optimizes external variables that do not have a volatile specifier.

Delete assignment to global variables before an infinite loop

Check Box Command Option Function

 √ infinite_loop=1 Eliminates an assignment expression that is located immediately
before an infinite loop and that is an assignment to the external
variable that is not used in the infinite loop.

 _ infinite_loop=0 Disables elimination of an assignment expression for external
variables preceding an infinite loop.

Specify optimizing range

Dialog Menu Command Option Function

All opt_range=all Optimizes external variables within the entire function.

No loop opt_range=noloop External variables in a loop and external variables used in a loop
iteration condition are not to be optimized.

No block opt_range=noblock External variables extending across branches (including loops) are
not to be optimized.

Allocate registers to global variables

Dialog Menu Command Option Function

Disable global_alloc=0 Disables allocation of external variables to registers.

Enable global_alloc=1 Allocates external variables to registers.

Default global_alloc=1 Allocates external variables to registers.

Propagate variables which are const qualified

Dialog Menu Command Option Function

Disable const_var_propagate=0 Disables constant propagation of external constants declared by
const.

Enable const_var_propagate=1 Performs constant propagation of external constants declared by
const.

Default const_var_propagate=1 Performs constant propagation of external constants declared by
const.

Section 4 HEW

Rev.3.00 2005.09.12 4-61
REJ05B0464-0300

(b) [Details] Button: [Miscellaneous] Tab

Delete vacant loop

Check Box Command Option Function

 √ del_vacant_loop=1 Eliminates the loop without statements inside.

 _ del_vacant_loop=0 Disables elimination of vacant loops, even when there is no statements
inside the loop.

Specify maximum unroll factor

Dialog Menu Command Option Function

Default max_unroll=2 or 1 2 or 1 is assumed as the maximum number of loops to be expanded.

Custom max_unroll=
< numeric value >

Specifies the maximum number of loops to be expanded. An integer from
1 to 32 can be specified for <numeric value>.

Allocate registers to struct/union members

Check Box Command Option Function

 √ struct_alloc=1 Allocates structure/union members to registers.

 _ struct_alloc=0 Disables allocation of structure/union members to registers.

Inline memcpy/strcpy

Check Box Command Option Function

 √ library=intrinsic Performs inline expansion for memcpy and strcpy.

 _ library=function Makes function calls for memcpy and strcpy.

Section 4 HEW

Rev.3.00 2005.09.12 4-62
REJ05B0464-0300

(5) Category:[Other]

Miscellaneous options:

Dialog Menu Command Option Function

Check against EC++ language
specification

ecpp Checks syntax according to the EC++ language
specifications

Treate loop condition as
volatile qualified

volatile_loop Disables optimization of loop iteration condition.

Treat enum as char if it is in
the range of char

byteenum Handles enumeration-type data as char

Increase a register for register
variable

Regexpansion
noregexpansion

Specifies the number of variable-allocation registers as 2
Specifies the number of variable-allocation registers as 3

Put common subexpression
on a register temporarily

cmncode Improves the optimization function for common expression
deletion

Use EEPMOV in block copy eepmov Performs structure substitution
using the EEPMOV instruction

Treats loop condition as
volatile qualified

volatile_loop Disables optimization of loop iteration.

Enable register declaration enable_register Preferentially allocates the variables with register storage
class specification to registers.

Obey ANSI specifications
more strictly

strict_ansi Conforms to the ANSI standard for the following processing.

- Associative rule of floating-point operations

User defined options: Specifies the command options.

Section 4 HEW

Rev.3.00 2005.09.12 4-63
REJ05B0464-0300

4.2.5 CPU Options

Select CPU Tab from the H8S, H8/300 Standard Toolchain dialog box.

CPU: Specifies the CPU types.

CPU Specification

Environment variable Depends on environment variable H38CPU

H8SX Maximum 4G byte cpu=h8sxx:32

H8SX Maximum 256M byte cpu=h8sxx:28

H8SX Advanced 4G byte cpu=h8sxa:32

H8SX Advanced 256M byte cpu=h8sxa:28

H8SX Advanced 16M byte cpu=h8sxa:24

H8SX Advanced 1M byte cpu=h8sxa:20

H8SX Middle 16M byte cpu=h8sxm:24

H8SX Middle 1M byte cpu=h8sxm:20

H8SX Normal cpu=h8sxn

H8S/2600 Advanced 4G byte cpu=2600A:32

H8S/2600 Advanced 256M byte cpu=2600A:28

H8S/2600 Advanced 16M byte cpu=2600A:24

H8S/2600 Advanced 1M byte cpu=2600A:20

H8S/2600 Normal cpu=2600N

H8S/2000 Advanced 4G byte cpu=2000A:32

H8S/2000 Advanced 256M byte cpu=2000A:28

H8S/2000 Advanced 16M byte cpu=2000A:24

Section 4 HEW

Rev.3.00 2005.09.12 4-64
REJ05B0464-0300

CPU Specification

H8S/2000 Advanced 1M byte cpu=2000A:20

H8S/2000 Normal cpu=2000N

H8/300H Advanced 16M byte cpu=300HA:24

H8/300H Advanced 1M byte cpu=300HA:20

H8/300H Normal cpu=300HN

H8/300 cpu=300

H8/300L cpu=300l

Multiple/Divide :

Dialog Menu Command Option Function

None cpu=[...][][] no multiplier and divider

Multiple and Divide cpu=[...][][MD] multiplier and divider specification

Multiple cpu=[...][][M] multiplier specification

Divide cpu=[...][][D] divider specification

Stack calculation:

Dialog Menu Command Option Function

Small STAck=Small Calculates stack address by 1 byte

Medium STAck=Medium Calculates stack address by 2 bytes

Large STAck=Large Calculates stack address by 4 bytes

Change number of parameter-passing registers from 2 (default) to 3

Check Box Command Option Function

 √ regparam=3 Specifies the number of parameter-passing registers as 3

 _ regparam=2 Specifies the number of parameter-passing registers as 2

Treat double as float

Check Box Command Option Function

 √ DOuble=Float Treats double type of variable/value as float type

 _ - -

Pass struct parameter via register

Check Box Command Option Function

 √ STRUctreg Allocates structure parameter to register

 _ NOSTRUctreg Allocates no structure parameter to register

Pass 4-byte parameter/return value via register

Check Box Command Option Function

 √ LONgreg Allocates 4 bytes parameter/return value to register

 _ NOLONgreg Allocates no 4 bytes parameter/return value to register

Section 4 HEW

Rev.3.00 2005.09.12 4-65
REJ05B0464-0300

Use try,throw and catch of C++

Check Box Command Option Function

 √ EXception Enables an exception processing function

 _ NOEXception- Disables an exception processing function

Enable/disable runtime information

Check Box Command Option Function

 √ RTti=ON Enables dynamic_cast, typeid

 _ RTti=OFF Disables dynamic_cast, typeid

Pack struct union and class

Check Box Command Option Function

 √ PAck=1 Specifies the boundary alignment of structures, unions, and classes to 1

 _ PAck=2 Follows the boundary alignment number of data

Specify SBR address :

Dialog Menu Command Option Function

Default - The default 8-bit absolute address is assumed

Custom sbr=<address> Specifies the start address of the 8-bit absolute area

Bit field allocation order

Dialog Menu Command Option Function

Left bit_order=left Stores members from upper bit

Right bit_order=right Stores members from lower bit

4.3 Building Existing Files with HEW

This section explains how to register as an HEW project files a series of load module creation procedures that has already
been prepared without using the HIM.

In HEW1.2, sample programs are supplied in the HEW directory \Tools\HITACHI\H8\3_0a_0\sample.

No. HEW1.2 File Description

1 init.c Initialization routine

2 vectbl.c Vector table settings

3 scttbl.c Section initialization routine

4 cmain.c Main function file

5 c2600a.sub Subcommand file for inter-module optimizer

Sample programs are not available with HEW2.0 or later. Therefore the sample programs of user's own make should be
prepared or the following files to be generated when creating sample project should be used as sample programs.

Create a sample project by selecting Demonstration as the project type setting according to section 2.1.2, Creating a New
Workspace 2(HEW2.0 or later).

Section 4 HEW

Rev.3.00 2005.09.12 4-66
REJ05B0464-0300

No. HEW2.0 or later File Description

1 resetprg.c Initialization routine

2 intprg.c Vector table settings

3 dbsct.c Section initialization routine

4 main.c Main function file

5 2600a.sub(user's own make) Subcommand file

(1) Creating a new project

Create a new project according to section 2.1.1, Creating a New Workspace.

Select Empty Application as a project type.

(2) Selecting the CPU

Select the CPU type on the 1/9 screen.

Section 4 HEW

Rev.3.00 2005.09.12 4-67
REJ05B0464-0300

(3) Selecting global options

Select global options on the 2/9 screen.

<HEW1.2>

<HEW2.0 or later>

For details on changing the global options after initialization, refer to section 11.2.1, Output of “Undefined External
Symbol”.

Section 4 HEW

Rev.3.00 2005.09.12 4-68
REJ05B0464-0300

(4) Adding files to the project

In the next step, use [Project Add Files…] to specify the C source files to be added to the project.

Add the files init.c, vectbl.c, scttbl.c, and cmain.c for HEW1.2 and resetprg.c, intprg.c, dbsct.c, and main.c for HEW2.0.

Section 4 HEW

Rev.3.00 2005.09.12 4-69
REJ05B0464-0300

(5) Selecting compiler options

Use [Options->H8S,H8/300 C/C++ Compiler…] for HEW1.2 and [C/C++ Tab] [Category/Optimize] for HEW2.0 or later
to specify compiler options.

In this step, specify the output of an Inter-Module Optimization add-on information tool here.

<HEW1.2>

<HEW2.0 or later>

Section 4 HEW

Rev.3.00 2005.09.12 4-70
REJ05B0464-0300

(6) Specifying a subcommand file for the inter-module optimizer

Use [Options->H8S,H8/300 IM OptLinker…] for HEW1.2 and [Link/Library Tab] [Category/Subcommand file] for
HEW2.0 or later to invoke an HEW option dialog box for the specification of a subcommand file for the inter-module
optimizer.

<HEW1.2>

Check here to display a Subcommand file tab.

<HEW2.0 or later>

Section 4 HEW

Rev.3.00 2005.09.12 4-71
REJ05B0464-0300

(7) Executing the building process

Executing the building process generates the load module.

Note: An error may occur if the user uses the subcommand file for the inter-module optimizer supplied as a sample of
this product.

This is because the standard library has not been specified and the CPU information check file has not been
defined in an appropriate directory.

To avoid this error, copy the subcommand file and CPU information check file and specify the standard library.

Section 4 HEW

Rev.3.00 2005.09.12 4-72
REJ05B0464-0300

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-1
REJ05B0464-0300

Section 5 Using the Optimization Functions

Once an operating load module has been prepared, the performance of the object program need to be improved to make
the load module be more efficient and effective.

There are four approaches to improve the performance of an object program:

(i) Performs optimization by using various options.

(ii) Performs optimization by using the inter-module optimizer.

(iii)Performs optimization by using expansion functions.

(iv)Performs efficient programming by modifying codes.

Use the procedure below:

This section explains the options to be specified at creating a load module, the expansion functions to be used, and the
options of the inter-module optimizer to be used.

The following table lists the optimization functions supported by the compiler:

• Any code to be improved upon? Section 6

• What compile options is specified?

• What inter-module optimization functions are used?

• What expansion functions can be used?

Section 5

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-2
REJ05B0464-0300

No. Optimization Function Specification Mode Size Speed

1 Uses the 1-byte enum type Option O O

2 Extended interpretation of multiplication/division specifications Option O O

3 Specifies the number of parameter-passing registers Option ∆ ∆

4 Increases the number of variable-allocation registers Option ∆ ∆

5 Optimization of external variables Option - -

6 Block transfer instruction Option X O

7 SPEED option Option X O

8 Allocates global variables to registers Expansion function ∆ ∆

9 Controls the output of register save/restore codes at function
entry and exit points

Expansion function O O

10 Specifies the inline expansion of a function Expansion function X O

11 Inline expansion of an assembly language function Expansion function X O

12 Uses 8-bit absolute address areas Option/expansion
function

O O

13 Uses 16-bit absolute address areas Option/expansion
function

O O

14 Allocates to a memory indirect area Option/expansion
function

O X

Legend:

O: effective; ∆: effective for some programs; X: reduces efficiency

The following table lists the optimization functions supported by the inter-module optimization tool:

No. Description Specification Mode

1 Unifies constants and character strings Option

2 Deletes unreferenced variables and functions Option

3 Optimizes access to variables Option

4 Optimizes access to functions Option

5 Re-allocates registers Option

6 Eliminates same codes Option

7 Optimizes branch instructions Option

This section describes these optimization functions, dividing them into two groups, the optimization for size and that for
speed. The specification of each function is examined according to the following flowchart:

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-3
REJ05B0464-0300

<Specification procedure at optimization for size>

Specifies options Uses the 1-byte enum type

Specifies expanded interpretation of multiplication/division

Specifies the number of parameter-passing registers

Increases the number of variable assignment registers

Specifies expansion
functions

Assigns global variables to registers

Controls the output of register save/restore codes at function
entry/exit points

Uses CPU-specific
instructions

Reviews the way 8-bit absolute address areas are specified

Reviews the way 16-bit absolute address areas are specified

Reviews the way assignments are made to memory indirect
areas

Uses the inter-module optimization tool featuresProvides inter-module
optimization

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-4
REJ05B0464-0300

<Specification procedure at optimization for speed>

Specifies options

Uses the 1-byte enum type

Specifies expanded interpretation of multiplication/division

Specifies the number of parameter-passing registers

Increases the number of variable assignment registers

Specifies the block transfer instruction

Specifies the SPEED option

Uses CPU-specific
instructions

Reviews the way 8-bit absolute address areas are specified

Reviews the way 16-bit absolute address areas are specified

Specifies enhanced
features

Reviews the way global variables are assigned to registers

Controls the output of register save/restore codes at function
entry and exit points

Reviews the ways functions are inline-expanded

Reviews the way Assembly-coded inline expansions are
specified

Specifies inter-module optimization for speed

Specifies inter-module optimization for all items

Provides inter-module
optimization

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-5
REJ05B0464-0300

5.1 Optimization for Size

In this section, a common benchmark program, Dhrystone Ver.2.1 is used as a sample program.

The data of size and speed given below reflect the results of a compilation in the H8S/2600 advanced mode.

5.1.1 Default Compilation

First, compile a program without any optimization option.

The following table shows the results of the object size and the execution cycle count:

Optimization Function Size (ROM) No. of Execution Cycles

None (default) 3048 1580

Even if no optimization option is specified, the compiler performs basic optimization tasks because several optimization
options are enabled by default.

5.1.2 Without Optimization Specification

When the optimization is not specified, the results are as follows:

Optimization Function Size (ROM) No. of Execution Cycles

None (default) 3048 1580

No optimization 3582 1713

[Specification method]
Dialog menu: C/C++Tab Category: [Optimize], turn off the Optimization checkbox.

Command line: optimize=0

5.1.3 Optimization Tuning

(1) Specifying the 1-byte enum type

This option is valid only for a program containing enum-type data, however, we recommend to always specify it.

The object size and execution cycle count are as follows:

Optimization Function Size (ROM) No. of Execution Cycles

None (default) 3048 1580

1-byte enum-type specification 3050 1580

[Specification method]
Dialog menu: C/C++Tab Category: [Other], select Treat enum as char if it is in the range of char for

Miscellaneous options

Command line: byteenum

For further details, refer to section 5.4.1, Using 1-Byte enum Type.

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-6
REJ05B0464-0300

(2) Specifying the number of parameter-passing registers

Increase the number of parameter-passing registers from 2 to 3, which results in the following performance characteristics:

Optimization Function Size (ROM) No. of Execution Cycles

2 parameter-passing registers 3048 1580

3 parameter-passing registers 3034 1528

[Specification method]
Dialog menu: On CPU tab, select Change number of parameter registers from 2 (default) to 3

Command line: regparam=3

These performance characteristics are related to the number of function parameters in the program. Choose between the 2
and 3 options by determining the number of parameters that are allocated to registers, the number of available registers,
and the types of available registers.

If it is not possible to check all parameters, try different options and select the one that produces the smallest object size.

When combined with the specification of the 1-byte enum type, this item results in the following performance
characteristics:

Optimization Function Size (ROM) No. of Execution Cycles

Default 3048 1580

1-byte enum type
+3 parameter-passing registers

3034 1527

For further details, refer to section 5.4.3, Specifying the Number of Parameter-Passing Registers.

(3) Expanding the number of variable-allocation registers

By default, the compiler uses registers [E]R3 to [E]R6 as variable-allocation registers.

When this option is disabled, the compiler uses registers [E]R4 to [E]R6 as variable-allocation registers.

The following lists the performance characteristics of these two specifications:

Optimization Function Size (ROM) No. of Execution Cycles

Register variables [E]R3 to [E]R6 3048 1580

Register variables [E]R4 to [E]R6 3048 1580

[Specification method]
Dialog menu: C/C++Tab Category: [Other], select Increase a register for register variable for Miscellaneous

option

Command line: regexpansion

In this program, there is no difference. However, unless an expression statement is too complicated, the greater is the
number of variable-allocation registers, the higher is the performance of the compiler in terms of object size.
In H8S V6.01, this option is not supported, so there is no difference in the performance.

For further details, refer to section 5.4.4, Increasing the Number of Variable-Allocation Registers.

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-7
REJ05B0464-0300

(4) Optimization of external variables

The following table compares the results where the optimization of external variables is specified or disabled:

Optimization Function Size (ROM) No. of Execution Cycles

External variable optimization enabled (novolatile) 3048 1580

External variable optimization disabled (volatile) 3076 1592

[Specification method]
Dialog menu: C/C++Tab Category: [Optimize], [Details...][Global variables]

[Treat global variables as volatile qualified]

Command line: volatile

Note that some external variables should not be optimized:

 (Example 1) (Example 2)

In Example 1, two substitutes are made consecutively to the variable a, which results in the deletion of the first substitute
statement due to optimization. However, if an interrupt occurs between the two substitute statements and the value of a is
referenced, the result will be in error.

When the volatile is specified, optimization is disabled and the code for the first substitute statement is generated, which
avoids this problem. However, this approach disables the optimization of all external variables, which significantly
reduces object performance.

To disable the optimization only for the appropriate external variables, specify a volatile declaration, in the source
program, on the variables and I/O registers that are used in interrupt functions, as shown in Example 2. In this way,
compile the program by turning off this option.

For further details, refer to section 5.4.5, Optimization of External Variables.

(5) Extended interpretation of multiplication/division specifications

An expanded interpretation of multiplication/division code expansion from the ANSI standard results in the following
performance characteristics:

Optimization Function Size (ROM) No. of Execution Cycles

ANSI compliant 3048 1580

Extended interpretation 3048 1580

[Specification method]
Dialog menu: C/C++Tab Category: [Object], select Non ANSI(Guarantee 32bit as a result of 16bit*16bit) for

Mul/Div operation specification.

Command line: cpuexpand

int a;
void f()
{
 a=1;
 a=2;
}

volatile int a;
void f()
{
 a=1;
 a=2;
}

←First substitute is deleted

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-8
REJ05B0464-0300

In this program, the extended interpretation did not produce any significant performance difference.

However, an extended interpretation of the multiplication/division code can produce different computational results
because the range of extended interpretation differs from that guaranteed in the language specifications. Therefore, the
extended interpretation should be used only when it is deemed appropriate.

For further details, refer to section 5.4.2, Extended Interpretation of the Multiplication/Division Specifications.

5.1.4 Using the Inter-Module Optimization Features

By using the inter-module optimizer, a size-efficient object can be created more effectively.

Before specifying optimization with the inter-module optimizer, specify the output of an inter-module optimization add-on
information file in either the compiler or cross assembler.

[Specification method]

C/C++ Compiler
Dialog menu: C/C++Tab Category: [Optimize], select Generate file for inter-module optimization

Command line: goptimize

Cross Assembler
Dialog menu: Assembly Tab Category: [Object], select Generate file for inter-module optimization

Command line: goptimize

In HEW1.2, an inter-module optimization add-on information file is also supplied for the standard library that is linked
during inter-module optimization. As this file is supplied in the compressed form in the Windows version, decompress it
before using.

By double-clicking on the compressed file (*.exe) that has the same name as the library name to be used; the file is self-
extracted and a directory containing the information file is created.

For details on the inter-module optimization of this library, refer to the Supplement to the H8S, H8/300 Series C/C++
compiler.

In HEW2.0 or later, the inter-module optimization features of Standard Library Generator should be used to create the
library. By checking Standard Library Tab Category:[Optimize] Generate file for inter-module optimization, an
inter-module optimization add-on information file is output.

(1) Default optimization

The inter-module optimizer supports the following optimization functions:

No. Description Dialog Menu Subcommand Option

1 Unifies constants/strings Unify strings String_Unify

2 Deletes unreferenced variables/functions Eliminate same code Symbol_delete

3 Optimizes access to variables Use short addressing Variable_access

4 Optimizes access to functions Use indirect call/jump Funcation_call

5 Reallocates registers Reallocate registers Register

6 Eliminates dead code Eliminate dead code Same_code

7 Optimizes branch instructions Optimize branches Branch

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-9
REJ05B0464-0300

The following shows the most efficient optimization specifications with the compiler:

Optimization Function Size (ROM) No. of Execution Cycles

Valid compiler optimization options:
 1-byte enum type specification
 +3 parameter-passing registers

3034 1527

In the inter-module optimizer, no optimization is performed by default if HEW is used and a simply linked module is
produced. Therefore, the default produces the same result as the compiler optimization.

(2) Specifying inter-module optimization items

(a) Specify the optimization items for the inter-module optimizer one by one:

Optimization Function Inter-Module Optimization Size (ROM) No. of Execution Cycles

- 3034 1527

Unifies constants/strings 3034 1527

Compiler optimization options
specified

Deletes unreferenced variables/
functions

3034 1527

Optimizes access to variables 2970 1513

Optimizes access to functions 3024 1538

Reallocates registers 3018 1535

Eliminates dead code 3034 1527

Optimizes branch instructions 3034 1527

(b) Enabling all inter-module optimization features

Enable all inter-module optimization features.

Optimization Function Inter-Module Optimization Size (ROM) No. of Execution Cycles

- 3034 1527Compiler optimization options
specified Optimizes all 2946 1517

When this function is specified, optimization is performed even to the items which should not be optimized. In this case,
specifying the _list option (_mlist option for HEW1.2) outputs all the symbols that have been deleted or relocated by the
optimization process. Specify the symbols on which optimization should be disabled in the format of
symbol_forbid_xxxx. This specification should be made upon careful consideration of the symbols.

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-10
REJ05B0464-0300

5.1.5 Selecting Expansion Functions

(1) Allocating registers to global variables

By using #pragma global_register to assign external variables to fixed registers, the program size for access to variables
can be reduced.

Variables to be allocated to the register is selected as follows:

 ↓

This can be checked by specifying the output of an optimization information list in the linkage editor (the inter-module
optimizer for HEW1.2).

[Specification method]
Dialog menu: Link/Library Tab Category: [List] Generate list file

Link/Library Tab Category: [List] Contents: Show reference

Subcommand: list
show reference

The following file is created as a result:

As the global registers are ER4 and ER5, a total of 8 bytes of data can be allocated.

The following is the explanation for the register allocation of the variables Int_Glob and Ptr_Glob which are most
frequently accessed. Even when these variables are allocated, the registers can accommodate 2 additional bytes.

Selects variables of the size that can be assigned to registers.

Check the number of times each variable is accessed.

*** Variable Accessible with Abs8 ***

SYMBOL SIZE COUNTS OPTIMIZE

_Ch_1_Glob
 1 4
_Ch_2_Glob
 1 2

*** Variable Accessible with Abs16 ***

SYMBOL SIZE COUNTS OPTIMIZE

_Ptr_Glob
 4 4
_Next_Ptr_Glob
 4 2
_Int_Glob
 2 6
_Bool_Glob
 2 2
_Arr_2_Glob
 1388 1
_flmod
 3 2
_brk
 4 2

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-11
REJ05B0464-0300

Allocate the variables Ch_1_Glob and Ch_2_Glob to the remaining 2 bytes:

Specify as follows:

The following compares the result with the default:

Optimization function Size (ROM) No. of Execution Cycles

None (default) 3048 1580

#pragma global_register 2940 1512

In the above example, the object size is reduced and the execution speed is improved. However, in some cases, the
allocation of external variables to registers may cause a shortage of work registers and other variables may be allocated to
memory, which degrades the object performance.

Therefore, be careful at using this function.

The table below shows the results of combining size-efficient compiler options (1-byte enum type and 3 parameter-passing
registers specified) with the variable-to-register assignment option.

Optimization Function Size (ROM) No. of Execution Cycles

Default 3048 1580

#pragma global_register 3010 1487

For further details, refer to section 5.4.8, Allocating Registers to Global Variables.

Note that global registers cannot be specified when a library is specified as the object of inter-module optimization in the
inter-module optimization process. Therefore, this specification is not made in this section.

(2) Controlling the output of register save/restore code at function entry and exit points

The #pragma regsave statement declares the function that saves/restores all registers. It also generates an object that does
not allocate guaranteed registers ([E]R2 to [E]R6) beyond function calls.

The #pragma noregsave statement declares the function that does not save/restore any register. This statement is also used
as the first function to be started without being called by other functions; it is also used as function that is called by a
function specifying #pragma regsave.

To use these features, create a function call relational diagram.

In HEW2.0 or later, the call relationships among the functions can be examined by outputting available stack space
information file in creating the relational diagram and reading the information file into the simulator-debugger.

For a description of how to output the available stack space information file, select [Options->H8S, H8/300 Standard
Toolchain…->Link/Library Tab] Category:[Other] Stack information output.

#pragma global_register(Int_Glob=E4,Ch_1_Glob=R4H,Ch_2_Glob=R4L,Ptr_Glob=ER5)

ER4
ER5 Ptr_Glob

Int_Glob Ch_1_Glob Ch_2_Glob

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-12
REJ05B0464-0300

In the case of Dhrystone Ver.2.1, the following relationship holds:

The function to be declared by #pragma noregsave:

Because main() is the function that performs the first processing, it is not necessary to save/restore any register used before
that function. Therefore, this function is declared in the #pragma noregsave statement.

If the main() includes function calls only, all the functions called from main() can be declared in the #pragma noregsave
statement.

<inc.h>

<dhrystone21.c>

The execution results are as follows:

Optimization Function Size (ROM) No. of Execution Cycles

None (default) 3048 1580

#pragma noregsave specified 3030 1580

Functions that are declared in the #pragma regsave/noregsave statement:

Check that there is any function, other than the main function, that only performs function calls.

Suppose that the interrupt function intr1 only performs function calls with the following calling relationship:

main:
 malloc:
 strcpy:
 Proc_1:
 Proc_3:
 Proc_7:
 Proc_6:
 Func_3:
 Proc_7:
 Func_2:
 Func_1:
 strcmp:
 Func_1:
 Proc_8:
 Proc_7:
 Proc_6:
 Func_3:
 Proc_5:
 Proc_4:
 Func_2:

#pragma noregsave (main)

#include "inc.h"
 :

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-13
REJ05B0464-0300

Declare intr1() in the #pragma regsave statement.

Similarly, declare proc1(), proc2(), and proc3() in the #pragma noregsave statement.

In this manner, register save/restore for three functions can be replaced by register save/restore for one function.

The following table shows the execution results when a combination of effective options (1-byte enum type and 3
parameter-passing registers specified) is specified with the inter-module optimization and the #pragma noregsave
statement in the previous Dhrystone Ver.2.1 program:

Optimization Function Size (ROM) No. of Execution Cycles

None (default) 3048 1580

#pragma noregsave specified
Compiler options
Inter-module optimization

2944 1517

For further details, refer to section 5.4.9, Controlling Output of Register Save/Restore Codes at the Function Entry/Exit
Points.

5.1.6 Using CPU-Specific Instructions

(1) Allocating to a short 8-bit absolute area

The following shows the results when data of the char/unsigned-char type is accessed with 8-bit absolute addresses.

Optimization Function Size (ROM) No. of Execution Cycles

None (default) 3048 1580

8-bit absolute address specified 3014 1566

Note: In this case, when the 8-bit absolute address area is exceeded when a short 8-bit absolute address area
assignment is specified as an option, the simulator does not operate correctly due to an insufficient area and the
number of execution cycles cannot be measured.

[Specification method]
Dialog menu: C/C++ Tab Category: [Optimize], select Data access @aa:8

Command line: abs8

The short 8-bit absolute address area must be allocated within the memory range H'FFFF00 to H'FFFFFF. If this range is
exceeded, all sections in the $ABS8 cannot be allocated to the short 8-bit absolute address area.

Therefore, do not specify the abs8 option to the entire file but choose variables to be allocated to the short 8-bit absolute
address area.

The criteria are variables that can fit within the area and receives frequent access.

intr1:
 proc1:
 func1:
 proc2:
 proc3:

Assume that proc1, proc2,
and proc3 are not called by
any other functions.

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-14
REJ05B0464-0300

*** Variable Accessible with Abs8 ***

SYMBOL SIZE COUNTS OPTIMIZE

_Ch_1_Glob
 1 4
_Ch_2_Glob
 1 2

The sizes of variables can be checked with a compiler-output object list, while the number of accesses can be checked with
an optimization information list that is produced by the inter-module optimizer.

Specify the use of the short absolute address area with the optimization option of the inter-module optimizer, and examine
the resulting optimization information list:

This file indicates the number of times variables are referenced.

Based on this information, make an appropriate specification in the #pragma abs8 statement:

The execution results are as follows:

Optimization Function Size (ROM) No. of Execution Cycles

None (default) 3048 1580

#pragma abs8 specified 3014 1566

If there are many other variables that can be allocated to the 8-bit absolute address area, check the number of accesses and
assign the variables that receive the largest number of accesses.

In addition, specify some options to reduce the object size.

Optimization Function Size (ROM) No. of Execution Cycles

None (default) 3048 1580

#pragma abs8(Char1Glob,Char2Glob)

+#pragma noregsave specified

+Compiler option

+Inter-module optimization

2944 1517

It is clear that the above specifications yield slightly better results.

For further details on abs8, refer to section 5.4.11, Using 8-Bit Absolute Address Area.

(2) Allocating to a short 16-bit absolute address area

Generate codes to perform access with a 16-bit absolute address.

Optimization function Size (ROM) No. of Execution Cycles

None (default) 3048 1580

abs16 option 2988 1558

#pragma abs8 (Ch_1_Glob,Ch_2_Glob)

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-15
REJ05B0464-0300

[Specification method]
Dialog menu: C/C++ Tab Category: [Optimize], select Data access @aa:16

Command line: abs16

The 16-bit absolute address area must be allocated in the memory ranges H'000000 to H'007FFF and H'FF8000 to
H'FFFFFF.

Initially, specify abs16 as an option, which reveals what variables can be allocated to the ABS16 section. If the variables
can fit within the range, they can be specified directly in the option. However, if there is any variable exceeding the range
because the 16-bit absolute address overlap with many other areas, specify the #pragma abs16 statement in the main body
of the program.

Check the access counts for the symbols with the optimization information list generated by the inter-module optimizer
and assign the variables with large numbers of accesses to the ABS16 section.

When the use of the short absolute address mode is specified in the optimization option of the inter-module optimizer, the
access counts can be examined as follows:

Based on the above results, specify the variables to be allocated to the 16-bit absolute address area in the #pragma abs16
statement:

Optimization Function Size (ROM) No. of Execution Cycles

None (default) 3048 1580

abs16 option 2998 1558

#pragma abs16 specified 3012 1575

When the #pragma abs8 specification mentioned above is added, the execution results are as follows:

#pragma abs16 (Int_Glob,Bool_Glob,Arr_2_Glob,Ptr_Glb,Next_Ptr_Glob)

*** Variable Accessible with Abs16 ***

SYMBOL SIZE COUNTS OPTIMIZE
_Ptr_Glob
 4 4
_Next_Ptr_Glob
 4 2
_Int_Glob
 2 6
_Bool_Glob
 2 2
_Arr_2_Glob
 1388 1
_flmod
 3 2
_brk
 4 2

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-16
REJ05B0464-0300

Optimization Function Size (ROM) No. of Execution Cycles

None (default) 3048 1580

abs16 option 2988 1558

#pragma abs16 specified 3012 1575

#pragma abs16 +
#pragma abs8 specified

2980 1561

Next, examine whether the variable Int_Glob and Ptr_Glob should be allocated to the 16-bit absolute address area or to a
global register. When combined with the options that have proved efficient, the following results are provided:

Optimization Function Size (ROM) No. of Execution Cycles

None (default) 3048 1580

#pragma abs16 (Bool_Glob, Arr_2_Glob,
Next_Ptr_Glob Ptr_Glob,Int_Glob)
+#pragma abs8(Ch_1_Glob,Ch_2_Glob)
+#pragma noregsave specified
+Compiler options

2920 1484

#pragma
global_register(Int_Glob=E4,Ptr_Glob=ER5)
+#pragma abs16 (Bool_Glob, Arr_2_Glob,
Next_Ptr_Glob)
+#pragma abs8(Ch_1_Glob,Ch_2_Glob)
+#pragma noregsave specified
+Compiler options

2958 1486

The results indicate that it is more efficient to allocate the variables Int_Glob and Ptr_Glob to the 16-bit absolute address
area instead of global registers.

For further details of the abs16 specification, refer to section 5.4.12, Using 16-bit Absolute Address Area.

Variables may be allocated to either the 8-bit or 16-bit absolute address area by the inter-module optimizer according to
the CPU capacity.

(3) Allocating to a memory indirect area

Function calls are performed in the memory indirect format with this specification.

To reference the output object, specify list output as well.

The following table shows the result when the memory indirect area assignment option is specified by default (size
efficient):

Optimization Function Size (ROM) No. of Execution Cycles

Default 3048 1580

Memory indirect area assignment
specification

2994 1599

[Specification method]
Dialog menu: C/C++ Tab Category: [Optimize], select Function call: @@aa:8

Command line: indirect

Runtime routines can also be allocated to this area.

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-17
REJ05B0464-0300

When the #include <indirect.h> statement is specified, a runtime routine call is performed as a memory indirect call.

If the output of stack frame information is specified when the output of an object list is specified with the compiler, a
runtime routine called in the functions is displayed.

As a result, the call MVN3 has become a memory indirect call.

For specifying functions individually, specify #pragma indirect MVN3.

Because the memory indirect area is allocated in the range from 0x00000000 to 0x000000ff, all functions can be assigned
in this area.

At this time, note that this area overlaps with the exception processing vector area.

It is necessary to divide the section in order to avoid overlapping at the assignment.

In this case, the function can fit within the area, however, if the $INDIRECT section exceeds the memory indirect area,
those functions that receive frequent accesses should be assigned individually using the #pragma indirect statement. In
addition, use the #pragma indirect section statement to divide the section at the assignment.

This option specification is the same as the following:

When combined with the options that have proved efficient, the following results are provided:

Optimization Function Size (ROM) No. of Execution Cycles

None (default) 3048 1580

#pragma abs8(Ch_1_Glob,Ch_2_Glob)
+#pragma abs16 (Bool_Glob,
Arr_2_Glob, Ptr_Glob, Next_Ptr_Glob)
+#pragma noregsave specified
+Compiler options
+inter-module optimization functions
+#pragma indirect specified

2902 1496

For further details, refer to section 5.4.13, Using Indirect Memory Format.

Function calls may be performed in the memory indirect format with the inter-module optimization features according to
the CPU capacity, even if this option is not specified.

#pragma
indirect(main,malloc,Proc1,Proc2,Proc3,Proc4,Proc5,Proc6,Proc7,Proc8,Func1,
Func2,Func3)
#pragma indirect MVN3

Function (File hv21_dhry_, Line 309): Proc_1

 Optimize Option Specified : No Allocation Information Available

Parameter Area Size : 0x00000000 Byte(s)
Linkage Area Size : 0x00000004 Byte(s)
Local Variable Size : 0x00000000 Byte(s)
Temporary Size : 0x00000000 Byte(s)
Register Save Area Size : 0x0000000c Byte(s)
Total Frame Size : 0x00000010 Byte(s)

Used Runtime Library Name
MVN3

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-18
REJ05B0464-0300

5.2 Optimization for Speed

5.2.1 Specifying the SPEED Option

To provide the optimization for speed, specify the SPEED option.

The execution results are as follows:

Optimization Function Size (ROM) No. of Execution Cycles

Default 3048 1580

SPEED option 3420 1325

[Specification method]
Dialog menu: C/C++ Tab Category: [Optimize], select Speed or size Speed oriented optimization

Command line: speed

As a result, the speed is improved by 255 execution cycles though the object size is increased by 372 bytes in the program
Dhrystone Ver.2.1.

(1) Selecting sub-options

When the SPEED option is specified, optimization for speed is performed, that may result in a size increase.

To avoid this problem, it may be necessary to provide detailed specifications using the tuning procedure. The
recommended way is to use the effective functions of the various sub-options. The sub-options to be specified can be
determined by combining their effects so that the size of the program will fit the target ROM size. Refer to the following
data from the program Dhrystone Ver.2.1:

Optimization Function Size (ROM) No. of Execution Cycles

All specified 3420 1325

Register 3048 1580

Shift to multiple 3048 1580

Struct assignment 3074 1527

Switch judgement 3048 1580

Maximum nodes of inline function(105) 3314 1437

Loop optimization 3048 1580

Expression 3080 1526

Note: On the H8/300 and H8/300H, when the Register is not specified, the compiler performs the register save/restore
task with a function call (using the runtime routine library). When the Register is specified, the compiler generates
the PUSH/POP instruction instead of using a function call.
On the H8S/2000 and H8S/2600 Series, the register save/restore task is always performed by the STM/LDM
instruction. (or the PUSH/POP instruction depending on the register involved). Therefore, in this case a Register
specification will have no effect.

The following shows the execution results when the Register is specified in the H8/300H advanced mode:

Optimization Function Size (ROM) No. of Execution Cycles

All specified 3422 1598

Register 3262 1721

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-19
REJ05B0464-0300

The number of function nodes that should be automatically inline-expanded is specified with the Maximum nodes if
inline function.

The number of nodes indicates the units of the compiler internal processing, which cannot accurately be checked.
However, generally the larger the size of a function is, the greater the number of nodes is. The default is a node count of
105.

To disable the inline expansion (a node count of 0), turn off the specification.

The following shows the execution results when the number of nodes is set to 0, the default value, and the maximum
value:(The range from 1 through 65535 can be selected as the number of nodes.)

Optimization Function Size (ROM) No. of Execution Cycles

Maximum nodes of inline function(1) 3052 1549

Maximum nodes of inline function(105) 3314 1437

Maximum nodes of inline function(65535) 3314 1437

Sometimes, specifying the inline expansion to all functions may reduce efficiency not only in size but also in speed. It is
because the increase of the function size disables optimization.

When using automatic inline expansion, be careful not to increase the number of nodes as much as possible. If a specific
function must be inline expanded, specify it in the #pragma inline statement for efficiency.

For further details on the SPEED option, refer to section 5.4.7, speed Option.

5.2.2 Tuning the Optimization Options

(1) Using the block transfer instruction (eepmov)

Use the block transfer instruction (EEPMOV) for the substitute of structures.

The following shows the execution results:

Optimization Function Size (ROM) No. of Execution Cycles

SPEED option 3420 1325

SPEED option+block transfer instruction 3366 1285

[Specification method]
Dialog menu: C/C++ Tab Category: [Other], select Use EEPMOV in block copy for Miscellaneous option

Command line: eepmov

The EEPMOV instruction includes the following restrictions with the CPU-specification:

EEPMOV.B → Does not detect interrupt other than NMI.

EEPMOV.W → Does not detect interrupt other than NMI.

If an NMI interrupt occurs during this instruction execution, transfer results are not guaranteed.

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-20
REJ05B0464-0300

Open the compile list to search for the EEPMOV instruction in the object list. Make sure that the EEPMOV instruction is
not influenced by the above usage restrictions.

When the EEPMOV instruction is used for the data transfer of specific structures rather than the entire file, use the built-in
function eepmov();.

For further details, refer to section 5.4.6, Block Transfer Instruction.

(2) Tuning of other optimization options

The following describes the specification combined with the options that have proved efficient in size.

First, specify the 1-byte enum type.

Optimization Function Size (ROM) No. of Execution Cycles

SPEED option 3420 1325

SPEED option
+block transfer instruction

3366 1285

SPEED option
+block transfer instruction
+1-byte enum type

3392 1296

The execution speed reduced slightly.

Next, specify three parameter-passing registers:

Optimization Function Size (ROM) No. of Execution Cycles

SPEED option 3420 1325

SPEED option
+block transfer instruction

3366 1285

SPEED option
+block transfer instruction
+3 parameter-passing registers

3348 1249

The execution speed is improved.

Then, specify a variable-allocation register count:

Optimization Function Size (ROM) No. of Execution Cycles

SPEED option 3420 1325

SPEED option
+block transfer instruction

3366 1285

SPEED option
+block transfer instruction
+no variable-allocation register count
extension

3366 1285

Based on these results, the options of a block transfer instruction specification and three parameter-passing registers
specification can be determined to be appropriate. For further details, refer to section 5.4.3, Specifying the Number of
Parameters-Passing Registers.

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-21
REJ05B0464-0300

5.2.3 Using the Inter-Module Optimization Features

This section describes the optimization using the inter-module optimizer to obtain an object program with higher
execution efficiency.

Before performing optimization using the inter-module optimizer, specify the output of an inter-module optimization add-
on information file in the compiler or cross assembler.

[Specification method]

C/C++ C Compiler
Dialog menu: C/C++Tab Category: [Optimize], select Generate file for inter-module optimization

Command line: goptimize

Cross Assembler
Dialog menu: Assembly Tab Category: [Object], select Generate file for inter-module optimization

Command line: goptimize

In HEW1.2, an inter-module optimization add-on information file is also prepared for the standard library that is linked
during inter-module optimization. As this file is supplied in the compressed form in the Windows version, decompress it
before using.

By double-clicking on the compressed file (*.exe) that has the same name as the library name to be used; the file is self-
extracted, then a directory containing the information file is generated.

For details on the inter-module optimization of this library, refer to the Supplement to the H8S,H8/300 Series C/C++
Compiler.

In HEW2.0 or later, the inter-module optimization features of Standard Library Generator should be used to create the
library. By checking Standard Library Tab Category:[Optimize] Generate file for inter-module optimization, an
inter-module optimization add-on information file is output.

(1) Default optimization

The inter-module optimizer supports the following optimization functions:

No. Description Dialog Menu Subcommand Option

1 Unifies constants/strings Unify strings String_Unify

2 Deletes unreferenced
variables/functions

Eliminate dead code Symbol_delete

3 Optimizes access to variables Use short addressing Variable_access

4 Optimizes access to functions Use indirect call/jump Funcation_call

5 Reallocates registers Reallocate registers Register

6 Eliminates same code Eliminate same code Same_code

7 Optimizes branch instructions Optimize branches Branch

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-22
REJ05B0464-0300

The most efficient optimization with the compiler is shown below:

Optimization Function Size (ROM) No. of Execution Cycles

Valid compiler optimization option
(SPEED option
+block transfer instruction
+3 parameter-passing registers)

3348 1249

In the inter-module optimizer, no optimization is performed by default and a simply linked module is produced. Therefore,
the execution results are the same result as the compiler optimization.

(2) Specifying inter-module optimization items

Specify the optimization items in the inter-module optimizer one by one:

Optimization Function Inter-Module Optimization Function Size (ROM) No. of Execution Cycles

- 3348 1249

Unifies constants/strings 3348 1249

Deletes unreferenced variables/ functions 2984 1249

Optimizes access to variables 3258 1232

Optimizes access to functions 3332 1250

Reallocates registers 3332 1249

Eliminates dead codes 3348 1249

Compiler optimization
options specified

Optimizes branch instructions 3348 1249

(3) Enabling inter-module optimization for speed

Perform the following functions: the unification of constants/strings, deletion of unreferenced variables/functions,
optimization of access to variables, reallocation of registers, and optimization of branch instructions.

Optimization Function Inter-Module Optimization Function Size (ROM) No. of Execution Cycles

- 3348 1249Compiler optimization
options specified Optimization for speed 2906 1232

(4) Enabling all inter-module optimization functions

Enable all inter-module optimization functions:

Optimization Function Inter-Module Optimization Function Size (ROM) No. of Execution Cycles

- 3348 1249Compiler optimization
options specified Optimizes all 2902 1232

When this function is specified, the optimization may be applied to the part where the optimization should be disabled.
Check the list carefully before specifying this option.

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-23
REJ05B0464-0300

5.2.4 Selecting Expansion Functions

(1) Allocating registers to global variables

Allocate the variables that were specified during size efficiency optimization to global registers:

(A)

Also specify as follows in order to increase the number of work registers:

(B)

(C)

Optimization Function Size (ROM) No. of Execution Cycles

SPEED option 3420 1325

SPEED option
+Block transfer instruction specified
+3 parameter-passing registers

3348 1249

SPEED option
+Block transfer instruction specified
+3 parameter-passing registers+#pragma
global_register (A) specified

3318 1246

SPEED option
+Block transfer instruction specified
+3 parameter-passing registers+#pragma
global_register (B) specified

3370 1262

SPEED option
+Block transfer instruction specified
+3 parameter-passing registers+#pragma
global_register (C) specified

3296 1246

For further details, refer to section 5.4.8,Allocating Registers to Global Variables.

(2) Controlling the output of register save/restore code at the function entry and exit points

Specify as follows according to the results at optimization for size:

The execution results are as follows:

Optimization Function Size (ROM) No. of Execution Cycles

Compiler Option
Inter-module optimization function

2906 1232

Compiler Option
Inter-module optimization function
+#pragma noregsave specified

2906 1232

The execution speed is improved. For further details, refer to section 5.4.9, Controlling Output of Register Save/Restore
Codes at the Function Entry/Exit Points.

#pragma global_register(Int_Glob=E4,Ch_1_Glob=R4H,Ch_2_Glob=R4L)

#pragma global_register(Ptr_Glob=ER5)

#pragma noregsave (main)

#pragma global_register(Int_Glob=E4,Ch_1_Glob=R4H,Ch_2_Glob=R4L,Ptr_Glob=ER5)

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-24
REJ05B0464-0300

5.2.5 Using the Inline Expansion Features

(1) Specifying the inline expansion of a function

#pragma inline declares a function that performs inline expansion, instead of a function call. When an inline expansion is
provided, the execution speed is improved though the object size increases.

However, as described in the section on the automatic inline expansion of the SPEED option, specifying the inline
expansion of all functions not only reduces performance in object size but also in execution speed.

The #pragma inline statement should be used to declare functions that are called from a deep nesting level, which will
improve the execution speed effectively.

Nesting relationships in the program Dhrystone Ver.2.1 are shown below:

In this case, functions start to be specified from the deepest nesting level. The comparison with a node count of 105 for the
automatic inline expansion (the inline expansion specified in the option) is shown below:

Optimization Function Size (ROM) No. of Execution Cycles

None (default) 3052 1549

Automatic inline expansion 3306 1445

Inline expansion specified (Proc7,Func3) 3048 1589

Inline expansion specified
(Proc7,Func3,Func1,strcmp,Proc3,Proc6)

3048 1589

Inline expansion specified
(Proc7,Func3,Func1,strcmp,Proc3,Proc6,
malloc,strcpy,Proc5,Proc4,Proc1)

3048 1589

Inline expansion specified for all functions 3322 1445

Note: The functions Proc8 and Func2 are not inline-expanded.

main:
 malloc:
 strcpy:
 Proc_1:
 Proc_3:
 Proc_7:
 Proc_6:
 Func_3:
 Proc_7:
 Func_2:
 Func_1:
 strcmp:
 Func_1:
 Proc_8:
 Proc_7:
 Proc_6:
 Func_3:
 Proc_5:
 Proc_4:
 Func_2:

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-25
REJ05B0464-0300

These results indicate that the automatic inline expansion option makes a fast object program.

Thus, a high-performance object can be created by combining specifications appropriately considering function call
relations, the number of execution cycles, and the object size.

The #pragma inline declaration is valid only when the function itself and the associated function call included within a
file. If “static” is specified to the function to be inline-expanded, actual codes are not output and the codes are expanded
only on the called function, which makes the object size be reduced. It is recommendable to always use this specification.

For further details, refer to section 5.4.10, Specifying Inline Expansion of Functions.

(2) Specifying Inline expansion of an assembly language function

At coding a program in C/C++, sections that require enhanced performance specially are sometimes written in the
assembly language. In such a case, if the function written in assembly language is specified with the #pragma inline_asm ,
the function can be inline expanded at the location of the call.

For further details, refer to section 10.2.1, #pragma Extension and Keywords, in the H8S,H8/300 Series C/C++ Compiler,
Assembler, Optimizing Linkage Editor User’s Manual.

5.2.6 Using CPU-Specific Instructions

(1) Allocating to a short 8-bit absolute address area

Allocate the variable selected during an optimization for size to 8-bit absolute address area:

The following shows the execution results:

Optimization Function Size (ROM) No. of Execution Cycles

Compiler option
Inter-module optimization function
+#pragma noregsave specified

2906 1232

Compiler Option
Inter-module optimization function
+#pragma noregsave specified
+#pragma abs8 specified

2906 1232

Different from the case of size-orientated optimization (5.1.6), there is no difference in this Dhrystone Ver.2.1 program.
However, it is recommendable to use this specification.

For further details, refer to section 5.4.11, Using 8-bit Absolute Address Area.

#pragma abs8 (Ch_1_Glob,Ch_2_Glob)

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-26
REJ05B0464-0300

(2) Allocating to a short 16-bit absolute address area

Allocate the variable selected during an optimization for size to 16-bit absolute address area:

The following shows the execution results:

Optimization Function Size (ROM) No. of Execution Cycles

Compiler Option
Inter-module optimization function
+#pragma noregsave specified

2906 1232

Compiler Option
Inter-module optimization function
+#pragma noregsave specified+#pragma
abs8 specified
+#pragma abs16 specified

2894 1231

Thus, both the speed and the size are improved.

For further details, refer to section 5.4.12, Using 16-bit Absolute Address Area.

(3) Allocating to a memory indirect area

Allocate the variable selected during an optimization for size to a memory indirect area:

The following shows the execution results:

Optimization Function Size (ROM) No. of Execution Cycles

Compiler Option
Inter-module optimization function
+#pragma noregsave specified+#pragma
abs8 specified
+#pragma abs16 specified

2894 1231

Compiler Option
Inter-module optimization function
+#pragma noregsave specified+#pragma
abs8 specified
+#pragma abs16 specified+#pragma
indirect specified

2892 1232

As a result, the execution speed is reduced, and this specification should not be used.

#pragma
indirect(Proc0,main,malloc,Proc1,Proc2,Proc3,Proc4,Proc5,Proc6,Proc7,Proc8,
Func1,Func2,Func3)

#pragma abs16 (Int_Glob,Bool_Glob,Arr_2_Glob,Ptr_Glob,Ptr_Glb_Next)

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-27
REJ05B0464-0300

5.3 Combination of Size and Speed Efficiency

As described in the preceding sections, the compiler optimization supports functions reducing the size and those
improving the execution speed. For each function and specification method, refer to the sections above. The best approach
to create a high-performance program is that functions requiring compactness and functions requiring high-speed
performance are separated in different files, and an optimization for size and that for speed can be chosen for each file.

Even if functions cannot be separated completely, it is important to know what part requires the high-speed performance
most in the entire program. The object performance can be improved effectively by specifying (option + expansion
functions + coding + inter-module optimization) for a file (or function) requiring high speed and providing optimization
for size to the other parts.

The results of the investigation carried out thus far can be summarized as follows:

Following lists the examination results with option and expansion function specifications that implement the best size
efficiency:

Size Speed

Specification Description Byte % Cycle %

Default − 3048 100 1580 100

Compiler Options 1-byte enum type specified

+3 parameter-passing registers

3034 99 1527 97

Compiler Options

+inter-module
optimization
functions

1-byte enum type specified

+3 parameter-passing registers

+all inter-module optimization functions

2946 97 1517 96

Compiler Option

+inter-module
optimization
functions

+Expansion
functions

1-byte enum type specified

+3 parameter-passing registers

+all inter-module optimization functions

+#pragma abs8 specified

+#pragma abs16 specified

+#pragma noregsave specified

+#pragam indirect specified

2902 95 1496 95

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-28
REJ05B0464-0300

Following lists the examination results with option and expansion function specifications that implement the best speed
efficiency:

Size Execution speed

Specification Description Byte % Cycle %

Default − 3048 100 1580 100

Compiler Options SPEED option

+Block transfer instruction specified

+3 parameter-passing registers

3348 110 1249 79

Compiler Options

+inter-module
optimization
functions

SPEED option

+Block transfer instruction specified

+3 parameter-passing registers

+speed-priority inter-module optimization features

2906 95 1232 78

Compiler Options

+inter-module
optimization
functions

+Expansion
functions

SPEED option

+Block transfer instruction specified

+3 parameter-passing registers

+speed-priority inter-module optimization features

+#pragma noregsave specified

+#pragma abs8 specified

+#pragma abs16 specified

2894 95 1231 78

Thus, compared with the case when no option is specified, the performance of the program Dhrystone Ver.2.1 is improved
a maximum of 5% in size and 22% in execution cycles by using options and expansion functions.

Specifications of the options and the expansion functions improve the program performance much more easily and
effectively than modification of the codes. Make great use of these items to create high performance object programs.

5.4 Details of Optimization Functions

The compiler provides the following optimization functions. Items 1 through 23 represent functions with the compiler and
items 24 through 30 with the inter-module optimizer:

The performance is measured under the following conditions.

[Cross Tools for Measurement]

 H8S,H8/300 C/C++ Library Generator (Ver. 2.01.00.001)

 H8S,H8/300 C/C++ Compiler (Ver. 6.01.00.009)

 H8S,H8/300 Assembler (Ver. 6.01.01.000)

 Optimizing Linkage Editor (Ver. 9.00.02.000)

[Option Specification]

 Default options are used, when option specification methods are not described in each section.

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-29
REJ05B0464-0300

[Measurement Conditions]

Conditions H8/300, H8/300H H8S/2600,H8S/2000 H8SX

Bus Width 16 16 32

Access State to Memory 2 1 1

Fetch Size - - 32

No. Optimization Function
Size
Reduction

Speed
Improvement

Referenced
Section

1 Uses 1-byte enum type O O 5.4.1

2 Extended interpretation of multiplication/division specifications O O 5.4.2

3 Specifies the number of parameter-passing registers ∆ ∆ 5.4.3

4 Increases the number of variable allocation registers ∆ ∆ 5.4.4

5 Optimizes external variables – – 5.4.5

6 Block transfer instruction X O 5.4.6

7 SPEED option 5.4.7

8 Speed-improving expansion of register save/restore codes X O 5.4.7(1)

9 Speed-improving code expansion of shift expressions X O 5.4.7(2)

10 Substitute code expansion of structures and double-type
data

X O 5.4.7(3)

11 Speed-efficiency code expansion for switch statement X O 5.4.7(4)

12 Inline expansion of small-size functions X O 5.4.7(5)

13 Speed-efficiency code expansion of loop expressions ∆ O 5.4.7(6)

14 Disables run-time routine calls X O 5.4.7(7)

15 Allocates registers to global variables ∆ ∆ 5.4.8

16 Controls output of register save/restore codes at function
entry/exit points

O O 5.4.9

17 Specifies inline expansion of functions X O 5.4.10

18 Uses 8-bit absolute address area O O 5.4.11

19 Uses 16-bit absolute address area O O 5.4.12

20 Allocates to indirect memory area O X 5.4.13

21 Extended memory indirect O X 5.4.14

22 2 bytes pointer O O 5.4.15

23 Boundary alignment O O 5.4.16

24 Unifies constants/strings – – 5.4.17(1)

25 Eliminates unreferenced variables/functions – – 5.4.17(2)

26 Optimizes access to variables – – 5.4.17(3)

27 Optimizes access to functions – – 5.4.17(4)

28 Optimizes register save/restore codes – – 5.4.17(5)

29 Unifies common codes – – 5.4.17(6)

30 Optimizes branch instructions – – 5.4.17(7)

Legend:
 O: Improvements attained

 ∆: Improvements achieved in some programs
 X: Efficiency reduced

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-30
REJ05B0464-0300

5.4.1 Using 1-Byte enum Type

Size O Speed O

Description

If the value of an enum-type member is within the range from –128 to 127, 1-byte-type operations can be specified with
this option.

An enum-type value usually occupies 2 bytes according to the language specifications, however, when the enum option is
specified, a value of enum-type members is operated as 1-byte data.

Because this option is not based on the language specifications, it is set to be “not specified” in the default state of the
compiler. However, it is recommended to always specify this option.

Specification Method

Dialog menu: C/C++Tab Category: [Other] Treat enum as char if it is in the range of char

Command line: byteenum

Example

To set enum-type data E1 to 1:

(C/C++ program)

(Assembly expansion code)

 Not specified Specified

_func:
 MOV.B #1,R0L
 MOV.B R0L,@_E1:32
 RTS
 .SECTION B,DATA,ALIGN=2
_E1:
 .RES.B 1

enum EN1 {a=0,b,c,d,e}E1;
void func(void)
{
 E1=1;
}

_func:
 MOV.W #1,R0
 MOV.W R0,@_E1:32
 RTS
 .SECTION B,DATA,ALIGN=2
_E1:
 .RES.W 1

The value of the enum member is within the data
range represented by one byte.

2-byte data 1-byte data

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-31
REJ05B0464-0300

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 12 10 12 10 10

Specified 10 8 10 8 8

H8SX

CPU Type MAX ADV NML

Not specified 8 8 6

Specified 8 8 6

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 11 9 22 18 18

Specified 10 8 20 16 16

H8SX

CPU Type MAX ADV NML

Not specified 8 8 7

Specified 8 8 7

5.4.2 Extended Interpretation of Multiplication/Division Specifications

Size O Speed O

Description

The code expansion of multiplication/division operations is output by expanding interpretation of the ANSI standard.

When this option is specified, calculation results may be different from those without this option because the interpretation
differs as listed below:

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-32
REJ05B0464-0300

Size of us1*us2 at Operation (for H8S/2600)Operand

Expanded Interpretation ANSI Standard Interpretation

unsigned

 short us1,us2;

unsigned long ul;

 ul=us1*us2;

us1*us2 operated as unsigned long

Output example: MOV.W @_us1.Rd

 MOV.W @_us2.Rs

 MULXU.W Rs,ERd

 MOV.L ERd,@_ul

The result of us1*us2 is assigned to
u1 with 4 bytes.

us1*us2 operated as unsigned short

Output example: MOV.W @_us1.Rd

 MOV.W @_us2.Rs

 MULXU.W Rs,ERd

 EXTU.L ERd

 MOV.L ERd,@_ul

Lower 2 bytes of the result of us1*us2 is assigned to ul by
zero expansion.

Unsigned short
us1,us2,us3

Unsigned short us;

 us=us1*us2/us3;

us1*us2 computed as unsigned long

Output example: MOV.W @_us1.Rd

 MOV.W @_us2.Rs

 MULXU.W Rs,ERd

 MOV.L @_us3.Rs

 DIVXU.W Rs,ERd

 MOV.L Rd,@_us

The 4 bytes of result of us1*us2 is
assigned as the dividend of the
operation instruction.

us1*us2 computed as unsigned short

Output example: MOV.W @_us1.Rd

 MOV.W @_us2.Rs

 MULXU.W Rs,ERd

 EXTU.L ERd

 MOV.L @_us3.Rs

 DIVXU.W Rs,ERd

 MOV.L Rd,@_us

The lower 2 bytes of the result of us1*us2 are zero
expanded and assigned as the dividend of the division
operation.

Specification Method

Dialog menu: C/C++Tab Category: [Object] Mul/Div operation specification Non ANSI(Guarantee 32bit as a
result of 16bit*16bit)

Command line: cpuexpand

Example

To store multiplication results of two 2-byte data in 4-byte type data:

(C/C++ program)

(Assembly expansion code)

 Not specified Specified

unsigned long ll;
unsigned short a,b;
void func()
{
 ll=a*b;
}

_func:
 MOV.W @_a:32,R0
 MOV.W @_b:32,E0
 MULXU.W E0,ER0
 EXTU.L ER0
 MOV.L ER0,@_ll:32
 RTS

_func:
 MOV.W @_a:32,R0
 MOV.W @_b:32,E0
 MULXU.W E0,ER0

 MOV.L ER0,@_ll:32
 RTS

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-33
REJ05B0464-0300

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 26 20 26 20 24

Specified 24 18 24 18 22

H8SX

CPU Type MAX ADV NML

Not specified 26 26 20

Specified 24 24 18

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 24 20 62 54 136

Specified 23 19 60 52 184

H8SX

CPU Type MAX ADV NML

Not specified 14 14 13

Specified 14 14 12

5.4.3 Specifying the Number of Parameter-Passing Registers

Size ∆ Speed ∆

Description

The number of registers to assign parameters can be set with this specification. When a parameter is assigned to a register,
the access size is reduced than the case assigned to a stack. On the other hand, when the number of parameter-passing
registers is increased, the work register area is reduced and, sometimes such as at a complicated operation, data is not
assigned to registers. In this case, the object program efficiency is lowered.

The number of parameter-passing registers can also be specified with an option.

Compare execution results of both specifications and adopt the better one.

Specification Method

Dialog menu: CPU tab, Change number of parameter-passing registers from 2(default) to 3

Command line: regparam=3

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-34
REJ05B0464-0300

Example

In the following example, the efficiency is improved when three parameter-passing registers are specified.

(C/C++ program)

(Compiled result of assembly expansion code)

 Not specified Specified

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 42 40 46 44 72

Specified 38 36 42 40 70

H8SX

CPU Type MAX ADV NML

Not specified 36 36 36

Specified 34 34 32

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 144 138 294 282 686

Specified 140 134 284 272 682

extern short ee;
void func(short a,short b,short c,short d,long e)
{
 ee=a*b*c*d/e;
}

_func:
 PUSH.L ER2
 SUBS.L #2,SP
 MOV.W R0,R2
 MULXU.W E0,ER2
 MULXU.W R1,ER2
 MOV.W R2,R1
 MULXU.W E1,ER1
 EXTS.L ER1
 MOV.W R0,@SP
 MOV.L ER1,ER0
 MOV.L @(10:16,SP),ER1
 JSR @$DIVL$3:24
 MOV.W R0,@_ee:32
 POP.L ER2
 RTS

_func:
 PUSH.L ER3
 SUBS.L #2,SP
 MOV.W R0,R3
 MULXU.W E0,ER3
 MULXU.W R1,ER3
 MOV.W R3,R1
 MULXU.W E1,ER1
 EXTS.L ER1
 MOV.W R0,@SP
 MOV.L ER1,ER0
 MOV.L ER2,ER1
 JSR @$DIVL$3:24
 MOV.W R0,@_ee:32
 ADDS.L #2,SP
 POP.L ER3
 RTS

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-35
REJ05B0464-0300

H8SX

CPU Type MAX ADV NML

Not specified 44 43 44

Specified 39 39 41

Remarks and Notes

This specification is applied to all the files and linked libraries. It cannot be specified individually to each file. Therefore,
when modifying this specification, remember to change specifications of options in all files and linked libraries.

In addition, if the program being optimized is linked to an Assembly program, the interface to function calls also needs to
be modified.

For a description of the linkage between a C/C++ program and an Assembly language program, refer to section 9.3,
Linking C/C++ Programs and Assembly Programs in the H8S,H8/300 Series C/C++ Compiler, Assembler, Optimizing
Linkage Editor User’s Manual.

5.4.4 Increasing the Number of Variable-Allocation Registers

Size ∆ Speed ∆

Description

The number of registers to allocate variables can be set using this option (4 or 3 registers).

Most programs perform better when four registers are specified. However, if a program includes complicated expressions
which cause a shortage of registers, the specification of three registers results in better performance.

Specify four variable-allocation registers for a usual execution, and compare the execution results of both specifications
when necessary, such as at the program storage on ROM.

Specification Method

Dialog menu: C/C++Tab Category: [Other] Increase a register for register variable

Command line: regexpansion

Example

In the following example, the efficiency is improved when three variable-assignment registers are specified.

(C/C++ program)

long func(short a,long b,short c,char d,long e)
{
 long x,y,z;
 x=a+b;
 y=b*c;
 z=a/e;
 return (a*x*(z+y)*b*d+e*z-e/x*c/(x*y*a*z));
}

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-36
REJ05B0464-0300

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Variable registers: 4 202 202 190 190 416

Variable registers: 3 202 202 190 190 416

H8SX

CPU Type MAX ADV NML

Variable registers: 4 150 150 150

Variable registers: 3 150 150 150

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Variable registers: 4 783 752 2158 2082 4836

Variable registers: 3 783 752 2158 2082 4836

H8SX

CPU Type MAX ADV NML

Variable registers: 4 174 187 169

Variable registers: 3 174 187 169

5.4.5 Optimization of External Variables

Size − Speed −

Description

The compiler optimizes the above expressions by deleting the substitution of (1) above. If the substitution (1) should not
be deleted, as for a variable in an I/O port or an interrupt processing, declare volatile for the variable.

By using the option, the optimization can be disabled for all external variables in the specified file.

However, that may reduce the object efficiency. When using the option, declare volatile to a variable that should not be
optimized, such as that in an interrupt function or in an I/O register, in the source program, and then, compile the resulting
program with disabling the optimization of external variables.

Specification Method

Dialog menu: C/C++ Tab Category: [Other] Avoid optimizing external symbols treating them as volatile

Command line: volatile

 :
 a=0; //(1)
 a=1; //(2)
 :

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-37
REJ05B0464-0300

Example

To assign the values 0, 1, and 2 to the external variable a in this order:

(C/C++ program)

(Assembly expansion code)

 Not specified Specified

Remarks and Notes

When the optimization of external variables is disabled, all external variables in the file are changed into volatile variables.
To set volatile individually to each variable, specify as follows:

By default, the optimization of external variables is enabled with the compiler option.

_func:

 MOV.W #2,R0
 MOV.W R0,@_a:32
 RTS

_func:
 SUB.W R0,R0
 MOV.W R0,@_a:32
 MOV.B #1,R0L
 MOV.W R0,@_a:32
 MOV.B #2,R0L
 MOV.W R0,@_a:32
 RTS

unsigned int a;
void func()
{
 a=0;
 a=1;
 a=2;
}

volatile unsigned int a;
void func()
{
 a=0;
 a=1;
 a=2;
}

a=2 code only

Outputs the same code as shown in the
above example with the volatile option

a=0

a=1

a=2

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-38
REJ05B0464-0300

5.4.6 Block Transfer Instruction

Size X Speed O

Description

Structure substitutions are usually processed by calling run-time routines. When this option is used, a block transfer
instruction is output at the structure substitution expression, and then the execution speed is improved.

However, if NMI interrupt occurs during the EEPMOV.W instruction execution, the transfer results are not guaranteed.

Check this condition before specifying this option.

To output the EEPMOV instruction only in a part of the structure data transfer, specify the eepmov() built-in function.

Specification Method

Dialog menu: C/C++ Tab Category: [Other] Use EEPMOV in block copy

Command line: eepmov

Example

To substitute the structure s2 to s1:

(C/C++ program)

(Compiled result of assembly expansion code)

 Not specified Specified

_main:
 PUSH.L ER2
 MOV.L #_s2,ER0
 MOV.L #_s1,ER1
 SUB.L ER2,ER2
 MOV.B #12,R2L
 JSR @MVN3:24

 POP.L ER2
 RTS

struct S{
 char cc;
 short ss;
 long ll;
 long ll2;
}s1,s2;
void main()
{
 s1=s2;
}

_main:
 STM.L (ER4-ER6),@-SP
 MOV.L #_s2,ER5
 MOV.B #12,R4L
 MOV.L #_s1,ER6
 EEPMOV.B

 LDM.L @SP+,(ER4-ER6)
 RTS

Processed by a run-time routine call
Expanded into EEPMOV instruction

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-39
REJ05B0464-0300

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 30 22 30 22 22

Specified 28 24 26 22 22

H8SX

CPU Type MAX ADV NML

Not specified 28 26 22

Specified 22 22 18

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 117 102 270 224 256

Specified 58 55 226 210 168

H8SX

CPU Type MAX ADV NML

Not specified 66 66 57

Specified 24 24 24

5.4.7 speed Option

Description

The compiler usually outputs an object efficient in the code size. When this option is specified, an object efficient in the
execution speed is output.

There are following items to specify the output of speed-efficiency objects rather than size-efficiency objects:

Description Reference

Speed-efficiency code expansion of register save/restore codes 5.4.7(1)

Speed-efficiency code expansion of shift expressions 5.4.7(2)

Assignment code expansion of structures and double-type data 5.4.7(3)

Inline expansion of functions 5.4.7(4)

Speed-efficiency code expansion of loop expressions 5.4.7(5)

Speed-efficiency code expansion for switch statement 5.4.7(6)

Disabling run-time routine calls for arithmetic operation 5.4.7(7)

These items can be specified individually.

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-40
REJ05B0464-0300

Specification Method

Dialog menu: C/C++ Tab Category: [Optimize] Speed oriented optimization

Command line: speed

(1) Speed-efficiency Code Expansion of Register Save/Restore Codess

Size X Speed O

Description

At entry and exit points of a function, registers used in the function are saved or restored. On the H8/300H or H8/300
series, registers are saved/restored by calling a run-time routine when the number of registers to be saved/restored is three
or more.

When a run-time routine is used, the object size is reduced, however, the execution speed is lowered because of the
processing for the function call or the save/restore of registers that are not needed. If only the necessary registers are
saved/restored and a run-time routine is not called, the execution speed is improved though the object size is increased.

Specification Method

Dialog menu: C/C++ Tab Category: [Optimize] Speed sub-options: Register

Command line: speed=register

Example

To define the function sub while specifying the 300HA CPU/operation mode:

(C/C++ program)

(Assembly expansion code)

 Not specified Specified

_sub:
 JSR @sp_regsv3:24

 MOV.B R0L,R5L
 MOV.W @_a+2:24,R1
 MOV.W @_b+2:24,R2
 ADD.W R2,R1
 EXTS.W R5
 ADD.W E0,R5
 ADD.W R1,R5
 EXTS.L ER5
 MOV.L ER5,ER0
 JMP @$spregld2$3:24

_sub:
 PUSH.L ER5
 PUSH.W R2
 MOV.B R0L,R5L
 MOV.W @_a+2:24,R1
 MOV.W @_b+2:24,R2
 ADD.W R2,R1
 EXTS.W R5
 ADD.W E0,R5
 ADD.W R1,R5
 EXTS.L ER5
 MOV.L ER5,ER0
 POP.W R2
 POP.L ER5
 RTS

long a,b;
long sub(char c1,short s2,short s3)
{
 s3=a+b;
 return (c1+s2+s3);
}

The run-time routine called at register
save/restore differs according to
whether optimization is specified or
not and the number of parameter-
passing registers

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-41
REJ05B0464-0300

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 24 20 28 24 38

Specified 24 20 28 24 44

H8SX

CPU Type MAX ADV NML

Not specified 24 24 20

Specified 24 24 20

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 18 15 48 42 134

Specified 18 15 48 42 94

H8SX

CPU Type MAX ADV NML

Not specified 17 15 14

Specified 17 15 14

(2) Speed-efficiency Code Expansion of Shift Expressions

Size X Speed O

Description

Object codes for shift operations are generated with improving speed rather than reducing size.

Specification Method

Dialog menu: C/C++ Tab Category: [Optimize] Speed sub-options: Shift to multiple

Command line: speed=shift

Example

To shift the variable a multiple times:

(C/C++ program)

unsigned char a=0x80;
int dat;
void main(void)
{
 a>>=dat;
}

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-42
REJ05B0464-0300

(Compiled result of assembly expansion code)

 Not specified Specified

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 25 19 19 15 15

Specified 49 43 29 23 23

H8SX

CPU Type MAX ADV NML

Not specified 25 25 19

Specified 25 25 19

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 39 33 78 64 64

Specified 29 25 40 32 32

H8SX

CPU Type MAX ADV NML

Not specified 14 14 12

Specified 14 14 12

_main:

 MOV.L #_a,ER0

 MOV.W @_dat:32,R1

 JSR @$DSRUC$3:24

 RTS

_main:
 MOV.B @_a:32,R0L
 MOV.B @_dat+1:32,R0H
L5:
 DEC.B R0H
 BMI L8:8
 SHLR.B R0L
 BRA L7:8
L6:
 MOV.B R0L,@_a:32
 RTS

 Processed by calling a run-time routine

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-43
REJ05B0464-0300

(3) Assignment Code Expansion of Structures and Double-Type Data

Size ∆ Speed O

Description

When structures or double-type data are assigned, codes to call a run-time routine are usually output (except for the case of
a small-size structure). Therefore, if processing is performed without calling the run-time routine, the execution speed is
improved.

Specification Method

Dialog menu: C/C++ Tab Category: [Optimize] Speed sub-options: Struct assignment

Command line: speed=struct

Example

To assign the structure s2 to s1:

(C/C++ program)

(Compiled result of assembly expansion code)

 Not specified Specified

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 18 14 30 22 22

Specified 40 32 40 36 34

_main:
 PUSH.L ER2
 MOV.L #_s2,ER0
 MOV.L #_s1,ER1
 MOV.L @ER0+,ER2
 MOV.L ER2,@ER1
 MOV.L @ER0,ER2
 MOV.L ER2,@(4:16,ER1)
 POP.L ER2
 RTS

_main:
 PUSH.L ER2
 MOV.L #_s2,ER0
 MOV.L #_s1,ER1
 SUB.L ER2,ER2
 MOV.B #8,R2L
 JSR @MVN3:24

 POP.L ER2
 RTS

struct S{
 unsigned char cc;
 short ss;
 long ll;
}s1,s2;
void main(void)
{
 s1=s2;
}

Run-time routine

processing

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-44
REJ05B0464-0300

H8SX

CPU Type MAX ADV NML

Not specified 22 22 18

Specified 22 22 18

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 49 44 244 198 220

Specified 39 32 78 72 124

H8SX

CPU Type MAX ADV NML

Not specified 18 14 14

Specified 18 14 14

(4) Inline Expansion of Functions

Size X Speed O

Description

When an inline expansion is specified with the option, small-size functions are inline-expanded, which improves the
execution speed. However, if any of the following conditions is met, inline expansion is not performed:

• A function is defined prior to a #pragma inline specification.

• A variable parameter is included.

• An address of a parameter is referenced.

• The types of a real parameter and a dummy parameter are not the same.

• The size limitation of an inline expansion has been exceeded.

The size limitation of an inline expansion indicates the number of nodes of the specified function.

The number of nodes indicates the processing unit used in the compiler internal processing, which can be selected within
the range from 1 to 65535. If a small number of nodes is specified, only a small function is inline-expanded, however, if a
large number is specified, a large-size function can also be inline-expanded.

The default number is 105.

If #pragma inline is specified for a function, the function is inline-expanded regardless of the inline expansion size
limitation.

Specification Method

Dialog menu: C/C++ Tab Category: [Optimize] Speed sub-options: Maximum nodes of inline function

Command line: speed=inline[=(node)]

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-45
REJ05B0464-0300

Example

To call a function named func:

(C/C++ program)

(Compiled result of assembly expansion code)

 Not specified Specified

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 44 36 40 36 38

Specified 58 46 52 46 42

H8SX

CPU Type MAX ADV NML

Not specified 30 28 24

Specified 34 34 28

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 41 34 78 68 182

Specified 31 26 58 52 166

_sub:
 BSR _func:8

 MOV.L #_a,ER0
 MOV.L @ER0,ER1
 INC.L #2,ER1
 MOV.L ER1,@ER0
 RTS
_func:
 MOV.L #_a,ER0
 MOV.L @ER0,ER1
 INC.L #1,ER1
 MOV.L ER1,@ER0
 RTS

_sub:
 MOV.L @_a:32,ER0
 INC.L #1,ER0
 INC.L #2,ER0
 MOV.L ER0,@_a:32
 RTS
_func:
 MOV.L #_a,ER0
 MOV.L @ER0,ER1
 INC.L #1,ER1
 MOV.L ER1,@ER0
 RTS

extern long a;
void func(void);
void sub(void)
{
 func();
 a+=2;
}
void func(void)
{
 a++;
}

Function
call

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-46
REJ05B0464-0300

H8SX

CPU Type MAX ADV NML

Not specified 23 23 21

Specified 15 15 14

Remarks

If the called function is included in the same file of the calling side and the function is not called by any other file, no
external definition of the function is generated and the function size is reduced when static is specified in the function
declaration.

(5) Speed-efficiency Code Expansion of Loop Expressions

Size ∆ Speed O

Description

Loops satisfying all of the following conditions in the file are output with expanded codes:

• The initial value for the loop is a constant.

• The final judgement of the loop is a constant.

• The number of repetition for the loop is either a multiple of 3 or an even number.

• No goto labels is included in the loop.

• The loop contains expressions only and the number of expressions is 10 or less.

• The optimization is specified.

When a loop is expanded, the program size is increased. To improve the execution speed of a specific loop, provide loop-
expanded coding in the program.

Specification Method

Dialog menu: C/C++ Tab Category: [Optimize] Speed sub-options: Loop optimization

Command line: speed=loop

Example

To zero-clear the contents of the array a:

(C/C++ program)

int a[10];

void f(void)
{
 int i;

 for (i=0;i<10;i++)
 a[i]=0;
}

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-47
REJ05B0464-0300

(Compiled result of assembly expansion code)

 Not specified Specified

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 34 26 36 22 28

Specified 38 28 40 30 40

H8SX

CPU Type MAX ADV NML

Not specified 20 20 18

Specified 36 36 32

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 132 103 294 212 244

Specified 88 72 162 138 244

H8SX

CPU Type MAX ADV NML

Not specified 95 87 87

Specified 75 71 71

Remarks

This specification sometimes reduces the size of codes.

Try this option on and off at tuning options.

_f:
 PUSH.L ER6
 SUB.W R6,R6
 SUB.W R1,R1
L6:
 EXTS.L ER6
 MOV.L ER6,ER0
 SHLL.L ER0
 MOV.W R1,@(_a:32,ER0)
 INC.W #1,R6
 CMP.W #10:16,R6
 BLT L6:8
 POP.L ER6
 RTS

_f:
 MOV.L #_a,ER1
 SUB.L ER0,ER0

L6:
 MOV.W R0,@ER1
 INC.W #1,E0
 INC.L #2,ER1
 MOV.W R0,@ER1
 INC.W #1,E0
 INC.L #2,ER1
 CMP.W #10,E0
 BLT L6:8
 RTS

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-48
REJ05B0464-0300

(6) Speed-Efficiency Code Expansion of switch Statement

Size ∆ Speed O

Description

The switch statement is expanded in the method outputting less number of execution cycles with this specification.

There are two methods to expand the switch statement, the table method and the if-then method.

Usually, the compiler determines which method is better to reduce the size.

In the if-then method, the value of the switch statement evaluation expression is compared with that of the case label. If
they are the same, jumping to the case label statement is repeated the number of times the case labels are included.
Therefore, in this method, the object code size is increased according to the number of case labels included in the switch
statement.

In the table method, the destination of case label jumping is stored in a jump table and the jumping to the case label
statement that matches the evaluation expression of the switch statement is performed with a single referencing of the
jump table. In this case, the size of the jump table allocated in the constant area is increased in proportion to the number of
case labels contained in switch statements, however, the execution speed is always constant.

When the SPEED option is specified, a processing method improving the execution speed is selected depending on the
above-mentioned conditions.

Specification Method

Dialog menu: C/C++ Tab Category: [Optimize] Speed sub-options: Switch judgement

Command line: speed=switch

Example

To replace the value of the variable a:

(C/C++ program)

extern unsigned a;
void sub(void)
{
 switch(a){
 case 0: a=1;break;
 case 2: a=2;break;
 case 4: a=3;break;
 case 6: a=4;break;
 case 8: a=5;break;
 case 10: a=6;break;
 case 12: a=7;break;
 case 14: a=8;break;
 case 16: a=9;break;
 case 18: a=10;break;
 case 20: a=11;break;
 }
}

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-49
REJ05B0464-0300

(Compiled result of assembly expansion code)

 Not specified Specified

_sub:MOV.L #_a:32,ER1
 MOV.W @ER1,R0
 MOV.B R0H,R0H
 BNE L16:8
 CMP.B #0:8,R0L
 BEQ L5:8
 CMP.B #2:8,R0L
 BEQ L6:8
 CMP.B #4:8,R0L
 BEQ L7:8
 CMP.B #6:8,R0L
 BEQ L8:8
 CMP.B #8:8,R0L
 BEQ L9:8
 CMP.B #10:8,R0L
 BEQ L10:8
 CMP.B #12:8,R0L
 BEQ L11:8
 CMP.B #14:8,R0L
 BEQ L12:8
 CMP.B #16:8,R0L
 BEQ L13:8
 CMP.B #18:8,R0L
 BEQ L14:8
 CMP.B #20:8,R0L
 BEQ L15:8
 RTS
L5: MOV.W #1:16,R0
 BRA L26:8
L6: MOV.W #2:16,R0
 BRA L26:8
L7: MOV.W #3:16,R0
 BRA L26:8
L8: MOV.W #4:16,R0
 BRA L26:8
L9: MOV.W #5:16,R0
 BRA L26:8
L10: MOV.W #6:16,R0
 BRA L26:8
L11: MOV.W #7:16,R0
 BRA L26:8
L12: MOV.W #8:16,R0
 BRA L26:8
L13: MOV.W #9:16,R0
 BRA L26:8
L14: MOV.W #10:16,R0
 BRA L26:8
L15: MOV.W #11:16,R0
L26: MOV.W R0,@ER1
L16: RTS

_sub:MOV.L #_a,ER1
 MOV.W @ER1,R0
 CMP.W #20,R0
 BHI L18:8
 EXTU.L ER0
 MOV.B
@(L19:32,ER0),R0L
 EXTU.W R0
 EXTU.L ER0
 ADD.L #L7,ER0
 JMP @ER0
L5: MOV.W #1,R0
 BRA L27:8
L6: MOV.W #2,R0
 BRA L27:8
L7: MOV.W #3,R0
 BRA L27:8
L8: MOV.W #4,R0
 BRA L27:8
L9: MOV.W #5,R0
 BRA L27:8
L10: MOV.W #6,R0
 BRA L27:8
L11: MOV.W #7,R0
 BRA L27:8
L12: MOV.W #8,R0
 BRA L27:8
L13: MOV.W #9,R0
 BRA L27:8
L14: MOV.W #10,R0
 BRA L27:8
L15: MOV.W #11,R0
L27: MOV.W R0,@ER1
L16: RTS
 .SECTION C,DATA,ALIGN=2
L17: .DATA.B L5-L5
 .DATA.B L16-L5
 .DATA.B L6-L5
 .DATA.B L16-L5
 .DATA.B L7-L5
 .DATA.B L16-L5
 .DATA.B L8-L5
 .DATA.B L16-L5
 .DATA.B L9-L5
 .DATA.B L16-L5
 .DATA.B L10-L5
 .DATA.B L16-L5
 .DATA.B L11-L5
 .DATA.B L16-L5
 .DATA.B L12-L5
 .DATA.B L16-L5
 .DATA.B L13-L5
 .DATA.B L16-L5
 .DATA.B L14-L5
 .DATA.B L16-L5
 .DATA.B L15-L5
 .DATAB.B 1,0

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-50
REJ05B0464-0300

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 136 120 126 114 120

Specified 136 120 126 114 120

H8SX

CPU Type MAX ADV NML

Not specified 118 118 108

Specified 118 118 108

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 44 33 66 52 66

Specified 44 33 66 52 66

H8SX

CPU Type MAX ADV NML

Not specified 23 24 18

Specified 23 24 18

Remarks

In the above example, codes with improved speed and reduced size are generated because the table method is adopted.
However, depending upon the value of a, better codes may be output when this option is not specified.

(7) Disabling Run-Time Routine Calls

Size X Speed O

Description

When this option is specified, arithmetic operations, comparison expressions, or assignment expressions are expanded into
codes without using a run-time routine (for some expressions this option is disabled).

Specification Method

Dialog menu: C/C++ Tab Category: [Optimize] Speed sub-options expression

Command line: speed=expression

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-51
REJ05B0464-0300

Example

To perform a multiplication:

(C/C++ program)

(Compiled result of assembly expansion code)

 Not specified Specified

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 32 26 32 26 38

Specified 52 46 48 42 46

H8SX

CPU Type MAX ADV NML

Not specified 30 30 24

Specified 30 30 24

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 63 57 180 168 410

Specified 54 50 266 248 366

long a,b;
char c;
void main()
{
 a=b*c;
}

_main:

 MOV.B @_c:32,R0L
 EXTS.W R0
 EXTS.L ER0
 MOV.L @_b:32,ER1
 JSR @$MULL$3:24

 MOV.L ER0,@_a:32

 RTS

_main:
 STM.L (ER2-ER3),@-SP
 MOV.B @_c:32,R0L
 EXTS.W R0
 EXTS.L ER0
 MOV.L @_b:32,ER1
 MOV.W E0,R2
 MULXU.W R1,ER2
 MOV.W E1,R3
 MULXU.W R0,ER3
 MULXU.W R1,ER0
 ADD.W R2,E0
 ADD.W R3,E0
 MOV.L ER0,@_a:32
 LDM.L @SP+,(ER2-ER3)
 RTS

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-52
REJ05B0464-0300

H8SX

CPU Type MAX ADV NML

Not specified 18 18 17

Specified 18 18 17

5.4.8 Allocating Registers to Global Variables

Size ∆ Speed ∆

Description

When frequently-used external variables are allocated to registers, the access codes are shortened.

Note that external variables that are not optimized, such as I/O variables, cannot be allocated to registers.

Registers where external variables can be allocated to are shown below:

For the CPU of 300, R4 and R5 can be used.

[Format]

#pragma global_register (<variable name>=<register name>[,<variable name>=<register name>...])

Example

To assign 1-byte and 2-byte data to registers:

(C/C++ program)

#pragma global_register (a=R4,b=R5L)
int a; char b;
void func();
void main()
{
 a=10;
 b=20;
 func();
}
void func()
{
 a++;
 b-=2;
}

E4

E5

R4H

R5H

R4L

R5L

ER4

ER5

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-53
REJ05B0464-0300

(Assembly expansion code)

 Not specified Specified

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 52 40 48 40 40

Specified 20 20 16 16 16

H8SX

CPU Type MAX ADV NML

Not specified 38 36 28

Specified 18 16 16

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 37 30 70 60 60

Specified 15 14 26 24 24

H8SX

CPU Type MAX ADV NML

Not specified 21 21 18

Specified 12 12 12

_main:
 MOV.W #10,R4
 MOV.B #20,R5L
_func:
 INC.W #1,R4
 ADD.B #-2,R5L
 RTS

_main:
 MOV.W #10,R0
 MOV.W R0,@_a:32
 MOV.B #20,R0L
 MOV.B R0L,@_b:32
_func:
 MOV.L #_a,ER0
 MOV.W @ER0,R1
 INC.W #1,R1
 MOV.W R1,@ER0
 MOV.L #_b,ER0
 MOV.B @ER0,R1L
 ADD.B #-2,R1L
 MOV.B R1L,@ER0
 RTS
 .SECTION B,DATA,ALIGN=2
_a:.RES.W 1
_b:.RES.B 1

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-54
REJ05B0464-0300

Notes

(a) This option can be used for variable definitions and variable declarations after the #pragma global_register is declared.

(b) This option can be used for simple-type or pointer-type global variables. It cannot be used for double-type variables.

(c) The initial value cannot be specified. In addition, addresses cannot be referenced.

(d) Referencing a specific variable from a link destination (without a register specification in the file) is not guaranteed.

(e) Specifications or references in interrupt functions are not guaranteed.

(f) Variables and registers cannot be specified in duplicate. This option cannot be specified together with the #pragma
abs8 or #pragma abs16 declaration.

When this option is specified, the inter-module optimization cannot be performed for libraries. Exclude all library
functions from inter-module optimization objects, as described below:

[For PC]

<HEW1.2>

Delete directories having the same name as the library decompressed at its inter-module optimization.

<HEW2.0 or later>

With preinclude option in the Standard Library tag for Standard Library Generator, specify include to the header file
containing #pragma global_register declaration.

[For UNIX]

Modify the name of directories having the same name as the library.

5.4.9 Controlling Output of Register Save/Restore Codes at Function Entry/Exit Points

Size O Speed O

Description

For all functions, the compiler saves registers to be used in the function at the function entry point and restores them at the
function exit point.

When register save/restore processings are controlled with this option, the size of register save/restore codes can be
reduced for the main function or a function including function calls only.

When the #pragma regsave is specified, all registers are saved/restored. Registers guaranteeing values before and after
function calls are not assigned.

When the #pragma noregsave is specified, register save/restores are disabled regardless of whether registers are used in the
function or not.

[Format]

#pragma regsave (<function-name>[,…])

#pragma noregsave (<function-name>[,…])

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-55
REJ05B0464-0300

Example

To call the function noregf from the function regf:

(C/C++ program)

 Not specified Specified

(Assembly expansion code)

 Not specified Specified

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 66 52 66 52 52

Specified 80 66 68 54 54

#pragma regsave (regf)
#pragma noregsave (noregf)
void regf();
void noregf(int);
void func();

extern int X,Y,Z,XX;
void regf(void)
{
 int A=X;
 Y=A;
 noregf(X);
 Z=A;
}
void noregf(int P)
{
 int B=P;
 Y=B;
 func(X);
 Z=B;
}

void regf();
void noregf(int);
void func();

extern int X,Y,Z,XX;
void regf(void)
{
 int A=X;
 Y=A;
 noregf(X);
 Z=A;
}
void noregf(int P)
{
 int B=P;
 Y=B;
 func(X);
 Z=B;
}

_regf:
 PUSH.W R6
 MOV.W @_X:32,R6
 MOV.W R6,@_Y:32
 MOV.W R6,R0
 BSR _noregf:8
 MOV.W R6,@_Z:32
 POP.W R6
 RTS
_noregf:
 PUSH.W R6
 MOV.W R0,R6
 MOV.W R6,@_Y:32
 MOV.W @_X:32,R0
 JSR @_func:24
 MOV.W R6,@_Z:32
 POP.W R6
 RTS

_regf:
 STM.L (ER2-ER3),@-SP
 STM.L (ER4-ER6),@-SP
 MOV.W @_X:32,R6
 MOV.W R6,@_Y:32
 MOV.W R6,R0
 PUSH.W R6
 BSR _noregf:8
 POP.W R6
 MOV.W R6,@_Z:32
 LDM.L @SP+,(ER4-ER6)
 LDM.L @SP+,(ER2-ER3)
 RTS
_noregf:
 MOV.W R0,R6
 MOV.W R6,@_Y:32
 MOV.W @_X:32,R0
 JSR @_func:24
 MOV.W R6,@_Z:32
 RTS

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-56
REJ05B0464-0300

H8SX

CPU Type MAX ADV NML

Not specified 68 66 52

Specified 78 76 62

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 66 54 132 108 108

Specified 91 79 266 232 190

H8SX

CPU Type MAX ADV NML

Not specified 46 43 38

Specified 60 58 60

5.4.10 Specifying Inline Expansion of Functions

Size X Speed O

Description

When the inline expansion is specified, the expansion is performed within the calling function but the function is not
called, and then the execution speed is improved.

There are the following two ways to specify the inline expansion:

(1) Specifying with an expansion function

[Format]

#pragma inline (<function-name>[,…])

(2) Specifying with an option

Dialog menu: C/C++ Tab Category: [Optimize] Speed sub-options: Maximum nodes of inline function

Command line: speed=inline[=(node)]

When a function is called, normally, the JSR or BSR instruction is output. However, when the inline expansion is
specified, codes are expanded directly at the location where a function is called. Therefore, the JSR or BSR instruction at
calling a function and the RTS instruction at returning from a function are not output, which improves the execution speed.

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-57
REJ05B0464-0300

Example

To perform the inline expansion of the function func:

(C/C++ program)

 Specification in the #pragma statement

(Assembly expansion code)

 Not specified Specified

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 32 24 30 24 24

Specified 36 26 38 30 30

H8SX

CPU Type MAX ADV NML

Not specified 22 22 16

Specified 28 28 20

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 25 20 48 40 40

Specified 13 10 30 24 24

#pragma inline func
int a,b;
void func()
{
 a+=b;
}
void main()
{
 a=0;
 func();
}

_func:
 MOV.W @_b:32,R0
 MOV.L #_a,ER1
 MOV.W @ER1,E0
 ADD.W R0,E0
 MOV.W E0,@ER1
 RTS
_main:
 SUB.W R0,R0
 MOV.W R0,@_a:32
 BRA _func:88

_func:
 MOV.W @_b:32,R0
 MOV.L #_a,ER1
 MOV.W @ER1,E0
 ADD.W R0,E0
 MOV.W E0,@ER1
 RTS
_main:
 SUB.W E0,E0
 MOV.W @_b:32,R0
 ADD.W R0,E0
 MOV.W E0,@_a:32
 RTS

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-58
REJ05B0464-0300

H8SX

CPU Type MAX ADV NML

Not specified 16 16 15

Specified 11 11 10

Remarks and Notes

(1) The #pragma inline statement should be specified before the function is defined.

If the optimization is not specified, this specification is unavailable, however, the #pragma specification is available.

The inline expansion is not performed for the following functions:

• Functions including variable parameters

• Functions referencing addresses of parameters

• Functions in which the type of a real parameter and that of a dummy parameter do not match.

• Functions calling inline-expanded functions

• Functions that exceed the size limitation of the inline expansion

(2) When a function is specified as static, the function is expanded only in the called side, which improves size efficiency.
In this case, the inline-expanded function is used only in the same file.

5.4.11 Using 8-Bit Absolute Address Area

Size O Speed O

Description

The H8S or H8/300 Series provide an 8-bit absolute address area. When byte data frequently accessed are allocated to this
area, those data can be accessed in the 8-bit absolute address format, which improves ROM efficiency, RAM efficiency,
and the execution speed, compared with accessing normally in the absolute address format.

There are the following two ways to specify the 8-bit absolute address area:

(1) Specifying with an expansion function

[Format]

#pragma abs8 (<variable or structure-name, array-name>[,…])

(2) Specifying with an option

Dialog menu: C/C++ Tab Category: [Optimize] Data access @aa:8

Command line: abs8

When the #pragma abs8 is specified, variables to be accessed in the 8-bit absolute address format can be specified.

When this is specified using the option format, all 1-byte data in the file are set to be accessed in the 8-bit absolute address
format.

The following lists the range of 8-bit absolute address area for each CPU/operation mode:

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-59
REJ05B0464-0300

CPU Type Address Space Size 8-Bit absolute Absolute Address Area

32 H'FFFFFF00 to H'FFFFFFFF

28 H'FFFFF00 to H'FFFFFFF

24 H'FFFF00 to H'FFFFFF

H8SX maximum mode

H8SX advanced mode

H8SX middle mode

H8S/2600 advanced mode

H8S/2000 advanced mode

H8/300H advanced mode

20 H'FFF00 to H'FFFFF

H8SX normal mode

H8S/2600 normal mode

H8S/2000 normal mode

H8/300H normal mode

H8/300

16 H'FF00 to H'FFFF

Example

To access the variables a, b, and c allocated in the 8-bit absolute address area:

(C/C++ program)

 Specification using the #pragma statement

(Compiled result of assembly expansion code)

 Not specified Specified

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 18 14 18 14 14

Specified 10 10 10 10 10

#pragma abs8 (a,b,c)

const char a=1;
 char b=1;
 char c;
void func(void)
{
 c=b=a;
}

_func:
 MOV.B #1,R0L
 MOV.B R0L,@_b:32
 MOV.B R0L,@_c:32
 RTS
 .SECTION C,DATA,ALIGN=2
_a: .DATA.B H'01
 .SECTION D,DATA,ALIGN=2
_b: .DATA.B H'01
 .SECTION B,DATA,ALIGN=2
_c: .RES.B 1

_func:
 MOV.B #1,R0L
 MOV.B R0L,@_b:8
 MOV.B R0L,@_c:8
 RTS
 .SECTION $ABS8C,DATA,ALIGN=2
_a: .DATA.B H'01
 .SECTION $ABS8D,DATA,ALIGN=2
_b: .DATA.B H'01
 .SECTION $ABS8B,DATA,ALIGN=2
_c: .RES.B 1

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-60
REJ05B0464-0300

H8SX

CPU Type MAX ADV NML

Not specified 16 16 12

Specified 10 10 10

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 14 11 28 22 22

Specified 10 9 20 18 18

H8SX

CPU Type MAX ADV NML

Not specified 10 10 10

Specified 9 9 9

Remarks and Notes

The #pragma abs8 cannot be specified for data that have previously been declared.

This specification is valid only for 1-byte external variables.

At linkage, sections starting with $ABS8 are allocated to the 8-bit absolute address area.

5.4.12 Using 16-Bit Absolute Address Area

Size O Speed O

Description

The H8S or H8/300 Series provide a 16-bit absolute address area. When byte data frequently accessed are allocated to this
area, those data can be accessed in the 16-bit absolute address format, which improves ROM efficiency, RAM efficiency,
and the execution speed, compared with accessing normally in the absolute address format.

There are the following two ways to specify the 16-bit absolute address area:

(1) Specifying with an expansion function

[Format]

#pragma abs16 (<variable or structure-name, array-name >[,…])

(2) Specifying with an expansion option

Dialog menu: C/C++ Tab Category: [Optimize] Data access @aa:16

Command line: abs16

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-61
REJ05B0464-0300

When the #pragma abs16 is specified, variables to be accessed in the 16-bit absolute address format can be specified.
When this is specified using the option format, all data in the file are set to be accessed in the 16-bit absolute address
format.

The following lists the range of 16-bit absolute address area for each CPU/operation mode:

CPU Type Address Space Size 16-Bit Absolute Address Area

32 0 to H'7FFF, H'FFFF0000 to H'FFFFFFFF

28 0 to H'7FFF, H'FFF0000 to H'FFFFFFF

24 0 to H'7FFF, H'FF0000 to H'FFFFFF

H8SX maximum mode

H8SX advanced mode

H8SX middle mode

H8S/2600 advanced mode

H8S/2000 advanced mode

H8/300H advanced mode

20 0 to H'7FFF, H'F0000 to H'FFFFF

Example

To access the variables a, b, and c allocated in the 16-bit absolute address area:

(C/C++ program)

 Specification using the #pragma statement

(Compiled result of assembly expansion code)

 Not specified Specified

#pragma abs16 (a,b,c)
const int a=1;
 int b=1;
 int c;

void func(void)
{
 c=b=a;
}

_main:
 MOV.W #1,R0
 MOV.W R0,@_b:32
 MOV.W R0,@_c:32
 RTS
 .SECTION C,DATA,ALIGN=2
_a:
 .DATA.W H'0001
 .SECTION D,DATA,ALIGN=2
_b:
 .DATA.W H'0001
 .SECTION B,DATA,ALIGN=2
_c:
 .RES.W 1

_main:
 MOV.W #1,R0
 MOV.W R0,@_b:16
 MOV.W R0,@_c:16
 RTS
 .SECTION $ABS16C,DATA,ALIGN=2
_a:
 .DATA.W H'0001
 .SECTION $ABS16D,DATA,ALIGN=2
_b:
 .DATA.W H'0001
 .SECTION $ABS16B,DATA,ALIGN=2
_c:
 .RES.W 1

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-62
REJ05B0464-0300

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 22 18 22 18 18

Specified 18 18 18 18 18

H8SX

CPU Type MAX ADV NML

Not specified 18 18 14

Specified 14 14 14

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 15 12 30 24 24

Specified 13 12 26 24 24

H8SX

CPU Type MAX ADV NML

Not specified 10 10 9

Specified 9 9 9

Remarks and Notes

This specification is valid only with the CPU/operation mode, H8SXX, H8SXA, H8SXM, 2600a, 2000a, or 300ha.

The #pragma abs16 cannot be specified for data that have previously been declared.

This specification is valid only for external variables.

The name of the section to which data are output can be modified with the #pragma statement.

At linkage, sections starting with $ABS16 are allocated to the 16-bit absolute address area.

5.4.13 Using Indirect Memory Format

Size O Speed X

Description

When frequently-used functions are accessed in the indirect memory format, ROM efficiency is improved. If a function
address is stored in the indirect memory area at linkage, the function is called in the indirect memory format when it is
called. In this case, the execution speed is lowered but the program size is reduced because the function can be called with
a short instruction.

There are the following two ways to specify the indirect memory format:

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-63
REJ05B0464-0300

(1) Specifying with an expansion function

[Format]

#pragma indirect (<function name>[(vect=<vector number>)][,…])
__indirect[(vect=<vector number>)] <type specifier> <function name>
<type specifier> __indirect[(vect=<vector number>)] <function name>

(2) Specifying with an option

Dialog menu: C/C++ Tab Category: [Optimize] Function call: @@aa:8

Command line : indirect=Normal

The indirect memory address area is the range from 00 to FF.

Specifying include to the include file indirect.h, all run-time routines to be used are called in the indirect memory format.

In addition, each run-time routine can be called in the indirect memory format individually.

Example

To call the function func in the indirect memory format:

(C/C++ program)

 Specifying in the #pragma statement

(Compiled result of assembly expansion code)

 Not specified Specified

#pragma indirect func
extern void func(int, int);
extern int a,b,c;
int d;
void main(void)
{
 b=0;
 func(a,b);
 func(b,c);
 func(c,a);
 d=c;
}

 specifies #pragma indirect

_main:
 PUSH.L ER6
 SUB.W R0,R0
 MOV.W R0,@_b:32
 MOV.W R0,E0
 MOV.W @_a:32,R0
 JSR @_func:24
 MOV.L #_c,ER6
 MOV.W @ER6,E0
 MOV.W @_b:32,R0
 JSR @_func:24
 MOV.W @_a:32,E0
 MOV.W @ER6,R0
 JSR @_func:24
 MOV.W @ER6,R6
 MOV.W R6,@_d:32
 POP.L ER6
 RTS

_main:
 PUSH.L ER6
 SUB.W R0,R0
 MOV.W R0,@_b:32
 MOV.W R0,E0
 MOV.W @_a:32,R0
 JSR @@$func:8
 MOV.L #_c,ER6
 MOV.W @ER6,E0
 MOV.W @_b:32,R0
 JSR @@$func:8
 MOV.W @_a:32,E0
 MOV.W @ER6,R0
 JSR @@$func:8
 MOV.W @ER6,R6
 MOV.W R6,@_d:32
 POP.L ER6
 RTS

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-64
REJ05B0464-0300

Object Size Comparison [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 58 52 70 54 54

Specified 66 48 68 50 50

H8SX

CPU Type MAX ADV NML

Not specified 70 64 50

Specified 62 62 46

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 75 58 152 118 118

Specified 78 58 158 118 118

H8SX

CPU Type MAX ADV NML

Not specified 49 46 43

Specified 50 50 44

Remarks and Notes

The $INDIRECT section should be allocated to the memory area 00 to FF where can be accessed in the indirect memory
format at linkage.

The indirect memory area is output to the "$INDIRECT" section. The section name can be modified using the #pragma
indirect section statement.

5.4.14 Using Extended Indirect Memory Format

Size O Speed X

Description

When frequently-used functions are accessed in the indirect memory format, ROM efficiency is improved. When the CPU
is H8SX, the extended memory indirect addressing mode can be used additionally. This can also improve ROM efficiency.

There are the following two ways to specify the extended indirect memory format:

(1) Specifying with an expansion function

[Format]

__indirect_ex[(vect=<vector number>)] <type specifier> <function name>
<type specifier> __indirect_ex[(vect=<vector number>)] <function name>

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-65
REJ05B0464-0300

(2) Specifying with an option

Dialog menu: C/C++ Tab Category: [Optimize] Function call: @@vec:7

Command line : indirect=Extended

[The address ranges of the extended indirect memory addressing]

 H8SX Normal Mode: the Area from 0x0100 to 0x01FF
 H8SX Other Modes: the Area from 0x0200 to 0x03FF

Example

To call the function func in the extended indirect memory format:

When vector number is not specified by vect, the function address are stored in the section “$EXINDIRECT” as the
address table.

When vector number is specified, the section “$VECT***” as the address table is stored. In linkage, the Optimizing
Linkage Editor allocates the secttion to the corresponding address automatically.

(C/C++ program)

 Specifying in the key word

(Compiled result of assembly expansion code)

 Not specified Specified

__indirect_ex void func(int, int);
extern int a,b,c;
int d;
void main(void)
{
 b=0;
 func(a,b);
 func(b,c);
 func(c,a);
 d=c;
}

 specifies __indirect_ex

_main:
 STM.L (ER2-ER3),@-SP
 SUB.W E0,E0
 MOV.W E0,@_b:32
 MOV.L #_func,ER2
 MOV.W @_a:32,R0
 JSR @ER2
 MOV.W @_b:32,R0
 MOV.L #_c,ER3
 MOV.W @ER3,E0
 JSR @ER2
 MOV.W @_a:32,E0
 MOV.W @ER3,R0
 JSR @ER2
 MOV.W @ER3,@_d:32
 RTS/L (ER2-ER3)

_main:
 PUSH.L ER2
 SUB.W E0,E0
 MOV.W E0,@_b:32
 MOV.W @_a:32,R0
 JSR @@$$func:7
 MOV.W @_b:32,R0
 MOV.L #_c,ER2
 MOV.W @ER2,E0
 JSR @@$$func:7
 MOV.W @_a:32,E0
 MOV.W @ER2,R0
 JSR @@$$func:7
 MOV.W @ER2,@_d:32
 RTS/L ER2

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-66
REJ05B0464-0300

Object Size Comparison [byte]

H8SX

CPU Type MAX ADV NML

Not specified 82 76 58

Specified 74 74 54

Execution Speed Comparison [cycle]

H8SX

CPU Type MAX ADV NML

Not specified 61 58 55

Specified 62 62 56

Remarks and Notes

When vector number is not specified, the $EXINDIRECT section should be allocated to the memory area where can be
accessed in the extended indirect memory format at linkage.

The extended indirect memory area is output to the "$EXINDIRECT" section. The section name can be modified using the
#pragma indirect section statement.

5.4.15 Specifying 2byte pointer

Size O Speed O

Description

When frequently-used variables are allocated to the 16-bit absolute address area, size efficiency and execution speed are
both improved. ABS16 option, which is specified by the ABS16 option or the #pragma abs16, allocates data to the 16-bit
absolute address area.

This 2byte pointer option assumes the size of a pointer to data as two bytes.

There are the following two ways to specify this function:

(1) Specifying with an expansion function

[Format]

<type specifier> __ptr16 * <variable>

(2) Specifying with an option

Dialog menu: C/C++ Tab Category: [Optimize] 2byte pointer

Command line : ptr16

If this option is not specified, the size of the pointer indicating data is four bytes. If this option is specified and the data
section is explicitly located in the 16-bit absolute address area, the size of the pointer indicating data is set to two bytes.

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-67
REJ05B0464-0300

Example

To refer the variable b by the two bytes pointer:

(C/C++ program)

 Specifying in key word

(Compiled result of assembly expansion code)

 Not specified Specified

Object Size Comparison [byte]

H8SX

CPU Type MAX ADV NML

Not specified 36 36 24

Specified 34 34 24

Execution Speed Comparison [cycle]

H8SX

CPU Type MAX ADV NML

Not specified 23 19 16

Specified 22 18 16

Remarks and Notes

This keyword is valid only with H8SX advanced mode and H8SX maximum mode.

This keyword must be specified before an indirection operator "*".

__abs16 int a;
int __ptr16 *b;
int c;
void func(void);
void func(void)
{
 b = (int __ptr16 *)&a;

*b = 10;
c = *b;

}

specifies __abs16

specifies __ptr16

_func

 MOV.L #_a:32,@_b:16

 MOV.L @_b:16,ER0

 MOV.W #10:8,@ER0

 MOV.L @_b:16,ER0

 MOV.W @ER0,@_c:16

 RTS

_func:
 MOV.L #_a,ER1

 MOV.W R1,@_b:16

 MOV.W R1,R0

 EXTS.L ER0

 MOV.W #10:8,@ER0

 MOV.W @_b:16,R0

 EXTS.L ER0

 MOV.W @ER0,@_c:16

 RTS

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-68
REJ05B0464-0300

5.4.16 Boundary alignment value and boundary alignment

Size O Speed O

Description

The align option relocates variables so as to reduce space by boundary alignment.

The align=4 option divides a data section into a 4-byte boundary alignment section, a 2-byte boundary alignment section
and a 1-byte boundary alignment section.
 (align=4 is valid only with H8SX)

So size efficiency and execution speed are improved.*

Specification methods

Dialog menu: C/C++ Tab Category: [Object] Group by alignment

Command line : ALign [=4] (Default is ALign)
NOALign

Example

The explanations of data allocation order are as follows. They differ according to the option specification.

(C/C++ program)

char a;
short b;
char c;
long d;
#pragma section _v
short e;
long f;
#pragma section

void func(void)
{
 a = 127;
 b = 0x7fff;
 c = 30;
 d = 0x7fffffff;
 e = 0x1000;
 f = 0x1ffff;
}

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-69
REJ05B0464-0300

(1) noalign specified

Data is located in the order of declaration to section B and section B_v.

As follows, 2-byte-aligned data is always located at an even address, thus generating an empty area being unused after
odd-size data.

(2) align specified

In order to minimize the empty area, 2-byte aligned data(short, long, float) is allocated before 1-byte aligned data to
section B and section B_v.

Thus no empty area is generated as follows.

(3) align=4 specified

Data are categorized into the following 3 groups:

(a) data whose size is a multiple of 4

(b) data whose size is odd

(c) the others (data whose size is even but is not a multiple of 4)

And the section name is changed as follows, respectively.

(a) "$4" is appended after the original section name

(b) "$1" is appended after the original section name

(c) the section name is unchanged

Section B

Empty areaa

b

c

d

2 bytes

Empty area

e

f

2 bytes

Section B_v

a

b

c

d

2 bytes

Section B

e

f

2 bytes

Section B_v

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-70
REJ05B0464-0300

When the CPU type is H8SX, the speed of access to a 4-byte data aligned on a 4-byte boundary address is improved.*

Section address allocation at align=4

To locate the 1-byte or 4-byte data section at specific addresses with align=4 specified, each section needs to be explicitly
specified with the start option of the optimizing linkage editor.

In HEW, Dialog menu: Link/Library Tab Category: [Section] is used.

Example

Allocate the section with $4 to a multiple of 4 addres.

Allocate the section with $1 in order to minimize the empty area.

Object Size Comparison [byte] (RAM size)

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 16 16 16 16 24

Specified 14 14 14 14 22

H8SX

CPU Type MAX ADV NML

Not specified 16 16 16

Specified 14 14 14

a

b

c

2 bytes

e

2 bytes

d

Section B$4 Section B_v$4

f

Section B Section B_v

Section B$1

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-71
REJ05B0464-0300

Execution Speed Comparison [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Not specified 45 38 90 76 156

Specified 45 38 90 76 156

H8SX

CPU Type MAX ADV NML

Not specified 28 28 24

Specified 27 26 23

Remarks and Notes

This option align=4 is valid only with H8SX

Note: * Execution speed is improved only with H8SX.
Generally 4 bytes data is accessed by two accesses of word instruction. When a 4-byte data is aligned on a 4-
byte boundary with align=4 and bus width is 32-bits, H8SX can access a 4-bytes data by one access.
In 16-bits bus width, data is accessed by two accesses of word instruction. Thus the execution speed is not
improved.

5.4.17 Explanation of Inter-Module Optimization Items

The inter-module optimizer supports the following optimization functions:

Description Dialog Menu Subcommand Referenced Section

Unifies constants/strings Unify strings String_Unify 5.4.17(1)

Deletes unreferenced variables/functions Eliminate dead code Symbol_delete 5.4.17(2)

Optimizes access to variables Use short addressing Variable_access 5.4.17(3)

Optimizes access to functions Use indirect call/jump Funcation_call 5.4.17(4)

Optimizes register save/restore codes Reallocate registers Register 5.4.17(5)

Unifies instruction codes Eliminate same code Same_code 5.4.17(6)

Optimizes branch instructions Optimize branches Branch 5.4.17(7)

The following describes each optimization function.

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-72
REJ05B0464-0300

(1) Unification of Constants/Strings

The same value constants and the same strings having the const attribute are unified across the modules. The following
shows an example:

 <C source> <compiler output codes> <After inter-module optimization>

 file1.c

 file2.c

(2) Deletion of Unreferenced Variables/Functions

Variables/functions which are not referenced are deleted with this specification. When specifying this optimization,
confirm to specify an entry function. Without an entry function, this optimization is not performed.

The following shows an example:

 <C source> <compiler output codes> <After inter-module optimization>

void f1()
{
printf("ABC");
}

void f2()
{
printf("ABC");
}

_f1:
 MOV.L #L1:32,ER0
 :
 .SECTION C,DATA
L1:
 .SDATAZ "ABC"
 :

_f2:
 MOV.L #L2:32,ER0
 :
 .SECTION C,DATA
L2:
 .SDATAZ "ABC"
 :

_f1:
 MOV.L #L1:32,ER0
 :
 .SECTION C,DATA
L1:
 .SDATAZ "ABC"
 :

_f2:
 MOV.L #L1:32,ER0
 :
 .SECTION C,DATA

DELETE
Deletes

Changes labels

extern long a,b,c;

void f()

{a=1;}

extern long a,b,c;

void g()

{b=1;}

long a,b,c;

 :

 .SECTION B,DATA

_a: .RES.L 1

_b: .RES.L 1

_c: .RES.L 1

 :

 .SECTION B,DATA

_a: .RES.L 1

_b: .RES.L 1

DELETE

Variable “c” assumed to
be unreferenced

Deletes variable “c”

file2.c

file1.c

file3.c

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-73
REJ05B0464-0300

(3) Optimization of Access to Variables

If an area accessible in the 8- or 16-bit absolute addressing mode has space, frequently accessed variables are allocated,
the optimization of the access codes for the variables are allocated, and the access codes of the variable are optimized by
this specification.

 <C source> <compiler output codes> <After inter-module optimization>

(4) Optimization of Access to Functions

If the memory range from 0 to 0xFF has space, the optimization of assigning addresses of functions frequently accessed is
performed.

 <C source> <compiler output codes> <After inter-module optimization>

char val;
void f()
{
 val=10;
}

_f:

 MOV.B #10,R0L

 MOV.B R0L,@_val:8

0xffffff00

0xffffffff

val

_f:

 MOV.B #10,R0L

 MOV.B R0L,@_val:32

0xffffff00

0xffffffff

val

8-bit absolute
address space

Optimizes access

code for variable val

6 bytes, 4 states 2 bytes, 2states

Assumes that
external variable
“val” is frequently
accessed

Moves variable val to 8-

bit address space

void main()
{
 f();
 g();
}

_main:
 JSR @_f:24
 JMP @_g:24

_main:
 JSR @@$f:8
 JMP @_g:24

0x00

0xFF

address of “f” Indirect
memory
access space

Assigns address of
function f to indirect
memory address
space

Optimizes calling
code for function f

4 bytes, 5states 2 bytes, 6states

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-74
REJ05B0464-0300

(5) Reallocation of Registers

The relationships between function calls are analyzed and redundant register save/restore codes are deleted with this
specification. In addition, depending on the register state before and after the function call, the register numbers to be used
are modified.

 <C source> <compiler output codes> <After inter-module optimization>

(6) Unification of Common Code

Multiple strings representing the same instruction are unified into a subroutine and the code size is reduced with this
specification.

 <C source> <compiler output codes> <After inter-module optimization>

Changes
ER6 to ER3
and deletes
save/restor
e code.

void f1()
{
 :
 sub();
 :
}

void f2()
{
 :
 sub();
 :
}

long a,b;
void sub()
{
 a+=b;
}

_sub:
 PUSH.L ER6
 PUSH.L ER5

 MOV.L @_a,ER6
 MOV.L @_b,ER5
 ADD.L ER5,ER6
 MOV.L ER6,@_a

 POP.L ER5
 POP.L ER6
 RTS

_sub:

 MOV.L @_a,ER3
 MOV.L @_b,ER5
 ADD.L ER5,ER3
 MOV.L ER3,@_a

 RTS

DELEETE

DELETE

Uses ER6 before
and after function
sub is called.

Uses ER4 before
and after function
sub is called.

file2.c

file3.c

file1.c

extern int a,b,c;
void f1()
{
 :
 a=b+c;
 :
}

extern int a,b,c;
void f1()
{
 :
 a=b+c;
 :
}

_f1:
 :
 MOV.W @_b:32,R0
 MOV.W @_c:32,R1
 ADD.W R1,R0
 MOV.W R0,@_a:32
 :

_f2:
 :
 MOV.W @_b:32,R0
 MOV.W @_c:32,R1
 ADD.W R1,R0
 MOV.W R0,@_a:32
 RTS
 :

_f1:
 :
 JSR @LL
 :

_f2:
 :
 JSR @LL
 :

LL:
 :
 MOV.W @_b:32,R0
 MOV.W @_c:32,R1
 ADD.W R1,R0
MOV.W R0,@_a:32
RTS
 :

S
am

efile2.c

file1.c

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-75
REJ05B0464-0300

(7) Optimization of Branch Instructions

Based on the program allocation information, the branch instruction size is optimized. If any other optimization item is
executed, this optimization is always performed regardless of whether it is specified or not.

 <C source> <compiler output codes> <After inter-module optimization>

5.4.18 Disable of Inter-Module Optimization

The inter-module optimizer supports functions to disable a specific optimization function.

When this function is used for a program in which a specific optimization item should be disabled, detailed specification
can be provided and then the disable of optimization is performed concisely.

The inter-module optimizer supports the following functions to disable optimization items:

Optimization-Disabled Item Unit to Specify Dialog Menu Subcommand

Disables deletion of unreferenced
symbols

Symbol name Elimination of dead code symbol_forbid

Disables elimination of same codes Function Name Elimination of same code samecode_forbid

Disables allocation of short absolute
address areas

Variable name Use of short addressing to variable_forbid

Disables indirect address calls Function name Use of indirect call/jump to function_forbid

Disables register reallocations Address[+size] Memory allocation absolute_forbid

extern int a;
void f1()
{
 f2();
 a=0;
}

int a;
void f2()
{
 a=1;
}

_f1:
 JSR @_f2:24
 SUB.W R0,R0
 MOV.W R0,@_a:32
 RTS

_f2:
 :

_f1:
 BSR _f2:8
 SUB.W R0,R0
 MOV.W R0,@_a:32
 RTS

_f2:
 :

8-bit width line
displacement

file2.c

file1.c

Section 5 Using the Optimization Functions

Rev.3.00 2005.09.12 5-76
REJ05B0464-0300

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-1
REJ05B0464-0300

Section 6 Efficient Programming Techniques

In addition to the optimization performed by the H8S and H8/300 C/C++ compiler, the performance of a program can
further be improved by efficient programming techniques.

This section describes methods that the user might consider to create efficient programs.

(i) Rules for reducing program size

To reduce the program size, similar processing tasks should be commonly used and complex functions should be
reviewed for potential improvement.

(ii) Rules for improving execution speed

The execution speed is largely a function of frequently executed statements and complex statements. The user should
review the processing of these statements so that he or she can improve the program by focusing on critical points.

Because of compiler's optimization function, the actual execution speed may differ from the performance level determined
on a priori basis. Improvements in performance should be pursued by employing a variety of techniques and by verifying
the actual performance using the compiler.

In this section, the assembly language expansion code is supplied by assuming that the type of CPU used is the H8S/2600
Series running in the advanced mode. The assembly language expansion code provided in this section is subject to change
as the compiler undergoes further improvements in its design.

The performance is measured under the following conditions.

[Cross Tools for Measurement]

 H8S,H8/300 C/C++ Library Generator (Ver. 2.01.00.001)

 H8S,H8/300 C/C++ Compiler (Ver. 6.01.00.009)

 H8S,H8/300 Assembler (Ver. 6.01.01.000)

 Optimizing Linkage Editor (Ver. 9.00.02.000)

[Option Specification]

 Default options are used, when option specification methods are not described in each section.

[Measurement Conditions]

Conditions H8/300, H8/300H H8S/2600,H8S/2000 H8SX

Bus Width 16 16 32

Access State to Memory 2 1 1

Fetch Size - - 32

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-2
REJ05B0464-0300

Following is a list of efficient programming techniques:

No. Type Item Size Speed Referenced Section

1 Type Using 1-byte data types (char/unsigned char) O O 6.1.1

2 declarations Using unsigned variables O O 6.1.2

3 Suppressing redundant type conversions O O 6.1.3

4 Using the const qualifier O O 6.1.4

5 Using consistent variable sizes O O 6.1.5

6 Specifying in-file functions as statics O − 6.1.6

7 Operations Unifying common expressions O O 6.2.1

8 Improving the condition determination O O 6.2.2

9 Condition determination using substitution values O ∆ 6.2.3

10 Using a suitable algorithm O O 6.2.4

11 Using formulas O O 6.2.5

12 Using local variables O O 6.2.6

13 Assigning an “f” to float-type constants O O 6.2.7

14 Specifying constants in shift operations O O 6.2.8

15 Using shift operations O O 6.2.9

16 Unifying consecutive ADD instructions O O 6.2.10

17 Selecting a Loop counter O O 6.3.1

18

Loop
processing Selecting a repeat control statement O O 6.3.2

19 Moving invariant expression from the inside to
the outside of a loop

O O 6.3.3

20 Merging loop conditions O O 6.3.4

21 Pointers Using pointer variables O O 6.4.1

22 Data structures Ensuring data compatibility O − 6.5.1

23 Techniques for data initialization O O 6.5.2

24 Unifying the initialization of array elements O O 6.5.3

25 Passing parameters as a structure address O O 6.5.4

26 Assigning structures to registers O O 6.5.5

27 Functions Improving the program location in which
functions are defined

− O 6.6.1

28 Macro calls O O 6.6.2

29 Declaring a prototype − − 6.6.3

30 Optimization of tail recursions O O 6.6.4

31 Improving the way parameters are passed O O 6.6.5

32 Branches Rewriting switch statements as tables O O 6.7.1

33 Coding a program in which case statements
jump to the same label

O O 6.7.2

34 Branching to a function coded directly below a
given statement

O O 6.7.3

Legend:

 O: Higher efficiency ∆: No change X: Lower efficiency −: Not applicable

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-3
REJ05B0464-0300

6.1 Type Declarations

6.1.1 Using Byte Data Types (char/unsigned char)

Size O Speed O Stack size ∆

Important Points

For improvements in ROM efficiency and execution speed, data that can be represented in 1-byte size should be declared
as a char/unsigned char type.

Description

The H8S and H8/300 Series CPU provides an instruction set that can efficiently operate on byte-size data.

Therefore, both ROM efficiency and execution speed can be improved by declaring any byte-sized data as a char/unsigned
char type before the data are used.

Example

Determine the logical product between the variable a and the constant 0x80, and store the result in the variable a.

(C language program before optimization)

int a;
void func(void)
{
 a&=0x80;
}

(C language program after optimization)

char a;
void func(void)
{
 a&=0x80;
}

(Expanded into assembly language code; before
optimization)

_func:
 MOV.L #_a,ER0
 MOV.W @ER0,R1
 AND.W #128,R1
 MOV.W R1,@ER0
 RTS
_a:
 .RES.W 1

(Expanded into assembly language code; after
optimization)

_func:
 MOV.L #_a,ER0
 MOV.B @ER0,R1L
 AND.B #-128,R1L
 MOV.B R1L,@ER0
 RTS
_a:
 .RES.B 1

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-4
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 18 14 16 14 14

After 16 12 14 12 12

H8SX

CPU Type MAX ADV NML

Before 12 12 10

After 10 10 8

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 15 12 28 24 24

After 14 11 26 22 22

H8SX

CPU Type MAX ADV NML

Before 11 11 10

After 9 9 9

6.1.2 Using Unsigned Variables

Size O Speed O Stack size ∆

Important Points

For improvements in both object efficiency and execution speed, any variable whose value is always positive should be
declared as unsigned.

Description

When expanding a given data item into a larger data type, the compiler performs a sign expansion if the data item is signed
data; if it is unsigned data, the compiler performs a zero expansion. Because the H8/300 series CPU does not have a data
expansion instruction, for handling signed data the CPU requires a sign-determination object. For this reason, both ROM
efficiency and execution speed can be improved by qualifying any variable whose value is always positive as an unsigned
variable.

Notice that because the H8S and H8/300H CPUs are provided with a data expansion instruction, declaring a positive-value
variable as an unsigned variable will have no effect on the performance of these CPUs.

Example

Expand the variable a into the int type; set the result to the variable b.

Following are the results of compiling the program on a 300 CPU:

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-5
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 16 12 16 12 14

After 16 12 16 12 12

H8SX

CPU Type MAX ADV NML

Before 16 16 12

After 16 16 12

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 14 11 28 22 24

After 14 11 28 22 22

H8SX

CPU Type MAX ADV NML

Before 11 11 10

After 11 11 10

(C language program after optimization)

unsigned char a;
int b;
void func(void)
{
 b=a;
}

(C language program before optimization)

char a;
int b;
void func(void)
{
 b=a;
}

(Expanded into assembly language code; after
optimization)

_func:
 MOV.B @_a:16,R0L
 SUB.B R0H,R0H
 MOV.W R0,@_b:16
 RTS

(Expanded into assembly language code;
before optimization)

_func:
 MOV.B @_a:16,R0L
 BLD.B #7,R0L
 SUBX.B R0H,R0H
 MOV.W R0,@_b:16
 RTS

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-6
REJ05B0464-0300

6.1.3 Suppressing Redundant Type Conversions

Size O Speed O Stack size ∆

Important Points

Both ROM efficiency and execution speed can be improved by ensuring that operations are performed between data items
of the same size.

Description

Operations performed between data items of different sizes generate superfluous sign expansion instructions and zero
expansion instructions, which causes a conversion of the smaller data type to the larger data type. Both ROM efficiency
and execution speed can be improved by ensuring that the data items are of the same size.

Example

Add the variables a and b; set the results to the variable c.

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 24 18 24 18 18

After 22 16 22 16 16

H8SX

CPU Type MAX ADV NML

Before 24 24 18

After 22 22 16

(Expanded into assembly language code;
before optimization)

_func:
 MOV.B @_a:32,R0L
 EXTU.W R0
 MOV.W @_b:32,E0
 ADD.W E0,R0
 MOV.W R0,@_c:32
 RTS
_a:
 .RES.B 1
_b:
 .RES.W 1
_c:
 .RES.W 1

(C language program before optimization)

unsigned char a;
 int b,c;
void func(void)
{
 c=a+b;
}

(Expanded into assembly language code;
after optimization)

_func:
 MOV.W @_a:32,R0
 MOV.W @_b:32,E0
 ADD.W E0,R0
 MOV.W R0,@_c:32
 RTS

_a:
 .RES.W 1
_b:
 .RES.W 1
_c:
 .RES.W 1

(C language program after optimization)

int a,b,c;

void func(void)
{
 c=a+b;
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-7
REJ05B0464-0300

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 19 15 38 30 30

After 18 14 36 28 28

H8SX

CPU Type MAX ADV NML

Before 13 13 12

After 13 13 12

6.1.4 Using the const Qualifier

Size O Speed O Stack size -

Important Points

Initialization data whose value remains unchanged should be const-qualified to save the RAM area.

Description

Data items that are initialized are often subject to change in values. These data items are allocated on the ROM during
linking and copied into the RAM at the start of program execution, which causes them to be allocated in both ROM and
RAM areas. Data items whose values remain unchanged throughout program execution can be const-qualified so that they
are allocated only in a ROM area.

Example

Allocate 5 bytes of initialization data.

Remarks and Notes

The program, before optimization, requires the allocation of a data area of the size listed in the object size table in the
RAM in addition to the ROM.

In the case of character string data, its output destination can be specified in an option.

(C language program before optimization)

unsigned char a[5]=
 {1, 2, 3, 4, 5};

(C language program after optimization)

const unsigned char a[5]=
 {1, 2, 3, 4, 5};

(Expanded into assembly language code; before
optimization)

 .SECTION D,DATA,ALIGN=2
_a:
 .DATA.B H'01,H'02,H'03,H'04,H'05

(Expanded into assembly language code; after
optimization)

 .SECTION C,DATA,ALIGN=2
_a:
 .DATA.B H'01,H'02,H'03,H'04,H'05

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-8
REJ05B0464-0300

[Specification method]

Dialog menu: C/C++Tab Category: [Object] Store string data in: Const section | Data section

Command option: string=const | data

The default is data output to the Const section.

6.1.5 Using Consistent Variable Sizes

Size O Speed O Stack size ∆

Important Points

When making comparisons in a loop statement, use a uniform variable size to eliminate the need for expansion code and to
reduce the resulting code size.

Description

When comparing one data item with another, the compiler first makes sure that these data items are of the same size. By
coding the program in such a way that these data items are of the same size, the user can eliminate the need for expansion
code and improve the speed.

Example

Call the function func1 by looping.

(Expanded into assembly language code; before
optimization)

_sub:
 PUSH.L ER6
 SUB.W R6,R6
L6:
 EXTS.L ER6
 MOV.B @(_tb:32,ER6),R0L
 JSR @_func1:24
 INC.W #1,R6
 EXTS.L ER6
 CMP.L #2,ER6
 BLT L6:8
 POP.L ER6
 RTS

(Expanded into assembly language code; after
optimization)

_sub:
 PUSH.L ER6
 SUB.W R6,R6
L6:
 EXTU.L ER6
 MOV.B @(_tb:32,ER6),R0L
 JSR @_func1:24
 INC.W #1,R6

 CMP.W #2,R6
 BLO L6:8
 POP.L ER6
 RTS

(C language program before optimization)

extern char tb[5];
void sub(void)
{
 int i;
 for (i=0; i<2L; i++)
 func1(tb[i]);
}

(C language program after optimization)

extern char tb[5];
void sub(void)
{
 unsigned int i;
 for (i=0; i<2L; i++)
 func1(tb[i]);
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-9
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 34 30 40 34 50

After 34 28 36 26 28

H8SX

CPU Type MAX ADV NML

Before 32 30 26

After 32 30 24

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 59 50 124 102 378

After 59 49 116 86 90

H8SX

CPU Type MAX ADV NML

Before 43 43 41

After 43 43 37

6.1.6 Specifying In-File Functions as static Functions

Size O Speed O Stack size O

Important Points

Functions that are used only within a file should be static specified.

Description

Functions that are static specified are deleted if they are not called by an external function. When specified for inline
expansion, such functions are also deleted, which improves size efficiency.

Example

Specify a function for inline expansion.

Call the function func from the function main.

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-10
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 36 28 34 28 28

After 18 14 18 14 14

H8SX

CPU Type MAX ADV NML

Before 26 26 20

After 14 14 10

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 15 12 30 24 24

After 15 12 30 24 24

H8SX

CPU Type MAX ADV NML

Before 10 10 8

After 10 10 8

(C language program before optimization)

#pragma inline func
int a,b;
void func()
{
 a+=10;
}
void main()
{
 a=1;
 func();
 b=a;
}

(C language program after optimization)

#pragma inline func
int a,b;
static void func()
{
 a+=10;
}
void main()
{
 a=1;
 func();
 b=a;
}

(Expanded into assembly language code;
before optimization)

_func:
 MOV.L #_a,ER0
 MOV.W @ER0,R1
 ADD.W #10,R1
 MOV.W R1,@ER0
 RTS
_main:
 MOV.W #11,R0
 MOV.W R0,@_a:32
 MOV.W R0,@_b:32
 RTS

(Expanded into assembly language code; after
optimization)

_main:
 MOV.W #11,R0
 MOV.W R0,@_a:32
 MOV.W R0,@_b:32
 RTS

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-11
REJ05B0464-0300

6.2 Operations

6.2.1 Unifying Common Expressions

Size O Speed O Stack size O

Important Points

Both ROM efficiency and execution speed can be improved by unifying common components in multiple arithmetic
expressions.

Description

If common expressions occur in multiple expressions, the results of the operation on the first expression should be used in
the second and subsequent expressions, which reduces the number of arithmetic operations performed. This improves both
ROM efficiency and execution speed.

If a common expression occurs three or more times in a local variable, the compiler performs optimization.

Example

Add the variables x, y, and z; store the results in the variable a. Similarly, add variables x, y, and w; store the results in the
variable b.

(Expanded into assembly language code;
before optimization)

_func:
 MOV.B @_x:32,R1L
 MOV.B @_y:32,R0H
 ADD.B R1L,R0H
 MOV.B R0H,R1H
 MOV.B @_z:32,R0L
 ADD.B R0L,R0H
 MOV.B R0H,@_a:32
 MOV.B @_w:32,R0L
 ADD.B R0L,R1H
 MOV.B R1H,@_b:32
 RTS

(C language program before optimization)

unsigned char a,b,w,x,y,z;
void func(void)
{
 a=x+y+z;
 b=x+y+w;
}

(Expanded into assembly language code;
after optimization)

_func:
 MOV.B @_x:32,R0H
 MOV.B @_y:32,R0L
 ADD.B R0L,R0H
 MOV.B @_z:32,R0L
 ADD.B R0H,R0L
 MOV.B R0L,@_a:32
 MOV.B @_w:32,R0L
 ADD.B R0L,R0H
 MOV.B R0H,@_b:32
 RTS

(C language program after optimization)

unsigned char a,b,w,x,y,z;
void func(void)
{
 unsigned char tmp;
 tmp=x+y;
 a=tmp+z;
 b=tmp+w;
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-12
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 44 32 46 34 34

After 46 34 44 32 32

H8SX

CPU Type MAX ADV NML

Before 44 44 32

After 46 46 34

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 32 25 66 52 52

After 33 26 64 50 50

H8SX

CPU Type MAX ADV NML

Before 21 21 19

After 22 22 19

Remarks and Notes

Although the compiler performs the optimization by unifying the common expressions for local variables, it does not
perform that for external variables.

6.2.2 Improving the Condition Determination

Size O Speed O Stack size ∆

Important Points

ROM efficiency can be improved by evaluating similar condition expressions in one operation.

Description

Similar condition expressions should be evaluated in on operation to reduce the number of times condition determination
and condition expressions are evaluated. This improves both ROM efficiency and execution speed.

Example

Determine the logical product of variables a and b; return the results to the calling function.

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-13
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 26 22 30 24 24

After 26 22 26 20 20

H8SX

CPU Type MAX ADV NML

Before 26 26 22

After 26 26 22

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 18 15 42 36 36

After 18 15 36 30 30

H8SX

CPU Type MAX ADV NML

Before 15 15 14

After 15 15 14

Remarks and Notes

The execution speed is measured by assuming that a=1 and b=1.

(Expanded into assembly language code; before
optimization)

_func:
 MOV.B @_a:32,R0H
 BNE L6:8
 SUB.B R0L,R0L
 RTS
L6: MOV.B R0H,R0H
 BEQ L7:8
 MOV.B @_b:32,R0L
 BEQ L8:8
L7: MOV.B #1,R0L
L8: RTS

(C language program before optimization)

unsigned char a,b;
unsigned char func(void)
{
 if (!a) return(0);
 if (a&&!b) return(0);
 return(1);
}

(Expanded into assembly language code; after
optimization)

_func:
 MOV.B @_a:32,R0L
 BEQ L5:8
 MOV.B @_b:32,R0L
 BEQ L5:8
 MOV.B #1,R0L
 RTS
L5: SUB.B R0L,R0L
 RTS

(C language program after optimization)

unsigned char a,b;
unsigned char func(void)
{
 if (a&&b) return(1);
 else return(0);
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-14
REJ05B0464-0300

6.2.3 Condition Determination Using Substitution Values

Size O Speed O Stack size ∆

Important Points

When a substitution value is used in a condition expression for a determination statement, ROM efficiency can be
improved by treating the assignment statement as a condition determination statement.

Description

The code size can be significantly reduced by performing the determination and substitution of a condition expression
simultaneously.

Example

Copy character string s.

(Expanded into assembly language code; before
optimization)

_func:
 STM.L (ER4-ER5),@-SP
 MOV.L #_s,ER5
 MOV.L #_d,ER4
 BRA L7:8
L6: MOV.B @ER0+,R1L
 MOV.L ER0,@ER5
 MOV.L @ER4,ER0
 MOV.B R1L,@ER0
 MOV.L @ER4,ER0
 INC.L #1,ER0
 MOV.L ER0,@ER4
L7: MOV.L @ER5,ER0
 MOV.B @ER0,R1L
 BNE L6:8
 MOV.B @ER0+,R1L
 MOV.L ER0,@ER5
 MOV.L @ER4,ER0
 MOV.B R1L,@ER0
 MOV.L @ER4,ER0
 INC.L #1,ER0
 MOV.L ER0,@ER4
 LDM.L @SP+,(ER4-ER5)
 RTS

(C language program before optimization)

char *s,*d;
void func(void)
{
 while(*s){
 *d++ = *s++;
 }
 *d++ = *s++;
}

(Expanded into assembly language code; after
optimization)

_func:
 STM.L (ER4-ER5),@-SP
 MOV.L #_s,ER5
 MOV.L #_d,ER4
L5: MOV.L @ER5,ER0
 MOV.B @ER0+,R1L
 MOV.L ER0,@ER5
 MOV.L @ER4,ER0
 INC.L #1,ER0
 MOV.L ER0,@ER4
 MOV.B R1L,@-ER0
 BNE L5:8
 LDM.L @SP+,(ER4-ER5)
 RTS

(C language program after optimization)

char *s,*d;
void func(void)
{
 while(*d++ = *s++);
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-15
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 80 62 74 54 54

After 52 32 44 36 34

H8SX

CPU Type MAX ADV NML

Before 70 70 56

After 52 52 32

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 59 48 232 84 84

After 45 26 218 74 74

H8SX

CPU Type MAX ADV NML

Before 37 43 31

After 26 27 20

6.2.4 Using a Suitable Algorithm

Size O Speed O Stack size ∆

Important Points

Both ROM efficiency and execution speed can be improved by using mathematical techniques.

Description

If an arithmetic expression contains common terms, those terms should be factored out to reduce the number of arithmetic
operations performed. This improves both ROM efficiency and execution speed.

Example

Solve a third-order equation.

(C language program before optimization)

unsigned char a,b,c,d,x,y;
void func(void)
{
 y=a*x*x*x+b*x*x+c*x+d;
}

(C language program after optimization)

unsigned char a,b,c,d,x,y;
void func(void)
{
 y=x*(x*(a*x+b)+c)+d;
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-16
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 64 52 62 50 50

After 56 44 50 38 38

H8SX

CPU Type MAX ADV NML

Before 64 64 52

After 58 58 46

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 56 49 150 136 136

After 48 41 106 92 92

H8SX

CPU Type MAX ADV NML

Before 33 29 26

After 27 27 24

(Expanded into assembly language code; before
optimization)

_func:
 PUSH.W R6
 MOV.B @_x:32,R6L
 MOV.B R6L,R0L
 MULXU.B R6L,R0
 MOV.B R0L,R6H
 MULXU.B R6L,R0
 MOV.B @_a:32,R0H
 MULXU.B R0H,R0
 MOV.B @_b:32,R1L
 MULXU.B R6H,R1
 ADD.B R1L,R0L
 MOV.B @_c:32,R1L
 MULXU.B R6L,R1
 ADD.B R1L,R0L
 MOV.B @_d:32,R0H
 ADD.B R0H,R0L
 MOV.B R0L,@_y:32
 POP.W R6
 RTS

(Expanded into assembly language code; after
optimization)

_func:
 MOV.B @_x:32,R1L
 MOV.B @_a:32,R0L
 MULXU.B R1L,R0
 MOV.B @_b:32,R0H
 ADD.B R0H,R0L
 MULXU.B R1L,R0
 MOV.B @_c:32,R0H
 ADD.B R0H,R0L
 MULXU.B R1L,R0
 MOV.B @_d:32,R0H
 ADD.B R0H,R0L
 MOV.B R0L,@_y:32
 RTS

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-17
REJ05B0464-0300

6.2.5 Using Formulas

Size O Speed O Stack size ∆

Important Points

If an appropriate mathematical formula exists for a given arithmetic expression, both ROM efficiency and execution speed
can be improved by using the formula.

Description

Use a mathematical formula to reduce the number of arithmetic operations required in an algorithm-oriented coding
technique. This improves both ROM efficiency and execution speed.

Example

Calculate the sum of 1 through 100.

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 38 32 38 34 38

After 24 20 24 20 30

H8SX

CPU Type MAX ADV NML

Before 36 36 30

After 24 24 20

(Expanded into assembly language code;
before optimization)

_func:
 MOV.L #_s:32,ER1
 SUB.W R0,R0
 MOV.W R0,@ER1
 MOV.W #1:16,E0
 BRA L7:8
L6: MOV.W @ER1,R0
 INC.W #1,R0
 MOV.W R0,@ER1
 INC.W #1,E0
L7: MOV.W @_n:32,R0
 CMP.W R0,E0
 BLS L6:8
 RTS

(C language program before optimization)

unsigned int s;
unsigned int n=100;
void func(void)
{
 unsigned int i;
 for (s=0,i=1;i<=n;i++)
 s+=i;
}

(Expanded into assembly language code; after
optimization)

_func:
 MOV.W @_n:32,R1
 MOV.W R1,R0
 INC.W #1,R0
 MULXU.W R1,ER0
 SHLR.W R0
 MOV.W R0,@_s:32
 RTS

(C language program after optimization)

unsigned int s;
unsigned int n=100;
void func(void)
{
 s=n*(n+1)>>1;
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-18
REJ05B0464-0300

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 1322 1118 2644 2438 2450

After 20 17 54 48 144

H8SX

CPU Type MAX ADV NML

Before 916 916 815

After 14 14 13

6.2.6 Using Local Variables

Size O Speed O Stack size O

Important Points

In the case of temporary variables, loop counters, and so forth that can be used as local variables, both ROM efficiency
and execution speed can be improved by declaring them as local variables.

Similarly, efficiency can be improved by assigning external variables that are common to multiple arithmetic expressions
into local variables before operations are performed upon them.

Description

Because most local variables are assigned to registers, unlike external variables, the use of local variables can generate an
object that does not contain data transfers between memory and registers.

In the case of variables that do not change values due to a function interrupt and other causes, those variables should be
assigned to local variables before arithmetic operations are performed on them. This also improves both ROM efficiency
and execution speed for the reasons stated above.

Example

Add the variable a to variables b, c, and d; store the results in the variables b, c, and d.

(C language program before optimization)

unsigned char a,b,c,d;
void func(void)
{
 b+=a;
 c+=a;
 d+=a;
}

(C language program after optimization)

unsigned char a,b,c,d;
void func(void)
{
 unsigned char wk;
 wk=a;
 b+=wk;
 c+=wk;
 d+=wk;
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-19
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 50 36 60 50 50

After 50 36 48 40 40

H8SX

CPU Type MAX ADV NML

Before 32 32 24

After 32 32 24

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 36 28 156 64 64

After 36 28 56 48 48

H8SX

CPU Type MAX ADV NML

Before 20 20 18

After 20 20 18

(Expanded into assembly language code; before
optimization)

_func:
 STM.L (ER2-ER3),@-SP
 MOV.L #_a:32,ER3
 MOV.B @ER3,R0L
 MOV.L #_b:32,ER1
 MOV.B @ER1,R2L
 ADD.B R0L,R2L
 MOV.B R2L,@ER1
 MOV.B @ER3,R0L
 MOV.L #_c:32,ER1
 MOV.B @ER1,R2L
 ADD.B R0L,R2L
 MOV.B R2L,@ER1
 MOV.B @ER3,R3L
 MOV.L #_d:32,ER0
 MOV.B @ER0,R1L
 ADD.B R3L,R1L
 MOV.B R1L,@ER0
 LDM.L @SP+,(ER2-ER3)
 RTS

(Expanded into assembly language code; after
optimization)

_func:
 MOV.B @_a:32,R1H
 MOV.L #_b:32,ER0
 MOV.B @ER0,R1L
 ADD.B R1H,R1L
 MOV.B R1L,@ER0
 MOV.L #_c:32,ER0
 MOV.B @ER0,R1L
 ADD.B R1H,R1L
 MOV.B R1L,@ER0
 MOV.L #_d:32,ER0
 MOV.B @ER0,R1L
 ADD.B R1H,R1L
 MOV.B R1L,@ER0
 RTS

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-20
REJ05B0464-0300

Remarks and Notes

This technique is effective for the compilers before Ver.3.0.

Improvements with the compiler Ver.4.0 or higher made variables be assigned to registers, and therefore using local
variables may expand the compiler the same assembly-language code.

Assembly expansion code, object size and execution speed in this section code the results of compiling by the compiler
Ver.3.0 (other than H8SX).

In some cases, the local variable, to which an external variable is assigned, is not assigned to a register. Check the object
list to determine which local variables are register-assigned.

6.2.7 Assigning an f to float-Type Constantss

Size O Speed O Stack size O

Important Points

In the case of a floating-point arithmetic operation involving a constant that is within the allocable range of values for the
float type (7.0064923216240862e-46f to 3.4028235677973364e+38f), assign the letter “f” following the numeric value to
eliminate the possibility of a superfluous type conversion to the double type.

Description

Floating-point constants are normally treated as double type constants. If used directly, such constants are computed in the
double type, which requires extensive operations. If the constant is a logarithmic constant whose value is within the range
(7.0064923216240862e-46f to 3.4028235677973364e+38f), the letter “f” should be attached to the end of the constant so
that it will be treated as a float type constant. This substantially reduces the number of instructions generated and improves
ROM efficiency, RAM efficiency, as well as the execution speed.

Example

Assign the sum of the variable b and a constant to the variable a.

(C language program before optimization)

float a,b;
void func(void)
{
 a=b+1.0;
}

(C language program after optimization)

float a,b;
void func(void)
{
 a=b+1.0f;
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-21
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 76 66 70 60 62

After 28 24 28 24 26

H8SX

CPU Type MAX ADV NML

Before 78 72 66

After 30 28 24

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 351 337 798 770 1076

After 124 119 260 250 352

H8SX

CPU Type MAX ADV NML

Before 259 260 261

After 96 97 103

(Expanded into assembly language code; before
optimization)

_func:
 PUSH.L ER2
 SUB.W #16,R7
 MOV.L @_b:32,ER1
 MOV.L SP,ER0
 ADD.W #8,R0
 JSR @$FTOD$3:24
 MOV.L ER0,ER1
 MOV.L #L5,ER2
 MOV.L SP,ER0
 JSR @$ADDD$3:24
 JSR @$DTOF$3:24
 MOV.L ER0,@_a:32
 ADD.W #16,R7
 POP.L ER2
 RTS
L5: .DATA.L H'3FF00000,H'00000000
_a: .RES.L 1
_b: .RES.L 1

(Expanded into assembly language code; after
optimization)

_func:
 MOV.L @_b:32,ER0
 MOV.L #1065353216,ER1
 JSR @$ADDF$3:24
 MOV.L ER0,@_a:32
 RTS
_a: .RES.L 1
_b: .RES.L 1

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-22
REJ05B0464-0300

6.2.8 Specifying Constants in Shift Operations

Size O Speed O Stack size O

Important Points

For shift operations, if the shift count is a variable, the compiler calls a runtime routine to process the operation. If the shift
count is a constant, the compiler does not call a runtime routine, which significantly improves the execution speed.

Description

If a constant is resolved, the compiler can process it directly.

Example

Shift the variable data by 8 bits.

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 26 20 20 16 16

After 16 12 16 12 12

H8SX

CPU Type MAX ADV NML

Before 26 26 20

After 16 16 12

(C language program before optimization)

int data;
int sht=8;
void func(void)
{
 data=data<<sht;
}

(Expanded into assembly language code; before
optimization)

_func:
 MOV.L #_data,ER0
 MOV.W @_sht:32,R1
 JSR @$DSLI$3:24
 RTS
_sht:
 .DATA.W H'0008
_data:
 .RES.W 1

(C language program after optimization)

#define SHT 8
int data;
void func(void)
{
 data=data<<SHT;
}

(Expanded into assembly language code; after
optimization)

_func:
 MOV.B @_data+1:32,R0H
 SUB.B R0L,R0L
 MOV.W R0,@_data:32
 RTS
_data:
 .RES.W 1

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-23
REJ05B0464-0300

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 44 38 166 136 140

After 14 11 28 22 22

H8SX

CPU Type MAX ADV NML

Before 14 14 12

After 11 11 10

6.2.9 Using Shift Operations

Size O Speed O Stack size O

Important Points

In performing multiplication and addition operations, whenever possible use shift operations.

Description

Composite assignment operators (+=, -=, &=, |=. …and so forth) and shift operators are designed to take advantage of the
performance characteristics of the CPU in which they are used. When used judiciously, these operators can reduce the
code size and improve both size and speed. In particular, when multiplying a variable by a constant, the << (left shift
operator) should be used.

Example

Assign the value of data three times to the variable a.

(C language program before optimization)

int data,a;
void main()
{
 a=data+data+data;
}

(Expanded into assembly language code;
before optimization)

_main:
 PUSH.L ER6
 MOV.L #_data:32,ER6
 MOV.W @ER6,R0
 MOV.W R0,R1
 ADD.W R1,R0
 ADD.W R1,R0
 MOV.W R0,@_a:32
 POP.L ER6
 RTS

(C language program after optimization)

int data,a;
void main()
{
 a=(data<<1)+data;
}

(Expanded into assembly language code; after
optimization)

_main:
 MOV.W @_data:32,R0
 SHLL.W R0
 MOV.W @_data:32,R1
 ADD.W R1,R0
 MOV.W R0,@_a:32
 RTS

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-24
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 30 22 30 22 22

After 24 18 24 18 18

H8SX

CPU Type MAX ADV NML

Before 20 20 16

After 20 20 16

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 17 13 34 26 26

After 14 11 28 22 22

H8SX

CPU Type MAX ADV NML

Before 12 12 11

After 13 13 12

Remarks and Notes

This technique can be used for the compilers before Ver.3.0.

Improvements with the compiler Ver.4.0 or higher made it possible to perform shift operations in multiplication and
addition operations, and therefore the compiler expands the same assembly-language code.

Assembly expansion code, object size and execution speed in this section code the results of the compilation by the
compiler Ver.3.0 (other than H8SX).

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-25
REJ05B0464-0300

6.2.10 Unifying Consecutive ADD Instructions

Size O Speed O Stack size ∆

Important Points

Addition should be coded consecutively to ensure unification and to reduce the code size.

Description

When encountering consecutive addition codes, the compiler performs a unification optimization. To take advantage of
this optimization, whenever possible addition operations should be coded consecutively.

Example

Sum the value of the variable a.

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 28 22 32 26 26

After 28 22 30 24 24

H8SX

CPU Type MAX ADV NML

Before 18 18 14

After 18 18 14

(C language program before optimization)

int a,b;
void main()
{
 a+=10;
 b=10;
 a+=20;
}

(Expanded into assembly language code;
before optimization)

_main:
 MOV.W @_a:32,E0
 ADD.W #10,E0
 MOV.W #10,R0
 MOV.W R0,@_b:32
 ADD.W #20,E0
 MOV.W E0,@_a:32
 RTS

(C language program after optimization)

int a,b;
void main()
{
 b=10;
 a+=10;
 a+=20;
}

(Expanded into assembly language code; after
optimization)

_main:
 MOV.W #10,R0
 MOV.W R0,@_b:32
 MOV.W @_a:32,E0
 ADD.W R0,E0
 ADD.W #20,E0
 MOV.W E0,@_a:32
 RTS

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-26
REJ05B0464-0300

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 21 17 46 38 38

After 21 17 44 36 36

H8SX

CPU Type MAX ADV NML

Before 13 13 12

After 13 13 12

6.3 Loop Processing

6.3.1 Selecting a Loop Counter

Size O Speed O Stack size ∆

Important Points

Both ROM efficiency and execution speed can be improved by using a decrement counter and comparing the end
condition with zero.

Description

During the execution of a data transfer instruction (MOV instruction) in the H8S and H8/300 Series microcomputer, both
N and Z flags of the condition code register change. This eliminates the need for a compare instruction immediately after
the data transfer instruction, which improves both ROM efficiency and execution speed.

Example

Copy all elements of the array a to the array b.

(C language program before optimization)

unsigned char a[10],b[10];
 int i;
void func(void)
{
 for(i=0; i<10; i++)
 b[i]=a[i];
}

(C language program after optimization)

unsigned char a[10],b[10];
 int i;
void func(void)
{
 for(i=9; i>=0; i--)
 b[i]=a[i];
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-27
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 46 30 54 38 38

After 48 34 52 36 36

H8SX

CPU Type MAX ADV NML

Before 30 30 24

After 36 36 32

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 163 121 624 366 386

After 164 132 582 324 324

H8SX

CPU Type MAX ADV NML

Before 125 107 98

After 106 118 108

(Expanded into assembly language code; before
optimization)

_func:
 STM.L (ER4-ER5),@-SP
 MOV.L #_i,ER5
 MOV.W #1,R0
 MOV.W R0,@ER5
 BRA L8:8
L6: MOV.W R0,R1
 EXTS.L ER1
 MOV.L ER1,ER4
 MOV.B @(_a:32,ER4),R0L
 MOV.B R0L,@(_b:32,ER4)
 INC.W #1,R1
 MOV.W R1,@ER5
L8: MOV.W @ER5,R0
 CMP.W #10,R0
 BLT L6:8
 LDM.L @SP+,(ER4-ER5)
 RTS

(Expanded into assembly language code; after
optimization)

_func:
 STM.L (ER4-ER5),@-SP
 MOV.L #_i,ER5
 MOV.W #9,R0
 MOV.W R0,@ER5
 BRA L8:8
L6: MOV.W R0,R1
 EXTS.L ER1
 MOV.L ER1,ER4
 MOV.B @(_a:32,ER4),R0L
 MOV.B R0L,@(_b:32,ER4)
 DEC.W #1,R1
 MOV.W R1,@ER5
L8: MOV.W @ER5,R0
 BGE L6:8
 LDM.L @SP+,(ER4-ER5)
 RTS

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-28
REJ05B0464-0300

6.3.2 Selecting a Repeat Control Statementt

Size O Speed O Stack size ∆

Important Points

Both ROM efficiency and execution speed can be improved by using a do-while statement for loop statements that are
executed at least once.

Description

If a loop statement is executed at least once, it should be coded using a do-while statement to reduce the determination of
the loop count by one operation, which improves both ROM efficiency and execution speed.

Example

Copy the contents of the array p2 to the array p1.

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 47 29 47 39 33

After 43 25 43 35 29

H8SX

CPU Type MAX ADV NML

Before 35 35 29

After 31 31 25

(C language program before optimization)

unsigned char a[10],len=10;
unsigned char p1[10],p2[10];
void func(void)
{
 char i;
 for (i=len; i>0; i--)
 p1[i-1]=p2[i-1];
}

(C language program after optimization)

unsigned char a[10],len=10;
unsigned char p1[10],p2[10];
void func(void)
{
 char i=len;
 do{
 p1[i-1]=p2[i-1];
 } while(--i);
}

(Expanded into assembly language code; before
optimization)

_func:
 PUSH.L ER5
 MOV.B @_len:32,R1L
 BRA L9:8
L8: EXTS.W R1
 EXTS.L ER1
 MOV.L ER1,ER5
 MOV.B @(_p2-1:32,ER5),R0L
 MOV.B R0L,@(_p1-1:32,ER5)
 DEC.B R1L
L9: MOV.B R1L,R1L
 BGT L8:8
 POP.L ER5
 RTS

(Expanded into assembly language code; after
optimization)

_func:
PUSH.LER5
MOV.B @_len:32,R1L

L9:
EXTS.WR1
EXTS.LER1
MOV.L ER1,ER5
MOV.B @(_p2-1:32,ER5),R0L
MOV.B R0L,@(_p1-1:32,ER5)
DEC.B R1L
BNE L9:8
POP.L ER5
RTS

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-29
REJ05B0464-0300

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 210 142 388 324 296

After 195 127 358 294 266

H8SX

CPU Type MAX ADV NML

Before 134 134 133

After 117 117 116

6.3.3 Moving Invariant Expression from the Inside to the Outside of a Loop

Size O Speed O Stack size ∆

Important Points

The execution speed can be improved by defining invariant expression occurring inside a loop on the outside of the loop.

Description

If an inequality occurring inside a loop is defined outside of the loop, the inequality is evaluated only at the beginning of
the loop, which reduces the number of instructions executed in the loop. The result is an improvement in execution speed.

Example

Initialize the array a using the sum of variables b and c.

(C language program before optimization)

unsigned char a[10],b,c;
 int i;
void func(void)
{
 for (i=9; i>=0; i--)
 a[i]=b+c;
}

(C language program after optimization)

unsigned char a[10],b,c;
 int i;
void func(void)
{
 unsigned char tmp;
 tmp=b+c;
 for (i=9; i>=0; i--)
 a[i]=tmp;
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-30
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 50 40 58 42 42

After 50 40 50 38 38

H8SX

CPU Type MAX ADV NML

Before 46 46 38

After 46 46 38

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 119 109 516 404 400

After 119 109 322 254 254

H8SX

CPU Type MAX ADV NML

Before 101 95 83

After 101 95 83

(Expanded into assembly language code; before
optimization)

_func:
 PUSH.L ER5
 MOV.L #_i,ER5
 MOV.W #9,R0
 MOV.W R0,@ER5
 BRA L9:8
L7: MOV.W R0,R1
 MOV.B @_b:32,R0L
 MOV.B @_c:32,R0H
 ADD.B R0H,R0L
 EXTS.L ER1
 MOV.B R0L,@(_a:32,ER1)
 DEC.W #1,R1
 MOV.W R1,@ER5
L9: MOV.W @ER5,R0
 BGT L7:8
 POP.L ER5
 RTS

(Expanded into assembly language code; after
optimization)

_func:
 PUSH.W R4
 MOV.L #_i,ER1
 MOV.B @_b:32,R4L
 MOV.B @_c:32,R0L
 ADD.B R0L,R4L
 MOV.W #9,R0
 BRA L10:8
L8: MOV.W @ER1,R0
 EXTS.L ER0
 MOV.B R4L,@(_a:32,ER0)
 DEC.W #1,R0
L10: MOV.W R0,@ER1
 BGT L8:8
 POP.W R4
 RTS

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-31
REJ05B0464-0300

6.3.4 Merging Loop Conditions

Size O Speed O Stack size O

Important Points

In the case of identical or similar loop conditions, both ROM efficiency and execution speed can be improved by merging
them.

Description

This technique reduces the object size for loop determination statements, which substantially improves the execution
speed.

Example

Initialize the array a with 0, and the array b with 1.

(Expanded into assembly language code; before
optimization)

_f:
 PUSH.L ER6
 SUB.W R6,R6
 SUB.W R1,R1
L9: EXTS.L ER6
 MOV.L ER6,ER0
 SHLL.L ER0
 MOV.W R1,@(_a:32,ER0)
 INC.W #1,R6
 CMP.W #10,R6
 BLT L9:8
 SUB.W R6,R6
 MOV.W #1,R1
L10: EXTS.L ER6
 MOV.L ER6,ER0
 SHLL.L ER0
 MOV.W R1,@(_b:32,ER0)
 INC.W #1,R6
 CMP.W #10,R6
 BLT L10:8
 POP.L ER6
 RTS

(C language program before optimization)

int a[10],b[10];
void f(void)
{
 int i,j;
 for (i=0; i<10; i++)
 a[i]=0;
 for (j=0; j<10; j++)
 b[j]=1;
}

(Expanded into assembly language code; after
optimization)

_f:
 PUSH.L ER6
 SUB.W R6,R6
 SUB.W R1,R1
L7: EXTS.L ER6
 MOV.L ER6,ER0
 SHLL.L ER0
 MOV.W R1,@(_a:32,ER0)
 INC.W #1,R6
 CMP.W #10,R6
 BLT L7:8
 EXTS.L ER6
 SHLL.L ER6
 MOV.W #1,R0
 MOV.W R0,@(_b:32,ER6)
 POP.L ER6
 RTS

(C language program after optimization)

int a[10],b[10];
void f(void)
{
 int i;
 for (i=0; i<10; i++){
 a[i]=0;
 b[i]=1;
 }
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-32
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 58 48 62 44 50

After 46 32 46 32 34

H8SX

CPU Type MAX ADV NML

Before 38 38 34

After 28 28 24

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 245 197 558 418 468

After 188 134 432 350 342

H8SX

CPU Type MAX ADV NML

Before 175 177 168

After 125 117 117

6.4 Pointers

6.4.1 Using Pointer Variables

Size O Speed O Stack size O

Important Points

In cases where the same variable (external variable) is referenced several times or an array element must be accessed, both
ROM efficiency and execution speed can be improved by using a pointer variable.

Description

The use of pointer variables can generate a code that incorporates an efficient addressing mode (@Rn, @Rn+, @-Rn).

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-33
REJ05B0464-0300

Example

Copy the elements of the array data2 to the array data1.

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 46 38 40 38 40

After 24 22 28 26 30

H8SX

CPU Type MAX ADV NML

Before 42 42 34

After 18 18 18

(C language program before optimization)

void func(int data1[],int data2[])
{
 int i;

 for (i=0; i<10; i++)
 data1[i]=data2[i];
}

(C language program after optimization)

void func(int *data1,int *data2)
{
 int i;

 for (i=0; i<10; i++){
 *data1=*data2;
 data1++; data2++;
 }
}

(Expanded into assembly language code; before
optimization)

_func:
 PUSH.L ER3
 STM.L (ER4-ER6),@-SP
 MOV.L ER0,ER4
 MOV.L ER1,ER3
 SUB.W R6,R6
L6:
 EXTS.L ER6
 MOV.L ER6,ER5
 SHLL.L ER5
 MOV.L ER4,ER0
 ADD.L ER5,ER0
 MOV.L ER3,ER1
 ADD.L ER5,ER1
 MOV.W @ER1,R1
 MOV.W R1,@ER0
 INC.W #1,R6
 CMP.W #10:16,R6
 BLT L6:8
 LDM.L @SP+,(ER4-ER6)
 POP.L ER3
 RTS

(Expanded into assembly language code; after
optimization)

__func:
 PUSH.L ER5
 MOV.L ER0,ER5
 MOV.W #10:16,E0
L7:
 MOV.W @ER1,R0
 MOV.W R0,@ER5
 INC.L #2,ER5
 INC.L #2,ER1
 DEC.W #1,E0
 BNE L7:8
 POP.L ER5
 RTS

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-34
REJ05B0464-0300

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 171 152 482 336 428

After 107 102 216 208 238

H8SX

CPU Type MAX ADV NML

Before 156 164 155

After 79 81 80

6.5 Data Structures

6.5.1 Ensuring Data Compatibility

Size O Speed O Stack size −

Important Points

Data items are allocated in the order in which they are declared. The efficiency of ROM and RAM utilization can be
improved by effectively specifying the order in which data items are declared so as to eliminate the generation of dummy
memory areas.

Description

If a variable greater than or equal to 2 bytes is allocated from an odd-numbered memory address when it is necessary to
maintain even-numbered memory addressed, the compiler creates a 1-byte dummy area. To avoid this problem, variables
of the same size should be declared in a single group to as to minimize the creation of dummy data areas for data
alignment.

This consideration is applicable not only to external variables, but also to local variables, members of structures and
commons, and function parameters.

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-35
REJ05B0464-0300

Example

Allocate a total of 8 bytes of data.

 (Data assignment, before optimization) (Data assignment, after optimization)

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 10 10 10 10 10

After 8 8 8 8 8

H8SX

CPU Type MAX ADV NML

Before 8 8 8

After 8 8 8

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before − − − − −

After − − − − −

H8SX

CPU Type MAX ADV NML

Before − − −

After − − −

Remarks and Notes

The above results other than H8SX are those by Ver.3.0.

As align is default with the compiler Ver.4.0 or higher, the boundary alignment is automatically made in order to reduce
empty areas. So this improvement makes no difference.

a c

b

d

a Dummy area

b

c Dummy area

d

0

2

6

8

0

2

6

(C language program before optimization)

char a;
long b;
char c;
short d;

(C language program after optimization)

char a;
char c;
long b;
short d;

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-36
REJ05B0464-0300

6.5.2 Techniques for Data Initialization

Size O Speed O Stack size ∆

Important Points

To reduce program size, any variables that require initialization should be initialized when they are declared.

Description

Data that are initialized at the time of their declaration are first allocated in the initialization data area (D section) and then
copied to the RAM when the program is executed. The assignment of initial values is performed only once at the
beginning of program execution.

By contrast, any data that are not initialized at the time of their declaration are allocated in the uninitialized data area (B
section), which requires only one half as much memory as the case where the data are allocated to the initialization data
area.

On the other hand, the latter approach requires an increase in the size of the program area (P section) for setting initial
values in the program by means of assignment statements.

For better efficiency, if multiple variables exist that require initial values, they should be initialized at the time of their
declaration.

Example

Initialize the variable a.

(Expanded into assembly language code; before
optimization)

_main:
 MOV.W #1:16,R0
 MOV.W R0,@_a:32
 RTS
 .SECTION B,DATA,ALIGN=2
_a:
 .RES.W 1

(C language program before optimization)

int a;
void main(void)
{
 a=1;
}

(Expanded into assembly language code; after
optimization)

_main:
 RTS
 .SECTION D,DATA,ALIGN=2
_a:
 .DATA.W H'0001

(C language program after optimization)

int a=1;
void main(void)
{
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-37
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 12 10 12 10 10

After 4 4 4 4 4

H8SX

CPU Type MAX ADV NML

Before 8 8 6

After 4 4 4

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 11 9 22 18 18

After 5 4 10 8 8

H8SX

CPU Type MAX ADV NML

Before 8 8 7

After 6 6 6

6.5.3 Unifying the Initialization of Array Elements

Size O Speed O Stack size ∆

Important Points

In cases where several array elements must be initialized, ROM efficiency can be improved by grouping them into a
structure so that they can be initialized in a single operation.

Description

By initializing data in a group, the number of transfer instruction executions that are required can be reduced to one.

Example

Initialize the arrays a, b, and c with respective values.

(C language program before optimization)

void f(void)
{
 unsigned char a[]={0,1,2,3};
 unsigned char b[]="abcdefg";
 unsigned char c[]="ABCDEFG";
}

(C language program after optimization)

void f(void)
{
 struct x{
 unsigned char a[4];
 unsigned char b[8];
 unsigned char c[7];
 } A
 ={0,1,2,3,"abcdefg","ABCDEFG"};
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-38
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 120 106 122 106 110

After 81 69 81 75 79

H8SX

CPU Type MAX ADV NML

Before 104 104 96

After 79 77 69

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 294 256 690 572 632

After 162 145 488 324 376

H8SX

CPU Type MAX ADV NML

Before 51 48 41

After 90 89 79

Remarks and Notes

H8SX can transfer data by transfer instructions, not by runtime functions. So the execution speed of before is faster than
that of after.

(Expanded into assembly language code; before
optimization)

_f:
 PUSH.L ER2
 SUB.W #20,R7
 MOV.L #L4,ER0
 MOV.L SP,ER1
 ADD.W #16,R1
 SUB.L ER2,ER2
 MOV.B #4,R2L
 JSR @MVN3:24
 MOV.L #L6,ER0
 MOV.L SP,ER1
 ADD.W #8,R1
 SUB.L ER2,ER2
 MOV.B #8,R2L
 JSR @MVN3:24
 MOV.L #L8,ER0
 MOV.L SP,ER1
 SUB.L ER2,ER2
 MOV.B #8,R2L
 JSR @MVN3:24
 ADD.W #20,R7
 POP.L ER2
 RTS
L4: .DATA.B H'00,H'01,H'02,H'03
L6: .SDATAZ "abcdefg"
L8: .SDATAZ "ABCDEFG"

(Expanded into assembly language code; after
optimization)

_f:
 PUSH.L ER2
 SUB.W #20,R7
 MOV.L #L4,ER0
 MOV.L SP,ER1
 SUB.L ER2,ER2
 MOV.B #19,R2L
 JSR @MVN3:24
 ADD.W #20,R7
 POP.L ER2
 RTS
L4: .DATA.B H'00,H'01,H'02,H'03
 .SDATAZ "abcdefg"
 .SDATA "ABCDEFG"

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-39
REJ05B0464-0300

6.5.4 Passing Parameters as a Structure Address

Size O Speed O Stack size ∆

Important Points

Parameters that are not assigned to a register should be passed using the address of a structure to reduce the program size.

Description

The number of parameters used and their size should be adjusted appropriately so that they are assigned to registers. For a
description of how to pass parameters to a register, refer to the appropriate user’s manual.

In situations where large parameters are required or a large number of parameters are used, they should be grouped in a
structure before they are passed to their intended function to reduce the program size. If parameters are declared as
members of a structure and the starting address of the structure is passed as an parameter to the target function, the
receiving function can access the members based upon the received address.

Example

Pass the long type data a, b, c, and d to the function func.

(Expanded into assembly language code; before
optimization)

_func:
 MOV.L @_d:32,ER0
 PUSH.L ER0
 MOV.L @_c:32,ER0
 PUSH.L ER0
 MOV.L @_b:32,ER1
 MOV.L @_a:32,ER0
 JSR @_sub:24
 ADDS.L #4,SP
 ADDS.L #4,SP
 RTS
_a: .RES.L 1
_b: .RES.L 1
_c: .RES.L 1
_d: .RES.L 1

(C language program before optimization)

void sub(long,long,long,long);
long a,b,c,d;

void func(void)
{
 sub(a,b,c,d);
}

(Expanded into assembly language code; after
optimization)

_func:
 MOV.L #_x:32,ER0
 JMP @_sub:24
_x:
 .RES.W 8

(C language program after optimization)

void sub(struct ctag *);
struct ctag{
 long a;
 long b;
 long c;
 long d;
}x;

void func(void)
{
 sub(&x);
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-40
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 58 50 52 44 62

After 14 12 10 10 10

H8SX

CPU Type MAX ADV NML

Before 50 48 40

After 16 14 12

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 52 45 102 88 126

After 18 14 22 18 18

H8SX

CPU Type MAX ADV NML

Before 30 28 28

After 14 14 14

6.5.5 Assigning Structures to Registers

Size O Speed O Stack size O

Important Points

When local variables are used as a structure, the members should be declared so that the variables can directly be assigned
to registers.

Description

Because structures can also be assigned to registers, both size efficiency and processing speed can be improved by
appropriately assigning the members of the structure.

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-41
REJ05B0464-0300

Example

Pass the structure data to the function func.

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 66 60 64 64 80

After 44 46 42 40 72

H8SX

CPU Type MAX ADV NML

Before 62 60 64

After 42 40 38

(Expanded into assembly language code; before
optimization)

_main:
 STM.L (ER2-ER3),@-SP
 SUBS.L #4,SP
 SUBS.L #2,SP
 MOV.L SP,ER3
 MOV.B #10,R0L
 MOV.B R0L,@_pst:32
 MOV.B R0L,@ER3
 EXTS.W R0
 MOV.B @(4:16,ER3),R1L
 EXTS.W R1
 ADD.W R1,R0
 MOV.W R0,@(2:16,ER3)
 MOV.L ER3,ER0
 SUBS.L #4,SP
 SUBS.L #2,SP
 MOV.L SP,ER1
 SUB.L ER2,ER2
 MOV.B #6,R2L
 JSR @MVN3:24
 JSR @_func:24
 ADDS.L #4,SP
 ADDS.L #4,SP
 ADDS.L #4,SP
 LDM.L @SP+,(ER2-ER3)
 RTS

(C language program before optimization)

struct ST {
 char a;
 short b;
 char c;
}pst;
void main()
{
 struct ST s;
 s.a=pst.a+10;
 s.b=s.a+s.c;
 func(s);
}

(Expanded into assembly language code; after
optimization)

_main:
 PUSH.L ER6
 MOV.B #10,R0L
 MOV.B R0L,@_pst+2:32
 MOV.B R0L,R6H
 EXTS.W R0
 MOV.B R6L,R1L
 EXTS.W R1
 ADD.W R1,R0
 MOV.W R0,E6
 PUSH.L ER6
 JSR @_func:24
 ADDS.L #4,SP
 POP.L ER6
 RTS

(C language program after optimization)

struct ST {
 short b;
 char a;
 char c;
}pst;
void main()
{
 struct ST s;
 s.a=pst.a+10;
 s.b=s.a+s.c;
 func(s);
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-42
REJ05B0464-0300

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 126 110 416 252 286

After 42 40 84 76 260

H8SX

CPU Type MAX ADV NML

Before 40 40 36

After 31 29 32

6.6 Functions

6.6.1 Improving the Program Location in Which Functions Are Defined

Size O Speed O Stack size ∆

Important Points

Both ROM efficiency and execution speed can potentially be improved by defining in the same file any functions that are
frequently called in a module.

Description

In cases where the branch destination address is within the –128 to 127 byte range, the H8S or H8/300 Series
microcomputer uses the PC relative addressing mode (BSR). Compared with the absolute addressing mode (JSR), which is
declared by an externally referencing function, this mode can improve both ROM efficiency and execution speed.

Example

Call the function func2 from the functions func and func1.

(C language program before optimization)

extern int func2(void);
int ret;
void func(void)
{
 int i;
 i=func2();
 ret = i;
}
void func1(void)
{
 int i;
 i=func2();
 ret = i;
}

(C language program after optimization)

int ret;
int func2(void)
{
 return 0;
}
void func(void)
{
 int i;
 i=func2();
 ret = i;
}
void func1(void)
{
 int i;
 i=func2();
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-43
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 28 24 28 24 24

After 24 20 24 20 20

H8SX

CPU Type MAX ADV NML

Before 32 28 24

After 24 24 20

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 20 16 40 32 32

After 19 15 38 30 30

H8SX

CPU Type MAX ADV NML

Before 16 16 15

After 16 16 16

(Expanded into assembly language code; before
optimization)

_func:
 JSR @_func2:24
 MOV.W R0,@_ret:32
 RTS
_func1:
 JSR @_func2:24
 MOV.W R0,@_ret:32
 RTS

(Expanded into assembly language code; after
optimization)

_func2:
 SUB.W R0,R0
 RTS
_func:
 BSR _func2:8
 MOV.W R0,@_ret:32
 RTS
_func1:
 BSR _func2:8
 MOV.W R0,@_ret:32
 RTS

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-44
REJ05B0464-0300

6.6.2 Macro calls

Size O Speed O Stack size ∆

Important Points

Both size efficiency and processing speed can be improved by defining the frequently called functions as macros.

Description

When identical processing routines are defined as macros, they are inline-expanded at the location where they are called.
This eliminates the generation of codes and improves efficiency.

Example

Call the function abs.

(C language program before optimization)

extern int a,b,c;
int abs(x)
int x;
{ return x>=0?x:-x; }
void f(void)
{
 a=abs(b);
 b=abs(c);
}

(C language program after optimization)

#define abs(x) ((x)>=0?(x):-(x))
extern int a,b,c;
void f(void)
{
 a=abs(b);
 b=abs(c);
}

(Expanded into assembly language code; before
optimization)

_abs:
 PUSH.W R6
 MOV.W R0,R6
 BLT L9:8
 MOV.W R6,R1
 BRA L10:8
L9: MOV.W R6,R1
 NEG.W R1
L10: MOV.W R1,R0
 POP.W R6
 RTS
_f: MOV.W @_b:32,R0
 BSR _abs:8
 MOV.W R0,@_a:32
 MOV.W @_c:32,R0
 BSR _abs:8
 MOV.W R0,@_b:32
 RTS

(Expanded into assembly language code; after
optimization)

_f:
 PUSH.W R6
 MOV.W @_b:32,R6
 BLT L7:8
 MOV.W R6,R0
 BRA L8:8
L7: MOV.W R6,R0
 NEG.W R0
L8: MOV.W R0,@_a:32
 MOV.W @_c:32,R6
 BLT L9:8
 MOV.W R6,R0
 BRA L10:8
L9: MOV.W R6,R0
 NEG.W R0
L10: MOV.W R0,@_b:32
 POP.W R6
 RTS

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-45
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 38 30 46 38 42

After 32 26 50 42 46

H8SX

CPU Type MAX ADV NML

Before 38 38 30

After 34 34 26

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 45 36 106 88 112

After 24 20 74 64 64

H8SX

CPU Type MAX ADV NML

Before 36 36 34

After 20 20 17

6.6.3 Declaring a Prototype

Size O Speed O Stack size ∆

Important Points

Functions that have char-type or unsigned char-type parameters should be prototype-declared before they are called to
eliminate the output of superfluous type conversion code.

Description

If called without a prototype declaration, functions that have char-type or unsigned char-type parameters are converted
into the int type, which generates superfluous sign expansion instructions and zero expansion instructions.

In addition, parameters can fail to be passed properly.

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-46
REJ05B0464-0300

Example

Call the function sub1 that has char-type and unsigned char-type parameters.

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 22 18 24 20 18

After 18 14 16 20 12

H8SX

CPU Type MAX ADV NML

Before 24 22 18

After 20 18 14

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 19 16 40 34 32

After 23 18 32 26 26

H8SX

CPU Type MAX ADV NML

Before 15 15 14

After 19 17 17

(Expanded into assembly language code; before
optimization)

_func:
 MOV.B @_b:32,R0L
 EXTU.W R0
 MOV.B @_a:32,R1L
 EXTS.W R1
 MOV.W R0,E0
 MOV.W R1,R0
 JMP @_sub1:24

RTS

(Expanded into assembly language code; after
optimization)

_func:
 MOV.B @_b:32,R0H
 MOV.B @_a:32,R0L
 JMP @_sub1:24

(C language program before optimization)

char a;
unsigned char b;
void func(void)
{
 sub1(a,b);
}

(C language program after optimization)

void sub1(char, unsigned char);
char a;
unsigned char b;
void func(void)
{
 sub1(a,b);
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-47
REJ05B0464-0300

6.6.4 Optimization of Tail Recursions

Size O Speed O Stack size O

Important Points

If a function makes a function call, investigate whether or not the function call can be moved to the end of the calling
function. This can improve both ROM efficiency and execution speed.

Description

The tail recursion optimization is performed when all of the following conditions are satisfied:

• The calling function does not place its parameters or return-value address on the stack.

• The function call is followed by the RTS instruction.

Example

Call the function sub and update the value of an external variable.

(Expanded into assembly language code; before
optimization)

_main:
 PUSH.L ER6
 MOV.L #_a,ER6
 MOV.W @ER6,R0
 BNE L6:8
 INC.W #1,R0
 BRA L8:8
L6: JSR @_g:24
 MOV.W @ER6,R0
 INC.W #2,R0
L8: MOV.W R0,@ER6
 POP.L ER6
 RTS

(C language program before optimization)

void g(void);
int a;
void main(void)
{
 if (a==0) a++;
 else{
 g();
 a+=2;
 }
}

(Expanded into assembly language code; after
optimization)

_main:
 MOV.L #_a64,ER1
 MOV.W #1,R0
 INC.W #2,R0
 MOV.W R0,@ER1
 JMP @_g:24
 RTS

(C language program after optimization)

void g(void);
int a;
void main(void)
{
 if (a==0) a++;
 else{
 a+=2;
 g();
 }
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-48
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 38 32 38 32 32

After 30 32 30 28 28

H8SX

CPU Type MAX ADV NML

Before 36 34 30

After 30 28 34

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 37 29 74 58 58

After 20 27 40 36 36

H8SX

CPU Type MAX ADV NML

Before 22 25 20

After 15 15 23

Remarks and Notes

The above program assumes that the variable a is not referenced within the function g.

6.6.5 Improving the Way Parameters Are Passed

Size O Speed O Stack size O

Important Points

To reduce the code size, the order in which parameters are listed should be adjusted so that there is no gap between
parameters.

Description

Parameters passed through the registers are assigned to the registers ER0 and ER1 (or R0 and R1 in the case of an H300
CPU) in the order in which they are declared. Therefore, the order in which the parameters are declared should be adjusted
so as to minimize any gap between them to reduce the code size.

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-49
REJ05B0464-0300

Example

Call the function func.

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 26 24 56 54 60

After 22 20 38 36 48

H8SX

CPU Type MAX ADV NML

Before 26 26 24

After 22 22 20

(Expanded into assembly language code; before
optimization)

_main:
 SUBS.L #4,SP
 SUBS.L #2,SP
 MOV.B @(5:16,SP),R0H
 MOV.W @(2:16,SP),E0
 MOV.B @SP,R0L
 BSR _func:8
 ADDS.L #2,SP
 ADDS.L #4,SP
 RTS
_func:
 PUSH.L ER6
 MOV.B R0H,R6H
 EXTS.W R0
 MOV.W R0,R1
 MULXU.W E0,ER1
 MOV.B R6H,R6L
 EXTS.W R6
 ADD.W R6,R1
 EXTS.L ER1
 MOV.L ER1,@_rtn:32
 POP.L ER6
 RTS

(C language program before optimization)

long rtn;
void func(char,short,char);
void main()
{
 short a;
 char b,c;

 func(b,a,c);
}
void func(char x,short y,char z)
{
 rtn=x*y+z;
}

(Expanded into assembly language code; after
optimization)

_main:
 SUBS.L #4,SP
 MOV.W @(2:16,SP),E0
 MOV.B @(1:16,SP),R0H
 MOV.B @SP,R0L
 BSR _func:8
 ADDS.L #4,SP
 RTS
_func:
 MOV.B R0L,R1L
 MULXS.B R0H,R1
 ADD.W E0,R1
 EXTS.L ER1
 MOV.L ER1,@_rtn:32
 RTS

(C language program after optimization)

long rtn;
void func(char,char,short);
void main()
{
 short a;
 char b,c;

 func(b,c,a);
}
void func(char x,char y,short z)
{
 rtn=x*y+z;
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-50
REJ05B0464-0300

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 29 25 120 112 228

After 26 22 82 74 174

H8SX

CPU Type MAX ADV NML

Before 25 21 21

After 21 19 19

Remarks and Notes

For a description of how to assign an parameter, refer to section 9.3.3, Examples of Parameter Assignment, in the
H8S,H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor User’s Manual.

Note that when the number of registers that pass the parameters is changed by an option, the number of registers that
receive the parameters also change.

6.7 Branches

6.7.1 Rewriting switch Statements as Tables

Size O Speed O Stack size ∆

Important Points

If the processing tasks performed by the case statements associated with switch are alike, the switch statements should be
coded using a table to reduce the object size.

Description

Rewriting switch statements using a table can substantially reduce the program size although data size increases. If the
value of a case statement ranges widely, however, rewriting switch statements in terms of a table can lead to an overall
increase in program size.

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-51
REJ05B0464-0300

Example

Branch to a function depending upon the value of the function a.

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 78 64 66 62 76

After 56 36 56 34 34

H8SX

CPU Type MAX ADV NML

Before 94 78 58

After 50 50 36

(C language program before optimization)

extern void f1(void);
extern void f2(void);
extern void f3(void);
extern void f4(void);
extern void f5(void);
extern int a;
void sub(void)
{
 switch(a){
 case 0:f1();break;
 case 1:f2();break;
 case 2:f3();break;
 case 3:f4();break;
 case 4:f5();break;
 }
}

(C language program after optimization)

extern void f1(void);
extern void f2(void);
extern void f3(void);
extern void f4(void);
extern void f5(void);
extern int a;
void sub(void)
{
 static int (*key[5])()=
 {f1,f2,f3,f4,f5};

 (*key[a])();
}

(Expanded into assembly language code; before
optimization)

_sub: MOV.W @_a:32,R0
 MOV.B R0H,R0H
 BNE L15:8
 CMP.B #0:8,R0L
 BEQ L10:8
 CMP.B #1:8,R0L
 BEQ L11:8
 CMP.B #2:8,R0L
 BEQ L12:8
 CMP.B #3:8,R0L
 BEQ L13:8
 CMP.B #4:8,R0L
 BEQ L14:8
 RTS
L10: JMP @_f1:24
L11: JMP @_f2:24
L12: JMP @_f3:24
L13: JMP @_f4:24
L14: JSR @_f5:24
L15: RTS

(Expanded into assembly language code; after
optimization)

_sub: MOV.W @_a:32,R0
 EXTS.L ER0
 SHLL.L #2,ER0
 MOV.L @(L9:32,ER0),ER0
 JSR @ER0
 RTS
L9: .DATA.L _f1,_f2,_f3,_f4,_f5

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-52
REJ05B0464-0300

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 31 28 74 54 68

After 27 18 42 26 26

H8SX

CPU Type MAX ADV NML

Before 24 32 24

After 19 20 18

6.7.2 Coding a Program in Which Case Statements Jump to the Same Label

Size O Speed O Stack size ∆

Important Points

case statement containing the same expression should be grouped together to minimize the number of branch instructions
and to reduce the object size.

Description

In the case of an if-then expansion method for a switch statement, the smaller the number of branch instructions, the
smaller the code size, and the greater is program efficiency.

Example

Assign a value to II depending on the value of c.

(C language program before optimization)

long ll;
void func(void)
{
 char c;
 switch(c){
 case 0: ll=0; break;
 case 1: ll=0; break;
 case 2: ll=1; break;
 case 3: ll=1; break;
 case 4: ll=2; break;
 }
}

(C language program after optimization)

long ll;
void func(void)
{
 char c;
 switch(c){
 case 0:
 case 1: ll=0; break;
 case 2:
 case 3: ll=1; break;
 case 4: ll=2; break;
 }
}

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-53
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 49 45 63 59 69

After 45 43 57 53 61

H8SX

CPU Type MAX ADV NML

Before 55 55 47

After 51 51 45

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 33 30 82 72 68

After 20 18 82 72 68

H8SX

CPU Type MAX ADV NML

Before 24 24 23

After 13 14 12

(Expanded into assembly language code; before
optimization)

_func:
 SUBS.L #2,SP
 MOV.L #_ll:32,ER1
 MOV.B @(1:16,SP),R0L
 BEQ L6:8
 CMP.B #1:8,R0L
 BEQ L7:8
 CMP.B #2:8,R0L
 BEQ L8:8
 CMP.B #3:8,R0L
 BEQ L9:8
 CMP.B #4:8,R0L
 BEQ L10:8
 BRA L11:8
L6:
L7: SUB.L ER0,ER0
 BRA L15:8
L8: SUB.L ER0,ER0
 MOV.B #1:8,R0L
 BRA L15:8
L9: SUB.L ER0,ER0
 MOV.B #1:8,R0L
 BRA L15:8
L10: SUB.L ER0,ER0
 MOV.B #2:8,R0L
L15: MOV.L ER0,@ER1
L11: ADDS.L #2,SP
 RTS
_ll: .RES.L 1

(Expanded into assembly language code; after
optimization)

_func:
 SUBS.L #2,SP
 MOV.L #_ll:32,ER1
 MOV.B @(1:16,SP),R0L
 BEQ L6:8
 CMP.B #1:8,R0L
 BEQ L7:8
 CMP.B #2:8,R0L
 BEQ L8:8
 CMP.B #3:8,R0L
 BEQ L9:8
 CMP.B #4:8,R0L
 BEQ L10:8
 BRA L11:8
L6:
L7: SUB.L ER0,ER0
 BRA L13:8
L8:
L9: SUB.L ER0,ER0
 MOV.B #1:8,R0L
 BRA L13:8
L10: SUB.L ER0,ER0
 MOV.B #2:8,R0L
L13: MOV.L ER0,@ER1
L11: ADDS.L #2,SP
 RTS
_ll: .RES.L 1

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-54
REJ05B0464-0300

Remarks

The above performance measurements are based on the case where c = 4.

This technique can be used for the compilers before Ver.3.0.

Improvements with the compiler Ver.4.0 or higher made it possible to group together the jumping destinations of case
statements, and therefore the compiler expands the same assembly-language code (other than H8SX).

Assembly expansion code, object size and execution speed in this section code the results of the compilation by the
compiler Ver.3.0 (other than H8SX).

As a general rule, of the values of case in a switch statement that are frequently executed should be tested first to improve
the execution speed. The user is encouraged to try this technique during program execution.

6.7.3 Branching to a Function Coded Directly below a Given Statement

Size O Speed O Stack size O

Important Points

If a function call occurs at the end of functions, the called function should be placed directly below the function call.

Description

If the tail recursion optimization is in effect, the called function should be placed directly below the function call to take
advantage of the optimization, which has the effect of deleting the function call code.

Since the function call code is deleted, the program size is reduced and the processing speed is increased.

Example

Call the function func from the function main.

(C language program after optimization)

int a;
void func();
void main()
{
 a=0;
 func();
}
void func()
{
 a++;
}

(C language program before optimization)

int a;
void func();
void func()
{
 a++;
}
void main()
{
 a=0;
 func();
}

(Expanded into assembly language code;
before optimization)

_func:
 MOV.L #_a,ER0
 MOV.W @ER0,R1
 INC.W #1,R1
 MOV.W R1,@ER0
 RTS
_main:
 SUB.W R0,R0
 MOV.W R0,@_a:32
 BRA _func:8

(Expanded into assembly language code; after
optimization)

_main:
 SUB.W R0,R0
 MOV.W R0,@_a:32
_func:
 MOV.L #_a:32,ER0
 MOV.W @ER0,R1
 INC.W #1,R1
 MOV.W R1,@ER0
 RTS

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-55
REJ05B0464-0300

Object Size Table [byte]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 26 20 24 20 20

After 24 18 22 18 18

H8SX

CPU Type MAX ADV NML

Before 18 18 14

After 16 16 12

Execution Speed Table [cycle]

H8S/2600, H8S/2000 H8/300H H8/300

CPU Type ADV NML ADV NML NML

Before 21 17 40 34 34

After 19 15 36 30 30

H8SX

CPU Type MAX ADV NML

Before 14 14 13

After 12 12 11

Section 6 Efficient Programming Techniques

Rev.3.00 2005.09.12 6-56
REJ05B0464-0300

Section 7 Using HEW

Rev.3.00 2005.09.12 7-1
REJ05B0464-0300

Section 7 Using HEW

This chapter describes the use of HEW for build- and simulation-related processes.

Note that the supported functions and methods vary from one HEW version to another.

The appropriate version is indicated under [Comments] for each topic.

The following table shows a list of the items relating to the use of HEW.

No. Category Item Section

1 Regenerating and Editing Automatically Generated Files 7.1.1

2 Makefile Output 7.1.2

3 Makefile Input 7.1.3

4 Creating Custom Project Types 7.1.4

5 Multi-CPU Feature 7.1.5

6 Networking Feature 7.1.6

7 Converting from Old HEW Version 7.1.7

8 Converting a HIM Project to a HEW Project 7.1.8

9

Builds

Add Supported CPUs 7.1.9

10 Pseudo-interrupts 7.2.1

11 Convenient Breakpoint Functions 7.2.2

12 Coverage Feature 7.2.3

13 File I/O 7.2.4

14 Debugger Target Synchronization 7.2.5

15 How to Use Timers 7.2.6

16 Examples of Timer Usage 7.2.7

17

Simulations

Reconfiguration of Debugger Target 7.2.8

18 Making stack information file 7.3.1

19 Starting Call Walker 7.3.2

20 File Open and Call Walker Window 7.3.3

21 Editing the stack information file 7.3.4

22 Stack area size of assembly program 7.3.5

23 Merging stack information 7.3.6

24

Call Walker

Other functions 7.3.7

Section 7 Using HEW

Rev.3.00 2005.09.12 7-2
REJ05B0464-0300

7.1 Builds

7.1.1 Regenerating and Editing Automatically Generated Files

• Description:

HEW will automatically generate I/O register definition, interrupt function, and other various files if you select
Application for the project type when creating a new workspace.

However, when creating a new project, you may sometimes skip this automatic file generation process because you then
believe that the files are unnecessary.

You may also forget to edit or set such files.

If you do, you can use this feature to automatically generate and edit files after creating a project.

However, this feature is only available when you select Application for the project type when creating a new workspace.

• Usage:

HEW Menu: Project > Edit Project Configuration...

• Files that can be regenerated:

I/O Register Definition Files: iodefine.h

[Generation method]

You can regenerate iodefine.h by checking [I/O Register Definition Files (overwrite)] on the [I/O Register] tab in the [Edit
Project Configuration] dialog box.

If you modify iodefine.h inadvertently, you can regenerate it and overwrite it on the modified file.

• Files that can be re-edited:

Stack size setting file: stacksct.h

Section 7 Using HEW

Rev.3.00 2005.09.12 7-3
REJ05B0464-0300

[Editing method]

You can edit the initial values of [Stack Pointer Address] and [Stack Size] on the [Stack] tab in the [Edit Project
Configuration] dialog box.

• Note:

Regenerating and re-editing files are supported by HEW 2.0 or later.

7.1.2 Makefile Output

• Description:

HEW allows you to create a makefile based on the current option settings.

By using the makefile, you can build the current project without having to install HEW completely. This is convenient
when you wan to send a project to a person who has not installed HEW or manage the version of an entire build, including
the makefile.

• Makefile production method:

1. Make sure that the project that generates the makefile is the current project.

2. Make sure that the build configuration that builds the project is the current configuration.

3. Choose [Build > Generate make file].

4. You will see the following dialog box. In this dialog box, select one of the makefile generation methods.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-4
REJ05B0464-0300

• Makefile generation directory:

HEW creates a [make] subdirectory in the current workspace directory and generates makefiles in this subdirectory. The
makefile name is the current project or configuration name followed by the extension .mak (debug.mak, for example).
HEW-generated makefiles can be executed by the executable file HMAKE.EXE contained in the directory where HEW is
installed. However, user-modified makefiles cannot be executed.

• Makefile execution method:

1. Open the [Command] window and move to the [make] subdirectory that contains the generated makefile.

2. Execute HMAKE.On the command line, enter HMAKE.EXE <makefile-name>.

• Note:

This feature is supported by HEW 1.1 or later.

7.1.3 Makefile Input

• Description:

HEW allows to input the makefiles that were generated by HEW or used by UNIX environment.

From the makefile, you can automatically obtain the file structure of the project.

(However, you cannot obtain option settings or similar specifications.) This facilitates the migration from the command
line to HEW.

• Makefile input method:

1. When creating a new workspace, select [Import Makefile] from the project type options in the [New Project
Workspace] dialog box.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-5
REJ05B0464-0300

2. Specify the makefile path in the [Makefile path] field in the [New Project-Import Makefile] dialog box and click on the
[Start] button.

3. The [Source files] pane displays the makefile source file structure. In this structure chart, any file marked is a file
that has been proved through an analysis to contain no entity. This file will not be added to the project.(It is ignored.)

4. By following the wizard, specify CPU and other options and open the workspace. You can then begin a development
work.

• Note:

This feature is supported by HEW 3.0 or later.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-6
REJ05B0464-0300

7.1.4 Creating Custom Project Types

• Description:

This feature allows a project created by a user to be used by another user as a template for program development on
another machine.

Information that can be contained in the template may concern the project file structure, build options, debugger settings,
and anything else relating to the project.

• Project type storing method:

1. Activate the project you want to store project information in because the active project accepts project information
when the workspace is open. To activate a project, select the project by choosing [Project -> Set Current Project].

2. Open the following project type wizard by choosing [Project -> Create Project Type...], assign a name to the project
type you will use as the template and specify whether to include the configuration directory containing the post-build
executable files and other resources in the template.

You can quit the project type wizard here by clicking on the [Finish] button.

The active project is identified by boldface characters.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-7
REJ05B0464-0300

3. At [New project type wizard – Step 1], click on the [Next] button to open the following wizard: When opening the
project type templateat step (1), specify whether to display project information and bitmaps.

At step (2), you can change the project type icon to a user-specified icon. Click on the [Finish] button.

These settings are not mandatory.

4. A project type template named “Custom Project Generator” has thus been created. To use this template on another
machine, choose [Tools -> Administration...] to open the following dialog box:

When you check the following [Show all components] check box, you will see [Project Generators – Custom].

Click on the created project type and click on the [Export...] button.

(1)

(2)

Section 7 Using HEW

Rev.3.00 2005.09.12 7-8
REJ05B0464-0300

5. The following dialog box opens. Select a directory in which the Custom Project Generator template will be stored. The
directory must be empty.

The project type storage process is now complete.

• Installing Custom Project Generator:

Use the following procedure to install the Custom Project Generator template created by the above project type storage
method on another machine.

1. The following installation environment is created for the directory that was created at step 5 of the project type storage
method:

(Installation environment directory)

2. Copy the above installation environment and install the copy on another machine.

When you run Setup.exe, the following dialog box opens. Specify the location in which HEW2.exe is installed and
click on the [Install] button.

(Directory example: c:¥Hew2¥HEW2.exe)

3. The environment has been built up completely.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-9
REJ05B0464-0300

• Custom Project Generator usage example:

An example of using the installed Custom Project Generator template is provided below.

1. Start HEW and choose [Create a new project workspace] in the [Welcome!] dialog box. The installed project type is
added to the [Projects] list. Click on the project type and click on the [OK] button.

You can now proceed with program development using the stored project template for any new project.

• Note:

This feature is supported by HEW 2.0 or later.

7.1.5 Multi-CPU Feature

• Description:

When inserting a new project in the workspace, you can insert a CPU of another type. This enables SH and H8 projects to
be managed in a single workspace.

• Example of inserting a different CPU family:

1. When an SH (H8) project is open, click on [Project -> Insert Project...]. In the [Insert Project] dialog box, select a new
project and click on the [OK] button.

Created project type

Section 7 Using HEW

Rev.3.00 2005.09.12 7-10
REJ05B0464-0300

2. The following [Insert New Project] dialog box appears: Select a project name, select SH (H8) as the CPU type, and
click on the [OK] button. You can place different CPU types in addition to the current CPU types in the workspace.

3. With the procedure above, you can mix SH and H8 projects in a single workspace.

• Note:

This feature is supported by HEW 3.0 or later.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-11
REJ05B0464-0300

7.1.6 Networking Feature

• Description:

HEW allows workspaces and projects to be shared by different users via a network.

Therefore, users can learn changes that other users have made, by manipulating the shared project at the same time.

This system uses one computer as its server.

For example, if a client adds a new file to a project, the server machine is notified, and then notifies the other clients of the
addition.

In addition, users can be granted rights for access to specific projects or files.

• Network access setup:

1. Choose [Tools -> Options...] and select the [Network] tab. Check the [Enable network data access] check box.

2. An administrator is added. Since the administrator does not have a password initially, you need to specify a password.
The administrator should be granted the highest access right.

3. Click on the [Password…] button and specify a password for the administrator.

4. Click on the [OK] button. This allows the administrator access to the network.

Server

Client A Client B Client C

Report on additionReport on file addition

File addition

Section 7 Using HEW

Rev.3.00 2005.09.12 7-12
REJ05B0464-0300

[Network] Tab of the [Options] dialog box

[Change password] dialog box

Check

Password setting

Access rights
setting
User addition

Login Button

Section 7 Using HEW

Rev.3.00 2005.09.12 7-13
REJ05B0464-0300

• Adding a new user:

By default, an administrator and a guest have been added. You can register new users.

1. Click on the [Log in...] button shown on the previous page. Log in as a user granted administrator access right.

2. Click on the [Access rights…] button to open the following [User access rights] dialog box.

3. Click on the [Add…] button to open the [Add new user] dialog box.

4. Enter a new user name and password.(Password specification is mandatory.)

User name list

Access rights selection

Section 7 Using HEW

Rev.3.00 2005.09.12 7-14
REJ05B0464-0300

• Selecting the server machine

Select the machine that will work as the server. If you want to make your own machine the server, you do not have to do
anything.

If you want to specify another machine as the server, click on the [Select server…] button in the [Options] dialog box.
Choose [Remote] in the following dialog box, and then specify a computer name.

Click on the [OK] button. Your specification will be put into effect.

• Note:

This feature is supported by HEW 3.0 or later.

Use of this feature will lower the HEW performance.

7.1.7 Converting from Old HEW Version

Here, the method for specifying the compiler version within the Renesas Integrated
Development Environment is explained. Compiler versions can be specified by upgrading the Renesas Integrated
Development Environment.

If the workspace created in an old version (such as HEW1.1:H8C 3.0C) is opened in a new version (such as HEW3.0:H8C
6.0), the following dialog box appears.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-15
REJ05B0464-0300

(1) Checking the project to be upgraded.

Check the name of the project to be upgraded.

High-performance Embedded Workshop

(2) Specifying the Compiler Version

Select the Compiler version which can be upgraded.

Change Toolchain Version Dialog Box

Section 7 Using HEW

Rev.3.00 2005.09.12 7-16
REJ05B0464-0300

(3) Confirmation message

The C/C++ Compiler Ver.4.0 and later versions support only the file format ELF/DWARF for the object to be output.

The file format is changed to ELF/DWARF format at upgrading. If the current debugging environment does not support
the ELF/DWARF format, convert the ELF/DWARF format to the format supported by the debugging environment after
upgrading.

Confirmation Message Dialog Log

(4) Standard Library Generator Options

After upgrading, Standard Library Tab Category: [Mode] in the Standard Library Generator is changed to Build a
library file(anytime), so should be careful.

7.1.8 Converting a HIM Project to a HEW Project

By using the HimToHew tool supplied with the HEW system, you can convert HIM projects into HEW projects.

In the [Programs (P)] on the Windows® [Start Menu], select [Him To Hew Project Converter] from [Renesas High-
performance Embedded Workshop].

You will find Single and Multiple tabs.

Select the Single tab when generating an HEW workspace and an HEW project from one HIM project.

Select the Multiple tab when converting multiple HIM projects into HEW projects and registering them in an HEW
workspace in batch.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-17
REJ05B0464-0300

(1) Single tab

Press this button to start conversion.

Displays the conversion result.
If the conversion has been performed
successfully, Project converted
successfully is displayed.

Displays the conversionstatus.

Specify a converted
HEW w orkspace
name.

Specify a HIM project.
f iles

In the next step, start the HEW.

Select Browse to another project workspace, click on the [OK] button, and specify the HEW project that has been
converted.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-18
REJ05B0464-0300

The HEW project is opened as shown below:

Specify [Build Build] to execute the building process. On the command menu, click here.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-19
REJ05B0464-0300

(2) Multiple tab

This tab converts multiple HIM projects into HEW projects.

Specify the directory in which the HIM
projects are stored.

Specify the HIM w orkspace name.

Select the H8S,H8/300 CPU family.

Displays the conversion status.

Displays the conversion results.

Press this button to start the conversion.

After the conversion, start the HEW as in the case of the Single tab in order to build the converted HEW workspace.

7.1.9 Add Supported CPUs

• Description:

HEW can automatically generate I/O register definition and vector table files, but HEW cannot support new CPUs which
are released after HEW release.

In this case, the tool DeviceUpdater can make HEW support new CPUs.

And this tool can update generated files to bug fixed version.

• How to get DeviceUpdater

Download from the following URL of Renesas Technology Corp.

Please refer to Notes of this page, too.

http://www.renesas.com/

Section 7 Using HEW

Rev.3.00 2005.09.12 7-20
REJ05B0464-0300

• Execution Results of DeviceUpdater

CPU types are added as follows.

• Notes

This feature is supported by HEW 2.2 or later.

7.2 Simulations

7.2.1 Pseudo-interrupts

• Description:

Pseudo-interrupt buttons, which simulate certain interrupt causes, when clicked on, can cause pseudo-interrupts manually.

For each button, specify an interrupt priority and interrupt condition.

• Usage:

1. When you choose [View -> CPU -> Trigger], the following view appears:

Section 7 Using HEW

Rev.3.00 2005.09.12 7-21
REJ05B0464-0300

2. Click the right mouse button on this view and choose [Setting…].The [Trigger Setting] dialog box appears.

If you check the [Enable] check box, the interrupt identified by trigger number 1 is enabled.

In addition, specify an interrupt name, interrupt priority, and interrupt condition (vector number).

The interrupt button identified by trigger number 1 becomes active.

3. The setting is now complete. When one of the buttons that was set during the above procedure is clicked on, the
program will stop as specified by the pertinent vector table.

• Note:

This feature is supported by HEW 2.1 or later.

7.2.2 Convenient Breakpoint Functions

• Description:

The HEW breakpoint facility includes the following convenient functions, which will be activated not only upon ordinary
breaks, but when a break condition is satisfied.

File input
File output
Interrupt

• How to display a breakpoint view:

HEW 2.2 or earlier: Choose [View -> Code -> Breakpoints]
HEW 3.0 or later: Choose [View -> Code -> Eventpoints]

Note: For HEW 3.0 or later, go to the [Breakpoints] view and click on the [Software Event] tab.

• File input setting example:

Right-click on the [Breakpoints] view and choose [Setting…] to open the following [Set Break] dialog box. As shown
below, PC breakpoint is used so that a break condition is considered as satisfied when the PC reaches the following
address. The setting method is similar for other breakpoint types.

Click on the [Action] tab, select [File Input] in the [Action type] field, specify an input file name, an input address, and
other items, and then click on the [OK] button.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-22
REJ05B0464-0300

([Condition] tab) ([Action] tab)

• File input action example:

Let’s see the following practical action example:

As the result of the above setting, the breakpoint is at [H'00000814] and the input file contains [H'FF].

Run the program using the Go command or similar method.

(Source code fragment)

You can see that, when the PC reaches [H'00000814], the break condition is satisfied and, as a consequence, the memory
contents of address H'F000 change.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-23
REJ05B0464-0300

• File output setting example:

The method for file output setting in the [Set Break] dialog box is similar to the method for file input setting. For file
output breakpoints, PC breakpoint is also used so that a break condition is considered as satisfied when the PC reaches the
following address. Click on the [Action] tab, select [File Output] in the [Action Type] field, specify an output file name,
an output address, and other items, and then click on the [OK] button.

([Condition] tab) ([Action] tab)

• File output action example:

Let’s see the following practical action example:

As the result of the above setting, the breakpoint is at [H'00000814] and the contents of address H'F000 are [H'FF].

Run the program using the Go command or similar method.

(Source code fragment)

Section 7 Using HEW

Rev.3.00 2005.09.12 7-24
REJ05B0464-0300

You can see that, when the PC reaches [H'00000814], the break condition is satisfied and, as a consequence, the contents
of address H'F000 are output to the file.

• Interrupt setting example:

The method for file output setting in the [Set Break] dialog box is similar to the method for file input setting. As shown
below, PC breakpoint is used so that a break condition is considered as satisfied when the PC reaches the following
address. The setting method is similar for other breakpoint types.

Click on the [Action] tab, select [Interrupt] in the [Action Type] field, specify an interrupt priority and an interrupt type
(vector number 7), and click on the [OK] button.

([Condition] tab) ([Action] tab)

• Interrupt action example:

Let’s see the following practical action example:

While the breakpoint is set at [H'00000814] as the result of the above setting, run the program by the Go command or
similar method.

You can see that, when the PC reaches [H'00000814], a non-maskable interrupt (NMI) of vector number 7 will occur.

(Sample.dat contents as seen on a binary editor)

Section 7 Using HEW

Rev.3.00 2005.09.12 7-25
REJ05B0464-0300

(Source code fragment)

7.2.3 Coverage Feature

• Description:

HEW allows users to collect statement coverage information within a user-specified address range during program
execution. By using statement coverage information, you can observe how each statement is being executed. In addition,
you can easily identify program code that has not been executed.

• How to open the [Open Coverage] dialog box:

[View -> Code -> Coverage...]

• How to collect new coverage information:

1. Open the [Open Coverage] dialog box, choose [New Window], and enter the start and end addresses that identify the
range from which you want to obtain coverage information. If the HEW version is 3.0 or later, you can specify a C or
C++ source file name to identify the information you want to collect.

To complete the above specification, click on the [OK] button.

(Address specification)

Section 7 Using HEW

Rev.3.00 2005.09.12 7-26
REJ05B0464-0300

(File name specification) * Supported by HEW 3.0 or later

2. When you click on the [OK] button, the following coverage view appears:

On the right view, click the right mouse button and choose [Enable]. The coverage is enabled.

3. Let’s run the program. Notice that the right coverage view contains a line with the [Times] column changed to 1. This
indicates that the statement at the address corresponding to this line has been executed.

On the left view, the C0 coverage value within the address range is displayed.

Note: The left coverage view exists when the HEW version is 3.0 or later.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-27
REJ05B0464-0300

4. In addition to the coverage view, you can use another method to see coverage information. A left column on the editor
screen indicates whether program execution has passed a particular source line.

• Save Data:

To save coverage information, click the right mouse button on the right coverage view and enter a file name with the
extension* .cov.

• Information collection using existing coverage information:

You can rarely obtain a single collection of coverage information that covers the entire program.

You may want to increase the coverage percentage while repeating coverage collection steps, each of which is performed
under a different test condition.

For this purpose, specify a file that has been saved in the [Save Data] and select [Open a recent coverage file] or [Browse
to another coverage file] in the [Open Coverage] dialog box. Then click on the [OK] button.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-28
REJ05B0464-0300

The coverage view opens. Run the program again under a new condition.

As shown below, the coverage view and the editor display new information reflecting the current run, such as the number
of runs and the new C0 coverage value.

7.2.4 File I/O

• Description:

HEW used to rely on the I/O simulation feature in order to simulate file I/O operations instead of actually performing file
I/O.

However, HEW now allows actual files to be input or output if the following files are replaced.

• How to obtain files:

Download the files from the "Guideline for File Operatable Low-Level Interface Routines for Simulator and Debugger"
page on the following URL of Renesas Technology Corp.

http://www.renesas.com/

• How to create the environment:

(1) Create a project by HEW.

Select [Application] or [Demonstration] as the project type.

A number of files are created automatically under the created project.

(If you have selected [Application] as the project type, check the [Use I/O Library] check box at project creation step
3.

The value specified in the [Number of I/O Stream] field must be at least the number of actually handled files + 3
(number of standard I/O files.

(2) Of the created files, replace "lowsrc.c" and "lowlvl.src".*1

(3) Create the "C:\Hew2\stdio" directory.*2

(4) Perform a rebuild to create a simulator/debugger environment in which file I/O is possible.

Notes: 1. lowsrc.c-

These files are common to SH and H8.

Replace the file with the "lowsrc.c" file contained in the project.

-lowlvl.src-

This file varies from one CPU to another.

Replace this file with the "lowlvl.src" file contained in the folder corresponding to the CPU that has created the
project.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-29
REJ05B0464-0300

2. In the created environment, standard I/O files will be actually opened when program code for file I/O
processing is encountered, unlike the practice performed so far – simulation of file opening.

Since these files are defined so that they should be created in "C:\Hew2\stdio", you must create the directory as
explained in Item (3).If this directory does not exist, HEW will not work normally.

When the simulator runs, these files are opened by INIT_IOLIB() in the "lowsrc.c" file contained in the
project.

 stdin = 0

 stdout = 1

 stderr = 2

• Example of Use:

As in the following example, consider the use of printf or a similar method to output characters to the standard output
(stdout):

When you run this program, it creates a file named stdout in the "c:\Hew2\stdio" directory you have already created. The
file contents are as follows:

(Sample program code)

void main(void)
{

printf("***** ID-1 OK *****\n");
}

(Contents of stdout)

***** ID-1 OK *****

Section 7 Using HEW

Rev.3.00 2005.09.12 7-30
REJ05B0464-0300

• How to redirect I/O:

To redirect I/O, change this in the _INIT_IOLIB function in the lowsrc.c file.

7.2.5 Debugger Target Synchronization

• Description:

HEW allows you to debug multiple targets on a single instance of HEW.

This means that you can debug multiple targets at the same time while synchronizing them with each other.

In addition, you can raise an event (such as a step or Go) in one session in synchronization with the same event in another
session.

HEW

E6000

E10A-USB

E200F

E7

E8

Simulator

Section 7 Using HEW

Rev.3.00 2005.09.12 7-31
REJ05B0464-0300

• How to synchronize debugger targets:

1. Choose [Options -> Debug sessions...] to open the following dialog box and click the [Synchronized Debug] tab.

Check any session you want to synchronize and check the [Enable synchronized debugging] check box.

2. Select [Sync. session] from the session combo box on the [Standard] tool bar.

3. The [Sync. session] tool bar appears in the tool bar. The setting is now complete.

Session combo box displayed
during synchronized debug

Synchronized debug
Session list

Enable/disable
synchronized debug

Section 7 Using HEW

Rev.3.00 2005.09.12 7-32
REJ05B0464-0300

• Available commands:

When synchronized debug is enabled, you can perform the following actions in synchronized mode:

User action Target debugger session 1 Target debugger session 2

[Run] during one of the
sessions

"Run" "Run"

[Step] during one of the
sessions

"Step" "Step"

ESC pressed during one of
the sessions

"Stop" "Stop"

- "Stop" due to a breakpoint or user
program error

Stop (same as when ESC is pressed)

- Stop (same as when ESC is
pressed)

"Stop" due to a breakpoint or user program error

[CPU reset] during one of
the sessions

"CPU reset" "CPU reset"

• Synchronized debug example

An example of executing the step command is provided below.

1. Execute the step during [SH1 – SimSessionSH-1].The following condition results:

 SH – SimSessionSH-1 state H8300 - SimSessionH8-300 state

2. Change the session using the [Sync. session] tool bar.

PC Previous PC

Section 7 Using HEW

Rev.3.00 2005.09.12 7-33
REJ05B0464-0300

3. As shown below, you can see that the PC has also moved to the next line during the [H8300 – SimSessionH8-300]
session.

 SH – SimSessionSH-1 state H8300 SimSessionH8-300 state

• Note:

This feature is supported by HEW 3.0 or later.

7.2.6 How to Use Timers

• Description:

HEW supports prioritization of timers and interrupts.

For each timer, only channel 0 is supported.

HEW support is limited to overflow and compare match interrupts. HEW does not support interrupts that involve terminal
I/O, such as input capture interrupts.

• Supported timer control registers

In the Supported column on the following table, O indicates that the register is supported and ∆ indicates that only the bits
associated with the feature described in the paragraph under [Description] are supported.

Debug platform name Timer name Supported control register Supported

TSTR ∆

TCR ∆

TIER O

TSR O

TCNT O

TGRA O

TGRB O

TGRC O

H8SX TPU0

TGRD O

PC PC

Section 7 Using HEW

Rev.3.00 2005.09.12 7-34
REJ05B0464-0300

• Supported interrupt priority level setting registers

In the Supported column on the following table, O indicates that the register is supported and ∆ indicates that only the bits
associated with the feature described in the paragraph under [Description] are supported.

Debug platform name Supported control register Supported

H8SX IPRF ∆

• Timer simulation method:

Choose [Options -> Simulator -> System...] to open the following [Simulator System] dialog box, check the [Enable
Timer] check box, and specify a ratio between the external clock and the peripheral module clock.

In addition, you can use timer control registers and write program code to enable them as shown below.

If you create a clock that drives timers via a peripheral module, specify the frequency division ratio using an appropriate
timer control register.

Note: Before setting the value to the timer registers, confirm that the access to the timer registers can be done in the
memory tab on the Simulator System dialog box. If the access isn’t permitted, you can nither set the value to the
registers, nor use the timer.

[Enable Timer]
check box

Peripheral Clock Rate

Enable timer ITU0.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-35
REJ05B0464-0300

• How to view timer register settings:

To view settings on timer registers and interrupt priority level setting registers, choose [View -> CPU -> I/O] to open the
following I/O window.

• Note:

This feature is supported by HEW 3.1 or later.

This is valid only with H8SX.

7.2.7 Examples of Timer Usage

• Description:

This subsection outlines how to use compare match and cyclic handler interrupts, using TPU in the H8SX/1650(H8SX) as
an example.

• HEW setup:

Enable the timers by referring to the paragraph entitled “Timer simulation method” in subsection 7.2.6, How to Use
Timers.

• Sample program containing code that raises a compare match interrupt:

The following sample program contains code that raises a compare match interrupt.

1

2

3

4

Section 7 Using HEW

Rev.3.00 2005.09.12 7-36
REJ05B0464-0300

[Explanation of an interrupt generation program]

1. When the TGIED (TGR Interrupt Enable D) bit in TIER (Timer Interrupt Enable register) becomes 1, the interrupt is
enabled.

2. Set the value of TGRD.

3. Start the TPU0 timer.

4. Wait until the value of TCNT0 and TGRD match. (Wait for a compare match)

• Program execution:

Wait until TCNT0 (timer counter 0) and TGRD (timer general register D) match (a compare match occurs) at step 4 in the
paragraph entitled “Explanation of an interrupt generation program.”

When the two match, a compare match interrupt occurs, with the result of calling the following interrupt routine:

For further information, refer to the pertinent hardware manual.

• Sample program containing code for a cyclic handler

The following sample program contains code for a cyclic handler.

When a compare match occurs, the program clears the timer, and then branches control to an interrupt handler.

After the interrupt is serviced, the program lowers the interrupt priority in IPRF (interrupt priority register).

3

4

Section 7 Using HEW

Rev.3.00 2005.09.12 7-37
REJ05B0464-0300

1. When the TGIED (TGR Interrupt Enable D) bit in TIER (Timer Interrupt Enable register) becomes 1, the interrupt is
enabled.

2. Set the value of TGRD.

3. Start the TPU0 timer.

4. Clear the compare match flag.

• Program execution:

The program waits until a compare match occurs. When a compare match occurs, the program passes control to the
following interrupt routine.

The interrupt routine services the interrupt, lowers the interrupt priority level in IMFA, and returns control to the program.

Interrupt processing can be completed in this way.

The program can then be ready to accept the next compare match interrupt.

For further information, refer to the pertinent hardware manual.

In accordance with the HEW specification, when an interrupt occurs, the PC stops at the beginning of the function that has
caused the interrupt.

When simulating a cyclic handler, you need to advance the PC at each cycle by using the Go command or similar method.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-38
REJ05B0464-0300

7.2.8 Reconfiguration of Debugger Target

• Description:

HEW can configure Debugger Target, if you select Application for the project type when creating a new workspace.

However, when creating a new project, you may sometimes not configure this, because you then believe that this is
unnecessary.

If you do, you can use this feature to reconfigure Debugger Target after creating a project.

However, this feature is only available when you select Application for the project type when creating a new workspace.

• Usage:

 HEW Menu: Project > Edit Project Configuration...

• Functions that can be reconfigured:

[Setting method]

You can set a simulator and other debugger targets on the [Target] tab in the [Edit Project Configuration] dialog box.

If a debugger is already connected to the session, you will see a message saying, “This target has already existed. It does
not support duplicated targets” and cannot connect to the debugger target.

• Note:

Reconfiguring a file is supported by HEW 2.1 or later.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-39
REJ05B0464-0300

7.3 Call Walker

Call Walker (stack analysis tool) displays the stack amount by reading the stack information file (*.sni) output by the
optimizing linkage editor or the profile information file (*.pro) output by the simulator debugger.

For the stack amount of the assembly program that cannot be output in the stack information file, the information can be
added or modified by using the edit function.

In addition, the stack amount of whole systems can be calculated.

The information on the edited stack amount can be saved and read as the call information file (*.cal).

And, some call information files can be merged.

7.3.1 Making Stack Information File

According to the following procedures, you can make a stack information file or a profile information file.

• Making stack information file (*.sni)

You can make a stack information file by the following option of the Optimizing Linkage Editor.

Specification Method

Dialog menu: Link/Library Tab Category: [Other] Stack information output

Command line: STACk

Section 7 Using HEW

Rev.3.00 2005.09.12 7-40
REJ05B0464-0300

• Making profile information file (*.pro)

Execute user program by the following [Profile] function.

After the execution, click the right mouse button on [Profile] window, and choose [Output Profile Information Files...] in
order to make a profile information file (*.pro).

For more information about making profile information file, refer to "H8S,H8/300 Series High-performance Embedded
Workshop 3 User’s Manual, 4.12 Viewing the Function Call History".

Choose [View->Performance->Profile] to open the [Profile] window.

7.3.2 Starting Call Walker

Use the following procedure to start Call Walker.

• Starting from start menu

Click [Program-> Renesas High-performance Embedded Workshop->Call Walker]

• Starting from HEW

Click [Tools->Call Walker]

Section 7 Using HEW

Rev.3.00 2005.09.12 7-41
REJ05B0464-0300

7.3.3 File Open and Call Walker Window

After starting Call Walker, choose [File-> Import Stack File...] to open a stack information file (*.sni) or a profile
information file (*.pro).

Choose [File->Open...] to open an existing call information file (*.cal).

After that, the following window is displayed.

Note:

The stack amount of the assembly functions except the standard library is displayed as zero.

Refer to section 7.3.4, Editing the Stack Information File, to set the stack amount.

Call information

View

Symbol

details View

Status Bar

Select Standard

Library Version

Tool Bar

Menu Bar

Maximum

Stack Size

Section 7 Using HEW

Rev.3.00 2005.09.12 7-42
REJ05B0464-0300

• Call information view

Linked-level structure between symbols is displayed.

The amount used by stack is displayed at the left side of each symbol.

(1) Symbol display

Symbol classification (Category) signs are displayed at the left side of each symbol by icon.

Symbol classification (Category) signs are as follows:

: Editing file

: Assembler label

: C/C++ function

: Recursive call function or Circulation function

(a) Recursive call function

Displayed, when the same function is called in itself.

Example:

(b) Circulation function

Displayed, when the same function is called indirectly.

Example:

Section 7 Using HEW

Rev.3.00 2005.09.12 7-43
REJ05B0464-0300

: RTOS function (Example: ITRON symbols)

: Function of which the reference source is unknown. (Referenced by unknown)

In the following example, function(func1) calls function(Undef). When function(Undef) is not defined, this icon is
displayed at function(Undef).

Undefined function call is error at linkage, but link option change_message can modify error to warning. The load
module file is made at warning, so the stack information file is also made.

For more about change_message, refer to 4.2.7 Other Options, Change_message, in the H8S,H8/300 Series C/C++
Compiler, Assembler, Optimizing Linkage Editor User’s Manual.

Example:

: Function of which the address reference has not been resolved. (Address not resolved)

Displayed, when a function is called by the table as follows.

Example:

: Omitted symbol

Since this tool displays all linking layers, the display amounts will be very large if the size is large.

So, only the first layer is displayed and other same parts are omitted by omitted symbols in order to reduce the display
amounts.

Choose [View->Show All Symbols / Show Simple Symbols] to switch this display format.

Example:

Show All Symbols Show Simple Symbols

Section 7 Using HEW

Rev.3.00 2005.09.12 7-44
REJ05B0464-0300

• Symbol details view

For each symbol, address, attribute and the amount used by stack are displayed.

After click symbol, click the right mouse button to execute each editing command.

• Status bar

Function information, CPU type and other information of the current stack information file are displayed.

• Maximum stack size

The static maximum amount used by stack of the current stack information file is displayed

• Selecting standard library version

The standard library version of the current stack information file can be selected.

Using this information, the stack amount of the assembly functions in the standard library is displayed.

When only one HEW package is installed, there is no need to select this.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-45
REJ05B0464-0300

7.3.4 Editing the Stack Information File

After selecting a symbol in the symbol details view (right frame on the screen), choose Add…, Modify…, Delete…
command in Edit menu to add, change, delete the symbol.

Click the right mouse button at the symbol details view, to execute the same editing command.

This tool can measure the static maximum amount used by stack.

In the case such as multiple interrupt, users should edit the file information to measure the dynamic maximum
amount used by stack.

Drag and drop a symbol in the call information view (left frame on the screen) to move the symbol.

While a symbol is moved or edited, a check mark is displayed at the side of the symbol in the call information view (left
frame on the screen) as follows.

The editing commands are explained in the following section.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-46
REJ05B0464-0300

• Add command

(1) Adding an existing symbol

Click [Add…] to display the following dialog box.

The right frame is the existing symbol list of the current file.

Choose a symbol in this list and click on the [OK] button to add the existing symbol.

(2) Adding a new symbol

Check the following [New symbol] check box to add a new symbol.

Symbol name, category, attribute, address, stack size can be specified here.

Existing
symbol list

Section 7 Using HEW

Rev.3.00 2005.09.12 7-47
REJ05B0464-0300

• Modify command

Choose the symbol of which the information is to be changed, and click [Modify…] to display the following dialog box.

Some kind of information can be modified here.

• Delete command

Choose the symbol of which the information is not to be used in the measurement of the amount used by stack, and click
[Delete…] to delete the symbol.

7.3.5 Stack Area Size of Assembly Program

Unlike by C/C++ program, the stack area size used by assembly program cannot be calculated automatically in
assembling. Therefore the stack area size used by assembly functions should be edited by using Call Walker.
But the stack area size is specified in the assembly function by using .STACK directive. Call Walker displays the value
specified by .STACK directive.

• Description of .STACK directive

Defines the stack amount for a specified symbol referenced by using Call Walker.

The stack value for a symbol can be defined only one time; the second and later specifications for the same symbol are
ignored. A multiple of 2 in the range from H'00000000 to H'FFFFFFFE can be specified for the stack value, and any other
value is invalid.

The stack value must be specified as follows:
• A constant value must be specified.
• Forward reference symbol, external reference symbol and relative address symbol must not be used.

• Specification Method of .STACK assembler directive

 ∆.STACK∆<symbol> = <stack value>

Symbol
name

Symbol
category

Address

Function
size

Stack size

Symbol
attribute

Object file

Section 7 Using HEW

Rev.3.00 2005.09.12 7-48
REJ05B0464-0300

• Example of assembly program

• Displayed Example by Call Walker

As the following example, the stack area size used by _asm_symbol function is displayed “88” in Call Walker.

• Remarks

(1) .STACK assembler directive can only make Call Walker display stack size, and does NOT affect the behavior of
program.

(2) This assembler directive is supported in H8S, H8/300 Series Assembler Ver.6.01 or later.

7.3.6 Merging Stack Information

Saved or editing stack information file can be merged with other stack information file.

By using this function, the edited stack information cannot be overwritten with rebuilt stack information.

• Merge example

(1) test.c

(2) Open a stack information file in Call Walker

 .CPU H8SXA:24

 .EXPORT _asm_symbol

 .SECTION P,CODE,ALIGN=2

_asm_symbol:

 .STACK _asm_symbol=88

 :

 RTS

 .END

← Stack Size of _asm_symbol function

Section 7 Using HEW

Rev.3.00 2005.09.12 7-49
REJ05B0464-0300

(3) Change stack size of func1 to 100

(4) Change test.c and rebuild (add func2 call)

(5) Open test.sni, while opening test.cal

Check the following [Merge specified file] check box, and click on the [Open] button.

(6) After that, the stack information is merged.

The stack size of func1 that is changed at (3) is used and the information of func2 is added.

When [Merge specified file] check box is not checked at (5), the stack size of func1 that is changed at (3) is overwritten
with the rebuilt value, which is the same as before changed.

Section 7 Using HEW

Rev.3.00 2005.09.12 7-50
REJ05B0464-0300

• Merge option

Merge method can be modified by possible five ways.

For more about this, refer to Description in this dialog.

[Specification method]

Tools menu->Merge Option…

• Remarks

This merge function is valid in Call Walker Ver.1.3 or later.

7.3.7 Other Functions

• Realtime OS symbol

Specify the following, to display a realtime OS symbol as in the call information view (left frame on the screen).

[Specification method]

Tools menu->Realtime OS Option…

• Output list

The stack information is output to the text file.

[Specification method]

File menu->Output List…

Section 7 Using HEW

Rev.3.00 2005.09.12 7-51
REJ05B0464-0300

• Find

Two ways of search are available in the call information view by the following dialog.

(1) Search the pass of maximum stack size

(2) Search the symbol name

[Specification method]

Edit menu->Find…
Edit menu->Find Next… (Search next)
Edit menu->Find Previous… (Search previous)

• Setting display format in the call information view

Two ways of display format for the amount used by stack are available by the following command.

(1) Show Required Stack

Stack size is added from lower symbol to upper.

(2) Show Used Stack

Stack size is added from upper symbol to lower.

[Specification method]

View menu-> Show Required Stack or Show Used Stack

Section 7 Using HEW

Rev.3.00 2005.09.12 7-52
REJ05B0464-0300

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-1
REJ05B0464-0300

Section 8 Efficient C++ Programming Techniques

The Compiler supports the C++ and C languages.

This chapter describes in detail the options of an object-oriented language C++ and how to use the various C++ functions.

Code a C++ program for an embedded system with caution. Otherwise, the program will have a larger object size or a
lower processing speed than expected.

Therefore, this chapter presents some cases in which the performance of a C++ program is deteriorated compared with C
as well as codes with which you can work around such performance deterioration.

The following table shows a list of efficient C++ programming techniques:

No. Category Item Section

1 Initialization
Processing/Post-
processing

Initialization Processing and Post-processing of Global
Class Object

8.1.1

2 How to Reference a C Object 8.2.1

3 How to Implement new and delete 8.2.2

4

Introduction to C++
Functions

Static member variable 8.2.3

4 C++ Language for Embedded Applications 8.3.1

5 Run-time Type Information 8.3.2

6 Exception Handling Function 8.3.3

7

How to Use Options

Disabling Startup of Prelinker 8.3.4

8 Constructor (1) 8.4.1

9 Constructor (2) 8.4.2

10 Default Parameter 8.4.3

11 Inline Expansion 8.4.4

12 Class Member Function 8.4.5

13 operator Operator 8.4.6

14 Function Overloading 8.4.7

15 Reference Type 8.4.8

16 Static Function 8.4.9

17 Static Member Variable 8.4.10

18 Anonymous union 8.4.11

19

Advantages and
Disadvantages of C++
Coding

Virtual Function 8.4.12

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-2
REJ05B0464-0300

8.1 Initialization Processing/Post-Processing

8.1.1 Initialization Processing and Post-Processing of Global Class Object

• Important Points:

To use a global class object in C++, you need to call the initialization processing function (_CALL_INIT) and the post-
processing function (_CALL_END) before and after the main function, respectively.

• What is a global class object?

A global class object is a class object that is declared outside of a function.

• Why is initialization processing/post-processing necessary?

If a class object is declared inside a function as shown above, the constructor of class X is called when function main is
executed.

In contrast, a global class object declaration is not executed even when a function is executed.

Thus, you need to call _CALL_INIT before calling the main function in order to explicitly call the constructor of class X.
Likewise, call _CALL_END after calling the main function in order to call the destructor of class X.

• Operations when using and not using _CALL_INIT/_CALL_END:

The following shows the values obtained when the value of member variable x of class X is referenced.

When not using _CALL_INIT/_CALL_END, no correct value can be obtained and no expression in the while statement
will be executed as follows:

class X{
int x;

public:
X(int n){x = n}; // constructor
~X(){} // destructor

void Sample2(void);
};
X XSample(10); // global class object
void X::Sample2(void)
{

while(x == 10)
{
}

}
void main(void)
{

X* P = &XSample;

P->Sample2();
}

<-- Reference position

(Value of member variable x)

When using _CALL_INIT --> 10

When not using _CALL_INIT --> 0

(Class object declaration inside a function) (Global class object declaration)

X XSample(10);
void main(void)
{

X* P = &XSample;

P->Sample2();
}

void main(void)
{

X XSample(10);
X* P = &XSample;

P->Sample2();
}

Declared outside of a function

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-3
REJ05B0464-0300

• How to call _CALL_INIT/_CALL_END:

Provide the following code before and after calling the main function.

If HEW is used, remove the comment characters in the section for calling _CALL_INIT/_CALL_END of resetprg.c.

(PowerON_Reset function of resetprg.c)

void INIT(void)
{

_INITSCT();
_CALL_INIT();
main();
_CALL_END();

}

__entry(vect=0) void PowerON_Reset(void)
{

set_imask_ccr(1);
_INITSCT();

 _CALL_INIT(); // Remove the comment when you use global class object

// _INIT_IOLIB(); // Remove the comment when you use SIM I/O

// errno=0; // Remove the comment when you use errno
// srand(1); // Remove the comment when you use rand()
// _s1ptr=NULL; // Remove the comment when you use strtok()

HardwareSetup(); // Use Hardware Setup
set_imask_ccr(0);

main();

// _CLOSEALL(); // Remove the comment when you use SIM I/O

 _CALL_END(); // Remove the comment when you use global class object

sleep();
}

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-4
REJ05B0464-0300

8.2 Introduction to C++ Functions

8.2.1 How to Reference a C Object

• Important Points:

Use an 'extern "C"' declaration to directly use in a C++ program the resources in an existing C object program.

Likewise, the resources in a C++ object program can be used in a C program.

• Example of Use:

1. Use an 'extern "C"' declaration to reference a function in a C object program.

2. Use an 'extern "C"' declaration to reference a function in a C++ object program.

• Important Information:

1. A C++ object generated by a previous-version compiler cannot be linked because the encoding and executing methods
have been changed.

Be sure to recompile it before using it.

2. A function called in the above method cannot be overloaded.

(C++ program)

extern "C" void CFUNC();

void main(void)

{

X XCLASS;

XCLASS.SetValue(10);

CFUNC();

}

(C program)

extern void CFUNC();

void CFUNC()

{

 while(1)

 {

 a++;

 }

}

(C program)

void CFUNC()

{

 CPPFUNC();

}

(C++ program)

extern "C" void CPPFUNC();

void CPPFUNC(void)

{

while(1)

{

 a++;

}

}

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-5
REJ05B0464-0300

8.2.2 How to Implement new and delete

• Important Points:

To use new, implement a low-level function.

• Description:

If new is used in an embedded system, the dynamic allocation of actual heap memory is realized using malloc.

Thus, implement a low-level interface routine (sbrk) to specify the size of heap memory to be allocated just as when using
malloc.

• Implementation Method:

To use HEW, make sure that [Use Heap Memory] is checked when a workspace is created.

If this option is checked, sbrk.c and sbrk.h shown on the next page will be automatically created.

Specify the size of heap memory to be allocated in Heap Size.

To change the size after creating a workspace, change the value defined in HEAPSIZE in sbrk.h.

If HEW is not used, create a file shown on the next page and implement it in a project.

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-6
REJ05B0464-0300

8.2.3 Static Member Variable

• Description:

In C++, a class member variable with the static attribute can be shared among multiple objects of a class type.

Thus, a static member variable comes in handy because it can be used, for example, as a common flag among multiple
objects of the same class type.

• Example of Use:

Create five class-A objects within the main function.

Static member variable num has an initial value of 0. This value will be incremented by the constructor every time an
object is created.

Static member variable num, shared among objects, will have a value of 5 at the maximum.

(sbrk.h)

/* size of area managed by sbrk */
#define HEAPSIZE 0x420

(sbrk.c)

#include <stdio.h>
#include "sbrk.h"

//const size_t _sbrk_size= /* Specifies the minimum unit of */
 /* the defined heap area */

static union {
 long dummy ; /* Dummy for 4-byte boundary */
 char heap[HEAPSIZE]; /* Declaration of the area managed */
 /* by sbrk */
 }heap_area ;

static char *brk=(char *)&heap_area;/* End address of area assigned */

/**/
/* sbrk:Data write */
/* Return value:Start address of the assigned area (Pass) */
/* -1 (Failure) */
/**/
char *sbrk(size_t size) /* Assigned area size */
{
 char *p;

 if(brk+size>heap_area.heap+HEAPSIZE) /* Empty area size */
 return (char *)-1 ;

 p=brk ; /* Area assignment */
 brk += size ; /* End address update */
 return p ;
}

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-7
REJ05B0464-0300

• FAQ:

The following lists some frequently asked questions on using a static member variable.

[L2310 Error Occurred]

When a static member variable is used, message "** L2310 (E) Undefined external symbol "class-name::static-member-
variable-name" referenced in "file-name"" is output at linkage.

[Solution]

This error occurs because the static member variable is not defined.

Add either of the following definition as shown on the next page:

If there is an initial value: int A::num = 0;
If there is no initial value: int A::a;

[Unable to assign an initial value]

No initial value is assigned to a static member variable to be initialized.

[Solution]

A static member variable to be initialized, handled as a variable with an initial value, is created in the D-section by default.
Thus, specify the ROM implementation support option of the optimization linkage editor and, in the initial routine, copy
the D-section from the ROM to the RAM using the _INITSCT function.

Note: This solution is not required if HEW automatically creates an initial routine.

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-8
REJ05B0464-0300

8.3 How to Use Options

8.3.1 C++ Language for Embedded Applications

• Description:

The ROM/RAM sizes and the execution speed are important for an embedded system.

The C++ language for embedded applications (EC++) is a subset of the C++ language. For EC++, some of the C++
functions not appropriate for an embedded system have been removed.

Using EC++, you can create an object appropriate for an embedded system.

• Specification method:

Dialog menu: C/C++ tab Category: Other tab, Check against EC++ language specification

Command line: eccp

(C++ program)

class A

{

private:

static int num;

public:

A(void);

~A(void);

};

int A::num = 0;

void main(void)

{

A a1;

A a2;

A a3;

A a4;

A a5;

}

A::A(void)

{

++num;

}

A::~A(void)

{

--num;

}

Creating a class A-type class object

Incrementing a static member variable

Defining a static member variable

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-9
REJ05B0464-0300

• Unsupported keywords:

An error message will be output if either of the following keywords is included.

catch, const_cast, dynamic_cast, explicit, mutable, namespace, reinterpret_cast, static_cast, template, throw, try, typeid,
typename, using

• Unsupported language specifications:

A warning message will be output if either of the following language specifications is included.

Multiple inheritance, virtual base class

8.3.2 Run-time Type Information

• Description:

In C++, a class object with a virtual function may have a type identifiable only at run-time.

A run-time identification function is available to provide support in such a situation.

To use this function in C++, use the type_info class, typeid operator, and dynamic_cast operator.

For the Compiler, specify the following option to use run-time type information.

Additionally, specify the following option at linkage to start up the prelinker.

• Specification method:

Dialog menu: CPU tab, Enable/disable runtime type information

Command line: rtti=on | off

Dialog menu: Link/Library tab, Category: Input tab, Prelinker control
Then, select Auto or Run prelinker.

Command line: Do not specify noprelink (default).

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-10
REJ05B0464-0300

• Example of Use of type_info Class and typeid Operator:

The type_info class is intended to identify the run-time type of an object.

Use the type_info class to compare types at program execution or acquire a class type.

To use the type_info class, specify a class object with a virtual function using the typeid operator.

#include <typeinfo.h>

#include <string>

class Base{

protected:

string *pname1;

public:

Base() {

pname1 = new string;

if (pname1)

*pname1 = "Base";

}

virtual string Show() {return *pname1;}

virtual ~Base() {

if (pname1)

delete pname1;

}

};

class Derived : public Base{

string *pname2;

public:

Derived() {

pname2 = new string;

if (pname2)

*pname2 = "Derived";

}

string Show() {return *pname2;}

~Derived() {

if (pname2)

delete pname2;

}

};

void main(void)

{

Base* pb = new Base;

Derived* pd = new Derived;

const type_info& t = typeid(pb);

const type_info& t1 = typeid(pd);

t.name();

t1.name();

}

Base class

Must be included

Derived class

Virtual function

Virtual
destructor

Virtual function

Virtual
destructor

Acquiring type name [Base *]

Acquiring type name [Derived *]

Specifying a
class object

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-11
REJ05B0464-0300

• Example of Use of dynamic_cast Operator:

Use the dynamic_cast operator, for example, to cast at run-time a pointer or reference of the derived-class type to a pointer
or reference of the base-class type between a class including a virtual function and its derived class.

#include <string>

class Base{

protected:

string *pname1;

public:

Base() {

pname1 = new string;

if (pname1)

*pname1 = "Base";

}

virtual string Show() {return *pname1;}

virtual ~Base() {

if (pname1)

delete pname1;

}

};

class Derived : public Base{

string *pname2;

public:

Derived() {

pname2 = new string;

if (pname2)

*pname2 = "Derived";

}

string Show() {return *pname2;}

~Derived() {

if (pname2)

delete pname2;

}

};

void main(void)

{

Derived *pderived = new Derived;

Base *pbase = dynamic_cast<Base *> (pderived);

string ddd;

ddd = pbase-> Show();

delete pbase;

}

Base class

Derived class

Virtual function

Virtual
destructor

Virtual function

Virtual
destructor

Acquiring class
name Base

Cast to Base * at
run-time

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-12
REJ05B0464-0300

8.3.3 Exception Handling Function

• Description:

Unlike C, C++ has a mechanism for handling an error called an exception.

An exception is a means for connecting an error location in a program with an error handling code.

Use the exception mechanism to put together error handling codes in one location.

For the Compiler, specify the following option to use the exception mechanism.

• Specification method:

Dialog menu: CPU tab, Use try, throw and catch of C++

Command line: exception

• Example of Use:

If opening of file "INPUT.DAT" fails, initiate the exception handling and display an error in the standard error output.

• Important Information:

The coding performance may deteriorate.

(C++ program example for exception handling)

void main(void)

{

try

{

if ((fopen("INPUT.DAT","r"))==NULL){

char * cp = "cannot open input file\n";

throw cp;

}

}

catch(char *pstrError)

{

fprintf(stderr,pstrError);

abort();

}

return;

}

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-13
REJ05B0464-0300

8.3.4 Disabling Startup of Prelinker

• Description:

Starting up the Prelinker will reduce the link speed. The Prelinker need not be running unless the template function or run-
time type conversion of C++ is used.

To use the Linker from a command line, specify the following noprelink option.

If Hew is used and the Prelinker control list box is set to Auto, the output of the noprelink option will be automatically
controlled.

• Specification method:

Dialog menu: Link/Library tab, Category: Input tab, Prelinker control

Command line: noprelink

8.4 Advantages and Disadvantages of C++ Coding

The Compiler, when compiling a C++ program, internally converts the C++ program to a C program to create an object.

This chapter compares a C++ program and a C program after conversion and describes the influences on coding efficiency
of each function.

No. Function
Development and
maintenance Size Reduction Speed Section

1 Constructor (1) ∆ ∆ 8.4.1

2 Constructor (2) ∆ ∆ 8.4.2

3 Default parameter O O 8.4.3

4 Inline expansion O ∆ O 8.4.4

5 Class member function ∆ ∆ 8.4.5

6 operator Operator ∆ ∆ 8.4.6

7 Function overloading O O 8.4.7

8 Reference type O O 8.4.8

9 Static function O O 8.4.9

10 Static member variable O O 8.4.10

11 Anonymous union O O 8.4.11

12 Virtual function ∆ ∆ 8.4.12

 : Same as C
 O : Requiring caution in use
 ∆ : Performance decrease

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-14
REJ05B0464-0300

8.4.1 Constructor (1)

Development and
maintenance

Size Reduction ∆ Speed ∆

• Important Points:

Use a constructor to automatically initialize a class object. However, use it with caution because it will influence the object
size and processing speed as follows:

• Example of Use:

Create a class-A constructor and destructor and compile them.The size and processing speed will be influenced because
the constructor and destructor will be called in the class declaration and decisions will be made in the constructor and
destructor codes.

(C++ program)

class A

{

private:

int a;

public:

A(void);

~A(void);

int getValue(void){ return a; }

};

void main(void)

{

A a;

b = a.getValue();

}

A::A(void)

{

a = 1234;

}

A::~A(void)

{

}

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-15
REJ05B0464-0300

8.4.2 Constructor (2)

Development and
maintenance

Size Reduction ∆ Speed ∆

• Important Points:

To declare a class in an array, use a constructor to automatically initialize a class object. However, use it with caution
because it will influence the object size and processing speed as follows:

• Example of Use:

Create a class-A constructor and destructor and compile them.The memory needs to be dynamically allocated and
deallocated because the constructor and destructor are called in the class declaration but are declared in the array.

Use new and delete to dynamically allocate and deallocate the memory.

This requires implementation of a low-level function. (For details on the implementation method, refer to 9.2.2 Execution
Environment Settings, in the H8S,H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor User’s Manual)

The size and processing speed will be influenced because decisions and the low-level function processing are added in the
constructor and destructor codes.

(C program after conversion)

struct A {

int a;

};

void *_nw__FUl(unsigned long);

void __dl__FPv(void *);

void main(void);

struct A *__ct__A(struct A *);

void __dt__A(struct A *const, int);

void main(void)

{

struct A a;

__ct__A(&a);

_ b = ((a.a));

__dt__A(&a, 2);

}

Constructor call

Destructor call

struct A * __ct__A(struct A *this)

{

if(this != (struct A *)0

 || (this = (struct A

*)_nw__FUl(4)) != (struct A *)0)

{

(this->a) = 1234;

}

return this;

}

void __dt__A(struct A *const this,

int flag)

{

if (this != (struct A *)0){

if (flag & 1) {

dl__FPv((void *)this);

}

}

return;

}

Destructor code

Constructor code

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-16
REJ05B0464-0300

(C++ program)

class A

{

private:

int a;

public:

A(void);

~A(void);

int getValue(void){ return a; }

};

void main(void)

{

A a[5];

b = a[0].getValue();

}

A::A(void)

{

a = 1234;

}

A::~A(void)

{

}

(C program after conversion)

struct A {

int a;

};

void *__nw__FUl(unsigned long);

void __dl__FPv(void *);

void main(void);

void *__vec_new();

void __vec_delete();

struct A *__ct__A(struct A *);

void __dt__A(struct A *const, int);

void main(void)

{

struct A a[5];

__vec_new((struct A *)a, 5, 4,

__ct__A);

_ b = ((__34_4_a.a));

__vec_delete(&a, 5, 4, __dt__A,

0, 0);

}

struct A *__ct__A(struct A *this)

{

if((this != (struct A *)0)

 || ((this = (struct A

*)__nw__FUl(4)) != (struct A *)0))

{

(this->a) = 1234;

}

return this;

}

void __dt__A(struct A *const this,

int flag)

{

if (this != (struct A *)0){

if (flag & 1){

__dl__FPv((void *)this);

}

}

return;

}

Constructor call

Destructor call

Destructor code

Constructor code

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-17
REJ05B0464-0300

8.4.3 Default Parameter

Development and
maintenance

Size Reduction O Speed O

• Important Points:

In C++, a default parameter can be used to set a default used when calling a function.

To use a default parameter, specify a default value for parameters of a function when declaring the function.

This will eliminate the need of specifying a parameter in many of the function calls and enable the use of a default
parameter instead, thus improving the development efficiency.

A parameter value can be changed if a parameter is specified.

• Example of Use:

The following shows an example of calling function sub when 0 is specified as a default parameter value in the declaration
of function sub.

As shown below, no parameter needs to be specified if the default parameter value is acceptable when calling function
sub.Moreover, the efficiency of a program is not deteriorated even when it is converted into C.

In sum, a default parameter ensures superior development and maintenance efficiency and has no disadvantage compared
with C.

(C++ program)

void main(void);

int sub(int, int = 0);

void main(void)

{

int ret1;

int ret2;

ret1 = sub(1,2);

ret2 = sub(3);

}

int sub(int a, int b /* =0 */)

{

return a + b;

}

(C program after conversion)

void main(void);

int sub(int, int);

void main(void)

{

int ret1;

int ret2;

ret1 = sub(1, 2);

ret2 = sub(3, 0);

}

int sub(int a, int b)

{

return a + b;

}

Specifying 0 as a
parameter value in the
function declaration

No second parameter
specified

Converted to the default
parameter value

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-18
REJ05B0464-0300

8.4.4 Inline Expansion

Development and
maintenance

O Size Reduction ∆ Speed O

• Important Points:

When coding the definition of a function, specify inline in the beginning to cause inline expansion of the function. This
will eliminate the overhead of a function call and improve the processing speed.

• Example of Use:

Specify function sub as an inline function and inline-expand it in the main function.Then, remove the function sub code.

However, function sub cannot be reference from other files.

Use inline expansion with caution because, although the processing speed is certain to improve, the program size will
become too large unless only small functions are used.

8.4.5 Class Member Function

Development and
maintenance

Size Reduction ∆ Speed ∆

• Important Points:

Defining a class will enable information hidingand improve the development and maintenance efficiency.

However, use this technique with caution because it will influence the size and processing speed.

• Example of Use:

In the following example, class member functions set and add are used to access private class member variables a, b, and
c.

When calling a class member function, the parameter specification in a C++ program either has only a value or no
parameter.

(C++ program)

int a;

inline int sub(int x, int y)

{

return (x+y);

}

void main(void)

{

a = sub(1,2);

}

(C program after conversion)

int a;

void main(void)

{

 a = 3;

 return;

}

Expanding the
content of function
sub (1+2=3)

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-19
REJ05B0464-0300

As shown in the C program after conversion, however, the address of class A (struct A) is also passed as a parameter.

Additionally, private class member variables a, b, and c are accessed in the class member function code.

However, the this pointer is used to access them.

In sum, use a class member function with caution because it will influence the size and processing speed.

(C++ program)

class A

{

private:

int a;

int b;

int c;

public:

void set(int, int, int);

int add();

};

int main(void)

{

A a;

int ret;

a.set(1,2,3);

ret = a.add();

return ret;

}

void A::set(int x, int y, int z)

{

a = x;

b = y;

c = z;

}

int A::add()

{

return (a += b + c);

}

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-20
REJ05B0464-0300

(C program after conversion)

struct A {

int a;

int b;

int c;

};

void set__A_int_int(struct A *const, int, int, int);

int add__A(struct A *const);

int main(void)

{

struct A a;

int ret;

set__A_int_int(&a, 1, 2, 3);

ret = add__A(&a);

return ret;

}

void set__A_int_int(struct A *const this, int x, int y, int z)

{

this->a = x;

this->b = y;

this->c = z;

return;

}

int add__A(struct A *const this)

{

return (this->a += this->b + this->c);

}

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-21
REJ05B0464-0300

8.4.6 operator Operator

Development and
maintenance

O Size Reduction ∆ Speed ∆

• Important Points:

In C++, use the keyword, operator to overload an operator.

This will enable simple coding of the user's operations such as matrix operations and vector calculations.

However, use operator with caution because it will influence the size and processing speed.

• Example of Use:

In the following example, unary operator "+" is overloaded using the operator keyword.

If the Vector class is declared as shown below, unary operator "+" can be changed to the user's operation.

However, the size and processing speed will be influenced because, as shown in the C program after conversion, reference
using the this pointer is made.

(C++ program)

class Vector

{

private:

int x;

int y;

int z;

public:

Vector & operator+ (Vector &);

};

void main(void)

{

Vector a,b,c;

a = b + c;

}

Vector & Vector::operator+ (Vector & vec)

{

static Vector ret;

ret.x = x + vec.x;

ret.y = y + vec.y;

ret.z = z + vec.z;

return ret;

}

User's operation (addition)

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-22
REJ05B0464-0300

(C program after conversion)

struct Vector {

int x;

int y;

int z;

};

void main(void);

struct Vector *__plus__Vector_Vector(struct Vector *const, struct Vector *);

void main(void)

{

struct Vector a;

struct Vector b;

struct Vector c;

a = __plus__Vector_Vector(&b, &c);

return;

}

struct Vector *__plus__Vector_Vector(struct Vector *const this, struct

Vector *vec)

{

static struct Vector ret;

ret.x = this->x + vec->x;

ret.y = this->y + vec->y;

ret.z = this->z + vec->z;

return &ret;

}

Reference using the this pointer

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-23
REJ05B0464-0300

8.4.7 Overloading of Functions

Development and
maintenance

Size Reduction O Speed O

• Important Points:

In C++, you can "overload" functions, i.e., give the same name to different functions.

Specifically, this feature is effective when you use functions with the same processing but with different types of
arguments.

Be careful not to give the same name to functions with no commonality because it is sure to cause malfunctions.

The use of this function will not influence the size or processing speed.

• Example of Use:

In the following example, the first and second parameters are added and the resultant value is used as a return value.

All the functions have the same name, add but different parameter and return value types..

As shown in the C program after conversion, the call of the add functions or the code of the add functions do not increase
the code size.

Thus, the use of this feature will not influence the size and processing speed.

(C++ program)

void main(void);

int add(int,int);

float add(float,float);

double add(double,double);

void main(void)

{

int ret_i = add(1, 2);

float ret_f = add(1.0f, 2.0f);

double ret_d = add(1.0, 2.0);

}

int add(int x,int y)

{

return x+y;

}

float add(float x,float y)

{

return x+y;

}

double add(double x,double y)

{

return x+y;

}

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-24
REJ05B0464-0300

(C program after conversion)

void main(void);

int add__int_int(int, int);

float add__float_float(float, float);

double add__double_double(double, double);

void main(void)

{

auto int ret_i;

auto float ret_f;

auto double ret_d;

ret_i = add__int_int(1, 2);

ret_f = add__float_float(1.0f, 2.0f);

ret_d = add__double_double(1.0, 2.0);

}

int add__int_int(int x, int y)

{

return x + y;

}

float add__float_float(float x, float y)

{

return x + y;

}

double add__double_double(double x, double y)

{

return x + y;

}

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-25
REJ05B0464-0300

8.4.8 Reference Type

Development and
maintenance

Size Reduction O Speed O

• Important Points:

The use of a reference-type parameter will enable simple coding of a program and improve the development and
maintenance efficiency.

Additionally, the use of the reference type will not influence the size or processing speed.

• Example of Use:

As shown below, reference-type passing instead of pointer passing will enable simple coding..

In a reference type, not the values but the addresses of a and b are passed.

The use of a reference type, as shown in the C program after conversion, will not influence the size and processing speed.

(C++ program)

void main(void);

void swap(int&, int&);

void main(void)

{

int a=100;

int b=256;

swap(a,b);

}

void swap(int &x, int &y)

{

int tmp;

tmp = x;

x = y;

y = tmp;

}

(C program after conversion)

void main(void);

void swap(int *, int *);

void main(void)

{

int a=100;

int b=256;

swap(&a, &b);

}

void swap(int *x, int *y)

{

int tmp;

tmp = *x;

*x = *y;

*y = tmp;

}

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-26
REJ05B0464-0300

8.4.9 Static Function

Development and
maintenance

Size Reduction O Speed O

• Important Points:

If the class configuration becomes complex due to derived classes, etc., it will be increasingly more difficult to access
static class member variables with the private attribute until they need to be changed to the public attribute.

To access a static class member variable without changing the private attribute in such a case, create a member function to
be used as an interface and specify the static variable in the function.

A static function is thus used to access only static class member variables.

• Example of Use:

As shown on the next page, use a static function to access a static member variable.

Although the use of a class will influence the code efficiency, the use of a static function itself will not influence the size
and processing speed.

• Note:

For details on a static member variable, refer to section 8.2.3, Static Member Variable.

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-27
REJ05B0464-0300

(C++ program)

class A

{

private:

static int num;

public:

static int getNum(void);

A(void);

~A(void);

};

int A::num = 0;

void main(void)

{

int num;

num = A::getNum();

A a1;

num = a1.getNum();

A a2;

num = a2.getNum();

}

A::A(void)

{

++num;

}

A::~A(void)

{

--num;

}

int A::getNum(void)

{

return num;

}

Static member variable

Static function

Accessing the static
member variable

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-28
REJ05B0464-0300

(C program after conversion)

struct A

{

char __dummy;

};

void *__nw__FUl(unsigned long);

void __dl__FPv(void *);

int getNum__A(void);

struct A *__ct__A(struct A *);

void __dt__A(struct A *const, int);

int num__1A = 0;

void main(void)

{

int num;

struct A a1;

struct A a2;

num = getNum__A();

__ct__A(&a1);

num = getNum__A();

__ct__A(&a2);

num = getNum__A();

__dt__A(&a2, 2);

__dt__A(&a1, 2);

}

int getNum__A(void)

{

return num__1A;

}

struct A *__ct__A(struct A *this)

{

if ((this != (struct A *)0)

|| ((this = (struct A *)__nw__FUl(1)) != (struct A *)0)){

++num__1A;

}

return this;

}

void __dt__A(struct A *const this, int flag)

{

if (this != (struct A *)0){

--num__1A;

if(flag & 1){

__dl__FPv((void *)this);

}

}

return;

}

Static function

Static member variable

Accessing the static member variable

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-29
REJ05B0464-0300

8.4.10 Static Member Variable

Development and
maintenance

Size Reduction O Speed O

• Important Points:

In C++, a class member variable with the static attribute can be shared among multiple objects of a class type.

Thus, a static member variable comes in handy because it can be used, for example, as a common flag among multiple
objects of the same class type.

• Example of Use:

Create five class-A objects within the main function.

Static member variable num has an initial value of 0. This value will be incremented by the constructor every time an
object is created.

Static member variable num, shared among objects, will have a value of 5 at the maximum.

Additionally, the use of a class will influence the code efficiency.

However, the use of a static member variable itself will not influence the size and processing speed because the Compiler
internally handles member variable num as if it is an ordinary global variable.

• Note:

For details on a static member variable, refer to section 8.2.3, Static Member Variable.

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-30
REJ05B0464-0300

(C++ program)

class A

{

private:

static int num;

public:

A(void);

~A(void);

};

int A::num = 0;

void main(void)

{

A a1;

A a2;

A a3;

A a4;

A a5;

}

A::A(void)

{

++num;

}

A::~A(void)

{

--num;

}

Creating a class A-type class object

Incrementing a static member variable

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-31
REJ05B0464-0300

(C program after conversion)

struct A

{

char __dummy;

};

void *__nw__FUl(unsigned long);

void __dl__FPv(void *);

struct A *__ct__A(struct A *);

void __dt__A(struct A *const, int);

int num__1A = 0;

void main(void)

{

struct A a1;

struct A a2;

struct A a3;

struct A a4;

struct A a5;

__ct__A(&a1);

__ct__A(&a2);

__ct__A(&a3);

__ct__A(&a4);

__ct__A(&a5);

__dt__A(&a5, 2);

__dt__A(&a4, 2);

__dt__A(&a3, 2);

__dt__A(&a2, 2);

__dt__A(&a1, 2);

}

struct A *__ct__A(struct A *this)

{

if((this != (struct A *)0)

|| ((this = (struct A *)__nw__FUl(1)) != (struct A *)0)){

++num__1A;

}

return this;

}

void __dt__A(struct A *const this, int flag)

{

if(this != (struct A *)0){

--num__1A;

if (flag & 1){

__dl__FPv((void *)this);

}

}

return;

}

Handled by the Compiler as if it is
an ordinary global variable

Incrementing a static member variable

Creating class A-type class objects

Calling constructors

Calling destructors

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-32
REJ05B0464-0300

8.4.11 Anonymous union

Development and
maintenance

Size Reduction O Speed O

• Important Points:

In C++, use an anonymous union to directly access a member without, like in C, having to specify the member name.

This will improve the development efficiency.Additionally, it will not influence the size and processing speed.

• Example of Use:

In the following example, function main is used to access union member variable s.

In the C++ program, member variable s is directly accessed. In the C program after conversion, it is accessed using a
member name that the Compiler has automatically created.

The use of this simple code enables access to a member variable without influencing the object efficiency.

(C++ program)

struct tag {

union {

unsigned char c[4];

unsigned short s[2];

unsigned long l;

};

};

void main(void)

{

tag t;

t.s[1] = 1;

}

(C program after conversion)

struct tag {

union _uni {

unsigned char c[4];

unsigned short s[2];

unsigned long l;

} access;

};

void main(void)

{

struct tag t;

t.access.s[1] = 1;

}

There is no
member name.

There is a
member name.

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-33
REJ05B0464-0300

8.4.12 Virtual Function

Development and
maintenance

Size Reduction ∆ Speed ∆

• Important Points:

A virtual function must be used if, as shown in the following program, there is a function with the same name in each of a
base class and a derived class. Otherwise, the function call cannot be properly made as intended.

If a virtual function is declared, these calls can be properly made as intended.

Use a virtual function to improve the development efficiency. However, use it with caution because it will influence the
size and processing speed.

• Example of Use:

In the main3 function call, two pointers store class-B addresses.

If virtual is declared, the class-B foo function is properly called.

If virtual is not declared, one of the pointers calls the class-A foo function.

The use of a virtual function, resulting in creation of a table, etc. as shown on the next page, will influence the size and
speed.

(C++ program)

class A

{

private:

 int a;

public:

 virtual void foo(void);

};

class B : public A

{

private:

 int b;

public:

 virtual void foo(void);

};

void A::foo(void)

{

}

void B::foo(void)

{

}

void main1(void)

{

 A a;

 a.foo();

}

void main2(void)

{

 B b;

 b.foo();

}

void main3(void)

{

 B b;

 A * pa = &b;

 B * pb = (B*)&b;

 pa->foo();

 pb->foo();

}

Virtual function

declaration

Virtual function

declaration

Virtual

function call

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-34
REJ05B0464-0300

• C program after conversion (tables, etc. for virtual functions):

struct __T5585724;

struct __type_info;

struct __T5584740;

struct __T5579436;

struct A;

struct B;

extern void main1__Fv(void);

extern void main2__Fv(void);

extern void main3__Fv(void);

extern void foo__1AFv(struct A *const);

extern void foo__1BFv(struct B *const);

struct __T5585724

{

 struct __T5584740 *tinfo;

 long offset;

 unsigned char flags;

};

struct __type_info

{

 struct __T5579436 *__vptr;

};

struct __T5584740

{

 struct __type_info tinfo;

 const char *name;

 char *id;

 struct __T5585724 *bc;

};

struct __T5579436

{

 long d; // this pointer offset

 long i; // Unassigned

 void (*f)(); // For virtual function call

};

struct A { // Class-A declaration

 int a;

 struct __T5579436 *__vptr; // Pointer to a virtual function table

};

struct B { // Class-B declaration

 struct A __b_A;

 int b;

};

static struct __T5585724 __T5591360[1];

#pragma section $VTBL

extern const struct __T5579436 __vtbl__1A[2];

extern const struct __T5579436 __vtbl__1B[2];

extern const struct __T5579436 __vtbl__Q2_3std9type_info[];

#pragma section

extern struct __T5584740 __T_1A;

extern struct __T5584740 __T_1B;

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-35
REJ05B0464-0300

static char __TID_1A; // Unassigned

static char __TID_1B; // Unassigned

static struct __T5585724 __T5591360[1] = // Unassigned

{

 {

 &__T_1A,

 0L,

 ((unsigned char)22U)

 }

};

#pragma section $VTBL

const struct __T5579436 __vtbl__1A[2] = // Virtual function table for class-A

{

 {

 0L, // Unassigned area

 0L, // Unassigned area

 ((void (*)())&__T_1A) // Unassigned area

 },

 {

 0L, // this pointer offset

 0L, // Unassigned area

 ((void (*)())foo__1AFv) // ((void (*)())foo__1AFv) // Pointer to A::foo()

 }

};

const struct __T5579436 __vtbl__1B[2] = // Virtual function table for class-B

{

 {

 0L, // Unassigned area

 0L, // Unassigned area

 ((void (*)())&__T_1B) // Unassigned area

 },

 {

 0L, // this pointer offset

 0L, // Unassigned area

 ((void (*)())foo__1BFv) // ((void (*)())foo__1BFv) // Pointer to B::foo()

 }

};

#pragma section

struct __T5584740 __T_1A = // Type information for class-A (unassigned)

{

 {

 (struct __T5579436 *)__vtbl__Q2_3std9type_info

 },

 (const char *)"A",

 &__TID_1A,

 (struct __T5585724 *)0

};

Section 8 Efficient C++ Programming Techniques

Rev.3.00 2005.09.12 8-36
REJ05B0464-0300

• C program after conversion (virtual function calls):

struct __T5584740 __T_1B = // Type information for class-B (unassigned)

{

 {

 (struct __T5579436 *)__vtbl__Q2_3std9type_info

 },

 (const char *)"B",

 &__TID_1B,

 __T5591360

};

void main1__Fv(void)

{

 struct A _a;

 _a.__vptr = __vtbl__1A;

 foo__1AFv(&_a); // foo__1AFv(&_a); // Call of A::foo()

 return;

}

void main2__Fv(void)

{

 struct B _b;

 _b.__b_A.__vptr = __vtbl__1A;

 _b.__b_A.__vptr = __vtbl__1B;

 foo__1BFv(&_b); // foo__1BFv(&_b); // Call to B::foo()

 return;

}

void main3__Fv(void)

{

 struct __T5579436 *_tmp;

 struct B _a;

 struct A *_pa;

 struct B *_pb;

 (*((struct A*)(&_b))).__vptr = __vtbl__1A;

 (*((struct A*)(&_b))).__vptr = __vtbl__1B;

 _pa = (struct A *)&_b;

 _pb = &_b;

 _tmp = _pa->__vptr + 1;

 ((void (*)(struct A *const)) _tmp->f) ((struct A *)_pa + tmp->b);

 // Call to B::foo()

 _tmp = _pb->__b_A.__vptr + 1;

 ((void (*)(struct B *const)) _tmp->f) ((struct B *)_pb + tmp->b);

 // Call to B::foo()

 return;

}

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-1
REJ05B0464-0300

Section 9 Optimizing Linkage Editor

This chapter describes the use of effective options at linkage, and the Inter-Module Optimization at linkage.

The following table shows a list of the items relating to the use of Optimizing Linkage Editor.

No. Category Item Section

Input Options 9.1.11 Input/Output Options

Output Options 9.1.2

2 Symbol information 9.2.1

3 Number of references 9.2.2

4

List Options

Cross-Reference Information 9.2.3

5 Output to unused area 9.3.1

6 End code of S type file 9.3.2

7 Debug information compression 9.3.3

8 Link time reduction 9.3.4

9 Notification of Unreferenced Symbol 9.3.5

10

Effective Options

Reduce empty areas of boundary alignment 9.3.6

11 Optimization at linkage 9.4.1

12 Sub options of Optimize Option

13 Unifies constants/strings 9.4.2

14 Eliminates unreferenced variables/functions 9.4.3

15 Uses short absolute addressing mode 9.4.4

16 Optimizes register save/restore codes 9.4.5

17 Unifies common codes 9.4.6

18 Uses indirect addressing mode 9.4.7

19 Optimizes branch instructions 9.4.8

20 Shortens the addressing mode 9.4.9

21 Optimization partially disabled 9.4.10

22

Optimize Options

Confirm Optimization Results 9.4.11

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-2
REJ05B0464-0300

9.1 Input/Output Options

9.1.1 Input Options

•••• Description

The optimizing linkage editor can input the following four files according to user usage.

This is one of the convenient features.

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Input] Show entries for :

Command line: Input <suboption>:<file name>
Library<file name>
Binary<suboption>:<file name>

•••• Available Input Files

Kind of Files Command line

Object Files input

Relocatable Files input

Library Files library

Binary Files binary

(1) Object Files

Ordinary files output from the compiler or the assembler.

(2) Relocatable Files

Relocatable (Address Unresolved) Files.

This file consists of one or more object files, and is generated from the optimizing linkage editor with output options.

Symbols in relocatable files are linked, even if other files don’t refer to them.

So in case of using the relocatable files, be careful about the above not to increase ROM size by linking unnecessary files.

Relocatable
Files

a.obj

b.obj c.obj

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-3
REJ05B0464-0300

(3) Library Files

Relocatable (Address Unresolved) Files.

This file consists of one or more object files, and is generated from the optimizing linkage editor with output options.

Symbols in relocatable files are not linked, if other files don’t refer to them.

(4) Binary Files

Binary Files are available to input.

This file consists of one or more object files, and is generated from the optimizing linkage editor with output options.

When input binary files, section name should be specified. This section name is located with the start option.

As binary files have no debug information, C/C++ source level debugger can’t be used.

[Specification Method 1]

Section name should be specified.

Dialog menu: Link/Library Tab Category: [Input] Show entries for : Binary files

Command line: binary=bin_c.bin(PPP)

Library Files

a.obj

b.obj c.obj

Binary Files

a.obj

b.obj c.obj

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-4
REJ05B0464-0300

[Specification Method 2]

Symbol can be defined at the head of the binary files.

Specify symbol name with section name, to do this.

For a variable name referred by a C/C++ program, add an underscore (_) at the head of the symbol name.

Dialog menu: Link/Library Tab Category: [Input] Show entries for : Binary files

Command line: binary=bin_c.bin(PPP,_func)

[Specification Method 3]

When input binary files, boundary alignment value can be specified.

When the boundary alignment specification is omitted, 1 is used as the default for the compatibility with earlier versions.
This boundary alignment specification is valid in the Optimizing Linkage Editor Ver.9.0 or later.

Dialog menu: Link/Library Tab Category: [Input] Show entries for : Binary files

Command line: binary=bin_c.bin(PPP:<boundary alignment>,_func)

<boundary alignment>: 1 | 2 | 4 | 8 | 16 | 32 (default: 1)

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-5
REJ05B0464-0300

9.1.2 Output Options

•••• Description

Some type of ROM writer can input only HEX files or only S-type files.

The optimizing linkage editor can output the following eight files according to user usage.

User can change the kind of output file, if necessary.

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Output] Type of output file :

Command line: orm{ absolute | relocate | object | library=s | library=u | hexadecimal | stype | binary }

•••• Available Output Files

No. Kind of Files Command line

1 Absolute Files form absolute

2 Relocatable Files form relocate

3 Object Files form object

4 User Library Files form library=s

5 System Library Files form library=u

6 HEX Files form hexadecimal

7 S-type Files form stype

8 Binary Files form binary

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-6
REJ05B0464-0300

(1) Absolute Files

Address resolved Files by the optimizing linkage editor.

As this file has debug information, C/C++ source level debugger can be used.

When writing to ROM, this file should be transformed to either S-type format, HEX, or Binary.

(2) Relocatable Files

Relocatable (Address Unresolved) Files.

As this file has debug information, C/C++ source level debugger can be used.

To execute this file, this file should be transformed to absolute file by linking again.

(3) Object Files

This file is used when a module (object) is extracted as an object file from a library with the extract option.

When specifying by command line, a needed object file can be extracted from the library file specified by this option.

When using HEW, specify the following options at Link/Library Tab Category: [Other] User defined options :

[Extract Options]

form=object
extract=<module name>

(4) User Library/System Library

Output Library Files.

(5) HEX Files

Output HEX Files.

As this files have no debug information, C/C++ source level debugger can’t be used.

For details of HEX file, please refer to section 19.1.2, HEX File Format, in the H8S,H8/300 Series C/C++ Compiler,
Assembler, Optimizing Linkage Editor User’s Manual.

(6) S-type Files

Output S-type Files.

As this files have no debug information, C/C++ source level debugger can’t be used.

For details of S-type file, please refer to section 19.1.1, S-Type File Format, in the H8S,H8/300 Series C/C++ Compiler,
Assembler, Optimizing Linkage Editor User’s Manual.

(7) Binary Files

Output Binary Files.

As binary files have no debug information, C/C++ source level debugger can’t be used.

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-7
REJ05B0464-0300

9.2 List Options

9.2.1 Symbol Information List

•••• Description

The optimizing linkage editor can output symbol address, size and optimization information in

addition to linkage map information, by specifying additional sub-options.

(1) symbol address -ADDR

(2) size -SIZE

(3) optimization -OPT (ch- changed, cr- created, mv- moved)

•••• Specification Method

Dialog menu: Link/Library Tab Category: [List] Contents : Show symbol

Command line: list [=<file name>]
show symbol

<*.map file>

*** Options ***

 :

*** Error information ***

 :

*** Mapping List ***

 :

*** Symbol List ***

SECTION=
FILE= START END SIZE
 SYMBOL (1) ADDR (2) SIZE INFO COUNTS (3) OPT

SECTION=P
FILE=C:\Hew-exe\Hew3_SHV9\bin\bin\Debug\bin.obj

00000800 00000821 22
_main

00000800 6 func ,g * ch
_abort

00000806 4 func ,g * ch
_com_opt1

0000080a 18 func ,g * cr ch
*** Delete Symbols ***
 :

*** Variable Accessible with Abs8 ***
 :
*** Variable Accessible with Abs16 ***
 :
*** Function Call ***
 :

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-8
REJ05B0464-0300

9.2.2 Symbol Reference Count

•••• Description

The optimizing linkage editor can output static symbol reference count in addition to linkage map information, by
specifying additional sub-options.

(1) symbol reference count -COUNTS

•••• Specification Method

Dialog menu: Link/Library Tab Category: [List] Contents : Show reference

Command line: list [=<file name>]
Show reference

<*.map file>

*** Options ***

 :

*** Error information ***

 :

*** Mapping List ***

 :

*** Symbol List ***

SECTION=
FILE= START END SIZE
 SYMBOL ADDR SIZE INFO (1) COUNTS OPT

SECTION=P
FILE=C:\Hew-exe\Hew3_SHV9\bin\bin\Debug\bin.obj

 00000800 00000821 22
_main

00000800 6 func ,g 1 ch
_abort

00000806 4 func ,g 0 ch
_com_opt1

0000080a 18 func ,g 2 cr ch
*** Delete Symbols ***

 :

*** Variable Accessible with Abs8 ***

 :

*** Variable Accessible with Abs16 ***

 :

*** Function Call ***

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-9
REJ05B0464-0300

9.2.3 Cross-Reference Information

•••• Description

The optimizing linkage editor can output cross-reference information in addition to linkage map information, by
specifying additional sub-options. Cross-reference information makes it possible to search where a global symbol is
referenced.

Local symbols and static symbols are not output.

•••• Specification Method

Dialog menu: Link/Library Tab Category: [List] Contents : Show cross reference

Command line: list [=<file name>]
Show xreference

<*.map file>

*** Cross Reference List ***

No Unit Name Global.Symbol Location External Information

(1) (2) (3) (4) (5)

---- ----------- --------------- -------- ---------------------

0001 test1

 SECTION=P

 _main

 00000100

 SECTION=B

 _sl1

 00007000 0001(0000011a:P)

 _sl2

 00007004 0001(0000010e:P)

 _ret

 00007008 0001(00000128:P)

 SECTION=D

0002 test2

 SECTION=P

 _func1

 0000015c 0001(00000124:P)

 _func2

 00000164 0001(0000013c:P)

 _func3

 00000170 0001(00000150:P)

•••• Description of Each Item

(1) Unit number, which is an identification number in object units, displayed in External Information (5).

(2) Object name, which specifies the input order at linkage.

(3) Symbol name output in ascending order for every section.

(4) Symbol allocation address, which is a relative value from the beginning of the section when relocatable format is
specified for output file format (form=relocate).

(5) Address from which an external symbol is referenced.
Output format: <Unit number> (<address or offset in section>:<section name>)

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-10
REJ05B0464-0300

•••• Remarks

This option is valid for the Optimizing Linkage Editor Ver.9.0 or later.

9.3 Effective Options

9.3.1 Output to Unused Area

•••• Description

The optimizing linkage editor can output any data to unused area.

This is useful for ROM transfer, and this is useful to detect an abnormal interrupt by executing unused area with no data,
when program hangs.

A 1-, 2-, or 4-byte value is valid for output data size. If an odd number of digits are specified, the upper digits are extended
with 0 to use it as an even number of digits.

The maximum size of output data is 4-byte. If a value over 4-byte is specified, the lower 4-byte is used.

This option is available only when output file is S-type file, Binary or HEX.

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Output] Show entries for :
Specify value filled in unused area

Command line: space [=<numerical value>]

•••• Examples

(1) Divide file and specify the range to fill unused area with data by

Link/Library Tab Category: [Output] Show entries for : Divided output files
 -output="C:\bin\Debug\a.bin"=00-0FFFF

(2) Specify the filling data by

Link/Library Tab Category: [Output] Show entries for : Specify value filled in unused area
 -space=FF

The example of the following page <Specify value filled in unused area [H'FF]> shows how unused area is filled with
data.

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-11
REJ05B0464-0300

•••• Examples of S-type Files

As the following examples, 0xFF records are added to the unused areas in the range of data existing.

If this option is not specified, the records in the range of data not existing are not output.

If this option is specified, 0xFF records are added to the area in the range of data not existing, according to the output
range specification in the output option Divided output files.

<NOT Specify value filled in unused area>

 …

<Specify value filled in unused area [H'FF]>

 …

Range of Data
Existing

Range of Data
Existing

Range of Data
NOT Existing

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-12
REJ05B0464-0300

•••• Examples of Binary Files

As the following examples, the unused areas in the range of data existing are changed from 0x00 to 0xFF.

If this option is not specified, the records in the range of data not existing are not output.

If this option is specified, 0xFF records are added to the area in the range of data not existing, according to the output
range specification in the output option Divided output files.

<NOT Specify value filled in unused area>

 …

<Specify value filled in unused area [H'FF]>

…

Range of Data
Existing

Range of Data
Existing

Range of Data
NOT Existing

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-13
REJ05B0464-0300

• Examples of HEX Files

As the following examples, 0xFF records are added to the unused areas in the range of data existing.

If this option is not specified, the records in the range of data not existing are not output.

If this option is specified, 0xFF records are added to the area in the range of data not existing, according to the output
range specification in the output option Divided output files.

<NOT Specify value filled in unused area>

 …

<Specify value filled in unused area [H'FF]>

 …

•••• Remarks

This option is valid for the optimizing linkage editor Ver.8 or later.

Range of Data
Existing

Range of Data
Existing

Range of Data
NOT Existing

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-14
REJ05B0464-0300

9.3.2 End Code of S Type File

•••• Description

By specifying this option, the end code can be always S9.
In some type of ROM writer, run time error may occur during input to ROM writer, when the end code of S-type file is not
S9 record.
This is because end code is S7 or S8, if the entry address exceeds 0x10000.

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Other] Miscellaneous options :
Always output S9 record at the end

Command line: s9

•••• Remarks

For details of S-type file, please refer to section 19.1.1, S-Type File Format, in the H8S,H8/300 Series C/C++ Compiler,
Assembler, Optimizing Linkage Editor User’s Manual.

9.3.3 Debug Information Compression

•••• Description

By specifying this option, the loading time is reduced when loading files to debugger.

But on the contrary, the link time is increased.

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Other] Miscellaneous options :
Compress debug information

Command line: compress
uncompress

•••• Remarks

This option is valid only when output file is absolute file.

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-15
REJ05B0464-0300

9.3.4 Link Time Reduction

•••• Description

When this option is specified, the linkage editor loads the necessary information at linkage in smaller units to reduce the
memory occupancy.

As a result, the link time may be reduced.

Try this option when processing is slow because a large project is linked and the memory size occupied by the linkage
editor exceeds the available memory in the machine used.

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Other] Miscellaneous options :
Low memory use during linkage

Command line: memory={high | low}

•••• Examples

The following example is the comparison of the link time when this option is specified or not.

At the following case, the link time is reduced by 34 %.

<Measurement Conditions>

• 1,000 files

• 100 symbols per each file

• 1,000 function symbols

• Specifies the same options, except this option

<memory=high>

 111 seconds

<memory=low>

 73 seconds

•••• Remarks

This option is valid for the optimizing linkage editor Ver.8 or later.

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-16
REJ05B0464-0300

9.3.5 Notification of Unreferenced Symbol

•••• Description

When project is large, it is difficult to find the externally defined symbol which is defined but not referenced.

When this option is specified, the external symbol which is not referenced can be notified through an output message at
linkage.

To output a notification message, the message option* must also be specified.

Note: * Link/Library Tab Category: [Output] [Show entries for :] [Output messages] Repressed information level
messages :

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Output] [Show entries for :] [Output messages]
Notify unused symbol

Command line: msg_unused

•••• Output Message

L0400 (I) Unused symbol “file”-“symbol”

The symbol named symbol in file is not used.

•••• Remarks

(1) This option is valid for the optimizing linkage editor Ver.9 or later.

(2) In any of the following cases, references are not correctly analyzed so that information shown by output messages will
be incorrect.

• –goptimize is not specified at assembly and there are branches to the same section within the same file.

• There are references to constant symbols within the same file.

• There are branches to immediate subordinate functions when optimization is specified at compilation.

• Optimization is specified at linkage and constants are unified.

9.3.6 Reduce Empty Areas of Boundary Alignment

•••• Description

When this option is specified, the empty areas, which are generated as the boundary alignment of sections for each object
file, are filled at linkage.

As a result, the unnecessary empty areas generated by boundary alignment are filled, reducing the size of the data sections
as a whole.

This option affects constant area (C section), initialized data area (D section), and uninitialized data area (B section).

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Output] [Show entries for :]
Reduce empty areas of boundary alignment

Command line: data_stuff

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-17
REJ05B0464-0300

•••• Examples

The following example shows how empty areas of boundary alignment are reduced.

<When data_stuff is not specified>

When data_stuff is not specified, one byte empty area of boundary alignment is generated between file1.c and file2.c,
because boundary alignment value is 2 for H8 CPU specification.

In this example, if the size of the top data which is linked next is one byte, there is no need of this boundary alignment.

But the top data of the next file is 2 bytes or more, boundary alignment at the end of this file (file1.c) should be performed.

As a result, data alignment and data size are

 s1(2 bytes) + c1(1 byte) + empty area(1 byte) + c2(1 byte) = 5 bytes

<When data_stuff is specified>

When data_stuff is specified, empty area of boundary alignment is not generated, if the size of the top data which is
linked next is one byte as this example.

As a result, data alignment and data size are

 s1(2 bytes) + c1(1 byte) + c2(1 byte) = 4 bytes

Here, the data size is reduced to 4 bytes.

As this program example, empty areas generated as the boundary alignment of sections are filled at linkage. However, the
order of data allocation is not changed.

(file1.c)

short s1;

char c1;

(file2.c)

char c2;

0000

0002

s1

empty area
0004

c1

c2

0000

0002

s1

c1 c2

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-18
REJ05B0464-0300

•••• Remarks

(1) This option is valid for the optimizing linkage editor Ver.8.00.06 or later.

(2) The function of this option is not applicable to object files generated by the assembler.

(3) Specification of this option is invalid in any of the following cases:

• library or object is specified as output format of the optimizing linkage editor

• absolute is specified as input format of the optimizing linkage editor

• memory=low is specified

• optimization at linkage (optimize) is specified

(4) Optimization will not be applied in the linkage of a relocatable file that was generated with this option specified.

9.4 Optimize Options

9.4.1 Optimization at Linkage

•••• Description

Compiler outputs the supplement information to each module when generating object files.

According to this supplement information, the optimizing linkage editor performs the inter-module optimization which is
impossible at compile and links.

As a result, both ROM size and execution speed are improved.

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Optimize items

Command line: optimize=<suboption>
<suboption> is described in sections 9.4.2 to 9.4.9.

The following specification for supplement information is necessary at compile/assemble, even if optimization at linkage
is specified. Without the following specification, optimization at linkage is not available.

•••• Specification Method for Supplement Information

Dialog menu: C/C++ Tab Category: [Optimize] Generate file for inter-module optimization

Dialog menu: Assembly Tab Category: [Object] Generate file for inter-module optimization

Command line: goptimize

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-19
REJ05B0464-0300

•••• Inter-Module Optimization Flow

9.4.2 Unifies Constants/Strings

Size O Speed -

•••• Description

The same value constants and the same strings having the const attribute are unified across the modules.

This option deletes const section to improve Size.

Speed is not changed.

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Optimize items
Unify strings

Command line: optimize=string_unify

•••• Examples of the sane value constants

The const long variables “cl1, cl2” which have the same constant value are unified to one constant.

This reduces ROM size by 4 bytes.

 Compiler

Specify for
Supplement
Information

C/C++
Program

Object
Files

Optimizing
Linkage Editor

Optimized
Load Module

Specify
Optimize
Options

Object
Files

Assembler

Assembly
Program

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-20
REJ05B0464-0300

•••• Remarks

This option is valid only for object files generated by C/C++ Compiler. Object files generated by Assembler are not
optimized.

9.4.3 Eliminates Unreferenced Variables/Functions

Size O Speed -

•••• Description

Variables/functions which are never referred are deleted. When specifying this optimization, an entry function should be
specified. Without an entry function specification, this optimization is not performed.

This is because CPU jumps from vector table to entry function, and the optimization of entry functions or the functions
whose address is before entry functions changes the jump address.

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Optimize items
Eliminate dead code

Command line: optimize=symbol_delete

•••• Specification Method for Entry Functions

Dialog menu: Link/Library Tab Category: [Input] Use entry point

Command line: entry=<symbol name> | <address>

When specify symbol name, add an underscore (_) at the head of the name.

Example: main -> _main

(file1.c)

#include <machine.h>

const long cl1=100;

void main(void);

void func01(long);

long g_max;

void main(void)

{

func01(cl1+1);

func02(cl1+2);

func03(cl1+3);

}

void func01(long c_litr)

{

g_max = c_litr++;

}

(file2.c)

#include <machine.h>

const long cl2=100;

void main(void);

void func02(long);

void func03(long);

extern long g_max;

void func02(long c_litr)

{

func03(cl2+c_litr);

nop();

}

void func03(long c_litr)

{

g_max = c_litr;

}

Deleted

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-21
REJ05B0464-0300

•••• Examples of eliminates unreferenced variables/functions

Variable g_max2 and function func03 which are never referred are deleted.

The char type variable g_c1 is never referred, but is not deleted.

This is because H8 is 2-byte boundary alignment, and if g_c1 is deleted, the address of next variable is not multiples of
two.

The access for the odd address symbol occurs an address error because of the CPU specification (except H8SX).

[If 1-byte variable is deleted]

If optimization is performed, 4-byte variable g_max1 is accessed by address 0x01.

•••• Remarks

This option is valid only for object files generated by C/C++ Compiler. Object files generated by Assembler are not
optimized.

(file1.c)

void main(void);

extern void func01(long);

extern void func02(long);

char g_c1;

long g_max1,g_max2;

void main(void)

{

 g_max1 = 0x7FFFF;

func01(g_max1 % 3);

func02(g_max1 / 3);

}

(file2.c)

void func01(long);

void func02(long);

void func03(long);

extern long g_max1;

void func01(long l1)

{

g_max1 = l1 % 4;

}

void func02(long l1)

{

g_max1 = (l1 << 1);

}

void func03(long l1)

{

g_max1 += (l1 * (l1 / 2));

}

Deleted

Deleted

0x00

0x02

g_max1

g_c1 Unused Area

g_max2

0x06

0x00

0x02

g_max1

Unused Area

0x06

g_max2
Unused Area

0x01

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-22
REJ05B0464-0300

9.4.4 Uses Short Absolute Addressing Mode

Size O Speed O

•••• Description

If an area accessible in the 8- or 16-bit absolute addressing mode has space, frequently accessed variables are allocated,
and the access codes of the variable are optimized by this specification.

The optimizing linkage editor automatically allocates these variables to the section which is automatically generated.

Compiler has similar function, but the optimizing linkage editor can automatically allocate the section.

As the short absolute addressing area differs depending on CPU types, the address of ROM or RAM should be specified
by cpu option.

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Optimize items
Use short addressing

Command line: optimize=variable_access

•••• Specification Method for cpu option

Dialog menu: Link/Library Tab Category: [Verify]

Command line: cpu=<memory type>=<address range> or
: cpu=<cpu information file name>
: <memory type> : {ROm | RAm | XROm | XRAm | YROm | YRAm }
: <address range>:<start address>-<end address>

•••• Examples of this Optimization

char type variable g_c1 is allocated to ABS8B_OPT1 section, and short type variable g_s1,g_s2 are allocated to
ABS16B_OPT1 section.

So both size efficiency and execution speed of the access codes to these variables are improved.

#include <machine.h>
void init(void);
void main(void);
short func01(short);
char g_c1;
short g_s1,g_s2;

void init(void)
{

main();
sleep();

}

void main(void)
{
 g_s1 = 7;
 g_s2 = 8;
 g_c1 = 10;
g_s1 =
func01(g_s1+g_s2+g_c1);
nop();
}
short func01(short p_s1)
{
short wk = ++p_s1;
return wk;
}

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-23
REJ05B0464-0300

•••• Examples of Optimized Access Codes

In the following example, which is in H8S/2600 advanced mode,

 ROM Size: 40 bytes to 30 bytes

 Execution Speed: 41 cycles to 36 cycles

•••• Remarks

(1) For more details of short absolute addressing area, please refer to section 5.4.11, Using 8-Bit Absolute Address Area
and, section 5.4.12, Using 16-Bit Absolute Address Area.

(2) This option is valid for object files generated by C/C++ Compiler or Assembler.

9.4.5 Optimizes Register Save/Restore Codes

Size O Speed O

•••• Description

The relationships between function calls are analyzed and redundant register save/restore codes are deleted with this
specification. In addition, depending on the register state before and after the function call, the register numbers to be used
are modified.

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Optimize items
Reallocate registers

Command line: optimize=register

(Option NOT Specified)
_main:
MOV.W #7,R0
MOV.W R0,@_g_s1:32
MOV.B #8,R0L
MOV.W R0,@_g_s2:32
MOV.B #10,R0L
MOV.B R0L,@_g_c1:32
MOV.B #25,R0L
BSR _func01:8
MOV.W R0,@_g_s1:32
NOP
RTS

(Option Specified)
_main:
MOV.W #7,R0
MOV.W R0,@_g_s1:16
MOV.B #8,R0L
MOV.W R0,@_g_s2:16
MOV.B #10,R0L
MOV.B R0L,@_g_c1:8
MOV.B #25,R0L
BSR _func01:8
MOV.W R0,@_g_s1:16
NOP
RTS

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-24
REJ05B0464-0300

•••• Examples of Optimizes register save/restore codes

Function main calls function func01, and func01 calls func02.

•••• Examples of Codes by Optimizes register save/restore codes

Examples of codes before and after this optimization are as follows.

Due to the addition of register save/restore codes in the parent function, register save/restore codes in the child function
are reduced.

In the following example, which is in H8S/2600 advanced mode,

 ROM Size: 202 bytes to 198 bytes

 Execution Speed: 172 cycles to 166 cycles

(file1.c)
void main();
extern void func01(long *,long *,long *,long *);
long g_l1,g_l2,g_l3,g_l4;
void main()
{

g_l1 = 1;
g_l2 = 2;
g_l3 = 3;
g_l4 = 4;

 func01(&g_l1,&g_l2,&g_l3,&g_l4);
}

(file2.c)
extern long g_l1,g_l2,g_l3,g_l4;
extern void func02(long *,long *,long *,long *);
void func01(long *l_p1,long *l_p2,long *l_p3,long *l_p4)
{
 g_l2 = 2;

g_l2 += *l_p1;
 func02(&g_l1,&g_l2,&g_l3,&g_l4);
}

(file3.c)
extern long g_l1,g_l2,g_l3,g_l4;
void func02(long *l_p1,long *l_p2,long *l_p3,long *l_p4)
{
 g_l1++;

*l_p1 = g_l1;
}

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-25
REJ05B0464-0300

•••• Remarks

This option is valid only for object files generated by C/C++ Compiler. Object files generated by Assembler are not
optimized.

(Before Optimization)
save/restore ER2-ER3 (2 registers)

(After Optimization)
save/restore ER2-ER4 (3 registers)

save/restore ER2-ER3 (2 registers)

NO save/restore (0 register)save/restore ER2 (1 register)

save/restore ER2 (1 register)

_main:
STM.L (ER2-ER3),@-SP
SUB.L ER0,ER0
MOV.B #1,R0L
MOV.L ER0,@_g_l1:32
SUB.L ER1,ER1
 :
MOV.L #_g_l3,ER2
PUSH.L ER2
MOV.L #_g_l2,ER1
MOV.L #_g_l1,ER0
JSR @_func01:24
ADDS.L #4,SP
ADDS.L #4,SP
LDM.L @SP+,(ER2-ER3)
RTS

_main:
STM (ER2-ER3),@-SP
PUSH.L ER4
SUB.L ER0,ER0
MOV.B #1:8,R0L
MOV.L ER0,@_g_l1:32
SUB.L ER1,ER1
 :
MOV.L #h'00f00004:32,ER1
MOV.L #h'00f00000:32,ER0
BSR _func01:8
ADDS #4,SP
ADDS #4,SP
POP.L ER4
LDM @SP+,(ER2-ER3)
RTS

_func01:
STM.L (ER2-ER3),@-SP
MOV.L #_g_l2,ER1
 :
MOV.L #_g_l1,ER0
JSR @_func02:24
ADDS.L #4,SP
ADDS.L #4,SP
LDM.L @SP+,(ER2-ER3)
RTS

_func02:
PUSH.L ER2
MOV.L #_g_l1,ER1
MOV.L @ER1,ER2
INC.L #1,ER2
MOV.L ER2,@ER1
MOV.L ER2,@ER0
POP.L ER2
RTS

_func01:
PUSH.L ER2
MOV.L #_g_l2,ER1
 :
MOV.L #_g_l1,ER0
BSR _func02:8
ADDS #4,SP
ADDS #4,SP
POP.L ER2
RTS

_func02:
MOV.L #_g_l1,ER1
MOV.L @ER1,ER2
INC.L #1,ER2
MOV.L ER2,@ER1
MOV.L ER2,@ER0
RTS

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-26
REJ05B0464-0300

9.4.6 Unifies Common Codes

Size O Speed -

•••• Description

Multiple strings representing the same instruction are unified into a subroutine and the code size is reduced with this
specification.

This optimization increases the overhead of function call and decreases execution speed, so should be careful.

The minimum code size for the optimization with the same-code unification can be specified.

When inline expansion of functions is specified at compile, this optimization is not performed, as execution speed is
decreased.

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Optimize items
Eliminate same code

Command line: optimize=same_code

•••• Specification Method for Unification Size

Dialog menu: Link/Library Tab Category: [Optimize] Eliminated size

Command line: samesize=<size>

•••• Examples: C Source Programs

Function func00 and func01 have the same lines of expressions.

(file1.c)
void main(void);
void func00(void);
long g_l1,g_l2,g_l3,g_l4,g_l5;
void main(void)
{

func00();
func01();

}
void func00(void)
{

g_l1 = 1;
g_l2 = 3;
g_l3 = 5;
g_l4 = 7;
g_l5 = 9;

}

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-27
REJ05B0464-0300

•••• Examples: Codes

Examples of codes before and after this optimization are as follows.

Common codes are unified into a new function _com_opt1, which is called from the original positions.

In the following example, which is in H8S/2600 advanced mode,

 ROM Size: 114 bytes to 66 bytes
 Execution Speed: 91 cycles to 108 cycles

(Before Optimization) (After Optimization)

(file2.c)
void func01(void);
extern long g_l1,g_l2,g_l3,g_l4,g_l5;
void func01(void)
{

g_l1 = 1;
g_l2 = 3;
g_l3 = 5;
g_l4 = 7;
g_l5 = 9;

}

(file1.c)
_main:

BSR _func00:8
JMP @_func01:24

_func00:
SUB.L ER0,ER0
MOV.B #1,R0L
MOV.L ER0,@_g_l1:32
MOV.B #3,R0L
MOV.L ER0,@_g_l2:32
MOV.B #5,R0L
MOV.L ER0,@_g_l3:32
MOV.B #7,R0L
MOV.L ER0,@_g_l4:32
MOV.B #9,R0L
MOV.L ER0,@_g_l5:32
RTS

(file2.c)
_func01:

SUB.L ER0,ER0
MOV.B #1,R0L
MOV.L ER0,@_g_l1:32
MOV.B #3,R0L
MOV.L ER0,@_g_l2:32
MOV.B #5,R0L
MOV.L ER0,@_g_l3:32
MOV.B #7,R0L
MOV.L ER0,@_g_l4:32
MOV.B #9,R0L
MOV.L ER0,@_g_l5:32
RTS

(file1.c)
_main:

BSR _func00:8
BRA _func01:8

_func00:
BSR _com_opt1:8
RTS

_com_opt1:
SUB.L ER0,ER0
MOV.B #1:8,R0L
MOV.L ER0,@_g_l1:32
MOV.B #3:8,R0L
MOV.L ER0,@_g_l2:32
MOV.B #5:8,R0L
MOV.L ER0,@_g_l3:32
MOV.B #7:8,R0L
MOV.L ER0,@_g_l4:32
MOV.B #9:8,R0L
MOV.L ER0,@_g_l5:32
RTS

(file2.c)
_func01:

BSR _com_opt1:8
RTS

New
Function

••••••

Common
Codes

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-28
REJ05B0464-0300

•••• Remarks

This option is valid only for object files generated by C/C++ Compiler. Object files generated by Assembler are not
optimized.

9.4.7 Uses Indirect Addressing Mode

Size O Speed -

•••• Description

If the indirect memory access space has space area, the addresses of functions frequently accessed are assigned to
INDIRECT_OPT section, which is automatically allocated to the indirect memory access space.

As the functions are accessed in the indirect memory format, size efficiency is improved.

Because this area is also used by the vector table, should be careful.

ROM address should be specified by cpu option.

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Optimize items
Use indirect call/jump

Command line: optimize=function_call

•••• Specification Method for cpu option

Dialog menu: Link/Library Tab Category: [Verify]

Command line: cpu=<memory type>=<address range> or
: cpu=<cpu information file name>
: <memory type> : {ROm | RAm | XROm | XRAm | YROm | YRAm }
: <address range>:<start address>-<end address>

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-29
REJ05B0464-0300

•••• Examples: C Source Programs

Function main calls function func01, func02, func03. Here the function func01 is frequently called.

•••• Examples: Codes

Examples of codes before and after this optimization are as follows.

Function func01 frequently called is accessed in the indirect memory format.

In the following example, which is in H8S/2600 advanced mode,

 ROM Size: 288 bytes to 274 bytes

 Execution Speed: 491 cycles to 485 cycles

(file1.c)
extern long func01(void);
extern long func02(void);
extern long func03(void);
void main(void);
long g_l1,g_l2,g_l3,g_l4,g_l5;
void main(void)
{

g_l1 = 100;
g_l1 = func01();
g_l2 = 1000;
g_l2 = func02();
g_l3 = func03();
g_l1 = func01();
g_l1 = func01();

}

(file2.c)
long func01(void);
long func02(void);
long func03(void);
extern long g_l1,g_l2,g_l3,g_l4,g_l5;
long func01(void)
{

return g_l1 *= 100;
}
long func02(void)
{

return g_l2 /= 100;
}
long func03(void)
{

return g_l2 %= 4;
}

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-30
REJ05B0464-0300

•••• Remarks

(1) For more details of indirect memory access space, please refer to section 5.4.13, Using Indirect Memory Format, and
section 5.4.14, Using Extended Indirect Memory Format.

(2) This option is valid for object files generated by C/C++ Compiler or Assembler.

(Before Optimization) (After Optimization)

_main
PUSH.L ER6
MOV.L #_g_l1,ER6
SUB.L ER0,ER0
MOV.B #100,R0L
MOV.L ER0,@ER6
JSR @_func01:24
MOV.L ER0,@ER6
MOV.L #1000,ER0
MOV.L ER0,@_g_l2:32
JSR @_func02:24
MOV.L ER0,@_g_l2:32
JSR @_func03:24
MOV.L ER0,@_g_l3:32
JSR @_func01:24
MOV.L ER0,@ER6
JSR @_func01:24
MOV.L ER0,@ER6
POP.L ER6
RTS

_func01:
MOV.L @_g_l1:32,ER0
SUB.L ER1,ER1
MOV.B #100,R1L
JSR @$MULL$3:24
MOV.L ER0,@_g_l1:32
RTS

_func02:
MOV.L @_g_l2:32,ER0
SUB.L ER1,ER1
MOV.B #100,R1L
JSR @$DIVL$3:24
MOV.L ER0,@_g_l2:32
RTS

_func03:
MOV.L @_g_l2:32,ER0
SUB.L ER1,ER1
MOV.B #4,R1L
JSR @$DIVL$3:24
MOV.L ER1,@_g_l2:32
MOV.L ER1,ER0
RTS

_main:
PUSH.L ER6
MOV.L #_g_l1,ER6
SUB.L ER0,ER0
MOV.B #100,R0L
MOV.L ER0,@ER6
JSR @@_$ind_opt1:8
MOV.L ER0,@ER6
MOV.L #1000,ER0
MOV.L ER0,@_g_l2:32
BSR _func02:8
MOV.L ER0,@_g_l2:32
BSR _func03:8
MOV.L ER0,@_g_l3:32
JSR @@_$ind_opt1:8
MOV.L ER0,@ER6
JSR @@_$ind_opt1:8
MOV.L ER0,@ER6
POP.L ER6
RTS

••••••••

_func01:
MOV.L @_g_l1:32,ER0
SUB.L ER1,ER1
MOV.B #100:8,R1L
BSR $MULL$3:8
MOV.L ER0,@_g_l1:32
RTS

_func02:
MOV.L @_g_l2:32,ER0
SUB.L ER1,ER1
MOV.B #100,R1L
BSR $DIVL$3:8
MOV.L ER0,@_g_l2:32
RTS

_func03:
MOV.L @_g_l2:32,ER0
SUB.L ER1,ER1
MOV.B #4,R1L
BSR $DIVL$3:8
MOV.L ER1,@_g_l2:32
MOV.L ER1,ER0
RTS

••••••••

Indirect
Memory

Call

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-31
REJ05B0464-0300

9.4.8 Optimizes Branch Instructions

Size O Speed O

•••• Description

C/C++ Compiler calls functions by the absolute addressing mode (JSR), when access functions in other files, and when
access over the address range* which can be accessed by the PC relative addressing mode (BSR).

As the optimizing linkage editor performs optimization at linkage, it can recalculate the branch range of which the branch
destination is in other file.

The branch instruction can be changed to the PC relative addressing mode (BSR), if possible.

Though the original branch range exceeds the address range which can be accessed by the PC relative addressing mode,
the branch instruction can be also changed to BSR, if the branch range is reduced by other optimization.

If any other optimization item is executed, this optimization is always performed regardless of whether it is specified or
not.

Note: * The address range which can be accessed by the PC relative addressing mode: –126 to 128 bytes

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Optimize items
Optimize branches

Command line: optimize=branch

•••• Examples: C Source Programs

Function main calls function func01 in other file.

(file1.c)
#include <machine.h>
extern long func01(long,long);
void main(void);
long g_l1,g_l2;
void main(void)
{
 g_l1 = 100;
 g_l2 = 200;
 g_l1 = func01(g_l1,g_l2);
}

(file2.c)
long func01(long,long);
long func01(long l1,long l2)
{

return l1 + l2;
}

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-32
REJ05B0464-0300

•••• Examples: Codes

Examples of codes before and after this optimization are as follows.

Function func01 in other file is called by BSR.

In the following example, which is in H8S/2600 advanced mode,

 ROM Size: 52 bytes to 50 bytes

 Execution Speed: 46 cycles to 45 cycles

•••• Remarks

This option is valid for object files generated by C/C++ Compiler or Assembler.

9.4.9 Shortens the Addressing Mode

Size O Speed -

•••• Description

The optimizing linkage editor replaces an instruction with a smaller-size instruction, when the code size of the
displacement or immediate value can be reduced.

As compile is performed for each file, the distance between the address of the instruction which refers a variable and the
address of the variable define is unknown.

As the address of instruction and variable is determined at linkage, the distance between them can be calculated, and this
optimization can be performed.

(Before Optimization) (After Optimization)

_main:
PUSH.L ER6
MOV.L #_g_l1,ER6
SUB.L ER0,ER0
MOV.B #100,R0L
MOV.L ER0,@ER6
MOV.B #-56,R0L
MOV.L ER0,@_g_l2:32
MOV.L ER0,ER1
MOV.L @ER6,ER0
JSR @_func01:24
MOV.L ER0,@ER6
POP.L ER6
RTS

_func01
ADD.L ER1,ER0
RTS

_main:
PUSH.L ER6
MOV.L #_g_l1,ER6
SUB.L ER0,ER0
MOV.B #100:8,R0L
MOV.L ER0,@ER6
MOV.B #56,R0L
MOV.L ER0,@_g_l2:32
MOV.L ER0,ER1
MOV.L @ER6,ER0
BSR _func01:8
MOV.L ER0,@ER6
POP.l ER6
RTS

_func01:
ADD.L ER1,ER0
RTS

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-33
REJ05B0464-0300

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Optimize items
Use short disp/imm

Command line: optimize=short_format

•••• Examples: C Source Programs

The following example shows substitution for array, and the address of variables is stored to variables.

•••• Examples: Codes

Examples of codes before and after this optimization are as follows.

32-bit accesses are changed to 16-/8-bit access respectively.

In the following example, which is in H8SX advanced mode,

 ROM Size: 80 bytes to 68 bytes

 Execution Speed: 96 cycles to 96 cycles

(file1.c)
short str1[4];
short str2[4];
void main(void);
void func01(short);
void func02(void);
char g_c1;
unsigned long g_l1;
void main(void)
{
int i;
for (i = 0;i < 4;i++)
 {

str1[i] = i + 1;
str2[i] = i * 2;

 }
func01(i - 1);
func02();
}
void func01(short s1)
{
 str1[s1] = s1;
 str2[s1] = s1+4;
}
void func02(void)
{
 g_l1 = (unsigned long)&g_c1;
}

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-34
REJ05B0464-0300

•••• Remarks

(1) This option is valid only when CPU is H8SXN, H8SXM, H8SXA or H8SXX.

(2) This option is valid for object files generated by C/C++ Compiler or Assembler.

9.4.10 Optimization Partially Disabled

•••• Description

When don’t want to optimize some variables or functions by the optimizing linkage editor, that variables or functions can
be specified as follows.

Disablements by the symbol name and by the address range are available.

•••• Disables elimination of unreferenced symbols

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Forbid item
Elimination of dead code

Command line: symbol_forbid=<symbol name>

•••• Disables unification of common codes

(Before Optimization) (After Optimization)

_main:
SUB.W R1,R1

L36:
MOV.W R1,R0
INC.W #1,R0
MOV.W R0,@(_str1:32,R1.W)
MOV.W R1,R0
SHLL.W R0
MOV.W R0,@(_str2:32,R1.W)
INC.W #1,R1
CMP. #4:3,R1
BLT L36:8
DEC.W #1,R1
MOV.W R1,R0
BSR _func01:8
BSR _func02:8
RTS

_func01:
MOV.W R0,@(_str1:32,R0.W)
MOV.W R0,E0
ADD.W #4:3,E0
MOV.W E0,@(_str2:32,R0.W)
RTS

_func02:
MOV.L #_g_c1:32,@_g_l1:32
RTS

_main:
SUB.W R1,R1

L36:
MOV.W R1,R0
INC.W #1,R0
MOV.W R0,@(h'0044:16,R1.W)
MOV.W R1,R0
SHLL.W R0
MOV.W R0,@(h'004c:16,R1.W)
INC.W #1,R1
CMP.W #4:3,R1
BLT L36
DEC.W #1,R1
MOV.W R1,R0
BSR _func01:8
BSR _func02:8
RTS

_func01:
MOV.W R0,@(_str1:16,R0.W)
MOV.W R0,E0
ADD.W #4:3,E0
MOV.W E0,@(_str2:16,R0.W)
RTS

_func02:
MOV.L #_g_c1:8,@_g_l1:32
RTS

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-35
REJ05B0464-0300

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Forbid item
Elimination of same code

Command line: samecode_forbid=<function name>

•••• Disables allocation of short absolute address areas

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Forbid item
Use of short addressing to

Command line: variable_forbid=<symbol name>

•••• Disables indirect address calls

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Forbid item
Use of indirect call/jump to

Command line: function_forbid=<function name>

•••• Address Range where optimization is disabled

•••• Specification Method

Dialog menu: Link/Library Tab Category: [Optimize] Forbid item
Memory allocation in

Command line: absolute_forbid=<address>[+size]

9.4.11 Confirm Optimization Results

•••• Description

Optimization results by the optimizing linkage editor can be confirmed as follows.

•••• Confirmation by message

When using HEW, optimization results are output by not checking in the following dialog.

Dialog menu: Link/Library Tab Category: [Output] Show entries for:
Repressed information level messages

Command line: message[=<error number>]>
: nomessage

Section 9 Optimizing Linkage Editor

Rev.3.00 2005.09.12 9-36
REJ05B0464-0300

•••• Example of message output

The following example shows that a new function has been created by the unification of common codes.

•••• Confirmation by list

Optimization results are confirmed by specifying the following options.

For more details, please refer to section 9.2.1, Symbol Information List.

Dialog menu: Link/Library Tab Category: [List] Contents : Symbol

Command line: list [=<file name>]
show symbol

Section 10 MISRA C

Rev.3.00 2005.09.12 10-1
REJ05B0464-0300

Section 10 MISRA C

10.1 MISRA C

10.1.1 What Is MISRA C?

MISRA C refers to the usage guidelines for the C language that were issued by the Motor Industry Software Reliability
Association (MISRA) in 1998, as well as the C coding rules standardized by those guidelines. The C language itself is
very useful, but suffers from some particular problems. The MISRA C guideline divides these problems into five types:
programmer errors, misconceptions about the language, unintended compiler operations, errors at execution, and errors in
the compiler itself. The purpose of MISRA C is to overcome these problems, while promoting safe usage of the C
language. MISRA C contains 127 rules of two types: required and advisory. Code development should aim to conform to
all of these rules, but as this is sometimes difficult to accomplish, there is also a process to confirm and document times
when the rule conformance is not followed. Compliance to various issues is also required separate from these rules, such
as when software metrics need to be measured.

10.1.2 Rule Examples

This subsection introduces some actual MISRA C rules. Figure 10.1 shows Rule 62, that all switch statements shall
contain a final default clause. This is categorized as a programmer error. In a switch statement, if the "default" label is
misspelled as "defalt", the compiler will not treat this as an error. If the programmer does not notice this error, the
expected default operation will never be executed. This problem can be avoided through the application of Rule 62.

Figure 10.1 Rule 62

Figure 10.2 shows Rule 46, that the value of an expression shall be the same under any order of evaluation that the
standard permits. This is categorized as a misconception about the language. Namely, if ++i is evaluated first, the
expression becomes 2+2, but if i is evaluated first, the expression becomes 2+1. Likewise, since no provision exists for the
evaluation order of function arguments, if ++j is evaluated first, the expression becomes f(2,2), but if j is evaluated first,
the expression becomes f(1,2). This problem can be avoided through the application of Rule 46.

Figure 10.2 Rule 46

Example:

 switch(x) {

 :

 defalt: Misspelled

 err = 1;

 break;

 }

Example:

 i = 1;

 x = ++i + i; x = 2 + 2? x = 2 + 1?

 j = 1;

 func(j, ++j); func(1, 2)? func(2, 2)?

Section 10 MISRA C

Rev.3.00 2005.09.12 10-2
REJ05B0464-0300

Figure 10.3 shows Rule 38, that the right hand operand of a shift operator shall lie between zero and one less than the
width in bits of the left hand operand. This is categorized as an unintended compiler operation. In ANSI, if the shift
number of the bit-shift operator is a negative number or larger than the size of the object to be shifted, the calculation
results are undefined. In figure 10.3, if the shift number when us is shifted is not between 0 and 15, the results are
undefined and the value will differ depending on the compiler. This problem can be avoided through the application of
Rule 38.

Figure 10.3 Rule 38

Figure 10.4 shows Rule 51, that the evaluation of constant unsigned integer expressions should not lead to wrap-around.
This is categorized as an error at execution. When the result of an unsigned integer calculation is theoretically negative, it
is unclear whether a theoretically negative value is expected, or a result based on a calculation without the sign will
suffice. This situation could lead to a malfunction. Also, the results of an addition calculation may cause an overflow,
resulting in a very small value. This problem can be avoided through the application of Rule 51.

Figure 10.4 Rule 51

10.1.3 Compliance Matrix

With MISRA C, source code is checked for compliance with all 127 rules. In addition, a table as the one shown in Table
10.1 needs to be made, showing whether or not each rule is upheld. This is called a compliance matrix. Given the
difficulty of visually checking all rules, we recommend that you use a static check tool. The MISRA C guideline also
indicates such, stating that the use of a tool to adhere to rules is of utmost importance. As not every rule can be checked
using such a tool, you will need to perform a visual review to check such rules visually.

Table 10.1 Compliance Matrix

Rule number Compiler Tool 1 Tool 2 Review (visual)

1 Warning 347

2 Violation 38

3 Warning 97

4 Pass

...

Example:

 unsigned short us;

 us << 16; Undefined action

 us >> -1 Undefined action

Example:

 if(1UL - 2UL) What is intended: -1 or 0xFFFFFFFF?

 (char)(0xfffffffeUL + 2); Results in a 0 address.

Section 10 MISRA C

Rev.3.00 2005.09.12 10-3
REJ05B0464-0300

10.1.4 Rule Violations

Rule violations can consist of those that are known to be safe, and those that may have more effects. Rule violations such
as the former should be accepted, but some degree of safety is lost when rule violations are accepted too easily. This is
why MISRA C states a special procedure for accepting rule violations. Such violations require a valid reason, as well as
verification that the violation is safe. As such, locations and valid reasons for all accepted rules are documented. So that
violations are not accepted too easily, the signature of an individual with appropriate authority within the organization is
added to such documentation after consultation with an expert. This means that when a rule that is the same as one already
accepted is violated, it is deemed as an "accepted rule violation", and can be treated as accepted, without performing the
above procedures again. Of course, such violations need to be reviewed regularly.

10.1.5 MISRA C Compliance

To encourage MISRA C compliance, code needs to be developed in compliance with the rules, and rule violation
problems need to be resolved. To show whether code complies with the rules, documentation for the compliance matrix
and accepted rule violations is needed, along with signatures for each rule violation. To prevent future problems, you
should train programmers to make the most of the C language and tools used, implement policies regarding coding style,
choose adequate tools, and measure software metrics of various kinds. Such efforts should be officially standardized,
along with the appropriate documentation. MISRA C compliance requires more than just development of individual
products according to the guidelines, but rather of the organization itself.

10.2 SQMlint

10.2.1 What Is SQMlint?

SQMlint is a package that provides the Renesas C compiler with the additional function for checking whether it conforms
to the MISRA C rules. SQMlint statically checks the C source code, and reports the areas that violate the rules. SQMlint
runs as part of the C compiler in the Renesas product development environment. SQMlint can be started simply by adding
an option at compile-time, as shown in figure 10.5. It in no way affects the code generated by the compiler.

Table 10.2 lists the rules supported by SQMlint.

Figure 10.5 SQMlint Positioning

C source

Preprocessed
C source

Preprocess

C compiler SQMlint

Assembly source Rule violation
message

Renesas C
Compiler

Section 10 MISRA C

Rev.3.00 2005.09.12 10-4
REJ05B0464-0300

Table 10.2 Rules Supported by SQMlint

Rule Test Rule Test Rule Test Rule Test Rule Test Rule Test

1 O 26 X 51 O* 76 O 101 O 126 O

2 X 27 X 52 X 77 O 102 O 127 O

3 X 28 O 53 O 78 O 103 O

4 X 29 O 54 O* 79 O 104 O

5 O 30 X 55 O 80 O 105 O

6 X 31 O 56 O 81 X 106 O*

7 X 32 O 57 O 82 O 107 X

8 O 33 O 58 O 83 O 108 O

9 X 34 O 59 O 84 O 109 X

10 X 35 O 60 O 85 O 110 O

11 X 36 O 61 O 86 X 111 O

12 O 37 O 62 O 87 X 112 O

13 O 38 O 63 O 88 X 113 O

14 O 39 O 64 O 89 X 114 X

15 X 40 O 65 O 90 X 115 O

16 X 41 X 66 X 91 X 116 X

17 O* 42 O 67 X 92 X 117 X

18 O 43 O 68 O 93 X 118 O

19 O 44 O 69 O 94 X 119 O

20 O 45 O 70 O* 95 X 120 X

21 O* 46 O* 71 O 96 X 121 O

22 O* 47 X 72 O* 97 X 122 O

23 X 48 O 73 O 98 X 123 O

24 O 49 O 74 O 99 O 124 O

25 X 50 O 75 O 100 X 125 O*

 O: Testable X: Not testable *: Testable with limitations

Table 10.3 Number of Rules Supported by SQMlint

Rule category
Number of testable rules
(Supported by SQMlint / Total)

Required 67/93

Advisory 19/34

Total 86/127

Section 10 MISRA C

Rev.3.00 2005.09.12 10-5
REJ05B0464-0300

10.2.2 Using SQMlint

SQMlint start options can be set easily from the window for setting the HEW Compile Options. Figure 10.6 shows the
dialog box for specifying HEW options, in which [MISRA C rule check] should be selected from [Category].

Figure 10.6 HEW Options Window

Thus, SQMlint will start at compile-time. The meaning of [Inspection Option] in this dialog is:

• [All]: Performs testing for all rules.

• [Required]: Performs testing only for rules necessary according to the MISRA C rule.

• [Custom]: Performs testing for the rules specified by the user. Please select the rules by using the check box and the
buttons of the right-side.

10.2.3 Viewing Test Results

Test results can be output in the following three ways:

(a) Standard error output

Messages are output the same as HEW compile errors. A tag jump can be performed by double-clicking the message,
or right-clicking the message and choosing [Jump]. The source code can be easily corrected by the same operation as
the compile error.

Note that an explanation is displayed by right-clicking the message and choosing [Help].

(b) CSV file

A file format that can be read by spreadsheet software, allowing reviews to be performed more easily.

(c) SQMmerger

SQMmerger is a tool for merging a C source file with CSV-formatted report file generated by SQMlint into a file that
contains C source lines and their associated report messages.

To execute SQMmerger, use the following command entry format:

 sqmmerger -src <c-source-file-name> -r <report-file-name> -o <output-file-name>

Displays both the source file and test results, as shown in figure 10.7.

Section 10 MISRA C

Rev.3.00 2005.09.12 10-6
REJ05B0464-0300

Figure 10.7 SQMmerger

10.2.4 Development Procedures

Figure 10.8 shows how to perform development using SQMlint.

Figure 10.8 Development Procedure Using SQMlint

• Collect all compile errors. SQMlint assumes that the C source code is valid.

• Find errors detected by SQMlint.

• Correct the errors that can be easily corrected.

• Create a list of the locations of rule violations that require investigation, and perform a review.

• Perform corrections for rules deemed unacceptable upon review.

• Document rules deemed acceptable upon review, to leave a record.

10.2.5 Supported Compilers

The following compilers are supported by SQMlint:

• H8C/C++ Compiler Package V.6.01 Release00 and later

 1 : void func(void);
 2 : void func(void){
 4 : LABEL:
 [MISRA(55) Complain] label ('LABEL') should not be used
 5 :
 6 : goto LABEL;
 [MISRA(56) Complain] the 'goto' statement shall not be used
 7 : }

Code completion

Compile and
perform MISRA C

test

Can be corrected
quickly

Correct

Investigation
necessary

List of violation areas

Review source
code

Unacceptable rule
violations

Correct

Documentation

Acceptable rule
violations

Section 11 Q & A

Rev.3.00 2005.09.12 11-1
REJ05B0464-0300

Section 11 Q & A

This section presents answers to questions frequently asked by users.

No. Tool Name Description
Referenced
Section

1 How to change character string assignment destinations 11.1.1

2 Failure to identify 1-bit data 11.1.2

3 Startup from the DOS screen 11.1.3

4 Runtime routine specifications and execution speed 11.1.4

5 H8 family object compatibility 11.1.5

6 Questions on host machine and OSes 11.1.6

7 Failure in C source-level debugging 11.1.7

8 Warning message displayed at inline expansion 11.1.8

9 Output of “function not optimized” 11.1.9

10 How to specify include files 11.1.10

11 Program coding using Japanese fonts 11.1.11

12 Output of “illegal value in operand” from the cross assembler 11.1.12

13 Deletion of large amount of codes by optimization 11.1.13

14 How to view values of local variables during debugging 11.1.14

15 Regarding optimization options 11.1.15

16 Failure to pass function parameters 11.1.16

17 Failure at bit operation in a write-only register 11.1.17

18 Notes on linking with assembly language programs 11.1.18

19 How to check coding which may cause incorrect operation 11.1.19

20 Comment coding 11.1.20

21 How to specify options for each file 11.1.21

22 How to build programs when the assembler is embedded 11.1.22

23 Output of syntax errors at linkage 11.1.23

24 C++ language specifications 11.1.24

25 How to view source programs after pre-processor expansion 11.1.25

26 How to output save/restore codes of MACH or MACL registers 11.1.26

27 The program runs correctly on the ICE but fails when installed
on a real chip

11.1.27

28 How to use C language programs developed for SH
microcomputers

11.1.28

29 How to modify global options 11.1.29

30 Optimizations that cause infinite loops 11.1.30

31 Read/write instructions for bit fields 11.1.31

32 Common invalid instruction exceptions that occur when
programs are run for an extended period of time

11.1.32

33

C/C++ Compiler

Failure at integer multiplication 11.1.33

Section 11 Q & A

Rev.3.00 2005.09.12 11-2
REJ05B0464-0300

No. Tool Name Description
Referenced
Section

34 Output of “undefined external symbol” 11.2.1

35 Output of “relocation size overflow” 11.2.2

36 How to run programs in RAM 11.2.3

37 Fixing symbol addresses in certain memory areas for linking 11.2.4

38 How to implement an overlay 11.2.5

39 How to specify output of undefined symbol error 11.2.6

40 Unify output forms S type file 11.2.7

41 Dividing an output file 11.2.8

42 Output file format of optimizing linkage editor 11.2.9

43 How to calculate program size (ROM, RAM) 11.2.10

44

Optimizing Linkage
Editor

Output of "section alignment mismatch " 11.2.11

45 Reentrant and standard libraries 11.3.1

46 I would like to use reentrant library function in standard library
file

11.3.2

47 There is no standard library file (H8C V4 or later) 11.3.3

48 Warning message on building standard library 11.3.4

49 Size of memory used as heap 11.3.5

50 How to reduce ROM size for I/O libraries 11.3.6

51

Library Generator

How to edit library file 11.3.7

52 Failure to display dialog menu 11.4.1

53 Linkage order of object files 11.4.2

54 Excluding a project file 11.4.3

55 Specifying the default options for project files 11.4.4

56 Changing memory map 11.4.5

57 How to use HEW on network 11.4.6

58 Limitations on file and directory names created with HEW 11.4.7

59 Failure of Japanese font display with HEW editor of HDI 11.4.8

60 How to convert programs from HIM to HEW 11.4.9

61

HEW

I want to use an old compiler (tool chain) in the latest HEW 11.4.10

11.1 C/C++ Compiler

11.1.1 How to Change Character String Assignment Destinations

Question

How can I modify attributes of the section to which character strings and data are assigned?

Answer

Although character strings are normally assigned to the constants area, they can be assigned to the initialization area by the
following operation:

Section 11 Q & A

Rev.3.00 2005.09.12 11-3
REJ05B0464-0300

(1) Modifies with an option

A character string can be assigned to the D section with the following option.

[Specification method]

Dialog menu: C/C++Tab Category: [Object], change Store string data in: to Data section

Command line: string=data

(2) Restricts the storage area for the character string as follows:

The results are as follows:

(3) Data assigned to the constants area are assigned to the initialization area with the volatile specification.

Example:

The volatile option is specified.

 (Not specified) (Specified)

[Specification method]

Dialog menu: C/C++ Tab Category: [Other],
Avoid optimizing external symbols treating them as volatile

Command line: volatile

11.1.2 Failure to Identify 1-bit Data

Question

When a 1-bit data is compared with “1”, a branch operation sometimes fails, why is this?

char *str1=”ABC”;
char str2[4]=”ABC”;

Character string ABC to C section

Character string ABC to D section

 .SECTION D,DATA,ALIGN=2
_str1:
 .DATA.L L2
_str2:
 .SDATAZ "ABC"
 .SECTION C,DATA,ALIGN=2
L2:
 .SDATAZ "ABC"

const int a=1;

 .SECTION D,DATA,ALIGN=2
_a:
 .DATA.W H'0001

 .SECTION C,DATA,ALIGN=2
_a:
 .DATA.W H'0001

Section 11 Q & A

Rev.3.00 2005.09.12 11-4
REJ05B0464-0300

Answer

Make sure that the data is not declared as a signed variable (int, short, char).

If 1-bit data is declared in a bit field as a signed variable, the 1-bit data itself is interpreted as the sign.

Therefore, only the values “0” and “-1” can be represented.

To represent “0” and “1” , the data should be declared as unsigned.

11.1.3 Startup from DOS Screen

Question

How can I start the H8S, H8/300C/C++ compiler system in the PC version from the DOS screen using a command?

Answer

To start the compiler from the DOS window, set the following environment:

(1) Setting the PATH

Set the PATH option to the place where the tool to be used is located.

Example: If the tool to be used is C:\Hew2\Tools\Hitachi\H8\5_0_1\bin

c:\> PATH=%PATH%;C:\Hew2\Tools\Hitachi\H8\5_0_1\bin (RET)

 This should be added to an existing PATH.

(2) Setting CH38

This indicates the location of the system include file used by the compiler.

Example: If the system include file is located in C:\Hew2\Tools\Hitachi\H8\5_0_1\include

c:\> set CH38=C:\Hew2E\Tools\Hitachi\H8\5_0_1\include (RET)

(3) Setting CH38TMP

Set the intermediate file directory for files generated by the compiler.

Example: If the intermediate file directory is C:\temp,

c:\> set CH38TMP=C:\temp

If this is not specified, intermediate files are created in the current directory. Usually, this specification is not required;
however, sometimes it is necessary such as when the disk space in the current directory is insufficient.

(Example that always gives false results)

struct {
 char p7:1;
 char p6:1;
 char p5:1;
 char p4:1;
 char p3:1;
 char p2:1;
 char p1:1;
 char p0:1;
}s1;

if(s1.p0==1){
 s1.p1=0;
}

(Example that gives correct results)

struct {
 unsigned char p7:1;
 unsigned char p6:1;
 unsigned char p5:1;
 unsigned char p4:1;
 unsigned char p3:1;
 unsigned char p2:1;
 unsigned char p1:1;
 unsigned char p0:1;
}s1;

if(s1.p0==1){
 s1.p1=0;
}

Section 11 Q & A

Rev.3.00 2005.09.12 11-5
REJ05B0464-0300

(4) Setting H38CPU

Specify the CPU/operation mode.

Example: To specify a CPU/operation mode 2600a:24,

c:\> set H38CPU=2600a:24

This designation can also be specified in a compiler option. If this specification differs from a compiler option, the
compiler option takes priority.

Remarks

If the message “insufficient area for environment variables” is displayed at the compiler startup with this environmental
specification, modify the settings as follows:

Open “DOS Prompt Properties”.

Increase the initial allocation size for the [Conventional memory] environment variable. A value of 1024 or greater is
recommended.

After making this change, re-open the DOS prompt.

11.1.4 Runtime Routine Specifications and Execution Speed

Question

Tell me about the speed of the runtime routines provided by the compiler.

Section 11 Q & A

Rev.3.00 2005.09.12 11-6
REJ05B0464-0300

Answer

The following is a list of runtime routine speeds speeds when using internal ROM and RAM. The options for creating a
library are default specifications:

List of Runtime Routine Speeds (1)

No. Type Function Name 300 300HN 300HA 2000N 2000A H8sxn H8sxa H8sxx

1 $ADDD$3 1002 746 480 206 208 175 175 175

2 $ADDF$3 426 216 174 102 104 87 87 87

3

Add

$ADDL$3 76 - - - - - - -

4 $SUBD$3 1212 618 626 268 272 240 226 226

5 $SUBF$3 448 224 228 106 108 91 91 91

6

Subtract

$SUBL$3 76 - - - - - - -

7 $MULD$3 1886 984 992 606 610 539 539 539

8 $MULF$3 702 388 392 220 222 192 192 192

9 $MULI$3 102 - - - - - - -

10 $MULL$3 304 130 134 95 88 - - -

11 $MULXSB$3 60 - - - - - - -

12 $MULXSW$3 168 - - - - - - -

13 $MULXUW$3 148 - - - - - - -

14

Multiply

$CMLI$3 142 - - - - - - -

15 $DIVC$3 82 - - - - - - -

16 $DIVD$3 7304 2544 356 1236 1238 1248 1248 1248

17 $DIVF$3 1688 1176 1180 551 553 649 649 649

18 $DIVI$3 262 - - - - - - -

19 $DIVL$3 1068 154 162 95 99 91 91 91

20 $DIVUI$3 208 - - - - - - -

21 $DIVUL$3 1038 100 108 68 70 91 91 91

22 $DIVUX$3 936 - - - - - - -

23 $DIVXSB$3 80 - - - - - - -

24 $DIVXSW$3 188 - - - - - - -

25 $DIVXUW$3 158 - - - - - - -

26 $CDVC$3 132 - - - - - - -

27 $CDVI$3 310 - - - - - - -

28

Divide

$CDVUI$3 258 - - - - - - -

29 $MODL$3 254 - - - - - - -

30 $MODUL$3 224 - - - - - - -

31 $CMDC$3 132 - - - - - - -

32 $CMDI$3 310 - - - - - - -

33

Remainder

$CMDUI$3 256 - - - - - - -

34 $POID$3 1164 624 542 278 283 - - -

35 $POIF$3 476 - - - - - - -

36

Post

Increment

$POIL$3 102 - - - - - - -

Section 11 Q & A

Rev.3.00 2005.09.12 11-7
REJ05B0464-0300

List of Runtime Routine Speeds (2)

No. Type Function Name 300 300HN 300HA 2000N 2000A H8sxn H8sxa H8sxx

37 $PODD$3 1114 604 618 268 273 - - -

38 $PODF$3 490 - - - - - - -

39

Post

Decrement

$PODL$3 98 - - - - - - -

40 $PRID$3 1112 572 498 254 267 229 228 228

41 $PRIF$3 448 314 292 123 127 101 99 99

42

Pre

Increment

$PRIL$3 56 - - - - - - -

43 $PRDD$3 1066 556 578 246 259 216 212 212

44 $PRDF$3 466 326 342 131 135 108 106 106

45

Pre

Decrement

$PRDL$3 56 - - - - - - -

46 $ANDL$3 78 - - - - - - -

47 $NEGD$3 74 76 80 38 40 20 20 20

48 $NEGF$3 50 - - - - - - -

49 $NEGL$3 76 - - - - - - -

50 ORL3 78 - - - - - - -

51

Logic operations

$XORL$3 78 - - - - - - -

52 $MV4$3 48 - - - - - - -

53 $MV8$3 72 72 76 36 38 17 17 17

54 MVN3 170 296 328 138 146 64 71 71

55 $mv3mm $ - - - 30 32 - - -

56 $mv3mr$ - - - 28 30 - - -

57 $mv3rm$ - - - 17 19 - - -

58 $mv4mm$ - - - 36 38 - - -

59 $mv4mr$ - - - 31 33 - - -

60

Block

Transfer

$mv4rm$ - - - 20 22 - - -

61 $BFINC$3 102 96 100 47 49 - - -

62 $BFINCR$3 94 88 92 43 45 - - -

63 $BFINI$3 256 180 184 71 73 35 35 35

64 $BFINIR$3 248 156 160 67 69 31 31 31

65 $BFINL$3 820 346 350 135 137 45 45 45

66

Set bit field

$BFINLR$3 - 330 334 127 129 39 39 39

67 $BFSC$3 78 78 82 38 40 - - -

68 $BFSI$3 196 168 172 67 69 34 34 34

69 $BFSL$3 578 270 270 122 124 37 37 37

70 $BFUC$3 68 68 72 33 35 - - -

71 $BFUI$3 168 144 148 55 57 - - -

72

Reference bit
field

$BFUL$3 546 236 240 105 107 - - -

73 $CMPD$3 230 226 218 101 97 66 62 62

74 $CMPF$3 178 90 94 45 47 36 36 36

75 $CMPL$3 94 - - - - - - -

76

Compare

EQD3 254 250 246 113 111 87 73 73

Section 11 Q & A

Rev.3.00 2005.09.12 11-8
REJ05B0464-0300

List of Runtime Routine Speeds (3)

No. Type Function Name 300 300HN 300HA 2000N 2000A H8sxn H8sxa H8sxx

77 EQF3 202 114 122 57 61 49 47 47

78 GED3 264 250 256 118 116 91 77 77

79 GEF3 202 114 122 57 61 49 47 47

80 GTD3 262 250 254 117 115 90 76 76

81 GTF3 202 114 122 57 61 49 47 47

82 LED3 264 250 266 123 121 93 79 79

83 LEF3 212 114 122 57 61 49 47 47

84 LTD3 264 250 266 123 121 93 79 79

85 LTF3 212 115 122 57 61 49 47 47

86 NED3 250 252 248 114 112 78 75 75

87

Compare

NEF3 204 116 124 58 62 47 47 47

88 $CTOL$3 60 - - - - - - -

89 $DTOF$3 316 238 242 110 112 87 87 87

90 $DTOI$3 508 - - - - - - -

91 $DTOL$3 464 290 294 100 102 105 105 105

92 $FTOD$3 178 144 148 62 64 56 56 56

93 $FTOI$3 608 - - - - - - -

94 $FTOL$3 564 338 342 150 152 188 188 188

95 $ITOD$3 176 152 156 74 76 82 84 84

96 $ITOF$3 164 124 128 62 64 80 80 80

97 $ITOL$3 44 - - - - - - -

98 $LTOD$3 366 244 256 126 128 150 150 150

99 $LTOF$3 334 224 236 116 118 151 151 151

100 $ULTOD$3 180 84 124 54 56 55 51 51

101 $ULTOF$3 150 22 104 50 52 47 47 47

102 $UTOD$3 114 62 94 43 45 38 36 36

103

Convert

$UTOF$3 80 22 52 21 23 25 25 25

104 $DSLC$3 70 70 84 31 37 - - -

105 $DSLI$3 82 78 92 35 41 - - -

106 $DSLL$3 - 98 112 45 51 - - -

107 SLC3 - - - 23 25 - - -

108 SLI3 62 - - 26 28 - - -

109

Left-shift

SLL3 118 - - 29 31 - - -

110 $DSRC$3 70 70 84 31 37 - - -

111 $DSRI$3 88 78 92 35 41 - - -

112 $DSRL$3 - 98 112 45 51 - - -

113 $DSRUC$3 70 70 84 31 37 - - -

114 $DSRUI$3 88 78 92 35 39 - - -

115 $DSRUL$3 - 98 112 45 51 - - -

116

Right-shift

SRC3 - - - 18 25 23 18 19

Section 11 Q & A

Rev.3.00 2005.09.12 11-9
REJ05B0464-0300

List of Runtime Routine Speeds (4)

No. Type Function Name 300 300HN 300HA 2000N 2000A H8sxn H8sxa H8sxx

117 SRI3 68 - - 28 28 17 17 17

118 SRL3 110 - - 29 31 18 18 18

119 $SRUC$3 - - - 23 25 - - -

120 $SRUI$3 68 - - 26 28 - - -

121

Right-shift

$SRUL$3 110 - - 29 31 - - -

122 fp_regld3 52 70 80 - - - - -

123 $fp_rgld3$3 46 60 70 - - - - -

124 fp_regsv3 52 70 80 - - - - -

125 $fp_rgsv3$3 46 60 70 - - - - -

126 sp_regld3 58 80 90 - - - - -

127 $sp_rgld3$3 52 70 90 - - - - -

128 sp_regsv3 58 80 90 - - - - -

129 $sp_rgsv3$3 52 70 90 - - - - -

130 $spregld2$3 50 66 70 - - - - -

131

Register
save/restore

$sprgld23$3 40 56 60 - - - - -

132 Other SWI3 124 - - - - - - -

Remarks

Measurements are from entry into the runtime routine until exit.

11.1.5 H8 Family Object Compatibility

Question

Are there any problems with linking an object compiled with the compile options "-cpu=300" (or 300h, 2000, 2600,
h8sx)?

Answer

In essence the H8 CPUs are upward-compatible, so that an H8/300 object and an H8S/2000 object can be linked and then
executed on the H8S/2000. This means that previous resources can continue to be used without modification.

Object Compatibility

H8/300 objects

H8/300H objects

H8S/2000 objects

H8S/2600 objects

H8SX objects

Section 11 Q & A

Rev.3.00 2005.09.12 11-10
REJ05B0464-0300

11.1.6 Questions on Host Machines and OSes

Question

How can I identify the version of host machine and the OS where the compiler is operated?

Answer

The operating environment is shown below:

H8S,H8/300 C/C++ compiler Package

Host Machine OS Disk Space

IBM-PC/AT Series Windows98/Me/2000/XP/NT 4.0 Approx. 120 MB

HP9000 HP-UX 10.2 Approx. 30 MB

Sun SPARC Japanese Solaris2.5 or higher Approx. 30 MB

Online manuals are also supplied.

The operating environment for the online manuals are as follows:

• A personal computer installing a Pentium® processor

• Microsoft Windows®98, Windows®/ME, or Microsoft WindowsNT®4.0, Microsoft Windows®2000, Windows®XP

• A CD-ROM drive with double speed or faster

• Available disk space: approximately 15MB

Online manuals can be referenced under Windows®98, Windows®ME, Windows NT®4.0, Windows®2000, or
Windows® XP.

Pentium® is a registered trademark of (U.S.) Intel Corporation.
Windows® and Microsoft® are registered trademarks of Microsoft Corporation in the U.S. and other countries.

11.1.7 Failure in C Source-Level Debugging

Question

The output of debugging information is specified at compilation, debugging at the C source level cannot be performed.
Why is this?

Answer

Check the following items:

(1) Is the debugging information specified to be output at compiling for each inter-module optimization step?

The object-output formats and ways to output debugging information differ depending on debuggers. The following table
lists examples of available debuggers and the relationship between output objects and debugging information:

Section 11 Q & A

Rev.3.00 2005.09.12 11-11
REJ05B0464-0300

Available Debugger Object Format
Debug Information
Output

Debug Information Output
Format

3rd party ELF/DWARF 2 support
debugger

ELF/DWARF2 debug In load module

3rd party ELF/DWARF support
debugger

ELF debug In load module

Hitachi Integration Manager (Ver.4 or
higher) +E7000

SYSROFPLUS sdebug Debug information file

Hitachi Integration Manager (Ver.3 or
higher) +E7000

SYSROF debug Debug information file

Hitachi Debugging Interface (Ver.2 or
higher) +E6000

SYSROF debug In load module

Hitachi Debugging Interface (Ver.3 or
higher) +E6000

ELF sdebug Debug information file

Note: If a program is written in the C++ language, the object should be output in the ELF format.

(2) Has the directory containing the source program for compiling been specified to be changed?

Debugging information is stored with the information of the directory location of the source program. Therefore, if the
directory in which the source program for compiling is located is changed, the source program cannot be modified. Some
debuggers support a feature that allows the user to specify the source program directory.

When relocating a directory, be sure to also move the dwfinf directory.

The dwfinf directory may be required at debugging because it contains inter-module optimization add-on information
files.

(3) Are you debugging a file to which the C source file is output in assembly language?

If this is the case, specify the output of debugging information both at compilation and assembly.

Then, step execution and external variable reference can be performed at the C source level.

Answer 2

When -code=asm is specified, debugging cannot be performed at the C source level.

If you use an inline assembler, specify -code=asm.

To perform debugging at the C source level for a project using an inline assembler, specify -code=asm only for files for
which the inline assembler is used.

Remarks

For detailed information on debugging at the C source level, refer to the H8S, H8/300 Series Simulator/Debugger User’s
Manual.

Section 11 Q & A

Rev.3.00 2005.09.12 11-12
REJ05B0464-0300

11.1.8 Warning Message Displayed at Inline Expansion

Question

At the inline expansion of a function, the warning message ”Function <“function name”> in #pragma inline is not
expanded” is displayed. Why is this?

Answer

This warning message does not affect the program execution.

In the following cases, however, the inline expansion is not performed:

• A function is defined before the #pragma inline specification.

• The function has variable parameters.

• Parameter addresses are referenced in the function.

• A function call is made through the address of the function to be expanded.

• For the second or after condition/logical operators.

The function specified in #pragma inline and the function specified in the function specifier inline (C++ language) are
inline-expanded to the location where they are called.

#pragma inline (A,B)
int A(int a)
{
 if (a>10) return 1;
 else return 0;
}
int B(int a)
{
 if (a<25) return 1;
 else return 0;
}
void main()
{
 int a;
 if (A(a)==1 && B(a)==1)
 {

 }
}

←A() is inline-expanded, but not B().

Section 11 Q & A

Rev.3.00 2005.09.12 11-13
REJ05B0464-0300

11.1.9 Output of "Function not optimized"

Question

The warning message “Function not optimized” is displayed. Previously, the same program was compiled without any
problem using the same compile options and under the same system environment. Why is it?

Answer

This warning message does not affect the program execution.

The message may be output by any of the following reasons:

(1) Compiler limitations were exceeded.

Because the compiler generates new internal variables at optimization processing, the limitation may be exceeded. In this
case, divide the function in question.

(2) Insufficient memory

When memory is insufficient during optimization processing, the H8S, H8/300 C/C++ compiler stops optimization in the
expression unit or greater and outputs this warning message while continuing to compile. In this case, the optimization
level achieved is no different from that without the optimization option. To prevent this warning message, rewrite large
functions in the C/C++ program to be divided. Additionally, increase the amount of memory available to the compiler.

11.1.10 How to Specify Include Files

Question

(1) How can I specify an include file in another directory?

(2) How can I provide include specification to an existent file?

Answer

These can be specified with the compiler functions.

The following gives the description:

(1) The compiler option to specify the include file in the specified directory has been prepared

[Specification method]

Dialog menu: C/C++ Tab Category: [Source] Show entries for:, Include file directories

Command line: include

(2) This option specifies a file as an include file even if the file is not included in the source file.

[Specification method]

Dialog menu: C/C++ Tab Category: [Source]Show entries for:, Preinclude files

Command line: preinclude

Section 11 Q & A

Rev.3.00 2005.09.12 11-14
REJ05B0464-0300

11.1.11 Program Coding Using Japanese Fonts

Question

Is it possible to code character strings and comments in a program in Japanese?

Answer

Yes, you can code in Japanese. However, the Japanese environment differs according to the host machine. The Japanese
environment for each host machine is listed below

Host Machine Japanese Code

PC Shift JIS code

HP9000 Shift JIS code

SPARC EUC code

For example, when a file created on a SPARC machine is compiled on a PC, the way the compiler recognizes Japanese
should be modified using an option.

The following command options are available:

Command Option Description

sjis Selects shift JIS codes.

euc Selects EUC codes.

latin1 Selects Latin 1 codes.

In the outcode option, you can specify the Japanese code to be output to the object program. The outcode=sjis option
outputs the Japanese codes in the shift-JIS code. Similarly, the outcode=euc option outputs the Japanese codes in the EUC
codes.

Section 11 Q & A

Rev.3.00 2005.09.12 11-15
REJ05B0464-0300

On the HEW, code in the “User defined options” on the “Other” tab when specifying the object program output codes for
the Japanese environment. You can specify these options in the same way as you would specify in a command line.

<HEW1.2>

<HEW2.0 or later>

Section 11 Q & A

Rev.3.00 2005.09.12 11-16
REJ05B0464-0300

11.1.12 Output of "Illegal Value in Operand" from the Cross Assembler

Question

When a file output with the assembly source by the compiler is assembled by the Cross Assembler, the message ”Illegal
value in operand” is displayed. Why is it?

Answer

Be sure that the Assembly embedding is not performed with the #pragma asm and #pragma endasm or #pragma
inline_asm.

In this case, the branch width containing assembler-intrinsic code is output in a 16-bit displacement, and this message is
output because the actual branch width exceeds that range. To solve the problem, modify the assembly language program
output by the compiler using the JMP instruction to reach the branch range.

Example

To modify the program as follows:

<Results of Assembly expansion>

_sub:
 MOV.L #_a:32,ER0
 MOV.L @ER0,ER1
 INC.L #1,ER1
 MOV.L ER1,@ER0
 RTS
_main:
 MOV.L #_a:32,ER1
 MOV.L @ER1,ER0
 CMP.L #2:32,ER0
 BNE L8
 BRA _sub

L8:
 MOV.L @ER1,ER0
 INC.L #1,ER0
 MOV.L ER0,@ER1
 RTS

BEQ $+6:8
JMP _L8
BSR @_sub

ASM embedded here

Section 11 Q & A

Rev.3.00 2005.09.12 11-17
REJ05B0464-0300

11.1.13 Deletion of Large Amount of Codes by Optimization

Question

Large amount of codes are deleted after the compilation. Why is it?

Answer

There are the following possibilities to cause this problem:

(1) Deleting a substitution to a local variable

If a value is substituted to a local variable but is not referenced, the substitution operation itself is deleted by the
optimization.

Because a local variable is effective as far as the end of the function, normally, unreference of a local variable does not
occur when the value is substituted in the function. Therefore, this problem is caused by a coding error as shown in the
above example.

(2) Optimizing substitution to external variables

The following types of substitution expressions to external variables are optimized, and only the last arithmetic expression
results are reflected:

If volatile is specified at a declaration of an external valuable type, the code glb=0 is generated. By specifying the volatile
option with the compiler, the volatile specification is applied to external valuables in the entire file.

 void func(void)
_func:
 PUSH.L ER6
 {
 int res1,res2,res3;
 res1=data1*data2;
 MOV.W @_data1:32,R0
 MOV.W @_data2:32,E0
 MULXU.W E0,ER0
 MOV.W R0,R6
 res2=data2*data3;
 res3=data3*data1;
 MOV.W @_data1:32,R1
 MOV.W @_data3:32,E1
 MULXU.W E1,ER1
 sub(res1,res1,res3);
 MOV.W R0,E0
 JSR @_sub:24
 }
 POP.L ER6
 RTS

← Because res2 is not referenced hereafter,

the expression itself is deleted.

 int glb;
 void main()
 _main:
 {
 glb=0;
 glb=1;
 MOV.W #1:16,R0
 MOV.W R0,@_glb:32
 }
 RTS

← Code glb=0 is not generated

← Coding error in the second parameter. Code

res1 -> res2 to avoid deletion.

Section 11 Q & A

Rev.3.00 2005.09.12 11-18
REJ05B0464-0300

11.1.14 How to View Values of Local Variables at Debugging

Question

Local variable values cannot be viewed.

I attempted to reference a local variable with the Debugger, but the value cannot be referenced or an incorrect value is
returned. Why is it?

Answer

There are the following possibilities to cause this problem:

(1) Constant operation at compiling

A variable whose value is determined at compiling is operated at compiling not at the run time, and then the variable itself
may disappear.

The problem may be due to these cases, however, the actual program execution is not influenced.

(2) Deletion of unreferenced variables

Because a local variable is effective as far as the end of the function, normally, unreference of a local variable does not
occur when the value is substituted in the function. Therefore, this problem is caused by a coding error as shown in the
above example.

int x;
void func(void)
{
 int a;
 a=3;
 x=x+a;
}

In this case, x=x+3 is set to “a” at compiling.
If the variable “a” is not used elsewhere, it is
not necessary to treat “a” as a variable.
Therefore, it is deleted as debug
information.

void func(int a,int b)
{
 int tmp;
 int len;

 tmp=a*a+b*b;
 len=sq(tmp);
}

len=sq(a*a+b*b) is set and the variable
tmp is deleted.

int data1,data2,data3;
void func(void)
{
 int res1,res2,res3;

 res1=data1*data2;
 res2=data2*data3;
 res3=data3*data1;
 sub(res1,res1,res3);
}

Section 11 Q & A

Rev.3.00 2005.09.12 11-19
REJ05B0464-0300

11.1.15 Regarding Optimization Options

Question

What will be changed by optimization option (speed, size)?

Answer

Generated codes are changed by specified optimization option. (Do not change Algorithm of User program by
optimization.) By optimization, optimize codes like inline expansion of a function and loop unrolling, so the number of
times of run-time cycles is changed. Thereby, the timing of operation is also changed. First of all, please verify enough
about timing of operation. Moreover, optimization of variable access is also considered as concern matters other than the
above. The case that an instruction of data can be realized between registers without memories, and it is corresponded to
optimization of variable access, it may be said [Timing verification]. If you want [Do not want to optimize] variable,
please confirm including a necessity of an addition of volatile declaration.

11.1.16 Failure to Pass Function Parameters

Question

Parameters of functions are not passed correctly. Why is this?

Answer

When the parameter type is not declared as a prototype, specify the same type to the calling function and the called
function in order to pass parameters correctly.

This problem can be checked by using the Display information level message (message option) on C/C++tab
Category:[Source] Messages at compilation. The output of each information message can be selected with this
specification. Whether a function is declared as a prototype or not can be checked with the (I)0200 No prototype function.

Remarks

In the above “Specification where results are not guaranteed” example, a prototype declaration of the function f
parameters is not included. In this case, the parameter x is converted to the int type when it is called from the main
function. When no type declaration is provided by a prototype declaration of parameters, the following type conversions
occur:

• The char-type and unsigned-char types parameters are converted into int-type.

• The float-type parameters are converted into double type.

• No other types are converted.

(Specification where results are not
guaranteed)

void f(x)
char x;
{
 x+=10;
}
void main(void)
{
 char x;
 f(x);
}

(Correct specification)

void f(char x)
{
 x+=10;
}
void main(void)
{
 char x;
 f(x);
}

Section 11 Q & A

Rev.3.00 2005.09.12 11-20
REJ05B0464-0300

11.1.17 Failure at Bit Operation in Write-Only Register

Question

The bit operation of a write-only register does not produce the intended result. What can be done about it?

Answer

The compiler generates bit operation instructions for BSET, BCLR, BNOT, BST, and BIST. These instructions read data
in byte units and after performing a bit operation, write them back in byte units. On the other hand, when a write-only
register is read, the CPU fetches undefined data regardless of the register contents. As a result, a bit operation instruction
in a write-only register may change values of bits other than the operated bit.

Countermeasure

Avoid performing a bit operation directly in a write-only register.

Perform any operation after substituting a value to a 1-byte data. The following shows an example:

Remarks

There are various kinds of write-only registers, such as I/O port registers or peripheral device registers. When developing a
program, confirm that the appropriate write-only registers are operated by referring to the hardware manuals supplied with
each product.

(C language program)

#include "300x.h"
unsigned char DDR;
//Specify data to back up
//write-only register
void sub(void)
{

 DDR &=~P0;
 P4DDR.Schar=DDR;
}

(Include file (300x.h))

struct S_p4ddr {
 unsigned char p7:1;
 unsigned char p6:1;
 unsigned char p5:1;
 unsigned char p4:1;
 unsigned char p3:1;
 unsigned char p2:1;
 unsigned char p1:1;
 unsigned char p0:1;
};
union SS {
 unsigned char Schar;
 struct S_p4ddr Sstr;
};
#define P4DDR (*(union SS
*)0xffffc5)
#define P0 0x1

Section 11 Q & A

Rev.3.00 2005.09.12 11-21
REJ05B0464-0300

11.1.18 Notes on Linking with Assembly Language Programs

Questions

(1) When an assembly language program subroutine is called from a C language program, what should I do on the
assembly language program?

(2) When a C language program subroutine is called from an assembly language program, what should I do on the
assembly language program?

Answer

(1) When can assembly language program subroutine is called from a C language program and the following listed
registers are used, save/restore registers at the entry/exit points of the function:

CPU Series
Number of Parameter-Passing
Registers: 2 Number of Parameter-Passing Registers: 3

Optimization specified: ER2 to ER6 Optimization specified: ER3 to ER6H8SX,

H8S/2600, H8S/2000

H8/300H

Optimization not specified: ER2 to ER5 Optimization not specified: ER3 to ER5

Optimization specified: R2 to R6 Optimization specified: R3 to R6H8/300

Optimization not specified: R2 to R5 Optimization not specified: R3 to R5

(2) When a C language program subroutine is called from an assembly language program, the following register values are
not guaranteed on the C language program before and after the subroutine is called. If the register is used in the
assembly language program, save it before the C language program is called:

CPU Series
Number of Parameter-Passing
Registers: 2

Number of Parameter-Passing Registers: 3

H8SX,H8S/2600,
H8S/2000
H8/300H

ER0, ER1 ER0, ER1, ER2

H8/300 R0,R1 R0, R1, R2

Remarks

For a detailed description of linkage with an assembly language program, refer to section 9.3, Linking C/C++ Programs
and Assembly Programs, in the H8S, H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor User's
Manual.

Section 11 Q & A

Rev.3.00 2005.09.12 11-22
REJ05B0464-0300

11.1.19 How to Check Coding Which May Cause Incorrect Operation

Question

Is there any function to check for potential problem code, such as a missing prototype declaration for a function?

Answer

When coding a program, note that there are some kinds of codes which are not errors in language

specifications but may produce incorrect operation results. These codes can be checked by outputting information
messages using an option.

The MISRA-C check tool can be used with version 6.1 or later.

Specification method

Dialog menu: C/C++tab Category: [Source] Messages, Display information level message

Command line: message

Remarks

In the dialog menu, removing the left-side checkmark from a message disables the output of the message. In the command
line, specifying an error number in a sub-option of the nomessage option disables the output of the message. This option is
valid for an error number from 0001 to 0307. For details on error numbers, refer to section 12, Compiler Error Messages,
in the H8S,H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor User’s Manual.

After generating information messages, the compiler performs an error recovery and generates an object program. Check
that the error recovery performed by the compiler conforms with the aims of the program.

Example)
 ch38 ∆ -message ∆ test.c (RET)

(C language program)

/* /* COMMENT */ →0001 : String “/*” in a comment
int ; →0002 : A declaration without a declarator
int tmp;
void func(int);
void main(void)
{
 long a;
 tmp=a; →0011 : Reference to an undefined local variable
 func(a+1); →0006 : Function parameter expression is converted
into the parameter type specified in prototype
declaration
 sub(); →0200 : No prototype declaration for called function
}

Section 11 Q & A

Rev.3.00 2005.09.12 11-23
REJ05B0464-0300

11.1.20 Comment Coding

Question

(1) How can I nest comments?

(2) How can I code C++ comments in a C language program?

Answer

(1) There is an option that allows you to nest comments without generating an error. In this case, note that these comments
are interpreted as described below. While the nesting levels for comments in the compiler Ver.4.0 are unlimited, up to
255 nesting levels can be used for comments in the compiler Ver.3.0.

[Specification method]

Dialog menu: C/C++ tab Category: [Other] Miscellaneous options: Allow comment nest

Command line: comment

C/C++ Source Code Nested Comments Not Allowed Nested Comments Allowed

/* comment */ Recognized as a comment
statement

Recognized as a comment statement

/* /* comment */ */ Coding error Recognized as a comment statement

/* /* /* comment */ Recognized as a comment
statement

Coding error

(2) The C++ comment code “//” can be used. There is the following relationship between the “//” and the C comment code
(/* */). The parts that can be recognized as comments are underlined:

void func()
{
 abc=0; // /* comment */

 def=1; /* comment
 ghi=2; // comment */
}

←Code after // is recognized as a comment

←Code enclosed in /* */ is
recognized as a comment

Section 11 Q & A

Rev.3.00 2005.09.12 11-24
REJ05B0464-0300

11.1.21 How to Specify Options for Each File

Question

How can I modify options for each file in a project on the HEW system?

Answer

The HEW system supports functions to modify and specify options individually on each file with the compiler or the
Assembler.

When specifying with a compiler option, expand the directory of the C/C++ source file on the left side of the option
screen. Then, click on a specific file to set the desired options.

If an options is specified in the folder unit, it is effective on all the files in the specified directory.

In the following example, the speed efficiency option is specified only to the file test.c in a project:

<HEW1.2>

Select test.c from the left side of the screen and select Speed oriented optimization from Speed or size: on the Optimize
tab.

Section 11 Q & A

Rev.3.00 2005.09.12 11-25
REJ05B0464-0300

<HEW2.0 or later>

Select test.c from the left side of the screen and select Speed oriented optimization from C/C++ Tab Category:
[Optimize] Speed or size:.

11.1.22 How to Build Programs When the Assembler is Embedded

Question

A warning message is output at compiling when the assembler intrinsic is performed using #pragma asm and #pragma
endasm or #pragma inline_asm.

Answer

Assembler embedded files should be output in the Assembly language and then be assembled.

To build a file on the HEW, specify the file containing the Assembler embedding to the Assembly output referring to the
procedure described in section 11.1.21, How to Specify Options for Each File. When built in this manner, the file that has
been Assembly output will automatically be assembled.

In the following example, the file test.c containing an Assembly embedding is specified:

Section 11 Q & A

Rev.3.00 2005.09.12 11-26
REJ05B0464-0300

<HEW1.2>

Select Assembly source code (*.src) from Output file type: on the Object tab.

Files are built normally with this specification. Note that this specification disables C source debugging.

<HEW2.0 or later>

Select Assembly source code (*.src) from C/C++ Tab Category: [Object] Output file type: .

Files are built normally with this specification.

Section 11 Q & A

Rev.3.00 2005.09.12 11-27
REJ05B0464-0300

11.1.23 Output of Syntax Errors at Linkage

Question

The error message 202 SYNTAX ERROR is displayed with the inter-module optimizer for HEW1.2. Why is it?

Answer

Does the file name or the project name contain Japanese characters, minus symbols, or space characters?

With the compiler, the Assembler, the inter-module optimizer, the Librarian or the S-Type Converter, Japanese characters,
minus symbols, or space characters cannot be specified for a file name. For example, if a project name contains Japanese
characters, a syntax error occurs when the output destination is specified with an inter-module optimizer option.

Remarks

In HEW2.0 or later, programs can successfully be built without the error message displayed even if a file name or a project
name contains Japanese characters, minus symbols or space characters. However, Japanese characters, minus symbols or
space characters should not be used if possible.

11.1.24 C++ Language Specifications

Question

Are there any function supporting the development of programs in the C++ language?

Answer

The H8S,H8/300 C/C++ compiler supports the following functions to support program development in C++:

(1) Support of EC++ class libraries

As EC++ class libraries are supported, the intrinsic C++ class libraries can be used from a C++ program without any
specification.

The following four-type libraries are supported:

• Stream I/O class library

• Memory manipulation library

• Complex number calculation class library

• Character string manipulation class library

For details, refer to section 10.3.2, C++ Class Libraries, in the H8S,H8/300 Series C/C++ Compiler, Assembler,
Optimizing Linkage Editor User’s Manual.

(2) EC++ language specification syntax check function

Syntaxes are checked on C++ programs, based upon the EC++ language specifications, using a compiler option.

[Specification method]

Dialog menu: C/C++ Tab Category: [Other] Miscellaneous options: Check against EC++ language specification

Command line ecpp

Section 11 Q & A

Rev.3.00 2005.09.12 11-28
REJ05B0464-0300

(3) Other functions

The following functions are supported for efficient coding of C++ programs:

 <Better C functions>

• Inline expansion of functions

• Customization of operators such as +, -,<<

• Simplification of names through the use of multiple definition functions

• Simple coding of comments

 <Object-oriented functions>

• Classes

• Constructors

• Virtual functions

For a description of how to set the execution environment at using library functions in a C++ program, refer to section
9.2.2(5), C/C++ library function initial settings(_INILIB), in the H8S, H8/300 Series C/C++ Compiler, Assembler,
Optimizing Linkage Editor User's Manual.

11.1.25 How to View Source Programs after Pre-Processor Expansion

Question

How can I review a program after macros are expanded?

Answer

The output of the source program expanded by the Pre-Processor is specified with the compiler option.

If the source program before expansion was a C language program, it is output with the extension <filename>.p. For a
C++ program, the extension is <filename>.pp.

In this case, no object program is created. Therefore, any optimization option specifications are not available.

Specification method

Dialog menu: C/C++ Tab Category: [Object] Output file type: Preprocessed source file (*.p/*.pp)

Command line: preprocessor

Section 11 Q & A

Rev.3.00 2005.09.12 11-29
REJ05B0464-0300

11.1.26 How to Output Save/Restore Codes for MACH or MACL Register

Question

How can I output the MAC register save/restore code?

Answer

The Output of save/restore codes for the MAC register is specified with a compiler option.

Values of the MAC register are always guaranteed with this specification when the MAC register is used in an interrupt
function (by using the built-in function mac or macl) or when a function call is made within an interrupt function.

Even if this option is not specified, the MAC register save/restore codes are output whenever the MAC register is used in
an interrupt function.

Specification method

Dialog menu: C/C++ Tab Category: [Other] Miscellaneous options: Interrupt handler saves/resotres MACH and
MACL registers if used

Command line: macsave

Example

To call the function sub from an interrupt function:

(CC++ program)

(Compiled Assembly expansion code)

 Without option With option

extern void sub(void);
#pragma interrupt func
void func(void)
{
 sub();
}

_func:
 STM.L (ER0-ER1),@-SP

 JSR @_sub:24

 LDM.L @SP+,(ER0-ER1)
 RTE

_func:
 STM.L (ER0-ER1),@-SP
 STMAC.L MACL,ER1
 PUSH.L ER1
 STMAC.L MACH,ER1
 PUSH.L ER1
 JSR @_sub:24
 POP.L ER1
 LDMAC.L ER1,MACH
 POP.L ER1
 LDMAC.L ER1,MACL
 LDM.L @SP+,(ER0-ER1)
 RTE

Section 11 Q & A

Rev.3.00 2005.09.12 11-30
REJ05B0464-0300

11.1.27 The Program Runs Correctly on the ICE but Fails When Installed on a Real Chip

Question

The program runs correctly at debugging on the ICE but fails when operated on a real chip.

Answer

If a program contains the initialization data area (D section), it uses emulation memory on the ICE. Therefore, read/write
operation can be performed on the ICE, however, only read operation can be performed on a real chip because memory on
a real chip is ROM. This causes the malfunction of the program execution whenever a write operation is attempted.

The initialization data area should be copied from the ROM area to the RAM area at the power-on reset.

Secure an area for each of ROM and RAM using the ROM implementation support option of the HEW2.0 or later
optimizing linkage editor and the HEW1.2 inter-module optimizer.

For a description of how to copy data from a ROM area to a RAM area, refer to section 3.3, Section Address Operators.

11.1.28 How to Use C language programs Developed for SH Microcomputers

Question

What points should I confirm when using a C language program developed for an SH microcomputer on an H8S,H8/300
microcomputer?

Answer

Be careful on the following points for the program:

(1) int-type data are treated as 2-byte data.

On the SH, int type data are treated as 4-byte data, however, on the H8S,H8/300 Series, they are treated as 2-byte data.
Confirm that there is not any problem on the range of values.

(2) Some expanded functions cannot be used.

Functions on the SH series C/C++ compiler and the H8S and H8/300 series C/C++ compiler are compatible by using the
#pragma statement, for example, however there are some differences between them in the expanded functions and
specifications.
Note that built-in functions are CPU-specific.

(3) Notes on assembler embedding

Because of differences in architecture, the H8S,H8/300 Series cannot handle any code in which an SH series assembly
source is embedded.

Remarks

If you wish to use C source files created in the M16C development environment in the H8 development environment,
Translation Helper is available.

This is a support tool to translate smoothly the all C source files created in the M16C development environment to the H8
development environment.

Translation Helper can be free downloaded from Renesas Development Environment site.

Section 11 Q & A

Rev.3.00 2005.09.12 11-31
REJ05B0464-0300

11.1.29 How to Modify Global Options

Question

When the number of parameter-passing registers is changed, the inter-module optimizer generates an error. What causes
this problem?

Answer

The compiler option to specify the number of parameter-passing registers is a global option, which must be the same
specification through the project.

Therefore, if the compiler option only is modified, an error may occur.

There are two global options, that specifying the number of parameter-passing registers and that specifying the CPU type.

A global option can be modified as follows:

Example: To change the number of parameter-passing registers:

(1) Modify the compiler option

[Specification method]

Dialog menu: CPU tab, Change number of parameter from 2 (default) to 3

Command line: regparam=3

This changes the option specification for all applicable C/C++ files.

(2) Modify the Assembler file

The registers used changes during the linkage of a C/C++ program and an Assembler file.

This requires a modification of the Assembler file.

When the number of parameter-passing registers is set to three, used registers are changed as follows:

 For an H8/300 CPU: R0, R1 → R0, R1, R2
 Other CPUs: ER0, ER1 → ER0, ER1, ER2

For details of the interface, refer to section 9.3.2(3), Rules concernig registers, in the H8S, H8/300 Series C/C++
Compiler, Assembler, Optimizing Linkage Editor User's Manual.

The described interface is also applicable to assembly language codes that is embedded in a C/C++ program.

(3) Change the standard library/EC++ class library to be linked

Use the inter-module optimizer to change the library to be linked.

Modification on the HEW1.2 is shown below:

If the previously linked library is c8s26a.lib, change it into c8s26a3.lib:

Section 11 Q & A

Rev.3.00 2005.09.12 11-32
REJ05B0464-0300

For a detailed information for global options and the related libraries, refer to table 1.1, The Relationship between
Standard Libraries and Compile Options, in the H8S, H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage
Editor User’s Manual.

In HEW2.0 or later, global options are set in common for the compiler, Assembler and Library Generation Tool and they
should not necessarily be set with the optimizing linkage editor.

(If the library in the older version is set on Link/Library Tab Category: [Input] Library files, the modification as shown
above is necessary.)

11.1.30 Optimizations That Cause Infinite Loops

Question

Why do infinite loops occur when I upgrade the compiler, or turn optimization on?

Answer

Infinite loops may occur due to compiler optimization, such as in the following common source, in which substitution for
a is read from the register instead of from memory, preventing the value of *d from being reflected when changed via
interrupt. This optimization is part of the compiler specification, and can be prevented by using the volatile-type specifier.

Section 11 Q & A

Rev.3.00 2005.09.12 11-33
REJ05B0464-0300

Example

C source

int i1;

void f(int *d)

{

int a;

 do

 {

 a=*d;

 }while(a!=0);

 i1 = a;

}

Assembler source with optimization

_f: ; function: f

 .STACK _f=4

 MOV.W @ER0,R1

L25:

 MOV.W R1,R1 ; not read from memory

 BNE L25:8

 MOV.W R1,@_i1:32

 RTS

Modified C source

int i1;

void f(volatile int *d)

{

int a;

 do

 {

 a=*d;

 }while(a!=0);

 i1 = a;

}

Modified assembler source with optimization

_f: ; function: f

 .STACK _f=4

 MOV.L ER0,ER1

L25:

 MOV.W @ER1,R0••••; read from memory

 BNE L25:8

 MOV.W R0,@_i1:32

 RTS

Section 11 Q & A

Rev.3.00 2005.09.12 11-34
REJ05B0464-0300

11.1.31 Read/write Instructions for Bit Fields

Question

struct bit{

 unsigned short int b0 : 1;

 unsigned short int b1 : 1;

 unsigned short int b2 : 1;

 unsigned short int b3 : 1;

 unsigned short int b4 : 1;

 unsigned short int b5 : 1;

 unsigned short int b6 : 1;

 unsigned short int b7 : 1;

 unsigned short int b8 : 1;

 unsigned short int b9 : 1;

 unsigned short int b10 : 1;

 unsigned short int b11 : 1;

 unsigned short int b12 : 1;

 unsigned short int b13 : 1;

 unsigned short int b14 : 1;

 unsigned short int b15 : 1;

} ;

In the above code, I'd like to define a bit field, and access the bits of a specific register for a 16 bit width, but I end up
performing access by byte and bit operation instruction. For registers that can only be accessed for 16 bits, when a byte
access or bit operation instruction is generated, I can't properly read the register value. What should I do?

Answer

As long as there are no particular specifications in the program, bit field members are accessed by compiler-optimized
instructions. As a result, access may be performed by unintended instructions. Specify __evenaccess to perform access
using the type set for the member variable.

To prevent changes to access methods and multiple accesses by the compiler, specify __evenaccess explicitly for variables
for which you would like to prevent such changes.

C source without __evenaccess

struct bit reg;

void main()

{

 reg.b6=1;

}

Assembler source without __evenaccess

_main: ; function: main

 .STACK _main=4

 BSET.B #1,@_reg:32

 RTS

Section 11 Q & A

Rev.3.00 2005.09.12 11-35
REJ05B0464-0300

C source with __evenaccess

__evenaccess struct bit reg;

void main()

{

 reg.b6=1;

}

Assembler source with __evenaccess

_main: ; function: main

 .STACK _main=4

 MOV.W @_reg:32,R0

 BSET.B #1,R0H

 MOV.W R0,@_reg:32

 RTS

Remarks

For details on __evenaccess keyword, refer to section 3.5.3, Even Byte Access Specification Features.

11.1.32 Common Invalid Instruction Exceptions That Occur When Programs Are Run for an Extended Period of

Time

Question

Once the device has been running for 10 minutes to 2 hours, a common invalid instruction exception occurs, and a reset is
necessary. Is there some way to analyze from where the problem is occurring?

Answer

Ultimately, this means that a common invalid instruction is occurring, but the system may lose control and cause a
common invalid instruction exception due to the following reasons. If the system loses control after an extended period of
operation, (2) is very likely.

(1) An unintended interrupt is being performed.

(2) A stack overflow is corrupting valid RAM data.

(3) A problem exists with the board environment (such as a data conflict or memory software error).

To find the cause of the problem, perform the following and operate the device:

• Enable instruction tracing.

• Set breakpoints for the interrupt function jumped to during the common invalid instruction exception.

Once the device is operating and the common invalid instruction exception occurs, processing will stop at the breakpoint
set for the interrupt function. When this occurs, analyze the status of the instruction trace, and determine the cause of the
problem.

Use the following analysis method when a stack overflow is causing the problem:

• Set read/write break access for the address immediately before the address of the start of the stack area.

Once the device is operating and an access occurs that overflows the stack, processing will stop at the breakpoint set
above. When this occurs, if the access instruction is a stack access instruction, the cause of the problem is most likely a
stack overflow.

Section 11 Q & A

Rev.3.00 2005.09.12 11-36
REJ05B0464-0300

11.1.33 Failure at Integer Multiplication

Question

When the result of integer multiplication is assigned to the global variable of type long, the result is not the intended value.

The result of [20 * 2000] is this example. But [15 * 2000] produces the correct result. The integer multiplication, which
exceeds the range of short, does not produce the correct result, even though the result is assigned to the variable of type
long. Why is this?

<Example>

long l_max;
 :
 l_max = 20 * 2000;

Answer

The compiler recognizes the integer described in constant expression as type int (2 bytes), even though the result is
assigned to the variable of type long.

Therefore, [20 * 2000] is 0x9C40 after multiplication, and is assigned to the variable of type long as 0xFFFF9C40 because
of sign extension.

[15 * 2000] is 0x7530, and assigned as 0x00007530 because the sign extension does not occur, which is the intended
value.

To get the intended result of multiplication, the constant expression should be postfixed by “L”, so that the compiler can
recognize the constant as type long.

<Example>

long l_max;
 :
 l_max = 20L * 2000L; // constant with “L” postfixed, one postfixed is OK at least

Section 11 Q & A

Rev.3.00 2005.09.12 11-37
REJ05B0464-0300

11.2 Optimizing Linkage Editor

11.2.1 Output of "Undefined External Symbol"

Question

The inter-module optimizer outputs the message ”Undefined external symbol(XXX)” when the symbol XXX is not used.
Why is this?

Answer

(1) Is a compiler-supplied standard library or an EC++ class library linked?

A standard library includes both C library functions and runtime routines (operation routines that are necessary for the
execution of C language programs).

Even when the user program does not include C library functions, the compiler-generated object program sometimes may
require functions that are provided in a standard library. In such a case, the library option of the inter-module optimizer
should be used to specify a standard library.

For HEW1.2, the standard library/EC++ class library to be specified must be selected according to the type of CPU used,
the optimization method employed, and the number of registers to which parameters are passed as indicated in the
following table

Std. C Library EC++ Class LibraryCPU/
Operation Mode

No. of Parameter
-Passing Registers Size Priority Speed Priority Size Priority Speed Priority

H8/300 2 c38reg.lib c38regs.lib ec2reg.lib ec2regs.lib

3 c38reg3.lib c38regs3.lib ec2reg3.lib ec2regs3.lib

H8/300H NRM 2 c38hn.lib c38hns.lib ec2hn.lib ec2hns.lib

3 c38hn3.lib c38hns3.lib ec2hn3.lib ec2hns3.lib

H8/300H ADV 2 c38ha.lib c38has.lib ec2ha.lib ec2has.lib

3 c38ha3.lib c38has3.lib ec2ha3.lib ec2has3.lib

H8S NRM 2 c8s26n.lib c8s26ns.lib ec226n.lib ec226ns.lib

3 c8s26n3.lib c8s26ns3.lib ec226n3.lib ec226ns3.lib

H8S ADV 2 c8s26a.lib c8s26as.lib ec226a.lib ec226as.lib

3 c8s26a3.lib c8s26as3.lib ec226a3.lib ec226as3.lib

Legend:
 NRM: normal mode; ADV: advanced mode

Size efficiency and speed efficiency can be specified regardless of the compiler option. However, the CPU type and the
number of parameter-passing registers should conform to the compiler option specification.

For HEW2.0 or later, check that a standard library is created by selecting Standard Library tag Category: on [Mode], Build
a library file(Option Changed).

Section 11 Q & A

Rev.3.00 2005.09.12 11-38
REJ05B0464-0300

(2) The problem may occur because an I/O or memory management library is specified. In order to specify a function
declared in the C library function stdio.h or stdlib.h, a low-level interface routine is necessary.

When creating a low-level interface routine, refer to section 9.2.2, Execution Environment Settings, in the H8S,H8/300
Series C/C++ Compiler, Assembler, Optimizing Linkage Editor User's Manual.

Also refer to the example of a low-level interface routine included in the sample program.

The following low-level interface routines are available:

Name Function

open Opens a file.

close Closes a file.

read Reads from a file.

write Writes to a file.

lseek Sets a file read/write position.

sbrk Allocates a memory area.

11.2.2 Output of "Relocation Size Overflow"

Question

The message ”Relocation size overflow” is displayed during linking with the HEW2.0 or later optimizing linkage editor
and the HEW1.2 inter-module optimizer. What should I do?

Answer

First, check the linkage map.

• Are the $ABS8 and $ABS16 sections included within the range accessible with 8-bit absolute addresses and 16-bit
absolute addresses of the CPU?

• Is the $INDIRECT section included within the range from 0 to FF of the CPU?

This warning message is displayed if data specified to be assigned to an 8-bit absolute address, a 16-bit absolute address,
or an indirect memory address with an option or #pragma operator is not assigned to the correct address.

For details on the ranges, refer to each programming manual. Check the range, and if a section is assigned out of the range,
it should be adjusted appropriately.

Confirm that assembly coding is correctly provided in those program locations where assembly code is to be embedded.

This message is sometimes displayed when a branch width is not appropriate when an attempt is made to embed assembly
code in a C/C++ program.

Section 11 Q & A

Rev.3.00 2005.09.12 11-39
REJ05B0464-0300

11.2.3 How to Run Programs in RAM

Question

How can I allocate a program in fast RAM?

Answer

You can use the ROM support functions of the HEW2.0 or later optimizing linkage editor and the HEW1.2 inter-module
optimizer to copy a part of the program to be executed to the fixed addresses (determined at linking) during runtime to
execute the program in RAM.

This program can be installed in the project that was created in section 2 as follows:

(2)Transfer

(1)Start

ROM RAM

VECTTBL

INTTBL

PRsetPRG

IntPRG

PXX

P

R

Transferred during execution

0

800

EC00

C

D

XX

S

400

F9F0

:

B

Section 11 Q & A

Rev.3.00 2005.09.12 11-40
REJ05B0464-0300

First, specify the address of the program section to be transferred to be executed in RAM at startup. This processing is
added to an existing file.

With this specifications, the PXX section is copied to the XX section at startup.

Next, specify the start address of the destination section XX with the optimizing linkage editor and the

inter-module optimization tool.

<HEW1.2>

#pragma section $DSEC
static const struct {

char *rom_s; /* Start address of the initialized data section in ROM */
char *rom_e; /* End address of the initialized data section in ROM */
char *ram_s; /* Start address of the initialized data section in RAM */

}DTBL[]= {
{__sectop("D"), __secend("D"), __sectop("R")},

// {__sectop("$ABS8D"), __secend("$ABS8D"), __sectop("$ABS8R")},
// {__sectop("$ABS16D") , __secend("$ABS16D") , __sectop("$ABS16R") },

{__sectop("PXX"),__secend("PXX"),__sectop("XX")}
};

#pragma section $BSEC
static const struct {

char *b_s; /* Start address of non-initialized data section */
char *b_e; /* End address of non-initialized data section */

}BTBL[]= {
{__sectop("B"), __secend("B")},

// {__sectop("$ABS8B"), __secend("$ABS8B")},
// {__sectop("$ABS16B"), __secend("$ABS16B")}
};

↑ Set the addresses of PXX and XX sections.

Section 11 Q & A

Rev.3.00 2005.09.12 11-41
REJ05B0464-0300

<HEW2.0 or later>

After that, allocate the same area as the area occupied by the source section PXX in the RAM with the ROM
implementation support option. When ROM is specified, the size of this area is equal to that of the PXX section.

This operation of the optimizing linkage editor and the inter-module optimizer can be coded in a subcommand as follows:

 :
start VECTTBL,INTTBL(0),PRsetPRG,IntPRG(0400),P,C,D(0800),B,R,XX(0EC00),S…
 :

Section 11 Q & A

Rev.3.00 2005.09.12 11-42
REJ05B0464-0300

<HEW1.2>

<HEW2.0 or later>

Section 11 Q & A

Rev.3.00 2005.09.12 11-43
REJ05B0464-0300

In the subcommand, specify as follows using rom:

Use the subcommand file including this code to start the optimizing linkage editor and the inter-module optimizer:

<HEW1.2>

% optlnk38 –sub=test.sub(RET) (the inter-module optimizer)

<HEW2.0 or later>

% optlnk –sub=test.sub(RET) (the optimizing linkage editor)

Remarks and notes

When the above processing is performed, the warning message (1300 SECTION ATTRIBUTE MISMATCH IN ROM
OPTION/SUBCOMMAND(XX)) may be displayed by the HEW1.2 inter-module optimizer.

This message is displayed because a program section was specified with the __sectop and __secend operators. In this case,
this can be ignored.

Improvements with HEW2.0 or later no longer cause the message to be displayed, normally. But when in the following
case, the warning message (L1323 (W) Section attribute mismatch : “FXX“) may be displayed like by the HEW1.2. In this
case, this can be also ignored.

(1) the program section (P) is changed to other name by the section option of the C/C++ Compiler

(2) the section of (1) is specified as the source section

11.2.4 Fixing Symbol Addresses in Certain Memory Areas for Linking

Question

After fixing a program in internal ROM, I want to develop the program for external memory, and in future want to update
only the external memory program.

Answer

When fixing a program in internal ROM, the link command fsymbol can be used to output a definition file of externally
defined labels for the internal ROM.

A definition file is created by the assembler EQU statement, and so when creating an external memory program, this file
can be assembled and input to reference a fixed address in ROM.

Example of Use:

Illustrates an example in which the feature A of a product A is modified to the feature B, to develop the product B. Using
this, by resolving the addresses of symbols in shared ROM, the common ROM can be used.

 :
rom(D,R)
rom(PXX,XX)
 :

Section 11 Q & A

Rev.3.00 2005.09.12 11-44
REJ05B0464-0300

Example of Use of the Feature for Output of Symbol Addresses

Example of specification of externally defined symbol file output

optlnk∆∆∆∆ROM1,ROM2,ROM3∆∆∆∆-output=FUNCA∆∆∆∆-fsymbol=sct2,sct3

The externally defined symbols sct2 and sct3 are output to a file.

Example of file output (FUNCA.sym)

;H SERIES LINKAGE EDITOR GENERATED FILE 1997.10.10

;fsymbol = sct2, sct3

;SECTION NAME = sct1

.export sym1

sym1: .equ h'00FF0080

.export sym2

sym2: .equ h'00FF0100

;SECTION NAME = sct2

.export sym3

sym3: .equ h'00FF0180

 .end

Example of specification of assembly and relinking

asm38∆∆∆∆ROM4
asm38∆∆∆∆FUNCA.sym
optlnk∆∆∆∆ROM4,FUNCA

The externally referenced symbols in ROM4 can be resolved without linking the object files ROM2, ROM3.

Note: When using this procedure, the symbols within feature A cannot be referenced from common functions.

Common
ROM

Common
functions

Feature A

Common data

ROM1

ROM2

ROM3

 Linkage editor

 A
ssem

bler

Feature B

Common
functions

Feature B

Common data

ROM4

ROM2

ROM3

 C
onverter

Externally
defined
symbols

Product A Product B
FUNCA.sym

Section 11 Q & A

Rev.3.00 2005.09.12 11-45
REJ05B0464-0300

11.2.5 How to Implement Overlay

Question

How can I assign sections that do not exist simultaneously to the same address?

Answer

Such an assignment can be specified using an option of the HEW2.0 or later optimizing linkage editor and the HEW1.2
inter-module optimizer.

Specification method

<HEW1.2>

Send the cursor to: Section tab, Relocatable section start address: target section, to specify the New
Overlay option.

The following shows the specification screen:

Section 11 Q & A

Rev.3.00 2005.09.12 11-46
REJ05B0464-0300

<HEW2.0 or later>

Send the cursor to: Lik/Library tab Category:[Section] target section, to specify the New Overlay option.

In the case of subcommands, use the start option:

Remarks and notes

If an overlay is going to be specified on a program section, the section needs to be transferred.

Refer to section 11.2.3, How to Run Programs in RAM.

 :
start RAM_Sct1,RAM_Sct3:RAM_Sct2,RAM_Sct4(0FF00)
 :

Section 11 Q & A

Rev.3.00 2005.09.12 11-47
REJ05B0464-0300

11.2.6 How to Specify Output of Undefined Symbol Error

Question

How can I specify to output an error message and disable output of a load module when an undefined symbol is found at
linking?

Answer

Undefined symbols can be checked using an option with the inter-module optimizer for HEW1.2.

When this option is specified, an error message is displayed if an undefined symbol is included, and the output of a load
module is disabled.

Without this specification, a warning message is displayed while a load module is generated.

Specification method

Dialog menu: Link/Library Tab Category: [Other] Miscellaneous options: Check for undefined symbols

Subcommand: udfcheck

Remarks

Undefined symbols are always checked with the optimizing linkage editor for HEW2.0 or later and if an undefined symbol
is included, an error message is displayed and the output of a load module is disabled.

11.2.7 Unify Output Forms of S Type File

Question

I would like to unify mixed output forms S1, S2, S3 of S type file.

Answer

These can be output by specific data record (S1, S2, S3) irrespective of load address by options.

Example: optlnk test.abs -form=stype -output=test.mot -record=s2 ; All data records are output by S2.

11.2.8 Dividing an Output File

Question

I would like to divide an output file for each ROM devices into some files.

Answer

If specify a start address and termination address in the end of an output file name, an object of specified area can be
output. An output file name can be specified more than two.

Example: An area of 0x0-0xFFFF is output into optlnk test.abs -form=stype -output=test1. mot=0-FFFF test2.mot=10000-
1FFFF; test1.mot, an area of 0x10000-0x1FFFF is output into test2.mot.

Section 11 Q & A

Rev.3.00 2005.09.12 11-48
REJ05B0464-0300

ELF/DWARF
format
converter

Optimizing
Linkage editor

Debugger
SYSROF
Load
odule

ELF/DWARF1
load
module

ELF/DWARF2
Load
module

Hexdecimal
Load
module

SType
Load
module

Binary
Load
module

For ROM writer

11.2.9 Output File Format of Optimizing Linkage Editor

Question

Tell me about the load module file format available to a ROM writer.

Answer

The load modules output by the optimizaton linkage editor are shown below:

• When creating a load module for a ROM writer, output it in the hexdecimal or SType format. In this case, no
debugging information is output.

• Optimization linkage editors supporting the C/C++ Compiler V4.0 or later output load modules in the ELF/DWARF2
format at debugging. The load modules created by earlier versions is output in either the SYSROF or ELF/DWARF1
format, and so the format should be changed with the ELF/DWARF format converter to use in the latest version.

Optimizing Linkage Editor Output Load Module

Section 11 Q & A

Rev.3.00 2005.09.12 11-49
REJ05B0464-0300

11.2.10 How to Calculate Program Size (ROM, RAM)

Question

How can I calculate the accurate size of ROM, RAM?

Answer

It can be calculated by the list file output from the Optimizing Linkage Editor.

Specification method

Dialog menu: Link/Library Tab Category: [List] Generate list file

Command line: list=<file name>

Calculation method

When this option is specified, the following list file (*.map) can be output.

In this example, code section is PResetPRG, PIntPRG, P, C$DSEC, C$BSEC and D, therefore ROM size is 0x00000146.

RAM size is 0x00000628 by B, R and S.

(Example of list file)

*** Mapping List ***

SECTION START END SIZE ALIGN
PResetPRG
 00000400 00000415 16 2
PIntPRG
 00000416 0000048f 7a 2
P
 00000800 0000089d 9e 2
C$DSEC
 0000089e 000008a9 c 2
C$BSEC
 000008aa 000008b1 8 2
D
 000008b2 000008b5 4 2
B
 00ffe000 00ffe423 424 2
R
 00ffe424 00ffe427 4 2
S
 00ffedc0 00ffefbf 200 2

Section 11 Q & A

Rev.3.00 2005.09.12 11-50
REJ05B0464-0300

11.2.11 Output of "Section Alignment Mismatch"

Question

The L1322 warning message “Section alignment mismatch” is displayed, when the section name of binary file is referred
by the section address operator in binary file input as follows. How can I prevent this?

[Option Specification]
binary=project.bin(BIN_SECTION)

[C/C++ Program]
void main(void)
{
 unsigned char *s_ptr;
 s_ptr = __sectop("BIN_SECTION");

 dumy(s_ptr);
}

Answer

When the section address operator (__sectop, __second) is specified, the compiler generates the section, of which size is 0
and boundary alignment value is 2, for the specified section in the code generated by compiler as follows.

In this case, because the boundary alignment value of the entity of binary section is 1 in binary section input, the L1322
warning message is displayed due to different boundary alignments with the same name.

This warning message does not affect the program execution.

To prevent this warning message, specify the boundary alignment value in binary file input by the Optimizing Linkage
Editor.

[Code: __sectop used]
_main: ; function: main
 .STACK _main=4
 MOV.L #STARTOF BIN_SECTION,ER0
 BRA _dumy:8
 .SECTION BIN_SECTION,DATA,ALIGN=2 ← Section: size is 0, boundary alignment value is 2
 .END

Specification example

Dialog menu: Link/Library Tab Category: [Input] Show entries for : Binary files

Command line: binary=project.bin(BIN_SECTION:2)

Section 11 Q & A

Rev.3.00 2005.09.12 11-51
REJ05B0464-0300

Remarks

This specification of the boundary alignment value in binary file input is valid for the Optimizing Linkage Editor Ver.9.0
or later.

For more details, please refer to section 9.1.1(4), Binary Files.

11.3 Library Generator

11.3.1 Reentrant and Standard Libraries

Question

Is it possible to create a reentrant object program when a standard library is used?

Answer

When a library function that sets or references an external variable is used, the object program is no longer reentrant. The
following table lists available reentrant libraries, where the symbol (denotes a function that sets the variable _errno. If
these functions do not reference the variable _errno in the program, the reentrant is available.

Section 11 Q & A

Rev.3.00 2005.09.12 11-52
REJ05B0464-0300

List of Reentrant Libraries

 Reentrant column O: Reentrant X: Non-reentrant ∆: Sets _errno.

No. Std. Include File No. Function Reentrant Remarks

1 stddef.h 1 offsetof O Macro

2 assert.h 2 assert × Macro

3 isalnum O

4 isalpha O

5 iscntrl O

6 isdigit O

7 isgraph O

8 islower O

9 isprint O

10 ispunct O

11 isspace O

12 isupper O

13 isxdigit O

14 tolower O

3 ctype.h

15 toupper O

16 acos ∆ Floating point

17 asin ∆ same as above

18 atan ∆ same as above

19 atan2 ∆ same as above

20 cos ∆ same as above

21 sin ∆ same as above

22 tan ∆ same as above

23 cosh ∆ same as above

24 sinh ∆ same as above

25 tanh ∆ same as above

26 exp ∆ same as above

27 frexp ∆ same as above

28 ldexp ∆ same as above

29 log ∆ same as above

30 log10 ∆ same as above

31 modf ∆ Floating point

32 pow ∆ same as above

33 sqrt ∆ same as above

34 ceil ∆ same as above

35 fabs ∆ same as above

36 floor ∆ same as above

4 math.h

37 fmod ∆ same as above

Section 11 Q & A

Rev.3.00 2005.09.12 11-53
REJ05B0464-0300

No. Std. Include File No. Function Reentrant Remarks

38 acosf ∆ Floating-point

39 asinf ∆ same as above

40 atanf ∆ same as above

41 atan2f ∆ same as above

42 cosf ∆ same as above

43 sinf ∆ same as above

44 tanf ∆ same as above

45 coshf ∆ same as above

46 sinhf ∆ same as above

47 tanhf ∆ same as above

48 expf ∆ same as above

49 frexpf ∆ same as above

50 ldexpf ∆ same as above

51 logf ∆ same as above

52 log10f ∆ same as above

53 modff ∆ same as above

54 powf ∆ same as above

55 sqrtf ∆ same as above

56 ceilf ∆ same as above

57 fabsf ∆ same as above

58 floorf ∆ same as above

5 mathf.h

59 fmodf ∆ same as above

60 setjmp O6 setjmp.h

61 longjmp O

62 va_start O Macro

63 va_arg O Macro

7 stdarg.h

64 va_end O Macro

65 fclose ×

66 fflush ×

67 fopen ×

68 freopen ×

69 setbuf ×

70 setvbuf ×

71 fprintf ×

72 fscanf ×

73 printf ×

74 scanf ×

75 sprintf ∆

76 sscanf ∆

77 vfprintf ×

8 stdio.h

78 vprintf ×

Section 11 Q & A

Rev.3.00 2005.09.12 11-54
REJ05B0464-0300

No. Std. Include File No. Function Reentrant Remarks

79 vsprintf ∆

80 fgetc ×

81 fgets ×

82 fputc ×

83 fputs ×

84 getc ×

85 getchar ×

86 gets ×

87 putc ×

88 putchar ×

89 puts ×

90 ungetc ×

91 fread ×

92 fwrite ×

93 fseek ×

94 ftell ×

95 rewind ×

96 clearerr ×

97 feof ×

98 ferror ×

8 stdio.h

99 perror ×

100 atof ∆ Non-ANSI

101 atoi ∆ same as above

102 atol ∆ same as above

103 strtod ∆

104 strtol ∆

105 rand × Floating-point

106 srand ×

107 calloc ×

108 free ×

109 malloc ×

110 realloc ×

111 bsearch O

112 qsort O Recursive function

113 abs O

114 div ∆

115 labs O

9 stdlib.h

116 ldiv ∆

117 memcpy O

118 strcpy O

10 string.h

119 strncpy O

Section 11 Q & A

Rev.3.00 2005.09.12 11-55
REJ05B0464-0300

No. Std. Include File No. Function Reentrant Remarks

120 strcat O

121 strncat O

122 memcmp O

123 strcmp O

124 strncmp O

125 memchr O

126 strchr O

127 strcspn O

128 strpbrx O

129 strrchr O

130 strspn O

131 strstr O

132 strtok ×

133 memset O

134 strerror O

135 strlen O

10 string.h

136 memmove O

Section 11 Q & A

Rev.3.00 2005.09.12 11-56
REJ05B0464-0300

11.3.2 Like to Use Reentrant Library Function in Standard Library File

Question

I would like to use reentrant library function in standard library file.

Answer

There are reentrant function lists on [11.3.1 reentrant library]. Reentrant function can be generated by setting of library
generator in H8C V6.0 or later.

• On command line, use the lbg38 -reent option.

• The setting in the HEW is shown below.

Standard Library Dialog Box

11.3.3 There Is No Standard Library File (H8C V4 or Later)

Question

There are several kinds of standard libraries in H8C V3.

But there is no standard library file in H8C V4 or later.

Answer

Since H8C V4, the specification of the standard library was changed, and the options became to be able to be specified.
This enabled the user to have the standard libraries tuned by the options.

Please generate a standard library file by using a library generator since a standard library file has not been attached to a
product in H8C V4 or later.

Section 11 Q & A

Rev.3.00 2005.09.12 11-57
REJ05B0464-0300

11.3.4 Warning Message On Building Standard Library

Question

[L1200(W) Backed up file "a.lib" into "b.lbk"] may be output when generate a standard library file.

Answer

This is just warning message which HEW will make backup files when it generates new library files.

If you select "Use an existing library file" at [Standard Library] mode: in HEW/[OPTIONS]/[H8S,H8 Standard
Toolchain…], the warning will not be issued. When you select "BUILD ALL" in HEW, Linkage editor generates a
standard library at first. For the first project you created, it is necessary to build a standard library, and so you must select
the “Build a library file” in the [Standard Library] mode of the HEW/[OPTIONS]/[H8S,H8 Standard Toolchain…].

However, a standard library is already created in the file for which BUILD ALL is once specified, and so the automatic
generation of a standard library is not necessary for this file. In this case, since a standard library is automatically
generated for each BUILD ALL specification, the existing library is backed up.

If you select the “Use an existing library file”, this warning message can be avoided. Also, this can save the time required
for automatically generating a standard libray on BUILD ALL.

Standard Library Dialog Box

Section 11 Q & A

Rev.3.00 2005.09.12 11-58
REJ05B0464-0300

11.3.5 Size of Memory Used as Heap

Question

Tell me how to calculate the size of the memory used as heap.

Answer

The size of the memory used as heap is the total of memory areas assigned by the memory management library functions
(calloc, malloc, ralloc, new) in a C/C++ program. However, these functions use four bytes as management area each time
they are called. Calculate the heap size by adding this size to the size of the actually assigned area.

The compiler manages the heap in 1024 byte unit. Calculate the size of the area allocated as heap (HEAPSIZE) as follows:

HEAPSIZE = 1024 x n (n ≥ 1)

(area size allocated by memory management library) + (Management area size ≤ HEAPSIZE)

The I/O library functions use the memory management library functions in internal processing. The size of the area
allocated during I/O is 516 bytes x maximum number of concurrently open files.

Note: The area freed by the memory management library function free or delete is reused by a memory management
library function for allocation. Even if the total size of the free area is sufficient, repeating allocations causes the
free area to be divided into smaller ones, making the allocation of newly requested large areas impossible. To
prevent this situation, use the heap area according to following suggestions.
a. Large sized areas should be allocated immediately after the program starts to run.
b. The size of the data area to be freed and reused should be constant.

11.3.6 How to Reduce ROM Size for I/O Libraries

Question

How can I reduce the ROM size of the I/O library for standard include files?

Answer

When the no_float.h include file is specified, simple I/O functions including no floating-point conversion process can be
used.

This specification is available for the following functions:

 fprintf, fscanf, printf, scanf, sprintf, sscanf, vfprintf, vprintf, vsprintf

Add the option no_float.h to specify a file as an include file before the standard I/O file stdio.h.

Example:

#include <no_float.h>

#include <stdio.h>
void main(void)
{
 printf(“HELLO¥n”);
}

Macro declaration

Section 11 Q & A

Rev.3.00 2005.09.12 11-59
REJ05B0464-0300

For a file using an existent standard I/O library, use the preinclude option.

When simple I/O functions are used, the ROM size is reduced when the I/O operations of files are performed.

However, if this option is specified together with a floating-point (%f, %e, %E, %g,%E) specification, the runtime
execution is not guaranteed.

11.3.7 How to Edit Library File

Question

How can I edit the library file to reuse existing library files?

Answer

It can be edited by specifying options in the Optimizing Linkage Editor. The usage of the options is shown below.

There is H Series Librarian Interface which can startup the Optimizing Linkage Editor from GUI.

How to startup H Series Librarian Interface

Select [Tools->Hitachi H Series Librarian Interface] in HEW, to startup H Series Librarian Interface.

(A) Modify Section Name of Module in Library

The section name of the specified module in library can be modified, to locate the section into any address.

(1) Open library, and select module to assign into any address.

(2) Display the following dialog by [Action->Rename Section…], and modify section name by After button

Command line: optlnk –lib=<Library File Name> -rename=<Module Name in Library>(P=P123)

(B) Replace Module in Library/Add Module to Library

The module in library can be replaced. New module can be added to library.

(1) Open library, and select [Action->Add/Replace…].

(2) Open module with same name to replace. Open module with new name to add.

Command line: optlnk –lib=<Library File Name> -replace=<Module Name in Library>

Section 11 Q & A

Rev.3.00 2005.09.12 11-60
REJ05B0464-0300

(C) Delete Module in Library

The module in library can be deleted.

(1) Open library, and select module to delete. (multiple select available)

(2) Display Delete dialog by [Action->Delete…], and push Delete button.

Command line: optlnk –lib=<Library File Name> -delete=<Module Name in Library>

(D) Extract Module in Library

The module in library can be extracted.

(1) Open library, and select module to extract. (multiple select available)

(2) Display the following dialog by [Action->Extract…], specify Output folder, and push OK button.

(3) Then the specified modules are output to the specified Output folder. (C: \ in the following example)

Command line: optlnk –lib=<Library File Name> -extract=<Module Name in Library> -form=<Output File Type>

Here, Output file type is object in this example.

Section 11 Q & A

Rev.3.00 2005.09.12 11-61
REJ05B0464-0300

11.4 HEW

11.4.1 Failure to Display Dialog Menu

Question

Tool option dialog boxes are not displayed correctly with the HEW.

Answer

If an old release (such as 400.950a) of Windows®95 is used, an application error occurs when options in the C/C++
compiler, the Assembler, or the IM OptLinker are opened, and the HEW may aborts the operation abnormally or option
dialog boxes may not be displayed correctly. This problem is caused when the version of the COMCTL32.DLL file that is
located in the System directory of the Windows directory is too old. In this case, upgrade the Windows®95.

11.4.2 Linkage Order of Object Files

Question

I would like to specify an order of link of an object file on HEW.

Answer

Please add an object file by pushing [Add] and select the Show entry for: [Relocatable files and object files] from the
category [Input] in the Link/Library tab of the H8S,H8 Standard Toolchain…. An object is linked in order specified in this
time.

Link/Library Dialog Box

Section 11 Q & A

Rev.3.00 2005.09.12 11-62
REJ05B0464-0300

H8C V.6.00Release02 or later eases specifying the link order.

To display the dialog box for customizing the link order, choose [Build], and then [Specify link order].

Here, specify the link order. The items higher on the list are linked first.

Section 11 Q & A

Rev.3.00 2005.09.12 11-63
REJ05B0464-0300

11.4.3 Excluding a Project File

Question

I would like to eliminate a project file from Build temporarily.

Answer

The file is eliminated from Build if choose [Exclude Build <file>] by pressing a right button of mouse onto the file of
"Projects" tab on work space window. If sending a file back to Build again, please choose [Include Build <file>] by
pressing a right button of mouse on the file of "Projects" tab on work space window.

Exclude Build Menu

Section 11 Q & A

Rev.3.00 2005.09.12 11-64
REJ05B0464-0300

11.4.4 Specifying the Default Options for Project Files

Question

I would like to automatically specify a default option into file when adding a project into file.

Answer

The list of files is displayed on the left of the H8S, H8 Standard Toolchain (see the figure below). Please open the folder in
file group in which Default Option is to be specified by the file list. "Default Options" icon is displayed in the folder.
Please choose an icon and click "OK" by specifying an option in the right side of an option dialog box. This option can be
applied when a file of the file group is first added to the project.

Degault Options

11.4.5 Changing Memory Map

Question

A memory map can not be changed.

Answer

When a memory source of the memory window has been mapped, a memory map can not be changed in the system
configuration window. Please change a memory map after mapping of a memory resource was released.

Section 11 Q & A

Rev.3.00 2005.09.12 11-65
REJ05B0464-0300

11.4.6 How to Use HEW on Network

Question

(1) Can the HEW be installed on a network?

(2) Can projects and programs be installed on a network?

Answer

(1) The HEW system itself cannot be installed on a network.

(2) No problem. Be careful not to access a single file by plural users.

11.4.7 Limitations on File and Directory Names Created in HEW

Question

The message ”Error has occurred whilst saving file <filename>” is displayed at the HEW system startup. Why is it?

Answer

Files and directories created on the HEW system have limitations.

For the specifications of the following items, only half-width alphanumeric characters and half-width underlines can be
used:

• Names of the directories to be installed

• Names of the directories in which projects are to be created

• Project names

11.4.8 Failure of Japanese Font Display with the HEW Editor or HDI

Question

(1) Japanese fonts are not displayed with the HEW editor.

(2) Japanese characters are rotated 90 degrees with the HEW editor.

(3) The inter-module optimizer generates SYNTAX ERROR messages.

Answer

When coding Japanese with the HEW editor, specify Japanese font as follows:

Use Font in the Text column of the Format tab in Tools->Options:

Section 11 Q & A

Rev.3.00 2005.09.12 11-66
REJ05B0464-0300

<HEW1.2>

Use Font in the Text column of the Format tab in Tools->Options:

<HEW2.0 or later>

Use Font of the Font tab in Tools-> Format Views.:

Section 11 Q & A

Rev.3.00 2005.09.12 11-67
REJ05B0464-0300

If Japanese fonts are not correctly displayed with the HDI, modify as follows:

[Setup->Customize->Font…]

11.4.9 How to Convert Programs from HIM to HEW

Question

How can I use a project created under HIM (Hitachi Integration Manager) on the HEW?

Answer

Projects can be converted from HIM to HEW using a tool called " HIM To HEW Project Converter” that is supplied with
the HEW system.

11.4.10 I Want to Use an Old Compiler (Tool Chain) in the Latest HEW.

Question

I have an old compiler package. When I bought an Emulator, new HEW was bundled.

In order to Build and Debug with new HEW, I want to use an old tool chain in the new HEW.

Can I do that?

Answer

It depends on the version of the compiler package you are using. See below.

[H8C V.3.0]

< Build >

The tool chain cannot be registered in the latest HEW. Therefore, building by new HEW is not available.

Section 11 Q & A

Rev.3.00 2005.09.12 11-68
REJ05B0464-0300

(Note)

"HIM to HEW Project Converter" is usable if you have H8C V.3.0A compiler package.

By using this tool, you can convert HIM project into HEW project. You can use H8C V.3.0A with new HEW after
conversion.

< Debug >

Absolute file (*.abs) cannot be used. You can only use S-type format file.

Moreover, debugging program at C source level is not available. Only at assembler level is available.

[H8C V.3.0A]

< Build >

The tool chain can be registered in the latest HEW. Therefore, building by new HEW is available.

But you cannot create new project with the latest HEW.

In case of creating new project, you must use HEW V.1 bundled with the older compiler package.

Once you create project by HEW V.1, you can open it with in new HEW.

< Debug >

Absolute file (*.abs) cannot be used. You can only use S-type format file.

Moreover, debugging program at C source level is not available. Only at assembler level is available.

[H8C V.4]

< Build >

The tool chain can be registered in the latest HEW. Therefore, building by new HEW is available.

But you cannot create new project with the latest HEW.

In case of creating new project, you must use HEW V.1 bundled with the older compiler package.

Once you create project by HEW V.1, you can open it in new HEW.

< Debug >

Absolute file (*.abs) can be used.

By registering absolute file, debugging at C source level is available.

[H8C V.5 or later]

<Build & Debug>

There is no limitation. You can use all functions of new HEW.

Appendix A Lists of Floating-Point Arithmetic Operation Performance

Rev.3.00 2005.09.12 A-1
REJ05B0464-0300

Appendix A Lists of Floating-Point Arithmetic Operation Performance

A. Floating-Point Operation Performance

A.1 Single-Precision Floating-Point Operation Performance

A.1.1 Single-Precision Floating-Point Operation Performance (H8/300,H8/300H,H8S/2600)

H8/300H H8S/2000,H8S/2600

No. Function Parameter 1 Parameter 2 H8/300 NRM ADV NRM ADV

0.4 - 30,850 23,316 25,636 8,495 8,852

1.57075 - 3,830 3,022 3,484 930 999

0.6 - 30,864 23,226 25,546 8,450 8,806

1 acos

-0.4 - 30,918 23,302 25,622 8,496 8,853

0.4 - 29,840 22,390 24,576 8,158 8,494

1.57075 - 2,904 2,194 2,522 642 690

0.6 - 29,850 22,310 24,496 8,118 8,453

2 asin

-0.4 - 29,926 22,402 24,588 8,172 8,508

0.11 - 13,166 9,948 11,010 3,581 3,767

0.27 - 18,122 14,302 15,718 5,269 5,502

0.547 - 17,964 14,128 15,544 5,179 5,412

0.777 - 18,890 14,820 16,270 5,436 5,672

0.975 - 17,924 14,210 15,582 5,277 5,502

54.45 - 21,834 17,744 19,390 6,659 6,922

154.233 - 21,952 17,840 19,486 6,707 6,970

-54.45 - 21,920 17,754 19,400 6,672 6,935

-0.975 - 18,010 14,220 15,592 5,290 5,515

3 atan

-0.777 - 18,976 14,830 16,280 5,449 5,685

0.3 0.7 20,898 16,758 18,494 6,182 6,441

0.2 0.1 24,736 20,204 22,214 7,523 7,820

4 atan2

0.1 0.9 16,156 12,648 14,030 4,619 4,831

0.523333333 - 11,124 8,148 8,780 3,114 3,262

1.046666667 - 13,090 9,610 10,506 3,588 3,757

1.9625 - 12,420 9,024 9,842 3,404 3,562

2.7475 - 12,074 8,932 9,642 3,398 3,557

3.5325 - 11,332 8,284 8,916 3,183 3,331

4.3175 - 13,184 9,748 10,644 3,656 3,825

5.1025 - 12,462 9,114 9,932 3,448 3,606

5.8875 - 12,050 8,960 9,670 3,411 3,570

-0.52333333 - 11,210 8,158 8,790 3,127 3,275

5 cos

-1.04666667 - 13,176 9,620 10,516 3,601 3,770

Appendix A Lists of Floating-Point Arithmetic Operation Performance

Rev.3.00 2005.09.12 A-2
REJ05B0464-0300

H8/300H H8S/2000,H8S/2600

No. Function Parameter 1 Parameter 2 H8/300 NRM ADV NRM ADV

-1.9625 - 12,506 9,034 9,852 3,417 3,575

-2.7475 - 12,160 8,942 9,652 3,411 3,570

-3.5325 - 11,418 8,294 8,926 3,196 3,344

-4.3175 - 13,270 9,758 10,654 3,669 3,838

-5.1025 - 12,548 9,124 9,942 3,461 3,619

5 cos

-5.8875 - 12,136 8,970 9,680 3,424 3,583

0.523333333 - 12,170 8,838 9,656 3,314 3,472

1.046666667 - 11,942 8,872 9,582 3,373 3,532

1.9625 - 11,196 8,202 8,834 3,147 3,295

2.7475 - 13,240 9,764 10,660 3,671 3,840

3.5325 - 12,482 9,060 9,878 3,428 3,586

4.3175 - 12,120 8,954 9,664 3,415 3,574

5.1025 - 11,382 8,312 8,944 3,203 3,351

5.8875 - 13,204 9,776 10,672 3,674 3,843

-0.52333333 - 12,348 8,876 9,694 3,342 3,500

-1.04666667 - 12,120 8,910 9,620 3,401 3,560

-1.9625 - 11,374 8,240 8,872 3,175 3,323

-2.7475 - 13,418 9,802 10,698 3,699 3,868

-3.5325 - 12,660 9,098 9,916 3,456 3,614

-4.3175 - 12,298 8,992 9,702 3,443 3,602

-5.1025 - 11,560 8,350 8,982 3,231 3,379

6 sin

-5.8875 - 13,382 9,814 10,710 3,702 3,871

0.3925 - 16,682 12,494 13,374 4,768 4,997

1.1775 - 17,522 13,240 14,198 5,055 5,276

1.9625 - 16,908 12,634 13,514 4,863 5,074

7 tan

2.7475 - 17,696 13,344 14,302 5,111 5,332

0.33 - 44,886 33,624 35,796 13,237 13,735

0.78 - 46,018 34,462 36,646 13,354 13,864

-0.33 - 44,904 33,636 35,808 13,243 13,741

8 cosh

-0.78 - 46,036 34,474 36,658 13,360 13,870

0.33 - 12,538 9,004 9,660 3,375 3,520

0.98 - 47,040 35,310 37,568 13,689 14,209

-0.33 - 12,538 9,004 9,660 3,375 3,520

9 sinh

-0.98 - 47,058 35,322 37,580 13,695 14,215

10 tanh 0.0033+00 - 9,772 7,102 7,710 2,553 2,672

0.33 - 21,860 16,184 17,180 6,471 6,713

0.98 - 22,588 16,740 17,742 6,598 6,846

-0.33 - 21,980 16,212 17,208 6,485 6,727

11 exp

-0.98 - 22,684 16,732 17,734 6,594 6,842

Appendix A Lists of Floating-Point Arithmetic Operation Performance

Rev.3.00 2005.09.12 A-3
REJ05B0464-0300

H8/300H H8S/2000,H8S/2600

No. Function Parameter 1 Parameter 2 H8/300 NRM ADV NRM ADV

0.3 - 186 102 118 54 6012 frexp

400 - 186 102 118 54 60

0.3 30 1,382 964 1,068 316 33713 ldexp

0.1 100 1,382 964 1,068 316 337

1.2 - 18,766 14,272 15,410 5,353 5,575

2.5 - 18,882 14,476 15,614 5,455 5,677

0.999 - 19,376 14,996 16,134 5,715 5,937

14 log

0.3 - 19,016 14,604 15,742 5,519 5,741

1.2 - 20,138 15,260 16,532 5,686 5,929

2.5 - 20,254 15,464 16,736 5,788 6,031

0.999 - 20,764 16,008 17,280 6,060 6,303

15 log10

0.3 - 20,372 15,572 16,844 5,482 6,085

256.3 - 3,518 2,890 3,388 914 975

0.032 - 3,342 2,760 3,252 850 908

16 modf

10000.2345 - 3,608 2,962 3,460 950 1,011

2.3 4.2 43,236 33,010 35,340 12,577 13,074

45.2 -5 43,642 33,412 35,742 12,789 13,286

-4.56 -3 47,134 36,326 39,066 13,678 14,231

17 pow

-85.55 476 45,988 35,406 38,064 13,360 13,904

2 - 4,918 1,878 1,980 829 852

3 - 4,966 1,910 2,012 845 868

18 sqrt

0.1 - 4,906 1,890 1,992 835 858

0.3 - 2,998 2,452 2,790 749 80119 ceil

-0.6 - 1,806 1,314 1,502 393 426

5 - 126 38 40 24 2720 fabs

-5 - 126 38 40 24 27

0.3 - 1,806 1,314 1,502 393 42621 floor

-0.6 - 2,998 2,446 2,784 746 798

11.1 3.2 1,964 1,498 1,654 533 564

500.55 0.4 2,436 1,858 2,014 713 744

22 fmod

1.05E+06 9.54E-07 4,178 3,186 3,342 1,377 1,408

Appendix A Lists of Floating-Point Arithmetic Operation Performance

Rev.3.00 2005.09.12 A-4
REJ05B0464-0300

A.1.2 Single-Precision Floating-Point Operation Performance (H8SX)

H8SX

No. Function Parameter 1 Parameter 2 NRM ADV MAX

0.4 - 6,108 6,403 6,397

1.57075 - 495 438 438

0.6 - 6,079 6,373 6,368

1 acos

-0.4 - 6,100 6,396 6,390

0.4 - 5,880 6,219 6,220

1.57075 - 340 309 309

0.6 - 5,885 6,195 6,196

2 asin

-0.4 - 5,884 6,225 6,226

0.11 - 2,167 2,550 2,549

0.27 - 3,542 4,012 4,011

0.547 - 3,449 3,919 3,918

0.777 - 3,643 4,122 4,121

0.975 - 3,595 4,055 4,054

54.45 - 4,769 5,308 5,307

154.233 - 4,828 5,368 5,367

-54.45 - 4,773 5,314 5,313

-0.975 - 3,599 4,061 4,060

3 atan

-0.777 - 3,647 4,128 4,127

0.3 0.7 4,370 4,811 4,806

0.2 0.1 5,570 6,088 6,085

4 atan2

0.1 0.9 3,146 3,497 3,493

0.523333333 - 2,039 2,347 2,349

1.046666667 - 2,229 2,658 2,660

1.9625 - 2,208 2,543 2,547

2.7475 - 2,222 2,552 2,556

3.5325 - 2,201 2,408 2,411

4.3175 - 2,371 2,732 2,737

5.1025 - 2,256 2,593 2,597

5.8875 - 2,240 2,572 2,576

-0.52333333 - 2,045 2,351 2,353

-1.04666667 - 2,305 2,662 2,664

-1.9625 - 2,214 2,547 2,551

-2.7475 - 2,228 2,556 2,560

-3.5325 - 2,108 2,412 2,415

-4.3175 - 2,377 2,736 2,741

-5.1025 - 2,262 2,597 2,601

5 cos

-5.8875 - 2,246 2,576 2,580

Appendix A Lists of Floating-Point Arithmetic Operation Performance

Rev.3.00 2005.09.12 A-5
REJ05B0464-0300

H8SX

No. Function Parameter 1 Parameter 2 NRM ADV MAX

0.523333333 - 2,385 2,459 2,460

1.046666667 - 2,464 2,537 2,539

1.9625 - 2,308 2,377 2,380

2.7475 - 2,650 2,728 2,733

3.5325 - 2,497 2,571 2,575

4.3175 - 2,501 2,574 2,578

5.1025 - 2,361 2,430 2,433

5.8875 - 2,663 2,741 2,746

-0.52333333 - 2,397 2,468 2,469

-1.04666667 - 2,476 2,546 2,548

-1.9625 - 2,320 2,386 2,389

-2.7475 - 2,662 2,737 2,742

-3.5325 - 2,509 2,580 2,584

-4.3175 - 2,513 2,583 2,587

-5.1025 - 2,373 2,439 2,442

6 sin

-5.8875 - 2,675 2,750 2,755

0.3925 - 3,366 3,775 3,771

1.1775 - 3,566 4,000 3,996

1.9625 - 3,448 3,854 3,850

7 tan

2.7475 - 3,609 4,040 4,036

0.33 - 10,276 9,214 9,214

0.78 - 10,294 9,237 9,237

-0.33 - 10,272 9,219 9,219

8 cosh

-0.78 - 10,299 9,242 9,242

0.33 - 2,413 2,110 2,110

0.98 - 10,623 9,548 9,548

-0.33 - 2,413 2,110 2,110

9 sinh

-0.98 - 10,628 9,553 9,553

10 tanh 0.0033+00 - 1,604 1,553 1,552

0.33 - 5,110 4,564 4,556

0.98 - 5,215 4,667 4,663

-0.33 - 5,116 4,570 4,562

11 exp

-0.98 - 5,221 4,673 4,669

0.3 - 41 42 4212 frexp

400 - 41 42 42

0.3 30 220 196 19613 ldexp

0.1 100 220 196 196

Appendix A Lists of Floating-Point Arithmetic Operation Performance

Rev.3.00 2005.09.12 A-6
REJ05B0464-0300

H8SX

No. Function Parameter 1 Parameter 2 NRM ADV MAX

1.2 - 3,706 3,573 3,573

2.5 - 3,770 3,636 3,636

0.999 - 4,058 3,924 3,924

14 log

0.3 - 3,858 3,724 3,724

1.2 - 3,884 3,754 3,755

2.5 - 3,948 3,818 3,818

0.999 - 4,245 4,115 4,115

15 log10

0.3 - 4,029 3,889 3,899

256.3 - 535 514 514

0.032 - 469 450 450

16 modf

10000.2345 - 571 550 550

2.3 4.2 9,338 8,626 8,634

45.2 -5 9,492 8,780 8,795

-4.56 -3 10,016 9,242 9,254

17 pow

-85.55 476 9,783 9,033 9,053

2 - 885 859 859

3 - 893 867 867

18 sqrt

0.1 - 889 863 863

0.3 - 446 390 39019 ceil

-0.6 - 246 215 215

5 - 21 21 2120 fabs

-5 - 21 21 21

0.3 - 246 215 21521 floor

-0.6 - 445 393 393

11.1 3.2 367 413 415

500.55 0.4 581 627 629

22 fmod

1.05E+06 9.54E-07 1,388 1,434 1,436

Appendix A Lists of Floating-Point Arithmetic Operation Performance

Rev.3.00 2005.09.12 A-7
REJ05B0464-0300

A.2 Double-Precision Floating-Point Operation Performance

A.2.1 Double-Precision Floating-Point Operation Performance (H8/300,H8/300H,H8S/2600)

H8/300H H8S/2000,H8S/2600

No. Function Parameter 1 Parameter 2 H8/300 NRM ADV NRM ADV

0.4 - 88,070 44,762 47,294 20,277 21,016

1.57075 - 4,646 3,786 4,284 1,814 1,994

0.6 - 88,396 44,974 47,506 20,383 21,121

1 acos

-0.4 - 88,114 44,730 47,262 20,269 21,008

0.4 - 86,796 43,666 46,062 19,681 20,369

1.57075 - 3,542 2,834 3,196 1,290 1,419

0.6 - 87,104 43,862 46,258 19,779 20,466

2 asin

-0.4 - 86,882 43,678 46,074 19,695 20,383

0.11 - 29,172 18,570 19,780 7,784 8,156

0.27 - 41,948 25,560 27,142 11,126 11,590

0.547 - 41,590 25,512 27,094 11,099 11,563

0.777 - 43,906 26,862 28,484 11,640 12,114

0.975 - 41,862 25,714 27,250 11,218 11,669

54.45 - 53,282 30,720 32,546 13,589 14,113

154.233 - 53,626 31,070 32,896 13,764 14,288

-54.45 - 53,368 30,730 32,556 13,602 14,126

-0.975 - 41,948 25,724 27,260 11,231 11,682

3 atan

-0.777 - 43,992 26,872 28,494 11,653 12,127

0.3 0.7 51,604 29,210 31,122 12,919 13,457

0.2 0.1 62,958 34,532 36,734 15,451 16,062

4 atan2

0.1 0.9 39,414 22,708 24,248 9,824 10,270

0.523333333 - 24,152 15,346 16,078 6,412 6,681

1.046666667 - 27,734 17,718 18,730 7,411 7,723

1.9625 - 26,848 17,014 17,944 7,091 7,382

2.7475 - 25,478 16,430 17,244 6,922 7,212

3.5325 - 24,488 15,598 16,330 6,538 6,807

4.3175 - 27,984 17,876 18,888 7,489 7,801

5.1025 - 26,982 17,064 17,994 7,115 7,406

5.8875 - 25,488 16,446 17,260 6,930 7,220

-0.52333333 - 24,238 15,350 16,082 6,422 6,691

-1.04666667 - 27,796 17,728 18,740 7,424 7,736

-1.9625 - 26,934 17,024 17,954 7,104 7,395

-2.7475 - 25,564 16,440 17,254 6,935 7,225

-3.5325 - 24,574 15,608 16,340 6,551 6,820

5 cos

-4.3175 - 28,070 17,886 18,898 7,502 7,814

Appendix A Lists of Floating-Point Arithmetic Operation Performance

Rev.3.00 2005.09.12 A-8
REJ05B0464-0300

H8/300H H8S/2000,H8S/2600

No. Function Parameter 1 Parameter 2 H8/300 NRM ADV NRM ADV

-5.1025 - 27,068 17,074 18,004 7,128 7,4195 cos

-5.8875 - 25,574 16,456 17,270 6,943 7,233

0.523333333 - 26,522 16,820 17,750 7,000 7,289

1.046666667 - 25,278 16,214 17,028 6,821 7,109

1.9625 - 24,278 15,556 16,288 6,524 6,791

2.7475 - 27,926 17,840 18,852 7,480 7,790

3.5325 - 26,960 17,002 17,932 7,093 7,382

4.3175 - 25,590 16,472 17,286 6,951 7,239

5.1025 - 24,636 15,712 16,444 6,603 6,870

5.8875 - 27,988 17,908 18,920 7,512 7,822

-0.52333333 - 26,700 16,858 17,788 7,028 7,317

-1.04666667 - 25,480 16,300 17,114 6,873 7,161

-1.9625 - 24,456 15,594 16,326 6,552 6,819

-2.7475 - 28,104 17,878 18,890 7,508 7,818

-3.5325 - 27,138 17,040 17,970 7,121 7,410

-4.3175 - 25,768 16,510 17,324 6,979 7,267

-5.1025 - 24,814 15,750 16,482 6,631 6,898

6 sin

-5.8875 - 28,166 17,946 18,958 7,540 7,850

0.3925 - 38,230 21,734 22,712 9,149 9,483

1.1775 - 39,408 22,136 23,196 9,323 9,677

1.9625 - 38,490 21,456 22,434 9,017 9,357

7 tan

2.7475 - 39,672 22,672 23,732 9,595 9,955

0.33 - 99,902 56,136 58,518 23,476 24,258

0.78 - 101,046 57,590 59,980 24,901 24,693

-0.33 - 99,920 56,140 58,522 23,478 24,260

8 cosh

-0.78 - 101,064 57,594 59,984 23,903 24,695

0.33 - 28,064 17,778 18,546 7,269 7,535

0.98 - 102,482 57,370 59,838 23,765 24,586

-0.33 - 28,064 17,778 18,546 7,269 7,535

9 sinh

-0.98 - 102,500 57,374 59,842 23,765 24,588

10 tanh 0.0033+00 - 109,818 63,362 66,024 26,975 27,838

0.33 - 49,318 27,448 28,558 11,505 11,886

0.98 - 50,186 27,746 28,860 11,503 11,889

-0.33 - 49,428 27,556 28,666 11,559 11,940

11 exp

-0.98 - 50,288 27,782 28,896 11,521 11,907

0.3 - 290 246 274 134 14712 frexp

400 - 290 246 274 134 147

0.3 30 1,792 1,436 1,576 659 72113 ldexp

0.1 100 1,792 1,436 1,576 659 721

Appendix A Lists of Floating-Point Arithmetic Operation Performance

Rev.3.00 2005.09.12 A-9
REJ05B0464-0300

H8/300H H8S/2000,H8S/2600

No. Function Parameter 1 Parameter 2 H8/300 NRM ADV NRM ADV

1.2 - 43,214 25,574 26,854 10,931 11,341

2.5 - 43,360 26,242 27,522 11,265 11,675

0.999 - 44,000 25,250 26,530 10,769 11,179

14 log

0.3 - 43,580 25,936 27,216 11,112 11,522

1.2 - 45,900 27,160 28,580 11,654 12,117

2.5 - 46,022 27,808 29,228 11,978 12,441

0.999 - 46,718 26,858 28,278 11,503 11,966

15 log10

0.3 - 46,266 27,516 28,936 11,832 12,295

256.3 - 4,458 4,044 4,484 1,795 1,945

0.032 - 4,148 3,712 4,148 1,632 1,780

16 modf

10000.2345 - 4,434 3,898 4,338 1,722 1,872

2.3 4.2 96,904 56,372 58,948 23,829 24,677

45.2 -5 97,438 55,556 58,132 23,432 24,280

-4.56 -3 101,770 59,090 62,090 24,943 25,891

17 pow

-85.55 476 100,174 59,292 62,206 25,111 26,039

2 - 30,274 9,906 10,040 4,940 5,000

3 - 30,374 9,922 10,056 4,948 5,008

18 sqrt

0.1 - 29,250 9,780 9,914 4,877 4,937

0.3 - 3,720 3,196 3,572 1,451 1,57819 ceil

-0.6 - 2,238 1,816 2,034 827 915

5 - 214 166 188 102 11220 fabs

-5 - 214 166 188 102 112

0.3 - 2,238 1,816 2,034 827 91521 floor

-0.6 - 3,720 3,190 3,566 1,448 1,575

11.1 3.2 2,716 2,070 2,258 1,047 1,127

500.55 0.4 3,724 2,524 2,712 1,274 1,354

22 fmod

1.05E+06 9.54E-07 7,624 3,904 4,092 1,964 2,044

Appendix A Lists of Floating-Point Arithmetic Operation Performance

Rev.3.00 2005.09.12 A-10
REJ05B0464-0300

A.2.2 Double-Precision Floating-Point Operation Performance (H8SX)

H8SX

No. Function Parameter 1 Parameter 2 NRM ADV MAX

0.4 - 16,203 16,305 16,306

1.57075 - 1,097 1,136 1,135

0.6 - 16,220 16,323 16,324

1 acos

-0.4 - 16,185 16,289 16,291

0.4 - 15,881 15,903 15,904

1.57075 - 738 805 804

0.6 - 14,895 15,916 15,918

2 asin

-0.4 - 14,888 15,910 15,911

0.11 - 5,081 5,873 5,872

0.27 - 8,163 9,066 9,065

0.547 - 8,089 8,992 8,991

0.777 - 8,512 9,425 9,424

0.975 - 8,271 9,159 9,158

54.45 - 10,528 11,515 11,514

154.233 - 10,693 11,680 11,679

-54.45 - 10,534 11,522 11,520

-0.975 - 8,277 9,166 9,164

3 atan

-0.777 - 8,518 9,432 9,430

0.3 0.7 9,791 10,739 10,740

0.2 0.1 12,161 13,208 13,209

4 atan2

0.1 0.9 6,978 7,815 7,816

0.523333333 - 4,653 4,928 4,927

1.046666667 - 5,340 5,691 5,691

1.9625 - 5,147 5,443 5,443

2.7475 - 5,028 5,355 5,355

3.5325 - 4,788 5,060 5,060

4.3175 - 5,418 5,771 5,771

5.1025 - 5,181 5,479 5,479

5.8875 - 5,039 5,369 5,368

-0.52333333 - 4,656 4,931 4,931

-1.04666667 - 5,341 5,692 5,693

-1.9625 - 5,151 5,447 5,448

-2.7475 - 5,032 5,359 5,360

-3.5325 - 4,792 5,064 5,065

-4.3175 - 5,422 5,775 5,776

-5.1025 - 5,185 5,483 5,484

5 cos

-5.8875 - 5,043 5,373 5,373

Appendix A Lists of Floating-Point Arithmetic Operation Performance

Rev.3.00 2005.09.12 A-11
REJ05B0464-0300

H8SX

No. Function Parameter 1 Parameter 2 NRM ADV MAX

0.523333333 - 4,665 5,363 5,362

1.046666667 - 4,601 5,260 5,260

1.9625 - 4,405 5,040 5,040

2.7475 - 5,033 5,754 5,754

3.5325 - 4,764 5,461 5,461

4.3175 - 4,725 5,384 5,384

5.1025 - 4,473 5,108 5,108

5.8875 - 5,061 5,783 5,782

-0.52333333 - 4,674 5,372 5,372

-1.04666667 - 4,622 5,281 5,282

-1.9625 - 4,414 5,049 5,050

-2.7475 - 5,042 5,763 5,764

-3.5325 - 4,773 5,470 5,471

-4.3175 - 4,734 5,393 5,394

-5.1025 - 4,482 5,117 5,118

6 sin

-5.8875 - 5,072 5,792 5,792

0.3925 - 7,096 7,418 7,418

1.1775 - 7,284 7,631 7,631

1.9625 - 7,050 7,317 7,371

7 tan

2.7475 - 7,451 7,797 7,797

0.33 - 16,425 16,725 16,727

0.78 - 16,918 17,216 17,218

-0.33 - 16,427 16,727 16,729

8 cosh

-0.78 - 16,920 17,218 17,220

0.33 - 4,793 4,873 4,873

0.98 - 16,705 17,003 17,006

-0.33 - 4,793 4,873 4,873

9 sinh

-0.98 - 16,707 17,005 17,008

10 tanh 0.0033+00 - 21,563 20,209 20,210

0.33 - 8,073 8,249 8,248

0.98 - 8,113 8,289 8,288

-0.33 - 8,113 8,289 8,288

11 exp

-0.98 - 8,129 8,305 8,304

0.3 - 80 75 7512 frexp

400 - 80 75 75

0.3 30 378 413 41313 ldexp

0.1 100 378 413 413

Appendix A Lists of Floating-Point Arithmetic Operation Performance

Rev.3.00 2005.09.12 A-12
REJ05B0464-0300

H8SX

No. Function Parameter 1 Parameter 2 NRM ADV MAX

1.2 - 8,345 7,889 7,889

2.5 - 8,640 8,181 8,181

0.999 - 8,258 7,799 7,799

14 log

0.3 - 8,538 8,079 8,079

1.2 - 8,114 8,313 8,316

2.5 - 8,400 8,599 8,601

0.999 - 8,035 8,234 8,236

15 log10

0.3 - 8,304 8,503 8,505

256.3 - 1,226 1,194 1,194

0.032 - 1,065 1,035 1,035

16 modf

10000.2345 - 1,150 1,118 1,118

2.3 4.2 17,485 17,294 17,295

45.2 -5 17,060 16,868 16,870

-4.56 -3 17,965 17,820 17,820

17 pow

-85.55 476 18,237 18,076 18,078

2 - 3,882 3,912 3,912

3 - 3,888 3,918 3,918

18 sqrt

0.1 - 3,837 3,867 3,867

0.3 - 892 908 90819 ceil

-0.6 - 482 509 509

5 - 51 55 5520 fabs

-5 - 51 55 55

0.3 - 482 498 49821 floor

-0.6 - 893 894 894

11.1 3.2 688 750 749

500.55 0.4 921 983 982

22 fmod

1.05E+06 9.54E-07 1,712 1,774 1,773

Appendix B Added Features

Rev.3.00 2005.09.12 B-13
REJ05B0464-0300

Appendix B Added Features

B.1 Features Added between Ver. 2.0 and Ver. 3.0

B.1.1 Addition of Embedded Extended Functions

1. entry Function

In H8S, H8/300 Series C/C++ compiler version 3.0 (new version) or later, #pragma entry can specify the entry function.
The entry function is executed first when the power is turned on or at reset.

The entry function enables the creation of a C/C++ program without the use of the stack pointer (SP) initial value or
assembly language embedded in a C/C++ program.

2. Section Address Operator

In H8S, H8/300 Series C/C++ compiler version 3.0 or later, operators (_ _sectop and _ _secend) that refer to the start and
end addresses of sections have been added. This enables use of the data initialization library function (_INITSCT) when
the section switching function is used.

3. packed Structure

In H8S, H8/300 Series C/C++ compiler version 3.0 or later, pack option and #pragma pack can specify the boundary
alignment of the structure member.

B.1.2 Additional and Improved Functions

1. C++ Language Function

In H8S, H8/300 Series C/C++ compiler version 3.0 or later, the compiler can compile both C and C++ language programs.
The compiler distinguishes the C and C++ language programs by option lang or by their file extensions.

2. Library

H8S, H8/300 Series C/C++ compiler Version 3.0 or later supports mathematical functions (double and float types) in the
standard library. Embedded class libraries (ios, istream, ostream, iostream, string, complex, and new) are also supported.

3. Specification of the Number of Register Parameters

In H8S, H8/300 Series C/C++ compiler version 3.0 or later, the regparam option can be used to select the number of
parameter registers.

4. Expansion of the speed Option

In H8S, H8/300 Series C/C++ compiler version 3.0 or later, subcommand speed=expression has been added for option
speed. When speed=expression is specified, inline expansion is performed for most operations instead of calling run-time
routines.

5. Support of long Type Bit Field

In H8S, H8/300 Series C/C++ compiler version 3.0 or later, the long type data bit field has been added to the supported
data type.

Appendix B Added Features

Rev.3.00 2005.09.12 B-14
REJ05B0464-0300

6. Extension of Limited Values

In H8S, H8/300 Series C/C++ compiler version 3.0 or later, the limitation values of the following items have been
extended compared to the old version (version 2.0):

• Symbol size (version 3.0 or later: 250 characters, version 2.0: 31 characters)

• Nesting of compound statements (version 3.0 or later: 256 levels, version 2.0: 32 levels)

• Nesting of repeat statements (while, do, and for statements) (version 3.0 or later: 256 levels, version 2.0: 32 levels)

• Nesting of combinations of select statements (if and switch statements) (version 3.0 or later: 256 levels, version 2.0: 32
levels)

• Nesting of switch statements (version 3.0 or later: 128 levels, version 2.0: 16 levels)

• Nesting of for statements (version 3.0 or later: 128 levels, version 2.0: 16 levels)

• Number of characters in one line (version 3.0 or later: 8192 characters, version 2.0: 4096 characters)

• Memory size allocated by malloc (in advanced mode: version 3.0 or later: size_t, version 2.0: INT_MAX)

7. Output of Optimized List

In H8S, H8/300 Series C/C++ compiler version 3.0 or later, symbol reference count and optimized information list output
functions have been added at the execution of the inter-module optimizer.

8. Output of Command Line

The character string specified by a command line is output in a list to a file.

9. Strengthening Option message

In H8S, H8/300 Series C/C++ compiler version 3.0 or later, any information message level message specified by the
message option can be excluded from being output to a file.

10. Character Code Conversion

In H8S, H8/300 Series C/C++ compiler version 3.0 or later, the Latin1 option enables the Latin1 code to be used in the
source code.

B.1.3 Modification of Language Specifications

1. Output of Warning Message for *((int*)p)++

In H8S, H8/300 Series C/C++ compiler version 2.0, an error message is output for *((int*)p)++. In version 3.0 or later, a
warning message is output.

2. Checking Prototype

In H8S, H8/300 Series C/C++ compiler version 2.0, if a prototype declaration without a parameter type specification and a
prototype declaration with a parameter type specification are specified at the same time, an error message is output. In
H8S, H8/300 series C/C++ compiler version 3.0 or later, correct operation is enabled in such a case.

Example of version 2.0:

void f();

void f(int); -> Error 2118 is output

Appendix B Added Features

Rev.3.00 2005.09.12 B-15
REJ05B0464-0300

Example of version 3.0:

void f();

void f(int); <- Correct compilation

3. Description of a Bit Field without a Name at the Head of a Structure

In H8S, H8/300 Series C/C++ compiler version 3.0 or later, a bit field without a name can be written at the head of a
structure.

Example of version 2.0:

struct S {

 int :1;

 int a:1; -> Error 2141 is output

};

Example of version 3.0:

struct S {

 int :1;

 int a:1; -> Correct compilation

};

4. Inhibiting Errors from Occurring for Structure Initial Values

In H8S, H8/300 Series C/C++ compiler version 3.0 or later, the assignment and declaration of structures can be done
simultaneously.

Example of version 2.0:

struct S {

 int a,b;

}s1;

void test()

{

 struct S s2 = s1; <- Error 2130 is output

}

Appendix B Added Features

Rev.3.00 2005.09.12 B-16
REJ05B0464-0300

Example of version 3.0:

struct S {

 int a,b;

}s1;

union U {

 int a,b;

}u1;

void test()

{

 struct S s2 = s1; <- Correct compilation

}

5. Changing the Conditions of Undefined Symbol Errors for the static Function

In H8S, H8/300 Series C/C++ compiler version 3.0 or later, no error message is output for unreferenced symbols in a
static function that has only a declaration and no definition.

Example of version 2.0:

static void func(); <- Error 2143 is output unconditionally since

there is no definition

void test()

{

}

Example of version 3.0:

static void func(); <- Since there is no reference, no error is output

void test()

{

}

Appendix B Added Features

Rev.3.00 2005.09.12 B-17
REJ05B0464-0300

6. Enabling the Use of the // Comment in C Programs

In H8S, H8/300 Series C/C++ compiler version 3.0 or later, the // comment can be used in C programs. Therefore, the
meaning of a program in version 3.0 may differ from that of version 2.0.

Example of version 2.0:

int b = a //* Comment */4; <- The meaning of the program is “int b = a/4; -a;”

 -a;

Example of version 3.0:

int b = a //* Comment */4; <- The meaning of the program is “int b = a -a;”

 -a;

B.2 Features Added between Ver. 3.0 and Ver. 4.0

B.2.1 Common Additions and Improvements

1. Loosening Limits on Values

Limitations on source programs and command lines have been greatly loosened:

• Length of file name: 251 bytes -> unlimited

• Length of symbol: 251 bytes -> unlimited

• Number of symbols: 65,535 -> unlimited

• Number of source program lines: C/C++: 32,767, ASM: 65,535 -> unlimited

• Length of C program line: 8,192 characters -> 16,384 characters

• Length of C program string literals: 512 characters -> 16,384 characters

• Length of subcommand file lines: ASM: 300 bytes, optlnk: 512 bytes -> unlimited

• Number of parameters of the optimizing linkage editor rom option: 64 -> unlimited

2. Hyphens for Directory and File Names

A hyphen (-) can be specified for directory and file names.

3. Specification of Copyright Display

Specifying the logo/nologo option can specify whether or not the copyright output is displayed.

4. Prefix to Error Messages

To support the error-help function in Hitachi Embedded Workshop, a prefix has been added to error messages for the
compiler and optimizing linkage editor.

Appendix B Added Features

Rev.3.00 2005.09.12 B-18
REJ05B0464-0300

B.2.2 Added and Improved Compiler Functions

1. Use of Keyword

Attributes can be specified in declarations and definitions of functions and variables by using keywords
(_ _interrupt, _ _indirect, _ _entry, _ _abs8, _ _abs16, _ _regsave, _ _noregsave, _ _inline, or _ _register).

2. Creation of Vector Table

Vector tables of functions can be created automatically when vect is specified by #pragma interrupt, indirect,
entry, _ _interrupt, _ _indirect, or _ _entry.

3. Supports _ _evenaccess

Memory access in even on even-numbered byte boundaries is guaranteed for variables that are specified by _ _evenaccess.

4. Expanded Register Parameter Specification

_ _regparam2 and _ _regparam3 can be used to specify the number of register parameters in a function.

5. Specifies Options in Function Units

Options can be specified in function units by using #pragma options.

6. Allocates Data Close to Each Other

Optimizes address calculation code of arrays or structures by using _ _near8 or _ _near16.

However, the pointer size is not changed.

7. Allocates Stacks Close to Each Other

Optimizes stack address calculation code of stack area by using stack.

8. Added Intrinsic Functions

The following intrinsic functions were added.

• Unsigned overflow operation

9. Supports double=float

In the new version, double=float can be specified so that data declared as double-precision type and floating point
constants are both dealt with as floating-point type.

10. Strengthening noregsave Functions

When functions declared with #pragma noregsave or _ _noregsave are called, the contents of the register are guaranteed
by the caller.

11. Specifying Multiple Sets of Include Directory by Using Environment Variables

Multiple sets of include directories can be specified by using the environment variable (CH38).

12. Allocate Structure Parameter or Return Value to Register

Option structreg is used to allocate a small structure parameters or return values to registers.

Appendix B Added Features

Rev.3.00 2005.09.12 B-19
REJ05B0464-0300

13. Allocate 4-Byte Parameter or Return Value to Register (cpu=300)

Option longreg is used to allocate 4-byte parameters or return values to registers.

14. Conditions for Moving a Non-volatile Variable Outside a Loop

A non-volatile external variable in an iteration condition inhibits external variable optimization from moving out the loop
even though there are no function calls or assignment expressions in an iteration condition.

15. Supporting speed=loop=1|2

Option speed=loop=1|2 controls optimization of loop expansion.

16. Modifies Data Allocation by the Boundary Alignment

Data can be reallocated for each boundary alignment so that gaps that are generated by the boundary alignment are
minimized.

17. Added Implicit Declarations

_ _ HITACHI_ _ and _ _ HITACHI_VERSION_ _, are implicitly declared by #define.

18. static Label Name

The specification of label names as references to static file labels by using #pragma asm and #pragma endasm, and
#pragma inline_asm has been changed to _ _$ (name). However, in a linkage list, the name is displayed as _ (name).

19. Extension and Change of Language Specification

• Inhibits errors when initializing unions.

Example:

union{

char c[4];

}uu={ {'a','b','c'} };

• enum can be applied to bit fields.

Example:

struct{

enum E1{a,b,c}m1:2;

enum E1 m2:2;

};

Appendix B Added Features

Rev.3.00 2005.09.12 B-20
REJ05B0464-0300

• The output of an error message when a comma “,” is written after the last enumeration has been inhibited.

Example:

enum E1{a,b,c,}m1;

• An union can be assigned and declared in a single statement

Example:

union U{

int a,b;

}u1;

void test(){

union U u2 = u1;

}

• The level of checking for errors in casting of symbol address expressions has been eased.

Example:

int x;

short addr1=(short)&x;

• Restrictions on the order of writing declaration of functions and variables, and #pragma declarations in C programs has
been eased.

Example:

void f(void);

#pragma interrupt f

void f(void){} // #pragma declaration following a function declaration is

//valid. (In version 3, an error would have occurred.)

• The restrictions on the order of writing declarations of functions and variables, and #pragma declarations in
C++ programs have been modified.

Example:

void f(void){}

#pragma interrupt f

void f(void); // An error will occur when a #pragma declaration follows a

// function declaration.

• Exception processing and template functions are also supported according to the C++ language specification.

Appendix B Added Features

Rev.3.00 2005.09.12 B-21
REJ05B0464-0300

B.2.3 Added and Improved Functions for the Assembler

1. External Definition and Reference of BEQU

The .BEQU symbol can be externally defined and referenced by using .BIMPORT and .BEXPORT.

B.2.4 Added and Improved Functions for the Optimizing Linkage Editor

1. Support for Wild Cards

A wild card can be specified with a section name of an input file or for file names in start options.

2. Search Path

An environment variable (HLNK_DIR) can be used to specify the several search paths for input files or library files.

3. Subdividing the Output of Load Modules

The output of an absolute load module file can be subdivided.

4. Changing the Error Level

For informational, warning, and error level messages, the error level or the output can be individually changed.

5. Support for Binary and HEX

Binary files can be input and output.

Intel® HEX-type output can be selected.

6. Output the Stack Amount Information

The stack option can output an information file for the stack analysis tool.

7. Improved Optimization by optimize=variable

Variables allocated in a 16-bit absolute address space can be allocated in an 8-bit address space by applying optimization.

8. Improved Optimization by optimize=register

When option optimize=speed is not specified, the file is compressed after optimizing the saving and restoring of register
contents between functions, and replacing saving and restoring of multiple register contents with function calls.

9. Improved Optimization of Assembly Programs

Sections including .org, .align, or .data directives can be optimized.

10. Debugging Information Deletion

The strip option can be used to delete debugging information from either the load module file or the library file.

Appendix B Added Features

Rev.3.00 2005.09.12 B-22
REJ05B0464-0300

B.3 Added and Improved Features in Upgrade from Ver. 4.0 to Ver. 6.0

(Note: Ver. 5.0 does not exist and is a missing number.)

B.3.1 Added and Improved Compiler Functions

a. Support for New CPU

Creation of an object file with a CPU type of H8SX is supported.

b. Support for 2-byte Pointer (only in H8SX)

The _ _ptr16 keyword or option ptr16 can be used to specify use of a 2-byte pointer.

They are valid in H8SX advanced mode or H8SX maximum mode.

c. Specifying Bit Field Order

#pragma bit_order or the bit_order option can be used to specify the order to store bit field members in a field.

d. Function Call in Extended Memory Indirect Addressing Mode (only in H8SX)

The _ _indirect_ex keyword or the indirect=extended option can be used to declare functions to be called in extended
memory indirect addressing mode. Also, #pragma indirect section can modify the section name of not only $INDIRECT,
the function address area for memory indirect addressing mode (@@aa:8), but also $EXINDIRECT, the function address
area for extended memory indirect addressing mode (@@aa:7).

e. Assembly Capability (only in H8SX)

The _ _asm keyword can be used to allow the assembly language to be used in a C/C++ source program.

f. Disabling #line Output

The noline option can be used to disable the #line output at preprocessor expansion.

g. Specifying Inline Expansion for Functions memcpy and strcpy (only in H8SX)

The library option can be used to specify inline expansion of two library functions, memcpy and strcpy.

h. Changing Error Level

The change_message option can be used to individually change the error level of information-level and warning-level
error messages.

i. Specifying 8-bit Absolute Area Address (only in H8SX)

Option sbr can be used to specify the address to locate the 8-bit absolute area.

j. Strengthening Optimizing Feature (only in H8SX)

The optimization details can be further specified by the following added options: opt_range, del_vacant_loop, max_unroll,
infinite_loop, global_alloc, struct_alloc, const_var_propagate, and volatile_loop

Appendix B Added Features

Rev.3.00 2005.09.12 B-23
REJ05B0464-0300

k. Added Intrinsic Functions

The following intrinsic functions are added.

• 64-bit multiplication of H8SX (mulsu and muluu)

• Block transfer instructions of H8SX (movmdb, movmdw, movmdl, and movsd)

• Block transfer instructions (eepmovb, eepmovw, eepmovi)

• Revised instrinsic function for MOVFPE instruction (_movfpe)

l. Support for Wild Cards

An input file can be specified with a wild card.

m. Change in Compiler Limitation

The limitation in the number of switch statements is changed from 256 to 2048.

n. Change in specification of information message display

In Ver. 4.0, only the last specification of all the message and nomessage options was effective in a command line. In Ver.
6.0, the union of all the numbers specified by each nomessage option in a command line is suppressed to display the
message.

o. Type of enum instance

If the byteenum option is specified and if all the numbers in an enum are in the range from 0 to 255, the compiler handles
the data as unsigned char.

p. Inline expansion

In H8SX, <numeric value> in the speed=inline=<numeric value> option means the percentage of increase in program
size allowed by inline expansion. In the other CPU, <numeric value> means the maximum number of nodes in a function
allowed to perform inline expansion.

q. 1-byte-aligned Data Section and 4-byte-aligned Data Section (only in H8SX)

Specifying the align=4 option places data whose size is odd to 1-byte-aligned data section and ata whose size is a multiple
of 4 to 4byte-aligned data section.

r. Section Name

Changing the section name of P, C, B or D into S by the section option causes a warning error. S is the reserved name for
the stack area.

s. Added Implicit Declarations

_ _ H8SXN_ _, _ _ H8SXM_ _, _ _ H8SXA_ _, _ _ H8SXX_ _, _ _ HAS_MULTIPLIER_ _, _ _HAS_DIVIDER_ _, _
_INTRINSIC_LIB_ _, _ _ DATA_ADDRESS_SIZE_ _, _ _ H8_ _, _ _RENESAS_VERSION_ _, and _ _ RENESAS_ _
are implicitly declared using #define directive by the compiler.

t. Reentrant library

If the reent option is specified to the library generator, a reentrant library is created.

Appendix B Added Features

Rev.3.00 2005.09.12 B-24
REJ05B0464-0300

u. Support of Little-endian Space (only in H8SX)

A little-endian space is supported depending on a chip of H8SX A 2 -or 4--byte datum in a little-endian space should be
written and read with its own data size. In order to do so, the feature of the _ _evenaccess keyword is enhandced.

B.3.2 Notes on Optimizing Features of the Compiler Ver. 6.0

Notes below about optimization apply in a case where an H8SX object program is created with Ver. 6.0 optimization. For
the other cases, optimization is similar to that of Ver. 4.0 or earlier.

Adopting the newest compiler optimization technology allows the optimization processing in Ver. 6.0 to analyze aliases
for pointers or external variables and analyze data live ranges including the control flow, which were not possible so far
(in Ver. 4.0 or lower). This provides a wider range of optimization than Ver. 4.0 within the limits of the language
specifications.

However, a program that was previously running because it was not optimized enough may not run because it has become
a target of optimization.

Examples of programs that were not optimized so far but will become targets of optimization in Ver. 6.0 are shown below.

a. Access to External Variables or Pointer Variables without volatile Declaration

A volatile declaration guarantees that the volatile-qualified variable is accessed whenever it is used because the variable
may be updated outside the program sequence. For example. data values are changed by interrupt processing or hardware
processing.

The compiler assumes that variables without a volatile declaration are changed only by successive processing of the
program sequence or function calls.

In Ver. 4.0 or earlier, external variables without a volatile declaration were optimized as shown in the example below:

Example:

int a;

f() {

int *ptr=&a;

*ptr=1; // <- Only this assignment expression is eliminated.

*ptr=2;

}

In Ver. 6.0, optimization is further performed in the cases below.

To disable the optimization, declare the relevant variable with volatile.

Appendix B Added Features

Rev.3.00 2005.09.12 B-25
REJ05B0464-0300

Example 1:

int a;

f() {

int *ptr=&a;

*ptr &= ~((0x0080)); //<- (1)

while(!(*ptr & (0x0080))) //<- (2)

{

:

}

}

In this example, while statement (2) has become an infinite loop as a result of optimization.

. Due to alias analysis of the pointer, *ptr in (1) and *ptr in (2) are handled as the same value.

. Expression (1) is propagated to expression (2). Accordingly, expression (2) is converted as follows:

while(!((*ptr & ~((0x0080))) & (0x0080))) //<- (2)

-> while(!(*ptr & 0))

-> while(!(0))

-> while(1)

Therefore, the expression in question is judged as true, the judge statement is eliminated, and the above while statement
becomes an infinite loop.

Example 2:

int a,b;

f() {

a=1; //<- (1)

if(a); //<- (2)

{

b=1; //<- (3)

}

}

Appendix B Added Features

Rev.3.00 2005.09.12 B-26
REJ05B0464-0300

In this example, if statement (2) has been eliminated and (3) is always executed at all times as a result of optimization.

• Due to alias analysis of external variables, a in (1) and a in (2) are handled as the same value.

• Constant value (1) is propagated to expression (2). Accordingly, expression (2) is converted as follows:

+-> if(1)

Therefore, the expression in question is judged as true, the conditional statement is eliminated, and the above expression
(3) is always executed at all times.

Example 3:

int a,b,c;

f() {

a=1; //<- (1)

if(c); //<- (2)

{

b=1; //<- (3)

}

a=2; //<- (4)

}

In this example, expression (1) has been eliminated as a result of optimization.

• Obtains the control flow including the conditional of the if statement expression.

• Due to analyzing the control flow analysis and alias analysis of external variables, it is proved that the value set in a in
(1) is not used. Therefore, the above expression (1) is a redundant expression that is not referenced, and thus it is
eliminated.

Example 4:

int a;

int b[10];

f() {

int i; //<- (1)

for(i=0; i<10; i++) //<- (2)

{

b[i]=a; //<- (3)

}

}

Appendix B Added Features

Rev.3.00 2005.09.12 B-27
REJ05B0464-0300

In this example, a in expression (3) is referenced once before the loop and is always handled as a constant value in the
loop as a result of optimization.

• Obtains the control flow including the for loop control expression.

• Due to analyzing the control flow analysis and alias analysis of external variables, a in (3) is handled as a constant
value in the loop.

• (3) which is the reference expression to a is moved outside the for loop (2) as follows:

temp=a;

for(i=0; i<10; i++) //<- (2)

{

b[i]=temp; //<- (3)

}

Therefore, the variable a in expression (3) is unchanged in the loop.

Example 5:

int a;

f() {

a=0; //<- (1)

while(1); //<- (2)

}

In this example, the statement (1) is assumed as unnecessary and eliminated as a result of optimization.

• Since (2) is an infinite loop, this function is judged to have no exit.

• Since a is not referenced in the infinite loop, specification (1) is assumed as unnecessary coding and is eliminated.

b. volatile_loop Option

If the loop control variable is a non-volatile external variable and also the conditional expression is simple, the
volatile_loop option regards the loop control variable as volatile qualified to prevent an infinite loop from being created.
However, if the loop control variable is not loop-invariant, it cannot be treated as volatile-qualified.

In Ver. 6.0, declare the relevant variable with volatile.

Appendix B Added Features

Rev.3.00 2005.09.12 B-28
REJ05B0464-0300

An example program is given below.

Example:

struct{

unsigned char a:1;

} ST;

int a;

extern void f();

void func() {

while (ST.a) { //<- (1)

if (a) { //<- (2)

f(); //<- (3)

}

}

}

In this example, because ST.a may be updated in f(), ST.a is not assumed as loop-invariant value in the loop. Therefore,
ST cannot be treated as volatile even though specified so with the volatile_loop option.

• If the condition in (2) is satisfied, (3) is executed and the ST.a value may be updated.

Accordingly, after the function call, ST.a is to be reloaded.

• If the condition in (2) is not satisfied, the ST.a value is not updated so the ST.a value used in the previous conditional
at (1) can be directly used.

B.3.3 Compatibility between Ver. 4.0 and Ver. 6.0

To link an object program created by Ver. 4.0 with an object program created by Ver. 6.0, the following conditions need to
be satisfied.

(1) C source program

The following options that affect function interface must be specified equally.

• regparam

• longreg/nolongreg

• double=float

• structreg/nostructreg

• stack

• byteenum

• pack/unpack

Appendix B Added Features

Rev.3.00 2005.09.12 B-29
REJ05B0464-0300

(2) Assembly program

An assembly program must conform to the rules concerning function call, which are described in section 9.3.2, Function
Calling Interface, in the H8S,H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor User’s Manual.

Notes: 1. For information not mentioned in the manual, the compatibility with an upgraded version is not guaranteed. An
object program created by Ver. 4.0 cannot be linked with an object program created by Ver. 6.0 if one or both
of the object programs contain assembly coding which depends on the compiler output coding, such as the
order to save and restore register contents.

2. For details on linkage with an OS, middleware, and so on, contact your sales agency.

B.4. Added and Improved Features in Upgrade from Ver. 6.0 to Ver. 6.1

B.4.1 Added and Improved Compiler Functions

a. Support for AE5

AE5 is supported.

b. Enhanced Conformance with the ANSI Standard

strict_ansi brings the associative rule of floating-point operations into conformance with the ANSI standard.

c. Compatibility of Output Object Code with Object Code Produced by Ver. 4.0

With H8S CPUs, legacy=v4 supports the output of object code which is compatible with that produced by earlier versions
of the compiler (Ver.4.0).

d. Expanded Specifications of cpuexpand=v6 Specified with legacy=v4

When cpuexpand=v6 is specified with legacy=v4, output object code is compatible with object code produced by Ver.
6.00 and the cpuexpand option.

e. Preferential Allocation of Register Storage Class Variables

enable_register preferentially allocates the variables with register storage class specification to registers.

f. Division of Optimizing Ranges

scope/noscope can be specified to select whether or not to divide up ranges for optimization within functions.

g. Inter-file Inline Expansion

file_inline is used to specify inline expansion for functions that extend across files and file_inline_path is used to specify
the path name of a file for inline expansion.

h. Added Intrinsic Function

Intrinsic function set_vbr is used to set the VBR.

i. #pragma address

#pragma address can be used to allocate variables to specific absolute addresses.

Appendix B Added Features

Rev.3.00 2005.09.12 B-30
REJ05B0464-0300

j. Support for .stack Directive

When code=asmcode has been specified, the compiler outputs a .stack directive within the assembly-source program.

k. Added Environment Variable

Environment variable CH38SBR can be used to set initial values for the SBR.

l. Added Implicit Declarations

Implicit declaration of _ _AE5_ _ and _ _ABS16_ _ have been added.

B.4.2 Notes on Optimizing Features of the Compiler Ver. 6.01

Notes below about optimization apply in a case where an H8SX and H8S (without the legacy=v4 option) object program
is created with Ver. 6.01 optimization. For the other cases, optimization is similar to that of Ver. 4.0 or earlier.

Adopting the newest compiler optimization technology of H8SX and H8S allows the optimization processing in Ver. 6.01
to analyze aliases for pointers or external variables and analyze data live ranges including the control flow, which were not
possible so far (in Ver. 4.0 or ealier). This provides a wider range of optimization than Ver. 4.0 within the limits of the
language specifications.

So especially when a development of H8S has been done with H8C Ver.6.0 and the project will be updated to Ver.6.01,
the generated code will be for different from that of the old project because of the new optimization technology described
above.

However, a program that was previously running because it was not optimized enough may not run because it has become
a target of optimization.

Examples of programs that were not optimized so far but will become targets of optimization in Ver. 6.01 are shown
below.

a. Access to External Variables or Pointer Variables without volatile Declaration

A volatile declaration guarantees that the volatile-qualified variable is accessed whenever it is used because the variable
may be updated outside the program sequence. For example, data values are changed by interrupt processing or hardware
processing.

The compiler assumes that variables without a volatile declaration are changed only by successive processing of the
program sequence or function calls.

In Ver. 4.0 or earlier, external variables without a volatile declaration were optimized as shown in the example below:

Example:

int a;
f() {

int *ptr=&a;
*ptr=1; //<- Only this assignment expression is eliminated.
*ptr=2;

}

In Ver. 6.01, optimization is further performed in the cases below.

To disable the optimization, declare the relevant variable with volatile.

Appendix B Added Features

Rev.3.00 2005.09.12 B-31
REJ05B0464-0300

Example 1:

int a;
f() {

int *ptr=&a;
*ptr &= ~((0x0080)); //<- (1)
while(!(*ptr & (0x0080))) //<- (2)
}
 :
}

}

In this example, while statement (2) has become an infinite loop as a result of optimization.

• Due to alias analysis of the pointer, *ptr in (1) and *ptr in (2) are handled as the same value.

• Expression (1) is propagated to expression (2). Accordingly, expression (2) is converted as follows:

while(!((*ptr & ~((0x0080))) & (0x0080))) //<- (2)

-> while(!(*ptr & 0))

-> while(!(0))

-> while(1)

Therefore, the expression in question is judged as true, the judge statement is eliminated, and the above while statement
becomes an infinite loop.

Example 2:

int a,b;
f() {

a=1; //<- (1)
if(a); //<- (2)
{
 b=1; //<- (3)
}

}

In this example, if statement (2) has been eliminated and (3) is always executed at all times as a result of optimization.

• Due to alias analysis of external variables, a in (1) and a in (2) are handled as the same value.

• Constant value (1) is propagated to expression (2). Accordingly, expression (2) is converted as follows:

-> if(1)

Therefore, the expression in question is judged as true, the conditional statement is eliminated, and the above expression
(3) is always executed at all times.

Appendix B Added Features

Rev.3.00 2005.09.12 B-32
REJ05B0464-0300

Example 3:

int a,b,c;
f() {

a=1; //<- (1)
if(c); //<- (2)
{
 b=1; //<- (3)
}
a=2; //<- (4)

}

In this example, expression (1) has been eliminated as a result of optimization.

• Obtains the control flow including the conditional of the if statement expression.

• Due to analyzing the control flow analysis and alias analysis of external variables, it is proved that the value set in a in
(1) is not used. Therefore, the above expression (1) is a redundant expression that is not referenced, and thus it is
eliminated.

Example 4:

int a;
int b[10];
f() {

int i; //<- (1)
for(i=0; i<10; i++) //<- (2)
{
 b[i]=a; //<- (3)
}

}

In this example, a in expression (3) is referenced once before the loop and is always handled as a constant value in the
loop as a result of optimization.

• Obtains the control flow including the for loop control expression.

• Due to analyzing the control flow analysis and alias analysis of external variables, a in (3) is handled as a constant
value in the loop.

• (3) which is the reference expression to a is moved outside the for loop (2) as follows:

temp=a;
for(i=0; i<10; i++) //<- (2)
{
 b[i]=temp; //<- (3)
}

Therefore, the variable a in expression (3) is unchanged in the loop.

Example 5:

int a;
f() {

a=0; //<- (1)
while(1); //<- (2)

}

Appendix B Added Features

Rev.3.00 2005.09.12 B-33
REJ05B0464-0300

In this example, the statement (1) is assumed as unnecessary and eliminated as a result of optimization.

• Since (2) is an infinite loop, this function is judged to have no exit.

• Since a is not referenced in the infinite loop, specification (1) is assumed as unnecessary coding and is eliminated.

b. volatile_loop Option

If the loop control variable is a non-volatile external variable and also the conditional expression is simple, the
volatile_loop option regards the loop control variable as volatilequalified to prevent an infinite loop from being created.
However, if the loop control variable is not loop-invariant, it cannot be treated as volatile-qualified.

In Ver.6.01, declare the relevant variable with volatile.

An example program is given below.

Example:

struct{
 unsigned char a:1;
} ST;
int a;
extern void f();
void func() {
 while (ST.a) { //<- (1)
 if (a) { //<- (2)
 f(); //<- (3)
 }
 }
}

In this example, because ST.a may be updated in f(), ST.a is not assumed as loop-invariant value in the loop. Therefore,
ST cannot be treated as volatile even though specified so with the volatile_loop option.

• If the condition in (2) is satisfied, (3) is executed and the ST.a value may be updated. Accordingly, after the function
call, ST.a is to be reloaded.

• If the condition in (2) is not satisfied, the ST.a value is not updated so the ST.a value used in the previous conditional
at (1) can be directly used.

B.4.3 Compatibility between Ver. 4.0 and Ver. 6.01

To link an object program created by Ver. 4.0 with an object program created by Ver. 6.01, the following conditions need
to be satisfied.

(1) C source program

The following options that affect function interface must be specified equally.

• regparam

• longreg/nolongreg

• double=float

• structreg/nostructreg

• stack

• byteenum

• pack/unpack

Appendix B Added Features

Rev.3.00 2005.09.12 B-34
REJ05B0464-0300

(2) Assembly program

An assembly program must conform to the rules concerning function call, which are described in section 9.3.2, Function
Calling Interface in the H8S,H8/300 Series C/C++ Compiler, Assembler, Optimizing Linkage Editor User’s Manual.

Notes: 1. For information not mentioned in the manual, the compatibility with an upgraded version is not guaranteed. An
object program created by Ver. 4.0 cannot be linked with an object program created by Ver. 6.01 if one or both
of the object programs contain assembly coding which depends on the compiler output coding, such as the
order to save and restore register contents.

2. For details on linkage with an OS, middleware, and so on, contact your sales agency.

Appendix C Notes on Version Upgrade

Rev.3.00 2005.09.12 C-35
REJ05B0464-0300

Appendix C Notes on Version Upgrade

This section describes notes when the version is upgraded from the earlier version (H8S, H8/300 Series C/C++ Compiler
Package Ver. 4.x or lower).

C.1 Guaranteed Program Operation

When the version is upgraded and program is developed, operation of the program may change.

When the program is created, note the followings and sufficiently test your program.

(1) Programs Depending on Execution Time or Timing

C/C++ language specifications do not specify the program execution time. Therefore, a version difference in the compiler
may cause operation changes due to timing lag with the program execution time and peripherals such as the I/O, or
processing time differences in asynchronous processing, such as in interrupts.

(2) Programs Including an Expression with Two or More Side Effects

Operations may change depending on the version when two or more side effects are included in one expression.

Example

a[i++]=b[i++]; /* i increment order is undefined. */

f(i++,i++) ; /* Parameter value changes according to increment order. */

/* This results in f(3, 4) or f(4, 3) when the value of i is 3. */

(3) Programs with Overflow Results or an Illegal Operation

The value of the result is not guaranteed when an overflow occurs or an illegal operation is performed. Operations may
change depending on the version.

Example

int a, b;

x=(a*b)/10; /* This may cause an overflow depending on the value range of a and b. */

(4) No Initialization of Variables or Type Inequality

When a variable is not initialized or the parameter or return value types do not match between the calling and called
functions, an incorrect value is accessed. Operations may change depending on the version.

 File 1: File 2:

The information provided here does not include all cases that may occur. Please use this compiler prudently, and
sufficiently test your programs keeping the differences between the versions in mind.

int f(double d)

{

:

}

int g(void)

{

f(1);

}

The parameter of the caller function
is the int type, but the parameter of
the callee function is the double
type. Therefore, a value cannot be
correctly referenced.correctly
referenced.

Appendix C Notes on Version Upgrade

Rev.3.00 2005.09.12 C-36
REJ05B0464-0300

C.2 Compatibility with Earlier Version

The following notes cover situations in which the compiler (Ver. 3.x or lower) is used to generate a file that is to be linked
with files generated by the earlier version or with object files or library files that have been output by the assembler (Ver.
2.x or lower) or linkage editor (Ver. 6.x or lower). The notes also covers remarks on using the existing debugger supplied
with the earlier version of the compiler.

(1) Object Format

The standard object file format has been changed from SYSROF to ELF. The standard format for debugging information
has also been changed to DWARF2. When object files (SYSROF) output by the earlier version of the compiler (Ver. 3.x
or lower) or assembler (Ver. 2.x or lower) are to be input to the optimizing linkage editor, use a file converter to convert it
to the ELF format. However, relocatable files output by the linkage editor (extension: rel) and library files that include one
or more relocatable files cannot be converted.

(2) Point of Origin for Include Files

When an include file specified with a relative directory format was searched for, in the earlier version, the search would
start from the compiler’s directory. In the new version, the search starts from the directory that contains the source file.

(3) C++ Program

Since the encoding rule and execution method were changed, C++ object files created by the earlier version of the
compiler cannot be linked. Be sure to recompile such files. The name of the library function for initial/post processing of
the global class object, which is used to set the execution environment, has also been changed. Refer to section 9.2.2,
Execution Environment Settings, and modify the name.

(4) Abolition of Common Section (Assembly Program)

With the change of the object format, support for a common section has been abolished.

(5) Specification of Entry via .END (Assembly Program)

Only an externally defined symbol can be specified with.END.

(6) Inter-module Optimization

Object files output by the earlier version of the compiler (Ver. 3.x or lower) or the assembler (Ver. 2.x or lower) are not
targeted for inter-module optimization. Be sure to recompile and reassemble such files so that they are targeted for inter-
module optimization.

Appendix D List of Limitations

Rev.3.00 2005.09.12 D-37
REJ05B0464-0300

Appendix D List of Limitations

The H8S and H8/300 C/C++ compiler version6.01 has the following limitations:

No Category Item Limitation

1 Compiler startup Number of source programs that can be compiled in a single
operation

No limitation *1

2 Total number of macro names that can be specified in define option No limitation

3 File name length No
limitation(depends on
the OS)

4 Length of a line 32768 characters

(H8SX/H8S)

16384 characters

(300H,300)

5 Number of source program lines per file No limitation

6

Number of source

program lines

Number of compilable source program lines No limitation

7 Preprocessor Depth of file nesting levels created by #include statement No limitation

8 Total number of macro names defined by the #define statement No limitation

9 Number of parameters specifiable in macro definitions and macro
calls

No limitation

10 Number of macro name replacements No limitation

11 Depth of nesting levels for the #if, #ifdef, #indef, #else, and #elif
statements

No limitation

12 Total number of operators and operands specifiable in the #if or
#elif statements

No limitation

13 Declarations Number of function definitions No limitation

14 Number of externally linked identifiers (external names) No limitation

15 Number of identifiers (internal names) that can be used in a function No limitation

16 Total number of declarations in the pointer type, the array type and
the function type which qualify the base type

16 declarations

17 Number of array dimensions 6 dimensions

18 Size of arrays or structures *2

H8SX normal mode,
H8S/2600 normal mode,
 H8S/2000 normal mode,
 H8/300H normal mode,
 H8/300

65535 bytes

H8SX middle mode,
H8SX advanced mode(with ptr16 option),
 H8SX maximum mode(with ptr16 option)

32767 bytes

 H8/300H advanced mode 16777215 bytes

 H8SX advanced mode(without ptr16 option),
H8SX maximum mode(without ptr16 option),
H8S/2600 advanced mode,
 H8S/2000 advanced mode

2147483647 bytes

4294967295
(if legacy=v4 is
specified)bytes

Appendix D List of Limitations

Rev.3.00 2005.09.12 D-38
REJ05B0464-0300

No Category Item Limitation

19 Statements Depth of compound statement nesting levels No limitation

20 Depth of nesting levels when iterative statements (while, do, and for
statements) and select statements (if and switch statements) are
combined

4096 levels

(H8SX/H8S)

256 levels

(300H/300)

21 Number of goto labels specifiable in a function 2147483646 labels

(H8SX/H8S)

511 labels(300H/300)

22 Number of switch statements 2048 statements

23 Depth of nesting levels for switch statements 2048 levels

(H8SX/H8S)

128 levels

(300H/300)

24 Number of case labels 2147483646 labels

(H8SX/H8S)

511 labels(300H/300)

25 Depth of nesting levels for the for statements 2048 levels

(H8SX/H8S)

128 levels

(300H/300)

26 Expressions Length of a character string 32766 characters

27 Number of parameters specifiable in function definitions or function
calls

2147483646
parameters

(H8SX/H8S)

63 parameters

(300H/300) *3

28 Total number of operators and operands specifiable in an
expression

Approx. 500

29 Standard includes Number of files that can be opened at once using the open function Variable *4

Notes: 1. For PC, up to 127 characters can be input due to the command line limitation.
2. In the advanced mode, if a bit width for the address space is specified, the size of the address space

corresponding to the specified bit width takes precedence.
 3. In the case of a non-static function member, the maximum number is 62.

4. The number of files that can be opened at once using the open function can be specified.

Appendix E ASCII Code Table

Rev.3.00 2005.09.12 E-39
REJ05B0464-0300

Appendix E ASCII Code Table

Table E.1 ASCII Code Table

 Upper four bits

Lower four bits 0 1 2 3 4 5 6 7

0 NULL DLE SP 0 @ P ` p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ' 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

Appendix E ASCII Code Table

Rev.3.00 2005.09.12 E-40
REJ05B0464-0300

Renesas Microcomputer Development Environment System
Application Note
H8S, H8/300 Series C/C++ Compiler Package

Publication Date: Rev.1.00, October 26, 2004
 Rev.3.00, September 12, 2005
Published by: Sales Strategic Planning Div.
 Renesas Technology Corp.
Edited by: Customer Support Department
 Global Strategic Communication Div.
 Renesas Solutions Corp.

 2005. Renesas Technology Corp., All rights reserved. Printed in Japan.

Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

http://www.renesas.com
Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900
Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd.
Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.
Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea
Tel: <82> 2-796-3115, Fax: <82> 2-796-2145

Renesas Technology Malaysia Sdn. Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: <603> 7955-9390, Fax: <603> 7955-9510

RENESAS SALES OFFICES

Colophon 3.0

1753, Shimonumabe, Nakahara-ku, Kawasaki-shi, Kanagawa 211-8668 Japan

H8S, H8/300 Series C/C++ Compiler Package

REJ05B0464-0300

Application Note

	Cover
	Keep safety first in your circuit designs!
	Notes regarding these materials
	Preface
	Contents
	Section 1 Overview
	1.1	Summary
	1.2	Features
	1.3	Installation Method
	1.3.1	PC Version
	1.3.2	UNIX Version

	1.4	Startup Method
	1.4.1	Stating the HEW
	1.4.2	Starting the Compiler Using a Command

	1.5	Procedure for Program Development

	Section 2 Procedure for Creating and Debugging a Program
	2.1	Creating a project
	2.1.1	Creating a New Workspace 1 (HEW1.2)
	2.1.2	Creating a New Workspace 2 (HEW2.0)
	2.1.3	Starting Tools from a Command Line

	2.2	Introduction of Sample Program
	2.2.1	Initialization Required for ROM Programs

	2.3	Debugging Using the HDI
	2.3.1	Running with HEW (1)
	2.3.2	Selecting a Target
	2.3.3	Allocating Memory Resources
	2.3.4	Downloading a Load Module
	2.3.5	Operating HDI with HEW (2)
	2.3.6	Displaying a Source Program
	2.3.7	Setting a Breakpoint
	2.3.8	Displaying the Register Status
	2.3.9	Referencing to an External Variable
	2.3.10	ResetGo Command
	2.3.11	Referencing to a Local Variable
	2.3.12	Step-Execution of a Program
	2.3.13	Displaying Memory Contents
	2.3.14	Operating HDI with HEW (3)

	2.4	Debugging Using the Simulator-Debugger
	2.4.1	Setting Configuration
	2.4.2	Allocating Memory Resources
	2.4.3	Downloading a Sample Program
	2.4.4	Setting Simulated I/O
	2.4.5	Setting Trace Information Acquisition Conditions
	2.4.6	Status Window
	2.4.7	Registers Window
	2.4.8	Using Trace
	2.4.9	Displaying Breakpoints
	2.4.10	Displaying Memory Contents

	Section 3 Compiler
	3.1	Specifying an Interrupt Function
	3.1.1	Stack-Switching Specification
	3.1.2	Trap Instruction Return Specification
	3.1.3	Interrupt Function Complete Specification
	3.1.4	Vector Table Automatic Generation Functions

	3.2	Built-in Functions
	3.2.1	Setting and Referencing the Condition Code Register (CCR)
	3.2.2	Setting and Referencing an Extended Register
	3.2.3	Setting Vector Base Register
	3.2.4	Opration with Overflow (V Flag) Test
	3.2.5	Transfer Instructions
	3.2.6	Arithmetic Operation Instructions
	3.2.7	Shift Instructions
	3.2.8	System Control Instructions
	3.2.9	Block Transfer Instruction
	3.2.10	Block Transfer Instructions of H8SX

	3.3	Section Address Operators
	3.4	C++ Language Settings
	3.4.1	Setting an EC++ Class Library
	3.4.2	Changing the Initialization Method
	3.4.3	Changing a Structure Boundary Alignment

	3.5	New Expansion Functions of Compiler Ver.4.0
	3.5.1	Vector Table Automatic Generation Functions
	3.5.2	Specifying the Number of Parameter-Passing Registers
	3.5.3	Even Byte access Specification Features

	3.6	New Expansion Functions of Compiler Ver.6.0
	3.6.1	Bit Field Order Specification

	3.7	New Expansion Functions of Compiler Ver.6.1
	3.7.1	legacy=v4
	3.7.2	cpuexpand=v6
	3.7.3	Enabling Register Declarations
	3.7.4	Specifying Absolute Addresses of Variables
	3.7.5	Inter-file Inline Expansion
	3.7.6	Division of Optimizing Ranges

	3.8	Features of H8SX
	3.8.1	Address Space
	3.8.2	Specifying 8-bit Absolute Address Space
	3.8.3	Switching Vector Table Address

	Section 4 HEW
	4.1	Specifying Options in HEW1.2
	4.1.1	C/C++ Compiler Options
	4.1.2	Assembler Options
	4.1.3	Inter-Module Optimizer Options
	4.1.4	S-Type Converter Options
	4.1.5	Librarian Options

	4.2	Specifying Options in HEW2.0 or Later
	4.2.1	C/C++ Compiler Options
	4.2.2	Assembler Options
	4.2.3	Optimizing Linkage editor Options
	4.2.4	Standard Library Generator Options
	4.2.5	CPU Options

	4.3	Building Existing Files with HEW

	Section 5 Using the Optimization Functions
	5.1	Optimization for Size
	5.1.1	Default Compilation
	5.1.2	Without Optimization Specification
	5.1.3	Optimization Tuning
	5.1.4	Using the Inter-Module Optimization Features
	5.1.5	Selecting Expansion Functions
	5.1.6	Using CPU-Specific Instructions

	5.2	Optimization for Speed
	5.2.1	Specifying the SPEED Option
	5.2.2	Tuning the Optimization Options
	5.2.3	Using the Inter-Module Optimization Features
	5.2.4	Selecting Expansion Functions
	5.2.5	Using the Inline Expansion Features
	5.2.6	Using CPU-Specific Instructions

	5.3	Combination of Size and Speed Efficiency
	5.4	Details of Optimization Functions
	5.4.1	Using 1-Byte enum Type
	5.4.2	Extended Interpretation of Multiplication/Division Specifications
	5.4.3	Specifying the Number of Parameter-Passing Registers
	5.4.4	Increasing the Number of Variable-Allocation Registers
	5.4.5	Optimization of External Variables
	5.4.6	Block Transfer Instruction
	5.4.7	speed Option
	5.4.8	Allocating Registers to Global Variables
	5.4.9	Controlling Output of Register Save/Restore Codes at Function Entry/Exit Points
	5.4.10	Specifying Inline Expansion of Functions
	5.4.11	Using 8-Bit Absolute Address Area
	5.4.12	Using 16-Bit Absolute Address Area
	5.4.13	Using Indirect Memory Format
	5.4.14	Using Extended Indirect Memory Format
	5.4.15	Specifying 2byte pointer
	5.4.16	Boundary alignment value and boundary alignment
	5.4.17	Explanation of Inter-Module Optimization Items
	5.4.18	Disable of Inter-Module Optimization

	Section 6 Efficient Programming Techniques
	6.1	Type Declarations
	6.1.1	Using Byte Data Types (char/unsigned char)
	6.1.2	Using Unsigned Variables
	6.1.3	Suppressing Redundant Type Conversions
	6.1.4	Using the const Qualifier
	6.1.5	Using Consistent Variable Sizes
	6.1.6	Specifying In-File Functions as static Functions

	6.2	Operations
	6.2.1	Unifying Common Expressions
	6.2.2	Improving the Condition Determination
	6.2.3	Condition Determination Using Substitution Values
	6.2.4	Using a Suitable Algorithm
	6.2.5	Using Formulas
	6.2.6	Using Local Variables
	6.2.7	Assigning an f to float-Type Constantss
	6.2.8	Specifying Constants in Shift Operations
	6.2.9	Using Shift Operations
	6.2.10	Unifying Consecutive ADD Instructions

	6.3	Loop Processing
	6.3.1	Selecting a Loop Counter
	6.3.2	Selecting a Repeat Control Statementt
	6.3.3	Moving Invariant Expression from the Inside to the Outside of a Loop
	6.3.4	Merging Loop Conditions

	6.4	Pointers
	6.4.1	Using Pointer Variables

	6.5	Data Structures
	6.5.1	Ensuring Data Compatibility
	6.5.2	Techniques for Data Initialization
	6.5.3	Unifying the Initialization of Array Elements
	6.5.4	Passing Parameters as a Structure Address
	6.5.5	Assigning Structures to Registers

	6.6	Functions
	6.6.1	Improving the Program Location in Which Functions Are Defined
	6.6.2	Macro calls
	6.6.3	Declaring a Prototype
	6.6.4	Optimization of Tail Recursions
	6.6.5	Improving the Way Parameters Are Passed

	6.7	Branches
	6.7.1	Rewriting switch Statements as Tables
	6.7.2	Coding a Program in Which Case Statements Jump to the Same Label
	6.7.3	Branching to a Function Coded Directly below a Given Statement

	Section 7 Using HEW
	7.1	Builds
	7.1.1	Regenerating and Editing Automatically Generated Files
	7.1.2	Makefile Output
	7.1.3	Makefile Input
	7.1.4	Creating Custom Project Types
	7.1.5	Multi-CPU Feature
	7.1.6	Networking Feature
	7.1.7	Converting from Old HEW Version
	7.1.8	Converting a HIM Project to a HEW Project
	7.1.9	Add Supported CPUs

	7.2	Simulations
	7.2.1	Pseudo-interrupts
	7.2.2	Convenient Breakpoint Functions
	7.2.3	Coverage Feature
	7.2.4	File I/O
	7.2.5	Debugger Target Synchronization
	7.2.6	How to Use Timers
	7.2.7	Examples of Timer Usage
	7.2.8	Reconfiguration of Debugger Target

	7.3	Call Walker
	7.3.1	Making Stack Information File
	7.3.2	Starting Call Walker
	7.3.3	File Open and Call Walker Window
	7.3.4	Editing the Stack Information File
	7.3.5	Stack Area Size of Assembly Program
	7.3.6	Merging Stack Information
	7.3.7	Other Functions

	Section 8 Efficient C++ Programming Techniques
	8.1	Initialization Processing/Post-Processing
	8.1.1	Initialization Processing and Post-Processing of Global Class Object

	8.2	Introduction to C++ Functions
	8.2.1	How to Reference a C Object
	8.2.2	How to Implement new and delete
	8.2.3	Static Member Variable

	8.3	How to Use Options
	8.3.1	C++ Language for Embedded Applications
	8.3.2	Run-time Type Information
	8.3.3	Exception Handling Function
	8.3.4	Disabling Startup of Prelinker

	8.4	Advantages and Disadvantages of C++ Coding
	8.4.1	Constructor (1)
	8.4.2	Constructor (2)
	8.4.3	Default Parameter
	8.4.4	Inline Expansion
	8.4.5	Class Member Function
	8.4.6	operator Operator
	8.4.7	Overloading of Functions
	8.4.8	Reference Type
	8.4.9	Static Function
	8.4.10	Static Member Variable
	8.4.11	Anonymous union
	8.4.12	Virtual Function

	Section 9 Optimizing Linkage Editor
	9.1	Input/Output Options
	9.1.1	Input Options
	9.1.2	Output Options

	9.2	List Options
	9.2.1	Symbol Information List
	9.2.2	Symbol Reference Count
	9.2.3	Cross-Reference Information

	9.3	Effective Options
	9.3.1	Output to Unused Area
	9.3.2	End Code of S Type File
	9.3.3	Debug Information Compression
	9.3.4	Link Time Reduction
	9.3.5	Notification of Unreferenced Symbol
	9.3.6	Reduce Empty Areas of Boundary Alignment

	9.4	Optimize Options
	9.4.1	Optimization at Linkage
	9.4.2	Unifies Constants/Strings
	9.4.3	Eliminates Unreferenced Variables/Functions
	9.4.4	Uses Short Absolute Addressing Mode
	9.4.5	Optimizes Register Save/Restore Codes
	9.4.6	Unifies Common Codes
	9.4.7	Uses Indirect Addressing Mode
	9.4.8	Optimizes Branch Instructions
	9.4.9	Shortens the Addressing Mode
	9.4.10	Optimization Partially Disabled
	9.4.11	Confirm Optimization Results

	Section 10 MISRA C
	10.1	MISRA C
	10.1.1	What Is MISRA C?
	10.1.2	Rule Examples
	10.1.3	Compliance Matrix
	10.1.4	Rule Violations
	10.1.5	MISRA C Compliance

	10.2	SQMlint
	10.2.1	What Is SQMlint?
	10.2.2	Using SQMlint
	10.2.3	Viewing Test Results
	10.2.4	Development Procedures
	10.2.5	Supported Compilers

	Section 11 Q & A
	11.1	C/C++ Compiler
	11.1.1	How to Change Character String Assignment Destinations
	11.1.2	Failure to Identify 1-bit Data
	11.1.3	Startup from DOS Screen
	11.1.4	Runtime Routine Specifications and Execution Speed
	11.1.5	H8 Family Object Compatibility
	11.1.6	Questions on Host Machines and OSes
	11.1.7	Failure in C Source-Level Debugging
	11.1.8	Warning Message Displayed at Inline Expansion
	11.1.9	Output of "Function not optimized"
	11.1.10	How to Specify Include Files
	11.1.11	Program Coding Using Japanese Fonts
	11.1.12	Output of "Illegal Value in Operand" from the Cross Assembler
	11.1.13	Deletion of Large Amount of Codes by Optimization
	11.1.14	How to View Values of Local Variables at Debugging
	11.1.15	Regarding Optimization Options
	11.1.16	Failure to Pass Function Parameters
	11.1.17	Failure at Bit Operation in Write-Only Register
	11.1.18	Notes on Linking with Assembly Language Programs
	11.1.19	How to Check Coding Which May Cause Incorrect Operation
	11.1.20	Comment Coding
	11.1.21	How to Specify Options for Each File
	11.1.22	How to Build Programs When the Assembler is Embedded
	11.1.23	Output of Syntax Errors at Linkage
	11.1.24	C++ Language Specifications
	11.1.25	How to View Source Programs after Pre-Processor Expansion
	11.1.26	How to Output Save/Restore Codes for MACH or MACL Register
	11.1.27	The Program Runs Correctly on the ICE but Fails When Installed on a Real Chip
	11.1.28	How to Use C language programs Developed for SH Microcomputers
	11.1.29	How to Modify Global Options
	11.1.30	Optimizations That Cause Infinite Loops
	11.1.31	Read/write Instructions for Bit Fields
	11.1.32	Common Invalid Instruction Exceptions That Occur When Programs Are Run for an Extended Period of Time
	11.1.33	Failure at Integer Multiplication

	11.2	Optimizing Linkage Editor
	11.2.1	Output of "Undefined External Symbol"
	11.2.2	Output of "Relocation Size Overflow"
	11.2.3	How to Run Programs in RAM
	11.2.4	Fixing Symbol Addresses in Certain Memory Areas for Linking
	11.2.5	How to Implement Overlay
	11.2.6	How to Specify Output of Undefined Symbol Error
	11.2.7	Unify Output Forms of S Type File
	11.2.8	Dividing an Output File
	11.2.9	Output File Format of Optimizing Linkage Editor
	11.2.10	How to Calculate Program Size (ROM, RAM)
	11.2.11	Output of "Section Alignment Mismatch"

	11.3	Library Generator
	11.3.1	Reentrant and Standard Libraries
	11.3.2	Like to Use Reentrant Library Function in Standard Library File
	11.3.3	There Is No Standard Library File (H8C V4 or Later)
	11.3.4	Warning Message On Building Standard Library
	11.3.5	Size of Memory Used as Heap
	11.3.6	How to Reduce ROM Size for I/O Libraries
	11.3.7	How to Edit Library File

	11.4	HEW
	11.4.1	Failure to Display Dialog Menu
	11.4.2	Linkage Order of Object Files
	11.4.3	Excluding a Project File
	11.4.4	Specifying the Default Options for Project Files
	11.4.5	Changing Memory Map
	11.4.6	How to Use HEW on Network
	11.4.7	Limitations on File and Directory Names Created in HEW
	11.4.8	Failure of Japanese Font Display with the HEW Editor or HDI
	11.4.9	How to Convert Programs from HIM to HEW
	11.4.10	I Want to Use an Old Compiler (Tool Chain) in the Latest HEW.

	Appendix
	Appendix A Lists of Floating-Point Arithmetic Operation Performance
	A.	Floating-Point Operation Performance
	A.1	Single-Precision Floating-Point Operation Performance
	A.1.1	Single-Precision Floating-Point Operation Performance (H8/300,H8/300H,H8S/2600)
	A.1.2	Single-Precision Floating-Point Operation Performance (H8SX)

	A.2	Double-Precision Floating-Point Operation Performance
	A.2.1	Double-Precision Floating-Point Operation Performance (H8/300,H8/300H,H8S/2600)
	A.2.2	Double-Precision Floating-Point Operation Performance (H8SX)

	Appendix B Added Features
	B.1	Features Added between Ver. 2.0 and Ver. 3.0
	B.1.1	Addition of Embedded Extended Functions
	B.1.2	Additional and Improved Functions
	B.1.3	Modification of Language Specifications

	B.2	Features Added between Ver. 3.0 and Ver. 4.0
	B.2.1	Common Additions and Improvements
	B.2.2	Added and Improved Compiler Functions
	B.2.3	Added and Improved Functions for the Assembler
	B.2.4	Added and Improved Functions for the Optimizing Linkage Editor

	B.3	Added and Improved Features in Upgrade from Ver. 4.0 to Ver. 6.0
	B.3.1	Added and Improved Compiler Functions
	B.3.2	Notes on Optimizing Features of the Compiler Ver. 6.0
	B.3.3	Compatibility between Ver. 4.0 and Ver. 6.0

	B.4. Added and Improved Features in Upgrade from Ver. 6.0 to Ver. 6.1
	B.4.1	Added and Improved Compiler Functions
	B.4.2	Notes on Optimizing Features of the Compiler Ver. 6.01
	B.4.3	Compatibility between Ver. 4.0 and Ver. 6.01

	Appendix C Notes on Version Upgrade
	C.1	Guaranteed Program Operation
	C.2	Compatibility with Earlier Version

	Appendix D List of Limitations
	Appendix E ASCII Code Table

	Colophon

