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H8/300L SLP Series 
SLP Tone Generator (ToneGen) 

Introduction 
Two methods of generating tones using the H8/38024 SLP MCU are: 

(1) Pulse width modulation (PWM) implementation 
(2) Timer toggle output implementation 
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1. Overview 
Tone generator is a methodology whereby tone signals are defined in a musical sequence to produce a song.  Two types 
of implementation are described here.  Both implementations use the same musical tone data and rhythm between two 
musical tones (rhythm is fixed to reduce the size of musical tone data). 

 

1.1 Musical Tone (Notes) 
If a long hollow tube is hit, a fairly constant sound (pitch) is heard due to a shock-wave oscillating along the tube at a 
certain speed (frequency).  A “note” is described a musical frequency, i.e., the pitch of a piano key or guitar string.  By 
convention, notes are named as:- 

A, A#, B, C, C#, D, D#, E, F, F#, G, G# 
The suffix “#” denotes sharp and “b” denotes flat. Also note that A# = Bb, C# = Db, D# = Eb, F# = Gb and G# = Ab.  
The names chosen are the de facto standard for nearly all music. 

“Octaves” of a note are just multiples of the original frequency.  Let’s say that a length of hollow tube has a frequency 
of 264 Hz and normally call it “C”.  If the length is half of the original length, the frequency will be double.  This 
creates another “C” but at one octave higher than the first (264 × 2 = 528 Hz). 

 
Table 1 Notes, Octave and Frequency 

Hertz Octave = 0 Octave = 1 Octave = 2 Octave = 3 Octave = 4 Octave = 5 
A 55.000 110.000 220.000 440.000 880.000 1760.000 

A# 58.270 116.541 233.082 466.164 932.328 1864.655 
B 61.735 123.471 246.942 493.883 987.6\767 1975.533 
C 65.406 130.813 261.626 523.251 1046.502 2093005 
C# 69.296 138.591 277.183 554.365 1108.731 2217.461 
D 73.416 146.832 293.655 587.330 1174.659 2349.318 
D# 77.782 155.563 311.127 622.254 1244.508 2489.016 
E 82.407 164.814 329.628 659.255 1318.510 2637.020 
F 87.307 174.614 349.228 698.456 1396.913 2793.826 
F# 92.499 184.997 369.994 739.989 1479.978 2959.955 
G 97.999 195.998 391.995 783.991 1567.982 3135.963 
G# 103.826 207.652 415.305 830.609 1661.219 3322.438 
A 110.000 220.000 440.000 880.000 1760.000 3520.000 
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1.2 PWM Implementation 
The built-in 10-bit PWM module can be used to generate the PWM pulse stream with the desired duty cycle.  It can 
also be used as a D/A converter by connecting a low pass filter.  There are four clock sources available as an input 
clock.  With 10-bit resolution, we can get four pulse trains in each conversion period.  Depending upon the register bit 
settings, we can get four conversion periods as described above.  This module can be placed independently in the 
standby mode when not in use to conserve the power. 

t1 t2 t1 = t2 

0.00 V 

2.50 V 
Vout = Vcc x Duty Cycle 

0 

5 
Resistor 

Analog 
Output 

PWM 
Output 

Duty Cycle = t1 / (t1 + t2) 

 

Figure 1   Usage of PWM as D/A Converter 
 
The primary purpose of the 10-bit PWM module is to provide a high resolution D/A converter using an external low 
pass filter.  The basic task of any D/A converter is to take a binary number and convert it to voltage or current with an 
analog form.  Other than a traditional D/A converter, which is difficult to implement under the CMOS fabrication 
technology for precision, the alternative solution is to make a counter whose output duty cycle can be varied under 
software control – that is a Pulse Width Modulation. 

Using a simple low-pass filter (or a band pass filter if no DC component is desired), the analog output of the filter is 
basically Vcc × Duty Cycle (in an ideal case, notice that the output is a function of duty cycle rather than the frequency) 

For example: Vout = 5.00 V × 50% Duty Cycle = 2.5 V 
If the generated DC voltage level is in a sinusoidal manner, a sine wave is generated. 

 

Figure 2   Typical Sine Wave Diagram 



H8/300L SLP Series 
SLP Tone Generator (ToneGen) 

RES06B0005-0100/Rev.1.00 September 2004 Page 4 of 24 

The sample period is time duration between two PWM values.  Normally, timer is used to reload the sine wave value 
into the PWM module.  Therefore AEC (asynchronous event counter) timer is used for this purpose. 

For example, the frequency of the crystal used is 9.8304 MHz, 

Time for one AEC interrupt occur, Tinterrupt 

Tinterrupt  = ((1 / (φ/2)) × 256 count Note: φ = φosc/2 
 = (1 / [(φosc/2)/ 2]) × 256 count 
 = (1 / (9.8304MHz / 4) × 256 count 
 = 104.16 µs 

 
The sample period is equal to one AEC interrupt occurrence.  The Interrupt Service Routine (ISR) will put the 
calculated pulse width into the PWM width register. 

Sample frequency = 1 / Tinterrupt 
 = 9600Hz 

 
The calculation of the pulse width requires increment counter value.  The increment counter value is calculated as 
follows. 

Assumptions: 

• 256 sample for the complete sine wave table 
• sample frequency = 9600 Hz 
• signal frequency = 440 Hz  (e.g. note “A” at the third octave) 
 

Increment counter value = 256 / number of increments 
 
Number of increments depend on sample frequency and signal frequency and it is equal to how many time the given 
signal increments through the sine wave table in one complete cycle. 

Number of increments  = sample frequency / signal frequency 
Increment counter value = 256 / (sample frequency / signal frequency) 
 = 256 * signal frequency / sample frequency 
 = 256 * (440 Hz) / (9600 Hz) 
 = 11.73 

 
All these calculations are done by the compiler; therefore the user must change the default value in order to use this 
with other parameters. 
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1.3 Timer Toggle Output Implementation 
There are several methods to implement tone generator by software means.  For example, timer F is chosen because it 
is equipped with toggle output and output compare functions.  The initial value of the toggle output can be set.  Timer F 
counter value will increment on each input clock pulse.  The timer F counter value is constantly compared with the 
value set in output compare register F, and the counter can be cleared, an interrupt request, or output toggled, when the 
two values match.  Timer F can also function as two independent 8-bit timers. 

 

Prescaler S 
(PSS) 

Timer Control 
Register F 

(TCRF) 

8-bit timer 
counter 

 (TCFH, TCFL) 

Output 
compare 

register FH/FL 

Timer 
control/status 

register F 

Toggle circuit 

Interrupt request 
control 

Comparator 

Ø= 5MHz 

TMOFH 
/TMOFL 

Timer F 
output pin 

IRRTFH / IRRTFL 
Timer F interrupt 
request Flag 

Duty pulse output control 

Overflow FH  / FL     
compare match FH/FL 

Overflow FH/FL      
compare match  
FH/FL 

TCNT counter 
Value 

Ø/32 

Select 
Ø/32 

Ø/32, 
Ø/16,  
 
Ø/4 

Duty Setting 

Timer F output compare 
f clock setting 

 

Figure 3   Block Diagram of Timer F Output Compare Operation 

 
Figure 3 describes how a PWM is output through TMOFH/TMOFL pin using the timer F output compare function. 

• The 5 MHz system clock is input to the prescaler S that divides the clock by 32, 16 and 4. 
• TCRF is an 8-bit write-only register, which selects an input clock and sets the output level of the TMOFL pin. 
• Timer counters FL and FH (TCFL / TCFH) are 8-bit read/write up-counters.  In this example, the input clock is 

φ/32. 
• Timer control/status register F (TCSRF) disables the clearing TCFL by compare match and enables the counter FL 

overflow interrupts. 
• The data of output compare register FL (OCRFL) is always compared with that of TCFL. 
• When the values of both registers match, the compare match is generated and TMOFL pin is toggled.  At the same 

time, a compare match flag L (CMFL) is set to 1 and an interrupt is requested to the CPU. 
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TCFL  input 
clock 

H’FF 

OCRFH   
( H’XX) 

H00 

TMOFL 

Overflow  
FL  clear 
TCFL 

Compare match FL Overflow  FL  
clear TCFL 

6.4 µs TCFL 

High width 

period 

 High Width     = OCRFL x 6.4µs  
Period  = 256 x 6.4 µs 
Duty Cycle  = {High width/ period} x 100% 
  = {OCRFL/256} x 100% 

 

Figure 4   Timer F Output Compare Operation 

Figure 4 shows how the timer F compare-match function can be used to generate a pulse with an arbitrary duty cycle 
i.e., a digital tone signal.  The timer counter register FL (TCFL) determines the tone signal clock cycle, or period, of the 
output waveform, while the value stored in Output compare Register (OCRFL) determines the duty cycle.  The 
calculation of the desired duty cycle can be done as shown in the above formula.  It is only necessary to program timer 
F once.  There is no need to reload OCRFL unless you want to change the duty cycle of the output. 

The user can generate two digital tones by combining the two timer F toggle outputs (TMOFL and TMOFH), e.g. one 
for treble (high frequency) and one for bass (low frequency).  Figure 5 below shows the block diagram of timer toggle 
output tone generator. 

 

TMOFL 
Timer F L toggle 

output pin 

Mixer 
circuit 

TMOFH 
Timer F L toggle 

output pin 

Amp 

Speaker 

 

Figure 5   Block Diagram of Timer Toggle Output Tone Generator 
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2. Hardware Implementation 

2.1 PWM Implementation 
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Figure 6   Schematic Diagram for PWM Tone Generator 

The musical tone is generated by the Pulse Width Modulation (PWM) module of the SLP MCU.  The software will 
modulate the sinusoidal signal into a pulse train of fixed periods but changing width.  The changing width of the pulses 
corresponds to the voltage level of the sine wave.  With an external low pass filter (LPF) at the PWM output pin, the 
PWM signal will be demodulated.  The LPF acts as an integrator, which transforms the pulse train into analog 
sinusoidal signal.  The musical tone is then sent to the audio amplifier for sound output. 

2.1.1 Warm-up Function: 
Generally audio signal has an average value at ground level (It will fluctuated between positive and negative regions).  
However, there is no negative supply in this implementation, thus a DC offset to 1/2 Vcc level is required.  This is 
known as the “warming up” of the audio amplifier.  This is required only at the power up stage (to charge up the 
capacitor), to avoid unnecessary noise output at the early stage. 
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2.2 Timer Toggle Output Implementation 
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Figure 7   Schematic Diagram for Timer Toggle Output Tone Generator 

 
The digital tone is generated by the timer F toggle output of the SLP MCU.  The software will generate signal with 
different pulse width when the timer F output compare value is reloaded with new value.  The two timer F toggle 
outputs (low counter and high counter) are combined, resulting in the generation of two digital tones simultaneously.  
The two digital tones are fed to the audio amplifier via the resistor mixer.  The user will be able to hear the tones from 
the loud speaker. 
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3. Operation and Observation 
The hardware circuitry provides flash-programming capability.  User can download tone generator demo program via 
PC serial port.  The PC application software used to download user program is the freeware - Flash Development 
Toolkit (FDT) that is available from www.eu.renesas.com. 

After the program has been successfully downloaded, reset the MCU and execute the program.  During the execution, 
user should be able to listen to the musical tones coming out from the speaker.  The demo program will play the same 
song repeatedly. 

The PWM tone generation demo program also can be used with other crystal oscillator value by changing the XTAL 
value in #define statement. 

For example, 

If crystal = 9.8304 MHz  #define XTAL 9830400L (default) 
If crystal = 4 MHz  #define XTAL 4000000L 

 
 
There are two PWM channels in the H8/38024F MCU; user has to define which PWM channel to use before compiling 
the source code e.g.: 

If PWM1 is used  #define PWM_use 1 (default) 
If PWM2 is used  #define PWM_use 2 
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4. Program Listing 
The attached code is generated using HEW project generator for the H8/38024F SLP MCU.  The free SLP/Tiny 
toolchain is used. 

4.1 PWM Implementation 
Figure 8 shows the flowchart for the PWM implementation.  The source codes for “PWM_tone.c” are listed. 

 PWM  
Tone 

Play song 
Function 

Play song 
Function 

Initialize AEC 
timer , PWM   
AEC Interrupt 

Enable 

Warm up  
Function 

Get musical notes 
set PWM increment 

counter value 

Notes Delay 

Shutdown PWM and 
short delay for interval  

AEC 
Interrupt 

Next 
note 

AEC ISR  
start 

Warm up ? Increment 
PWM value 

slowly 

Yes 

No 

Get sine wave value for 
Musical Note 

Update new musical 
note value  with 

increment counter value 

AEC ISR  
end Complete 

playing? 
No 

Yes 

 

Figure 8   Flow Chart for PWM_Tone.c 
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/***********************************************************************/ 
/*                                                                     */ 
/*  FILE        :PWM_Tone.c                                            */ 
/*  DATE        :Tue, Sep 09, 2003                                     */ 
/*  DESCRIPTION :Main Program                                          */ 
/*  CPU TYPE    :H8/38024F                                             */ 
/*                                                                     */ 
/*  This file is generated by Renesas Project Generator (Ver.2.1).     */ 
/*                                                                     */ 
/***********************************************************************/ 
  
/************************************************************/ 
/*  File Include                                            */ 
/************************************************************/ 
#include  <machine.h> 
#include  "iodefine.h" 
#include  <math.h> 
/************************************************************/ 
/* define                                                   */ 
/************************************************************/ 
#define  XTAL   9830400L 
#define  sample_freq (XTAL/4L) / 256L //256 clock cycles per interrupt 
 
#define  C1    ((256L * 523L)/100)/(sample_freq/100) 
#define  C1S   ((256L * 554L)/100)/(sample_freq/100) 
#define  D1    ((256L * 587L)/100)/(sample_freq/100) 
#define  D1S   ((256L * 622L)/100)/(sample_freq/100) 
#define  E1    ((256L * 659L)/100)/(sample_freq/100) 
#define  F1    ((256L * 698L)/100)/(sample_freq/100) 
#define  F1S   ((256L * 740L)/100)/(sample_freq/100) 
#define  G1    ((256L * 784L)/100)/(sample_freq/100) 
#define  G1S   ((256L * 830L)/100)/(sample_freq/100) 
#define  A1    ((256L * 880L)/100)/(sample_freq/100) 
#define  A1S   ((256L * 932L)/100)/(sample_freq/100) 
#define  B1    ((256L * 987L)/100)/(sample_freq/100) 
 
#define  C2    ((256L * 1046L)/100)/(sample_freq/100) 
#define  C2S   ((256L * 1109L)/100)/(sample_freq/100) 
#define  D2    ((256L * 1174L)/100)/(sample_freq/100) 
#define  D2S   ((256L * 1244L)/100)/(sample_freq/100) 
#define  E2    ((256L * 1318L)/100)/(sample_freq/100) 
#define  F2    ((256L * 1396L)/100)/(sample_freq/100) 
#define  F2S   ((256L * 1480L)/100)/(sample_freq/100) 
#define  G2    ((256L * 1568L)/100)/(sample_freq/100) 
#define  G2S   ((256L * 1661L)/100)/(sample_freq/100) 
#define  A2    ((256L * 1760L)/100)/(sample_freq/100) 
#define  A2S   ((256L * 1864L)/100)/(sample_freq/100) 
#define  B2    ((256L * 1864L)/100)/(sample_freq/100) 
 
#define  C3    ((256L * 2093L)/100)/(sample_freq/100) 
#define  C3S   ((256L * 2217L)/100)/(sample_freq/100) 
#define  D3    ((256L * 2349L)/100)/(sample_freq/100) 
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#define  PWM_use  2  //select "1" for PWM channel 2  
         //select "0" for PWM channel 1  
/************************************************************/ 
/*  Function define                                         */ 
/************************************************************/ 
  
void init_PWM(unsigned char); 
void storeCount(unsigned short); 
void aecint( void ); 
void init_AEC(void); 
void init_Tone(void);void off_DTMF(void); 
void init_PWM1(unsigned char selClk1); 
void init_PWM2(unsigned char selClk2); 
void warm_up(void); 
void play_song(void); 
 
/************************************************************/ 
/*Constant Look up Table for Sine Wave value 
/************************************************************/ 
const unsigned int song1[]= 
{ 
B2, B2, B2, A2S, G2S, A2S,  
F2S, C2S, C2, F2S, F2, F2S,  
A2S, G2S, B2, B2, A2S, G2S,  
A2S, F2S, A1S, A1S, D2S, D2,  
D2S, F2S, F2, F2, F2, F2S,  
F2,  C2S, F2, D2S, B1, C2S,  
D2S, C2S, D2S, F2, F2S, F2,  
F2S, F2S, G2S, A2S, A2S, G2S, 
G2S, G2S, 0xFF 
}; 
 
 
const unsigned int  Sine_Table[256]= 
{ 
512,518,525,531,537,543,550,556, 
562,568,574,580,586,592,598,604, 
610,616,621,627,633,638,644,649, 
654,659,664,669,674,679,684,688, 
693,697,702,706,710,714,717,721, 
725,728,731,734,737,740,743,746, 
748,750,753,755,756,758,760,761, 
762,763,764,765,766,766,766,767, 
767,767,766,766,766,765,764,763, 
762,760,759,757,755,754,751,749, 
747,744,742,739,736,733,730,726, 
723,719,715,712,708,704,699,695, 
691,686,681,677,672,667,662,657, 
652,646,641,635,630,624,619,613, 
607,601,595,589,583,577,571,565, 
559,553,546,540,534,528,521,515, 
509,503,496,490,484,478,471,465, 
459,453,447,441,435,429,423,417, 
411,405,400,394,389,383,378,372, 
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367,362,357,352,347,343,338,333, 
329,325,320,316,312,309,305,301, 
298,294,291,288,285,282,280,277, 
275,273,270,269,267,265,264,262, 
261,260,259,258,258,257,257,257, 
257,257,258,258,259,260,261,262, 
263,264,266,268,269,271,274,276, 
278,281,284,287,290,293,296,299, 
303,307,310,314,318,322,327,331, 
336,340,345,350,355,360,365,370, 
375,380,386,391,397,403,408,414, 
420,426,432,438,444,450,456,462, 
468,474,481,487,493,499,506,512 
}; 
 
/************************************************************/ 
/*Global variable 
/************************************************************/ 
unsigned char PWDR_L2, PWDR_U2; 
unsigned int i=0,j=0, count=0, inc1=0, inc2=0, final=0; 
unsigned int lowcnt=0, hicnt=0; 
unsigned char Ready = 0, DIGIT = 0; 
unsigned int hold=0; 
 
/************************************************************/ 
/*  Main Program                                            */ 
/************************************************************/ 
void main ( void ) 
{   play_song(); 
    while (1) 
  {  
  //Write user program here 
    } 
} 
 
/************************************************************/ 
/*  Initialize Program                                      */ 
/************************************************************/ 
//Initialize tone generation function  
void init_Tone(void) 
{ 
    set_imask_ccr(1);                // Interrupt Disable 
 init_AEC(); 
 #if (PWM_use==1) 
 init_PWM1(0); //Select conversion period = 512/(PWM input clock) 
 #else  
 init_PWM2(0); //Select conversion period = 512/(PWM input clock) 
 #endif  
} 
 
void init_PWM1(unsigned char selClk1) 
{ 
 if (selClk1 <= 3)   // Check if valid, otherwise PWM2 is off 
 {  
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  P_IO.PMR9.BIT.PWM1 = 1; // Configure P91 as PWM2 output pin 
  P_PWM1.PWCR1.BYTE = selClk1; // Clock select for PWM2,write only 
 } 
} 
 
void init_PWM2(unsigned char selClk2) 
{ 
 if (selClk2 <= 3)    // Check if valid, otherwise PWM2 is off 
 {  
  P_IO.PMR9.BIT.PWM2 = 1; // Configure P91 as PWM2 output pin 
  P_PWM2.PWCR2.BYTE = selClk2; // Clock select for PWM2,write only 
 } 
} 
 
void off_DTMF(void) 
{ 
 P_SYSCR.IENR2.BIT.IENEC = 0;  
        // AEC Interrupt Request, 1-Enable, 0-Disable 
 //compiler directive to select which code to be compile 
 #if (PWM_use==1) 
 P_IO.PMR9.BIT.PWM1 = 0;   // Turn off PWM1 
 #else  
 P_IO.PMR9.BIT.PWM2 = 0;   // Turn off PWM2  
 #endif  
} 
 
/************************************************************/ 
/*  Initialize Program                                      */ 
/************************************************************/ 
void warm_up(void) 
{ 
 set_imask_ccr(0);    // Interrupts, 0-Enable, 1-Disable 
 while(count<0x3000) ; 
 set_imask_ccr(1);    // Interrupts, 0-Enable, 1-Disable 
 Ready = 1; 
} 
 
/************************************************************/ 
/*  play_song Program                                       */ 
/************************************************************/ 
void play_song(void) 
{ 
 i=0; 
 
 init_Tone(); 
  
 warm_up(); 
 while(1) 
 { 

 while (song1[i]!=0xFFFF) 
 { i++; 
  inc1 = song1[i++];    
  set_imask_ccr(0);  // Interrupts, 0-Enable, 1-Disable 
  for (j=0; j<0x35000; j++) ; 
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 } 
  
 storeCount(512); 
 for (j=0; j<10000; j++) ;  // short delay Tone  
 set_imask_ccr(1);   // Interrupts, 0-Enable, 1-Disable 

  i = 0; 
 } 
 
 off_DTMF(); 
  
} 
 
 
/************************************************************/ 
/*  Write each digital code into PWDR registers             */ 
/************************************************************/ 
void storeCount(unsigned short PWDRval_2) 
{ 
 //compiler directive to select which code to be compile 
 #if (PWM_use==1)  
 P_PWM1.PWDRL1.BYTE = (unsigned char)(PWDRval_2 & 0x00FF);       
          // Write lower 8bits of 10bits data 
 P_PWM1.PWDRU1.BYTE = (unsigned char) ((PWDRval_2 & 0x0300) >> 8); 
          // Write upper 8bits of 10bits data 
 #else 
 P_PWM2.PWDRL2.BYTE = (unsigned char)(PWDRval_2 & 0x00FF);       
          // Write lower 8bits of 10bits data 
 P_PWM2.PWDRU2.BYTE = (unsigned char) ((PWDRval_2 & 0x0300) >> 8); 
          // Write upper 8bits of 10bits data 
 #endif 
} 
 
 
/************************************************************/ 
/*  AEC Interrupt Service Routine                           */ 
/************************************************************/ 
void aecint (void) 
{ 
 P_SYSCR.IRR2.BIT.IRREC = 0; // Clear IRREC flag 
 
 if(P_AEC.ECCSR.BIT.OVL == 1) // Check for ECL overflow flag 
 { P_AEC.ECCSR.BIT.OVL = 0; // Clears flag 
    
  if(Ready == 0)  
  { 
   storeCount(count++/128); 
  } 
  else       
  { final = (Sine_Table[lowcnt]);  
   storeCount(final); 
   lowcnt = lowcnt + inc1; 
   if(lowcnt>255) lowcnt = lowcnt-255;   
         // If reached end of 1 period, then reset 
   hicnt = hicnt + inc2; 
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         if(hicnt>255) hicnt = hicnt-255;    
         // If reached end of 1 period, then reset 
  } 
 } 
} 
 
void init_AEC(void) 
{ 
 P_AEC.ECCSR.BYTE = 0x15; 
 P_AEC.ECCR.BYTE = 0x10; 
 P_SYSCR.IRR2.BIT.IRREC = 0;  // Clear IRREC flag 
 P_SYSCR.IENR2.BIT.IENEC = 1;  // AEC Interrupt Request, 1-Enable, 0-
Disable 
} 
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The following code listing is the Interrupt service program of “intprg.c”, please insert the below code. 

 
extern void aecint (void);   //insert AEC ISR function 
. 
. 
. 
. 
. 
. 
__interrupt(vect=12) void INT_Counter(void)  
{ 
 aecint();       //insert AEC ISR function 
} 
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4.2 Timer Toggle Output Implementation 
Figure 9 shows the flowchart for the timer toggle output implementation.  The source codes for “timer_tone.c” are 
given. 
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Figure 9   Flow Chart for timer_tone.c 
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/***********************************************************************/ 
/*                                                                     */ 
/*  FILE        :Timer_tone.c                                          */ 
/*  DATE        :Fri, Sep 12, 2003                                     */ 
/*  DESCRIPTION :Main Program                                          */ 
/*  CPU TYPE    :H8/38024F                                             */ 
/*                                                                     */ 
/*  This file is generated by Renesas Project Generator (Ver.2.1).     */ 
/*                                                                     */ 
/***********************************************************************/ 
                   
 
/************************************************************/ 
/*  File Include                                            */ 
/************************************************************/ 
#include  <machine.h> 
#include  "iodefine.h"  
/************************************************************/  
/* define                                                   */ 
/************************************************************/ 
#define  XTAL   9830400L 
#define  Timer_clk 32L // main clock / 32  
 
#define  C1    (XTAL / (Timer_clk*4L*523L))  
#define  C1S   (XTAL / (Timer_clk*4L*554L)) 
#define  D1    (XTAL / (Timer_clk*4L*587L)) 
#define  D1S   (XTAL / (Timer_clk*4L*622L)) 
#define  E1    (XTAL / (Timer_clk*4L*659L)) 
#define  F1    (XTAL / (Timer_clk*4L*698L)) 
#define  F1S   (XTAL / (Timer_clk*4L*740L)) 
#define  G1    (XTAL / (Timer_clk*4L*784L)) 
#define  G1S   (XTAL / (Timer_clk*4L*830L)) 
#define  A1    (XTAL / (Timer_clk*4L*880L)) 
#define  A1S   (XTAL / (Timer_clk*4L*932L)) 
#define  B1    (XTAL / (Timer_clk*4L*987L)) 
 
#define  C2    (XTAL / (Timer_clk*4L*1046L)) 
#define  C2S   (XTAL / (Timer_clk*4L*1109L)) 
#define  D2    (XTAL / (Timer_clk*4L*1174L)) 
#define  D2S   (XTAL / (Timer_clk*4L*1244L)) 
#define  E2    (XTAL / (Timer_clk*4L*1318L)) 
#define  F2    (XTAL / (Timer_clk*4L*1396L)) 
#define  F2S   (XTAL / (Timer_clk*4L*1480L)) 
#define  G2    (XTAL / (Timer_clk*4L*1568L)) 
#define  G2S   (XTAL / (Timer_clk*4L*1661L)) 
#define  A2    (XTAL / (Timer_clk*4L*1760L)) 
#define  A2S   (XTAL / (Timer_clk*4L*1864L)) 
#define  B2    (XTAL / (Timer_clk*4L*1975L)) 
 
#define  C3    (XTAL / Timer_clk*4L)/(2093L) 
#define  C3S   (XTAL / Timer_clk*4L)/(2217L) 
#define  D3    (XTAL / Timer_clk*4L)/(2349L) 
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/************************************************************/ 
/*  Function define                                         */ 
/************************************************************/ 
  
void init_Tone(void); 
void play_song(void); 
 
/************************************************************/ 
/*Constant Look up Table for Sine Wave value 
/************************************************************/ 
const unsigned char song1[]= 
{ 
B2,  B2,  B2, A2S, G2S, A2S,  
F2S, C2S, C2, F2S, F2, F2S,  
A2S, G2S, B2, B2, A2S, G2S,  
A2S, F2S, A1S, A1S, D2S, D2,  
D2S, F2S, F2, F2, F2, F2S,  
F2,  C2S, F2, D2S, B1, C2S,  
D2S, C2S, D2S, F2, F2S, F2,  
F2S, F2S, G2S, A2S, A2S, G2S, 
G2S, G2S, 0xFF 
}; 
 
/************************************************************/ 
/*Global variable 
/************************************************************/ 
unsigned int i=0,j=0, count=0; 
 
/************************************************************/ 
/*  Main Program                                            */ 
/************************************************************/ 
void main (void) 
{  play_song(); 
    while (1) 
 {  
  //Write user program here 
    } 
} 
 
/************************************************************/ 
/*  Initialize Program                                      */ 
/************************************************************/ 
//Initialize tone generation function  
void init_Tone(void) 
{ 
    set_imask_ccr(1);                // Interrupt Disable 
 
 //Init Timer F start  
 
 // 8 bit timer F counter, Sub clock / 4 selected toggle output enable 
 P_IO.PMR3.BYTE = 0x06; 
 P_TMRF.TCRF.BYTE = 0xCE; 
 P_TMRF.TCSRF.BYTE = 0x11; 
 //TCF cleared when TCF and OCRF match 
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 if (P_TMRF.TCSRF.BIT.CMFH == 1) P_TMRF.TCSRF.BIT.CMFH = 0;  
 if (P_TMRF.TCSRF.BIT.CMFL == 1) P_TMRF.TCSRF.BIT.CMFL = 0;  
 
    set_imask_ccr(0);                // Interrupt Enable 
 
 //Init Timer F end  
}  
 
 
/************************************************************/ 
/*  play_song Program                                       */ 
/************************************************************/ 
void play_song(void) 
{ 
 unsigned int i=0, j=0; 
 
 init_Tone(); 
 while(1) 
 { 
  while (song1[i]!=0xFF) 
  {  
   P_TMRF.OCRF.BYTE.H = song1[i];    
   P_TMRF.OCRF.BYTE.L = song1[i];    
   i++; 
   for (j=0; j<35000; j++) ; 
  } 
  for (j=0; j<35000; j++) ; 
  i=0; 
 } 
 P_TMRF.TCRF.BYTE = 0x00; 
} 
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5. References 
1. PWM Sine Wave Generation, (Application Note ref. no: AN0303003, http://sg.renesas.com,) 
2. Use PWM as A DAC, (Application Note ref. no: AN0303004, http://sg.renesas.com,) 
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1. These materials are intended as a reference to assist our customers in the selection of the Renesas 
Technology Corp. product best suited to the customer's application; they do not convey any license 
under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or 
a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-
party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or 
circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and 
algorithms represents information on products at the time of publication of these materials, and are 
subject to change by Renesas Technology Corp. without notice due to product improvements or 
other reasons.  It is therefore recommended that customers contact Renesas Technology Corp. or 
an authorized Renesas Technology Corp. product distributor for the latest product information 
before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising 
from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, 
including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, 
diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total 
system before making a final decision on the applicability of the information and products.  Renesas 
Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the 
information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or 
system that is used under circumstances in which human life is potentially at stake.  Please contact 
Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when 
considering the use of a product contained herein for any specific purposes, such as apparatus or 
systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in 
whole or in part these materials.

7. If these products or technologies are subject to the Japanese export control restrictions, they must 
be exported under a license from the Japanese government and cannot be imported into a country 
other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the 
country of destination is prohibited.

8. Please contact Renesas Technology Corp. for further details on these materials or the products 
contained therein.

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and 
more reliable, but there is always the possibility that trouble may occur with them. Trouble with 
semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate 
measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or 
(iii) prevention against any malfunction or mishap.

Keep safety first in your circuit designs! 

Notes regarding these materials
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