

Renesas RA Family

Getting Started with CoreMark Benchmarking

Introduction

As processors in embedded systems become more complex, more sophisticated benchmarks are needed for a better understanding of performance and analysis.

CoreMark is a modern and sophisticated benchmark that is recommended by ARM® and allows you to accurately measure the performance of a processor. Rather than using arbitrary and synthetic code, CoreMark uses basic data structures and algorithms that are common in any embedded application.

Using CoreMark is encouraged due to its ANSI C compliance and the fact that it is designed to ensure that compilers cannot pre-compute numbers to influence the results and also so that it does not make any library calls during the benchmarked portion of the code.

Running CoreMark produces a single-number score allowing users to make quick comparisons between processors. Results can be uploaded to the CoreMark website for certification as CoreMark has a standard format for reporting results.

This document aims to present and explain the results and the process of benchmarking Renesas RA MCUs using CoreMark.

This application note walks you through all the steps necessary to benchmark using CoreMark.

Required Resources

Development tools and software

- e² studio v2023-01
- Renesas Flexible Software Package (FSP) v4.3.0
- Arm Compiler 6.15
- IAR Embedded Workbench v9.32.1

Hardware

Renesas RA kit: EK-RA6M5

Reference Manuals

- RA Flexible Software Package Documentation Release v4.3.0
- User's Manual: Renesas RA6M5 Group User's Manual Rev.1.10
- Schematics: EK-RA6M5-v1.0

Contents

CoreMark Project	3
Run CoreMark on Renesas RA MCU	3
Add CoreMark to e2 studio Project	11
Add Timer for Benchmarking	11
Update Main Stack	13
Port CoreMark Code	14
Create CoreMark e2 studio Project Used for Benchmarking using Arm Compiler	20
Run CoreMark Project	23
1 Board Setup	23
2 Add Run Commands to Print Out Benchmarking Result	24
3 Run The e2 studio Project	24
Verify RA Benchmarking Results	27
General Guidelines for CoreMark Benchmarking	27
References	27
rision History	29
	Run CoreMark on Renesas RA MCU Integrating Toolchains with e2 studio I IAR Embedded Workbench Plugin Integrate with Arm Compiler Create CoreMark e2 studio Project Used for Benchmarking using IAR Compiler Add CoreMark to e2 studio Project Add Timer for Benchmarking Update Main Stack Port CoreMark Code Create CoreMark e2 studio Project Used for Benchmarking using Arm Compiler Run CoreMark Project I Board Setup 2 Add Run Commands to Print Out Benchmarking Result. 3 Run The e2 studio Project Verify RA Benchmarking Results General Guidelines for CoreMark Benchmarking References

1. CoreMark Project

The official CoreMark source is available at EEMBC <u>GitHub</u>. As we plan to use CoreMark on a bare-metal target, the source files we are going to use consist of the following C source and header files:

- coremark.h
- core_main.c
- core_list_join.c
- · core matrix.c
- core_state.c
- core util.c
- core portme.c
- core_portme.h
- cvt.c
- ee_printf.c

The three key algorithms used are related to linked lists, matrix multiplication, and state machines.

At EEMBC GitHub you will also find more information on the rules for building and running the CoreMark code

The procedure to create a CoreMark project for Renesas RA MCUs is as follows.

- Create a Bare-Metal Minimal Project using e2 studio and Flexible Software Package (FSP)
- Copy CoreMark source code to the "src" folder
- Add a 32-bit general-purpose timer (GPT) to the project
- Change the main stack size setting to 0x4000 to accommodate CoreMark benchmarking
- Exclude the main.c generated by FSP from the build
- Update project optimization with the maximum speed option
- Port core_portme.h, core_portme.c to add necessary code for the GPT
- Port ee_printf.c to print benchmarking result.

This document explains the procedure for EK-RA6M5 but the same can be applied to other RA MCUs.

2. Run CoreMark on Renesas RA MCUs

Apart from the official CoreMark source, in order to be able to replicate exactly the process used in benchmarking the RA MCUs, you will need the e2 studio IDE together with FSP. You can download and install setup fsp v4 3 0 e2s v2023-01.exe from https://github.com/renesas/fsp/releases

Moreover, you will need the IAR Arm compiler available at https://www.iar.com/products/architectures/arm/ and the Arm compiler available at https://developer.arm.com/documentation/ka005198/latest. You can use Arm compiler in Keil MDK installation for CoreMark benchmarking.

2.1 Integrating Toolchains with e2 studio

2.1.1 IAR Embedded Workbench Plugin

Download and install IAR Embedded workbench before you integrate IAR compiler with e2 studio.

Start e2 studio, then select "Help -> IAR Embedded Workbench plugin manager"

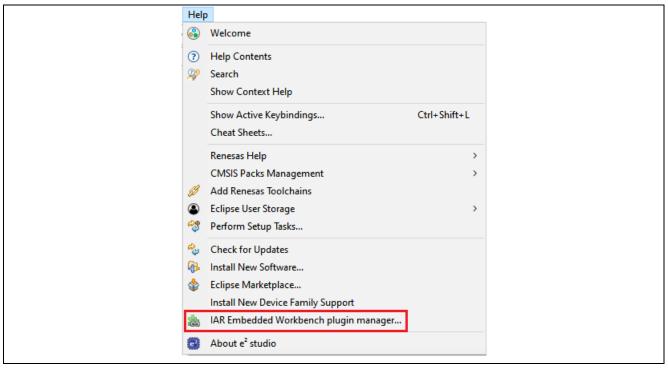


Figure 1. Select IAR Embedded Workbench Plugin Manager

You choose the desired toolchain and press install.

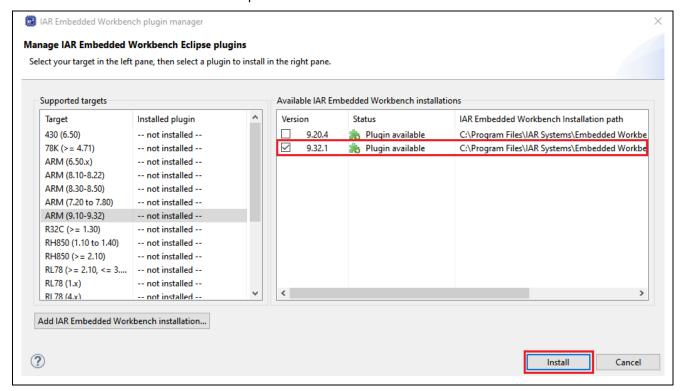


Figure 2. Select IAR Plugin

The bottom right corner of e2 studio IDE will show configuration progress.

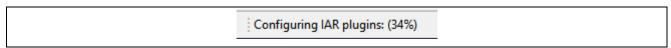


Figure 3. IAR Configuration Progress

Press "Next", then "Next". Accept the terms of the license agreements then click "Finish".

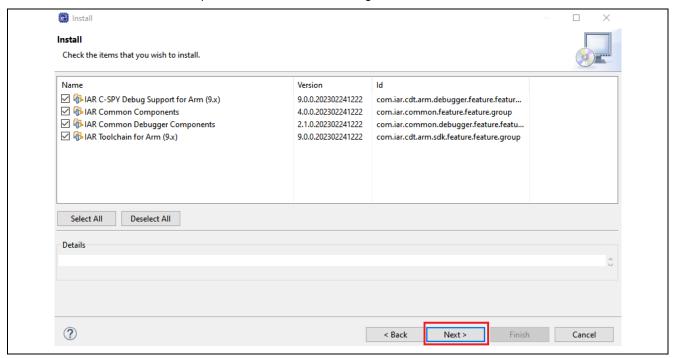


Figure 4. Install IAR Embedded Workbench Plugin

The bottom right corner of e2 studio IDE will show the installation progress.

Figure 5. IAR Plugin Installation Process

Wait for the plugin to be installed and click "Restart Now" to complete the installation process.

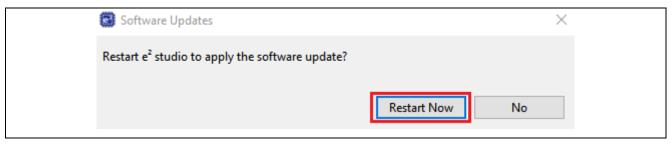


Figure 6. Restart e2 studio

2.1.2 Integrate with Arm Compiler

Download and install Arm compiler or Keil MDK before you integrate Arm compiler with e2 studio.

Start e2 studio, then select "Window -> Preferences" to add toolchains to e2 studio.

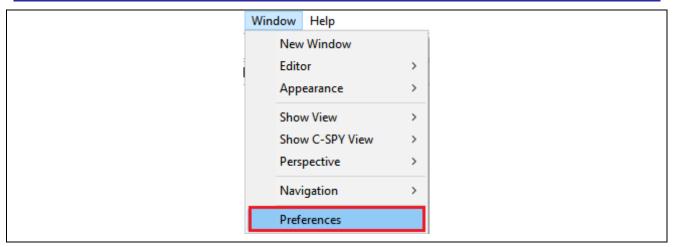


Figure 7. e2 studio Preferences

Select the desired Arm Compiler toolchain, then click "Apply and Close" to add the Arm compiler to e2 studio.

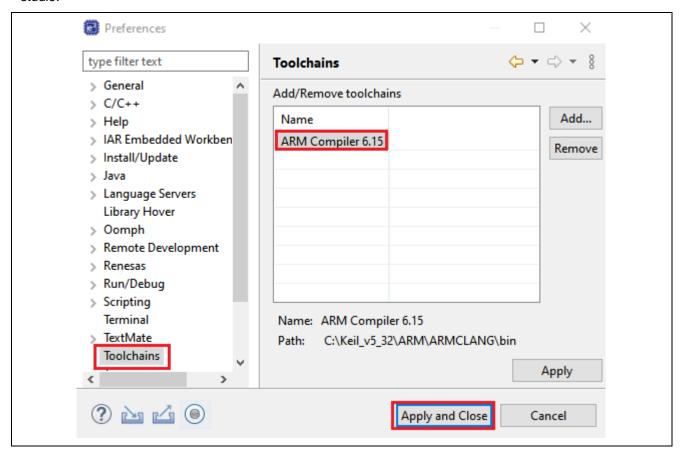


Figure 8. Add Arm Compiler to e2 studio

If Arm compiler is not present in the Toolchains windows, click "Add", then browse to the toolchain folder, e.g., C:\Keil_v5\ARM\\ARMCLANG\bin

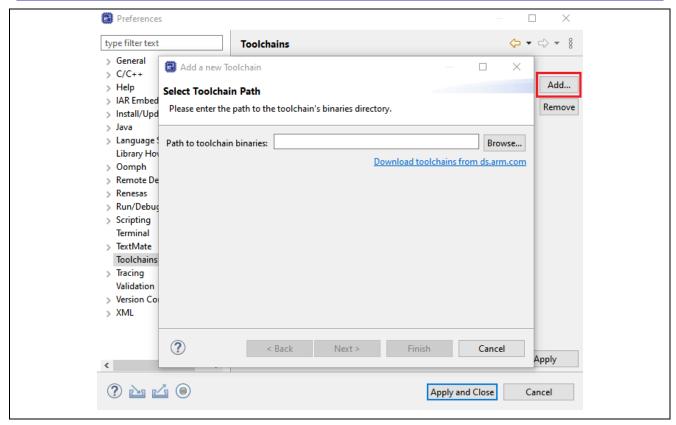


Figure 9. Add Toolchain's Path

2.2 Create CoreMark e2 studio Project Used for Benchmarking using IAR Compiler

Ensure you integrated IAR compiler with e2 studio before creating a CoreMark project.

On e2 studio, select "File -> New-> C/C++ Project, then click "Next".

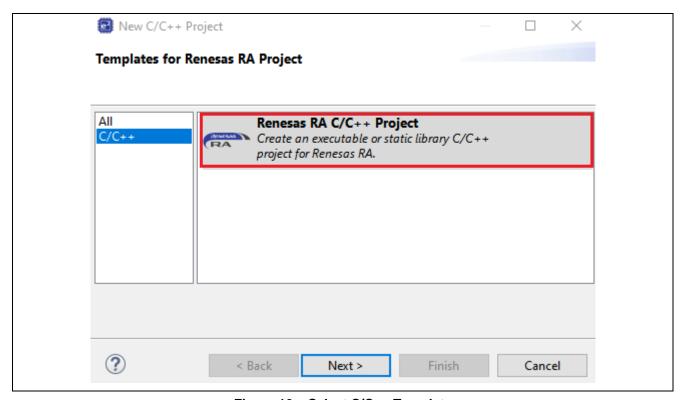


Figure 10. Select C/C++ Template

Name your project an appropriate name, e.g., RA6M5_CoreMark_IAR for EK-RA6M5 kit using IAR compiler.

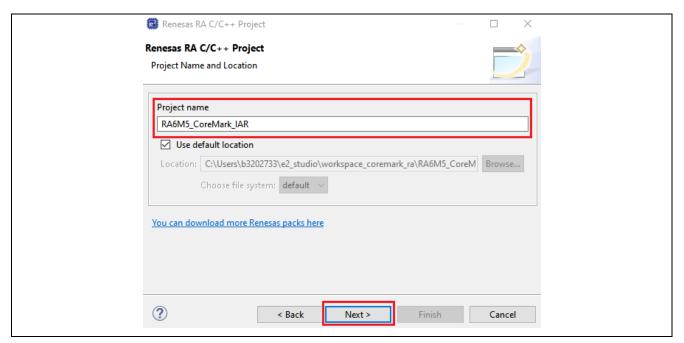


Figure 11. Name Your Project

Select the Board, Device, and Toolchain you want to use for benchmarking.

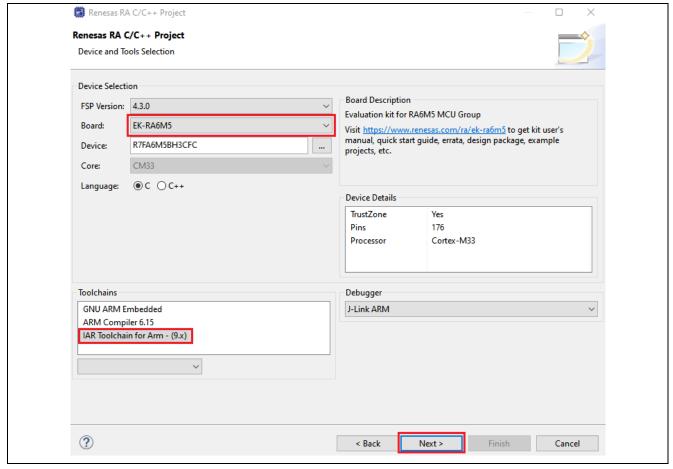


Figure 12. RA Project Options

Select Flat (Non-TrustZone) Project.

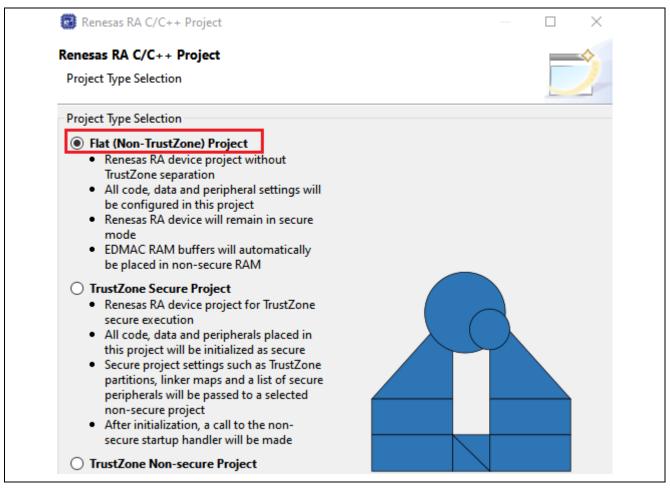


Figure 13. Flat Project Selection

After this step, select Executable project type with No RTOS.

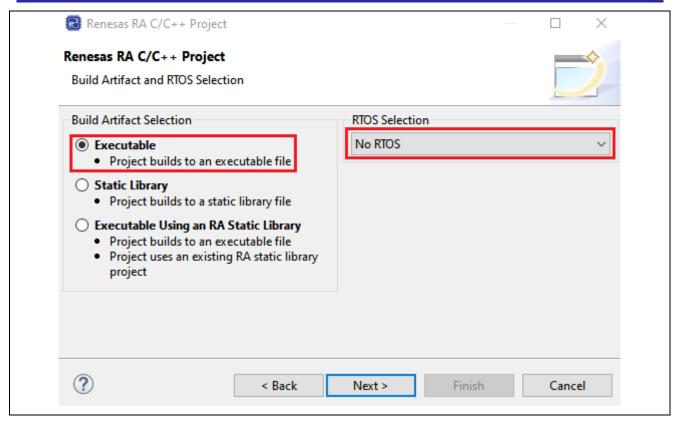


Figure 14. Select No RTOS Project

Select Bare Metal - Minimal Project Template. Click "Finish" to generate the project.

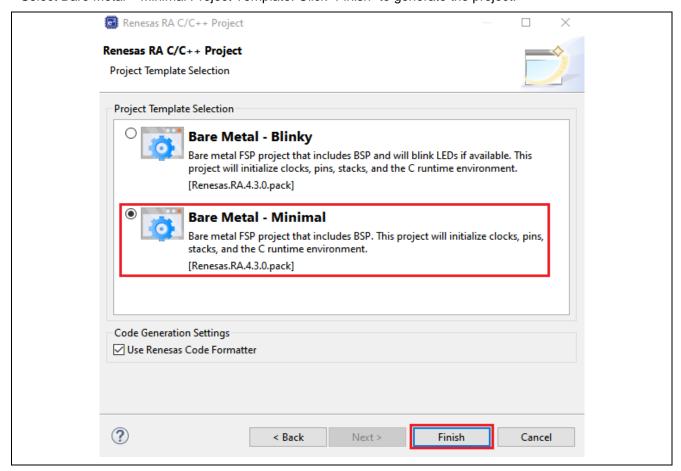


Figure 15. Bare Metal Minimal Option

2.3 Add CoreMark to e2 studio Project

Copy CoreMark source code to the "src" folder in your newly created project. The project structure should look as follows.

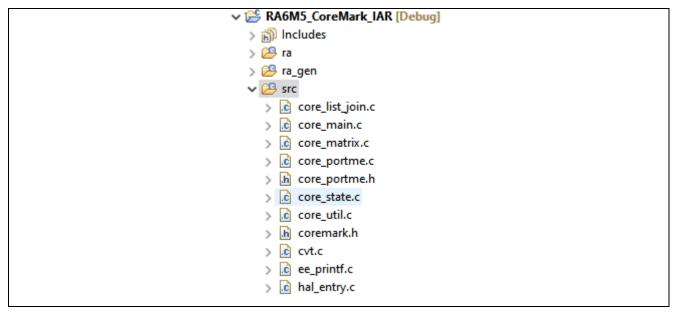


Figure 16. CoreMark Project

You now need to add a periodic timer and modify the core_portme.c source file in order to use the modified barebones_clock(), portable_init(core_portable *p, int *argc, char *argv[]) and portable_fini(core_portable *p) functions.

To add a new periodic timer, open the configuration.xml file and go to Stacks. You should see something similar to the picture below.

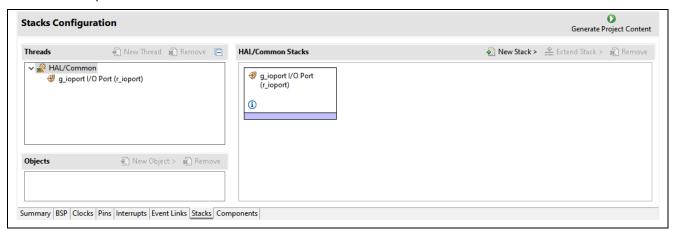


Figure 17. Stack Configuration

2.4 Add Timer for Benchmarking

The next step is to add a New Stack, then select Timers and, finally Timer, General PWM(r_gpt).

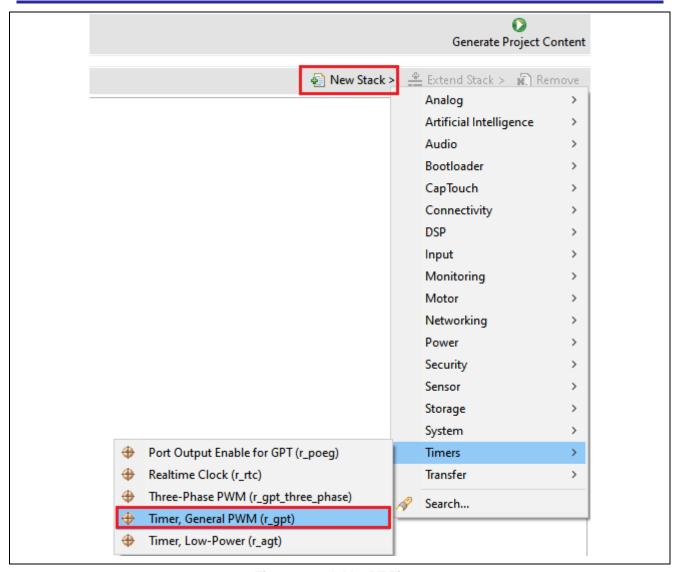


Figure 18. Add GPT Timer

After adding the GPT timer, you need to edit the settings. Clicking on the block representing the newly added GPT timer, then go to Properties Window. You use this Properties window to change the timer's name to g_timer_periodic, the period to 50, and the period unit to Seconds. You also need to expand the Interrupts block, add the Callback as timer_callback and set the Priority to 2. The following image captures the changes needed.

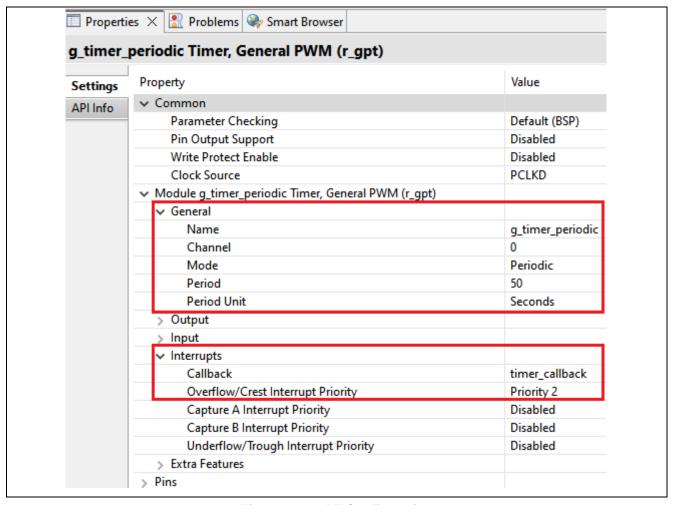


Figure 19. GPT Configuration

2.5 Update Main Stack

Change the Main Stacks Size in BSP properties to 0x4000.

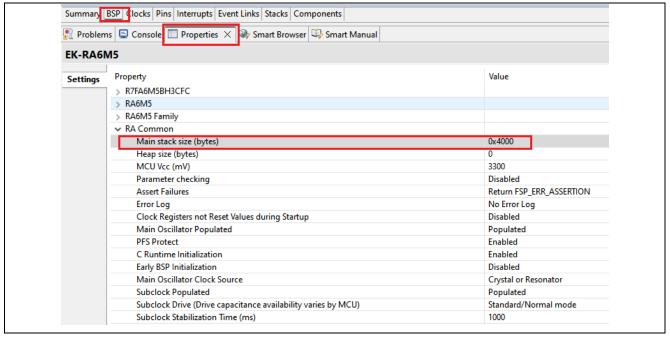


Figure 20. Change Main Stack Size

Click "Generate Project Content", then the next step is to modify the source files.

Right click on the ra_gen\main.c and exclude it from the Build, so there is no conflict with the main from core_main.c.

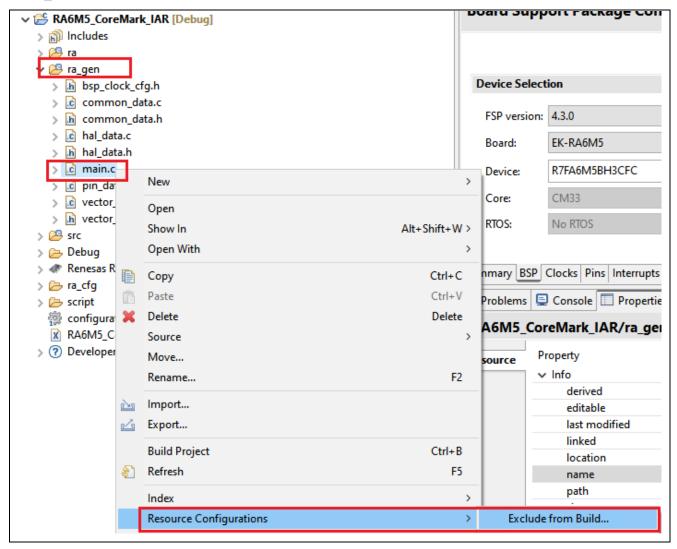


Figure 21. Exclude main.c from Build

2.6 Port CoreMark Code

You modify the core_portme.h and the core_portme.c in the "src" folder.

In core_portme.h, add "#include <stddef.h>" before the code "typedef size_t ee_size_t;", as shown below.

```
-/* Data Types :
       To avoid compiler issues, define the data types that need ot be used for
   8b, 16b and 32b in <core portme.h>.
        *Imprtant* :
        ee ptr int needs to be the data type used to hold pointers, otherwise
   coremark may fail!!!
_*/
 typedef signed short ee_s16;
 typedef unsigned short ee_ul6;
 typedef double
                    ee_f32;
 typedef unsigned char ee u8;
 typedef unsigned int ee u32;
 typedef ee u32 ee ptr int;
#include <stddef.h>
 typedef size t
                     ee size t;
 #define NULL ((void *)0)
```

Figure 22. Add "#include <stddef.h>"

Also, in core_portme.h, modify the "#define COMPILER_FLAGS" depending on the toolchain used. If you use IAR Compiler version 9.32.1, change it to #define COMPILER_FLAGS "High Speed; No size constraints".

The code should look as follows.

Figure 23. Modify core_portme.h

In core_portme.c, before the barebones_clock() function, add below code.

```
volatile ee_s32 seed4_volatile = ITERATIONS;
volatile ee_s32 seed5_volatile = 0;

/* Since we set the timer period to 50s, the actual value is 50000000 with the counter clock at 100MHz/2 */
#define CLOCKS_PER_SEC 50000000
timer_info_t g_timer_info;
uint32_t g_capture_overflows = 0U;
```

Figure 24. Modify core_portme.c

You can check and correct the CLOCKS_PER_SEC setting by getting the correct value from the clock_frequency, shown in the figure below when running the project for the first time.

```
err = R_GPT_Start(&g_timer_periodic_ctrl);
if (FSP_SUCCESS != err)
    ee_printf("ERROR: R_GPT_Start!\n");
err = R_GPT_InfoGet(&g_timer_periodic_ctrl, &g_timer_info);
if (FSP_SUCCESS != err)
                                                Expression
                                                                      Туре
                                                                                             Value
                                                                                                                   Address
    ee printf("ERROR: R GPT InfoGet!\n");
                                                                                                                   0x20004250
                                                {...}
                                                                      timer_info_t
                                                                                             TIMER_DIRECTION_UP
                                                                                                                   0x20004250
                                                    (x)= count_direction timer_direction_t
if (sizeof(ee_ptr_int) != sizeof(ee_u8 *))
                                                  (x)= clock_frequency uint32_t
                                                                                             50000000
                                                                                                                   0x20004254
                                                    (x)= period_counts
                                                                                             2500000000
                                                                                                                   0x20004258
         "ERROR! Please define ee_ptr_int to a
                                               Name : g_timer_info
        "pointer!\n");
                                                   Details:{count_direction = TIMER_DIRECTION_UP, clock_frequency = 50000000, peri
                                                   Default:{...}
if (sizeof(ee_u32) != 4)
                                                   Decimal: {...}
                                                    Hex:{...}
    ee_printf("ERROR! Please define ee_u32 to
                                                   Binary:{...}
p->portable_id = 1;
```

Figure 25. Check CLOCK_PER_SEC Setting

Change the barebones_clock() functions as follows.

```
/* Porting : Timing functions
       How to capture time and convert to seconds must be ported to whatever is
   supported by the platform. e.g. Read value from on board RTC, read value from
   cpu clock cycles performance counter etc. Sample implementation for standard
   time.h and windows.h definitions included.
CORETIMETYPE
barebones_clock()
    fsp err t err = FSP SUCCESS;
    timer status t status;
    err = R_GPT_StatusGet (&g_timer_periodic_ctrl, &status);
    if (FSP_SUCCESS != err)
        ee_printf("ERROR: R_GPT_StatusGet!\n");
    /* The period is set to 50s we shouldn't overflow but just in case
      report an error if we do. If we set the a shorter period we need to do:
       info.period_counts * g_capture_overflows
    if(g_capture_overflows > 0)
        ee_printf("ERROR: Timer overflow!\n");
    return status.counter;
}
```

Figure 26. bareborns_clock() Function

Then change the portable_fini(core_portable *p), portable_init(core_portable *p, int *argc, char *argv[]) to add the GPT timer that is needed for benchmarking.

```
/* Function : portable init
       Target specific initialization code
       Test for some common mistakes.
*/
void
portable_init(core_portable *p, int *argc, char *argv[])
   fsp err t err = FSP SUCCESS;
    /* Flush C cache */
   uint32 t * c cache = (uint32 t *)0x40007004;
   *c cache = 1;
   /* Enable C cache */
   c cache = (uint32 t *)0x40007000;
    *c cache = 1;
   /* Flush S cache */
   uint32_t * s_cache = (uint32_t *)0x40007044;
   *s cache = 1;
   /* Flush S cache */
   s_cache = (uint32_t *)0x40007040;
    *s cache = 1;
    /* Initialize GPT Timer */
   err = R_GPT_Open(&g_timer_periodic_ctrl, &g_timer_periodic_cfg);
    if (FSP_SUCCESS != err)
       ee_printf("ERROR: R_GPT_Open!\n");
    err = R_GPT_Start(&g_timer_periodic_ctrl);
    if (FSP_SUCCESS != err)
    {
       ee_printf("ERROR: R_GPT_Start!\n");
    }
    err = R_GPT_InfoGet(&g_timer_periodic_ctrl, &g_timer_info);
    if (FSP_SUCCESS != err)
       ee_printf("ERROR: R_GPT_InfoGet!\n");
    if (sizeof(ee_ptr_int) != sizeof(ee_u8 *))
        ee printf(
            "ERROR! Please define ee ptr int to a type that holds a "
            "pointer!\n");
    if (sizeof(ee_u32) != 4)
       ee_printf("ERROR! Please define ee_u32 to a 32b unsigned type!\n");
   p->portable_id = 1;
ŀ
```

Figure 27. portable_init Function

```
/* Function : portable fini
        Target specific final code
void
portable fini(core portable *p)
    fsp_err_t err = FSP_SUCCESS;
    err = R_GPT_Stop(&g_timer_periodic_ctrl);
    if (FSP_SUCCESS != err)
        ee printf("ERROR: R GPT Stop!\n");
    p->portable_id = 0;
    BSP_CFG_HANDLE_UNRECOVERABLE_ERROR(0);
}
```

Figure 28. portable_fini Function

At the end of the file, add the callback method function of the GPT timer.

```
/* Example callback called when timer expires. */
void timer_callback (timer_callback_args_t * p_args)
1
    if (TIMER_EVENT_CYCLE_END == p_args->event)
        g_capture_overflows++;
}
```

Figure 29. Add timer_callback to core_portme.c

In ee_printf.c, change the uart_send_char(char c) and add the below code for printing benchmarking results.

```
#define MAXBUFFER 1000
volatile char uart_buffer[MAXBUFFER + 1];
volatile unsigned int uart_buffer_cnt = 0;
void
uart_send_char(char c)
    if(uart_buffer_cnt < MAXBUFFER)</pre>
        uart_buffer[uart_buffer_cnt++] = c;
        uart buffer[uart buffer cnt] = '\0';
    }
    else
    {
        uart_buffer[uart_buffer_cnt] = '\0';
    }
}
```

Figure 30. Add uart_send_char Function

Mar.20.23

In the project properties setting, add "ITERATIONS=8000" to IAR C/C++ Compiler for ARM->Preprocessor.

Figure 31. Preprocessor Setting

In the project properties setting, change IAR C/C++ Compiler for ARM->Optimization to "High, Speed" with "No size constraints".

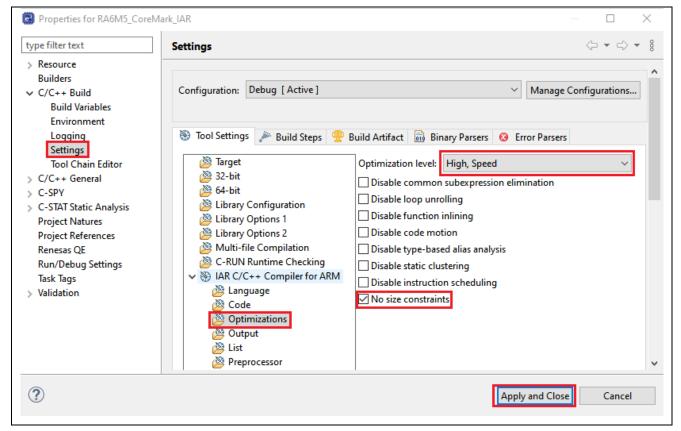


Figure 32. Optimization Setting

Now you can build the project without errors.

2.7 Create CoreMark e2 studio Project Used for Benchmarking using Arm Compiler

Ensure you integrated the Arm compiler with e2 studio before creating a CoreMark project. Select the Board, Device, and Toolchain you want to use for benchmarking and process to create an Arm compiler-based project similar to the IAR compiler. Follows sections 2.3, 2.4, 2.5, and 2.6 to add the GPT module, configure your project, and port the CoreMark. Note that you need a commercial license to use "--Ito" option in Arm Compiler.

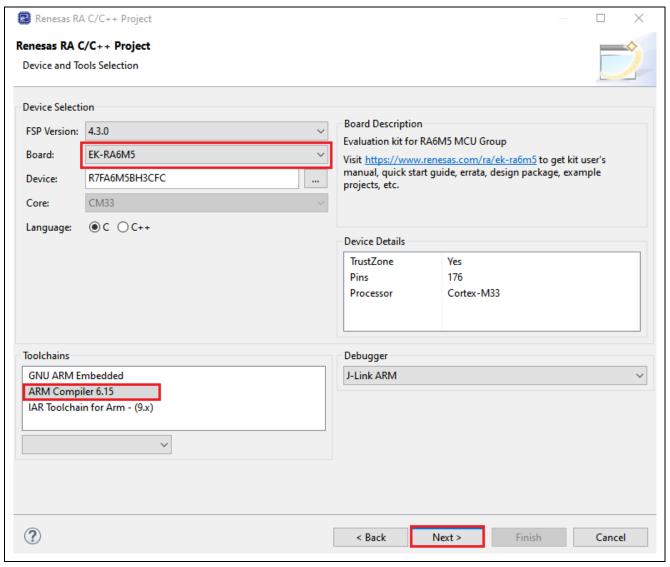


Figure 33. Create An Arm Compiler - Based Project Options

Also, in core_portme.h, modify the "#define COMPILER_FLAGS" depending on the toolchain used. In the case of Arm Compiler, change it to "-Omax".

The code should look as follows.

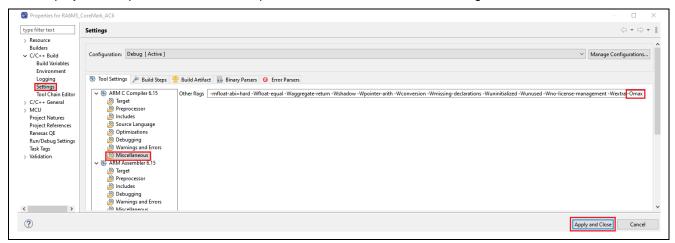
```
/* Definitions : COMPILER_VERSION, COMPILER_FLAGS, MEM_LOCATION

Initialize these strings per platform

*/

#ifndef COMPILER_VERSION

#ifdef __GNUC_
#define COMPILER_VERSION __VERSION__
#else
#define COMPILER_VERSION "Please put compiler version here (e.g. gcc 4.1)"


#endif
#ifndef COMPILER_FLAGS
#define COMPILER_FLAGS "-Omax"

#endif
#ifndef MEM_LOCATION
#define MEM_LOCATION "STACK"

#endif
```

Figure 34. Modify "#define COMPILER_FLAGS"

In the project's Properties-> ARM C Compiler 6.15->Miscellaneous->Other flags, add "-Omax".

-mfloat-abi=hard -Wfloat-equal -Waggregate-return -Wshadow -Wpointer-arith -Wconversion -Wmissing-declarations -Wuninitialized -Wunused -Wno-license-management -Wextra

Figure 35. Add "-Omax" Option to Project Settings

In the project's Properties-> ARM Linker 6.15->Miscellaneous->Other flags, add "--Ito".

--library_type=microlib --no_startup --via="\${workspace_loc:/\${ProjName}/script}/ac6/fsp_keep.via" --lto

Figure 36. Add "--Ito" Option to Project Settings.

2.8 Run CoreMark Project

2.8.1 Board Setup

The EK-RA6M5 kit has a few switch settings which must be configured before running the projects associated with this application note. In addition to these switch settings, the boards also contain a USB debug port and connectors to access the J-Link® programming interface.

Table 1. Switch settings for EK-RA6M5

Switch	Setting
J8	Jumper on pins 1-2
J9	Open

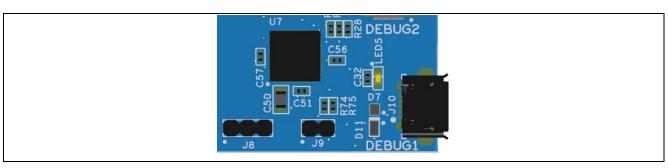


Figure 37. J8 and J9 on EK-RA6M5

The figure below shows the picture of the EK-RA6M5 kit.

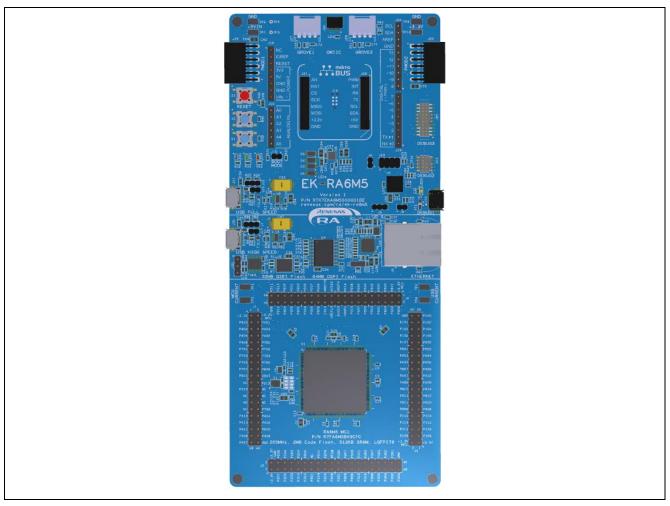


Figure 38. EK-RA6M5

Connect the board to your PC using the USB cable into the port labeled "Debug1".

2.8.2 Add Run Commands to Print Out Benchmarking Result.

In Debug Configuration, add the below command.

dprintf portable_fini,"%s",uart_buffer

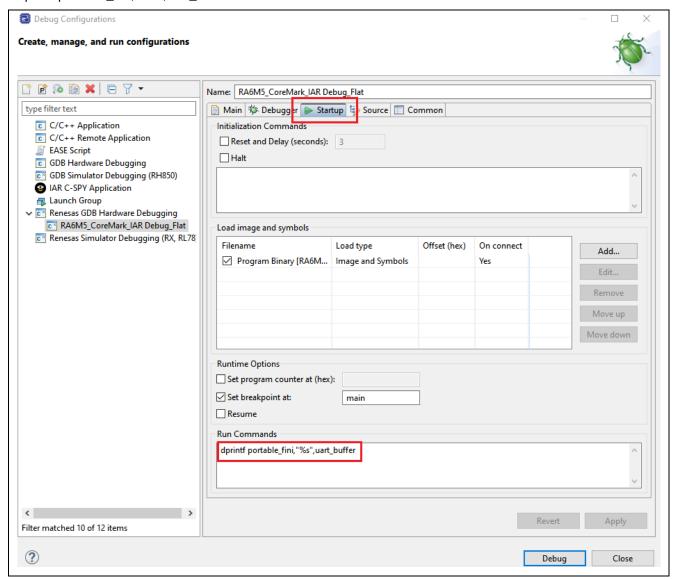


Figure 39. Add dprint Command

2.8.3 Run The e2 studio Project

After successfully building the project, it can be debugged using Renesas GDB Hardware Debugging. Right click on the project -> Debug AS -> Renesas GDB Hardware debugging or "Debug Configurations..." and choose the desired one.

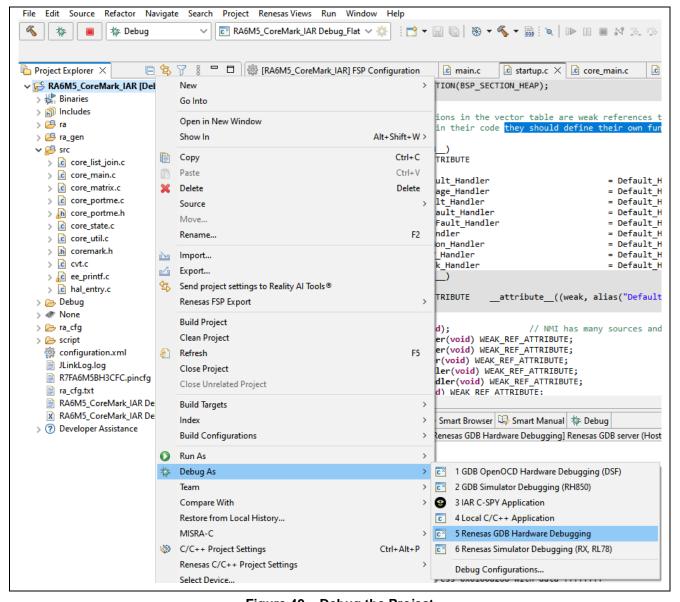


Figure 40. Debug the Project

The program should stop in the Reset_handler.

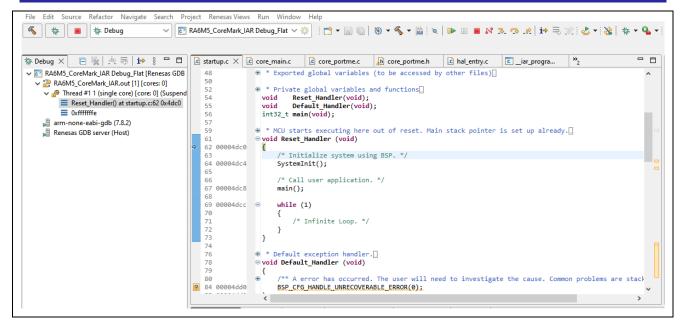


Figure 41. Debug the Project (cont'd)

Click the Resume button. The program will stop in main from core_main.c, click the Resume button again to run the project.

After a while, the program will stop in portable_fini, and the CoreMark scores will be available in the Debugger Console window, as shown below.

```
CoreMark 1.0 : 783.148203 / IAR Compiler v9.32.1 High Speed; No size constraints / STACK
2K performance run parameters for coremark.
CoreMark Size : 666
Total ticks
               : 510759009
Total time (secs): 10.215180
Iterations/Sec : 783.148203
Iterations
               : 8000
Compiler version : IAR Compiler v9.32.1
Compiler flags : High Speed; No size constraints
Memory location : STACK
               : 0xe9f5
seedcrc
[0]crclist
               : 0xe714
[0]crcmatrix : 0x1fd7
[0]crcstate
              : 0x8e3a
[0]crcfinal
               : 0x5275
Correct operation validated. See README.md for run and reporting rules.
CoreMark 1.0 : 783.148203 / IAR Compiler v9.32.1 High Speed; No size constraints / STACK
```

Figure 42. CoreMark Score with IAR Compiler

```
2K performance run parameters for coremark.
CoreMark Size : 666
                     : 505829888
Total ticks
Total time (secs): 10.116598
Iterations/Sec : 790.779686
Iterations
Compiler version : GCCClang 12.0.0 (ssh://ds-gerrit/armcompiler/llvm-project e64d644232aba72041b013571dc92e0d3fb7b4e2)
Compiler flags : -Omax
Memory location : STACK
seedoro
                    : 0xe9f5
[0]crclist
                   : 0xe714
[0]crcmatrix
                     : 0x1fd7
[0]crcstate
                     : 0x8e3a
[0]crcfinal
Correct operation validated. See README.md for run and reporting rules.

CoreMark 1.0 : 790.779686 / GCCClang 12.0.0 (ssh://ds-gerrit/armcompiler/llvm-project e64d644232aba72041b013571dc92e0d3fb7b4e2) -Omax / STACK
```

Figure 43. CoreMark Score with Arm Compiler

3. Verify RA Benchmarking Results

You can verify your results by referring to RA CoreMark results published on the EEMBC website, as shown below.

Clear									CoreMark /		
Sel.	Vendor	Processor	Cert.	Compiler	Execution Memory	MHz	Cores	CoreMark	MHz	Threads	Date↓
	Renesas Electronics	RA6T2	✓	ARM Clang Compile	internal flash, intern	240	1	962.45	4.01	1	2022-03-17
	Renesas Electronics	RA6T2	✓	IAR C/C++ Compiler	internal flash, intern	240	1	950.68	3.96	1	2022-03-17
	Renesas Electronics	RA2E2	✓	IAR C/C++ Compiler	internal flash, intern	48	1	110.24	2.29	1	2021-12-14
	Renesas Electronics	RA4E1	✓	IAR C/C++ Compiler	internal flash, intern	100	1	386.67	3.86	1	2021-09-23
	Renesas Electronics	RA4E1	✓	ARM Clang Compile	internal flash, intern	100	1	398.30	3.98	1	2021-09-23
	Renesas Electronics	RA6E1	✓	IAR C/C++ Compiler	internal flash, intern	200	1	770.75	3.85	1	2021-09-23
	Renesas Electronics	RA6E1	✓	ARM Clang Compile	internal flash, intern	200	1	790.27	3.95	1	2021-09-23
	Renesas Electronics	RA6M5	✓	IAR C/C++ Compiler	internal flash, intern	200	1	770.82	3.85	1	2021-04-26
	Renesas Electronics	RA6M5	✓	ARM Clang Compile	internal flash, intern	200	1	790.76	3.95	1	2021-04-26
	Renesas Electronics	RA4M2	✓	ARM Clang Compile	internal flash, intern	100	1	398.30	3.98	1	2021-04-26
	Renesas Electronics	RA4M2	✓	IAR C/C++ Compiler	internal flash, intern	100	1	386.00	3.86	1	2021-04-26
	Renesas Electronics	RA2E1	✓	IAR C/C++ Compiler	internal flash, intern	48	1	111.73	2.32	1	2021-04-26
	Renesas Electronics	RA6T1	✓	IAR C/C++ Compiler	internal flash, intern	120	1	405.90	3.38	1	2021-03-10
	Renesas Electronics	RA6M4	✓	ARM Clang Compile	internal flash, intern	200	1	790.75	3.95	1	2021-03-10
	Renesas Electronics	RA6M4	✓	IAR C/C++ Compiler	internal flash, intern	200	1	770.52	3.85	1	2021-03-10
	Renesas Electronics	RA4M3	✓	ARM Clang Compile	internal flash, intern	100	1	397.30	3.97	1	2021-03-10
	Renesas Electronics	RA4M3	✓	IAR C/C++ Compiler	internal flash, intern	100	1	386.11	3.86	1	2021-03-10
	Renesas Electronics	RA2L1	✓	IAR C/C++ Compiler	internal flash, intern	48	1	111.73	2.32	1	2021-03-10
	Broadcom Corporation	Broadcom BCM283		GCC 7.2.1	LPDDR2 900MHz	1200	4	15363.93	12.80	4	2018-01-06

Figure 44. RA Coremark scores published on EEMBC website

4. General Guidelines for CoreMark Benchmarking

Since target devices that contain Arm processors may have a wide variety of memories and memory hierarchies, your CoreMark project should be compiled using memory correctly and efficiently. Depending on the compiler, you can achieve this by correctly editing your linker script or scatter files.

Since CoreMark is a small benchmark, it should be run multiple times to obtain reproducible numbers.

Arm recommends performing two validation runs followed by at least ten profile runs. The results can be calculated by the average for the profile runs. These steps are necessary to minimize the variation caused by inconsistent processor states.

5. References

EEMBC's CoreMark® https://www.eembc.org/coremark/

Website and Support

Visit the following vanity URLs to learn about key elements of the RA family, download components and related documentation, and get support.

RA Product Information <u>www.renesas.com/ra</u>

RA Product Support Forum www.renesas.com/ra/forum
RA Flexible Software Package www.renesas.com/FSP
Renesas Support www.renesas.com/support

Revision History

		Description		
Rev.	Date	Page	Summary	
1.0	March.20.23	-	Initial version	

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.