
APPLICATION NOTE

REJ05B1424-0100 Rev.1.00 Page 1 of 26
Nov. 15, 2010

1. Abstract
This document describes an example of using EW1 mode in flash memory version.

2. Introduction
The application example described in this document applies to the following microcomputers (MCUs):

MCUs: M32C/84 Group, M32C/85 Group, M32C/87 Group, and M32C/88 Group

This application note can be used with other M32C/80 Series MCUs which have the same special function registers
(SFRs) as the above groups. Check the manuals for any modifications to functions. Careful evaluation is recommended
before using the program described in this application note.

REJ05B1424-0100
Rev.1.00

Nov. 15, 2010

M32C/84, 85, 87, 88 Groups
Example of Rewriting the User ROM Area Using EW1 Mode

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 2 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

3. CPU Rewrite Modes
The CPU rewrite mode consists of EW0 mode and EW1 mode.

3.1 EW1 Mode Features
EW1 mode allows the user to rewrite a different block from that of the CPU rewrite program by allocating the CPU
rewrite program to any block in the user ROM area, and issuing program and erase commands.
During programming or erasing, peripheral function interrupts, DMA requests, and DMACII requests are not
accepted.

3.2 EW1 Mode Settings
After setting the FMR01 bit in the FMR0 register to 1 (CPU rewrite mode enabled), the CPU enters EW1 mode by
setting the FMR11 bit in the FMR1 register.
Read the FMR0 register to determine the status of program and erase operations when completed. In EW1 mode, the
status register cannot be read.

Figure 3.1 shows the Setting Procedure for EW1 Mode.

Figure 3.1 Setting Procedure for EW1 Mode

PM1 register: PM12 bit = 1

FMR0 register: FMR01 bit = 1

FMR0 register: FMR01 bit = 0

FMR0 register: FMR01 bit = 0

Note:
 1. Do not use EW1 mode in memory expansion mode or boot mode.

CPU rewrite mode enabled
- To set the FMR01 bit to 1, write 1 to the FMR01 bit
 immediately after writing 0.
 Write the value to the FMR0 register in 8-bit units.
 Do not generate an interrupt or a DMA or DMACII transfer
 between these two setting.
- Set it while the NMI pin level is held “H".

Enter EW1 mode
- To set the FMR11 bit to 1, write 1 to the FMR11 bit
 immediately after writing 0 to the bit while the FMR01 bit is set to 1.
 Do not generate an interrupt or a DMA or DMACII transfer between
 these two setting.
- Set it while "H" is applied to the NMI pin.

FMR1 register: FMR11 bit = 0

FMR1 register: FMR11 bit = 1

CPU rewrite mode disabled
- To change the FMR01 bit from 1 to 0, enter read array mode
 and then write to address 0057h in 16-bit units.
 Set the 8 high-order bits to 00h.

Start

Set the CPU clock frequency to 10 MHz
or lower in CPU rewrite mode.

Internal memory wait state inserted.

End

MCD register

Execute the software commands

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 3 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

3.2.1 Memory Map
Figure 3.2 shows the Flash Memory Map for the M32C/87 Group (M32C/87, M32C/87A, and M32C/87B). Refer to
the respective hardware user’s manuals for details of other MCUs.
The user ROM area has an area to store programs, and another 4-Kbyte area as the block A for data storage.
The user ROM area is divided into blocks, each of which can be protected (locked) from erasing or programming.
The user ROM area can be rewritten in CPU rewrite mode, standard serial I/O mode, or parallel I/O mode.

Figure 3.2 Flash Memory Map

0FC0000h

0FD0000h

0FE0000h

0FF0000h

0FFFFFFh

Block 0 to Block 5
(32 + 8 + 8 + 8 + 4 + 4)

KB

Block 6: 64 KB

Block 7: 64 KB

Block 8: 64 KB

Block 9: 64 KB

User ROM area

0FA0000h

0FB0000h

0F90000h

0F9FFFFh

0FAFFFFh

0FBFFFFh

0FCFFFFh

0FDFFFFh

0FEFFFFh

Block 0: 4 KB0FFFFFFh
0FFF000h

Block 1: 4 KB0FFEFFFh
0FFE000h

Block 2: 8 KB
0FFDFFFh

0FFC000h

Block 3: 8 KB
0FFBFFFh

0FFA000h

Block 4: 8 KB
0FF9FFFh

0FF8000h

Block 5: 32 KB

0FF7FFFh

0FF0000h
0F80000h

0F8FFFFh

0F70000h

0F7FFFFh

0F60000h

0F6FFFFh

0F50000h

0F5FFFFh

0F40000h

0F4FFFFh

0F30000h

0F3FFFFh

0F20000h

0F2FFFFh

0F10000h

0F1FFFFh

000FFFFh
000F000h

0F0FFFFh

Block 10: 64 KB

Block A: 4 KB

Block 11: 64 KB

Block 12: 64 KB

Block 13: 64 KB

Block 14: 64 KB

Block 15: 64 KB

Block 16: 64 KB

Block 17: 64 KB

Block 18: 64 KB

Block 19: 64 KB

Block 20: 64 KB
0F00000h

User ROM
384 KB

User ROM
512 KB

User ROM
768 KB

User ROM
1 MB

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 4 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

3.3 Notes on EW1 Mode

3.3.1 Operating Speed
Prior to entering EW1 mode, set the CPU clock frequency to 10 MHz or lower using
bits MCD4 to MCD0 in the MCD register, and also set the PM12 bit in the PM1 register to 1 (1 wait state).

3.3.2 Interrupts
• When an interrupt request is generated by the peripheral function or watchdog timer (when the PM22 bit in

the PM2 register is set to 0) during the erase or program operation, the interrupt is acknowledged after the
erase or program operation is completed.

• When an interrupt request is generated by the NMI, watchdog timer (when the PM22 bit is set to 1), Vdet4
detection function, or oscillation stop detection function, registers FMR0 and FMR1 are forcibly initialized
and the erase or program operation in progress is aborted. Now that the flash memory can be accessed, the
interrupt routine will be executed.

3.3.3 How to Access
To set the FMR01 or FMR02 bit in the FMR0 register, or the FMR11 bit in the FMR1 register to 1, write 1
immediately after writing 0 to the bit. Write to the FMR0 or FMR1 register in 8-bit units. Do not generate an
interrupt or a DMA or DMACII transfer between these two settings. Also, set these bits while a high-level signal
is applied to the NMI pin.
To change the FMR01 bit from 1 to 0, enter read array mode first, and then write into address 0057h in 16-bit
units. Set the 8 high-order bits to 00h.

3.3.4 Rewriting User ROM Area
Do not rewrite a block where the rewrite control program is stored.

3.3.5 Writing Command and Data
Write command codes and data to even addresses in the user ROM area.

3.3.6 Block Erase
If an erase operation in progress is aborted due to such as the NMI interrupt, hardware reset, or supply voltage
drop, the lock bit of the block which has been erased may become 0 (locked). To erase the same block again, set
the FMR02 bit in the FMR0 register to 1 (lock bit disabled) and then execute the block erase command.

3.3.7 Wait Mode
To enter wait mode, set the FMR01 bit in the FMR0 register to 0 (CPU rewrite mode disabled) and then execute
the WAIT instruction.

3.3.8 Stop Mode
To enter stop mode, use the following procedure:

• Set the FMR01 bit to 0 (CPU rewrite mode disabled) before setting the CM10 bit to 1 (stop mode).
• Execute the JMP.B instruction right after the instruction to set the CM10 bit in the CM1 register to 1 (stop

mode).
Example: BSET 0, CM1; Stop mode
 JMP.B L1
 L1:
 Program after exiting stop mode

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 5 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

3.3.9 Low-Power Consumption Mode and On-Chip Oscillator Low-Power
Consumption Mode

When the CM05 bit in the CM0 register is set to 1 (main clock stopped), do not execute the following
commands:

• Program command
• Block erase command
• Lock bit program command
• Read lock bit status command

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 6 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

4. Description of the Application Example
This application note describes an example of a monitor program where the sample program is received from the
master device, and the sample program execute and program ROM area rewrite commands are executed.
Figure 4.1 shows the System Structure Diagram.

Figure 4.1 System Structure Diagram

Clocks used in this application note are listed in the following table.

Control commands used in this application note are listed in the following table.

Note:
1. When the program and erase operations are successfully completed, 6FH ('o') is returned. If an

error occurs, 65H ('e') is returned.

UART0 clock asynchronous serial I/O mode is used in communication with the master device. The UART0
settings are as follows:

• Mode: Clock asynchronous serial I/O mode
• Communication bit rate: 38400 bps
• CTS/RTS: Not used
• Stop bit: 1 stop bit
• Parity: None
• Data bit length: 8 bits

Table 4.1 Clock Conditions
Item Frequency

Main clock 10 MHz
PLL frequency 30 MHz (multiply by 6 then divide by 2)

Table 4.2 Control Commands

Control Command
Name

Command
Explanation

1st to 3rd
Bytes

4th to 5th
Bytes

After 6th Byte

Program (write)
command

Execute to write
the received data "prg" Size (2

bytes)

Data (max.
256 bytes)

SUM value (2
bytes)

Results (1)

The data, SUM value transmission, and
received results are repeated up to the program
size.

Erase command
Erases the
program ROM
area

"ers" Results (1)

Monitor program Master device
(PC, etc.)

Clock asynchronous serial I/O mode (38400 bps)
- Sample program transmission
- Command transmission and reception

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 7 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

Figure 4.2 shows a Monitor Program Operation Example.

Figure 4.2 Monitor Program Operation Example

Monitor program Master device

Send erase command
"ers"

Reset start

Erase processing

Send sample program
(256 bytes)

Program processing

Send program (write)
complete code

Send SUM value
(2 bytes)

Compare SUM value

Receive sample
program (256 bytes)

Send program (write)
command "prg"

Send sample program
size (2 bytes)

Receive size (2 bytes)

Receive SUM value
(2 bytes)

Receive program
(write) complete code

Send erase
complete code

(1)

(2)

(3)

(4)

(5)
(6)

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 8 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

The monitor program in this application note is explained below.
Block 12 in the user ROM area is used.

• When the MCU starts up, the monitor program waits to receive the control command.

When the received command is "prg"
(1) Receive the sample size (2-byte data).
(2) Receive one packet (maximum 256 bytes) of program data.
(3) Receive the data SUM value (2-byte data).
(4) Calculate the SUM value for the received one packet data and compare with the received SUM value (2-byte

data).
(5) If there is no match, error code is sent to master device.
(6) If the values match, set the CPU clock to 10 MHz or lower so that one packet of data is written to the user ROM

area before returning the CPU clock to its original setting.
• When the data has been successfully written, the write complete code is sent to the master device.
• If a write error occurs, an error code is sent to the master device and data reception is stopped.

(7) If an error does not occur, steps (2) through (6) are repeated until receipt of the data is completed.

When the received command is "ers"
(1) Set the CPU clock to 10 MHz or lower and erase the program ROM area before returning the CPU clock to its

original setting.
(2) When successfully erased, the erase complete code is sent to the master device.
(3) If an erase error occurs, an error code is sent to the master device.

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 9 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

5. Structure

6. Function Tables

Declaration

typedef struct buff{
 unsigned char command[CMD_SIZE];
 unsigned short size;
 unsigned char prg_data[RECORD_SIZE];
 unsigned short rev_sum;
}REV_BUFF;

Variable

unsigned char command[CMD_SIZE] Receive command
unsigned short size Receive size

unsigned char prg_data[RECORD_SIZE] RECORD_SIZE (256) byte data storage
array

unsigned short rev_sum SUM value storage variable
Function Store the received sample program (256 bytes) and the SUM value.

Declaration void main(void)
Outline Main function
Argument None

Variable (global)

Variable name Content

REV_BUFF rb
Array for storing received data
Size data
Store the SUM value

Returned value None

Function
Initialize CPU operating mode and the peripheral functions.
Receive data from the master device, and execute the command.
Transmit the execution result to the master device.

Declaration void mcu_init(void)
Outline CPU initial setting function
Argument None
Variable (global) None
Returned value None
Function Select the PLL clock as the CPU clock.

Declaration void peripheral_init(void)
Outline Initial setting of peripheral functions
Argument None
Variable (global) None
Returned value None
Function Set timer A0 to 10 ms, and UART3 transmission/reception.

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 10 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

Declaration void cpu_slow(void)
Outline CPU slow down processing function
Argument None
Variable (global) None
Returned value None
Function Select the CPU clock as main clock.

Declaration void cpu_fast(void)
Outline CPU speed up processing function
Argument None
Variable (global) None
Returned value None
Function Select the CPU clock as the PLL clock.

Declaration unsigned char rev_byte(unsigned char *rev_data)
Outline 1-byte command receive function

Argument
Argument name Meaning

unsigned char *rev_data Address of the array for storing a received
command

Variable (global) None

Returned value

 Type Value Meaning

unsigned char
COMPLETE Successfully completed
ERR_URT_TMO Timeout
ERR_URT_RCV Error occurred

Function Store the received 1-byte data in the array.

Declaration unsigned char rev_cmd_check(unsigned char *cmd_buff)
Outline Command check function

Argument
Argument name Meaning

unsigned char *cmd_buff Starting address of the array for storing a received
command.

Variable (global) None

Returned value

Type Value Meaning

unsigned char
REV_ERASE Erase command received
REV_PROGRAM Program command received
REV_ERROR Error occurred

Function Determine the received character string and return the appropriate command.

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 11 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

Declaration unsigned short rev_size(void)
Outline Size receive function
Argument None
Variable (global) None

Returned value
Type Meaning
unsigned short Received data size

Function Return the size sent from the master device.

Declaration unsigned char rev_data(void)
Outline Program data receive function
Argument None

Variable (global)

Variable name Content

REV_BUFF rb
Array for storing receive data
Size data
Store the SUM value

Returned value
Type Value Meaning

unsigned char
COMPLETE Successfully received
ERROR Failed to receive

Function
Receive 256-byte data and the SUM value.
Compare the SUM value for the received one packet data and the received SUM value.
When the received data is 256 bytes or less, write FFh in the remaining space.

Declaration void snd_msg(unsigned char *msg)
Outline Message send function

Argument
Argument name Meaning

unsigned char *msg Starting address of the array for the transmit
message

Variable (global) None
Returned value None
Function Send a message to the master device.

Declaration unsigned char erase(void)
Outline Flash memory erase function
Argument None
Variable (global) None

Returned value

Type Value Meaning

unsigned char

COMPLETE Successfully completed
ERR_CMD_SEQ Command sequence error
ERR_ERASE Erase error
ERR_PROGRAM Program write error

Function Erase the specified block in EW1 mode and execute a full status check.

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 12 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

Declaration unsigned char receive_program(void)
Outline Flash memory write function
Argument None

Variable (global)

Variable name Content

REV_BUFF rb
Array for storing receive data
Size data
Store the SUM value

Returned value

Type Value Meaning

unsigned char

COMPLETE Successfully completed
ERROR Write data error
ERR_ERASE Erase error
ERR_PROGRAM Program write error
ERR_CMD_SEQ Command sequence error

Function
Receive the size, data, and SUM value sent from the master device.
Write 256 bytes of data from the specified address in EW1 mode.
If an error occurred during the write operation, execute the clear status command.

Declaration unsigned char block_erase_command(unsigned short far* addr)
Outline Block erase function

Argument
Argument name Meaning
unsigned short far* addr Address of block to be erased

Variable (global) None

Returned value

Type Value Meaning

unsigned char

COMPLETE Successfully completed
ERR_CMD_SEQ Command sequence error
ERR_ERASE Erase error
ERR_PROGRAM Program write error

Function After executing the block erase command to the specified block, execute a full status check.

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 13 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

Declaration unsigned char program_command(unsigned short far* addr,unsigned short *buff)
Outline Program function

Argument
Argument name Meaning
unsigned short far* addr Starting address of write destination
unsigned short *buff 2-byte write data

Variable (global) None

Returned value

Type Value Meaning

unsigned char

COMPLETE Successfully completed
ERR_CMD_SEQ Command sequence error
ERR_ERASE Erase error
ERR_PROGRAM Program write error

Function After executing the program command to the specified address, execute a full status check.

Declaration unsigned char full_status_check(void)
Outline Full status check function
Argument None
Variable (global) None

Returned value

Type Value Meaning

unsigned char

COMPLETE Successfully completed
ERR_CMD_SEQ Command sequence error
ERR_ERASE Erase error
ERR_PROGRAM Program write error

Function Execute a full status check and return the result.

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 14 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

7. Flowcharts

7.1 Main Function

Figure 7.1 Main Function

main(void)

CPU initial setting

3 bytes received ?

Successfully completed ?

Receive size initialization
Receive command

command = REV_ERASE default

Yes

No

Peripheral function initial setting

Flash memory erase
erase()

peripheral_init()

rev_byte(&rev_command[i])
1-byte command reception

rev_cmd_check(&rev_command[0])
Check receive command

Flash memory write
receive_program()

Reception size initialization

No

Yes

command = REV_PROGRAM

Increment receive size

Successfully completed ?

Yes

No

Note:
 1. In this application note, an error message is only sent when an error occurs.
 Error processing can be added as needed.

send_message(“e”)
Transmit "completed in error" (1)

send_message(“o”)
Transmit "successfully completed"

Receive error

U3C1 register ← 05h

TABSR register← 01h

Enable UART3 transmission/reception

Start timer A0 count

Enable maskable interrupts

Disable maskable interrupts

mcu_init()
CPU initial setting

Peripheral function
initialization

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 15 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

7.2 CPU Initial Setting Function

Figure 7.2 CPU Initial Setting Function

mcu_init(void)

PRC0 bit in the PRCR register ← 1

PLC07 bit in the PLC0 register ← 1

Protection disabled

Bits MCD4 to MCD0 in the MCD register ← 10010b

Wait for tsu(PLL)

CM17 bit in the CM1 register ← 1

return

Main clock divide-by-1 (no division) mode

PLL runs (1)

Wait for the PLL frequency synthesizer to stabilize.

PRC0 bit in the PRCR register ← 0 Protection enabled

Set registers PLC0 and PLC1
PLC0 register ← 0101 0011b
PLC1 register ← 0000 0010b

Select the multiplication factor to 3 for the PLL clock. (1)

Note:
 1. Simultaneously set registers PLC0 and PLC1 in 16-bit units.

Select the PLL clock as the CPU clock.

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 16 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

7.3 Peripheral Function Initial Setting Function

Figure 7.3 Peripheral Function Initial Setting Function

peripheral_init(void)

UART mode, 8-bit data length
Internal clock, 1 stop bit
Parity disabled, not inverted

U3BRG register ← UART_BRG Set the baud rate to 38400 bps.

U3BRG count source: f1
Disable CTS function, LSB first

UART3 setting

U3SMR register ← 00h
U3SMR2 register ← 00h
U3SMR3 register ← 00h
U3SMR4 register ← 00h

Disable transmit operations.
Disable receive operations.
Transmit interrupt source select bit

Timer A0 setting

TA0 register ← TIM10MS Set 10 ms timer.

Disable timer A0 interrupt.

Transmit interrupt priority level select bits
Interrupt not requested

Receive interrupt priority level select bits
Interrupt not requested

Pin settings in the Function Select Registers

One-shot timer mode
Enable one-shot start bit.
Count source: f8

U3MR register

U3C0 register

U3C1 register

S3TIC register

S3RIC register

TA0MR register

TA0IC register

Bits SMD2 and SMD0 ← 101b
CKDIR bit ← 0
STPS bit ← 0
PRY bit ← 0
PRYE bit ← 1
IOPOL bit ← 0

Bits CLK1 and CLK0 ← 00b
CRS bit ← 1
TXEPT bit ← 0
CRD bit ← 1
NCH bit ← 0
CKPOL bit ← 0
UFORM bit ← 0

TE bit ← 0
TI bit ← 1
RE bit ← 0
RI bit ← 0
U3IRS bit ← 0
U3RRM bit ← 0
U3LCH bit ← 0

Bits ILVL2 to ILVL0 ← 000b
IR bit ← 0

Bits ILVL2 to ILVL0 ← 000b
IR bit ← 0

Bits TMOD1 and TMOD0 ← 10b
MR1 bit ← 0
MR2 bit ← 0
MR3 bit ← 0
Bits TCK1 and TCK0 ← 01b

Bits ILVL2 to ILVL0 ← 000b
IR bit ← 0

return

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 17 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

7.4 CPU Slow Down Processing Function

Figure 7.4 CPU Slow Down Processing Function

7.5 CPU Speed Up Processing Function

Figure 7.5 CPU Speed Up Processing Function

cpu_slow(void)

PRC0 bit in the PRCR register ← 1 Protection disabled

CPU clock: Main clock (1)CM17 bit in the CM1 register ← 0

PRC0 bit in the PRCR register ← 0 Protection enabled

return

Note:
 1. Set the CPU clock to 10 MHz or less.

cpu_fast(void)

PRC0 bit in the PRCR register ← 1 Protection disabled

Main clock: No divisionBits MCD4 to MCD0 in the MCD register ← 10010b

PRC0 bit in the PRCR register ← 0 Protection enabled

CM17 bit in the CM1 register ← 1 CPU clock: PLL clock

return

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 18 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

7.6 1-byte Command Receive Function

Figure 7.6 1-byte Command Receive Function

rev_byte(unsigned char *rev_data)

return (ret)

Received 1 byte ?

Yes (ir_ta0ic = 1)

No (ri_u0c1 = 0)

TA0OS bit in the ONSF register ← 0

Received 1 byte ?

Clear timer A0 interrupt request.

rev_buff ← U0RB

Yes (result = COMPLETE)

No (result = ERR_URT_TMO)

TA0OS bit in the ONSF register ← 1 Start timer A0 one-shot.

10 ms elapsed ? (1)

ret ← ERR_URT_TMO

Stop timer A0 one-shot.

Successfully received ?

*rev_data ← rev_ buff & FFh ret ← ERR_URT_RCV

Yes (ri_u0c1 = 1) No (ir_ta0ic = 0)

ret ← COMPLETE Initialize the received result.

Yes ((rev_buff & F000h) = 00h)

No

Store data in buffers temporarily.

Store the received
data in the array.

Note:
 1. Timeout processing is performed when a command is received in this function, while it is not performed in other functions.
 Timeout processing can be added to other functions when necessary.

TA0IC register: Bits ILVL2 to ILVL0 ← 000b
IR bit ← 0

Argument
unsigned char *rev_data: Address of the array for storing the received
command.

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 19 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

7.7 Command Check Function

Figure 7.7 Command Check Function

7.8 Size Receive Function

Figure 7.8 Size Receive Function

rev_cmd_check
(unsigned char *cmd_buff)

return (ret)

Receive command
is “ers” ?

Yes

No

ret ← REV_ERASE Erase command

Receive command is
“prg” ?

Yes

No

ret ← REV_PROGRAM Program command

ret ← REV_ERROR Initialize the received result.

Argument
unsigned char *cmd_buff: Starting address of the array for
storing a received command

rev_size(void)

return (ret)

1 byte received ?

Yes (ri_u0c1 = 1)

No (ri_u0c1 = 0)

ret ← U0RB & FFh Store size upper data.

Shift stored data 8 bits to the left.ret ← rev_size << 8

1 byte received ?

Yes (ri_u0c1 = 1)

No (ri_u0c1 = 0)

ret ← ret | (U0RB & FFh) Store size lower data and match to upper data.

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 20 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

7.9 Program Data Receive Function

Figure 7.9 Program Data Receive Function

rev_data(void)

return (ret)

Stored amount of data
 equal to the received size ?

Yes (ri_u0c1 = 1)

No (ri_u0c1 = 0)

sum ← sum + rb.prg_data[i]

1 byte received ?

rb.prg_data[i] ← U0RB & FFh

SUM ← 0

Store received data.

Decrement the received size.

ret ← COMPLETE

buff -> prg_data[i] ← FFh

Yes

ret ← FAIL

Initialize SUM value.

Yes (i = RECORD_SIZE)

No (i < RECORD_SIZE)

rb.size ← rb.sum - 1

1 byte received ?

buff->rev_sum ← U0RB & FFh

1 byte received ?

rb.rev_sum ←
(rb.rev_sum) | ((U0RB & FFh) << 8)

Stored amount of data
 equal to the received size

prg_data[i] ?

SUM value is equal ?

Yes (sum = rb.rev_sum)

No

Add SUM value.

No

Receive lower SUM value data.

Combine the received upper SUM value data and
the lower SUM value data.

When the received data is 256
bytes or less, write FFh in the
remaining space.

Initialize received result.

No (ri_u0c1 = 0)

Yes (ri_u0c1 = 1)

No (ri_u0c1 = 0)

Yes (ri_u0c1 = 1)

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 21 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

7.10 Message Transmit Function

Figure 7.10 Message Transmit Function

return

Yes (*mess !=‘/0’)

No (*mess =‘/0’)

Data stored in
 transmit buffer ?

U0TB register ← *mess Send 1-byte data.

Yes (ti_u0c1 = 0)

No (ti_u0c1 = 1) Wait until there is no data in the U0TB register.

send_message
(const unsigned char *mess)

Transmit data exits ?

Argument
const unsigned char *mess: Starting address of the array for the
transmit message.

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 22 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

7.11 Flash Memory Erase Function

Figure 7.11 Flash Memory Erase Function

FMR01 bit in the FMR0 register ← 0

FMR01 bit in the FMR0 register ← 1
Enable CPU rewrite mode (1)

return (ret)

erase(void)

cpu_slow()
CPU slow down processing

PRC1 bit in the PRCR register ← 1

PM12 bit in the PM1 register ← 1

PRC0 bit in the PRCR register ← 0

Protection disabled

Number of internal memory waits: 1

Protection enabled

FMR11 bit in the FMR1 register ← 0

FMR11 bit in the FMR1 register ← 1
EW1 mode (2)

Successfully
completed ?

No

Yes (ret = COMPLETE)

Successfully
completed ?

No

Yes (ret = COMPLETE)

FMR01 bit in the FMR0 register ← 0 Disable CPU rewrite mode.

*addr ← CLR_STS_CMD

Notes:
 1. To set the FMR01 bit to 1, write 1 to the FMR01 bit in the FMR0 register immediately after writing 0 to the bit.
 When setting the FMR01 bit, write to the FMR0 register in 8-bit units. Do not generate an interrupt or a DMA or
 DMACII transfer between these two settings.
 2. To set the FMR11 bit in the FMR1 register to 1, write 1 to the FMR11 bit immediately after writing 0 to the bit while the
 FMR01 bit in the FMR0 register is set to 1.
 When setting the FMR11 bit, write to the FMR1 register in 8-bit units. Do not generate an interrupt or a DMA or
 DMACII transfer between these two settings.
 Set the FMR11 bit while the NMI pin level is held "H".
 When setting the FMR01 bit to 0, the FMR11 bit becomes 0.

Initialize CPU settingcpu_fast()
CPU speed up processing

Peripheral function initialization setting
peripheral_init()

Peripheral function
initialization processing

U3C1 register ← 05h

TABSR register ← 01h

Enable UART3 transmission/reception

Start timer A0 count.

full_status_check()
Full status check

block_erase_command(addr)
Block erase function

*addr ← CLR_STS_CMD

Disable maskable interrupts

Enable maskable interrupts

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 23 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

7.12 Flash Memory Write Function

Figure 7.12 Flash Memory Write Function

FMR01 bit in the FMR0 register ← 0

return(ret)

CPU rewrite mode
disabled

receive_program(void)

rev_size()
Size receive function

rev_data()
Program data receive function

Received size > 0 ?

Successfully received ?

Yes (ret = COMPLETE)

No

cpu_slow()
CPU slow down process

FMR01 bit in the FMR0 register ← 0

FMR01 bit in the FMR0 register ← 1

PRC1 bit in the PRCR register ← 1

PM12 bit in the PM1 register ← 1

PRC1 bit in the PRCR register ← 0

Protection disabled

Number of internal memory waits: 1

Protection enabled

FMR11 bit in the FMR1 register ← 0

FMR11 bit in the FMR1 register ← 1
EW1 mode (2)

full_status_check()
Full status check

Successfully completed ?
No

Yes (ret = COMPLETE)

*addr ← CLR_STS_CMD

Successfully completed ?
No

Yes (ret = COMPLETE)

Yes

No

Notes:
 1. To set the FMR01 bit to 1, write 1 to the FMR01 bit in the FMR0 register immediately after writing 0 to the bit.
 When setting the FMR01 bit, write to the FMR0 register in 8-bit units. Do not generate an interrupt or a DMA or DMACII
 transfer between these two settings.
 2. To set the FMR11 bit in the FMR1 register to 1, write 1 to the FMR11 bit immediately after writing 0 to the bit while the
 FMR01 bit in the FMR0 register is set to 1.
 When setting the FMR11 bit, write to the FMR1 register in 8-bit units. Do not generate an interrupt or a DMA or DMACII
 transfer between these two settings.
 Set the FMR11 bit while the NMI pin level is held "H".
 When setting the FMR01 bit to 0, the FMR11 bit becomes 0.

CPU rewrite mode enabled (1)

No

Yes

Disable maskable interrupts

*addr ← CLR_STS_CMD
CPU initial settingcpu_fast()

CPU speed up processing

Peripheral function
initialization settingperipheral_init()

Peripheral function
initialization processing

U3C1 register ← 05h

TABSR register ← 01h

Enable UART3
transmit/receive
Start timer A0 count

Enable maskable interrupts

program_command
(addr,&buf_data)

Program function

To the next written address

Successfully completed or
wrote an amount of data equal

to the received size ?

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 24 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

7.13 Block Erase Function

Figure 7.13 Block Erase Function

7.14 Program Function

Figure 7.14 Program Function

block_erase_command
(unsigned short far* addr)

*cmd ← 0020h

*cmd ← 00D0h

cmd ← addr

Successfully erased ?

Yes (FMR00 = 1)

No (FMR00 = 0)

full_status_check()
Full status check

Successfully
completed ?

No

Yes (ret = COMPLETE) *addr ← CLR_STS_CMD

Write 00D0h to the highest-order even address.

Argument
unsigned short far* addr: block address to be erased

Write 0020h to the highest-order even address.

return(ret)

program_command
(unsigned short far* addr, unsigned short *buff)

*cmd ← 0040h

*cmd ← *buff

cmd ← addr

Successfully programmed ?

Yes (FMR00 = 1)

No (FMR00 = 0)

full_status_check()
Full status check

Successfully completed ?
No

Yes (ret = COMPLETE) *addr ← CLR_STS_CMD

Write 0040h to the highest-order even address.

Write data

Argument
unsigned short far* addr: Starting address to be written
unsigned short *buff: 2-byte write data

return(ret)

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 25 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

7.15 Full Status Check Function

Figure 7.15 Full Status Check Function

full_status_check(void)

Successfully completed

FMR07 bit = 1
and

FMR06 bit = 1 ?

Yes

No

FMR06 bit = 1 ?
Yes

No

Command sequence error

FMR07 bit = 1 ? Erase error

Program error

Yes

No

M32C/84, 85, 87, 88 Groups

REJ05B1424-0100 Rev.1.00 Page 26 of 26
Nov. 15, 2010

Example of Rewriting the User ROM Area Using EW1 Mode

8. Sample Program
A sample program can be downloaded from the Renesas Electronics website.

9. Reference Documents
User’s Manuals
R32C/84 Group (M32C/84, M32C/84T) User’s Manual: Hardware Rev.1.01
R32C/85 Group (M32C/85, M32C/85T) User’s Manual: Hardware Rev.1.03
R32C/87 Group (M32C/87, M32C/87A, M32C/87B) User’s Manual: Hardware Rev.1.51
R32C/88 Group (M32C/88T) User’s Manual: Hardware Rev.1.10
The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News
The latest information can be downloaded from the Renesas Electronics website.

C Compiler Manual
M32C/100 Series C Compiler Package V.5.42 Release 00 C Compiler User’s Manual Rev.2.00
The latest version can be downloaded from the Renesas Electronics website.

Website and Support
Renesas Electronics website
http://www.renesas.com/

Inquiries
http://www.renesas.com/inquiry

A - 1

REVISION HISTORY M32C/84, 85, 87, 88 Groups
 Example of Rewriting the User ROM Area Using EW1 Mode

Rev. Date
Description

Page Summary
1.00 Nov. 15, 2010 - First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes
on the products covered by this manual, refer to the relevant sections of the manual. If the descriptions under
General Precautions in the Handling of MPU/MCU Products and in the body of the manual differ from each
other, the description in the body of the manual takes precedence.

1. Handling of Unused Pins
Handle unused pins in accord with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation

with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the
vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur
due to the false recognition of the pin state as an input signal become possible. Unused
pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register

settings and pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states
of pins are not guaranteed from the moment when power is supplied until the reset
process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset
function are not guaranteed from the moment when power is supplied until the power
reaches the level at which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do

not access these addresses; the correct operation of LSI is not guaranteed if they are
accessed.

4. Clock Signals
After applying a reset, only release the reset line after the operating clock signal has become
stable. When switching the clock signal during program execution, wait until the target clock
signal has stabilized.
 When the clock signal is generated with an external resonator (or from an external

oscillator) during a reset, ensure that the reset line is only released after full stabilization of
the clock signal. Moreover, when switching to a clock signal produced with an external
resonator (or by an external oscillator) while program execution is in progress, wait until
the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to one with a different part number, confirm
that the change will not lead to problems.
 The characteristics of MPU/MCU in the same group but having different part numbers may

differ because of the differences in internal memory capacity and layout pattern. When
changing to products of different part numbers, implement a system-evaluation test for
each of the products.

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-65030, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

	1. Abstract
	2. Introduction
	3. CPU Rewrite Modes
	3.1 EW1 Mode Features
	3.2 EW1 Mode Settings
	3.2.1 Memory Map

	3.3 Notes on EW1 Mode
	3.3.1 Operating Speed
	3.3.2 Interrupts
	3.3.3 How to Access
	3.3.4 Rewriting User ROM Area
	3.3.5 Writing Command and Data
	3.3.6 Block Erase
	3.3.7 Wait Mode
	3.3.8 Stop Mode
	3.3.9 Low-Power Consumption Mode and On-Chip Oscillator Low-Power Consumption Mode

	4. Description of the Application Example
	5. Structure
	6. Function Tables
	7. Flowcharts
	7.1 Main Function
	7.2 CPU Initial Setting Function
	7.3 Peripheral Function Initial Setting Function
	7.4 CPU Slow Down Processing Function
	7.5 CPU Speed Up Processing Function
	7.6 1-byte Command Receive Function
	7.7 Command Check Function
	7.8 Size Receive Function
	7.9 Program Data Receive Function
	7.10 Message Transmit Function
	7.11 Flash Memory Erase Function
	7.12 Flash Memory Write Function
	7.13 Block Erase Function
	7.14 Program Function
	7.15 Full Status Check Function

	8. Sample Program
	9. Reference Documents
	Website and Support
	REVISION HISTORY

