
 Application Note

R01AN2222EJ0201 Rev.2.01 Page 1 of 44
Nov.30.20

RX Family
SCI FIFO Module Using Firmware Integration Technology
Introduction
This application note describes the SCI FIFO module which uses Firmware Integration Technology (FIT).

This module provides Asynchronous and Master Synchronous support for all channels of the SCI FIFO
peripheral. Channels and modes may be configured on an individual basis, with disabled channels and
modes allocating no resources.

Target Device
The following is a list of devices that are currently supported by this API:

• RX64M Group
• RX71M Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Related Documents
• Firmware Integration Technology User’s Manual (R01AN1833)
• RX Family Board Support Package Firmware Integration Technology Module (R01AN1685)

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 2 of 44
Nov.30.20

Contents

1. Overview ... 4
1.1 SCIF FIT Module ... 4
1.2 Overview of the SCIF FIT Module ... 4
1.3 API Overview ... 5

2. API Information .. 6
2.1 Hardware Requirements ... 6
2.2 Hardware Resource Requirements ... 6

2.2.1 SCIFA .. 6
2.2.2 GPIO .. 6

2.3 Software Requirements ... 6
2.4 Supported Toolchains ... 6
2.5 Interrupt Vector .. 7
2.6 Header Files .. 7
2.7 Integer Types ... 7
2.8 Configuration Overview ... 8
2.9 Code Size .. 9
2.10 Parameters .. 11
2.11 Return Values .. 11
2.12 Callback Function .. 11
2.13 Adding the FIT Module to Your Project ... 12
2.14 "for", "while" and "do while" statements .. 13
2.15 Limitations ... 14

2.15.1 RAM Location Limitations .. 14

3. API Functions .. 15
3.1 R_SCIF_Open() ... 15
3.2 R_SCIF_Close() .. 21
3.3 R_SCIF_Send() ... 22
3.4 R_SCIF_Receive() .. 26
3.5 R_SCIF_SendReceive() .. 30
3.6 R_SCIF_Control() .. 32
3.7 R_SCIF_GetVersion() ... 35

4. Pin Setting ... 36

5. Demo Projects ... 37
5.1 Adding the Demo to a Workspace ... 37
5.2 Downloading Demo Projects ... 37
5.3 Demo for RX64M (scif_demo_rskrx64m) .. 38
5.4 Demo for RX71M (scif_demo_rskrx71m) .. 39

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 3 of 44
Nov.30.20

6. Appendix ... 40
6.1 Operating Test Environment ... 40
6.2 Troubleshooting ... 42

Revision History .. 43

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 4 of 44
Nov.30.20

1. Overview
1.1 SCIF FIT Module
The SCIF FIT module can be used by being implemented in a project as an API. See section 2.13 Adding
the FIT Module to Your Project for details on methods to implement this FIT module into a project.

1.2 Overview of the SCIF FIT Module
This SCI FIFO driver supports the SCIFA peripheral on the RX64M and RX71M. The hardware functionality
is detailed in Chapter 41 of the RX64M/RX71M Hardware User’s Manual. All basic UART and Master
Synchronous mode functionality is supported by this driver. Additionally, the driver supports the following
features in Asynchronous mode:

• noise cancellation.
• MSB-first bit order
• flow control with CTS / RTS.

Features not supported by this driver are:

• DRIF interrupt (works only for messages less than threshold number of bytes in length)

This is a multi-channel driver which supports all channels present on the peripheral. Specific channels can
be excluded via compile-time equates to reduce driver RAM and ROM usage and code size if desired. These
equates are specified in "r_scif_rx_config.h".

An individual channel is initialized in the application by calling R_SCIF_Open(). This function applies power
to the peripheral and initializes settings particular to the specified mode. A handle is returned from this
function to uniquely identify the channel. The handle references an internal driver structure that maintains
pointers to the channel’s register set, buffers, and other critical information. It is also used as an argument for
the other API functions.

This driver is interrupt-driven and non-blocking. For Asynchronous mode, data will be stored in the receive
FIFO until an overflow occurs or an R_SCIF_Receive() is issued (whichever comes first). Interrupts
supported by this driver are TXIF, RXIF, and the GROUPAL0 TEIF, ERIF, and BRIF interrupts.

The TXIF interrupt occurs whenever the configured threshold number of bytes remain in the transmit FIFO.
During this interrupt the FIFO is loaded with more bytes from the transmit message until either no more data
remains in the message or the transmit FIFO becomes full (whichever comes first). The TEIF interrupt occurs
only after the last bit of the last byte from the FIFO has been shifted out of the TSR register. If a callback
function is provided in the R_SCIF_Open() call, it is called here with a SCIF_EVT_TX_DONE
(Asynchronous) or SCIF_EVT_XCV_DONE (Synchronous) event passed to it. The Send() and
SendReceive() functions can have two transmit requests outstanding at a time to provide continuous
streaming of data. The DONE event does not occur until all outstanding requests have been processed. If it
is desired to know when each message completes, no more than one request should be outstanding at a
time.

The RXIF interrupt occurs each time the receive FIFO contains the configured number of threshold bytes.
During this interrupt, the message buffer is loaded with data from the FIFO until the requested number of
bytes have been read or until no more data remains in the FIFO. When the entire number of bytes requested
have been read and if a callback function is provided, it is called with a SCIF_EVT_RX_DONE
(Asynchronous) or SCIF_EVT_XCV_DONE (Synchronous) event. The Receive() and SendReceive()
functions can have two receive requests outstanding at a time to provide continuous streaming of data. The
DONE event does not occur until all outstanding requests have been processed. If it is desired to know when
each message completes, no more than one request should be outstanding at a time.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 5 of 44
Nov.30.20

In Asynchronous mode, the ERIF interrupt occurs when a framing or parity error is detected by the receiver
hardware, and the BRIF interrupt occurs when a Break is received or a receive-FIFO overflow occurs. If a
callback function is provided, the interrupt determines which error occurred and notifies the application of the
event. Whether a callback function is provided or not, the interrupt clears the error condition by writing "0" to
the appropriate FSR or LSR error flag.

1.3 API Overview
Table 1.1 lists the API functions included in this module.

Table 1.1 API Functions

Function Description
R_SCIF_Open Applies power to the SCIF channel, initializes the associated registers, enables

interrupts, and provides the channel handle for use with other API functions.
Takes an optional callback function pointer for notifying the user at interrupt
level whenever a receiver error or other interrupt events have occurred.

R_SCIF_Close Removes power to the SCIF channel and disables the associated interrupts.

R_SCIF_Send Queues message for sending on the transmit FIFO. Up to two requests can be
outstanding at a time. Transmission begins immediately if transmitter is idle.

R_SCIF_Receive Queues message for receiving from the receive FIFO. Up to two requests can
be outstanding at a time. In Sync mode, driver starts clocking in data
immediately if transceiver is idle.

R_SCIF_SendReceive For Synchronous mode only. Transmits and receives data simultaneously. Up
to two requests total (Send(), Receive(), and/or SendReceive()) can be
outstanding at a time.

R_SCIF_Control Handles special hardware or software operations for the SCIF channel.

R_SCIF_GetVersion Returns at runtime the driver version number.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 6 of 44
Nov.30.20

2. API Information
This FIT module has been confirmed to operate under the following conditions.

2.1 Hardware Requirements

The MCU used must support the following functions:

• SCIFA peripheral

2.2 Hardware Resource Requirements

This section details the hardware peripherals that this driver requires. Unless explicitly stated, these
resources must be reserved for the driver and the user cannot use them.

2.2.1 SCIFA
This driver makes use of the SCIFA peripheral. Individual channels may be omitted by this driver by disabling
them in the "r_scif_rx_config.h" file.

2.2.2 GPIO
This driver utilizes port pins corresponding to each individual channel. These pins may not be used for GPIO.

2.3 Software Requirements

This driver is dependent upon the following FIT module:

• Renesas Board Support Package (r_bsp)

2.4 Supported Toolchains

This driver has been confirmed to work with the toolchain listed in 6.1, Operating Test Environment.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 7 of 44
Nov.30.20

2.5 Interrupt Vector

For asynchronous mode, when the R_SCIF_Open function is executed, interrupts TXIFn, RXIFn, TEIFn,
ERIFn, and BRIFn become enabled. When the R_SCIF_Send function is executed, the DRIFn interrupt
becomes enabled.

For synchronous mode, when the R_SCIF_Open function is executed, interrupts TXIFn, RXIFn, and TEIFn
become enabled. When the R_SCIF_Send function is executed, the DRIFn interrupt becomes enabled.

Table 2.1 shows the interrupt vectors used by the SCI FIFO FIT module.

 Table 2.1 List of Usage of Interrupt Vectors

Device Contents
RX64M
RX71M

RXIF8 interrupt [channel 8] (vector no.: 100)
TXIF8 interrupt [channel 8] (vector no.: 101)
RXIF9 interrupt [channel 9] (vector no.: 102)
TXIF9 interrupt [channel 9] (vector no.: 103)
RXIF10 interrupt [channel 10] (vector no.: 104)
TXIF10 interrupt [channel 10] (vector no.: 105)
RXIF11 interrupt [channel 11] (vector no.: 114)
TXIF11 interrupt [channel 11] (vector no.: 115)

GROUPAL0 interrupt (vector no.: 112)
 TEIF8 interrupt [channel 8] (group interrupt source no.: 0)
 ERIF8 interrupt [channel 8] (group interrupt source no.: 1)
 BRIF8 interrupt [channel 8] (group interrupt source no.: 2)
 DRIF8 interrupt [channel 8] (group interrupt source no.: 3)
 TEIF9 interrupt [channel 9] (group interrupt source no.: 4)
 ERIF9 interrupt [channel 9] (group interrupt source no.: 5)
 BRIF9 interrupt [channel 9] (group interrupt source no.: 6)
 DRIF9 interrupt [channel 9] (group interrupt source no.: 7)
 TEIF10 interrupt [channel 10] (group interrupt source no.: 8)
 ERIF10 interrupt [channel 10] (group interrupt source no.: 9)
 BRIF10 interrupt [channel 10] (group interrupt source no.: 10)
 DRIF10 interrupt [channel 10] (group interrupt source no.: 11)
 TEIF11 interrupt [channel 11] (group interrupt source no.: 12)
 ERIF11 interrupt [channel 11] (group interrupt source no.: 13)
 BRIF11 interrupt [channel 11] (group interrupt source no.: 14)
 DRIF11 interrupt [channel 11] (group interrupt source no.: 15)

2.6 Header Files

All API calls and their supporting interface definitions are located in r_scif_rx_if.h.

2.7 Integer Types

This project uses ANSI C99. These types are defined in stdint.h.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 8 of 44
Nov.30.20

2.8 Configuration Overview

The configuration option settings of this module are located in r_scif_rx_config.h. The option names and
setting values are listed in the table below:

Configuration options in r_scif_rx_config.h

Definition Contents
#define SCIF_CFG_PARAM_CHECKING_ENABLE 1 If this equate is set to 1, parameter checking is included in the

build. If the equate is set to 0, the parameter checking is
omitted from the build. Setting this equate to
BSP_CFG_PARAM_CHECKING_ENABLE utilizes the system
default setting.

#define SCIF_CFG_ASYNC_INCLUDED 1
#define SCIF_CFG_SYNC_INCLUDED 0

These equates are used to include code specific to their mode
of operation. A value of 1 means that the supporting code will
be included. Use a value of 0 for unused modes to reduce
overall code size.

#define SCIF_CFG_CH8_INCLUDED 0
#define SCIF_CFG_CH9_INCLUDED 1
#define SCIF_CFG_CH10_INCLUDED 0
#define SCIF_CFG_CH11_INCLUDED 0

Each channel has associated with it transmit and receive
pointers, counters, interrupts, and other program and RAM
resources. Setting a #define to 1 allocates resources for that
channel.

#define SCIF_CFG_CH8_TX_FIFO_THRESHOLD 8
#define SCIF_CFG_CH9_TX_FIFO_THRESHOLD 8
#define SCIF_CFG_CH10_TX_FIFO_THRESHOLD 8
#define SCIF_CFG_CH11_TX_FIFO_THRESHOLD 8

The transmit FIFO is 16 bytes deep. A TXIF interrupt occurs
when there are threshold number of bytes remaining in the
FIFO, indicating it is time to load more bytes. Valid values are 0
through 15. Ideally, all messages sent are multiples of the
threshold value, and the threshold value is small enough such
that no gaps occur between bytes during transmission at high
bit rates due to reloading the FIFO.

#define SCIF_CFG_CH8_RX_FIFO_THRESHOLD 8
#define SCIF_CFG_CH9_RX_FIFO_THRESHOLD 8
#define SCIF_CFG_CH10_RX_FIFO_THRESHOLD 8
#define SCIF_CFG_CH11_RX_FIFO_THRESHOLD 8

The receive FIFO is 16 bytes deep. An RXIF interrupt
occurs when there are threshold number of bytes
available in the FIFO, indicating it is time to read more
bytes. Valid values are 1 through 16. Ideally, all
messages received are multiples of the threshold value,
and the threshold value is small enough such that no
overflow occurs while receiving at high bit rates due to
insufficient time to read the FIFO.
In Synchronous mode, these values should match the
corresponding TX_FIFO_THRESHOLD for maximum
efficiency.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 9 of 44
Nov.30.20

2.9 Code Size
The sizes of ROM, RAM and maximum stack usage associated with this module and BSP are listed below.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in Section 2.8 "Configuration Overview".

The values in the table below are confirmed under the following conditions.

Module Revision: r_scif_rx rev2.00, r_bsp rev5.50

Compiler Version:

• Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
(The option of "-lang = c99" is added to the default settings of the integrated development
environment.)

• GCC for Renesas RX 8.3.0.201904
(The option of "-std=gnu99" is added to the default settings of the integrated development
environment.)

• IAR C/C++ Compiler for Renesas RX version 4.12.1
(The default settings of the integrated development environment.)

Configuration Options: Default settings

ROM, RAM and Stack Code Sizes for Renesas Compiler

Device /
Communication Methods /

Number of Channels
Category

Memory Used
ROM RAM STACK*1

RX64M
Async only / 1 channel

With Parameter Checking 13,372 bytes 7,769 bytes 220 bytes

Without Parameter Checking 13,071 bytes

RX64M
Async only / 2 channels

With Parameter Checking 13,551 bytes 7,817 bytes 220 bytes

Without Parameter Checking 13,250 bytes

RX64M
Sync only / 1 channel

With Parameter Checking 12,225 bytes 7,764 bytes 208 bytes

Without Parameter Checking 11,995 bytes

RX64M
Sync only / 2 channels

With Parameter Checking 12,366 bytes 7,812 bytes 208 bytes

Without Parameter Checking 12,136 bytes

RX64M
Async only / 1 channel
Sync only / 1 channel

With Parameter Checking 13,886 bytes 7,817 bytes 220 bytes

Without Parameter Checking 13,535 bytes

Note 1. The sizes of maximum usage stack of interrupts functions are included.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 10 of 44
Nov.30.20

ROM, RAM and Stack Code Sizes for Renesas Compiler
Device /

Communication Methods /
Number of Channels

Category
Memory Used

ROM RAM STACK*1
RX64M
Async only / 1 channel

With Parameter Checking 23,464 bytes 7,588 bytes -

Without Parameter Checking 22,880 bytes

RX64M
Async only / 2 channels

With Parameter Checking 23,648 bytes 7,636 bytes -

Without Parameter Checking 23,064 bytes

RX64M
Sync only / 1 channel

With Parameter Checking 21,424 bytes 7,584 bytes -

Without Parameter Checking 21,032 bytes

RX64M
Sync only / 2 channels

With Parameter Checking 21,528 bytes 7,632 bytes -

Without Parameter Checking 21,144 bytes

RX64M
Async only / 1 channel
Sync only / 1 channel

With Parameter Checking 24,096 bytes 7,588 bytes -

Without Parameter Checking 23,432 bytes

Note 1. The sizes of maximum usage stack of interrupts functions are included.

ROM, RAM and Stack Code Sizes for Renesas Compiler

Device /
Communication Methods /

Number of Channels
Category

Memory Used
ROM RAM STACK*1

RX64M
Async only 1 channel

With Parameter Checking 14,990 bytes 5,267 bytes 244 bytes

Without Parameter Checking 14,519 bytes

RX64M
Async only 2 channels

With Parameter Checking 15,131 bytes 5,315 bytes 244 bytes

Without Parameter Checking 14,657 bytes

RX64M
Sync only 1 channel

With Parameter Checking 13,570 bytes 5,266 bytes 240 bytes

Without Parameter Checking 13,290 bytes

RX64M
Sync only 2 channels

With Parameter Checking 13,673 bytes 5,314 bytes 240 bytes

Without Parameter Checking 13,393 bytes

RX64M
Async only 1 channel
Sync only 1 channel

With Parameter Checking 15,499 bytes 5,315 bytes 244 bytes

Without Parameter Checking 14,993 bytes

Note 1. The sizes of maximum usage stack of interrupts functions are included.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 11 of 44
Nov.30.20

2.10 Parameters

The API data structures are located in the file "r_scif_rx_if.h" and discussed in Section 3.

2.11 Return Values

This section describes return values of API functions. This enumeration is located in r_scif_rx_if.h as are the
prototype declarations of API functions.

typedef enum e_scif_err // SCIF API error codes
{
 SCIF_SUCCESS=0,
 SCIF_ERR_BAD_CHAN, // non-existent channel number
 SCIF_ERR_OMITTED_CHAN, // SCI_CHx_INCLUDED is 0 in config.h
 SCIF_ERR_CH_NOT_CLOSED, // channel still running in another mode
 SCIF_ERR_BAD_MODE, // unsupported mode for channel
 SCIF_ERR_INVALID_ARG, // argument is not valid for parameter
 SCIF_ERR_NULL_PTR, // received null ptr; missing required argument
 SCIF_ERR_BUSY, // 2 requests already being processed
 SCIF_ERR_IN_PROGRESS, // request still being processed
} scif_err_t;

2.12 Callback Function

In this module, the callback function registered by the user is called when the SCIF interrupt occurs.

The callback function is specified by storing the address of the user function in the argument (p_callback) of
the R_SCIF_Open() function.

For details on callback functions, refer to the R_SCIF_Open() function in Secion 3.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 12 of 44
Nov.30.20

2.13 Adding the FIT Module to Your Project

This module must be added to each project in which it is used. Renesas recommends using "Smart
Configurator" described in (1) or (3). However, "Smart Configurator" only supports some RX devices. Please
use the methods of (2) or (4) for unsupported RX devices.

(1) Adding the FIT module to your project using "Smart Configurator" in e2 studio

By using the "Smart Configurator" in e2 studio, the FIT module is automatically added to your project.
Refer to "Renesas e2 studio Smart Configurator User Guide (R20AN0451)" for details.

(2) Adding the FIT module to your project using "FIT Configurator" in e2 studio

By using the "FIT Configurator" in e2 studio, the FIT module is automatically added to your project. Refer
to "Adding Firmware Integration Technology Modules to Projects (R01AN1723)" for details.

(3) Adding the FIT module to your project using "Smart Configurator" on CS+

By using the "Smart Configurator Standalone version" in CS+, the FIT module is automatically added to
your project. Refer to "Renesas e2 studio Smart Configurator User Guide (R20AN0451)" for details.

(4) Adding the FIT module to your project in CS+

In CS+, please manually add the FIT module to your project. Refer to "Adding Firmware Integration
Technology Modules to CS+ Projects (R01AN1826)" for details.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 13 of 44
Nov.30.20

2.14 "for", "while" and "do while" statements

In this module, "for", "while" and "do while" statements (loop processing) are used in processing to wait for
register to be reflected and so on. For these loop processing, comments with "WAIT_LOOP" as a keyword
are described. Therefore, if user incorporates fail-safe processing into loop processing, user can search the
corresponding processing with "WAIT_LOOP".

Target devices describing "WAIT_LOOP":

• RX64M, RX71M Group

The following shows example of description.

while statement example :

/* WAIT_LOOP */
while(0 == SYSTEM.OSCOVFSR.BIT.PLOVF)
{
 /* The delay period needed is to make sure that the PLL has stabilized. */
}

for statement example :

/* Initialize reference counters to 0. */
/* WAIT_LOOP */
for (i = 0; i < BSP_REG_PROTECT_TOTAL_ITEMS; i++)
{
 g_protect_counters[i] = 0;
}

do while statement example :

/* Reset completion waiting */
do
{
 reg = phy_read(ether_channel, PHY_REG_CONTROL);
 count++;
} while ((reg & PHY_CONTROL_RESET) && (count < ETHER_CFG_PHY_DELAY_RESET));
/* WAIT_LOOP */

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 14 of 44
Nov.30.20

2.15 Limitations

2.15.1 RAM Location Limitations
In FIT, if a value equivalent to NULL is set as the pointer argument of an API function, error might be
returned due to parameter check. Therefore, do not pass a NULL equivalent value as pointer argument to an
API function.

The NULL value is defined as 0 because of the library function specifications. Therefore, the above
phenomenon would occur when the variable or function passed to the API function pointer argument is
located at the start address of RAM (address 0x0). In this case, change the section settings or prepare a
dummy variable at the top of the RAM so that the variable or function passed to the API function pointer
argument is not located at address 0x0.

In the case of CCRX project (e2 studio V7.5.0), the RAM start address is set as 0x4 to prevent the variable
from being located at address 0x0. In the case of GCC project (e2 studio V7.5.0) and IAR project (EWRX
V4.12.1), the start address of RAM is 0x0, so the above measures are necessary.

The default settings of the section may be changed due to IDE version upgrade. Please check the section
settings when using the latest IDE.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 15 of 44
Nov.30.20

3. API Functions

3.1 R_SCIF_Open()

This function applies power to the SCIF channel, initializes the associated registers, enables interrupts, and
provides the channel handle for use with other API functions.

Format
scif_err_t R_SCIF_Open(
 uint8_t const chan,
 scif_mode_t const mode,
 scif_cfg_t * const p_cfg,
 void (* const p_callback)(void *p_args),
 scif_hdl_t * const p_hdl
);

Parameters
uint8_t chan

Channel to initialize; 8-11

scif_mode_t const mode
Operational mode (see enumeration below)

scif_cfg_t * const p_cfg
Pointer to configuration union, structure elements (see below) are specific to mode.

void (* const p_callback)(void *p_args)
Optional pointer to function called from interrupt when a message send/receive completes or receiver
error occurs.

scif_hdl_t * const p_hdl
Pointer to a handle for channel (value set here)

The following SCIF modes are currently supported by this driver module. The mode specified determines the
union structure element used for the p_cfg parameter.

typedef enum e_scif_mode // SCIF operational modes
{
 SCIF_MODE_OFF=0, // channel not in use
 SCIF_MODE_ASYNC, // Asynchronous
 SCIF_MODE_SYNC, // Synchronous
 SCIF_MODE_END_ENUM
} scif_mode_t;

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 16 of 44
Nov.30.20

The following enumerations indicate configurable options for Asynchronous mode used in its configuration
structure. These values correspond to bit definitions in the SCR and SMR registers.

typedef enum e_scif_clk
{
 SCIF_CLK_INT = 0x00, // use internal clock for baud generation
 SCIF_CLK_EXT8X = 0x03, // use external clock 8x baud rate
 SCIF_CLK_EXT16X = 0x02 // use external clock 16x baud rate
} scif_clk_t;

typedef enum e_scif_size
{
 SCIF_DATA_7BIT = 0x40,
 SCIF_DATA_8BIT = 0x00
} scif_size_t;

typedef enum e_scif_parity_en
{
 SCIF_PARITY_ON = 0x20,
 SCIF_PARITY_OFF = 0x00
} scif_parity_en_t;

typedef enum e_parity_t
{
 SCIF_ODD_PARITY = 0x10,
 SCIF_EVEN_PARITY = 0x00
} scif_parity_t;

typedef enum e_scif_stop_t
{
 SCIF_STOPBITS_2 = 0x08,
 SCIF_STOPBITS_1 = 0x00
} scif_stop_t;

The complete runtime configurable options for Asynchronous mode are declared in the structure below. This
structure is an element of the p_cfg parameter.

typedef struct st_scif_uart
{
 uint32_t baud_rate; // ie 9600, 19200, 115200
 scif_clk_t clk_src;
 scif_size_t data_size;
 scif_parity_en_t parity_en;
 scif_parity_t parity_type;
 scif_stop_t stop_bits;
 uint8_t txif_priority; // txif INT priority; 1=low, 15=high
 uint8_t rxif_priority; // rxif INT priority; 1=low, 15=high
 uint8_t group_priority; // teif, erif, brif INT priority;
 // must be greater than rx_priority
} scif_uart_t;

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 17 of 44
Nov.30.20

The configuration structure for Synchronous mode is as follows:

typedef struct st_scif_sync
{
 uint32_t bit_rate; // ie 1000000 for 1Mbps
 bool msb_first;
 uint8_t int_priority; // transceiver interrupt priority; 1=low, 15=high
} scif_sync_t;

The union for p_cfg is:

typedef union
{
 scif_uart_t async;
 scif_sync_t sync;
} scif_cfg_t;

Return Values
SCIF_SUCCESS: Successful; channel initialized
SCIF_ERR_BAD_CHAN: Channel number is invalid for part
SCIF_ERR_OMITTED_CHAN: Corresponding SCIF_CHx_INCLUDED is 0
SCIF_ERR_CH_NOT_CLOSED: Channel currently in operation;
 Perform R_SCIF_Close() first
SCIF_ERR_BAD_MODE: Specified mode not currently supported
SCIF_ERR_NULL_PTR: p_cfg or p_hdl pointer is NULL
SCIF_ERR_INVALID_ARG: An element of the p_cfg structure contains an invalid value.

Properties
Prototyped in file "r_scif_rx_if.h"

Description
Initializes an SCIF channel for a particular mode and provides a handle in *p_hdl for use with other API
functions. All applicable interrupts are enabled.

Example: Asynchronous Mode

scif_cfg_t config;
scif_hdl_t Console;
scif_err_t err;

config.async.baud_rate = 115200;
config.async.clk_src = SCIF_CLK_INT; // use internal clock
config.async.data_size = SCIF_DATA_8BIT;
config.async.parity_en = SCIF_PARITY_OFF;
config.async.parity_type = SCIF_EVEN_PARITY; // ignored (parity is disabled)
config.async.stop_bits = SCIF_STOPBITS_1;
config.async.tx_priority = 2;
config.async.rx_priority = 2;
config.async.rx_err_priority = 3; // must be higher than rx_priority

err = R_SCIF_Open(SCI_CH9, SCI_MODE_ASYNC, &config, MyCallback, &Console);

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 18 of 44
Nov.30.20

Example: Synchronous Mode
scif_cfg_t config;
scif_hdl_t syncHandle;
scif_err_t err;

config.sync.bit_rate = 1000000; // 1 Mbps
config.sync.msb_first = true;
config.sync.int_priority = 4;
err = R_SCIF_Open(SCI_CH8, SCI_MODE_SYNC, &config, syncCallback, &syncHandle);

Special Notes:
The driver uses an algorithm for calculating the optimum values for BRR, MDDR, SEMR.ABCS0,
SEMR.BGDM and SMR.CKS using BSP_PCLKA_HZ as defined in mcu_info.h of the board support
package. This however does not guarantee a low bit error rate for all peripheral clock/baud rate
combinations.

The application must wait one bit-time after calling Open() before sending/receiving to allow the clock to
settle.

If an external clock is used in Asynchronous mode, the Pin Function Select and port pins must be initialized
first. The following is an example initialization for channel 9:

 MPC.PB5PFS.BYTE = 0x0A; // Pin Func Select PB5 SCK9; clock as input
 PORTB.PDR.BIT.B5 = 0; // set SCK pin direction to input (dflt)
 PORTB.PMR.BIT.B5 = 1; // set SCK pin mode to peripheral

For initializing the clock in synchronous mode for channel 9:

 MPC.PB5PFS.BYTE = 0x0A; // Pin Func Select PB5 SCK9; clock as output
 PORTB.PDR.BIT.B5 = 1; // set SCK pin direction to output
 PORTB.PMR.BIT.B5 = 1; // set SCK pin mode to peripheral

The callback function has a single argument. This is a pointer to a structure which is cast to a void pointer
(provides consistency with other FIT module callback functions). The structure is as follows:

typedef struct st_scif_cb_args // callback arguments
{
 scif_hdl_t hdl;
 scif_cb_evt_t event;
} scif_cb_args_t;

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 19 of 44
Nov.30.20

The "hdl" argument is the handle for the channel. The possible events passed are defined in the following
enumeration:

typedef enum e_scif_cb_evt // callback function events
{
 // Async Events
 SCIF_EVT_TX_DONE, // Send() requests processed; last bit transmitted
 SCIF_EVT_RX_DONE, // Receive() request processed;
 // some or no data may be in RX FIFO
 SCIF_EVT_RX_BREAK, // received BREAK condition
 SCIF_EVT_RX_OVERFLOW, // receiver FIFO overrun error
 SCIF_EVT_RX_FRAMING_ERR, // received framing error
 SCIF_EVT_RX_PARITY_ERR, // received parity error

 // Sync Events
 SCIF_EVT_XCV_DONE, // All requests processed
 SCIF_EVT_XCV_ABORTED // transfer aborted; FIFOs flushed
} scif_cb_evt_t;

The events SCIF_EVT_FRAMING_ERR and SCIF_EVT_PARITY_ERR indicate that the next byte to be read
from the FIFO has an error. This byte is not passed to the callback function but is loaded into the receive
buffer. This is so the bytes read from the FIFO will match the requested count. An example template for an
Asynchronous mode callback function is provided here:

void MyCallback(void *p_args)
{
scif_cb_args_t *args;

 args = (scif_cb_args_t *)p_args;

 switch (args->event)
 {
 case SCIF_EVT_TX_DONE:
 // from TEIF interrupt; all data sent
 nop();
 break;

 case SCIF_EVT_RX_DONE:
 // from final RXIF interrupt; all requested bytes have been received
 // some or no data may be in RX FIFO
 nop();
 break;

 case SCIF_EVT_RX_BREAK:
 // from BRIF interrupt; received BREAK condition
 // error condition is cleared in BRIF routine
 nop();
 break;

 case SCIF_EVT_RX_OVERFLOW:
 // from BRIF interrupt; receiver overrun error occurred
 // error condition is cleared in BRIF routine
 nop();
 break;

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 20 of 44
Nov.30.20

 case SCIF_EVT_RX_FRAMING_ERR:
 // from ERIF interrupt; receiver framing error occurred
 // error condition is cleared in ERIF routine
 nop();
 break;

 case SCIF_EVT_RX_PARITY_ERR:
 // from ERIF interrupt; receiver parity error occurred
 // error condition is cleared in ERIF routine
 nop();
 break;
 };

}

An example template for a Synchronous mode callback function is provided here:

void syncCallback(void *p_args)
{
scif_cb_args_t *args;

 args = (scif_cb_args_t *)p_args;

 if (args->event == SCIF_EVT_XCV_DONE)
 {
 // from TEIF interrupt; all data sent
 // data transfer request(s) completed
 nop();
 }
 else if (args->event == SCIF_EVT_XCV_ABORTED)
 {
 // data transfer aborted
 nop();
 }
}

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 21 of 44
Nov.30.20

3.2 R_SCIF_Close()

This function removes power to the SCIF channel and disables the associated interrupts.

Format
scif_err_t R_SCIF_Close(
 scif_hdl_t const hdl
);

Parameters
hdl

Handle for channel

Return Values

SCIF_SUCCESS: Successful; channel closed
SCIF_ERR_NULL_PTR: hdl is NULL

Properties
Prototyped in file "r_scif_rx_if.h"

Description
Disables the SCIF channel designated by the handle. Does not free any resources but saves power and
allows the corresponding channel to be re-opened later, potentially with a different configuration.

Example
scif_hdl_t Console;

err = R_SCIF_Open(SCI_CH9, SCI_MODE_ASYNC, &config, MyCallback, &Console);

err = R_SCIF_Close(Console);

Special Notes:
This function will abort any transmission or reception that may be in progress.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 22 of 44
Nov.30.20

3.3 R_SCIF_Send()

Queues up to two requests. Begins transmission if transmitter is not already in use.

Format
scif_err_t R_SCIF_Send(
 scif_hdl_t const hdl,
 uint8_t *p_src,
 uint16_t const length
);

Parameters
scif_hdl_t hdl

Handle for channel

uint8_t p_src
Pointer to data to transmit

uint16_t length
Number of bytes to send

Return Values
SCIF_SUCCESS: Message queued for sending; transmission started if transmitter is idle.
SCIF_ERR_NULL_PTR: hdl or p_src is NULL
SCIF_ERR_BAD_MODE: Channel mode not currently supported
SCIF_ERR_INVALID_ARG: length is 0
SCIF_ERR_BUSY: Cannot process request. 2+ requests already placed

Properties
Prototyped in file "r_scif_rx_if.h"

Description
If the driver can process the request, SCIF_SUCCESS is returned. If there are already two requests
outstanding, SCIF_ERR_BUSY is returned. If a message is longer than the FIFO size, the driver will
automatically reload the FIFO at the interrupt level each time the threshold level (set in config.h) is reached.

When no more data remains to be transmitted, an SCIF_EVT_TX_DONE (Async) or
SCIF_EVT_XCV_DONE (Sync) event is passed to the callback function if specified in Open(). If no callback
function was provided, the application must poll for completion using a Control() command.

If it is desired to know when each message has completed transmission, do not have more than one Send()
request outstanding at a time. This driver is optimized for streaming data and the "done" event is used to
indicate transmit completion of all data.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 23 of 44
Nov.30.20

Example 1: Asynchronous Mode Blocking

uint8_t g_data_block[128];

scif_cfg_t config;
scif_hdl_t hdl;
scif_err_t err;

err = R_SCIF_Open(SCI_CH9, SCI_MODE_ASYNC, &config, NULL, &hdl);
 :

/* Check if transmitter available (and wait if necessary) to send message */
while (R_SCIF_Send(hdl, g_data_block, 128) == SCIF_ERR_TX_BUSY)
{
 /* wait until a send request can be queued */
}

/* Block for message to complete sending */
while (R_SCIF_Control(hdl,SCIF_CMD_CHECK_TX_DONE, NULL) == SCIF_ERR_IN_PROGRESS)
{
 /* do other processing if desired while waiting for send to complete */
}

Example 2: Asynchronous Mode Non-Blocking

uint8_t g_data_block[128];

scif_cfg_t config;
scif_hdl_t hdl;
scif_err_t err;

err = R_SCIF_Open(SCI_CH9, SCI_MODE_ASYNC, &config, MyCallback, &hdl);
 :

/* if know 1 or no requests outstanding, can issue Send() immediately */
R_SCIF_Send(hdl, g_data_block, 128);

void MyCallback(void *p_args)
{
scif_cb_args_t *args;

 args = (scif_cb_args_t *)p_args;
 switch (args->event)
 {
 case SCIF_EVT_TX_DONE:
 // all data successfully sent
 break;

 case SCIF_EVT_RX_BREAK:
 // received break; handle error condition
 R_SCIF_Control(args->hdl, SCIF_CMD_RESET_TX, NULL);
 R_SCIF_Control(args->hdl, SCIF_CMD_RESET_RX, NULL);
 break;
 };
}

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 24 of 44
Nov.30.20

Example 3: Synchronous Mode Blocking

#define STRING "Test String"

scif_cfg_t config;
scif_hdl_t lcdHandle;
scif_err_t err;

err = R_SCIF_Open(SCI_CH8, SCI_MODE_SYNC, &config, NULL, &lcdHandle);
 :

/* Check if transmitter available (and wait if necessary) to send message */
while (R_SCIF_Send(lcdHandle, STRING1, sizeof(STRING1)) == SCIF_ERR_BUSY)
{
 /* wait until a send request can be queued */
}

/* Block for message to complete sending */
while(R_SCIF_Control(lcdHandle,SCIF_CMD_CHECK_XCV_DONE,NULL) == SCIF_ERR_IN_PROGRESS)
{
 /* do other processing if desired while waiting for send to complete */
}

Example 4: Synchronous Mode Non-Blocking

#define STRING "Test String"

scif_cfg_t config;
scif_hdl_t lcdHandle;
scif_err_t err;

err = R_SCIF_Open(SCI_CH8, SCI_MODE_SYNC, &config, syncCallback, &lcdHandle);
 :

/* if know 1 or no requests outstanding, can issue Send() immediately */
R_SCIF_Send(lcdHandle, STRING1, sizeof(STRING1));

void syncCallback(void *p_args)
{
scif_cb_args_t *args;

 args = (scif_cb_args_t *)p_args;

 if (args->event == SCIF_EVT_XCV_DONE)
 {
 // data transfer completed; do any processing here
 // nop();
 }
 else if (args->event == SCIF_EVT_XCV_ABORTED)
 {
 // data transfer aborted; do any processing here
 }
}

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 25 of 44
Nov.30.20

Special Notes:
In synchronous mode, the peripheral drives the clock for Send(), Receive(), and SendReceive() messages.
In this mode, at most two transfer requests of any kind can ever be outstanding at a time. Therefore a
SCIF_ERR_BUSY may be returned even when no Send() message was previously issued.

Do not re-use the same buffer pointed to by p_src until it is known that the previous message the buffer was
used for has completed transmission. Doing so could corrupt the data of the message currently being sent.
This behavior is different than the standard SCI driver which copies the original buffer into a queue where it
waited until it could be transmitted. For high throughput, this driver does not copy data into an intermediate
queue and the hardware FIFO is the only temporary storage mechanism.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 26 of 44
Nov.30.20

3.4 R_SCIF_Receive()

Queues up to two requests. Fetches data from the hardware FIFO. In Synchronous mode, initiates clocking
of data if not already in use.

Format
scif_err_t R_SCIF_Receive(
 scif_hdl_t const hdl,
 uint8_t *p_dst,
 uint16_t const length
);

Parameters
scif_hdl_t const hdl

Handle for channel

uint8_t *p_dst
Pointer to buffer to load data into

uint16_t const length
Number of bytes to read

Return Values
SCIF_SUCCESS: Request queued. Clocking begins (Sync) if transceiver idle
SCIF_ERR_NULL_PTR: hdl value is NULL
SCIF_ERR_BAD_MODE: Channel mode not currently supported
SCIF_ERR_INVALID_ARG: length is 0
SCIF_ERR_BUSY: Cannot process request. 2+ requests already placed

Properties
Prototyped in file "r_scif_rx_if.h"

Description
If the driver can process the request, SCIF_SUCCESS is returned. If there are already two requests
outstanding, SCIF_ERR_BUSY is returned. If a message is longer than the FIFO size, the driver will
automatically read from the FIFO at the interrupt level each time the threshold level (set in config.h) is
reached. If there is less than the threshold level bytes remaining the driver automatically adjusts the
threshold level.

When no more data remains to be received, an SCIF_EVT_RX_DONE (Async) or SCIF_EVT_XCV_DONE
(Sync) event is passed to the callback function if specified in Open(). If no callback function was provided,
the application must poll for completion using a Control() command. Note that errors which occurred during
reception are only reported via the callback function.

If it is desired to know when each message has completed reception, do not have more than one Receive()
request outstanding at a time. This driver is optimized for streaming data and the "done" event is used to
indicate receive completion of all requested data.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 27 of 44
Nov.30.20

Example 1: Asynchronous Blocking

uint8_t g_data_block[128];

scif_cfg_t config;
scif_hdl_t hdl;
scif_err_t err;

err = R_SCIF_Open(SCI_CH9, SCI_MODE_ASYNC, &config, NULL, &hdl);
 :

/* Check if receiver available (and wait if necessary) to receive message */
while (R_SCIF_Receive(hdl, g_data_block, 128) == SCIF_ERR_RX_BUSY)
{
 /* wait until a receive request can be queued */
}

/* Block for request to complete */
while (R_SCIF_Control(hdl,SCIF_CMD_CHECK_RX_DONE,NULL) == SCIF_ERR_IN_PROGRESS)
{
 /* do other processing if desired while waiting for receive to complete */
}

Example 2: Asynchronous Non-Blocking

uint8_t g_data[8];

scif_cfg_t config;
scif_hdl_t hdl;
scif_err_t err;

err = R_SCIF_Open(SCI_CH9, SCI_MODE_ASYNC, &config, MyCallback, &hdl);
 :

/* Check if receiver available (and wait if necessary) to receive message.
 * Don’t block for request to complete.
 */
while (R_SCIF_Receive(hdl, g_data, 8) == SCIF_ERR_RX_BUSY);
{
 /* wait until receive request can be queued */
}

/* An example of processing receive events */

void MyCallback(void *p_args)
{
scif_cb_args_t *args;
static bool err_flg=false;
uint8_t byte;

 args = (scif_cb_args_t *)p_args;
 switch (args->event)
 {
 case SCIF_EVT_RX_FRAMING_ERR:
 case SCIF_EVT_RX_PARITY_ERR:

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 28 of 44
Nov.30.20

 /* Continue to receive msg, but set flag to indicate error detected */
 err_flg = true;
 break;

 case SCIF_EVT_RX_OVERFLOW:
 /* Overrun occurred. Issue "abort" to sender and reset err_flg to start
 * fresh. Driver automatically resets FIFOs when break is generated.
 */
 R_SCIF_Control(args->hdl, SCIF_CMD_GENERATE_BREAK, NULL);
 err_flg = false;
 break;

 case SCIF_EVT_RX_BREAK:
 /* Received break. Reset transmitter, receiver, and err_flg.
 R_SCIF_Control(args->hdl, SCIF_CMD_RESET_TX, NULL);
 R_SCIF_Control(args->hdl, SCIF_CMD_RESET_RX, NULL);
 err_flg = false;
 break;

 case SCIF_EVT_RX_DONE:
 /* Done receiving message. Issue ACK or NAK based upon err_flg. */
 byte = (err_flg == true) ? NAK : ACK;
 R_SCIF_Send(hdl, &byte,1);
 err_flg = false;
 break;
 };
}

Example 3: Synchronous Mode Blocking

uint8_t g_block[2][128];

scif_cfg_t config;
scif_hdl_t hdl;
scif_err_t err;

err = R_SCIF_Open(SCI_CH9, SCI_MODE_SYNC, &config, NULL, &hdl);
 :

/* Issue two Receive() calls and wait for completion */
while (R_SCIF_Receive(hdl, &g_data_block[0], 128) == SCIF_ERR_XCV_BUSY)
{
 /* wait until receive request can be queued */
}

while (R_SCIF_Receive(hdl, &g_data_block[1], 128) == SCIF_ERR_XCV_BUSY)
{
 /* wait until receive request can be queued */
}

// (could replace above requests with single request for 256 with first address)

while (R_SCIF_Control(hdl,SCIF_CMD_CHECK_XCV_DONE, NULL) == SCIF_ERR_IN_PROGRESS)
{
 /* do other processing if desired while waiting for receive to complete */
}

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 29 of 44
Nov.30.20

Example 4: Synchronous Mode Non-Blocking

uint8_t sensor_cmd,sync_buf[10];
scif_cfg_t config;
scif_hdl_t hdl;
scif_err_t err;

err = R_SCIF_Open(SCI_CH9, SCI_MODE_SYNC, &config, syncCallback, &hdl);

/* SEND COMMAND TO SENSOR TO PROVIDE CURRENT READING AND GET DATA */

sensor_cmd = SNS_CMD_READ_LEVEL;

/* FIFOs known to be empty here; can have two outstanding msg requests */
R_SCIF_Send(hdl, &sensor_cmd, 1);
R_SCIF_Receive(hdl, sync_buf, 4);

/* do not wait for reply */

Special Notes:
In synchronous mode, the peripheral drives the clock for Send(), Receive(), and SendReceive() messages.
In this mode, at most two transfer requests of any kind can ever be outstanding at a time. Therefore a
SCIF_ERR_BUSY may be returned even when no Receive() message was previously issued.

Do not re-use the same buffer pointed to by p_dst until it is known that the previous message the buffer was
used for has been processed. Doing so could corrupt the data of the message previously received.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 30 of 44
Nov.30.20

3.5 R_SCIF_SendReceive()

For Synchronous mode only. Transmits and receives data simultaneously.

Format
scif_err_t R_SCIF_SendReceive(
 scif_hdl_t const hdl,
 uint8_t *p_src,
 uint8_t *p_dst,
 uint16_t const length
);

Parameters
scif_hdl_t const hdl

Handle for channel

uint8_t *p_src
Pointer to data to transmit

uint8_t *p_dst
Pointer to buffer to load data into

uint16_t length
Number of bytes to send

Return Values
SCIF_SUCCESS: Data transfer queued and initiated if transceiver idle
SCIF_ERR_NULL_PTR: hdl value is NULL
SCIF_ERR_BAD_MODE: Channel mode not Synchronous
SCIF_ERR_INVALID_ARG: length is 0
SCIF_ERR_BUSY: Cannot process request. 2+ requests already placed

Properties
Prototyped in file "r_scif_rx_if.h"

Description
This function transmits and receives data simultaneously if the transceiver is not in use. If the driver can
process the request, SCIF_SUCCESS is returned. If there are already two requests outstanding,
SCIF_ERR_BUSY is returned. If a message is longer than the FIFO size, the driver will automatically
process the FIFO at the interrupt level each time the threshold level (set in config.h) is reached.

When no more data remains to be transmitted and received, an SCIF_EVT_XCV_DONE event is passed to
the callback function if specified in Open(). If no callback function was provided, the application must poll for
completion using a Control() command.

If it is desired to know when each message has completed transmission/reception, do not have more than
one SendReceive() request outstanding at a time. This driver is optimized for streaming data and the "done"
event is used to indicate transmit/receive completion of all data.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 31 of 44
Nov.30.20

Example: Blocking

scif_hdl_t hdl;
scif_err_t err;
uint8_t out_buf[2] = {SF_CMD_READ_STATUS_REG, SCIF_CFG_DUMMY_TX_BYTE };
uint8_t in_buf[2] = {0x55, 0x55}; // init to illegal values
 :

/* Clock two bytes of data. The first byte is a command out (ignore byte in)
 * and the second byte is a response in (dummy byte clocked out)
 */

/* FIFOs known to be empty here */
R_SCIF_SendReceive(hdl, out_buf, in_buf, 2);

while (R_SCIF_Control(hdl, SCI_CMD_CHECK_XCV_DONE, NULL) == SCIF_ERR_BUSY)
{
 /* wait for completion */
}

// reply is in in_buf[1]

Special Notes:
In synchronous mode, the peripheral drives the clock for Send(), Receive(), and SendReceive() messages.
In this mode, at most two transfer requests of any kind can ever be outstanding at a time. Therefore a
SCIF_ERR_BUSY may be returned even when no SendReceive() message was previously issued.

Do not re-use the same buffers pointed to by p_dst and p_dst until it is known that the previous message the
buffer was used for has been processed. Doing so could corrupt the data of the message previously
received.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 32 of 44
Nov.30.20

3.6 R_SCIF_Control()

This function handles special hardware and software operations for the SCIF channel.

Format
scif_err_t R_SCIF_Control(
 scif_hdl_t const hdl,
 scif_cmd_t const cmd,
 void *p_args
);

Parameters
scif_hdl_t const hdl

Handle for channel

scif_cmd_t const cmd
Command to run (see enumeration below)

void *p_args
Pointer to arguments (see below) specific to command, casted to void *

The valid cmd values are as follows:

typedef enum e_scif_cmd // SCIF Control() commands
{
 // Both modes
 SCIF_CMD_CHANGE_BAUD, // change baud/bit rate

 // Async commands
 SCIF_CMD_EN_FLOW_CTRL, // enable CTS/RTS flow control
 SCIF_CMD_EN_NOISE_CANCEL, // enable noise cancellation
 SCIF_CMD_EN_MSB_FIRST, // transmit/receive MSB first
 SCIF_CMD_GENERATE_BREAK, // generate break condition; resets FIFOs
 SCIF_CMD_TX_BYTES_REMAINING, // number total bytes yet to transmit
 SCIF_CMD_RX_BYTES_PENDING, // number bytes yet to receive
 SCIF_CMD_CHECK_TX_DONE, // see if tx requests complete; SCIF_SUCCESS if yes
 SCIF_CMD_CHECK_RX_DONE, // see if rx request complete; SCIF_SUCCESS if yes
 SCIF_CMD_RESET_TX, // abort transmit requests; reset transmit FIFO
 SCIF_CMD_RESET_RX, // abort receive requests; reset receive FIFO

 // Sync commands
 SCIF_CMD_CHECK_XCV_DONE, // see if Send, Receive, or SendReceive
 // requests are done; SCIF_SUCCESS if yes
 SCIF_CMD_RESET_XCV // abort transfer requests; reset FIFOs
} scif_cmd_t;

Most of the commands do not require arguments and take NULL or FIT_NO_PTR for p_args. The argument
structure for SCIF_CMD_CHANGE_BAUD is shown below. Note that this command may not be used for
Asynchronous mode when using an external clock.

typedef struct _sci_baud
{
 uint32_t pclk; // PCLKA speed; ie 120000000 (120 MHz)
 uint32_t rate; // ie 9600, 19200, 115200
} sci_baud_t;

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 33 of 44
Nov.30.20

The argument for SCIF_CMD_TX_BYTES_REMAINING and SCIF_CMD_RX_BYTES_PENDING is a
pointer to a uint16_t variable to hold a count value.

The commands SCIF_CMD_CHECK_TX_DONE, SCIF_CMD_CHECK_RX_DONE, and
SCIF_CMD_CHECK_XCV_DONE return SCIF_SUCCESS when all requests have been transmitted.
Otherwise SCIF_ERR_IN_PROGRESS is returned.

Note: For SCIF_CMD_RESET_TX, if a message transmission is in progress it will be abort immediately. It
will not wait until the current byte completes transmission. In this case, it is recommended to wait 1
byte-time before sending again to allow receiver to process likely framing error from last [partial] byte
sent.

Return Values
SCIF_SUCCESS: Successful; channel initialized
SCIF_ERR_NULL_PTR: hdl or p_args pointer is NULL (when required)
SCIF_ERR_BAD_MODE: Channel mode not currently supported
SCIF_ERR_INVALID_ARG: The cmd value or an element of p_args contains an invalid value.

Properties
Prototyped in file "r_scif_rx_if.h"

Description
This function is used for configuring "non-standard" hardware features, changing driver configuration, and
obtaining driver status.

Example 1: Asynchronous

scif_hdl_t Console;
scif_cfg_t config;
scif_baud_t baud;
scif_err_t err;
uint16_t cnt;
 :
R_SCIF_Open(SCI_CH9, SCIF_MODE_ASYNC, &config, MyCallback, &Console);
R_SCIF_Control(Console, SCIF_CMD_EN_NOISE_CANCEL, NULL);
R_SCIF_Control(Console, SCIF_CMD_EN_MSB_FIRST, NULL);
 :
/* reset baud rate due to low power mode clock switching */
baud.pclk = 8000000; // 8MHz
baud.rate = 19200;
R_SCIF_Control(Console, SCIF_CMD_CHANGE_BAUD, &baud);
 :
/* after initiating a large transmit, see how many bytes remaining to send */
R_SCIF_Control(Console, SCIF_CMD_TX_BYTES_REMAINING, &cnt);
// for progress bar: (message size – cnt)/(message size) = % complete
 :
/* after initiating a large receive, see how many bytes left to receive */
R_SCIF_Control(Console, SCIF_CMD_RX_BYTES_PENDING, &cnt);
// for progress bar: (request size – cnt)/(request size) = % complete
 :

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 34 of 44
Nov.30.20

Example 2: Synchronous

scif_cfg_t config;
scif_hdl_t syncHandle;
scif_err_t err;

config.sync.bit_rate = 1000000; // 1 Mbps
config.sync.msb_first = true;
config.sync.int_priority = 4;
err = R_SCIF_Open(SCI_CH8, SCI_MODE_SYNC, &config, syncCallback, &syncHandle);
 :

// after starting a large message transfer, abort transfer
R_SCIF_Control(syncHandle, SCIF_CMD_RESET_XCV, NULL);

Special Notes:
Do not use the value loaded by SCIF_CMD_TX_BYTES_REMAINING to determine if a message is sent.
There still may be bits in the shift register when this commands return a "0".Use SCIF_CMD_TX_DONE for
this purpose.

Wait one bit-time after performing a SCIF_CMD_CHANGE_BAUD for the clock to settle at the new speed.
The bit time should be measured in terms of the slower bit rate.

Wait two bit-times after performing a SCIF_CMD_GENERATE_BREAK before resuming communications.
Any Send() or Receive() calls made during this will get a SCIF_ERR_BUSY until the break completes. A
break condition lasts 1.5 to 2.0 byte times.

The driver uses an algorithm for calculating the optimum values for BRR, MDDR, SEMR.ABCS0,
SEMR.BGDM, SEMR.BRME, SEMR.MDDRS and SMR.CKS. This however does not guarantee a low bit
error rate for all peripheral clock/baud rate combinations.

If the command SCIF_CMD_EN_FLOW_CTRL is to be used, the Pin Function Select and port pins must be
configured first. The following is an example initialization for channel 9:

 MPC.PB4PFS.BYTE = 0x0B; // Pin Func Select PB4 CTS
 PORTB.PDR.BIT.B4 = 0; // set CTS pin direction to input
 PORTB.PMR.BIT.B4 = 1; // set CTS pin mode to peripheral

 MPC.PB5PFS.BYTE = 0x0B; // Pin Func Select PB5 RTS
 PORTB.PDR.BIT.B5 = 1; // set RTS pin direction to output
 PORTB.PMR.BIT.B5 = 1; // set RTS pin mode to peripheral

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 35 of 44
Nov.30.20

3.7 R_SCIF_GetVersion()

This function returns the driver version number at runtime.

Format
uint32_t R_SCIF_GetVersion(
 void
);

Parameters
None

Return Values
Version number.

Properties
Prototyped in file "r_scif_rx_if.h"

Description
Returns the version of this module. The version number is encoded such that the top two bytes are the major
version number and the bottom two bytes are the minor version number.

Example

uint32_t version;
 :
version = R_SCIF_GetVersion();

Special Notes:
None

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 36 of 44
Nov.30.20

4. Pin Setting
In order to use the SCI FIFO FIT module, it is necessary to allocate the input/output signals of peripheral
functions to the pins with the Multi-function Pin Controller (MPC).

Please configure the pins before calling the R_SCIF_Open function.

When using e2 studio, the pin setting function of "FIT Configurator" or "Smart Configurator" can be used.
When these functions are used, the source file is output according to the option selected in the Pin Setting
window. Then pins are configured by calling the function defined in the output source file.

Table 4.1 List of Functions Output by FIT Configurator

MCU Selected Option Output Function Name Remarks
RX64M
RX71M

SCIF8 R_SCIF_PinSet_SCIF8() When using SCIF8

SCIF9 R_SCIF_PinSet_SCIF9() When using SCIF9

SCIF10 R_SCIF_PinSet_SCIF10() When using SCIF10

SCIF11 R_SCIF_PinSet_SCIF11() When using SCIF11

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 37 of 44
Nov.30.20

5. Demo Projects
Demo projects are complete stand-alone programs. They include function main() that utilizes the module

and its dependent modules (e.g.. r_bsp).

5.1 Adding the Demo to a Workspace
Demo projects are found in the FITDemos subdirectory of the distribution file for this application note. To
add a demo project to a workspace, select File>Import>General>Existing Projects into Workspace, then click
"Next". From the Import Projects dialog, choose the "Select archive file" radio button. "Browse" to the
FITDemos subdirectory, select the desired demo zip file, then click "Finish".

5.2 Downloading Demo Projects
Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module
needs to be downloaded. To download the FIT module, right click on the required application note and select
"Sample Code (download)" from the context menu in the Smart Brower >> Application Notes tab.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 38 of 44
Nov.30.20

5.3 Demo for RX64M (scif_demo_rskrx64m)
This is a simple demo of the SCIF API (r_scif_rx) which communicates with a terminal over SCIF channel

8 connected to the USB Virtual COM port. The user is first prompted at the terminal to enter a character, at
which point the SCIF module version is transmitted to the terminal over the SCIF channel.

The demo then enters a continuous loop waiting for a character to be entered and then transmitting two
160 byte buffers of char data. When the data has been sent a summary of the number of bytes sent and
number of TXIF interrupts required to transmit the data is sent/displayed at the terminal.

This demonstrates how the SCIF_CFG_CHx_TX_FIFO_THRESHOLD configuration value in
r_scif_r_config.h affects the number of interrupts required to process all 320 bytes of data using the SCIF Tx
FIFO.

Boards Supported

• RSKRX64M

Setup and Execution
1. Ensure driver support for channel 8 is enabled in r_scif_rx_config.h:

#define SCIF_CFG_CH8_INCLUDED (1)

2. Prepare the RSKRX64M board:

• Jumpers J12, J14, J16 and J18: OFF
• Connect J12 pin 2 to J16 pin 3 using a jumper wire
• Connect J14 pin 2 to J18 pin 3 using a jumper wire

This connects the CH8 Tx/Rx signals to the virtual COM USB Tx/Rx signals.

Figure 5.1 Jumper Setting for RSKRX64M Board (Overview)

3. Connect the RSK board serial port to a PC serial port. For this demo the RSKRX64M serial to USB
Virtual COM Interface is used. In this case, connect the USB port to a PC with the Renesas USB-serial
device driver installed. The USB will enumerate on the PC as a virtual COM port. Note the COM port
number.

4. Open a terminal emulation program on the PC, such as "Tera Term", and select the serial COM port
assigned to the Virtual COM Interface. Configure the terminal serial settings to match the settings in this
sample application:

• 115200 baud
• 8-bit data
• no parity
• 1 stop bit
• no flow control

5. Build and download this sample application to the RSK board. Run the application with the debugger.
6. A prompt to "Enter a char>" should now be seen at the terminal indicating that the demo is running.

J12

J14

2

2

J16

3

J18

3

USB
Serial

Conver-
sion

TXD8

RXD8

RL78/G1C

RX64M
(176LQFP)

(RXD)

(TXD)

Terminal Emulator
Software

PC

RSKRX64M Board

76

77

PC7

PC6

Jumper Wire
(Please Provide Your Own.)

USB
Function*

(RL78)

*: mini USB
Type-B

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 39 of 44
Nov.30.20

5.4 Demo for RX71M (scif_demo_rskrx71m)
This is a simple demo of the SCIF API (r_scif_rx) which communicates with a terminal over SCIF channel

8 connected to the USB Virtual COM port. The user is first prompted at the terminal to enter a character, at
which point the SCIF module version is transmitted to the terminal over the SCIF channel.

The demo then enters a continuous loop waiting for a character to be entered and then transmitting two
160 byte buffers of char data. When the data has been sent a summary of the number of bytes sent and
number of TXIF interrupts required to transmit the data is sent/displayed at the terminal.

This demonstrates how the SCIF_CFG_CHx_TX_FIFO_THRESHOLD configuration value in
r_scif_r_config.h affects the number of interrupts required to process all 320 bytes of data using the SCIF Tx
FIFO.

Boards Supported

• RSKRX71M

Setup and Execution
1. Ensure driver support for channel 8 is enabled in r_scif_rx_config.h:

#define SCIF_CFG_CH8_INCLUDED (1)

2. Prepare the RSKRX71M board:

• Jumpers J11, J14, J16 and J18: OFF
• Connect J11 pin 2 to J16 pin 3 using a jumper wire
• Connect J14 pin 2 to J18 pin 3 using a jumper wire

This connects the CH8 Tx/Rx signals to the virtual COM USB Tx/Rx signals.

Figure 5.2 Jumper Setting for RSKRX71M Board (Overview)

3. Connect the RSK board serial port to a PC serial port. For this demo the RSKRX71M serial to USB
Virtual COM Interface is used. In this case, connect the USB port to a PC with the Renesas USB-serial
device driver installed. The USB will enumerate on the PC as a virtual COM port. Note the COM port
number.

4. Open a terminal emulation program on the PC, such as "Tera Term", and select the serial COM port
assigned to the Virtual COM Interface. Configure the terminal serial settings to match the settings in this
sample application:

• 115200 baud
• 8-bit data
• no parity
• 1 stop bit
• no flow control

5. Build and download this sample application to the RSK board. Run the application with the debugger.
6. A prompt to "Enter a char>" should now be seen at the terminal indicating that the demo is running.

J11

J14

2

2

J16

3

J18

3

USB
Serial

Conver-
sion

TXD8

RXD8

RL78/G1C

RX71M
(176LQFP)

(RXD)

(TXD)

Terminal Emulator
Software

PC

RSKRX71M Board

76

77

PC7

PC6

Jumper Wire
(Please Provide Your Own.)

USB
Function*

(RL78)

*: mini USB
Type-B

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 40 of 44
Nov.30.20

6. Appendix
6.1 Operating Test Environment
This section describes for detailed the operating test environments of this module.

Table 6.1 Operation Confirmation Environment for Rev.1.21
Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 7.1.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.00.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.1.21

Table 6.2 Operation Confirmation Environment for Rev.1.22.
Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 7.3.0

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.1.22

Table 6.3 Confirmed Operation Environment for Rev. 2.00
Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 7.6.0
IAR Embedded Workbench for Renesas RX 4.12.1

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99
GCC for Renesas RX 8.3.0.201904
Compiler option: The following option is added to the default settings of the
integrated development environment.
-std=gnu99
IAR C/C++ Compiler for Renesas RX version 4.12.1
Compiler option: The default settings of the integrated development
environment.

Endian Big endian/little endian
Revision of the module Rev.2.00
Board used Renesas Starter Kit+ for RX64M (product No.: R0K50564Mxxxxxx)

Renesas Starter Kit+ for RX71M (product No.: R0K50571Mxxxxxx)

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 41 of 44
Nov.30.20

Table 6.4 Confirmed Operation Environment for Rev. 2.01
Item Contents

Integrated development
environment

Renesas Electronics e2 studio Version 2020-10 (20.10.0)

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00
Compiler option: The following option is added to the default settings of the
integrated development environment.
-lang = c99

Endian Big endian/little endian
Revision of the module Rev.2.01
Board used Renesas Starter Kit+ for RX64M (product No.: R0K50564Mxxxxxx)

Renesas Starter Kit+ for RX71M (product No.: R0K50571Mxxxxxx)

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 42 of 44
Nov.30.20

6.2 Troubleshooting

(1) Q: I have added the FIT module to the project and built it.
 Then I got the error: Could not open source file "platform.h".

A: The FIT module may not be added to the project properly. Check if the method for adding FIT
modules is correct with the following documents:

• When using CS+:

Application note "Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826)"

• When using e2 studio:

Application note "Adding Firmware Integration Technology Modules to Projects (R01AN1723)"

When using a FIT module, the board support package FIT module (BSP module) must also be
added to the project. For this, refer to the application note "Board Support Package Module Using
Firmware Integration Technology (R01AN1685)".

(2) Q: I have added the FIT module to the project and built it.
 Then I got the error: This MCU is not supported by the current r_sci_iic_rx module.

A: The FIT module you added may not support the target device chosen in the user project. Check if the
FIT module supports the target device for the project used.

(3) Q: I have added the FIT module to the project and built it.
 Then I got an error for when the configuration setting is wrong.

A: The setting in the file "r_scif_rx_config.h" may be wrong. Check the file "r_scif_rx_config.h". If there is
a wrong setting, set the correct value for that. Refer to Section 2.8 "Configuration Overview" for
details.

(4) Q: Serial communication does not work.

A: The terminal settings may not have been made correctly. Terminal settings are required when using
this FIT module. For details, refer to Section 2.8 "Configuration Overview".

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 43 of 44
Nov.30.20

Revision History

Rev. Date
Description

Page Summary
1.00 Aug. 31, 14 — Initial Release.
1.10 Mar. 19, 15 1,3,27,28 Added support for RX71M and RX64M/RX71M demos
1.20 Mar. 16, 17 — Fixed bug that caused extra clocks to be sent at high speeds in

SYNC mode.
1.21 Dec. 07, 18 1 Related Documents: Added the following document:

"Renesas e2 studio Smart Configurator User Guide (R20AN0451)"
4 2.3 Software Requirements: Revised.

2.4 Limitations: Deleted.
5 2.5 Interrupt Vector: Added.
8 2.11. Adding the FIT Module to Your Project: Revised.
29 4. Demo Projects: Revised.
30 4.4 Downloading Demo Projects: Added.
31 5.1. Confirmed Operation Environment: Added.

5.2. Troubleshooting: Added.
32 Related Technical Updates: Added.
Program Added document number of the application note accompanying the

sample program of the FIT module to xml file.
1.22 Apr. 01, 19 — Changes associated with functions:

Added support setting function of configuration option Using GUI on
Smart Configurator.
[Description]
Added a setting file to support configuration option setting function
by GUI.

 1 Changed Introduction.
 4 Added 1.1 SCIF FIT Module.
 5 Moved 1.3 API Overview.
 6 Changed 2 API Information.
 8 Changed 2.6 Header Files.

Changed 2.7 Integer Types.
Changed 2.8 Configuration Overview.

 9 Changed 2.9 Code Size.
 10 Changed 2.10 Parameters.

Changed 2.11 Return Values.
Added 2.12 Callback Function.

 11 Changed 2.13 Adding the FIT Module to Your Project.
 12 Added 2.14 "for", "while" and "do while" statements.
 36 Added 4. Pin Setting.
 37 6.1 Operation Confirmation Environment:

Added table for Rev.1.22.
2.00 Nov. 01, 19 — Supported the following compilers.

- GCC for Renesas RX
- IAR C/C++ Compiler for Renesas RX

 — Updated Demo Projects.
 1 Fixed Related Documents.
 9 Updated 2.9 Code Size.

RX Family SCI FIFO Module Using Firmware Integration Technology

R01AN2222EJ0201 Rev.2.01 Page 44 of 44
Nov.30.20

Rev. Date
Description

Page Summary
 14 Added 2.15 Limitations.
 39 6.1 Operation Confirmation Environment:

Added table for Rev.2.00.
 Program Guarantee atomicity in the critical section of the following register

control.
- Module Stop Control (MSTPCR)
- Interrupt Request Enable Control (IEN)
- Group Interrupt Request Enable (GENBL)

2.01 Nov. 30, 20 — Updated the sample code project due to the upgrade of the
development environment.

 36 Moved the "Pin Setting" chapter to Chapter 4 to make it the same
as the Japanese version.

 39 In the RSKRX71M board settings, J12 was corrected to J11 (due to
a typo).

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2020 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled
subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.4.0-1 November 2017)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 SCIF FIT Module
	1.2 Overview of the SCIF FIT Module
	1.3 API Overview

	2. API Information
	2.1 Hardware Requirements
	2.2 Hardware Resource Requirements
	2.2.1 SCIFA
	2.2.2 GPIO

	2.3 Software Requirements
	2.4 Supported Toolchains
	2.5 Interrupt Vector
	2.6 Header Files
	2.7 Integer Types
	2.8 Configuration Overview
	2.10 Parameters
	2.11 Return Values
	2.12 Callback Function
	2.13 Adding the FIT Module to Your Project
	2.14 "for", "while" and "do while" statements
	2.15 Limitations
	2.15.1 RAM Location Limitations

	3. API Functions
	3.1 R_SCIF_Open()
	3.2 R_SCIF_Close()
	3.3 R_SCIF_Send()
	3.4 R_SCIF_Receive()
	3.5 R_SCIF_SendReceive()
	3.6 R_SCIF_Control()
	3.7 R_SCIF_GetVersion()

	4. Pin Setting
	5. Demo Projects
	5.1 Adding the Demo to a Workspace
	5.2 Downloading Demo Projects
	5.3 Demo for RX64M (scif_demo_rskrx64m)
	5.4 Demo for RX71M (scif_demo_rskrx71m)

	6. Appendix
	6.1 Operating Test Environment
	6.2 Troubleshooting

	Revision History

