
Tool News

RENESAS TOOL NEWS on October 16, 2011: 111016/tn2

Notes on Using C/C++ Compiler Package for RX Family

When using the C/C++ compiler package for the RX family of MCUs, take note of the following
problems:

With performing bitwise OR (|) operation of -1 or bitwise AND (&) operation of 0 with a
function call or a volatile-qualified variable (RXC#016)
With executing a loop containing the conditional operator or an if statement with a loop
counter (RXC#017)
With updating the value of the variable referenced in a loop containing the conditional
operator or an if statement by using any statement except an assignment one (RXC#018)
With referencing an array that is a member of a structure by using a pointer to the
structure (RXC#019)
With referencing an array element of type char twice or more times in a function
(RXC#020)

Here, RXC#XXX at the end of each item is a consecutive number for indexing the problems in
the compiler concerned.

1. Problem with Performing Bitwise OR (|) Operation of -1 or Bitwise

 AND (&) Operation of 0 with a Function Call or a Volatile-Qualified

 Variable (RXC#016)

 Versions Concerned:
 V.1.00 Release 00 through V.1.01 Release 00

 Description:
 If bitwise OR (|) operation of -1 or bitwise AND (&) operation of 0
 with a function call or a volatile-qualified variable is performed,
 the function may not be called or the volatile-qualified variable
 not be referenced.

 Conditions:
 This problem may arise if the following conditions are all satisfied:
 (1) Bitwise OR (|) operation or bitwise AND (&) operation is performed
 whose operand is of any type of the following:
 long long, signed long long, and unsigned long long
 (2) The operation in (1) satisfies either of the following:
 (2-1) An operand of bitwise OR operation is -1.
 (2-2) An operand of bitwise AND operation is 0.
 Here, the operand can be a constant substituted for a variable by
 optimization of constant propagation (including that of external
 constants qualified to be const).
 (3) The other operand of the operation in (2) is any of the following:
 (3-1) A variable qualified to be volatile
 (3-2) An external variable with the -volatile option used
 (3-3) A function call
 (3-4) An expression containing any of the operands listed in
 (3-1), (3-2), and (3-3)

 Example:

 long long a;
 int sub();
 main(){
 long long x;
 x = -1LL; // Condition (2-1)
 a = ((long long)(sub()+2)) | x; // Conditions (1), (2-1), and (3-4)
 }

 If the above example is compiled, the expression
 ((long long)(sub()+2)) | -1LL
 is removed in error, and the function call sub() is not made.

 Results of compilation:

 _main:
 MOV.L #0FFFFFFFFH,R4 ; -1LL
 MOV.L #_a,R5
 MOV.L R4,[R5] ; part of variable a
 MOV.L R4,04H[R5] ; part of variable a
 MOV.L #00000000H,R1
 RTS

 Workaround:

 To avoid this problem, assign constant -1 or 0 in Condition (2) to
 a volatile-qualified variable; then use it instead of the constant.

 Example modified:
 --
 long long a;
 int sub();
 main(){
 volatile long long x; // Volatile-qualified variable used
 instead of constant in Condition (2).
 x = -1LL; // Condition (2-1)
 a = ((long long)(sub()+2)) | x; // Conditions (1) and (3-4)
 }
 --

2. Problem with Executing a Loop Containing the Conditional Operator or

 an if Statement with a Loop Counter (RXC#017)

 Versions Concerned:
 V.1.00 Release 00 through V.1.01 Release 00

 Description:
 If a loop contains the conditional operator (?:) or an if statement
 with a loop counter, the conditional operator or the if statement may
 be incorrectly evaluated.
 Here, a loop counter is a variable for controlling the iterations of
 a loop. It is incremented or decremented by a fixed integer value on
 each iteration and evaluated to decide when the iteration should be
 terminated.

 Conditions:
 This problem may arise if the following conditions are all satisfied:
 (1) Neither option -optimize=0 nor -optimize=1 is selected.
 (2) In the program exists a loop containing a loop counter.
 (3) The initial and maximum values of the loop counter in (2) are
 constants.
 Here, constants can be those substituted for variables by
 optimization of constant propagation (including that of external
 constants qualified to be const).
 (4) In the loop in (2) exists the conditional operator (?:) or an if
 statement.
 (5) The controlling expression of the conditional operator or the if

 statement in (4) satisfies all the following:
 (5-1) It is a comparison expression containing a relational
 operator <, >, <=, or >=.
 (5-2) One operand is the loop counter in (2).
 (5-3) The other operand is an integer constant equal to or smaller
 than the maximum value of the loop counter.
 Here, an integer constant can be the one substituted for
 a variable by optimization of constant propagation
 (including that of external constants qualified to be const).

 Example:
 --
 int main(void) {
 int j;
 char a1[6],a2[6],a3[6];
 for (j = 0; j < 6; j++){ // Conditions (2), (3), (4)
 if ((j >= 0 && j < 2) || (j >= 4 && j < 6)) // Condition (5)
 a1[j] = 1;
 else
 a1[j] = 0;

 if (j < 4) // Condition (5)
 a2[j] = 2;
 else
 a2[j] = 0;

 if (j >= 0 && j < 1) // Condition (5)
 a3[j] = 3;
 else
 a3[j] = 0;
 }
 }
 --
 If the above example is compiled with the -cpu=rx600 -speed option
 used, the problem arises at the expression "j < 2," which exists in
 the first Condition (5).

 Results of compilation:
 In the following results of compilation, if j(R5) is 2, R1 becomes
 -1 at (B). So the program jumps to L11 at (C), and a1[3] is set to
 1 at (A) in error.

 If correctly executed, the program does not jump at (C), and
 a1[j] is set to 0 at (D).

 ADD #0FFFFFFE8H,R0,R0
 MOV.L #00000000H,R5
 MOV.L #00000002H,R1
 MOV.L R0,R2
 ADD #08H,R0,R3
 ADD #10H,R0,R4
 L11:
 MOV.B #01H,[R3] ; (A) a1[3] is set to 1 in error.
 MOV.B #02H,[R2]
 CMP #00H,R5
 BLT L12
 CMP #01H,R5
 BGE L12
 MOV.B #03H,[R4]
 L15:
 ADD #01H,R5
 ADD #01H,R4
 ADD #01H,R3
 ADD #01H,R2
 CMP #06H,R5
 BGE L16
 SUB #01H,R1 ; (B) If j(R6) is 3, R1 becomes -1.
 BNE L11 ; (C) Jumps to L11 in error.
 CMP #04H,R5
 BGE L20
 MOV.B #00H,[R3] ; (D) a1[3] should be set to 0.
 MOV.B #02H,[R2]
 BRA L12
 L20:
 CMP #06H,R5
 BLT L22
 MOV.B #00H,[R3]
 BRA L23
 L22:
 MOV.B #01H,[R3]
 L23:
 MOV.B #00H,[R2]
 L12:
 MOV.B #00H,[R4]
 BRA L15
 L16:
 MOV.L #00000000H,R1
 RTSD #18H

 Workaround:
 To avoid this problem, use either of the following:
 (1) Use option -optimize=0 or -optimize=1.
 (2) Qualify the loop counter in Condition (2) to be volatile.

3. Problem with Updating the Value of the Variable Referenced in a Loop

 Containing the Conditional Operator or an if Statement by Using Any

 Statement except an Assignment One (RXC#018).

 Versions Concerned:
 V.1.00 Release 00 through V.1.01 Release 00

 Description:
 Suppose that the value of the external or static variable is
 referenced in a loop containing the conditional operator or an if
 statement. If the value of the above variable is updated by using
 any statement except the one assigned to the variable, after the
 loop is exited, the variable may resume the value before updated.

 Conditions:
 This problem may arise if the following conditions are all satisfied:
 (1) Neither option -optimize=0 nor -optimize=1 is selected.
 (2) Option -scope is valid.
 Regardless of whether -optimize=2 is selected or -optimize is not
 selected, -scope is valid.
 (3) In the program exist two or more functions whose optimizing ranges
 are divided.
 NOTE1: When the -message option is selected, the following
 message is dispatched for the above functions:
 C0101 (I) Optimizing range divided in function
 "function name"
 NOTE2: The function specified in C0101 (I) is hereafter called
 the function in Condition (3)
 (4) In the function in (3) exists a loop containing the conditional
 operator (?:) or an if statement.
 (5) The loop in (4) does not have any loop inside of it and is not
 an infinite loop.
 (6) Declared is an external or static variable that satisfies the
 following:
 (6-1) In the loop in (4), it is neither defined nor referenced.
 (6-2) In the function in (3), it is defined or referenced.

 (7) The external or static variable in (6) is not qualified to be
 volatile, and the -volatile option is not used for the variable.
 (8) The external or static variable in (6) is updated in the loop
 in (4) by using any statement except the one assigned to the
 variable. (An example of the above statement is a function call.)

 Example:
 --
 int aaa,xxx=0,yyy=0,n; // Condition (7)
 void sub(void);
 void func(void) // Condition (3)
 {
 int i;

 aaa = 0; // Condition (6)

 for (i = 0; i < n ;i++) { // Conditions (4) and (5)
 if(xxx == yyy){
 sub(); // Condition (8)
 }
 }

 }

 void sub(void)
 {
 aaa++;
 }
 --

 Results of compilation:
 In the following results of compilation, the value of aaa loaded
 into R7 from aaa at (A) is written from aaa to R7 at (C). So when
 the loop is exited, the value of aaa incremented at (B) resumes the
 value held at immediately before the loop begins.

 _func:

 MOV.L #_aaa,R8
 MOV.L [R8],R7 ; (A)
 MOV.L #00000000H,R6
 BRA L11
 L12:
 MOV.L #_xxx,R2
 MOV.L [R2],R4

 MOV.L #_yyy,R3
 CMP [R3],R4
 BNE L14
 L13:
 BSR _sub ; aaa++; . . . (B)
 L14:
 ADD #01H,R6
 L11:
 MOV.L #_n,R1
 CMP [R1],R6
 BLT L12
 L15:
 MOV.L R7,[R8] ; (C)

 _sub:
 MOV.L #_aaa,R4
 MOV.L [R4],R5
 ADD #01H,R5
 MOV.L R5,[R4]
 RTS

 Workaround:
 To avoid this problem, use any of the following:
 (1) Use option -optimize=0 or -optimize=1.
 (2) Use option -noscope.
 (3) Use option -volatile.
 (4) Qualify the external or static variable in Condition (6) to be
 volatile.
 (5) Reference the variable in Condition (6) within the loop in
 Condition (4).
 (6) Divide the function in Condition (3)
 until the message C0101 (I) is not dispatched even if the
 -message option is selected.

4. Problem with Referencing an Array That Is a Member of a Structure

 by Using a Pointer to the Structure (RXC#019)

 Versions Concerned:
 V.1.00 Release 00 through V.1.01 Release 00

 Description:

 In a structure containing an array as one of its members, if an
 element of the array is referenced by a pointer to a structure through
 the array subscripted with a constant, C4098 Internal Error may arise,
 and the array not be referenced.

 Conditions:
 This problem may arise if the following conditions are all satisfied:
 (1) Any of the options -optimize=1, -optimize=2, and -optimize=max
 is selected.
 (2) A structure or union contains a 4-byte scalar-type array as
 one of its members.
 (3) Another structure or union exists, and one of its members is:
 (a) of type pointer to the structure or union in (2)
 (b) of the 4-byte scalar type
 (4) A function takes the structure or union in (3) as a parameter.
 (5) The parameter in (4) is passed to the function via a register.
 Note that whether a register is used to pass the parameter to
 the function or not depends on the type of the parameter.
 For details, see Section 8.2.3, "Rules Concerning Setting
 and Referencing Parameters," in the User's Manual.
 (6) Among the parameters in (5) exists an expression that references
 the member in (3) in either of the following ways:
 (a) The member in (3) is the pointer to the structure or union
 in (2) and is referenced with its type not converted.
 (b) The member in (3) is referenced after cast to a pointer to
 the structure or union in (2).
 (7) When the expression in (6) is denoted by C, an expression that is
 equivalent to C->D[E] exists. Here D is the array as a member
 in (2) and E is any constant.
 (8) The address of the parameter in (4) or the member of the structure
 or union in (3) is not referred in the function in (4).

 Example 1:
 Case where C4098 Internal Error arises
 --
 typedef struct { unsigned long ul[2]; } S_A; // Condition (2)
 typedef struct {
 S_A *p;
 } S_B; // Conditions (3)-(a) and (5)
 int a;
 void func(S_B pm) // Conditions (4) and (5)
 {
 // Condition (8)
 a = pm.p->ul[1]; // Conditions (6)-(a) and (7)
 }

 --

 Example 2:
 Case where array cannot be referenced
 --
 typedef struct { unsigned long ul[2]; } S_A; // Condition (2)
 typedef struct {
 S_A *p;
 } S_B; // Conditions (3)-(a) and (5)
 int a;
 void func(long m1, S_B pm2) // Conditions (4) and (5)
 {
 S_A *ptr;
 ptr = pm2.p;
 // Condition (8)
 a = m1 + ptr->ul[0]; // Conditions (6)-(a) and (7)
 }
 --
 In this example, the code equivalent to (unsigned long)pm2.p is
 generated for ptr->ul[0] in error.

 Workaround:
 To avoid this problem, use any of the following:
 (1) Refer the address of the parameter of the structure
 or union in Condition (4) so that Condition (8) cannot be met.
 (2) Reference the member in Condition (3) through the pointer to the
 structure or union in Condition (2) in the form of a subscripted
 array so that Condition (7) cannot be met.
 (3) Add a dummy member to the structure or union in Condition (3)
 to make its size greater than 17 bytes so that Condition (5)
 cannot be met.
 (4) Use option optimize=0.

 Modification 1 of Example 1:
 --
 typedef struct { unsigned long ul[2]; } S_A;
 typedef struct {
 S_A *p;
 } S_B;
 int a;
 void func(S_B pm)
 {
 unsigned long *ptr = pm.p->ul; // Pointer pointing to array in
 structure or union in Condition (2)
 a = ptr[1]; // Accessed by above pointer.

 }
 --

 Modification 2 of Example 1:
 --
 typedef struct { unsigned long ul[2]; } S_A;
 typedef struct {
 S_A *p;
 long long dummy[2]; // Member added to make size of structure
 or union in Condition (3) greater than
 17 bytes.
 } S_B;
 int a;
 void func(S_B pm)
 {
 a = pm.p->ul[1];
 }
 --

 Modification of Example ２:

 typedef struct { unsigned long ul[2]; } S_A; // Condition (2)
 typedef struct {
 S_A *p;
 } S_B;
 int a;
 void func(long m1, S_B pm2)
 {
 S_B *dummy_ptr = &pm2; // Address of parameter using structure or
 union in Condition (3) is specified.
 S_A *ptr;
 ptr = pm2.p;
 a = m1 + ptr->ul[0];
 }

5. Problem with Referencing an Array Element of Type char Twice or More

 Times in a Function (RXC#019)

 Versions Concerned:
 V.1.00 Release 00 through V.1.01 Release 00

 Description:
 If an array element of type char, signed char, or unsigned char is
 referenced twice or more times in a function, the address of the
 array element may be wrong.

 Conditions:
 This problem may arise if the condition group A or B is satisfied:

 Condition group A
 The following conditions, (A1) to (A6), are all met:
 (A1) Neither option -optimize=0 nor -optimize=1 is selected.
 (A2) An array of type char, signed char, or unsigned char;
 or a pointer to char, signed char, or unsigned char is declared.
 (A3) An element of the array in (A2) is referenced twice or more
 times in a function.
 Here, the reference to an element can be an indirect reference
 expression equivalent to an array reference.
 *(a+exp) is equivalent to a[exp]
 (A4) The subscript expression of the array element in (A3) is an
 addition or subtraction expression, and one of its operands
 is a variable and the other is any constant except 0.
 In the example of an indirect reference expression in (A3),
 the subscript expression is exp.
 And a constant can be one substituted for a variable by
 optimization of constant propagation (including that of
 external constants qualified to be const).
 (A5) The variable in (A4) is of type char, signed char, unsigned
 char, short, signed short, or unsigned short.
 (A6) The value of the subscript expression in (A4) is greater than
 the maximum value expressible in the type of the variable
 in (A5).

 Example condition group A met:
 --
 signed char S,*ary; // Condition (A2)
 void func(signed char par) // Condition (A5)
 {
 if (ary[par+1] > 10) { // Conditions (A3) and (A4)
 S = ary[par+1]; // Conditions (A3) and (A4)
 }
 return;
 }
 --
 In the above example, Condition (A6) is met if par is 127.

 Results of compilation:
 --
 _func:
 MOV.L #_ary,R4
 ADD #01H,R1
 MOV.L [R4],R3 ; ary
 MOVU.B R1,R5 ; par+1 in Example is sign-extended
 in error.
 MOVU.B [R3,R5],R4 ; ary[]
 CMP #0AH,R4 ; Compared with final value 10.
 BLE L12
 MOV.L #_S,R5
 MOV.B R4,[R5] ; S
 L12:
 RTS
 --

 Condition group B
 The following conditions, (B1) to (B6), are all met:
 (B1) Neither option -optimize=0 nor -optimize=1 is selected.
 (B2) A structure or union is declared a member of which is an array
 of type char, signed char, or unsigned char.
 (B3) An element of the array in (B2) is referenced twice or more
 times in a function.
 (B4) The subscript expression indicating the array element in (B3)
 is any of the following:
 (B4-1) A variable
 (B4-2) An addition expression; one of its operands is
 a variable and the other is a constant.
 (B4-3) A subtract expression; one of its operands is a variable
 and the other is a constant.

 The constant in either (B4-2) or (B4-3) can be one substituted
 for a variable by optimization of constant propagation
 (including that of external constants qualified to be const).

 (B5) The variable in (B4) is of type char, signed char, unsigned
 char, short, signed short, or unsigned short.
 (B6) The offset value of the array element in (B3) from the
 beginning of the structure or union in (B2) is greater than
 the maximum value expressible in the type of the variable
 in (B4).

 Example condition group B met:

 signed char S;

 struct {
 signed char dummy[127];
 signed char mem[8]; // Condition (B6)
 } *st; // Condition (B2)

 void func(signed char par) // Condition (B5)
 {
 if (st->mem[par] > 10) { // Conditions (B3) and (B4-1)
 S = st->mem[par]; // Conditions (B3) and (B4-1)
 }
 return;
 }

 In the above example, Condition (B6) is met if par is equal to
 or greater than 1.

 Results of compilation:

 _func:
 MOV.L #_st,R4
 ADD #7FH,R1,R5
 MOV.L [R4],R3 ; st
 MOVU.B R5,R5 ; par+127 in Example is sign-extended
 in error.
 MOVU.B [R3,R5],R4 ; st->mem[]
 CMP #0AH,R4 ; Compared with final value 10.
 BLE L15
 MOV.L #_S,R5
 MOV.B R4,[R5] ; S
 L15:
 RTS

 Workaround:
 To avoid this problem, use any of the following:
 (1) Use option -optimize=0 or -optimize=1.
 (2) Qualify any of the following to be volatile:
 - The array in Condition (A2)
 - The array as a member of the structure or union
 in Condition (B2)
 - The structure or union in Condition (B2)
 - The variable as an operand of the subscript expression
 in (A4) and (B4)

 (3) Change the type of the variable in Condition (A4) or (B4) to
 one different from those specified in Condition (A5) or (B5).

 Example modified in condition group B:

 void func(signed int par) // char changed to signed int.

 (4) If Condition (B4-1) is met, convert the type of the variable that
 is an operand of the subscript expression to one different from
 those specified in Condition (B5)

 Example modified

 st->mem[(signed int)par] // par cast to signed int.

6. Schedule of Fixing the Problems

 All the above problems have already been fixed in the C/C++ compiler
 package for the RX family V.1.02 Release 00. For details of the latest
 version, see RENESAS TOOL NEWS Document No. 111016/tn3 on the Web page
 at:
 http://tool-support.renesas.com/eng/toolnews/111016/tn3.htm
 This page will be opened on November 7, 2011.

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may
be included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

