RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

Product Category	MPU/MCU		Document No.	TN-RX*-A0211A/E	Rev.	1.00
Title	Errata to RX65N Group, RX651 Group User's Manual: Hardware		Information Category	Technical Notification		
		Lot No.				
Applicable Product			Reference Document	RX65N Group, RX651 Manual: Hardware Re (R01UH0590EJ0210)		ser's

This document describes corrections, as shown below, to the RX65N Group, RX651 Group User's Manual: Hardware, Rev.2.10.

• Page 91 of 2695

Description of pin name in Table 1.4 is corrected as follows.

Before correction

Table 1.4 Pin Functions (6/8)

Classifications	Pin Name	I/O	Description
	0	mitted	
SD host interface	SDHI_CLK-A/SDHI_CLK-B/ SDHI_CLK-C	Output	SD clock output pin
	SDHI_CMD-A/SDHI_CMD-B/ SDHI_CMD-C	I/O	SD command output, response input signal pin
	SDHI_D3-A/SDHI_D3-B/ SDHI_D3-C to SDHI_D0-A/ SDHI_D0-B/SDHI_D1-C	I/O	SD data bus pins
	SDHI_CD	Input	SD card detection pin
	SDHI_WP	Input	SD write-protect signal
	0	mitted	

After correction

Table 1.4 Pin Functions (6/8)

Classifications	Pin Name	I/O	Description
	0	mitted	
SD host interface	SDHI_CLK-A/SDHI_CLK-B/ SDHI_CLK-C	Output	SD clock output pin
	SDHI_CMD-A/SDHI_CMD-B/ SDHI_CMD-C	I/O	SD command output, response input signal pin
	SDHI_D3-A/SDHI_D3-B/ SDHI_D3-C to SDHI_D0-A/ SDHI_D0-B/SDHI_D0-C	I/O	SD data bus pins
	SDHI_CD	Input	SD card detection pin
	SDHI_WP	Input	SD write-protect signal
	0	mitted	

• Page 225 and 226 of 2695

Description of Number of Bits and Access Size in Table 5.1 is corrected as follows.

Before correction

Table 5.1 List of I/O Registers (Address Order)

	Module		Register	Number	Access	Number of Acce	ess Cycles	Related	Reference	
Address	Symbol	Register Name	Symbol	of Bits	Size	ICLK≥PCLK	ICLK <pclk< th=""><th>Function</th><th colspan="2">Page</th></pclk<>	Function	Page	
			omit	ted						
0009 0856h	CAN0	Acceptance Filter Support Register	AFSR	16	8, 16	2, 3 PCLKB	2 ICLK	CAN	1863	
			omit	ted						
0009 1856h	CAN1	Acceptance Filter Support Register	AFSR	16	8, 16	2, 3 PCLKB	2 ICLK	CAN	1863	
			omit	ted						
0009 5800h to 0009 58FFh	SDSI	FN1 Data Register 10 to 163	FN1DATAR10 to 163	8, 32	32	10, 11 PCLKB	2 to 6 ICLK	SDSI	2105	
0009 5900h to 0009 59FFh	SDSI	FN1 Data Register 20 to 263	FN1DATAR20 to 263	8, 32	32	10, 11 PCLKB	2 to 6 ICLK	SDSI	2105	
0009 5A00h to 0009 5AFFh	SDSI	FN1 Data Register 30 to 363	FN1DATAR30 to 363	8, 32	32	10, 11 PCLKB	2 to 6 ICLK	SDSI	2106	
			omit	ted						
0009 5C00h to 0009 5FFFh	SDSI	FN1 Data Register 50 to 5255	FN1DATAR50 to 5255	8, 32	32	7, 8 PCLKB	2 to 5 ICLK	SDSI	2107	

After correction

Table 5.1 List of I/O Registers (Address Order)

	Module		Register	Number	Access	Number of Acce	ess Cycles	Related	Reference	
Address	Symbol	Register Name	Symbol	of Bits	Size	ICLK≥PCLK	ICLK <pclk< th=""><th>Function</th><th colspan="2">Page</th></pclk<>	Function	Page	
			omit	ted						
0009 0856h	CAN0	Acceptance Filter Support Register	AFSR	16	16	2, 3 PCLKB	2 ICLK	CAN	1863	
			omit	ted						
0009 1856h	CAN1	Acceptance Filter Support Register	AFSR	16	16	2, 3 PCLKB	2 ICLK	CAN	1863	
			omit	ted						
0009 5800h to 0009 58FFh	SDSI	FN1 Data Register 10 to 163	FN1DATAR10 to 163	32	8, 32	10, 11 PCLKB	2 to 6 ICLK	SDSI	2105	
0009 5900h to 0009 59FFh	SDSI	FN1 Data Register 20 to 263	FN1DATAR20 to 263	32	8, 32	10, 11 PCLKB	2 to 6 ICLK	SDSI	2105	
0009 5A00h to 0009 5AFFh	SDSI	FN1 Data Register 30 to 363	FN1DATAR30 to 363	32	8, 32	10, 11 PCLKB	2 to 6 ICLK	SDSI	2106	
			omit	ted						
0009 5C00h to 0009 5FFFh	SDSI	FN1 Data Register 50 to 5255	FN1DATAR50 to 5255	32	8, 32	7, 8 PCLKB	2 to 5 ICLK	SDSI	2107	
	•	•	omit	ted		•				

• Page 293 of 2695

Description of Step in Table 8.7 is corrected as follows.

Before correction

Table 8.7 Procedures for Setting Bits Related to the Voltage Monitoring 2 Interrupt and Voltage Monitoring 2 Reset so that Voltage Monitoring Stops

Step		Voltage Monitoring 2 Interrupt (Voltage Monitoring 2 ELC Event Output), Voltage Monitoring 2 Reset					
Settings to stop	1	Set LVD2CR0.LVD2CMPE = 0 (disabling output of the results of comparison by voltage monitoring 2).					
enabling of output	2	Wait for at least 2n + 3 cycles of the LOCO					
		(where n = 2, 4, 8, 16, and the sampling clock for the digital filter is the LOCO frequency-divided by n). $*^1$					
	3	Set LVD2CR0.LVD2RIE = 0 (disabling the voltage monitoring 2 interrupt or reset). *2					
Stopping the digital filter	4	Set LVD2CR0.LVD2DFDIS = 1 (disabling the digital filter). *1, *3					
Stopping the voltage detection 1 circuit	5	Set LVCMPCR.LVD2E = 0 (disabling the voltage detection 2 circuit).					

	s for Settir		After correction	2 Interrupt and Voltage	Monitorina 2
		Monitoring Stops	ie voltage monitoring	2 interrupt and voltage	
Stop			errupt (Voltage Monitorin	ng 2 ELC Event Output), Vol	tage Monitoring 2
Step Settings to stop		set t LVD2CR0.LVD2CMPE	= 0 (disabling output of the	ne results of comparison by v	oltage monitoring 2).
enabling of output	2 Wa	ait for at least 2n + 3 cyc	cles of the LOCO		
				e digital filter is the LOCO fre onitoring 2 interrupt or reset)	
Stopping the digital			S = 1 (disabling the digital		·
ilter Stopping the voltage	5 Se		(disabling the voltage det	ection 2 circuit)	
letection 2 circuit					
-	tion about H	Ē	POE) in Table 11.2 as f Before correction	ollows. perating States in Each	Mode
Entering and Exiting Low Consumption Modes and	Power	_	All-Module Clock Stop		Deep Software Standby
States		Sleep Mode Control register +	Mode Control register +	Software Standby Mode Control register +	Mode Control register +
		instruction	instruction omitted	instruction	instruction
B-bit timer (unit 0, unit 1) (T		Operating possible	Operating possible*11	Stopped (Retained)	Stopped (Undefined)
/oltage detection circuit (LV		Operating possible	Operating possible	Operating possible	Operating possible
Power-on reset circuit		Operating	Operating	Operating	Operating* ¹³
Peripheral modules /O ports		Operating possible Operating	Stopped (Retained) Retained* ¹⁴	Stopped (Retained) Retained* ¹⁵	Stopped (Undefined) Retained* ¹⁵
		· · · · · · · · · · · · · · · · · · ·	e controlled by the control		Retained
alarm, RTC p detection). omitted Note 12. If the voltage voltage monit transition is to Note 13. When the det	monitoring 1 oring 2 circu software sta ep cut bits ir	DT, USB suspend/result circuit mode selection it mode selection bit in indby mode rather than in the deep standby cor ne voltage detection circ	me, voltage monitoring 1 bit in the voltage monitor n the voltage monitoring deep software standby mo trol register (DPSBYCR.I cuit stops and the low pow	DEEPCUT[1:0]) are set to 1 wer consumption function of	main-clock oscillation sto 0 (LVD1CR0.LVD1RI) or th LVD2CR0.LVD2RI) is 1, th 1b and the LSI enters dee the power-on reset circuit
enabled. <mark>Note 14</mark> . If pin P53 is I	-	continue operation.			he 8-bit timer and RTC a

Table 11.2 Entering and Exiting Low Power Consumption Modes and Operating States in Each Mode

Entering and Exiting Low Power Consumption Modes and Operating States	Sleep Mode	All-Module Clock Stop Mode	Software Standby Mode	Deep Software Standby Mode
Transition condition	Control register + instruction	Control register + instruction	Control register + instruction	Control register + instruction
omitted				
8-bit timer (unit 0, unit 1) (TMR)	Operating possible	Operating possible*11	Stopped (Retained)	Stopped (Undefined)
Port Output Enable (POE)	Operating possible	Operating possible*12	Stopped (Retained)	Stopped (Undefined)
Voltage detection circuit (LVDA)	Operating possible	Operating possible	Operating possible	Operating possible *13, *14
Power-on reset circuit	Operating	Operating	Operating	Operating*14
Peripheral modules	Operating possible	Stopped (Retained)	Stopped (Retained)	Stopped (Undefined)
I/O ports	Operating	Retained ^{*15}	Retained* ¹⁶	Retained*16

"Operating possible" means that operating or stopped can be controlled by the control register setting.

"Stopped (Retained)" means that internal register values are retained and internal operations are suspended.

"Stopped (Undefined)" means that internal register values are undefined and power is not supplied to the internal circuit.

Note 1. "Interrupts" here indicates an external pin interrupt (the NMI or IRQ0 to IRQ15) or any of peripheral interrupts (the 8-bit timer, RTC alarm, RTC periodic, IWDT, USB suspend/resume, voltage monitoring 1, voltage monitoring 2, and main-clock oscillation stop detection).

--- omitted ---

- Note 12. When a source condition for POE interrupts is satisfied while POE interrupts are enabled and the chip is in all-module clock stop mode, the flag for the source condition is retained but return from all-module clock stop mode does not proceed. If a different source initiates return from all-module clock stop mode in this situation, the POE interrupt is generated after that.
- Note 13. If the voltage monitoring 1 circuit mode selection bit in the voltage monitoring 1 circuit control register 0 (LVD1CR0.LVD1RI) or the voltage monitoring 2 circuit mode selection bit in the voltage monitoring 2 circuit control register 0 (LVD2CR0.LVD2RI) is 1, the transition is to software standby mode rather than deep software standby mode.
- Note 14. When the deep cut bits in the deep standby control register (DPSBYCR.DEEPCUT[1:0]) are set to 11b and the LSI enters deep software standby mode, the voltage detection circuit stops and the low power consumption function of the power-on reset circuit is enabled.
- Note 15. If pin P53 is being used for the BCLK signal, operation continues with as-is output of BCLK. While the 8-bit timer and RTC are operated, the related pins continue operation.
- Note 16. Retention of levels or placement in the high-impedance state is selectable for the address bus and bus control signals (CS0# to CS7#, RD#, WR0# to WR3#, WR#, BC0# to BC3#, ALE, CKE, SDCS#, RAS#, CAS#, WE#, and DQM0 to DQM3) by the output port enable bit (OPE) in the standby control register (SBYCR).

• Page 356 of 2695

Addition of description of function at SSBY bit in 11.2.1 as follows.

Before correction

SSBY Bit (Software Standby)

The SSBY bit specifies the transition destination after the WAIT instruction is executed. --- omitted ---

When the code flash P/E mode entry bit in the flash P/E mode entry register (FENTRYR.FENTRYC) is 1, the setting of this bit is ineffective. Sleep mode is entered on execution of the WAIT instruction even if this bit has been set to 1.

After correction

SSBY Bit (Software Standby)

The SSBY bit specifies the transition destination after the WAIT instruction is executed.

When the code flash P/E mode entry bit in the flash P/E mode entry register (FENTRYR.FENTRYC) is 1 or the data flash memory P/E mode entry bit (FENTRYR.FENTRYD)*¹ is 1, the setting of this bit is ineffective. Sleep mode is entered on execution of the WAIT instruction even if this bit has been set to 1.

Note 1. This is only available for products with at least 1.5 Mbytes of code flash memory.

• Page 358 of 2695

Addition of description of function at ACSE bit in 11.2.2 as follows.

Before correction

ACSE Bit (All-Module Clock Stop Mode Enable)

The ACSE bit enables or disables a transition to all-module clock stop mode. --- omitted ---

When the code flash P/E mode entry bit in the flash P/E mode entry register (FENTRYR.FENTRYC) is 1, the setting of this bit is ineffective. Sleep mode is entered on execution of the WAIT instruction if this bit has been set to 1.

After correction

ACSE Bit (All-Module Clock Stop Mode Enable)

The ACSE bit enables or disables a transition to all-module clock stop mode. --- omitted ---

When the code flash P/E mode entry bit in the flash P/E mode entry register (FENTRYR.FENTRYC) is 1 or the data flash memory P/E mode entry bit (FENTRYR.FENTRYD)*¹ is 1, the setting of this bit is ineffective. Sleep mode is entered on execution of the WAIT instruction if this bit has been set to 1.

Note 1. This is only available for products with at least 1.5 Mbytes of code flash memory.

• Page 405 of 2695

Description of bit function in 13.1.1 is corrected as follows.

Bit	Cump al	Bit Name	Function	R/W
	Symbol			
b0	PRC0	Protect Bit 0	Enables writing to the registers related to the clock generation circuit. 0: Write disabled	R/W
			1: Write enabled	
b1	PRC1	Protect Bit 1	Enables writing to the registers related to operating modes, low power	R/W
DI	FRUI	FIDIECI DIL I	consumption, and software reset.	r///
			0: Write disabled	
			1: Write enabled	
b2	_	Reserved	This bit is read as 0. The write value should be 0.	R/W
b3	PRC3	Protect Bit 3	Enables writing to the registers related to the LVD.	R/W
			0: Write disabled	
			1: Write enabled	
b7 to b4	_	Reserved	These bits are read as 0. The write value should be 0.	R/W
b15 to b8	PRKEY[7:0]	PRC Key Code	These bits control permission and prohibition of writing to the PRCR	R/(W)*
		•		. ,
			register. To modify the PRCR register, write A5h to the eight higher-order	
			register. To modify the PRCR register, write A5h to the eight higher-order bits and the desired value to the eight lower-order bits as a 16-bit unit.	
Bit	Symbol	Bit Name	bits and the desired value to the eight lower-order bits as a 16-bit unit.	R/W
	Symbol PRC0		bits and the desired value to the eight lower-order bits as a 16-bit unit. After correction Function	
Bit b0	Symbol PRC0	Bit Name Protect Bit 0	bits and the desired value to the eight lower-order bits as a 16-bit unit.	R/W R/W
			bits and the desired value to the eight lower-order bits as a 16-bit unit. After correction Function Enables writing to the registers related to the clock generation circuit.	
b0			bits and the desired value to the eight lower-order bits as a 16-bit unit. After correction Function Enables writing to the registers related to the clock generation circuit. 0: Write disabled	
b0	PRC0	Protect Bit 0	bits and the desired value to the eight lower-order bits as a 16-bit unit. After correction Function Enables writing to the registers related to the clock generation circuit. 0: Write disabled 1: Write enabled Enables writing to the registers related to operating modes, clock generation circuit, low power consumption, and software reset.	R/W
b0	PRC0	Protect Bit 0	bits and the desired value to the eight lower-order bits as a 16-bit unit. After correction Function Enables writing to the registers related to the clock generation circuit. 0: Write disabled 1: Write enabled Enables writing to the registers related to operating modes, clock generation circuit, low power consumption, and software reset. 0: Write disabled	R/W
b0 b1	PRC0 PRC1	Protect Bit 0 Protect Bit 1	bits and the desired value to the eight lower-order bits as a 16-bit unit. After correction Function Enables writing to the registers related to the clock generation circuit. 0: Write disabled 1: Write enabled Enables writing to the registers related to operating modes, clock generation circuit, low power consumption, and software reset. 0: Write disabled 1: Write enabled 1: Write enabled	R/W
b0 b1 b2	PRC0 PRC1	Protect Bit 0 Protect Bit 1 Reserved	bits and the desired value to the eight lower-order bits as a 16-bit unit. After correction Function Enables writing to the registers related to the clock generation circuit. 0: Write disabled 1: Write enabled Enables writing to the registers related to operating modes, clock generation circuit, low power consumption, and software reset. 0: Write disabled 1: Write enabled This bit is read as 0. The write value should be 0.	R/W R/W
b0 b1 b2	PRC0 PRC1	Protect Bit 0 Protect Bit 1	bits and the desired value to the eight lower-order bits as a 16-bit unit. After correction Function Enables writing to the registers related to the clock generation circuit. 0: Write disabled 1: Write enabled Enables writing to the registers related to operating modes, clock generation circuit, low power consumption, and software reset. 0: Write disabled 1: Write enabled This bit is read as 0. The write value should be 0. Enables writing to the registers related to the LVD.	R/W
	PRC0 PRC1	Protect Bit 0 Protect Bit 1 Reserved	bits and the desired value to the eight lower-order bits as a 16-bit unit. After correction Function Enables writing to the registers related to the clock generation circuit. 0: Write disabled 1: Write enabled Enables writing to the registers related to operating modes, clock generation circuit, low power consumption, and software reset. 0: Write disabled 1: Write enabled This bit is read as 0. The write value should be 0. Enables writing to the registers related to the LVD. 0: Write disabled	R/W R/W
b0 b1 b2 b3	PRC0 PRC1	Protect Bit 0 Protect Bit 1 Reserved Protect Bit 3	bits and the desired value to the eight lower-order bits as a 16-bit unit. After correction Function Enables writing to the registers related to the clock generation circuit. 0: Write disabled 1: Write enabled Enables writing to the registers related to operating modes, clock generation circuit, low power consumption, and software reset. 0: Write disabled 1: Write enabled This bit is read as 0. The write value should be 0. Enables writing to the registers related to the LVD. 0: Write disabled 1: Write enabled	R/W R/W R/W
b0 b1 b2 b3 b7 to b4	PRC0 PRC1 — PRC3	Protect Bit 0 Protect Bit 1 Reserved Protect Bit 3 Reserved	bits and the desired value to the eight lower-order bits as a 16-bit unit. After correction Function Enables writing to the registers related to the clock generation circuit. 0: Write disabled 1: Write enabled Enables writing to the registers related to operating modes, clock generation circuit, low power consumption, and software reset. 0: Write disabled 1: Write enabled This bit is read as 0. The write value should be 0. Enables writing to the registers related to the LVD. 0: Write disabled 1: Write enabled This bit is read as 0. The write value should be 0. Enables writing to the registers related to the LVD. 0: Write disabled 1: Write enabled These bits are read as 0. The write value should be 0.	R/W R/W R/W R/W
b0 b1 b2 b3	PRC0 PRC1	Protect Bit 0 Protect Bit 1 Reserved Protect Bit 3	bits and the desired value to the eight lower-order bits as a 16-bit unit. After correction Function Enables writing to the registers related to the clock generation circuit. 0: Write disabled 1: Write enabled Enables writing to the registers related to operating modes, clock generation circuit, low power consumption, and software reset. 0: Write disabled 1: Write enabled This bit is read as 0. The write value should be 0. Enables writing to the registers related to the LVD. 0: Write disabled 1: Write enabled	R/W R/W R/W

• Page 616 of 2695

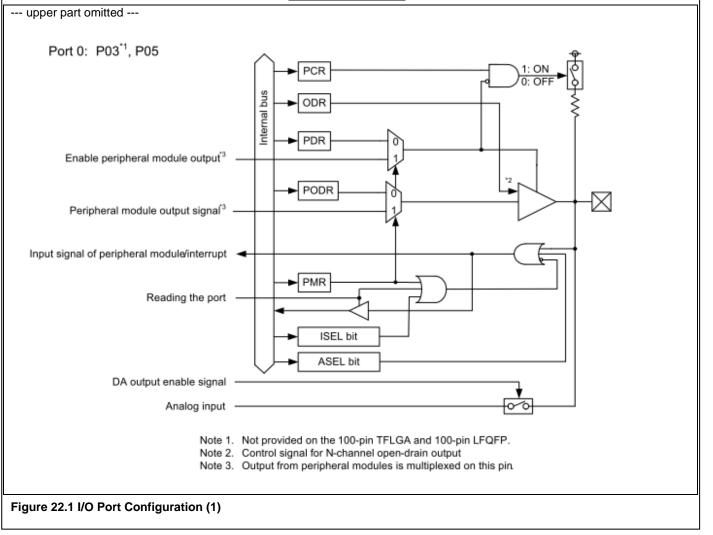
Addition of description in 17.3.3 as follows.

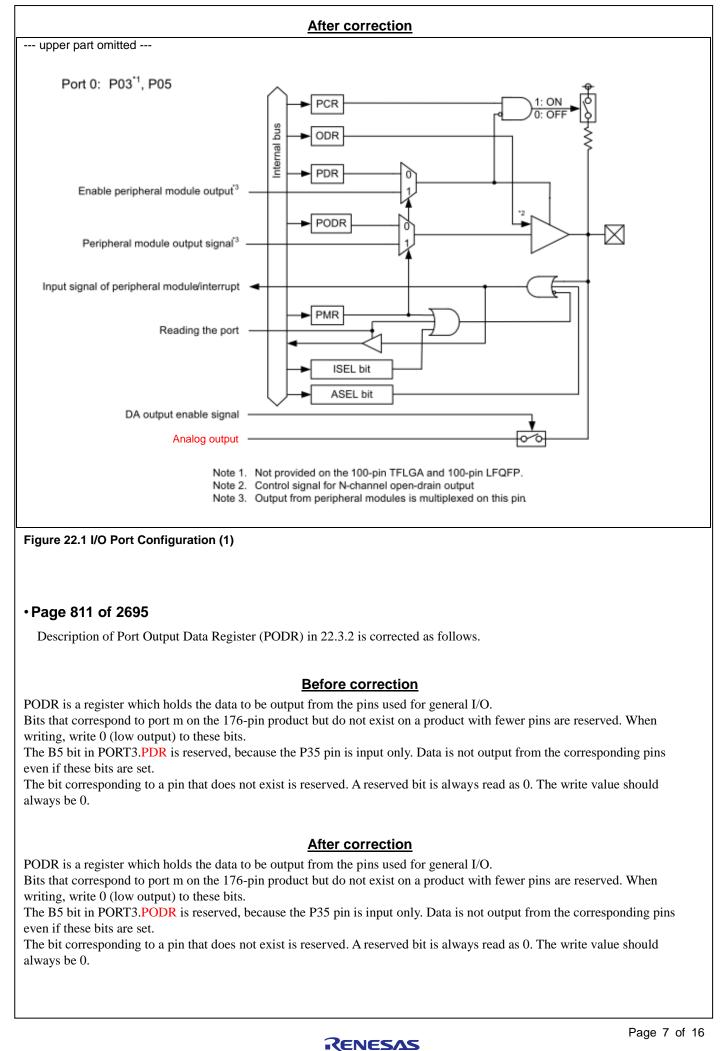
Before correction

17.3.3 Protection of Registers Related to the Memory-Protection Unit

Registers related to the memory-protection unit are not accessible through means of access other than operand access by the CPU (i.e. by instruction fetching or DMA). Attempted access to registers related to the memory-protection unit in user mode through operand access by the CPU leads to a data memory-protection error regardless of whether or not memory protection is in effect at the given location.

After correction


17.3.3 Protection of Registers Related to the Memory-Protection Unit


Registers related to the memory-protection unit are not accessible through means of access other than operand access by the CPU (i.e. by instruction fetching or DMA). The registers related to the memory-protection unit are only accessible in supervisor mode. Attempted access to registers related to the memory-protection unit in user mode through operand access by the CPU leads to a data memory-protection error regardless of whether or not memory protection is in effect at the given location.

Before correction

• Page 806 of 2695

Description of signal direction in Figure 22.1 is corrected as follows.

• Page 835 of 2695

Description of multiplexed pin function in Table 23.1 is corrected as follows.

Before correction

Table 23.1 Functions Assigned to Each Multiplexed Pin (13/18)

				Package		
Module/Function	Channel	Pin Functions	Allocation Port	177-pin 176-pin	145-pin 144-pin	100-pin
I2C bus interface	RIIC0	SCL0[FM+] (input/output)	P12	\checkmark	\checkmark	\checkmark
		SDA0[FM+] (input/output)	P13	\checkmark	\checkmark	\checkmark
	RIIC1*2	SCL1 (input/output)	P21	\checkmark	\checkmark	×
		SDA1 (input/output)	P20	\checkmark	\checkmark	×
	RIIC2	SCL2-DS (input/output)	P16	\checkmark	\checkmark	\checkmark
		SDA2-DS (input/output)	P17	\checkmark	\checkmark	\checkmark
		omitted				

After correction

Table 23.1 Functions Assigned to Each Multiplexed Pin (13/18)

				Package		
Module/Function	Channel	Pin Functions	Allocation Port	177-pin 176-pin	145-pin 144-pin	100-pin
I2C bus interface	RIIC0	SCL0[FM+] (input/output)	P12	\checkmark	\checkmark	\checkmark
		SDA0[FM+] (input/output)	P13	\checkmark	\checkmark	\checkmark
	RIIC1*2	SCL1 (input/output)	P21	\checkmark	\checkmark	√
		SDA1 (input/output)	P20	\checkmark	\checkmark	✓
	RIIC2	SCL2-DS (input/output)	P16	\checkmark	\checkmark	\checkmark
		SDA2-DS (input/output)	P17	\checkmark	\checkmark	\checkmark
		omitted				

• Page 846 of 2695

Description of register settings for input/output pin function in Table 23.6 is corrected as follows.

Before correction

Table 23.6 Register Settings for Input/Output Pin Function in 177-/145-/100-Pin TFLGA, 176-Pin LFBGA,

176-/144-/100-Pin LFQFP

		Pin							
PSEL[5:0] settings	P20	P21	P22	P23	P24	P25	P26	P27	
000000b (initial value)				F	li-Z				
				- omitted					
001101b	-	-	-	-	-	-	MOSIB-A	RSPCKB-A	
001111b* ^{1, *2}	SDA1	SCL1	-	-	-	-	-	-	
011000b	-	-	EDREQ0	EDACK0	EDREQ1	EDACK1	-	-	
011010b* ^{1, *2}	SDHI_CMD- C	SDHI_CLK-C	SDHI_D0-C	SDHI_D1-C	SDHI_WP	SDHI_CD	-	-	
011100b*1	PIXD4	PIXD5	PIXD6	PIXD7	PIXCLK	HSYNC	-	-	

Table 23.6 Register Settings for Input/Output Pin Function in 177-/145-/100-Pin TFLGA, 176-Pin LFBGA,

176-/144-/100-Pin LFQFP

	Pin								
PSEL[5:0] settings	P20	P21	P22	P23	P24	P25	P26	P27	
000000b (initial value)				F	li-Z				
				- omitted					
001101b	-	-	-	-	-	-	MOSIB-A	RSPCKB-A	
001111b*2	SDA1	SCL1	-	-	-	-	-	-	
011000b	-	-	EDREQ0	EDACK0	EDREQ1	EDACK1	-	-	
011010b*1, *2	SDHI_CMD- C	SDHI_CLK-C	SDHI_D0-C	SDHI_D1-C	SDHI_WP	SDHI_CD	-	-	
011100b*1	PIXD4	PIXD5	PIXD6	PIXD7	PIXCLK	HSYNC	-	-	

• Page 849 of 2695

Description of register settings for input/output pin function in Table 23.8 is corrected as follows.

Before correction

Table 23.8 Register Settings for Input/Output Pin Function in 177-Pin TFLGA, 176-Pin LFBGA, 176-Pin LFQFP

		Pin							
PSEL[5:0] Settings	P50	P51	P52	P54	P55	P56	P57		
000000b (initial value)		Hi-Z							
	omitted								
010001b	-	-	-	ET0_LINKSTA	ET0_EXOUT	-	-		
011000b	-	-	-	EDACK0	EDREQ0	EDACK1	-		
011001b	-	-	-	LCD_DATA6-A	LCD_DATA5-A	LCD_DATA4-A	LCD_DATA3-A		

After correction

Table 23.8 Register Settings for Input/Output Pin Function in 177-Pin TFLGA, 176-Pin LFBGA, 176-Pin LFQFP

		Pin							
PSEL[5:0] Settings	P50	P51	P52	P54	P55	P56	P57		
000000b (initial value)		Hi-Z							
	omitted								
010001b	-	-	-	ET0_LINKSTA	ET0_EXOUT	-	-		
011000b	-	-	-	EDACK0	EDREQ0	EDACK1	-		
100101b	-	-	-	LCD_DATA6-A	LCD_DATA5-A	LCD_DATA4-A	LCD_DATA3-A		

• Page 859 of 2695

Description of register settings for input/output pin function in Table 23.19 is corrected as follows.

Before correction

Table 23.19 Register Settings for Input/Output Pin Function in 177-/145-/100-Pin TFLGA, 176-Pin LFBGA, 176-/

144-/100-Pin LFQFP

PSEL[5:0]	Pin										
Settings	PC0	PC1	PC2	PC3	PC4	PC5	PC6	PC7			
000000b (initial value)					Hi-Z						
				omitted							
011001b* ¹	-	-	MMC_CD-A	MMC_D0-A	MMC_D1-A	MMC_D5-A	MMC_D6-A	MMC_D7-A			
011010b*1	-	-	SDHI_CD-A	SDHI_D0-A	SDHI_D1-A	-	-	-			
011011b* ¹	-	-	-	QIO0-A	QIO1-A	-	-	-			
				QMO-A	QMI-A						
				omitted							

Table 23.19 Register Settings for Input/Output Pin Function in 177-/145-/100-Pin TFLGA, 176-Pin LFBGA, 176-/

144-/100-Pin LFQFP

PSEL[5:0]	Pin										
Settings	PC0	PC1	PC2	PC3	PC4	PC5	PC6	PC7			
000000b (initial value)					Hi-Z						
				omitted							
011001b*1	-	-	MMC_CD-A	MMC_D0-A	MMC_D1-A	MMC_D5-A	MMC_D6-A	MMC_D7-A			
011010b*1	-	-	SDHI_D3-A	SDHI_D0-A	SDHI_D1-A	-	-	-			
011011b*1	-	-	-	QIO0-A QMO-A	QIO1-A QMI-A	-	-	-			

• Page 869 of 2695

Description of bit name of External Bus Control Register 0 (PFBCR0) in 23.2.24 is corrected as follows.

	Before correction							
Bit	Symbol	Bit Name	Description	R/W				
b0	ADRLE	A0 to A7 Output Enable	0: Configures PA0 to PA7 as the I/O port pins.	R/W				
			1: Configures PA0 to PA7 as the external address bus A0 to A7.					
b1	ADRHMS	A16 to A23 Output Enable	See Table 23.25.	R/W				
b2	ADRHMS2	A16 to A23 Output Enable	—	R/W				
b3	BCLKO	BCLK Forced Output	0: BCLK is output when EXBE = 1 and not output when EXBE = 0.	R/W				
			1: BCLK is output regardless of the setting of EXBE.					
			omitted					

After correction R/W Bit Symbol **Bit Name** Description ADRLE A0 to A7 Output Enable 0: Configures PA0 to PA7 as the I/O port pins. R/W b0 1: Configures PA0 to PA7 as the external address bus A0 to A7. R/W b1 ADRHMS A16 to A23 Output Enable See Table 23.25. A16 to A23 Output Enable 2 ADRHMS2 R/W h2 b3 BCLKO **BCLK Forced Output** 0: BCLK is output when EXBE = 1 and not output when EXBE = 0. R/W 1: BCLK is output regardless of the setting of EXBE.

--- omitted ---

• Page 2330 of 2695

Description of usage notes in 49.4 is corrected as follows.

Before correction

49.4 Usage Notes

(1) Pin serial transfer, data are input or output in LSB order (see Figure 49.3).

--- omitted ---

(14) Figure 49.4 (2) shows the pin configuration of the pins P00 to P02, P40 to P47, P90 to P93, PD0 to PD7, and PE0 to PE7. When the boundary scan function is used with pins P00 to P02, P40 to P47, P90 to P93, PD0 to PD7, and PE0 to PE7 to be used as AD input pins (AN000 to AN007, ANEX0, ANEX1, and AN100 to AN120), the conflict with open-drain output or sneak current might be generated.

--- omitted ---

49.4 Usage Notes

(1) Pin serial transfer, data are input or output in LSB order (see Figure 49.3).

--- omitted ----

(14) Figure 49.4 (2) shows the pin configuration of the pins P00 to P02, P40 to P47, P90 to P93, PD0 to PD7, and PE0 to PE7. When the boundary scan function is used with pins P00 to P02, P40 to P47, P90 to P93, PD0 to PD7, and PE0 to PE7 to be used as AD input pins (AN000 to AN007, ANEX0, ANEX1, and AN100 to AN120), the conflict with the AD input or sneak current might be generated.

--- omitted ---

• Page 2538 of 2695

Description of pin handling in Table 59.10 is corrected as follows.

Before correction

Table 59.10 Pin Handling in Boot Mode (FINE Interface)

Pin Name	Name	I/O	Function
VCC, VSS	Power supply input	Input	Input 2.7V or higher to the VCC pin. Input 0V to the VSS pin.
VCL	Decoupling capacitor connect pin	-	Connect to the VSS pin via a 0.22-µF multilayer ceramic capacitor for stabilizing the internal voltage.
MD	Operating mode control/ data I/O	I/O	Connect the VSS pin via a resistor (pull up).
RES#	Reset input	Input	Reset pin. Connect to the reset circuit.

After correction

Table 59.10 Pin Handling in Boot Mode (FINE Interface)

Pin Name	Name	I/O	Function
VCC, VSS	Power supply input	Input	Input 2.7V or higher to the VCC pin. Input 0V to the VSS pin.
VCL	Decoupling capacitor connect pin	-	Connect to the VSS pin via a 0.22-µF multilayer ceramic capacitor for stabilizing the internal voltage.
MD	Operating mode control/ data I/O	I/O	Connect the VCC pin via a resistor (pull up).
RES#	Reset input	Input	Reset pin. Connect to the reset circuit.

• Page 2581 of 2695

Description of data packet structure in 59.13.25 is corrected as follows.

Before correction

(2) Data packet structure

S	L	L	R	Ν	S	Е
0	Ν	Ν	E	0	U	Т
D	н	L	S	А	М	Х
	•			•		

ę	SOD : 81h
l	_NH : 00h
L	LNL : <mark>01h</mark>
F	RES : 53h (OK)
1	NOA : Number of area information (1 byte)
	05h (for products with at least 1.5 Mbytes of code flash memory in linear mode)
	08h (for products with at least 1.5 Mbytes of code flash memory in dual mode)
	04h (for products with 1 Mbyte of code flash memory or less)
5	SUM : Sum of values
E	ETX : 03h

After correction

(2) Data packet structure

S	L	L	R	Ν	S	Е
0	Ν	N	Е	0	U	Т
D	Н	L	S	А	М	Х

SOD : 81h LNH : 00h LNL : 02h RES : 53h (OK) NOA : Number of area information (1 byte) 05h (for products with at least 1.5 Mbytes of code flash memory in linear mode) 08h (for products with at least 1.5 Mbytes of code flash memory in dual mode) 04h (for products with 1 Mbyte of code flash memory or less) SUM : Sum of values ETX : 03h

• Page 2583 of 2695

Description of SAD address in 59.13.26 is corrected as follows.

Before correction

(2) Data packet structure

For products with 1 Mbyte of code flash memory or less

NUM	KOA	SAD	EAD	EAU	WAU	Description
00h	00h	FFFF 0000h	FFFF FFFFh	0000 2000h	0000 0080h	Code flash memory (8-Kbyte block)
01h	00h	FFE0 0000h	FFFE FFFFh	0000 8000h	0000 0080h	Code flash memory (32-Kbyte block)
02h	30h	FE7F 5D00h	FE7F 5D7Fh	0000 0080h	0000 0010h	Option-setting memory
03h	40h	FFFE 0000h	FFFE FFFFh	0000 8000h	0000 0080h	Trusted memory
	41h	FFFE 0000h	FFFE FFFFh	0000 8000h	0000 0080h	Trusted memory

(2) Data packet structure

For products with 1 Mbyte of code flash memory or less

NUM	KOA	SAD	EAD	EAU	WAU	Description
00h	00h	FFFF 0000h	FFFF FFFFh	0000 2000h	0000 0080h	Code flash memory (8-Kbyte block)
01h	00h	FFF0 0000h	FFFE FFFFh	0000 8000h	0000 0080h	Code flash memory (32-Kbyte block)
02h	30h	FE7F 5D00h	FE7F 5D7Fh	0000 0080h	0000 0010h	Option-setting memory
03h	40h	FFFE 0000h	FFFE FFFFh	0000 8000h	0000 0080h	Trusted memory
	41h	FFFE 0000h	FFFE FFFFh	0000 8000h	0000 0080h	Trusted memory

• Page 2604 of 2695

Description of note of DC characteristics in Table 60.5 is corrected as follows.

Before correction

Table 60.5 DC Characteristics (3) (Products with 1 Mbyte of code flash memory or less)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = 0 V, Ta = Topr

	Item	Symbol	D ve	rsion	G ve	ersion	Unit	Test Conditions		
	item	Тур.		Max.	Тур.	Max.	Unit	lest conditions		
			omitted							
Note 1.	Supply current values are with all output	t pins unload	ed and all ir	nput pull-up	MOSs in t	the off state	ə.			
Note 2.	Supply of the clock signal to periphe	ral modules	is stopped	l in this stat	e.					
Note 3.	I _{CC} depends on f (ICLK) as follows. (ICL	K/PCLKA:PC	CLKB/PCLK	C/PCLKD:B	CLK:BCLI	K pin = 10:	5:10:5 whe	n EXTAL = 12 MHz)		
	[D version]									
	I_{CC} Max. = 0.31 × f + 6.5 (max. operation									
	I _{cc} Typ. = 0.16 × f + 2.8 (ICLK 1 MHz m			i high-speed	operating	g mode)				
	I_{CC} Typ. = $0.4 \times f + 1.1$ (low-speed operation)	ating mode 1)							
	I_{CC} Max. = 0.15 × f + 6.5 (sleep mode)									
	[G version]									
	I_{CC} Max. = 0.33 x f + 9 (max. operation in high-speed operating mode) I_{CC} Typ. = 0.16 x f + 2.8 (ICLK 1 MHz max) (normal operation in high-speed operating mode)									
	I_{CC} Typ. = 0.16 x f + 2.8 (ICLK F MHZ III I_{CC} Typ. = 0.4 x f + 1.1 (low-speed operation			r nign-speed	operating	(mode)				
	I_{CC} Max. = 0.21 × f + 9 (sleep mode))							
Note 4.	Whether supply of the clock signal to peripheral modules continues or is stopped only depends on the state determined by the									
11010 1.	settings of the bits in module stop control registers A to D.									
	The setting for the peripheral module clock stopped state is FCLK = BCLK = PCLKA = PCLKB = PCLKC = PCLKD = BCLK pin									
	= 3.75 MHz (division by 64).									
Note 5.	The low power consumption function is	disabled and	I DEEPCUT	[1:0] = 01b.						
Note 6.	The low power consumption function is	enabled and	DEEPCUT	[1:0] = 11b.						
Note 7.	Reference value									

After correction Table 60.5 DC Characteristics (3) (Products with 1 Mbyte of code flash memory or less) Conditions: VCC = AVCC0 = AVCC1 = VCC USB = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = 0 V, Ta = Topr D version G version Item Symbol Unit **Test Conditions** Max. Max. Т<u>ур</u>. Typ. --- omitted ---Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state. Note 2. Peripheral module clocks are supplied. Note 3. I_{CC} depends on f (ICLK) as follows. (ICLK/PCLKA:PCLKB/PCLKC/PCLKD:BCLK:BCLK pin = 10:5:10:5 when EXTAL = 12 MHz) [D version] I_{CC} Max. = 0.31 x f + 6.5 (max. operation in high-speed operating mode) I_{CC} Typ. = 0.16 x f + 2.8 (normal operation in high-speed operating mode) I_{CC} Typ. = 0.1 × f + 1.0 (ICLK 1 MHz max) (low-speed operating mode 1) I_{CC} Max. = 0.15 x f + 6.5 (sleep mode) [G version] I_{CC} Max. = 0.33 × f + 9 (max. operation in high-speed operating mode) I_{CC} Typ. = 0.16 × f + 2.8 (normal operation in high-speed operating mode) I_{CC} Typ. = 0.1 × f + 1.0 (ICLK 1 MHz max) (low-speed operating mode 1) I_{CC} Max. = 0.21 × f + 9 (sleep mode) Whether supply of the clock signal to peripheral modules continues or is stopped only depends on the state determined by the Note 4. settings of the bits in module stop control registers A to D. The setting for the peripheral module clock stopped state is FCLK = BCLK = PCLKA = PCLKB = PCLKC = PCLKD = BCLK pin = 3.75 MHz (division by 64). The low power consumption function is disabled and DEEPCUT[1:0] = 01b. Note 5. Note 6. The low power consumption function is enabled and DEEPCUT[1:0] = 11b. Note 7. Reference value Page 2605 and 2606 of 2695 Description of note of DC characteristics in Table 60.6 is corrected as follows. **Before correction** Table 60.6 DC Characteristics (3) (Products for products with at least 1.5 Mbytes of code flash memory) Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0, VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = 0 V, Ta = Topr D version G version Item Symbol Unit Test Conditions Тур. Max. Тур. Max. omitted ---Note 1. Supply current values are with all output pins unloaded and all input pull-up MOSs in the off state. Supply of the clock signal to peripheral modules is stopped in this state. Note 2. I_{CC} depends on f (ICLK) as follows. (ICLK/PCLKA:PCLKB/PCLKC/PCLKD:BCLK:BCLK pin = 10:5:10:5 when EXTAL = 12 MHz) Note 3. [D version] I_{CC} Max. = 0.38 x f + 14 (max. operation in high-speed operating mode) I_{cc} Typ. = 0.18 × f + 4 (ICLK 1 MHz max) (normal operation in high-speed operating mode) I_{CC} Typ. = 0.4 x f + 1.2 (low-speed operating mode 1) I_{CC} Max. = 0.2 × f + 14 (sleep mode) [G version] I_{CC} Max. = 0.44 × f + 20 (max. operation in high-speed operating mode) I_{CC} Typ. = 0.18 × f + 4 (ICLK 1 MHz max) (normal operation in high-speed operating mode) I_{CC} Typ. = 0.4 x f + 1.2 (low-speed operating mode 1) I_{CC} Max. = 0.27 × f + 20 (sleep mode) Note 4. Whether supply of the clock signal to peripheral modules continues or is stopped only depends on the state determined by the settings of the bits in module stop control registers A to D. The setting for the peripheral module clock stopped state is FCLK = BCLK = PCLKA = PCLKB = PCLKD = BCLK pin = 3.75 MHz (division by 64). The low power consumption function is disabled and DEEPCUT[1:0] = 01b. Note 5. The low power consumption function is enabled and DEEPCUT[1:0] = 11b. Note 6. Note 7. These are the increases during programming of the code flash memory after the code flash memory (limitations apply to the combinations of address ranges of the program area and the readable area) or the data flash memory has been programmed or erased Note 8. Reference value

Table 60.6 DC Characteristics (3) (Products for products with at least 1.5 Mbytes of code flash memory)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = 0 V, Ta = Topr

Item		Symbol	D ve	ersion	G ve	ersion	Unit	Test Conditions						
	Item		Тур.	Max.	Тур.	Max.								
			omitted											
Note 1.	Supply current values are with all output	it pins unload	ed and all i	nput pull-up	MOSs in t	he off state	э.							
Note 2.	Peripheral module clocks are supplied													
Note 3.	I _{CC} depends on f (ICLK) as follows. (ICL	K/PCLKA:PC	CLKB/PCLK	C/PCLKD:B	SCLK:BCLI	< pin = 10:	5:10:5 whe	n EXTAL = 12 MHz)						
	[D version]													
	I_{CC} Max. = 0.38 × f + 14 (max. operation in high-speed operating mode)													
	I_{CC} Typ. = 0.18 x f + 4 (normal operation in high-speed operating mode)													
	I _{cc} Typ. = 0.1 × f + 1.5 (ICLK 1 MHz max) (low-speed operating mode 1)													
	I_{CC} Max. = 0.2 x f + 14 (sleep mode)													
	[G version]													
	I_{cc} Max. = 0.44 × f + 20 (max. operation in high-speed operating mode)													
	I_{cc} Typ. = 0.18 x f + 4 (normal operation in high-speed operating mode)													
	I _{cc} Typ. = 0.1 × f + 1.5 (ICLK 1 MHz max) (low-speed operating mode 1)													
	I _{cc} Max. = 0.27 × f + 20 (sleep mode)													
Note 4.	Whether supply of the clock signal to peripheral modules continues or is stopped only depends on the state determined by the													
	settings of the bits in module stop control registers A to D.													
	The setting for the peripheral module clock stopped state is FCLK = BCLK = PCLKA = PCLKB = PCLKC = PCLKD = BCLK pin = 3.75 MHz (division by 64).													
Note 5.	The low power consumption function is	dischlad and		[1.0] _ 01h										
Note 5.	The low power consumption function is													
Note 7.					r the code	flach mom	ony (limitat	ions apply to the						
Note 7.	01 0	•		These are the increases during programming of the code flash memory after the code flash memory (limitations apply to the										
	combinations of address ranges of the program area and the readable area) or the data flash memory has been programmed or													
	erased.	piografii alea	and the re	adable area) or the da	ta nasii ine	inory nas	been programmed or						

• Page 2606 of 2695

Description of DC characteristics in Table 60.7 is corrected as follows.

Before correction

Table 60.7 DC Characteristics (4)

 $\label{eq:conditions: VCC = AVCC0 = AVCC1 = VCC_USB = 2.7 \mbox{ to } 3.6 \mbox{ V}, 2.7 \mbox{ V} \leq VREFH0 \leq AVCC0, \\ VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = 0 \mbox{ V}, \\ \end{tabular}$

Ta = Topr

Item			Symphol	D version			G version			Unit	Test Conditions
			Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	lest Conditions
Analog	During 12-bit A/D conversion (unit 0)		Alcc	—	0.8	1	-	0.8	1	mA	IAVCC0_AD
power supply current* ¹	0) with the c	t A/D conversion (unit hannel-dedicated hold circuits for 3 erating		_	1.7	2.5	_	1.7	2.5	mA	IAVCC0_AD+SH
	During 12-bit A/D conversion (unit 1)			_	0.6	1	-	0.6	1	mA	IAVCC1_AD
	During 12-bit A/D conversion (unit 1) with the temperature sensor operating			—	0.7	1.1	_	0.7	1.1	mA	IAVCC1_AD+TEMP
	During D/A conversion	Unbuffered output		—	0.25	0.4	—	0.25	0.4	mA	IAVCC1_DA
	(per unit)	Buffered output		_	0.57	0.8	-	0.57	0.8	mA	
	Waiting for A/D, D/A, or temperature sensor conversion (all units)			-	0.9	1.4	-	0.9	1.4	mA	IAVCC0 + IAVCC1
	A/D, D/A converter, temperature sensor in standby mode (all units)			_	1.4	6.7	—	1.4	9.0	μA	IAVCC0 + IAVCC1

Table 60.7 DC Characteristics (4)

Conditions: VCC = AVCC0 = AVCC1 = VCC_USB = 2.7 to 3.6 V, 2.7 V ≤ VREFH0 ≤ AVCC0,

VSS = AVSS0 = AVSS1 = VREFL0 = VSS_USB = 0 V,

Ta = Topr

Item		Symphol	D version			G version			Unit	Test Conditions	
		Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	lest conditions	
Analog	During 12-bit A/D conversion (unit 0)		Alcc	-	0.8	1	-	0.8	1	mA	IAVCC0_AD
oower supply current*1	0) with the cl	t A/D conversion (unit nannel-dedicated hold circuits for 3 erating		_	1.7	2.5	_	1.7	2.5	mA	IAVCC0_AD+SH
	During 12-bit A/D conversion (unit 1)			—	0.6	1	—	0.6	1	mA	IAVCC1_AD
During 12-bit A/D conversion (1) with the temperature sensor operating				_	0.7	1.1	_	0.7	1.1	mA	IAVCC1_AD+TEMP
	During D/A conversion	Unbuffered output		—	0.25	0.4	_	0.25	0.4	mA	IAVCC1_DA
	(per unit)	Buffered output		-	0.75	1.1	-	0.75	1.1	mA	
	Waiting for A/D, D/A, or temperature sensor conversion (all units)			-	0.9	1.4	_	0.9	1.4	mA	IAVCC0 + IAVCC1
	A/D, D/A converter, temperature sensor in standby mode (all units)			_	1.4	6.7	_	1.4	9.0	μA	IAVCC0 + IAVCC1

