RENESAS TECHNICAL UPDATE

TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan Renesas Electronics Corporation

Product Category	MPU/MCU		Document No.	TN-RL*-A063A/E	Rev.	1.00
Title	Correction for Incorrect Description Notice Descriptions in the RL78/I1B User's Manual: Hardware Rev. 2.00 Changed		Information Category	Technical Notification		
		Lot No.				
Applicable Product	RL78/I1B Group	All lots	Reference Document	RL78/I1B User's Manual: Hardware Rev. 2.00 R01UH0407EJ0200 (Mar. 2014)		

This document describes misstatements found in the RL78/I1B User's Manual: Hardware Rev. 2.00 (R01UH0407EJ0200).

Corrections

		(1/2)
Applicable Item	Applicable Page	Contents
1.6 Outline of Functions System Main Clock	p.10	Incorrect descriptions revised
3.1 Memory Space Figure 3-2	p.40	Incorrect descriptions revised
4.3.9 LCD port function registers 0 to 5 Figure 4-9	p.102	Caution added
4.3.9 LCD port function registers 0 to 5 Figure 4-9 Caution	p.102	Caution added
5.3.3 Clock operation status control register(CSC)Caution 6	p.133	Incorrect descriptions revised
5.6.5 Conditions before changing the CPU clock and processing after changing CPU clock Table 5-4	p.160,161	Incorrect descriptions revised
5.6.7 Conditions before stopping clock oscillation	p.163	Explanation added
7.3.3 Timer mode register mn Figure 7-12	p.193	Incorrect descriptions revised
7.3.8 Timer input select register 0	p.201	Incorrect descriptions revised
7.6.4 Collective manipulation of TOmn bit Figure7-38	p.228	Caution deleted
8.2 Configuration of Real-time Clock 2 Figure 8-1	p.281	Incorrect descriptions revised
8.3.6 Real-time clock control register 1 Note 1, 2	p.289	Caution added
12.5 Cautions of Clock Output/Buzzer Output Controller	p.347	Incorrect descriptions revised
14.3.2 A/D converter mode register 0 Figure 14-4	p.364	Incorrect descriptions revised
18.2 Configuration of Serial Array Unit Figure 18-1	p.455	Incorrect descriptions revised
18.2 Configuration of Serial Array Unit Figure 18-2	p.456	Incorrect descriptions revised
18.3.5 Serial data register mn	p.466	Incorrect descriptions revised
18.3.12 Serial output register m	p.475	Incorrect descriptions revised
18.3.13 Serial output level register m Figure 18-18	p.477	Incorrect descriptions revised
18.5.7 SNOOZE mode function	p.543	Incorrect descriptions revised
18.5.7 SNOOZE mode function Figure 18-71	p.543	Incorrect descriptions revised
18.5.7 SNOOZE mode function Note	p.543	Incorrect descriptions revised
18.5.7 SNOOZE mode function Figure 18-72	p.544	Incorrect descriptions revised
18.5.7 SNOOZE mode function Figure 18-73	p.545	Incorrect descriptions revised
18.5.7 SNOOZE mode function Note	p.545	Incorrect descriptions revised
18.5.7 SNOOZE mode function Figure 18-74	P546	Incorrect descriptions revised
18.6.3 SNOOZE mode function Description	p.569	Incorrect descriptions revised
18.6.3 SNOOZE mode function Note 5	p.569	Caution added

		(2/2)
Applicable Item	Applicable Page	Contents
18.6.3 SNOOZE mode function Figure 18-90	p.571	Incorrect descriptions revised
18.6.3 SNOOZE mode function Figure 18-91	p.572	Incorrect descriptions revised
18.6.3 SNOOZE mode function Figure 18-92	p.573	Incorrect descriptions revised
18.6.3 SNOOZE mode function Figure 18-93	p.574	Incorrect descriptions revised
18.6.3 SNOOZE mode function Figure 18-94	p.575	Incorrect descriptions revised
18. 7. 1 LIN transmission Figure 18-99	p.584	Incorrect descriptions revised
18. 7. 2 LIN reception Figure 18-100	p.586	Incorrect descriptions revised
19.3.6 IICA low-level width setting register n	p.629	Explanation added
19.5.14 Communication reservation Calculation formula	P.648	Incorrect descriptions revised
19.5.14 Communication reservation Figure 19-27	p.650	Incorrect descriptions revised
19.5.16 Communication operations Figure 19-28	p.654	Incorrect descriptions revised
19.5.16 Communication operations Figure 19-29 (1/3)	p.655	Incorrect descriptions revised
19.5.16 Communication operations Figure 19-29 (2/3)	p.656	Incorrect descriptions revised
19.5.16 Communication operations Figure 19-29 Note	p.656	Incorrect descriptions revised
19.5.16 Communication operations Figure 19-30	p.659	Incorrect descriptions revised
21.3.7 LCD port function registers 0 to 5	p.718	Incorrect descriptions revised
22.1 Functions of DTC Table 22-1	p.765	Incorrect descriptions revised
22.4.2 Normal mode	p.780	Incorrect descriptions revised
22.5.3 DTC pending instruction	p.787	Incorrect descriptions revised
23.4.4 Interrupt request hold	p.813	Section explanation added
23.4.5 Interrupt request hold	p.813	Explanation added
25.1 Timing of Reset Operation	p.835	Caution deleted
26.3 Operation of Power-on-reset Circuit Figure 26-2 Note3	p.845	Incorrect descriptions revised
27.1 Functions of Voltage Detector	p.847	Incorrect descriptions revised
27.1 Functions of Voltage Detector Table	p.847	Incorrect descriptions revised
33.1.2 Communication mode Figure 33-2	p.910	Incorrect descriptions revised
33.5 Self-Programming Remark 1	p.920	Incorrect descriptions revised
36. 2 Operation List	p.947	Caution added
37.3.1 Pin characteristics On-chip pull-up resistance	p.964	Incorrect descriptions revised
37.3.2 Supply current characteristics Supply current	p.965	Incorrect descriptions revised
$37.6.2$ 24-bit $\Delta\Sigma$ A/D converter characteristics	p.1005	Incorrect descriptions revised
37.9 RAM Data Retention Characteristics Title	p.1003	Incorrect descriptions revised
37.9 RAM Data Retention Characteristics Note	p.1014	Incorrect descriptions revised
37.9 RAM Data Retention Characteristics Figure	p.1014	Incorrect descriptions revised
	p.1014	

1.6 Outline of Functions Incorrect:

	Item	80	-pin	100-pin		
Code flash memory (KB)		R5F10MMEDFB	R5F10MMGDFB	R5F10MPEDFB	R5F10MPGDFB	
		64	128	64	128	
Data flash me	emory (KB)		-	_		
RAM (KB)		6	8 ^{Note 1}	6	8 ^{Note 1}	
Address space	ce	1 MB				
Main system clock	High-speed system clock		cillation, external main sys to 5.5 V, 1 to 8 MHz: VDD)	
	High-speed on-chip oscillator clock	HS (High-speed main)	mode: 24/12/6/3 MHz (Vc mode: 12/6/3 MHz (Vbb = node: 6/3 MHz (Vbb = 1.9	2.4 to 5.5 V),		
Subsystem cl	ock	XT1 (crystal) oscillation 32.768 kHz (TYP.): VDD	, external subsystem cloc = 1.9 to 5.5 V	k input (EXCLKS)		
0 1	n-chip oscillator clock rrection function	Correct the frequency of	f the high-speed on-chip	oscillator clock by the sul	bsystem clock.	
Low-speed or	n-chip oscillator	15 kHz (TYP.): VDD = 1.	9 to 5.5 V			
General-purp	ose register	8 bits \times 8 registers \times 4 k	banks			
Minimum inst	ruction execution time	0.04167 μ s (High-speed on-chip oscillator: fin = 24 MHz operation)				
		0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)				
		30.5 μ s (Subsystem clock: f _{SUB} = 32.768 kHz operation)				
Instruction se	1	 Data transfer (8/16 bits) Adder and subtractor/logical operation (8/16 bits) Multiplication (16 bits × 16 bits), division (32 bits ÷ 32 bits) Multiplication and accumulation (16 bits × 16 bits + 32 bits) Rotate, barrel shift, and bit manipulation (set, reset, test, and boolean operation), etc. 				
I/O port	Total		53	69		
	CMOS I/O		44		60	
	CMOS input		5	5		
	CMOS output		1		1	
	N-ch O.D I/O (6 V tolerance)		3		3	
Timer	16-bit timer TAU		8 cha	nnels		
	Watchdog timer		1 cha	annel		
	12-bit interval timer	1 channel				
	8-bit interval timer		4 cha	nnels		
	Real-time clock 2	1 channel				
	Oscillation stop detection circuit	1 channel				
	Timer output	Timer outputs: 8 channe PWM outputs: 7 ^{Note 2}	els			
	RTC output	1 channel • 1 Hz (subsystem clo	ск: fsuв = 32.768 kHz)			

Notes 1. In the case of the 8 KB, this is about 7 KB when the self-programming function is used.

2. The number of outputs varies, depending on the setting of channels in use and the number of the master (see 7.9.3 Operation as multiple PWM output function).

1.6 Outline of Functions Correct:

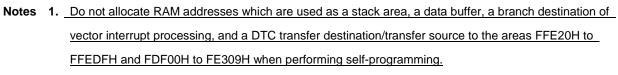
	Item	80-	pin	100)-pin	
		R5F10MMEDFB	R5F10MMGDFB	R5F10MPEDFB	R5F10MPGDFE	
Code flash	memory (KB)	64	128	64	128	
Data flash	memory (KB)			_		
RAM (KB)		6	8 ^{Note 1}	6	8 ^{Note 1}	
Address sp	ace	1 MB				
Main syster clock	m High-speed system clock	HS (High-speed main) r	node: 1 to 20 MHz (V _{DD} = node: 1 to 16 MHz (V _{DD} =	= 2.4 to 5.5 V),)	
	High-speed on-chip oscillator clock	HS (High-speed main) r	node: 24/12/6/3 MHz (Vr node: 12/6/3 MHz (Vpp = ode: 6/3 MHz (Vpp = 1.4	= 2.4 to 5.5 V),		
Subsystem	clock	XT1 (crystal) oscillation, 32.768 kHz (TYP.): VDD	external subsystem cloc = 1.9 to 5.5 V	k input (EXCLKS)		
	d on-chip oscillator clock correction function	Correct the frequency of	f the high-speed on-chip	oscillator clock by the sub	osystem clock.	
Low-speed	on-chip oscillator	15 kHz (TYP.): Vod = 1.9	9 to 5.5 V			
General-pu	rpose register	8 bits × 8 registers × 4 banks				
Minimum ir	nstruction execution time	0.04167 μs (High-speed on-chip oscillator: f _{IH} = 24 MHz operation)				
		0.05 μ s (High-speed system clock: f _{MX} = 20 MHz operation)				
		30.5 µs (Subsystem clock: fsub = 32.768 kHz operation)				
Instruction	set	Multiplication (16 bitsMultiplication and ac	r/logical operation (8/16 k s \times 16 bits), division (32 k cumulation (16 bits \times 16	oits ÷ 32 bits)	operation), etc.	
I/O port	Total	Ę	53		69	
	CMOS I/O	4	14		60	
	CMOS input		5		5	
	CMOS output		1		1	
	N-ch O.D I/O (6 V tolerance)		3	3		
Timer	16-bit timer TAU	8 channels				
	Watchdog timer	1 channel				
12-bit interval timer		1 channel				
	8-bit interval timer		4 cha	annels		
	Real-time clock 2	1 channel				
	Oscillation stop detection circuit		1 ch	annel		
	Timer output	Timer outputs: 8 channe PWM outputs: 7 ^{Note 2}	els			
	RTC output	1 channel • 1 Hz (subsystem clo	ck: fsuв = 32.768 kHz)			

Notes 1. In the case of the 8 KB, this is about 7 KB when the self-programming function is used.

2. The number of outputs varies, depending on the setting of channels in use and the number of the master (see 7.9.3 Operation as multiple PWM output function).

3.1 Memory Space

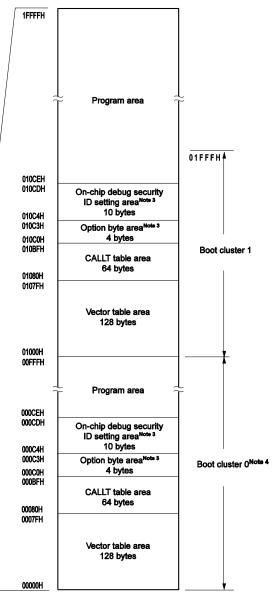
Incorrect:


Figure 3-2. Memory Map (R5F10MMG, R5F10MPG)

3.1 Memory Space

Correct:

Figure 3-2. Memory Map (R5F10MMG, R5F10MPG)



- 2. Instructions can be executed from the RAM area excluding the general-purpose register area.
- 3. When boot swap is not used: Set the option bytes to 000C0H to 000C3H, and the on-chip debug security IDs to 000C4H to 000CDH.
 - When boot swap is used: Set the option bytes to 000C0H to 000C3H and 010C0H to 010C3H, and the on-chip debug security IDs to 000C4H to 000CDH and 010C4H to 010CDH.
- 4. Writing boot cluster 0 can be prohibited depending on the setting of security (see 33.6 Security Settings).
- 5. When using the trace function of on-chip debugging, area FE300H to FE6FFH is disabled.

- Notes 1. <R> flash library, see Self RAM list of Flash Self-Programming Library for RL78 Family (R20UT2944). 2. Instructions can be executed from the RAM area excluding the general-purpose register area. 3. When boot swap is not used: Set the option bytes to 000C0H to 000C3H, and the on-chip debug security IDs to 000C4H to 000CDH
 - When boot swap is used:
 - 4. Writing boot cluster 0 can be prohibited depending on the setting of security (see 33.6 Security Settings).
 - 5. When using the trace function of on-chip debugging, area FE300H to FE6FFH is disabled.

Do not allocate the stack area, data buffers for use by the flash library, arguments of library functions, branch destinations in the processing of vectored interrupts, or destinations or sources for DTC transfer to the area from FFE20H to FFEDFH when performing self-programming. The RAM area used by the flash library starts at FDF00H. For the RAM areas used by the

Set the option bytes to 000C0H to 000C3H and 010C0H to 010C3H, and the on-chip debug security IDs to 000C4H to 000CDH and 010C4H to 010CDH.

RENESAS TECHNICAL UPDATE TN-RL*-A063A/E 4.3.9 LCD port function registers 0 to 5 (PFSEG0 to PFSEG5)

Incorrect:

These registers set whether to use pins P10 to P17, P30 to P37, P50 to P57, P70 to P77, P80 to P85 as port pins (other than segment output pins) or segment output pins.

These registers can be set by a 1-bit or 8-bit memory manipulation instruction.

Reset signal generation sets these registers to FFH (PFSEG0 is set to F0H, and PFSEG5 is set to 03H).

Remark The correspondence between the segment output pins (SEGxx) and the PFSEG register (PFSEGxx bits) and the existence of SEGxx pins in each product are shown in Table 4-4 Segment Output Pins in Each Product and Correspondence with PFSEG Register (PFSEG Bits).

Figure 4-9. Format of LCD port function registers 0 to 5 (PFSEG0 to PFSEG5)

Address: F	0300H Af	ter reset: F0	H R/W					
Symbol	7	6	5	4	3	2	1	0
PFSEG0	PFSEG07	PFSEG06	PFSEG05	PFSEG04	0	0	0	0
Address: F	0301H Af	ter reset: FF	H R/W					
Symbol	7	6	5	4	3	2	1	0
PFSEG1	PFSEG15	PFSEG14	PFSEG13	PFSEG12	PFSEG11	PFSEG10	PFSEG09	PFSEG08
Address: F	0302H Af	ter reset: FF	H R/W					
Symbol	7	6	5	4	3	2	1	0
PFSEG2	PFSEG23	PFSEG22	PFSEG21	PFSEG20	PFSEG19	PFSEG18	PFSEG17	PFSEG16
Address: F	0303H Af	ter reset: FF	H R/W					
Symbol	7	6	5	4	3	2	1	0
PFSEG3	PFSEG31	PFSEG30	PFSEG29	PFSEG28	PFSEG27	PFSEG26	PFSEG25	PFSEG24
Address: F	0304H Af	ter reset: FF	H R/W					
Symbol	7	6	5	4	3	2	1	0
PFSEG4	PFSEG39	PFSEG38	PFSEG37	PFSEG36	PFSEG35	PFSEG34	PFSEG33	PFSEG32
Address: F0305H After reset: 03H R/W								
Symbol	7	6	5	4	3	2	1	0
PFSEG5	0	0	0	0	0	0	PFSEG41	PFSEG40

Date: Aug. 30, 2016

4.3.9 LCD port function registers 0 to 5 (PFSEG0 to PFSEG5)

Correct:

These registers set whether to use pins P10 to P17, P30 to P37, P50 to P57, P70 to P77, P80 to P85 as port pins (other than segment output pins) or segment output pins.

These registers can be set by a 1-bit or 8-bit memory manipulation instruction. Reset signal generation sets these registers to FFH (PFSEG0 is set to F0H, and PFSEG5 is set to 03H).

Remark The correspondence between the segment output pins (SEGxx) and the PFSEG register (PFSEGxx bits) and the existence of SEGxx pins in each product are shown in Table 4-4 Segment Output Pins in Each Product and Correspondence with PFSEG Register (PFSEG Bits).

Figure 4-9. Format of LCD port function registers 0 to 5 (PFSEG0 to PFSEG5)

0300H Af	ter reset: F0	H R/W				
7	6	5	4			
PFSEG07	PFSEG06	PFSEG05	PFSEG04			
	I					
Address: F0301H After reset: FFH R/M						
7	6	5	4			
PFSEG15	PFSEG14	PFSEG13	PFSEG12			
0302H Af	ter reset: FF	H R/W				
7	6	5	4			
PFSEG23	PFSEG22	PFSEG21	PFSEG20			
Address: F0303H After reset: FFH R/W						
7	6	5	4			
7 PFSEG31	6 PFSEG30	5 PFSEG29	4 PFSEG28			
-	-	-	-			
PFSEG31	PFSEG30	PFSEG29	PFSEG28			
PFSEG31	PFSEG30	PFSEG29	PFSEG28			
PFSEG31 Note	PFSEG30	PFSEG29	PFSEG28			
PFSEG31 Note	PFSEG30 Note	PFSEG29 Note	PFSEG28 Note			
PFSEG31 Note 0304H Af 7	PFSEG30 Note ter reset: FF 6	PFSEG29 Note H R/W 5	PFSEG28 Note			
PFSEG31 Note 0304H Af 7 PFSEG39	PFSEG30 Note ter reset: FF 6 PFSEG38	PFSEG29 Note H R/W 5	PFSEG28 Note			
PFSEG31 Note 0304H Af 7 PFSEG39	PFSEG30 Note ter reset: FF 6 PFSEG38 Note	PFSEG29 Note H R/W 5 PFSEG37	PFSEG28 Note			
PFSEG31 Note 0304H Af 7 PFSEG39 Note	PFSEG30 Note ter reset: FF 6 PFSEG38 Note	PFSEG29 Note H R/W 5 PFSEG37	PFSEG28 Note			
PFSEG31 Note 0304H Af 7 PFSEG39 Note	PFSEG30 Note ter reset: FF 6 PFSEG38 Note	PFSEG29 Note H R/W 5 PFSEG37 H R/W	PFSEG28 Note 4 PFSEG36			
PFSEG31 Note 0304H Af 7 PFSEG39 Note 0305H Af 7	PFSEG30 Note ter reset: FF 6 PFSEG38 Note ter reset: 03 6	PFSEG29 Note H R/W 5 PFSEG37 H R/W 5	PFSEG28 Note 4 PFSEG36			
	PFSEG07 0301H Af 7 PFSEG15 0302H Af 7 PFSEG23	PFSEG07 PFSEG06 0301H After reset: FF 7 6 PFSEG15 PFSEG14 0302H After reset: FF 7 6 PFSEG23 PFSEG22	PFSEG07PFSEG06PFSEG050301HAfter reset: FFHR/W765PFSEG15PFSEG14PFSEG130302HAfter reset: FFHR/W765PFSEG23PFSEG22PFSEG21			

Page 5 of 58

<R>

<R>

<R>

<R>

3	2	1	0
PFSEG11	PFSEG10	PFSEG09	PFSEG08

	3	2	1	0
1	PFSEG19	PFSEG18	PFSEG17	PFSEG16

3	2	1	0
PFSEG27	PFSEG26	PFSEG25	PFSEG24

	3	2	1	0
I	PFSEG35	PFSEG34	PFSEG33	PFSEG32

3	2	1	0
0	0	PFSEG41	PFSEG40

5.3.3 Clock operation status control register (CSC)

Incorrect:

- Cautions 5. Do not stop the clock selected for the CPU/peripheral hardware clock (fcLK) by using the OSC register.
 - 6. The setting of the flags of the register to stop clock oscillation (disabling the external clock input) and the condition before clock oscillation is stopped are shown in Table 5-2.

Table 5-2. Stopping the Clock

Clock	Condition Before Stopping Clock (Disabling External Clock Input)	Setting of CSC Register Flags
X1 oscillator clock External main system clock	The CPU/peripheral hardware clock is a clock other than the high-speed system clock. $(CLS = 0 \text{ and } MCS = 0, \text{ or } CLS = 1)$	MSTOP = 1
XT1 oscillator clock External subsystem clock	The CPU/peripheral hardware clock is a clock other than the subsystem clock. (CLS = 0)	XTSTOP = 1
High-speed on-chip oscillator clock	The CPU/peripheral hardware clock is a clock other than the high-speed on-chip oscillator clock. $(CLS = 0 \text{ and } MCS = 1, \text{ or } CLS = 1)$	HIOSTOP = 1

Date: Aug. 30, 2016

5.3.3 Clock operation status control register (CSC)

Correct:

	Cautions 5.	Do not stop the clock selected for the C
		the OSC register.
<r></r>	6.	The setting of the flags of the register to
		clock input) and the condition before clo
		5-2 When stopping the clock confirm the

Clock	Condition Before Stopping Clock (Disabling External Clock Input)	Setting of CSC Register Flags
X1 oscillator clock External main system clock	The CPU/peripheral hardware clock is a clock other than the high-speed system clock. (CLS = 0 and MCS = 0, or CLS = 1)	MSTOP = 1
XT1 oscillator clock External subsystem clock	The CPU/peripheral hardware clock is a clock other than the subsystem clock. (CLS = 0)	XTSTOP = 1
High-speed on-chip oscillator clock	The CPU/peripheral hardware clock is a clock other than the high-speed on-chip oscillator clock. (CLS = 0 and MCS = 1, or CLS = 1)	HIOSTOP = 1

CPU/peripheral hardware clock (fcLK) by using

to stop clock oscillation (disabling the external lock oscillation is stopped are shown in Table 5-2. When stopping the clock, confirm the condition before stopping clock.

Table 5-2. Stopping the Clock

5.6.5 Conditions before changing the CPU clock and processing after changing CPU clock

Incorrect:

The conditions before changing the CPU clock and processing after changing the CPU clock are shown below.

Table 5-4. Changing CPU Clock (1/2)

CPU	Clock	Conditions Before Change	Processing After Change			
Before Change After Change						
High-speed on- chip oscillator clock	X1 clock	 X1 oscillation is stable OSCSEL = 1, EXCLK = 0, MSTOP = 0 The oscillation stabilization time has elapsed 	Operating current can be reduced by stopping high-speed on-chip oscillator (HIOSTOP = 1).			
	External main system clock	Inputting the external clock from the EXCLK pin is enabled • OSCSEL = 1, EXCLK = 1, MSTOP = 0				
	XT1 clock	 XT1 oscillation is stable OSCSELS = 1, EXCLKS = 0, XTSTOP = 0 The oscillation stabilization time has elapsed 				
	External subsystem clock	Inputting the external clock from the EXCLKS pin is enabled • OSCSELS = 1, EXCLKS = 1, XTSTOP = 0				
X1 clock	High-speed on- chip oscillator clock	 Enabling oscillation of high-speed on-chip oscillator HIOSTOP = 0 The oscillation accuracy stabilization time has elapsed 	X1 oscillation can be stopped (MSTOP = 1).			
	External main system clock	Transition impossible	-			
	XT1 clock	 XT1 oscillation is stable OSCSELS = 1, EXCLKS = 0, XTSTOP = 0 The oscillation stabilization time has elapsed 	X1 oscillation can be stopped (MSTOP = 1).			
	External subsystem clock	Inputting the external clock from the EXCLKS pin is enabled • OSCSELS = 1, EXCLKS = 1, XTSTOP = 0	X1 oscillation can be stopped (MSTOP = 1).			
External main system clock	High-speed on- chip oscillator clock	 Enabling oscillation of high-speed on-chip oscillator HIOSTOP = 0 The oscillation accuracy stabilization time has elapsed 	Inputting the external main system clock can be disabled (MSTOP = 1).			
	X1 clock	Transition impossible	-			
	XT1 clock	 XT1 oscillation is stable OSCSELS = 1, EXCLKS = 0, XTSTOP = 0 The oscillation stabilization time has elapsed 	Inputting the external main system clock can be disabled (MSTOP = 1).			
	External subsystem clock	Inputting the external clock from the EXCLKS pin is enabled • OSCSELS = 1, EXCLKS = 1, XTSTOP = 0	Inputting the external main system clock can be disabled (MSTOP = 1).			

Date: Aug. 30, 2016

5.6.5 Conditions before changing the CPU clock and processing after changing CPU clock

Correct:

The conditions before changing the CPU clock and processing after changing the CPU clock are shown below.

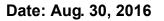
Table 5-4. Changing CPU Clock (1/2)

	CPU	Clock	Conditions Before Change	Processing After Change				
Before Change After Change								
<r></r>	High-speed on- chip oscillator clock	X1 clock	X1 oscillation is stable • OSCSEL = 1, EXCLK = 0, MSTOP = 0 • The oscillation stabilization time has elapsed	After confirming that the CPU clock has changed from the high-speed on-chip oscillator clock to the X1 clock, external main system clock, XT1 clock, or external				
		External main system clock	Inputting the external clock from the EXCLK pin is enabled • OSCSEL = 1, EXCLK = 1, MSTOP = 0	subsystem clock, operating current can be reduced by stopping the high-speed on-chip oscillator (HIOSTOP = 1).				
		XT1 clock	 XT1 oscillation is stable OSCSELS = 1, EXCLKS = 0, XTSTOP = 0 The oscillation stabilization time has elapsed 					
		External subsystem clock	Inputting the external clock from the EXCLKS pin is enabled • OSCSELS = 1, EXCLKS = 1, XTSTOP = 0					
<r></r>	X1 clock	High-speed on- chip oscillator clock	 Enabling oscillation of high-speed on-chip oscillator HIOSTOP = 0 The oscillation accuracy stabilization time has elapsed 	After confirming that the CPU clock has changed from the X1 clock to the high- speed on-chip oscillator clock, the X1 oscillation can be stopped (MSTOP = 1).				
		External main system clock	Transition impossible	-				
<r></r>		XT1 clock	 XT1 oscillation is stable OSCSELS = 1, EXCLKS = 0, XTSTOP = 0 The oscillation stabilization time has elapsed 	After confirming that the CPU clock has changed from the X1 clock to the XT1 clock the X1 oscillation can be stopped (MSTOP = 1).				
<r></r>		External subsystem clock	Inputting the external clock from the EXCLKS pin is enabled • OSCSELS = 1, EXCLKS = 1, XTSTOP = 0	After confirming that the CPU clock has changed from the X1 clock to the external subsystem clock, the X1 oscillation can be stopped (MSTOP = 1).				
<r></r>	External main system clock	High-speed on- chip oscillator clock	Enabling oscillation of high-speed on-chip oscillator • HIOSTOP = 0 • The oscillation accuracy stabilization time has elapsed	After confirming that the CPU clock has changed from the external main system clock to the high-speed on-chip oscillator clock, inputting the external main system clock can be disabled (MSTOP = 1).				
		X1 clock	Transition impossible	_				
<r></r>		XT1 clock	 XT1 oscillation is stable OSCSELS = 1, EXCLKS = 0, XTSTOP = 0 The oscillation stabilization time has elapsed 	After confirming that the CPU clock has changed from the external main system clock to the XT1 clock, inputting the externa main system clock can be disabled (MSTO = 1).				
<r></r>		External subsystem clock	Inputting the external clock from the EXCLKS pin is enabled • OSCSELS = 1, EXCLKS = 1, XTSTOP = 0	After confirming that the CPU clock has changed from the external main system clock to the external subsystem clock, inputting the external main system clock ca be disabled (MSTOP = 1).				

XT1 clock

Transition impossible

Incorrect:


•	 	/	

CPU	Clock	Condition Before Change	Processing After Change
Before Change	After Change		
XT1 clock	High-speed on- chip oscillator clock	The high-speed on-chip oscillator is oscillating and the high-speed on-chip oscillator clock is selected as the main system clock • HIOSTOP = 0, MCS = 0	XT1 oscillation can be stopped (XTSTOP = 1)
	X1 clock	 X1 oscillation is stable and the high-speed system clock is selected as the main system clock OSCSEL = 1, EXCLK = 0, MSTOP = 0 The oscillation stabilization time has elapsed MCS = 1 	
	External main system clock	Inputting the external clock from the EXCLK pin is enabled and the high-speed system clock is selected as the main system clock • OSCSEL = 1, EXCLK = 1, MSTOP = 0 • MCS = 1	
	External subsystem clock	Transition impossible	_
External subsystem clock	High-speed on- chip oscillator clock	The high-speed on-chip oscillator is oscillating and the high-speed on-chip oscillator clock is selected as the main system clock • HIOSTOP = 0, MCS = 0	Inputting external subsystem clock can be disabled (XTSTOP = 1).
	X1 clock	 X1 oscillation is stable and the high-speed system clock is selected as the main system clock OSCSEL = 1, EXCLK = 0, MSTOP = 0 The oscillation stabilization time has elapsed MCS = 1 	
	External main system clock	Inputting the external clock from the EXCLK pin is enabled and the high-speed system clock is selected as the main system clock • OSCSEL = 1, EXCLK = 1, MSTOP = 0 • MCS = 1	

RENESAS

Table 5-4. Changing CPU Clock (2/2)

	CPU	Clock	Condition Before Change	Processing After Change		
	Before Change	After Change				
<r></r>	XT1 clock	High-speed on- chip oscillator clock	The high-speed on-chip oscillator is oscillating and the high-speed on-chip oscillator clock is selected as the main system clock • HIOSTOP = 0, MCS = 0	After confirming that the CPU clock has changed from the XT1 clock to the high- speed on-chip oscillator clock, X1 clock, or external main system clock, the XT1 oscillation can be stopped (XTSTOP = 1).		
		X1 clock	 X1 oscillation is stable and the high-speed system clock is selected as the main system clock OSCSEL = 1, EXCLK = 0, MSTOP = 0 The oscillation stabilization time has elapsed MCS = 1 			
		External main system clock	Inputting the external clock from the EXCLK pin is enabled and the high-speed system clock is selected as the main system clock • OSCSEL = 1, EXCLK = 1, MSTOP = 0 • MCS = 1			
		External subsystem clock	Transition impossible	-		
<r></r>	External subsystem clock	High-speed on- chip oscillator clock	The high-speed on-chip oscillator is oscillating and the high-speed on-chip oscillator clock is selected as the main system clock • HIOSTOP = 0, MCS = 0	After confirming that the CPU clock has changed from the external subsystem clock to the high-speed on-chip oscillator clock, X1 clock, or external main system clock,		
		X1 clock	 X1 oscillation is stable and the high-speed system clock is selected as the main system clock OSCSEL = 1, EXCLK = 0, MSTOP = 0 The oscillation stabilization time has elapsed MCS = 1 	inputting the external subsystem clock can be disabled (XTSTOP = 1).		
		External main system clock	Inputting the external clock from the EXCLK pin is enabled and the high-speed system clock is selected as the main system clock • OSCSEL = 1, EXCLK = 1, MSTOP = 0 • MCS = 1			
		XT1 clock	Transition impossible	_		

Correct:

Page 8 of 58

Table 5-4. Changing CPU Clock (2/2)

5.6.7 Conditions before stopping clock oscillation

Incorrect:

The following lists the register flag settings for stopping the clock oscillation (disabling external clock input) and conditions before the clock oscillation is stopped.

Table 5-8. Conditions Before Stopping the Clock Oscillation and Flag Settings

Clock	Conditions Before Stopping Clock Oscillation (Disabling External Clock Input)	SFR Flag Settings
High-speed on-chip oscillator clock	MCS = 1 or CLS = 1 (The CPU is operating on a clock other than the high-speed on-chip oscillator clock.)	HIOSTOP = 1
X1 oscillator clock	MCS = 0 or CLS = 1	MSTOP = 1
External main system clock	(The CPU is operating on a clock other than the high-speed system clock.)	
XT1 oscillator clock	CLS = 0	XTSTOP = 1
External subsystem clock	(The CPU is operating on a clock other than the subsystem clock.)	

Date: Aug. 30, 2016

5.6.7 Conditions before stopping clock oscillation

Correct:

The following lists the register flag settings for stopping the clock oscillation (disabling external clock input) and conditions before the clock oscillation is stopped.

<R> When stopping the clock, confirm the condition before stopping clock.

Table 5-8. Conditions Before Stopping the Clock Oscillation and Flag Settings

Clock	Conditions Before Stopping Clock Oscillation (Disabling External Clock Input)	SFR Flag Settings
High-speed on-chip oscillator clock	MCS = 1 or CLS = 1 (The CPU is operating on a clock other than the high-speed on-chip oscillator clock.)	HIOSTOP = 1
X1 oscillator clock	MCS = 0 or CLS = 1	MSTOP = 1
External main system clock	(The CPU is operating on a clock other than the high-speed system clock.)	
XT1 oscillator clock	CLS = 0	XTSTOP = 1
External subsystem clock	(The CPU is operating on a clock other than the subsystem clock.)	

7.3.3 Timer mode register mn

Incorrect:

Figure 7-12. Format of Timer Mode Register mn (TMRmn) (1/4)

Address: F0190H, F0191H (TMR00) to F019EH, F019FH (TMR07) After reset: 0000H R/W																
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	MAST	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 2, 4, 6)	mn1	mn0		mn	ERmn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	SPLIT	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 1, 3)	mn1	mn0		mn	mn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn	CKS	CKS	0	CCS	0 ^{Note}	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
(n = 0, 5, 7)	mn1	mn0		mn		mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0

CKS mn1	CKS mn0	Selection of operation clock (fмск) of channel n					
0	0	Operation clock CKm0 set by timer clock select register m (TPSm)					
0	1	Operation clock CKm2 set by timer clock select register m (TPSm)					
1	0	Operation clock CKm1 set by timer clock select register m (TPSm)					
1	1	Operation clock CKm3 set by timer clock select register m (TPSm)					
deper	Operation clock (f _{MCK}) is used by the edge detector. A count clock (f _{TCLK}) and a sampling clock are generated depending on the setting of the CCSmn bit. The operation clocks CKm2 and CKm3 can only be selected for channels 1 and 3.						

CCS	Selection of count clock (ftclk) of channel n
mn	
0	Operation clock (fMCK) specified by the CKSmn0 and CKSmn1 bits
1	Valid edge of input signal input from the TImn pin
	In channel 1, Valid edge of input signal selected by TISO
Count	clock (fTCLK) is used for the counter, output controller, and interrupt controller.

Bit 11 is fixed at 0 of read only, write is ignored. Note

Cautions 1. Be sure to clear bits 13, 5, and 4 to "0".

2. The timer array unit must be stopped (TTm = 00FFH) if the clock selected for fcLK is changed (by changing the value of the system clock control register (CKC)), even if the operating clock specified by using the CKSmn0 and CKSmn1 bits (fMCK) or the valid edge of the signal input from the TImn pin is selected as the count clock (fTCLK).

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7)

7.3.3 Timer mode register mn

Correct:

Figure 7-12. Format of Timer Mode Register mn (TMRmn) (1/4)

Address: F01	90H, F0)191H (TMR00) to F01	9EH, F	019FH	(TMR0	7)	After re	set: 000	00H	R/W				
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn (n = 2, 4, 6)	CKS mn1	CKS mn0	0	CCS mn	MAST ERmn	STS mn2	STS mn1	STS mn0	CIS mn1	CIS mn0	0	0	MD mn3	MD mn2	MD mn1	MD mn0
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn (n = 1, 3)	CKS mn1	CKS mn0	0	CCS mn	SPLIT mn	STS mn2	STS mn1	STS mn0	CIS mn1	CIS mn0	0	0	MD mn3	MD mn2	MD mn1	MD mn0
(, , ,					I		L	L	L	L			I	L	I	
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TMRmn (n = 0, 5, 7)	CKS mn1	CKS mn0	0	CCS mn	0 ^{Note}	STS mn2	STS mn1	STS mn0	CIS mn1	CIS mn0	0	0	MD mn3	MD mn2	MD mn1	MD mn0
(1 - 0, 3, 7)																
	CKS mn1	CKS mn0				S	electior	n of ope	ration c	lock (fm	ск) of cl	nannel	n			
	0	0	Opera	ation clo	ock CKn	n0 set b	y timer	clock s	elect re	gister m	n (TPSn	า)				
	0	1	Opera	ation clo	ock CKn	n2 set b	y timer	clock s	elect re	gister m	n (TPSn	า)				
	1	0	Opera	ation clo	ock CKn	n1 set b	y timer	clock s	elect re	gister m	n (TPSn	า)				
	1	1	Opera	ation clo	ock CKn	n3 set b	y timer	clock s	elect re	gister m	n (TPSn	า)				
	depen	iding on	the se	tting of	ed by th the CCS and CK	Smn bit.							ing cloc	k are ge	enerate	d
	CCS mn					Se	lection	of count	t clock (fτcικ) of	channe	el n				
	0	Opera	tion clo	<mark>ck (</mark> fмск) specif	ied by t	he CKS	Smn0 ar	nd CKS	mn1 bit	S					
	1		-	•	ignal inp			•								
<r></r>					dge of i dge of i											
	Count				or the co			-		nterrunt	control	ler				

F01	90H, F0)191H (TMR00	00) to F019EH, F019FH (TMR07) After reset: 0000H R/W												
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	CKS	CKS	0	CCS	MAST	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
5)	mn1	mn0		mn	ERmn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
	15	14	13	12	12 11 10 9 8 7 6 5 4 3 2 1 0											
I	CKS	CKS	0	CCS	SPLIT	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
)	mn1	mn0		mn	mn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
I	CKS	CKS	0	CCS	0 ^{Note}	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
7)	mn1	mn0		mn	mn mn2 mn1 mn0 mn1 mn0 mn3 mn2 mn1 mn0											
	CKS	CKS				S	electior	n of ope	ration c	lock (fm	ск) of cl	nannel	n			
	mn1	mn0														
	0	0	Opera	ation clo	ock CKm	n0 set b	y timer	clock s	elect re	gister m	ı (TPSn	ר)				
	0	1	Opera	ation clo	ock CKm	n2 set b	y timer	clock s	elect re	gister m	ı (TPSn	ר)				
	1	0	Opera	ation clo	ock CKm	n1 set b	y timer	clock s	elect re	gister m	ı (TPSn	ר)				
	1	1	Opera	ation clo	ock CKm	n3 set b	y timer	clock s	elect re	gister m	n (TPSn	ר)				
	Opera	tion clo	ck (fmck) is use	ed by th	e edge	detecto	or. A co	ount clo	ock (f⊤c⊔≀	<) and a	sampl	ing cloc	k are ge	enerate	b
		-		-	the CCS											
	The o	peratior	n clocks	clocks CKm2 and CKm3 can only be selected for channels 1 and 3.												
		1														
	CCS		Selection of count clock (ftclk) of channel n													
	mn															
	0	Operation clock (fMCK) specified by the CKSmn0 and CKSmn1 bits														
	1															
					dge of ii dge of ii											
					dge of ii			,								
	Count	clock (tταικ) is	used fo	or the co	unter (output c	ontrolle	r and i	nterrupt	control	ler				

ss: F01	90H, FC)191H (191H (TMR00) to F019EH, F019FH (TMR07) After reset: 0000H R/W													
nbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rmn	CKS	CKS	0	CCS	MAST	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
2, 4, 6)	mn1	mn0		mn	ERmn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
							-									
nbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rmn	CKS	CKS	0	CCS	SPLIT	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
1, 3)	mn1	mn0		mn	mn	mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
							-									
nbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Rmn	CKS	CKS	0	CCS	0 ^{Note}	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
0, 5, 7)	mn1	mn0		mn		mn2	mn1	mn0	mn1	mn0			mn3	mn2	mn1	mn0
	01/0	01/0						,								
	CKS mn1	CKS mn0				5	election	n of ope	ration c	lock (fm	CK) OF C	nannei i	n			
	0	0	Opera	ation clo	ock CKn	n0 set b	y timer	clock s	elect re	gister m	ı (TPSn	n)				
	0	1	Opera	ation clo	ock CKn	n2 set b	y timer	clock s	elect re	gister m	ı (TPSn	n)				
	1	0	Opera	ation clo	ock CKn	n1 set b	y timer	clock s	elect re	gister m	ı (TPSn	n)				
	1	1	Opera	ation clo	ock CKn	n3 set b	y timer	clock s	elect re	gister m	n (TPSn	n)				
	Opera	tion clo	ck (fмск) is use	ed by th	e edge	detecto	or. A co	ount clo	ck (ftcu	<) and a	a sampli	ing cloc	k are ge	enerate	b
			•	,	the CCS	-				,	,	•	0	0		
	The o	peratior	l clocks	CKm2	and CK	m3 car	only b	e select	ed for c	hannels	s 1 and	3.				
	CCS					Se	lection	of count	t clock (fтськ) of	channe	el n				
	mn		、 <i>/</i>													
	0	Opera	peration clock (fMCK) specified by the CKSmn0 and CKSmn1 bits													
	1		-	•	ignal inp			•								
R>			channel 5, Valid edge of input signal selected by TIS0 channel 7, Valid edge of input signal selected by ISC													
					-			-								
	Count	clock (тськ) is	used fo	or the co	ounter, o	output c	ontrolle	r, and i	nterrupt	contro	ller.				

Bit 11 is fixed at 0 of read only, write is ignored. Note

Cautions 1. Be sure to clear bits 13, 5, and 4 to "0".

2. The timer array unit must be stopped (TTm = 00FFH) if the clock selected for fcLk is changed (by changing the value of the system clock control register (CKC)), even if the operating clock specified by using the CKSmn0 and CKSmn1 bits (fMCK) or the valid edge of the signal input from the TImn pin is selected as the count clock (fTCLK).

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7)

7.3.8 Timer input select register 0 (TISO)

Incorrect:

The TIS0 register is used to select the channel 5 timer input.

The TISO register can be set by an 8-bit memory manipulation instruction.

Reset signal generation clears this register to 00H.

Figure 7-17. Format of Timer Input Select register 0 (TIS0)

Address: F0074H R/W After reset: 00H

Symbol	7	6	5	4	3	2	1	0
TIS0	0	0	0	0	0	TIS02	TIS01	TIS00

TIS02	TIS01	TIS00	Selection of timer input used with channel 5
0	0	0	Input signal of timer input pin (TI05)
0	0	1	
0	1	0	
0	1	1	
1	0	0	Low-speed on-chip oscillator clock (fi∟)
1	0	1	Subsystem clock (fsuB)
C	Other than abov	'e	Setting prohibited

Caution High-level width, low-level width of timer input is selected, will require more than 1/fmck +10 ns.

Therefore, when selecting fsub to fcLk (CSS bit of <u>CKS</u> register = 1), can not TIS02 bit set to 1.

Date: Aug. 30, 2016

7.3.8 Timer input select register 0 (TISO)

Correct:

The TIS0 register is used to select the channel 5 timer input. The TISO register can be set by an 8-bit memory manipulation instruction. Reset signal generation clears this register to 00H.

Figure 7-17. Format of Timer Input Select register 0 (TIS0)

Address: F00	74H After	reset: 00H	R/W		
Symbol	7	6	5	4	3
TIS0	0	0	0	0	0

7	6	5	4	3	2	1	0
0	0	0	0	0	TIS02	TIS01	TIS00
TIS02	TIS01	TIS00		Selection of tin	ner input used v	with channel 5	
0	0	0	Input signal o	of timer input pi	n (TI05)		
0	0	1					
0	1	0					
0	1	1					
1	0	0	Low-speed of	n-chip oscillato	r clock (fı∟)		
1	0	1	Subsystem c	lock (fsuв)			
C	Other than abov	'e	Setting prohit	bited			

Therefore, when selecting fsuB to fcLk (CSS bit of CKC register = 1), can not TIS02 bit set to 1.

Caution High-level width, low-level width of timer input is selected, will require more than 1/fмск +10 ns. <R>

(c) 2016. Renesas Electronics Corporation. All rights reserved.

7.6.4 Collective manipulation of TOmn bit

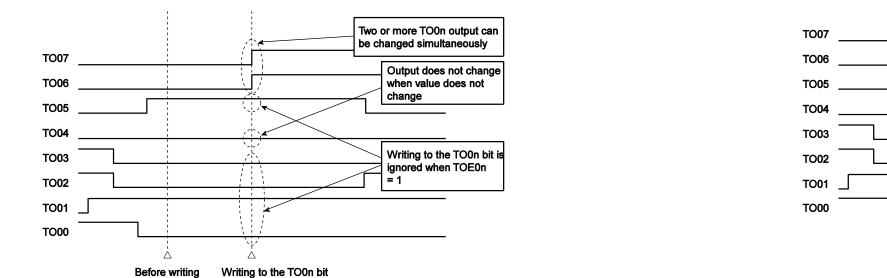
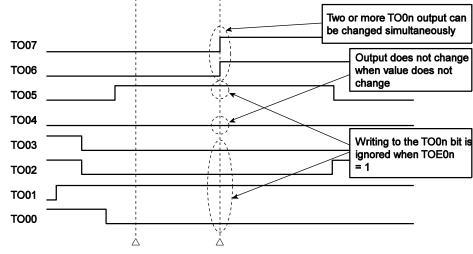

Incorrect:

Figure 7-38. TOOn Pin Statuses by Collective Manipulation of TOOn Bit

7.6.4 Collective manipulation of TOmn bit

Correct:

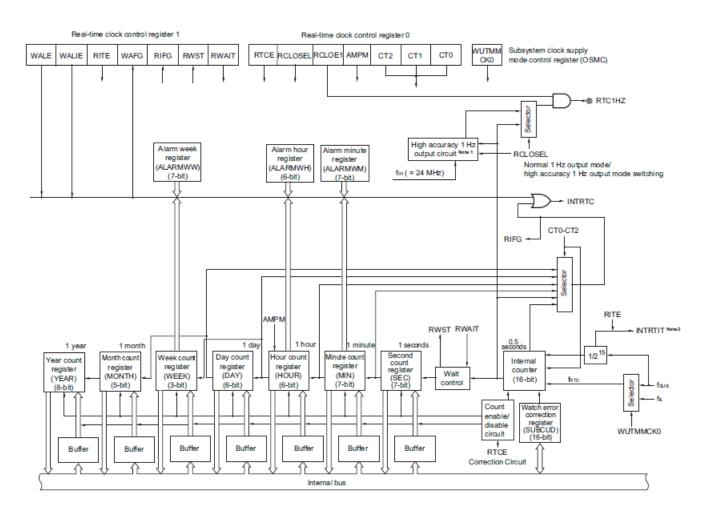

Figure 7-38. TOOn Pin Statuses by Collective Manipulation of TOOn Bit

<R> Caution While timer output is enabled (TOEmn = 1), even if the output by timer interrupt of each timer (INTTMmn) contends with writing to the TOmn bit, output is normally done to the TOmn pin.

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7)

RENESAS

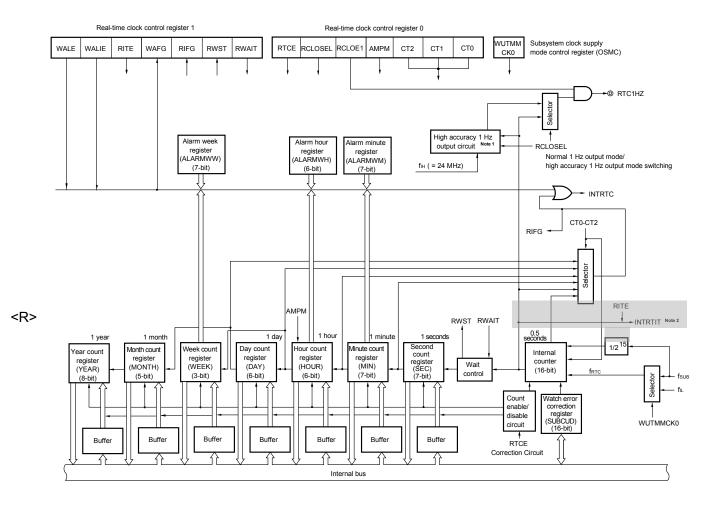
Before writing

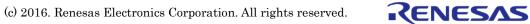

Remark m: Unit number (m = 0), n: Channel number (n = 0 to 7)

Writing to the TOOn bit

8.2 Configuration of Real-time Clock 2

Incorrect:


Figure 8-1. Real-time Clock 2 Diagram


- Notes 1. A high-speed on-chip oscillator (HOCO: 24 MHz) can be used for high precision 1 Hz output. HOCO must be set to ON in order to run in high precision 1 Hz output mode. To run in normal 1 Hz mode, there is no need to set HOCO to ON.
 - 2. An interrupt that indicates the timing to get the correction value from the clock error correction register (SUBCUD). The fetch timing is 1 second (fsub base) interval.

Date: Aug. 30, 2016 8.2 Configuration of Real-time Clock 2 Correct:

Figure 8-1. Real-time Clock 2 Diagram

- Notes 1. A high-speed on-chip oscillator (HOCO: 24 MHz) can be used for high precision 1 Hz output. HOCO must be set to ON in order to run in high precision 1 Hz output mode. To run in normal 1 Hz mode, there is no need to set HOCO to ON.
 - 2. An interrupt that indicates the timing to get the correction value from the clock error correction register (SUBCUD). The fetch timing is 1 second (fsub base) interval.

8.3.6 Real-time clock control register 1 (RTCC1)

Incorrect:

Figure 8-7.	Format of Real-time C	lock Control Register	1 (RTCC1) (3/3)
-------------	-----------------------	-----------------------	-----------------

Address: Fl	FF9EH	After reset:	00H R/W					
Symbol	<7>	<6>	<5>	<4>	<3>	2	<1>	<0>
RTCC1	WALE	WALIE	RITE	WAFG	RIFG	0	RWST	RWAIT

RWST	Wait status flag of real-time clock 2
0	Counter is operating.
1	Mode to read or write counter value.
This status	flag indicates whether the setting of the RWAIT bit is valid.
Before read	ing or writing the counter value, confirm that the value of this flag is 1.
Even if the	RWAIT bit is set to 0, the RWST bit is not set to 0 while writing to the counter. After writing
is complete	d, the RWST bit is set to 0.

RWAIT	Wait control of real-time clock 2
0	Sets counter operation.
1	Stops SEC to YEAR counters. Mode to read or write counter value.
Be sure to As the cour back to 0.	trols the operation of the counter. write "1" to it to read or write the counter value. hter (16-bit) is continuing to run, complete reading or writing within one second and turn IT = 1, it takes up to 1 clock of fRTC until the counter value can be read or written (RWST =
RWAIT = 0	nternal counter (16-bit) overflowed while RWAIT = 1, it keeps the event of overflow until then counts up. when it wrote a value to second count register, it will not keep the overflow event.

Caution If writing is performed to RTCC1 with a 1-bit manipulation instruction, the RIFG and WAFG flags may be cleared. Therefore, to perform writing to RTCC1, be sure to use an 8-bit manipulation instruction.

To prevent the RIFG and WAFG flags from being cleared during writing, set 1 (writing disabled) to the corresponding bit. If the RIFG and WAFG flags are not used and the value may be changed, RTCC1 may be written by using a 1-bit manipulation instruction.

- Remarks 1. Constant-period interrupts and alarm match interrupts use the same interrupt source (INTRTC). When using these two types of interrupts at the same time, which interrupt occurred can be judged by checking the constant-period interrupt status flag (RIFG) and the alarm detection status flag (WAFG) upon INTRTC occurrence.
 - 2. The internal counter (16 bits) is cleared when the second count register (SEC) is written.

Date: Aug. 30, 2016

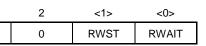

8.3.6 Real-time clock control register 1 (RTCC1) **Correct:**

		Figure	8-7. Forma	at of Real-tir	ne Clock Co
Address: F	FF9EH	After reset:	00H R/W		
Symbol	<7>	<6>	<5>	<4>	<3>
RTCC1	WALE	WALIE	RITE	WAFG	RIFG
	RWST			Wait status	s flag of real-t
	0	Counter is	operating.		
	1	Mode to re	ad or write co	unter value.	
	This status	flag indicates	s whether the	setting of the	RWAIT bit is
		•	g the counter v		
			set to 0, the F bit is set to 0		
	RWAIT			Wait con	trol of real-tim
	0	Sets count	er operation.		
	1	Stops SEC	to YEAR cou	nters. Mode	e to read or w
	This bit con	trols the ope	ration of the c	ounter.	
			to read or writ		
	As the cour back to 0.	nter (16-bit) is	s continuing to	o run, complet	te reading or v
	When RWA	AIT = 1, it take	es up to 1 cloo	ck of frete until	the counter v
<r></r>	$1)^{\text{Notes1, 2}}.$		an (40 hit) av a		
		, then counts	er (16-bit) ove up.	erriowed while	RVVAIT = 1,
			a value to sec	cond count re	gister, it will n
<r></r>	Notes 1. W	/hen the RV	VAIT bit is se	et to 1 withir	n one cycle o
	R	WST bit be	ing set to 1 r	may take up	to two cycle
<r></r>	2. W	/hen the RV	VAIT bit is se	et to 1 withir	n one cycle o
	m	ode (HALT	mode, STO	P mode, or S	SNOOZE m
	to	two cycles	of the operation	ating clock (1	frтс).
	Caution If	writing is	performed t	o RTCC1 w	rith a 1-bit n
	W	AFG flags	may be cle	ared. The	refore, to p
		-	tion instruc		· •
			he RIFG and		as from bei
		•	the corresp		-
		-	-	•	
	Va	alue may b	e changed,	RICC1 ma	y be writter
	Remarks 1		nt-period inte	-	
		(INTRT)	C). When u	using these	two types of
		occurre	d can be jud	ged by cheo	cking the co
		the alar	m detection	status flag (WAFG) upo
	2	2. The inte	ernal counte	r (16 bits) is	cleared whe

Control Register 1 (RTCC1) (3/3)

al-time clock 2

bit is valid.

value of this flag is 1.

while writing to the counter. After writing

me clock 2	
vrite counter value.	

or writing within one second and turn

ter value can be read or written (RWST =

= 1, it keeps the event of overflow until

vill not keep the overflow event.

cle of f_{RTC} clock after setting the RTCE bit to 1, the cycles of the operating clock (f_{RTC}). cle of f_{RTC} clock after release from the standby E mode), the RWST bit being set to 1 may take up

bit manipulation instruction, the RIFG and to perform writing to RTCC1, be sure to use an 8-

being cleared during writing, set 1 (writing RIFG and WAFG flags are not used and the itten by using a 1-bit manipulation instruction.

atch interrupts use the same interrupt source as of interrupts at the same time, which interrupt a constant-period interrupt status flag (RIFG) and upon INTRTC occurrence.

when the second count register (SEC) is written.

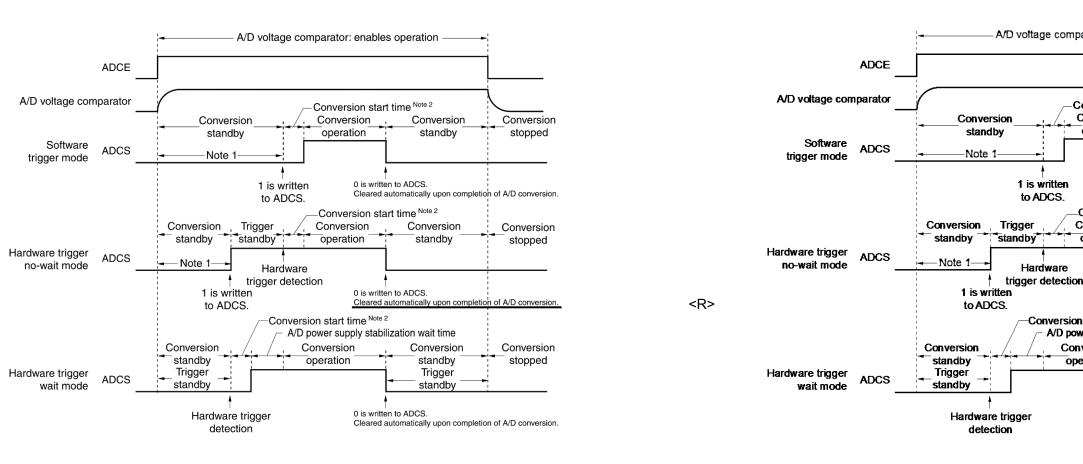
12.5 Cautions of Clock Output/Buzzer Output Controller

Incorrect:

12.5 Cautions of Clock Output/Buzzer Output Controller

When the main system clock is selected for the PCLBUZn output (CSEL = 0), if HALT or STOP mode is entered within 1.5 clock cycles output from the PCLBUZn pin after the output is disabled (PCLOEn = 0), the PCLBUZn output width becomes shorter.

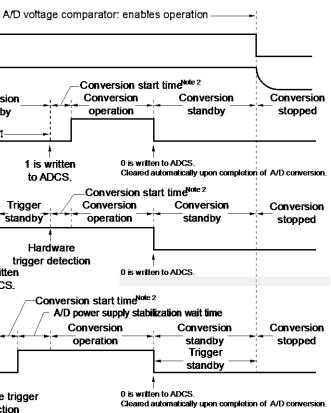
Date: Aug. 30, 2016 12.5 Cautions of Clock Output/Buzzer Output Controller Correct:


- 12.5 Cautions of Clock Output/Buzzer Output Controller
- <R> When the main system clock is selected for the PCLBUZn output (CSEL = 0), if STOP mode is entered within 1.5 clock cycles output from the PCLBUZn pin after the output is disabled (PCLOEn = 0), the PCLBUZn output width becomes shorter.

14.3.2 A/D converter mode register 0 (ADMO)

Incorrect:

Figure 14-4. Timing Chart When A/D Voltage Comparator Is Used


14.3.2 A/D converter mode register 0 (ADMO)

Correct:

Figure 14-4. Timing Chart When A/D Voltage Comparator Is Used

(c) 2016. Renesas Electronics Corporation. All rights reserved.

18.2 Configuration of Serial Array Unit

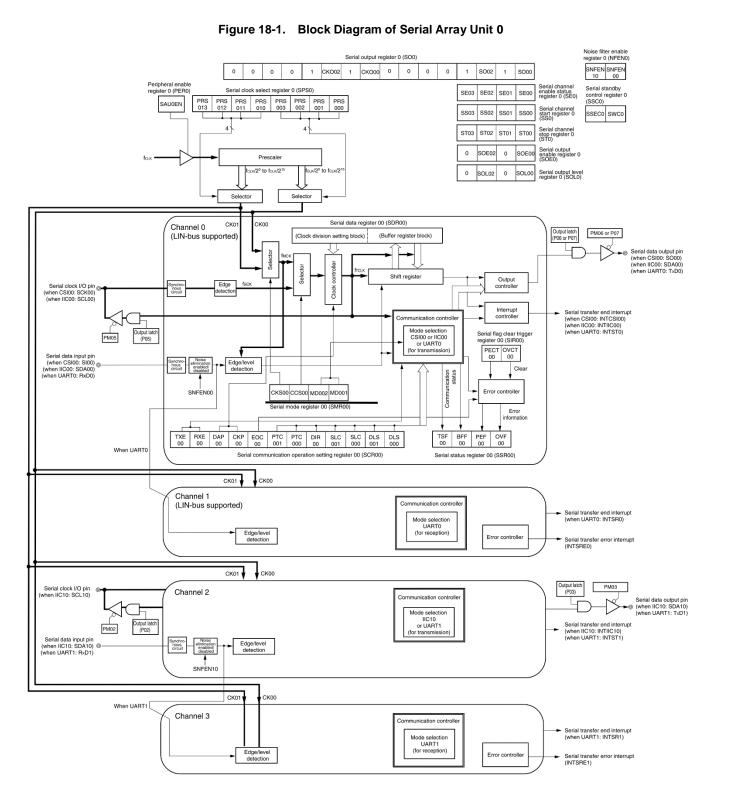
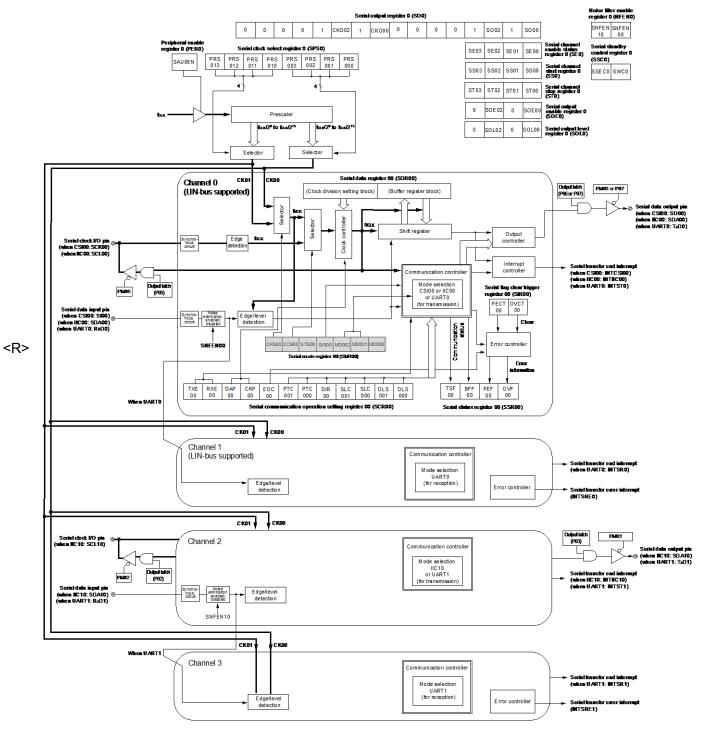

Incorrect:

Figure 18-1 shows the block diagram of the serial array unit 0.


18.2 Configuration of Serial Array Unit

Correct:

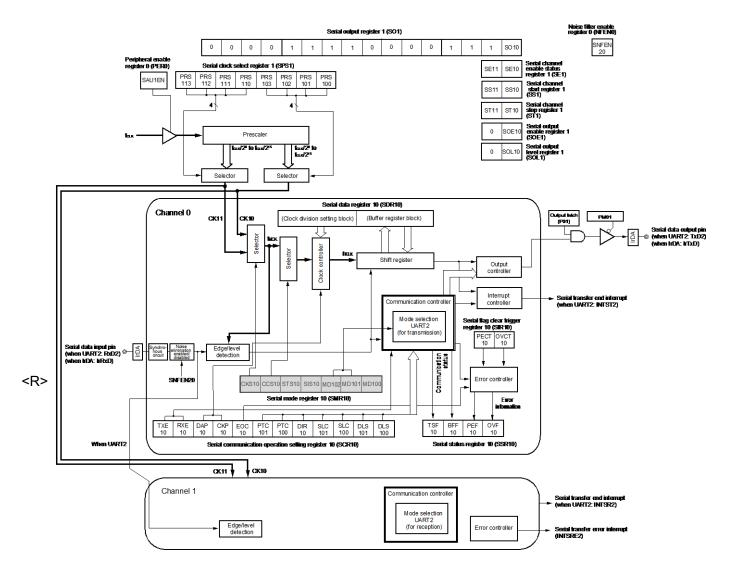
Figure 18-1 shows the block diagram of the serial array unit 0.

18.2 Configuration of Serial Array Unit

Incorrect:

Figure 18-2 shows the block diagram of the serial array unit 1.


Figure 18-2. Block Diagram of Serial Array Unit 1


18.2 Configuration of Serial Array Unit

Correct:

Figure 18-2 shows the block diagram of the serial array unit 1.

Figure 18-2. Block Diagram of Serial Array Unit 1

18.3.5 Serial data register mn (SDRmn)

Incorrect:

The SDRmn register is the transmit/receive data register (16 bits) of channel n. Bits 8 to 0 (lower 9 bits) of <u>SDR00 and SDR01</u> or bits 7 to 0 (lower 8 bits) of <u>SDR02, SDR03, SDR10 and SDR11</u> function as a transmit/receive buffer register, and bits 15 to 9 (higher 7 bits) are used as a register that sets the division ratio of the operation clock (f_{MCK}).

If the CCSmn bit of serial mode register mn (SMRmn) is cleared to 0, the clock set by dividing the operating clock by bits 15 to 9 (higher 7 bits) of the SDRmn register is used as the transfer clock.

If the CCSmn bit of serial mode register mn (SMRmn) is set to 1, set bits 15 to 9 (upper 7 bits) of SDR00 to 0000000B. The input clock fsck (slave transfer in CSI mode) from the SCKp pin is used as the transfer clock.

The lower 8/9 bits of the SDRmn register function as a transmit/receive buffer register. During reception, the parallel data converted by the shift register is stored in the lower 8/9 bits, and during transmission, the data to be transmitted to the shift register is set to the lower 8/9 bits.

The SDRmn register can be read or written in 16-bit units.

However, the higher 7 bits can be written or read only when the operation is stopped (SEmn = 0). During operation (SEmn = 1), a value is written only to the lower 8/9 bits of the SDRmn register. When the SDRmn register is read during operation, the higher 7 bits are always read as 0.

Reset signal generation clears the SDRmn register to 0000H.

Date: Aug. 30, 2016 18.3.5 Serial data register mn (SDRmn)

Correct:

<R> The SDRmn register is the transmit/receive data register (16 bits) of channel n. Bits 8 to 0 (lower 9 bits) of SDR00, SDR01, SDR10 and SDR11 or bits 7 to 0 (lower 8 bits) of SDR02 and SDR03 function as a transmit/receive buffer register, and bits 15 to 9 (higher 7 bits) are used as a register that sets the division ratio of the operation clock (f_{MCK}). If the CCSmn bit of serial mode register mn (SMRmn) is cleared to 0, the clock set by dividing the operating clock by bits 15 to 9 (higher 7 bits) of the SDRmn register is used as the transfer clock.

If the CCSmn bit of serial mode register mn (SMRmn) is set to 1, set bits 15 to 9 (upper 7 bits) of SDR00 to 0000000B. The input clock fsck (slave transfer in CSI mode) from the SCKp pin is used as the transfer clock.

The lower 8/9 bits of the SDRmn register function as a transmit/receive buffer register. During reception, the parallel data converted by the shift register is stored in the lower 8/9 bits, and during transmission, the data to be transmitted to the shift register is set to the lower 8/9 bits.

The SDRmn register can be read or written in 16-bit units.

However, the higher 7 bits can be written or read only when the operation is stopped (SEmn = 0). During operation (SEmn = 1), a value is written only to the lower 8/9 bits of the SDRmn register. When the SDRmn register is read during operation, the higher 7 bits are always read as 0.

Reset signal generation clears the SDRmn register to 0000H.

18.3.12 Serial output register m (SOm)

Incorrect:

The SOm register is a buffer register for serial output of each channel.

The value of the SOmn bit of this register is output from the serial data output pin of channel n.

The value of the CKOmn bit of this register is output from the serial clock output pin of channel n.

The SOmn bit of this register can be rewritten by software only when serial output is disabled (SOEmn = 0). When serial output is enabled (SOEmn = 1), rewriting by software is ignored, and the value of the register can be changed only by a serial communication operation.

The CKOmn bit of this register can be rewritten by software only when the channel operation is stopped (SEmn = 0). While channel operation is enabled (SEmn = 1), rewriting by software is ignored, and the value of the CKOmn bit can be changed only by a serial communication operation.

To use the pin for serial interface as a port function pin, set the corresponding CKOmn and SOmn bits to "1".

The SOm register can be set by a 16-bit memory manipulation instruction.

Reset signal generation clears the SOm register to 0F0FH.

Date: Aug. 30, 2016 18.3.12 Serial output register m (SOm)

Correct:

The SOm register is a buffer register for serial output of each channel. The value of the SOmn bit of this register is output from the serial data output pin of channel n. The value of the CKOmn bit of this register is output from the serial clock output pin of channel n. The SOmn bit of this register can be rewritten by software only when serial output is disabled (SOEmn = 0). When serial output is enabled (SOEmn = 1), rewriting by software is ignored, and the value of the register can be changed only by a serial communication operation.

The CKOmn bit of this register can be rewritten by software only when the channel operation is stopped (SEmn = 0). While channel operation is enabled (SEmn = 1), rewriting by software is ignored, and the value of the CKOmn bit can be changed only by a serial communication operation.

To use the pin for serial interface as a port function pin, set the corresponding CKOmn and SOmn bits to "1". The SOm register can be set by a 16-bit memory manipulation instruction.

<R> Reset signal generation clears the SO0 register to 0F0FH, the SO1 register to 0303H.

18.3.13 Serial output level register m (SOLm)

(1) Non-reverse Output (SOLmn = 0)

SOLm = 0 output

(2) Reverse Output (SOLmn = 1)

SOLm = 1 output

SOUT0n

SOUT0n

Incorrect:

Figure 18-18. Examples of Reverse Transmit Data

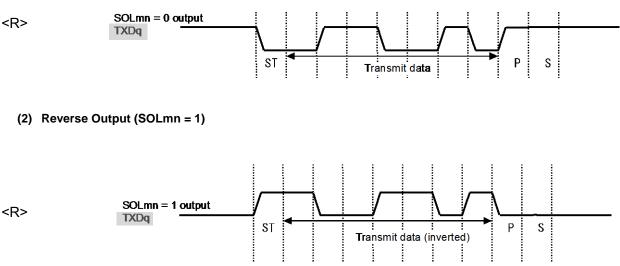
Transmit data

Transmit data (inverted)

Ρ

Ρ

S


S

18.3.13 Serial output level register m (SOLm)

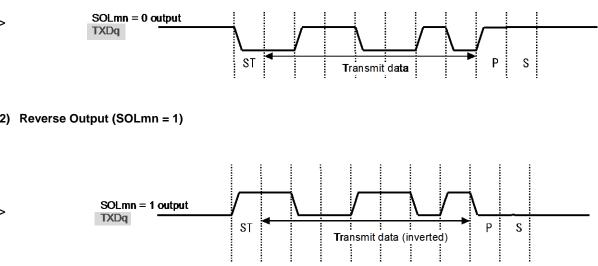
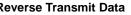

Correct:

Figure 18-18. Examples of Reverse Transmit Data

(1) Non-reverse Output (SOLmn = 0)


Remark m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00 to 03, 10, 11

ST

ST

Remark m: Unit number (m = 0, 1), n: Channel number (n = 0, 2), mn = 00 to 03, 10, 11

18.5.7 SNOOZE mode function

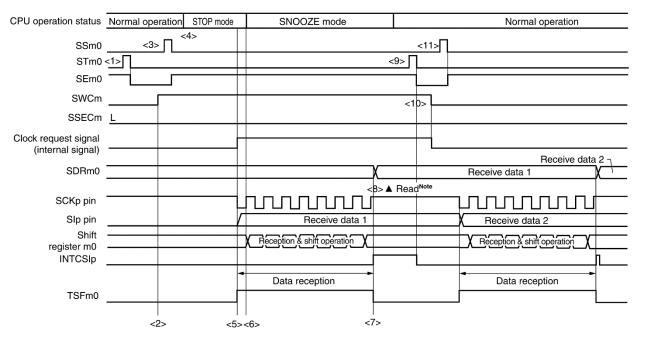
Incorrect:

SNOOZE mode makes CSI operate reception by SCKp pin input detection while the STOP mode. Normally CSI stops communication in the STOP mode. But, using the SNOOZE mode makes reception CSI operate unless the CPU operation by detecting SCKp pin input.

When using the CSI in SNOOZE mode, make the following setting before switching to the STOP mode (see Figure 18-

72 Flowchart of SNOOZE Mode Operation (Once Startup) and Figure 18-74 Flowchart of SNOOZE Mode **Operation (Continuous Startup)**)

• When using the SNOOZE mode function, set the SWCm bit of serial standby control register m (SSCm) to 1 just before switching to the STOP mode. After the initial setting has been completed, set the SSm1 bit of serial channel start register m (SSm) to 1.


After a transition to the STOP mode, the CSI starts reception operations upon detection of an edge of the SCKp pin.

Cautions 1. The SNOOZE mode can only be specified when the high-speed on-chip oscillator clock is selected

for fclk.

2. The maximum transfer rate when using CSIp in the SNOOZE mode is 1 Mbps.

(1) SNOOZE mode operation (once startup)

Figure 18-71. Timing Chart of SNOOZE Mode Operation (Once Startup) (Type 1: DAPm0 = 0, CKPm0 = 0)

Note Only read received data while SWCm = 1 and before the next_edge of the SCKp pin input is detected.

Cautions 1. Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the

STm0 bit to 1 (clear the SEm0 bit, and stop the operation).

And after completion the receive operation, also clearing SWCm bit to 0 (SNOOZE mode release).

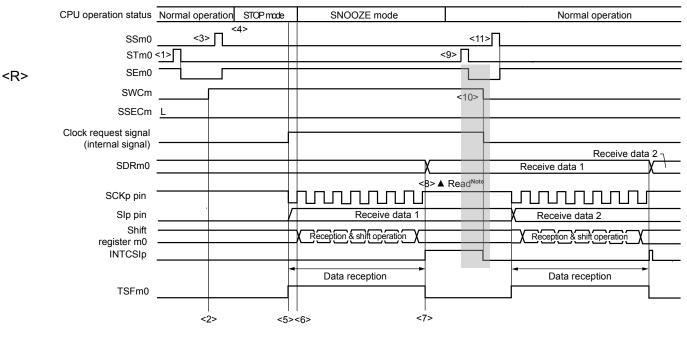
2. When SWCm = 1, the BFFm1 and OVFm1 flags will not change.

Date: Aug. 30, 2016 18.5.7 SNOOZE mode function

Correct:

SNOOZE mode makes CSI operate reception by SCKp pin input detection while the STOP mode. Normally CSI stops communication in the STOP mode. But, using the SNOOZE mode makes reception CSI operate unless the CPU operation by detecting SCKp pin input.

When using the CSI in SNOOZE mode, make the following setting before switching to the STOP mode (see Figure 18-72 Flowchart of SNOOZE Mode Operation (Once Startup) and Figure 18-74 Flowchart of SNOOZE Mode **Operation (Continuous Startup)**)


- When using the SNOOZE mode function, set the SWCm bit of serial standby control register m (SSCm) to 1 just
- before switching to the STOP mode. After the initial setting has been completed, set the SSm0 bit of serial channel <R> start register m (SSm) to 1.
- <R> The CPU shifts to the SNOOZE mode on detecting the valid edge of the SCKp signal following a transition to the STOP mode. A CSIp starts reception on detecting input of the serial clock on the SCKp pin.

Cautions 1. The SNOOZE mode can only be specified when the high-speed on-chip oscillator clock is selected for fclk.

2. The maximum transfer rate when using CSIp in the SNOOZE mode is 1 Mbps.

(1) SNOOZE mode operation (once startup)

Figure 18-71. Timing Chart of SNOOZE Mode Operation (Once Startup) (Type 1: DAPm0 = 0, CKPm0 = 0)

Note Only read received data while SWCm = 1 and before the next valid edge of the SCKp pin input is detected. <R>

Cautions 1. Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the STm0 bit to 1 (clear the SEm0 bit, and stop the operation).

And after completion the receive operation, also clearing SWCm bit to 0 (SNOOZE mode release).

2. When SWCm = 1, the BFFm1 and OVFm1 flags will not change.

18.5.7 SNOOZE mode function

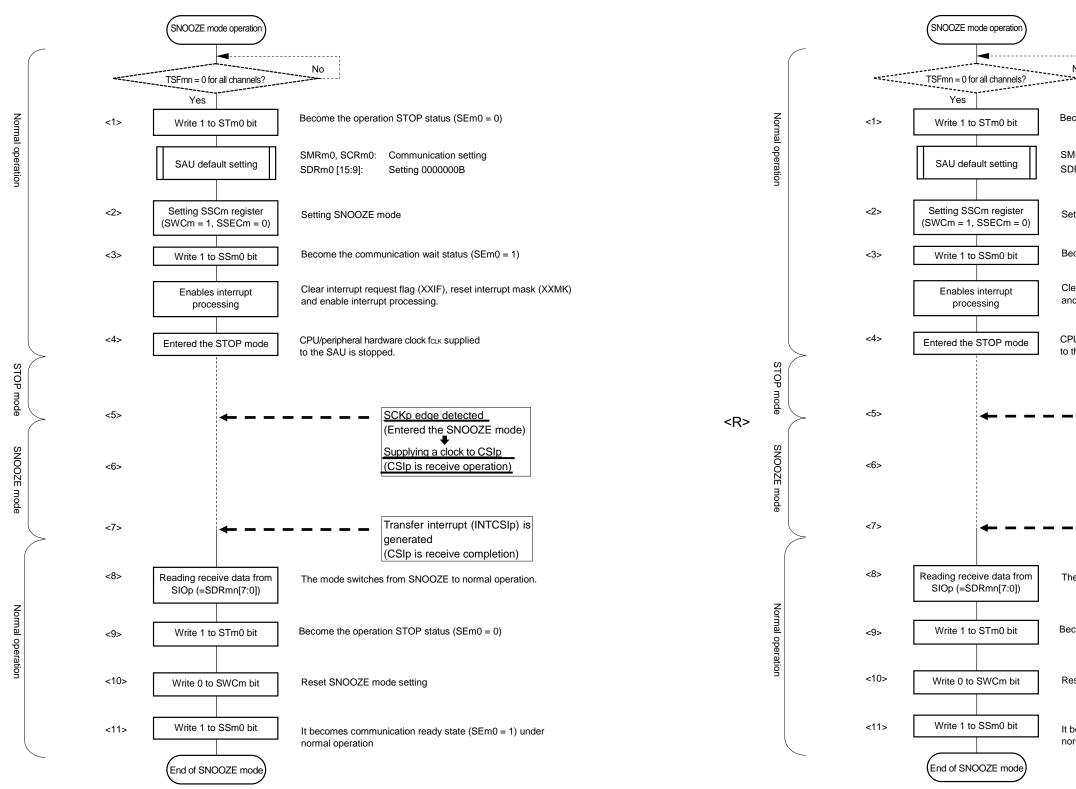

Incorrect:

Figure 18-72. Flowchart of SNOOZE Mode Operation (Once Startup)

Date: Aug. 30, 2016 18.5.7 SNOOZE mode function

Correct:

Figure 18-72. Flowchart of SNOOZE Mode Operation (Once Startup)

Remarks 1. <1> to <11> in the figure correspond to <1> to <11> in Figure 18-71 Timing Chart of SNOOZE Mode Operation

(Once Startup).

2. m = 0; p = 00

Page 23 of 58

(Once Startup).

2. m = 0; p = 00

No

Become the operation STOP status (SEm0 = 0)

SMRm0, SCRm0: Communication setting SDRm0 [15:9]: Setting 0000000B

Setting SNOOZE mode

Become the communication wait status (SEm0 = 1)

Clear interrupt request flag (XXIF), reset interrupt mask (XXMK) and enable interrupt processing.

CPU/peripheral hardware clock fcLK supplied to the SAU is stopped.

> The valid edge of the SCKp pin detected (Entered the SNOOZE mode) Input of the serial clock on the SCKp pin (CSIp receive operation)

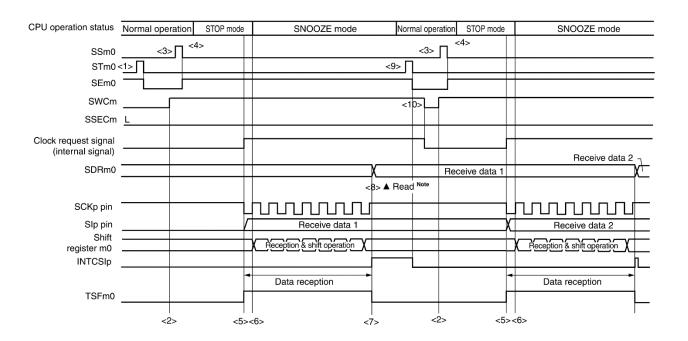
Transfer interrupt (INTCSIp) is generated (CSIp is receive completion)

The mode switches from SNOOZE to normal operation

Become the operation STOP status (SEm0 = 0)

Reset SNOOZE mode setting

It becomes communication ready state (SEm0 = 1) under normal operation


Remarks 1. <1> to <11> in the figure correspond to <1> to <11> in Figure 18-71 Timing Chart of SNOOZE Mode Operation

18.5.7 SN00ZE モード機能

Incorrect:

(2) SNOOZE mode operation (continuous startup)

Figure 18-73. Timing Chart of SNOOZE Mode Operation (Continuous Startup) (Type 1: DAPm0 = 0, CKPm0 = 0)

Note Only read received data while SWCm = 1 and before the next edge of the SCKp pin input is detected.

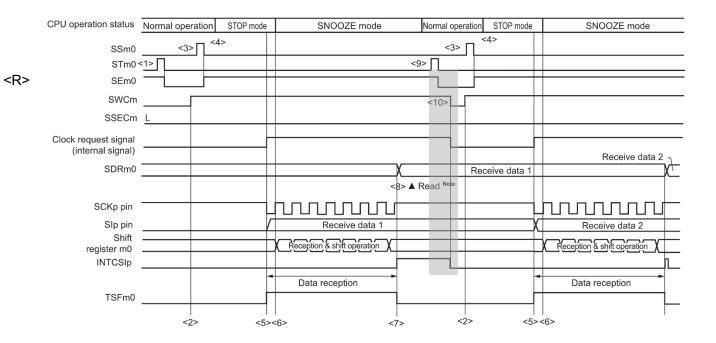
Cautions 1. Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the STm0 bit to 1 (clear the SEm0 bit, and stop the operation).

And after completion the receive operation, also clearing SWCm bit to 0 (SNOOZE release).

- 2. When SWCm = 1, the BFFm1 and OVFm1 flags will not change.
- Remarks 1. <1> to <10> in the figure correspond to <1> to <10> in Figure 18-74 Flowchart of SNOOZE Mode Operation

(Continuous Startup).

2. m = 0; p = 00


Date: Aug. 30, 2016

18.5.7 SNO0ZE モード機能

Correct:

(2) SNOOZE mode operation (continuous startup)

Figure 18-73. Timing Chart of SNOOZE Mode Operation (Continuous Startup) (Type 1: DAPm0 = 0, CKPm0 = 0)

<R> Note Only read received data while SWCm = 1 and before the next valid edge of the SCKp pin input is detected.

STm0 bit to 1 (clear the SEm0 bit, and stop the operation).

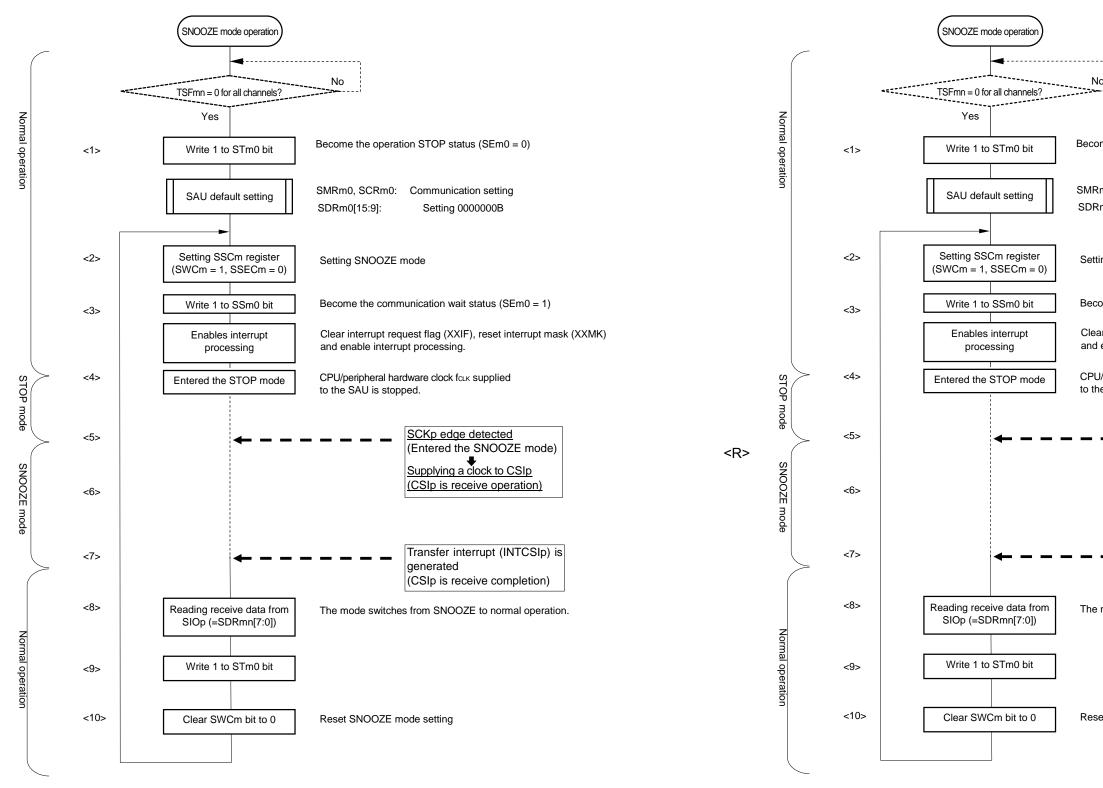
2. When SWCm = 1, the BFFm1 and OVFm1 flags will not change.

Remarks 1. <1> to <10> in the figure correspond to <1> to <10> in Figure 18-74 Flowchart of SNOOZE Mode Operation

(Continuous Startup).

2. m = 0; p = 00

- Cautions 1. Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the
 - And after completion the receive operation, also clearing SWCm bit to 0 (SNOOZE release).


18.5.7 SN00ZE モード機能

Incorrect:

Figure 18-74. Flowchart of SNOOZE Mode Operation (Continuous Startup)

Correct:

Figure 18-74. Flowchart of SNOOZE Mode Operation (Continuous Startup)

Remarks 1. <1> to <10> in the figure correspond to <1> to <10> in Figure 18-73 Timing Chart of SNOOZE Mode Operation

(Continuous Startup)

2. m = 0; p = 00

2. m = 0; p = 00

(Continuous Startup).

-	-	-	7	1		٦.	
						1	
						ı.	
ı.	_						
J.	O						
-	-					٠	
~	-		-	-	-	1	

ome the operation STOP status (SEm0 = 0	0)

SMRm0, SCRm0: Communication setting SDRm0[15:9]: Setting 000000B

Setting SNOOZE mode

Become the communication wait status (SEm0 = 1)

Clear interrupt request flag (XXIF), reset interrupt mask (XXMK) and enable interrupt processing.

CPU/peripheral hardware clock fcLK supplied to the SAU is stopped.

> The valid edge of the SCKp pin detected (Entered the SNOOZE mode)

Input of the serial clock on the SCKp pin (CSIp receive operation)

Transfer interrupt (INTCSIp) is generated (CSIp is receive completion)

The mode switches from SNOOZE to normal operation.

Reset SNOOZE mode setting

Remarks 1. <1> to <10> in the figure correspond to <1> to <10> in Figure 18-73 Timing Chart of SNOOZE Mode Operation

18.6.3 SNOOZE mode function

Incorrect:

The SNOOZE mode makes the UART perform reception operations upon RxDq pin input detection while in the STOP mode. Normally the UART stops communication in the STOP mode. However, using the SNOOZE mode enables the UART to perform reception operations without CPU operation. Only UART0 can be set to the SNOOZE mode.

When using UARTg in the SNOOZE mode, make the following settings before entering the STOP mode. (See Figure 18-92 and Figure

18-94 Flowchart of SNOOZE Mode Operation.)

- In the SNOOZE mode, the baud rate setting for UART reception needs to be changed to a value different from that in normal operation. Set the SPSm register and bits 15 to 9 of the SDRmn register with reference to Table 18-3.
- Set the EOCmn and SSECmn bits. This is for enabling or stopping generation of an error interrupt (INTSRE0) when a communication error occurs.
- When using the SNOOZE mode function, set the SWCm bit of serial standby control register m (SSCm) to 1 just before switching to the STOP mode. After the initial setting has completed, set the SSm1 bit of serial channel start register m (SSm) to 1.

Upon detecting the edge of RxDg (start bit input) after a transition was made to the STOP mode, UART reception is started.

Cautions 1. The SNOOZE mode can only be specified when the high-speed on-chip oscillator clock is selected for fcLk.

- 2. The maximum transfer rate when using UARTq in the SNOOZE mode is 4800 bps.
- 3. When SWCm = 1, UARTq can be used only when the reception operation is started in the STOP mode. When used simultaneously with another SNOOZE mode function or interrupt, if the reception operation is started in a state other than the STOP mode, such as those given below, data may not be received correctly and a framing error or parity error may be generated.
 - When after the SWCm bit has been set to 1, the reception operation is started before the STOP mode is entered
 - When the reception operation is started while another function is in the SNOOZE mode
 - When after returning from the STOP mode to normal operation due to an interrupt or other cause, the reception operation is started before the SWCm bit is returned to 0
- 4. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFmn, FEFmn, or OVFmn flag is not set and an error interrupt (INTSREq) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFmn, FEFmn, or OVFmn flag before setting the SWC0 bit to 1 and read the value in bits 7 to 0 (RxDq register) of the SDRm1 register.

Date: Aug. 30, 2016 18.6.3 SNOOZE mode function

Correct:

The SNOOZE mode makes the UART perform reception operations upon RxDq pin input detection while in the STOP mode. Normally the UART stops communication in the STOP mode. However, using the SNOOZE mode enables the UART to perform reception operations without CPU operation. Only UART0 can be set to the SNOOZE mode.

When using UARTg in the SNOOZE mode, make the following settings before entering the STOP mode. (See Figure 18-92 and Figure

18-94 Flowchart of SNOOZE Mode Operation.)

- In the SNOOZE mode, the baud rate setting for UART reception needs to be changed to a value different from that in normal operation. Set the SPSm register and bits 15 to 9 of the SDRmn register with reference to Table 18-3.
- Set the EOCmn and SSECmn bits. This is for enabling or stopping generation of an error interrupt (INTSRE0) when a communication error occurs
- When using the SNOOZE mode function, set the SWCm bit of serial standby control register m (SSCm) to 1 just before switching to the STOP mode. After the initial setting has completed, set the SSm1 bit of serial channel start register m (SSm) to 1.
- <R> A UARTg starts reception in SNOOZE mode on detecting input of the start bit on the RxDg pin following a transition of the CPU to the STOP mode.

Cautions 1. The SNOOZE mode can only be specified when the high-speed on-chip oscillator clock is selected for fcLk. 2. The maximum transfer rate when using UARTq in the SNOOZE mode is 4800 bps.

- error or parity error may be generated.

 - When the reception operation is started while another function is in the SNOOZE mode
 - reception operation is started before the SWCm bit is returned to 0
- to 0 (RxDq register) of the SDRm1 register.
- <R> correctly, and this may lead to a framing error or parity error in the next UART transfer.

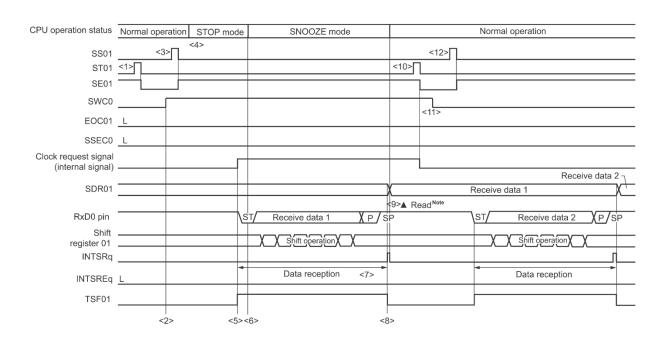
3. When SWCm = 1, UARTg can be used only when the reception operation is started in the STOP mode. When used simultaneously with another SNOOZE mode function or interrupt, if the reception operation is started in a state other than the STOP mode, such as those given below, data may not be received correctly and a framing

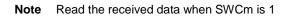
When after the SWCm bit has been set to 1, the reception operation is started before the STOP mode is entered

• When after returning from the STOP mode to normal operation due to an interrupt or other cause, the

4. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFmn, FEFmn, or OVFmn flag is not set and an error interrupt (INTSREg) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFmn, FEFmn, or OVFmn flag before setting the SWC0 bit to 1 and read the value in bits 7

5. The CPU shifts from the STOP mode to the SNOOZE mode on detecting the valid edge of the RxDg signal. Note, however, that transfer through the UART channel may not start and the CPU may remain in the SNOOZE mode if an input pulse on the RxDq pin is too short to be detected as a start bit. In such cases, data may not be received


18.6.3 SNOOZE mode function


Incorrect:

(1) SNOOZE mode operation (EOCm1 = 0, SSECm = 0/1)

Because of the setting of EOCm1 = 0, even though a communication error occurs, an error interrupt (INTSREq) is not generated, regardless of the setting of the SSECm bit. A transfer end interrupt (INTSRg) will be generated.

Figure 18-90. Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1)

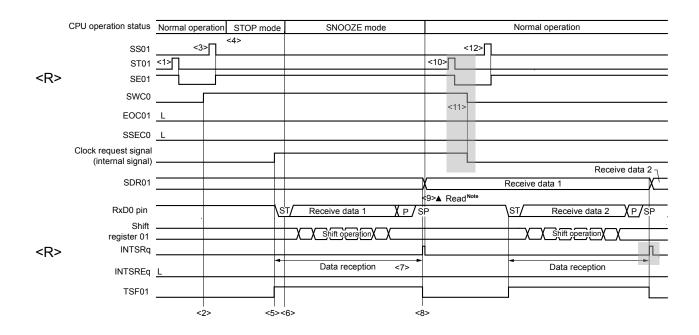
Caution Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the STm1 bit to 1 (clear the SEm1 bit, and stop the operation).

And after completion the receive operation, also clearing SWCm bit to 0 (SNOOZE mode release).

Remarks 1. <1> to <12> in the figure correspond to <1> to <12> in Figure 18-92 Flowchart of SNOOZE Mode Operation

(EOCm1 = 0, SSECm = 0/1 or EOCm1 = 1, SSECm = 0).

2. m = 0; q = 0


Date: Aug. 30, 2016 18.6.3 SNOOZE mode function

Correct:

(1) SNOOZE mode operation (EOCm1 = 0, SSECm = 0/1)

Because of the setting of EOCm1 = 0, even though a communication error occurs, an error interrupt (INTSREq) is not generated, regardless of the setting of the SSECm bit. A transfer end interrupt (INTSRq) will be generated.

Figure 18-90. Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1)

Read the received data when SWCm is 1 Note

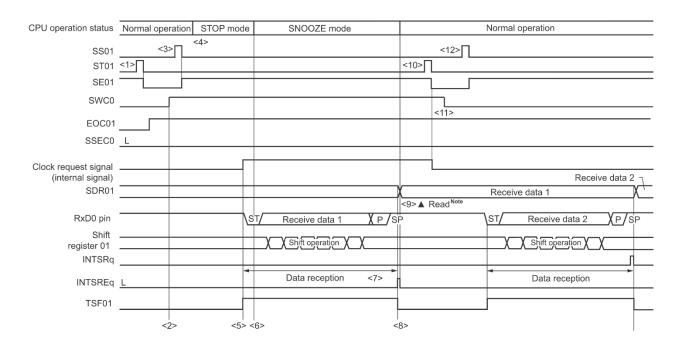
Caution Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the STm1

bit to 1 (clear the SEm1 bit, and stop the operation).

And after completion the receive operation, also clearing SWCm bit to 0 (SNOOZE mode release).

Remarks 1. <1> to <12> in the figure correspond to <1> to <12> in Figure 18-92 Flowchart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1 or EOCm1 = 1, SSECm = 0).

2. m = 0; q = 0



18.6.3 SNOOZE mode function

Incorrect:

(2) SNOOZE mode operation (EOCm1 = 1, SSECm = 0: Error interrupt (INTSREq) generation is enabled) Because EOCm1 = 1 and SSECm = 0, an error interrupt (INTSREq) is generated when a communication error occurs.

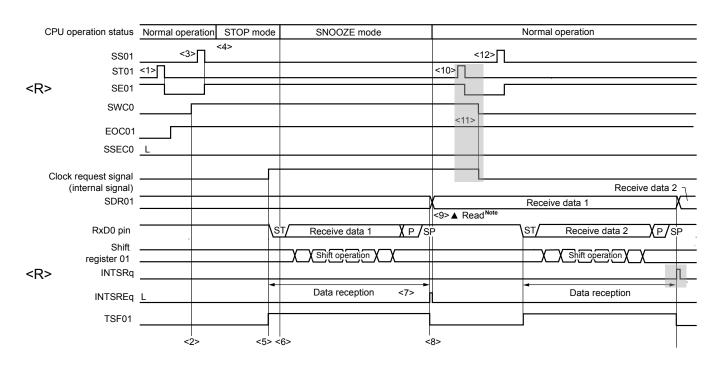
Figure 18-91. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0)

Read the received data when SWCm is 1 Note

Remarks 1. <1> to <12> in the figure correspond to <1> to <12> in Figure 18-92 Flowchart of SNOOZE Mode Operation

(EOCm1 = 0, SSECm = 0/1 or EOCm1 = 1, SSECm = 0)

2. m = 0; q = 0

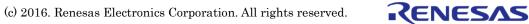

Date: Aug. 30, 2016

18.6.3 SNOOZE mode function

Correct:

(2) SNOOZE mode operation (EOCm1 = 1, SSECm = 0: Error interrupt (INTSREq) generation is enabled) Because EOCm1 = 1 and SSECm = 0, an error interrupt (INTSREq) is generated when a communication error occurs.

Figure 18-91. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 0)



Read the received data when SWCm is 1 Note

Caution Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the STm1 bit to 1 (clear the SEm1 bit, and stop the operation). And after completion the receive operation, also clearing SWCm bit to 0 (SNOOZE mode release).

Remarks 1. <1> to <12> in the figure correspond to <1> to <12> in Figure 18-92 Flowchart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1 or EOCm1 = 1, SSECm = 0).

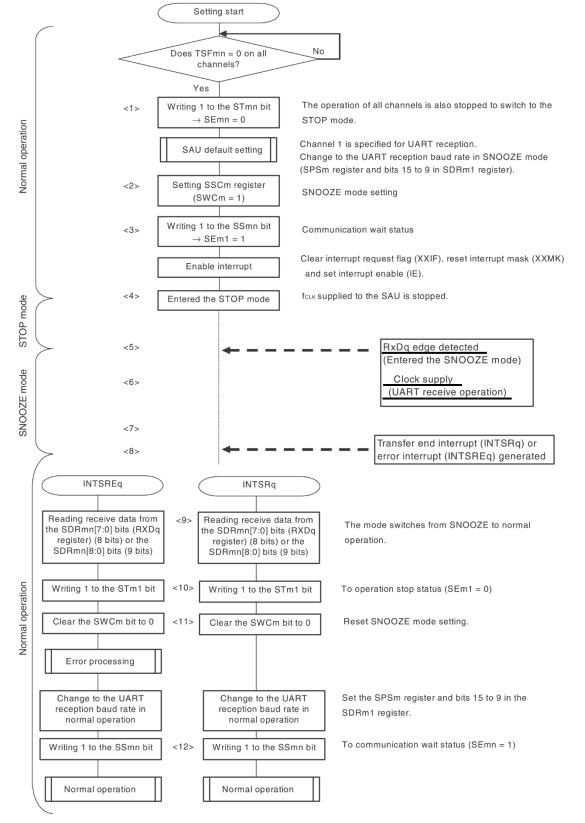
2. m = 0; q = 0

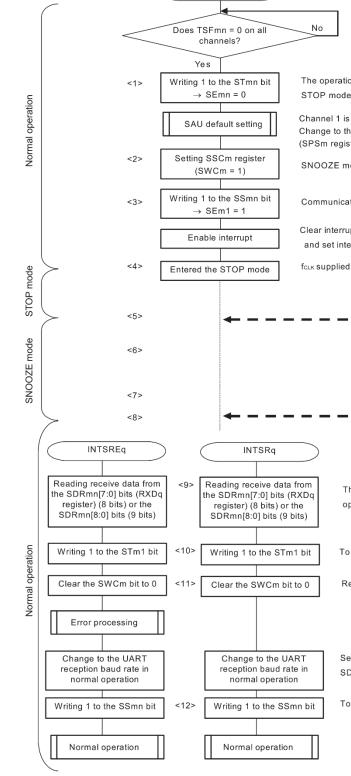
Caution Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the STm1 bit to 1 (clear the SEm1 bit, and stop the operation). And after completion the receive operation, also clearing SWCm bit to 0 (SNOOZE mode release).

18.6.3 SNOOZE mode function

Incorrect:

Figure 18-92. Flowchart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1 or EOCm1 = 1, SSECm = 0)


18.6.3 SNOOZE mode function


Correct:

<R>

Figure 18-92. Flowchart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1 or EOCm1 = 1, SSECm = 0)

Setting start

Remarks 1. <1> to <12> in the figure correspond to <1> to <12> in Figure 18-90 Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1) and Figure 18-91 Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm

2. m = 0; q = 0

Page 29 of 58

2. m = 0; q = 0

= 0).

The operation of all channels is also stopped to switch to the

Channel 1 is specified for UART reception Change to the UART reception baud rate in SNOOZE mode (SPSm register and bits 15 to 9 in SDRm1 register).

SNOOZE mode setting

Communication wait status

Clear interrupt request flag (XXIF), reset interrupt mask (XXMK) and set interrupt enable (IE).

fclk supplied to the SAU is stopped

The valid edge of the RxDg pin detected (Entered the SNOOZE mode)

Input of the start bit on the RxDq pin detected (UARTq receive operation)

The mode switches from SNOOZE to normal operation

To operation stop status (SEm1 = 0)

Reset SNOOZE mode setting

Set the SPSm register and bits 15 to 9 in the SDRm1 register

To communication wait status (SEmn = 1)

Remarks 1. <1> to <12> in the figure correspond to <1> to <12> in Figure 18-90 Timing Chart of SNOOZE Mode Operation (EOCm1 = 0, SSECm = 0/1) and Figure 18-91 Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm

18.6.3 SNOOZE mode function

Incorrect:

(3) SNOOZE mode operation (EOCm1 = 1, SSECm = 1: Error interrupt (INTSREq) generation is stopped) Because EOCm1 = 1 and SSECm = 1, an error interrupt (INTSREq) is not generated when a communication error occurs.

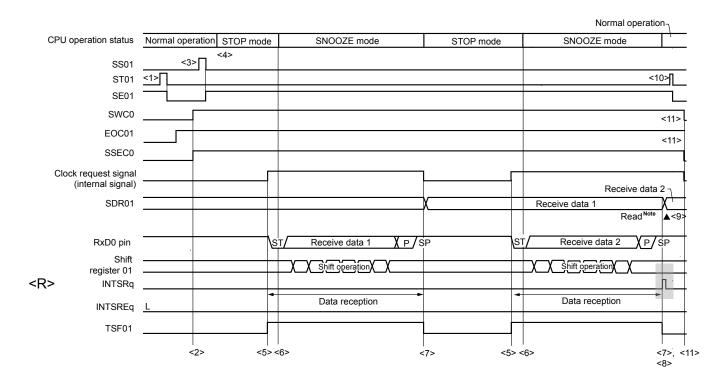
Figure 18-93. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)

Read the received data when SWCm = 1. Note

Cautions 1. Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the STm1 bit to 1 (clear the SEm1 bit and stop the operation).

After the receive operation completes, also clear the SWCm bit to 0 (SNOOZE mode release).

- 2. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFm1, FEFm1, or OVFm1 flag is not set and an error interrupt (INTSREq) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFm1, FEFm1, or OVFm1 flag before setting the SWCm bit to 1 and read the value in SDRm1[7:0] (RxDq register) (8 bits) or SDRm1[8:0] (9 bits).
- Remarks 1. <1> to <11> in the figure correspond to <1> to <11> in Figure 18-94 Flowchart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1).
 - **2.** m = 0; q = 0


Date: Aug. 30, 2016

18.6.3 SNOOZE mode function

Correct:

(3) SNOOZE mode operation (EOCm1 = 1, SSECm = 1: Error interrupt (INTSREq) generation is stopped) Because EOCm1 = 1 and SSECm = 1, an error interrupt (INTSREq) is not generated when a communication error occurs.

Figure 18-93. Timing Chart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)

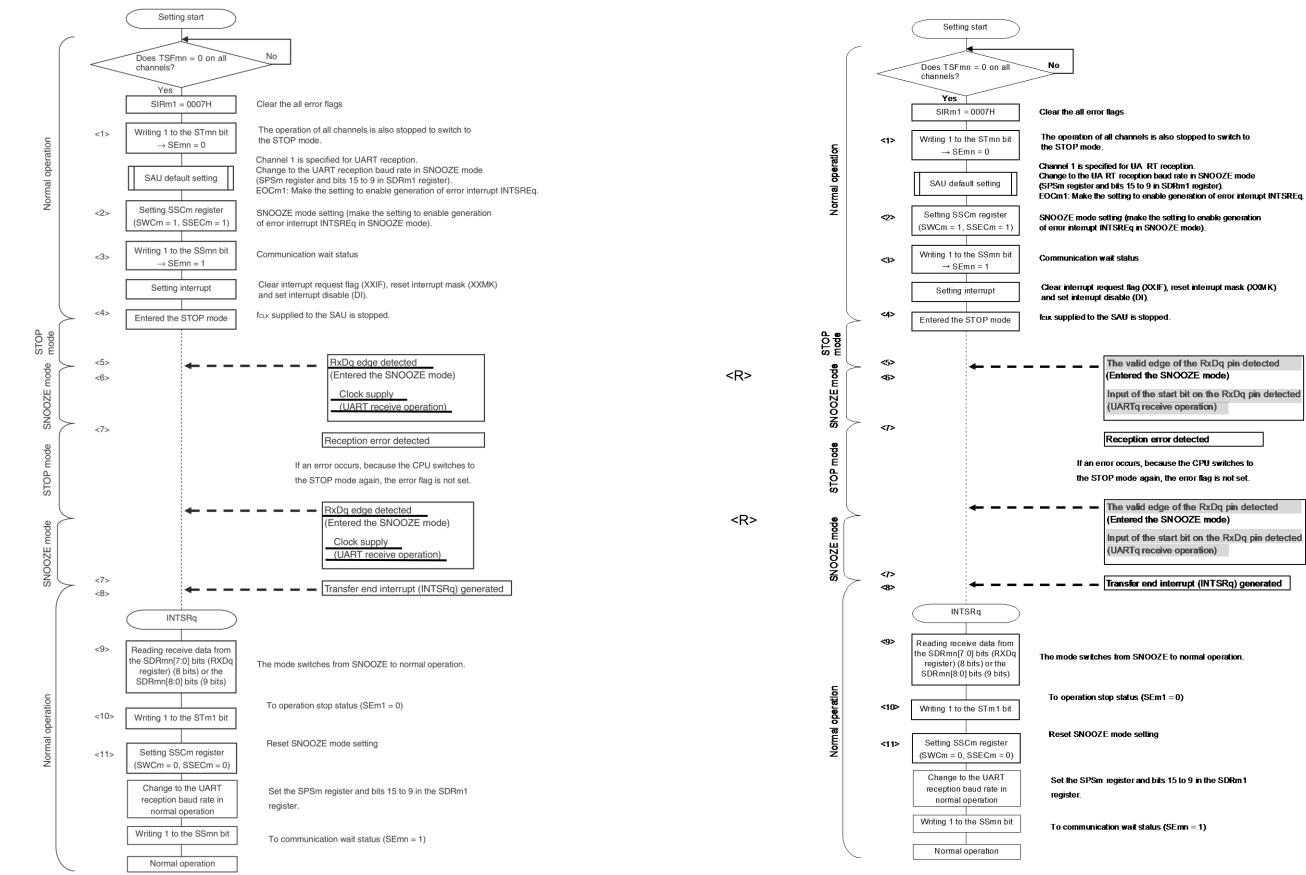
Note Read the received data when SWCm = 1.

- STm1 bit to 1 (clear the SEm1 bit and stop the operation). After the receive operation completes, also clear the SWCm bit to 0 (SNOOZE mode release).
 - value in SDRm1[7:0] (RxDq register) (8 bits) or SDRm1[8:0] (9 bits).
- (EOCm1 = 1, SSECm = 1)**2.** m = 0; q = 0

Cautions 1. Before switching to the SNOOZE mode or after reception operation in the SNOOZE mode finishes, set the

2. If a parity error, framing error, or overrun error occurs while the SSECm bit is set to 1, the PEFm1, FEFm1, or OVFm1 flag is not set and an error interrupt (INTSREq) is not generated. Therefore, when the setting of SSECm = 1 is made, clear the PEFm1, FEFm1, or OVFm1 flag before setting the SWCm bit to 1 and read the

Remarks 1. <1> to <11> in the figure correspond to <1> to <11> in Figure 18-94 Flowchart of SNOOZE Mode Operation


18.6.3 SNOOZE mode function

Incorrect:

Figure 18-94. Flowchart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)

Correct:

Figure 18-94. Flowchart of SNOOZE Mode Operation (EOCm1 = 1, SSECm = 1)

(Caution and Remarks are listed on the next page.)

(Caution and Remarks are listed on the next page.)

18.7.1 LIN transmission

Incorrect:

Figure 18-99. Flowchart for LIN Transmission

Starting LIN communication

Transmitting wakeup signal frame $(80H \rightarrow TxD0)$

TSF00 = 0?

UART0 stop

 $(1 \rightarrow ST00 \text{ bit})$

Changing UART0 baud rate

 $(zz \rightarrow SDR[15:9])$

UART0 restart $(1 \rightarrow SS00 \text{ bit})$

BF transmission

 $00 \rightarrow TxD0$

TSF00 = 0?

UART0 stop $(1 \rightarrow ST00 \text{ bit})$

Changing UART0 baud rate

 $(xx \rightarrow SDR[15:9])$

UART0 restart

 $(1 \rightarrow SS00 \text{ bit})$

Transmitting sync field

 $55H \rightarrow TxD0$

BFF00 = 0?

Data \rightarrow TxD0

BFF00 = 0?

Completing all data

transmission?

TSF00 = 0?

End of LIN communication

When LIN-bus start from sleep status only

Yes

Yes

Yes

Yes

Yes

Yes

18. 7. 1 LIN transmission

Correct:

<R>

<R>

<R>

Note

Remark

signal frame^{Not}

for BF

Waiting for

transmission

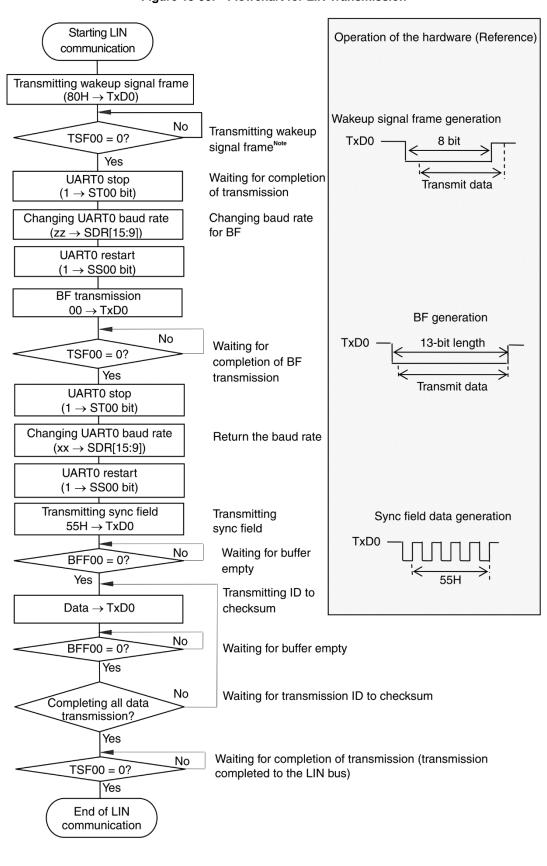
Transmitting

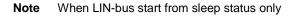
sync field

empty

checksum

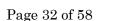
No

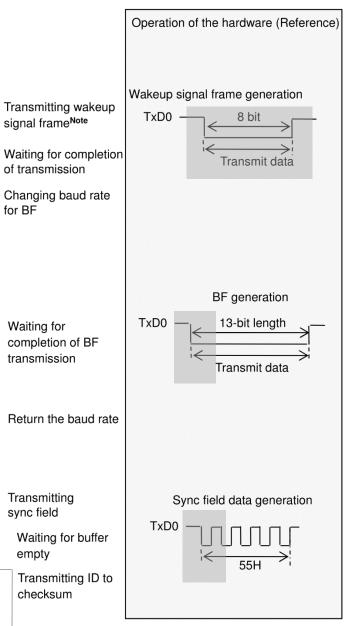

No


No

No

No


No



Remark Default setting of the UART is complete, and the flow from the transmission enable status.

Waiting for buffer empty

Waiting for transmission ID to checksum

Waiting for completion of transmission (transmission completed to the LIN bus)

Default setting of the UART is complete, and the flow from the transmission enable status.

18. 7. 2 LIN reception

Incorrect:

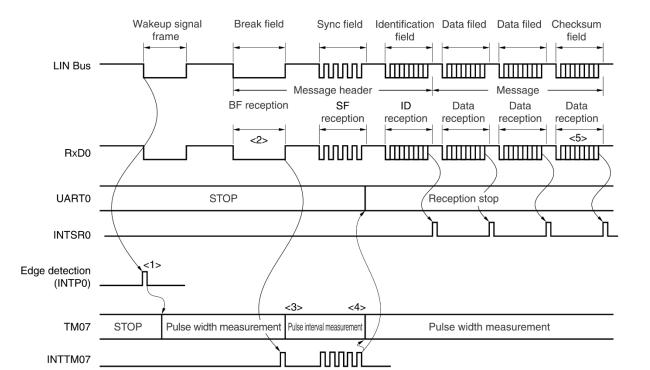


Figure 18-100. Reception Operation of LIN

<R> innt LIN Bus <R> Message header BF reception SF reception <2> ww R_XD0 UART0 STOP INTSR0 Edge detection (INTP0) <R> STOP Pulse width measurement TM07 Pulse interval measurement

Wakeup signal

frame

Break field

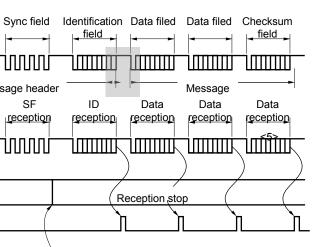
JUUUL

Here is the flow of signal processing.

Here is the flow of signal processing.

INTTM07

Date: Aug. 30, 2016


18. 7. 2 LIN reception

Correct:

(c) 2016. Renesas Electronics Corporation. All rights reserved.

Figure 18-100. Reception Operation of LIN

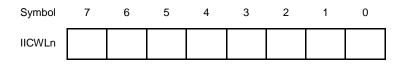
ement

RENESAS TECHNICAL UPDATE TN-RL*-A063A/E 19.3.6 IICA low-level width setting register n (IICWLn)

Incorrect:

This register is used to set the low-level width (tLow) of the SCLAn pin signal that is output by serial interface IICA and to control the SDAAn pin signal.

The IICWLn register can be set by an 8-bit memory manipulation instruction.


Set the IICWLn register while operation of I²C is disabled (bit 7 (IICEn) of IICA control register n0 (IICCTLn0) is 0).

Reset signal generation sets this register to FFH.

For details about setting the IICWLn register, see 19.4.2 Setting transfer clock by using IICWLn and IICWHn registers.

Figure 19-10. Format of IICA Low-Level Width Setting Register n (IICWLn)

Address: F0232H After reset: FFH R/W

Date: Aug. 30, 2016

19.3.6 IICA low-level width setting register n (IICWLn)

Correct:

This register is used to set the low-level width (tLOW) of the SCLAn pin signal that is output by serial interface IICA and to control the SDAAn pin signal.

The IICWLn register can be set by an 8-bit memory manipulation instruction. Set the IICWLn register while operation of I²C is disabled (bit 7 (IICEn) of IICA control register n0 (IICCTLn0) is 0). Reset signal generation sets this register to FFH.

For details about setting the IICWLn register, see 19.4.2 Setting transfer clock by using IICWLn and IICWHn registers.

<R> The data hold time is one-quarter of the time set by the IICWLn register.

Figure 19-10. Format of IICA Low-Level Width Setting Register n (IICWLn)

Address: F	0232H	After re	set:	FFH	F	
Symbol	7	6	5		4	
IICWLn						

R/W

3	2	1	0

19.5.14 Communication reservation

Incorrect:

(1) When communication reservation function is enabled (bit n (IICRSVn) of IICA flag register n (IICFn) = 0)

To start master device communications when not currently using a bus, a communication reservation can be made to enable transmission of a start condition when the bus is released. There are two modes under which the bus is not used.

- · When arbitration results in neither master nor slave operation
- When an extension code is received and slave operation is disabled (ACK is not returned and the bus was released by setting bit 6 (LRELn) of IICA control register n0 (IICCTLn0) to 1 and saving communication).

If bit 1 (STTn) of the IICCTLn0 register is set to 1 while the bus is not used (after a stop condition is detected), a start condition is automatically generated and wait state is set.

If an address is written to the IICA shift register n (IICAn) after bit 4 (SPIEn) of the IICCTLn0 register was set to 1, and it was detected by generation of an interrupt request signal (INTIICAn) that the bus was released (detection of the stop condition), then the device automatically starts communication as the master. Data written to the IICAn register before the stop condition is detected is invalid. When the STTn bit has been set to 1, the operation mode (as start condition or as communication reservation) is determined according to the bus status.

- If the bus has been releaseda start condition is generated
- If the bus has not been released (standby mode)...... communication reservation

Check whether the communication reservation operates or not by using the MSTSn bit (bit 7 of the IICA status register n (IICSn)) after the STTn bit is set to 1 and the wait time elapses.

Use software to secure the wait time calculated by the following expression.

Wait time from setting STTn = 1 to checking the MSTSn flag (number of fMCK clocks): (IICWLn setting value + IICWHn setting value + 4) + tF × 2 × fMCK [clocks]

- Remarks 1. IICWLn: IICA low-level width setting register n IICWHn: IICA high-level width setting register n SDAAn and SCLAn signal falling times te: IICA operation clock frequency fмск:
 - **2.** n = 0

Date: Aug. 30, 2016 19.5.14 Communication reservation

Correct:

- (1) When communication reservation function is enabled (bit n (IICRSVn) of IICA flag register n (IICFn) = 0) To start master device communications when not currently using a bus, a communication reservation can be made to enable transmission of a start condition when the bus is released. There are two modes under which the bus is not used.
 - · When arbitration results in neither master nor slave operation
 - When an extension code is received and slave operation is disabled (ACK is not returned and the bus was released by setting bit 6 (LRELn) of IICA control register n0 (IICCTLn0) to 1 and saving communication)

If bit 1 (STTn) of the IICCTLn0 register is set to 1 while the bus is not used (after a stop condition is detected), a start condition is automatically generated and wait state is set.

If an address is written to the IICA shift register n (IICAn) after bit 4 (SPIEn) of the IICCTLn0 register was set to 1, and it was detected by generation of an interrupt request signal (INTIICAn) that the bus was released (detection of the stop condition), then the device automatically starts communication as the master. Data written to the IICAn register before the stop condition is detected is invalid. When the STTn bit has been set to 1, the operation mode (as start condition or as communication reservation) is determined according to the bus status.

- · If the bus has been releaseda start condition is generated
- · If the bus has not been released (standby mode) communication reservation

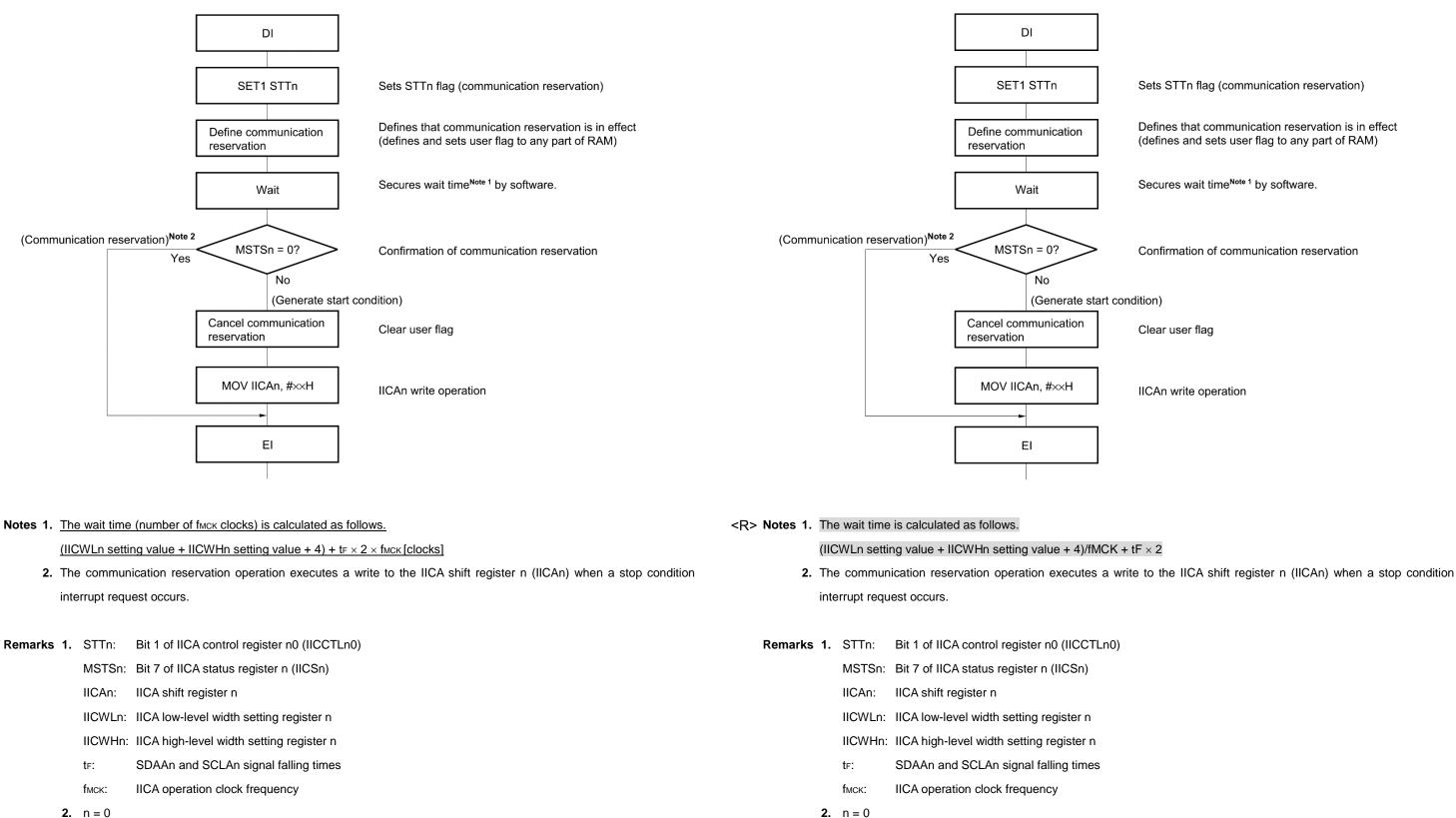
Check whether the communication reservation operates or not by using the MSTSn bit (bit 7 of the IICA status register n (IICSn)) after the STTn bit is set to 1 and the wait time elapses. Use software to secure the wait time calculated by the following expression.

<r></r>	Wait time from setting STTn = 1 to checking the MSTSn fla			
	(IICWLn setti	ing value + IIC	WHn setting value + 4)/fMCK + tF \times 2	
	Remarks 1.	IICWLn:	IICA low-level width setting regist	
		IICWHn:	IICA high-level width setting regis	
		tF:	SDAAn and SCLAn signal falling	
		fмск:	IICA operation clock frequency	

2. n = 0

ıg:

ter n ister n times


19.5.14 Communication reservation

Incorrect:

Figure 19-27. Communication Reservation Protocol

Correct:

Figure 19-27. Communication Reservation Protocol

Sets STTn flag (communication reservation)

Defines that communication reservation is in effect (defines and sets user flag to any part of RAM)

Secures wait time^{Note 1} by software.

Confirmation of communication reservation

Clear user flag

IICAn write operation

19.5.16 Communication operations

Incorrect:

Figure 19-28. Master Operation in Single-Master System

Correct:

Figure 19-28. Master Operation in Single-Master System

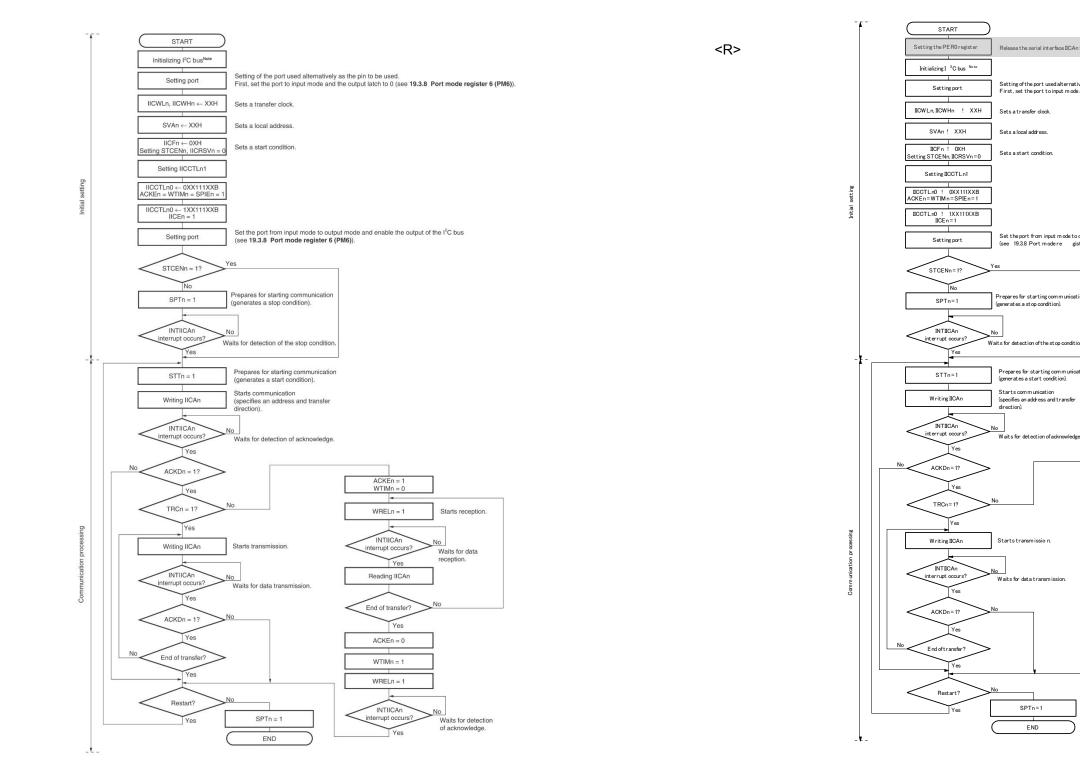
Sets a transfer clock

Sets a local address

Sets a start conditio

Prepares for starting com munication generates a stop condition).

Prepares for starting communication (generates a start condition).


Starts communication (specifies an address and transfe

Vaits for detection of acknow

tarte tranem jecio

SPTn=1

FND

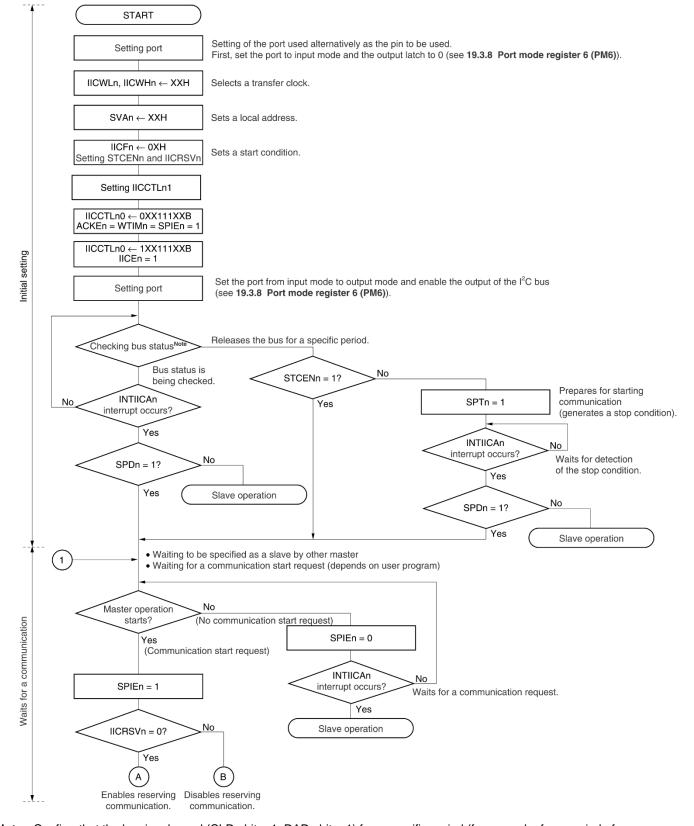
- Note Release (SCLAn and SDAAn pins = high level) the l^2C bus in conformance with the specifications of the product that is communicating. If EEPROM is outputting a low level to the SDAAn pin, for example, set the SCLAn pin in the output port mode, and output a clock pulse from the output port until the SDAAn pin is constantly at high level.
- Remarks 1. Conform to the specifications of the product that is communicating, with respect to the transmission and reception formats.
 - **2.** n = 0

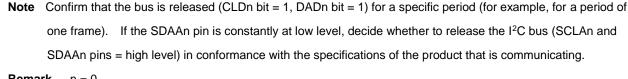
Note Release (SCLAn and SDAAn pins = high level) the I²C bus in conformance with the specifications of the product that is communicating. If EEPROM is outputting a low level to the SDAAn pin, for example, set the SCLAn pin in the output port mode, and output a clock pulse from the output port until the SDAAn pin is constantly at high level. Remarks 1. Conform to the specifications of the product that is communicating, with respect to the transmission and reception formats. **2.** n = 0

elease the serial interface IICAn from the reset status and start clock suppl

Setting of the port used alternatively as the pin to be used. First, set the port to input m ode and the output latch to 0 (see

19.3.8 Port mode register 6 (PM 6)


²C bus Set the port from input mode to output mode and enable the output of the I (see 19.3.8 Port mode re gister 6 (PM 6)).

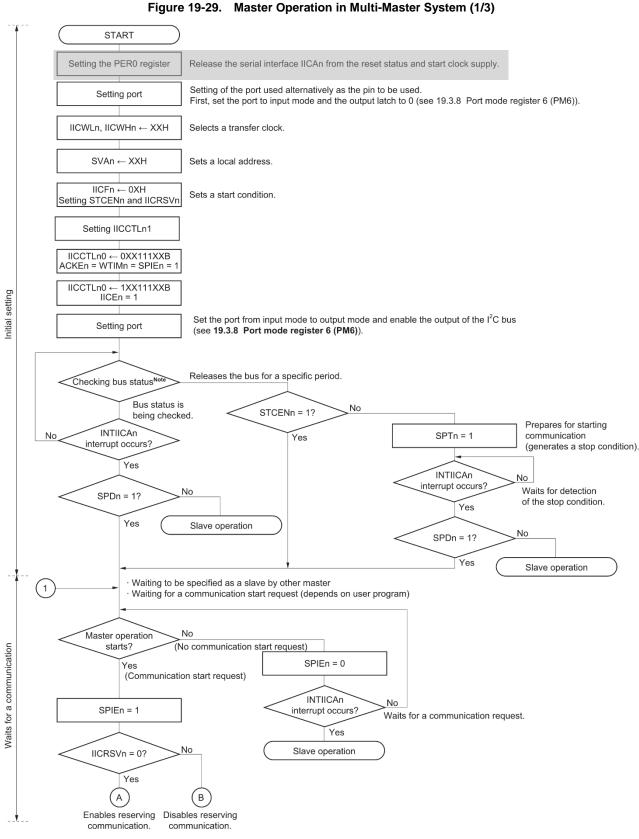

ACKEn=1 WTIMn=0 -WRELn=1 Startsreception INTIICAn interrupt occur Waits for data TYes Reading IICAn Endoftransfer Yes ACKEn=0 WTIMn=1 WRELn=1 INTIICAn interrupt occurs Waits for detectio. of acknowledge

19.5.16 Communication operations

Incorrect:

Figure 19-29. Master Operation in Multi-Master System (1/3)

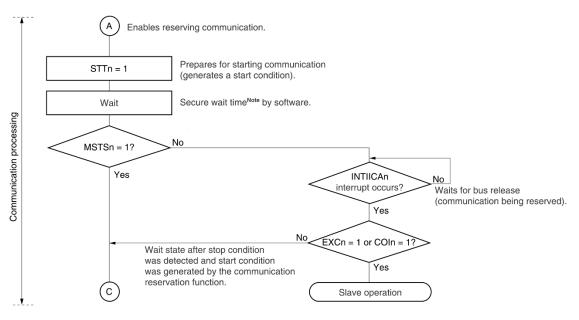
Remark n = 0



Date: Aug. 30, 2016 19.5.16 Communication operations

Correct:

<R>



Note Confirm that the bus is released (CLDn bit = 1, DADn bit = 1) for a specific period (for example, for a period of one frame). If the SDAAn pin is constantly at low level, decide whether to release the I²C bus (SCLAn and SDAAn pins = high level) in conformance with the specifications of the product that is communicating. Remark n = 0

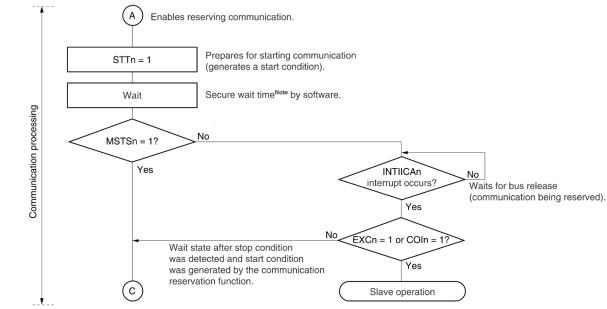
Page 38 of 58

19.5.16 Communication operations Incorrect:

Figure 19-29. Master Operation in Multi-Master System (2/3)

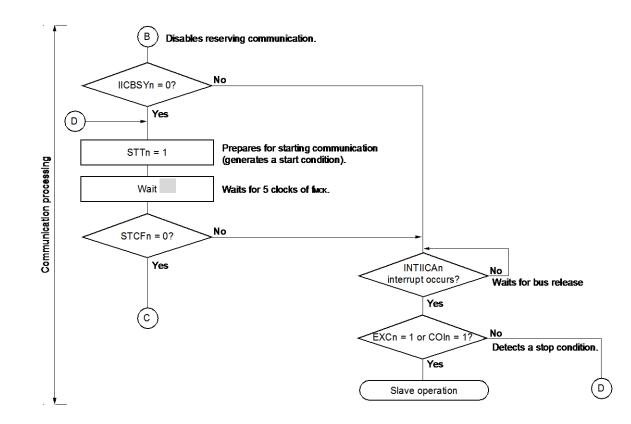
Note The wait time (number of fMCK clocks) is calculated as follows.

(IICWLn setting value + IICWHn setting value + 4) + tF × 2 × fMCK [clocks]



Remarks 1. IICWLn: IICA low-level width setting register n IICWHn: IICA high-level width setting register n SDAAn and SCLAn signal falling times tr: IICA operation clock frequency fмск: **2.** n = 0

Date: Aug. 30, 2016 19.5.16 Communication operations Correct:


Figure 19-29. Master Operation in Multi-Master System (2/3)

<R> Note The wait time is calculated as follows.

<R>

(IICWLn setting value + IICWHn setting value + 4)/fMCK + tF × 2

Remarks 1. IICWLn: IICA low-level width setting register n IICWHn: IICA high-level width setting register n SDAAn and SCLAn signal falling times tr: IICA operation clock frequency fMCK: **2.** n = 0

Page 39 of 58

19.5.16 Communication operations

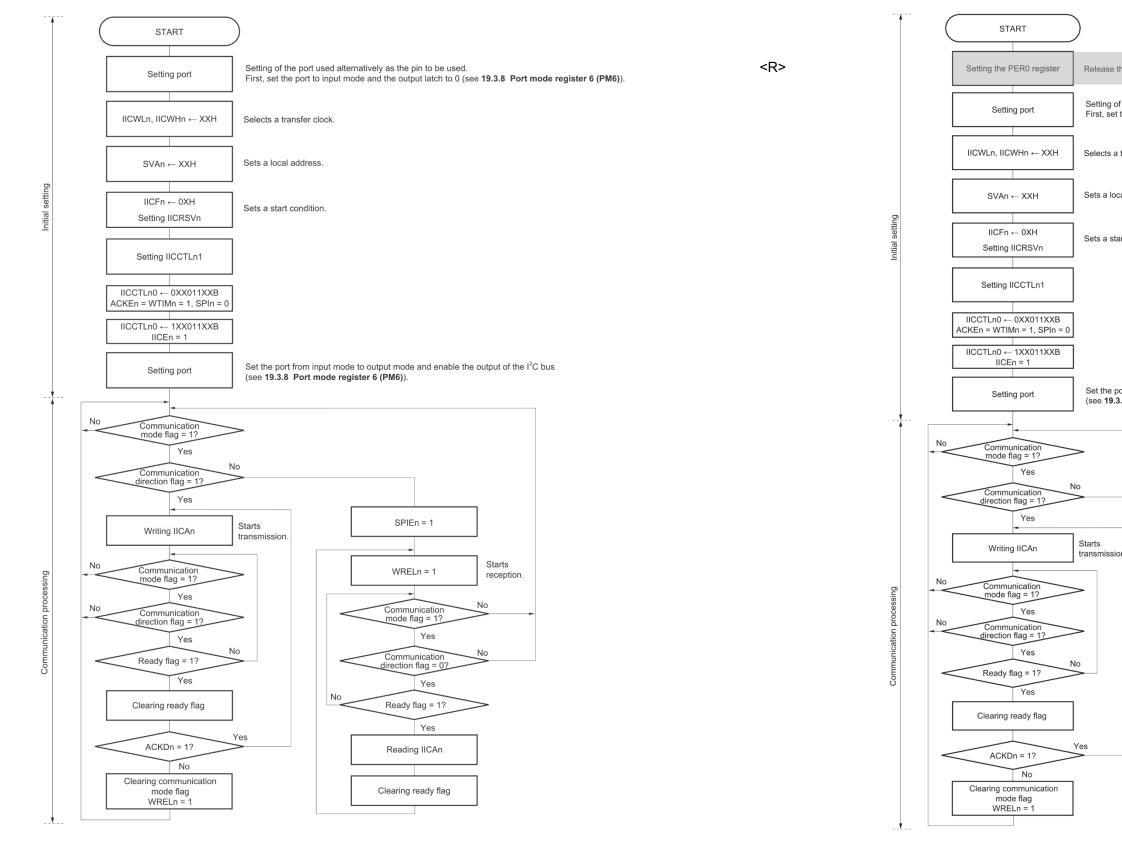

Incorrect:

Figure 19-30. Slave Operation Flowchart (1)

Date: Aug. 30, 2016 19.5.16 Communication operations

Correct:

Figure 19-30. Slave Operation Flowchart (1)

Remarks 1. Conform to the specifications of the product that is in communication, regarding the transmission and

reception formats.

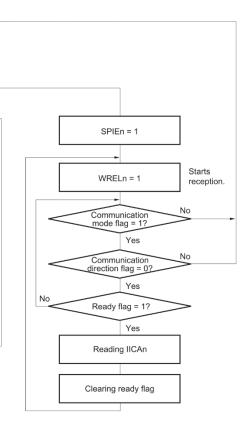
2.. n = 0

Remarks 1. Conform to the specifications of the product that is in communication, regarding the transmission and

reception formats.

2.. n = 0

Release the serial interface IICAn from the reset status and start clock supply.


Setting of the port used alternatively as the pin to be used. First, set the port to input mode and the output latch to 0 (see 19.3.8 Port mode register 6 (PM6)).

Selects a transfer clock.

Sets a local address.

Sets a start condition.

Set the port from input mode to output mode and enable the output of the ${\rm I}^2C$ bus (see 19.3.8 Port mode register 6 (PM6)).

21.3.7 LCD port function registers 0 to 5 (PFSEG0 to PFSEG5)

Incorrect:

Figure 21-10. Format of LCD Port Function Registers 0 to 5

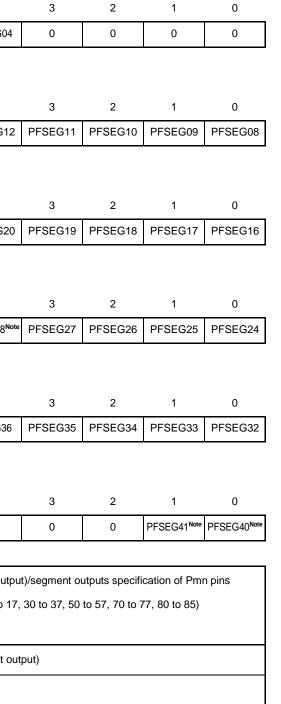
Address: F0300H After reset: F0H R/W											
Symbol	7	6	5	4	3	2	1	0			
PFSEG0	PFSEG07	PFSEG06	PFSEG05	PFSEG04	0	0	0	0			
Address: F	0301H Aft	er reset: FFH	R/W								
Symbol 7		6	5	4	3	2	1	0			
PFSEG1	PFSEG15	PFSEG14	PFSEG13	PFSEG12	PFSEG11	PFSEG10	PFSEG09	PFSEG08			
Address: F	0302H Aft	er reset: FFH	R/W								
Symbol	7	6	5	4	3	2	1	0			
PFSEG2	PFSEG23	PFSEG22	PFSEG21	PFSEG20	PFSEG19	PFSEG18	PFSEG17	PFSEG16			
Address: F030	3H After r	eset: FFH	R/W								
Symbol	7	6	5	4	4 3 2		1	0			
PFSEG3 F	PFSEG31 ^{Note} P	FSEG30 ^{Note}	PFSEG29 ^{Note}	PFSEG28 ^{Note}	PFSEG27	PFSEG26	PFSEG2	5 PFSEG24			
<u> </u>											
Address: F	0304H Aft	er reset: FFH	R/W								
Symbol	7	6	5	4	3	2	1	0			
PFSEG4	PFSEG39 ^{Note}	PFSEG38 ^{Note}	PFSEG37	PFSEG36	PFSEG35	PFSEG34	PFSEG33	PFSEG32			
Address: F	0305H Aft	er reset: FFH	R/W								
Symbol	7	6	5	4	3	2	1	0			
PFSEG5	0	0	0	0	0	0	PFSEG41 ^{Note}	PFSEG40 ^{Note}			
	PFSEGxx	Port (other than se	gment output	:)/segment ou	utputs specifi	cation of Pmr	n pins			
	(xx = 04 to		(mn = 02 to	07, 10 to 17,	30 to 37, 50	to 57, 70 to 7	7, 80 to 85)				
	41)										
	0	Used as po	rt (other than	segment out	out)						
	1	Used as see	gment output								

Note 100-pin products only.

Date: Aug. 30, 2016

21.3.7 LCD port function registers 0 to 5 (PFSEG0 to PFSEG5)

Correct:


Figure 21-10. Format of LCD Port Function Registers 0 to 5

Address: F0	0300H Aft	er reset: F0H	R/W	
Symbol	7	6	5	4
PFSEG0	PFSEG07	PFSEG06	PFSEG05	PFSEG
Address: F0	0301H Aft	er reset: FFH	R/W	
Symbol	7	6	5	4
PFSEG1	PFSEG15	PFSEG14	PFSEG13	PFSEG
Address: F0	0302H Aft	er reset: FFH	R/W	
Symbol	7	6	5	4
PFSEG2	PFSEG23	PFSEG22	PFSEG21	PFSEG
Address: F0	0303H Aft	er reset: FFH	R/W	
Symbol	7	6	5	4
PFSEG3	PFSEG31 ^{Note}	PFSEG30 ^{Note}	PFSEG29 ^{Note}	PFSEG28
Address: F0	0304H Aft	er reset: FFH	R/W	
Symbol	7	6	5	4
PFSEG4	PFSEG39 ^{Note}	PFSEG38 ^{Note}	PFSEG37	PFSEG
Address: F0	0305H Aft	er reset: FFH	R/W	
Symbol	7	6	5	4
PFSEG5	0	0	0	0
	PFSEGxx	Port (other than se	egment ou
	(xx = 04 to		(mn = 02 to	07, 10 to
	41)			
	0	Used as po	rt (other than	segment
	1	Used as se	gment output	
	L			

<R>

Note Be sure to set "1" for 80-pin products.

22.1 Functions of DTC

Incorrect:

The data transfer controller (DTC) is a function that transfers data between memories without using the CPU. The DTC is activated by a peripheral function interrupt to perform data transfers. The DTC and CPU use the same bus, and the DTC takes priority over the CPU in using the bus.

Table 22-1 lists the DTC specifications.

Table 22-1. DTC Specifications

Iter	n	Specification				
Activation sources		40 sources				
Allocatable control data		24 sets				
Address space Address space		64 Kbytes (F0000H to FFFFFH), excluding general-purpose registers				
which can be transferred	Sources	Special function register (SFR), RAM area (excluding general-purpose registers), mirror area ^{Note} , extended special function register (2nd SFR)				
which can be transferred Sources Special function register (SFR), RAM area (excluding general-purpose registers), mirror extended special function register (2nd SFR) Destinations Special function register (SFR), RAM area (excluding general-purpose registers), exter special function register (2nd SFR) Maximum number of transfers Normal mode 256 times Maximum size of block to be transferred Normal mode 255 times Maximum size of block to be transferred Normal mode 512 bytes Vinit of transfers 8 bits/16 bits Transfer mode Normal mode 255 bytes Unit of transfers 8 bits/16 bits Transfer mode Normal mode Transfers end on completion of the transfer causing the DTCCTj register value to charge from 1 to 0 repeat area address is initialized and the DTRLDj register value is reloaded to the DTC register to continue transfers. Address control Normal mode Fixed or incremented Repeat mode Addresses of the area not selected as the repeat area are fixed or incremented. Priority of activation sources See Table 22-4 DTC Activation Sources and Vector Addresses. Interrupt request Normal mode When the data transfer causing the DTCCTj register value to change from 1 to 0 is penter the activation source interrupt request is generated for t	Special function register (SFR), RAM area (excluding general-purpose registers), extended special function register (2nd SFR)					
Maximum number	Normal mode	256 times				
of transfers	Repeat mode	255 times				
Maximum size of Normal mod		256 bytes				
transferred		512 bytes				
Repeat mode		255 bytes				
Unit of transfers		8 bits/16 bits				
Transfer mode	Normal mode	Transfers end on completion of the transfer causing the DTCCTj register value to change from 1 to 0.				
	Repeat mode	On completion of the transfer causing the DTCCTj register value to change from 1 to 0, the repeat area address is initialized and the DTRLDj register value is reloaded to the DTCCTj register to continue transfers.				
Address control	Normal mode	Fixed or incremented				
	Repeat mode	Addresses of the area not selected as the repeat area are fixed or incremented.				
Priority of activation	n sources	See Table 22-4 DTC Activation Sources and Vector Addresses.				
Interrupt request	Normal mode	When the data transfer causing the DTCCTj register value to change from 1 to 0 is performed, the activation source interrupt request is generated for the CPU, and interrupt handling is performed on completion of the data transfer.				
	Repeat mode	When the data transfer causing the DTCCTj register value to change from 1 to 0 is performed while the RPTINT bit in the DTCCRj register is 1 (interrupt generation enabled), the activation source interrupt request is generated for the CPU, and interrupt handling is performed on completion of the transfer.				
Transfer start		When bits DTCENi0 to DTCENi7 in the DTCENi registers are 1 (activation enabled), data transfer is started each time the corresponding DTC activation sources are generated.				
Transfer stop	Normal mode	 When bits DTCENi0 to DTCENi7 are set to 0 (activation disabled). When the data transfer causing the DTCCTj register value to change from 1 to 0 is completed. 				
	Repeat mode	 When bits DTCENi0 to DTCENi7 are set to 0 (activation disabled). When the data transfer causing the DTCCTj register value to change from 1 to 0 is completed while the RPTINT bit is 1 (interrupt generation enabled). 				

Note In the HALT and SNOOZE modes, these areas cannot be set as the sources for DTC transfer since the flash memory is stopped.

Remark i = 0 to 3, j = 0 to 23

Date: Aug. 30, 2016

22.1 Functions of DTC

Correct:

The data transfer controller (DTC) is a function that transfers data between memories without using the CPU. The DTC is activated by a peripheral function interrupt to perform data transfers. The DTC and CPU use the same bus, and the DTC takes priority over the CPU in using the bus.

Table 22-1 lists the DTC specifications.

Table 22-1. DTC Specifications

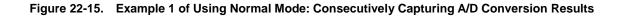
Item 30 sources Activation sources 30 sources Allocatable control data 24 sets Address space which can be transferred Address space 64 Kbytes (F0000H to FFFFFH), ex Sources Special function register (SFR), RA extended special function register (SFR), RA special function register (SFR), RA special function register (SFR), RA special function register (2nd SFR) Maximum number of transfers Normal mode 256 times Maximum size of block to be transferred Normal mode 256 bytes Maximum size of block to be transferred Normal mode 512 bytes Unit of transfers 8 bits/16 bits Transfer mode Normal mode Transfers end on completion of the transfer mode Repeat mode On completion of the transfer causi regeat area address is initialized ar register to continue transfers. Address control Normal mode Fixed or incremented Repeat mode Addresses of the area not selected Priority of activation sources See Table 22-5 DTC Activation Interrupt request Normal mode When the data transfer causing the while the RPTINT bit in the DTCCF source interrupt request is generate completion of the transfer. Transfer start When bits D							
Allocatable control data 24 sets Address space which can be transferred Address space 64 Kbytes (F0000H to FFFFFH), et Sources Special function register (SFR), RA extended special function register (SFR), RA special function register (2nd SFR) Maximum number of transfers Normal mode 256 times Maximum size of block to be transferred Normal mode (8-bit transfer) 256 bytes Maximum size of block to be transferred Normal mode (16-bit transfer) 512 bytes Unit of transfers 8 bits/16 bits Transfer mode Normal mode (16-bit transfer) Transfers end on completion of the to 0. Repeat mode On completion of the transfer causi repeat area address is initialized ar register to continue transfers. Address control Normal mode Fixed or incremented Repeat mode See Table 22-5 DTC Activation Interrupt request Normal mode When the data transfer causing the the activation source interrupt request is generate completion of the transfer. Transfer start When bits DTCENi0 to DTCENi7 When bits DTCENi0 to DTCENi7 When bits DTCENi0 to DTCENi7 When the data transfer causing the while the activation source interrupt request is generate completion of the transfer.		Iter	n				
Address space which can be transferredAddress space Sources64 Kbytes (F0000H to FFFFFH), et special function register (SFR), RA extended special function register (SFR), RA special function register (SFR), RA special function register (SFR), RA special function register (2nd SFR)Maximum number of transfersNormal mode Repeat mode256 timesMaximum size of block to be transferredNormal mode (8-bit transfer)256 bytesMaximum size of block to be transferredNormal mode (16-bit transfer)255 bytesUnit of transfersRepeat mode (16-bit transfer)255 bytesUnit of transfersNormal mode (16-bit transfer)Transfers end on completion of the to 0.Transfer modeNormal mode (Repeat mode)On completion of the transfer causi register to continue transfers.Address controlNormal mode (Repeat mode)Fixed or incrementedPriority of activation sourcesSee Table 22-5 DTC ActivationInterrupt requestNormal mode (Repeat mode)When the data transfer causing the the activation source interrupt reque performed on completion of the tdat completion of the tansfer.Transfer startWrand modeWhen the data transfer causing the while the RPTINT bit in the DTCCRi source interrupt request is generate completion of the tdat transfer.Transfer startNormal modeWhen bits DTCENi0 to DTCENi7 When the data transfer causing the while the RPTINT bit in the data transfer.Transfer startNormal modeWhen bits DTCENi0 to DTCENi7 When the data transfer causing the while the data transfer causing the<	<r></r>	Activation sources		30 sources			
which can be transferredSourcesSpecial function register (SFR), RA extended special function register (Special function register (2nd SFR) RA special function register (2nd SFR)Maximum number of transfersNormal mode256 timesMaximum size of block to be transferredNormal mode256 bytesMaximum size of block to be transferredNormal mode256 bytesMaximum size of block to be transferredNormal mode255 bytesUnit of transfers8 bits/16 bitsTransfer modeNormal modeTransfers end on completion of the to 0.Repeat mode0 completion of the transfer causi repeat area address is initialized ar register to continue transfers.Address controlNormal modeFixed or incrementedPriority of activation sourcesSee Table 22-5 DTC ActivationInterrupt requestNormal modeWhen the data transfer causing the the activation source interrupt requestis generatic completion of the transfer.Transfer startNormal modeWhen the data transfer causing the while the RPTINT bit in the DTCCFN source interrupt request is generatic completion of the transfer.Transfer startWhen bits DTCENi0 to DTCENi7 in transfer is started each time the coTransfer startNormal mode• When the data transfer causing the 		Allocatable control	data	24 sets			
transferredSourcesSpecial function register (SFR), RA special function register (SFR), RA special function register (2nd SFR)Maximum number of transfersNormal mode256 timesMaximum size of block to be transferredNormal mode256 bytesMaximum size of block to be transferredNormal mode256 bytesMaximum size of transferredNormal mode512 bytesMaximum size of block to be (16-bit transfer)Normal mode512 bytesUnit of transfers8 bits/16 bitsTransfer modeNormal modeTransfers end on completion of the to 0.Repeat modeOn completion of the transfer causi repeat area address is initialized ar register to continue transfers.Address controlNormal modeFixed or incrementedPriority of activation sourcesSee Table 22-5 DTC ActivationInterrupt requestNormal modeWhen the data transfer causing the the activation source interrupt request is generati completion of the transfer.Transfer startNormal modeWhen the data transfer causing the the activation source interrupt request is generati completion of the transfer.Transfer startNormal modeWhen bits DTCENi0 to DTCENi7 in transfer is started each time the coTransfer startNormal mode• When bits DTCENi0 to DTCENi7 • When the data transfer causing the while the RPTINT bit in the DTCCF source interrupt request is generatic completion of the transfer.Transfer startNormal mode• When bits DTCENi0 to DTCENi7 • When the data transfer causing the while the RPTINT bit in th		Address space	Address space	64 Kbytes (F0000H to FFFFH), ex			
Maximum number of transfersNormal mode256 timesMaximum size of block to be transferredNormal mode (8-bit transfer)256 bytesMaximum size of block to be transferredNormal mode (8-bit transfer)256 bytesUnit of transfersRepeat mode (16-bit transfer)251 bytesUnit of transfers8 bits/16 bitsTransfer modeNormal mode (16-bit transfer)Transfers end on completion of the to 0.Repeat modeOn completion of the transfer causi repeat area address is initialized ar register to continue transfers.Address controlNormal mode Repeat modeFixed or incremented Repeat modePriority of activation Interrupt requestNormal mode Repeat modeWhen the data transfer causing the while the RPTINT bit in the DTCCF source interrupt request is generat completion of the transfer.Transfer startWhen bits DTCENi0 to DTCENi7 in transfer is started each time the coTransfer startNormal mode• When the data transfer causing the while the RPTINT bit in the DTCCF source interrupt request is generat completion of the transfer.			Sources				
of transfersRepeat mode255 timesMaximum size of block to be transferredNormal mode (8-bit transfer)256 bytesNormal mode (16-bit transfer)512 bytesUnit of transfers8 bits/16 bitsTransfer modeNormal mode (16-bit transfer)Transfers end on completion of the to 0.Transfer modeNormal mode (16-bit transfer)Transfers end on completion of the transfer send on completion of the transfer causi repeat area address is initialized ar register to continue transfers.Address controlNormal modeFixed or incremented Repeat modePriority of activation sourcesSee Table 22-5 DTC ActivationInterrupt requestNormal modeWhen the data transfer causing the while the RPTINT bit in the DTCCF source interrupt request is generati completion of the transfer.Transfer startWhen bits DTCENi0 to DTCENi7 in transfer is started each time the co source interrupt request is generation completion of the transfer.Transfer startNormal mode• When bits DTCENi0 to DTCENi7 in transfer is started each time the coTransfer startNormal mode• When bits DTCENi0 to DTCENi7 in transfer is started each time the coTransfer stopNormal mode• When bits DTCENi0 to DTCENi7 in transfer is started each time the co			Destinations	0 (),			
Maximum size of block to be transferredNormal mode (8-bit transfer)256 bytesInterventionNormal mode (8-bit transfer)512 bytesUnit of transfers8 bits/16 bitsTransfer modeNormal mode (16-bit transfer)Transfers end on completion of the to 0.Transfer modeNormal mode (16-bit transfers end on completion of the to 0.Transfers end on completion of the transfer causi repeat area address is initialized ar register to continue transfers.Address controlNormal modeFixed or incremented Repeat modePriority of activation Interrupt requestNormal modeSee Table 22-5 DTC ActivationInterrupt requestNormal modeWhen the data transfer causing the the activation source interrupt requ performed on completion of the transfer.Transfer startWhen the data transfer causing the while the RPTINT bit in the DTCCF source interrupt request is generate completion of the transfer.Transfer startNormal modeWhen bits DTCENi0 to DTCENi7 in transfer is started each time the co when the data transfer causing the while the RPTINT bit to DTCENi7 in transfer is started each time the coTransfer stopNormal modeWhen bits DTCENi0 to DTCENi7 in transfer is started each time the co when the data transfer causing the while the RPTINT bit to DTCENi7 in transfer is started each time the co when the data transfer causing the when the data transfer causing the <th></th> <td>Maximum number</td> <td>Normal mode</td> <td>256 times</td>		Maximum number	Normal mode	256 times			
block to be transferred (8-bit transfer) Normal mode (16-bit transfer) 512 bytes Unit of transfers 8 bits/16 bits Transfer mode Normal mode Transfer mode Normal mode Transfer mode Normal mode Repeat mode On completion of the transfer causi repeat area address is initialized ar register to continue transfers. Address control Normal mode Priority of activation sources See Table 22-5 DTC Activation Interrupt request Normal mode Repeat mode When the data transfer causing the the activation source interrupt requ performed on completion of the transfer. Transfer start When the data transfer causing the while the RPTINT bit in the DTCCF source interrupt request is generate completion of the transfer. Transfer start Wormal mode Transfer start When bits DTCENi0 to DTCENi7 in transfer is started each time the co Transfer stop Normal mode Repeat mode When bits DTCENi0 to DTCENi7 When the data transfer causing the while the RPTINT bit to the toco		of transfers	Repeat mode	255 times			
Normal mode S12 bytes Initial mode (16-bit transfer) Repeat mode 255 bytes Unit of transfers 8 bits/16 bits Transfer mode Normal mode Transfers mode Normal mode Repeat mode On completion of the transfer causi repeat area address is initialized ar register to continue transfers. Address control Normal mode Repeat mode Addresses of the area not selected Priority of activation sources See Table 22-5 DTC Activation Interrupt request Normal mode Repeat mode When the data transfer causing the the activation source interrupt requered area mode Repeat mode When the data transfer causing the the activation source interrupt requered area mode Repeat mode When the data transfer causing the while the RPTINT bit in the DTCCF source interrupt request is generate completion of the transfer. Transfer start When bits DTCENi0 to DTCENi7 in transfer is started each time the co Transfer stop Normal mode • When bits DTCENi0 to DTCENi7 is when the data transfer causing the while the data transfer causing the while the data transfer causing the while the data transfer. Transfer stop Normal mode • When bits DTCENi0 to DTCENi7 is transfer is started each time the co				256 bytes			
Unit of transfers 8 bits/16 bits Transfer mode Normal mode Transfers end on completion of the transfer causi repeat area address is initialized ar register to continue transfers. Address control Normal mode Fixed or incremented Address control Normal mode Fixed or incremented Priority of activation sources See Table 22-5 DTC Activation Interrupt request Normal mode When the data transfer causing the the activation source interrupt request is generate completion of the transfer. Transfer start When bits DTCENi0 to DTCENi7 in transfer is started each time the co Transfer stop Normal mode • When bits DTCENi0 to DTCENi7 in transfer causing the the data transfer causing the while the data transfer causing the while the activation source interrupt request is generate completion of the transfer.		transferred		512 bytes			
Transfer modeNormal modeTransfers end on completion of the to 0.Repeat modeOn completion of the transfer causi repeat area address is initialized ar register to continue transfers.Address controlNormal modeFixed or incremented Repeat modePriority of activation sourcesSee Table 22-5 DTC ActivationInterrupt requestNormal modeWhen the data transfer causing the the activation source interrupt requ performed on completion of the transfer.Transfer startRepeat modeWhen the data transfer causing the while the RPTINT bit in the DTCCR source interrupt request is generate completion of the transfer.Transfer startWormal mode• When bits DTCENi0 to DTCENi7 in transfer is started each time the completion of • When bits DTCENi0 to DTCENi7 in • When the data transfer causing the while the RPTINT bit in the processTransfer stopNormal mode• When bits DTCENi0 to DTCENi7 in transfer is started each time the completion of the transfer causing the while the data transfer causing the while the activation to DTCENi7 in transfer is started each time the completion of the transfer.Transfer stopNormal mode• When bits DTCENi0 to DTCENi7 in transfer causing the when the data transfer causing the when the data transfer causing the when the data transfer causing the transfer is started each time the completion of the transfer.Transfer stopNormal mode• When bits DTCENi0 to DTCENi7 • When the data transfer causing the when th			Repeat mode	255 bytes			
to 0.Repeat modeOn completion of the transfer causi repeat area address is initialized ar register to continue transfers.Address controlNormal modeFixed or incrementedAddress controlNormal modeAddresses of the area not selectedPriority of activation sourcesSee Table 22-5 DTC ActivationInterrupt requestNormal modeWhen the data transfer causing the the activation source interrupt requ performed on completion of the dataInterrupt requestNormal modeWhen the data transfer causing the the activation source interrupt reque performed on completion of the dataTransfer startWhen the data transfer causing the while the RPTINT bit in the DTCCF source interrupt request is generate completion of the transfer.Transfer startNormal mode• When bits DTCENi0 to DTCENi7 in transfer is started each time the coTransfer stopNormal mode• When bits DTCENi0 to DTCENi7 • When the data transfer causing the when the data		Unit of transfers		8 bits/16 bits			
Address control Normal mode Fixed or incremented Address control Normal mode Fixed or incremented Priority of activation sources See Table 22-5 DTC Activation Interrupt request Normal mode When the data transfer causing the the activation source interrupt request Interrupt request Normal mode When the data transfer causing the the activation source interrupt request Repeat mode When the data transfer causing the the activation source interrupt request is generate completion of the tata transfer causing the while the RPTINT bit in the DTCCR source interrupt request is generate completion of the transfer. Transfer start When bits DTCENi0 to DTCENi7 in transfer is started each time the could be the data transfer causing the transfer is started each time the could be the data transfer causing the while the data transfer causing the transfer is started each time the could be the data transfer causing the transfer is started each time the could be the data transfer causing the transfer is transfer the data transfer causing the transfer causing the transfer is the data transfer causing the transfer causing the transfer causing the transfer is transfer causing the transfer causing the transfer is transfer causing the transfer causing t		Transfer mode	Normal mode				
Repeat mode Addresses of the area not selected Priority of activation sources See Table 22-5 DTC Activation Interrupt request Normal mode When the data transfer causing the the activation source interrupt requered on completion of the data Repeat mode When the data transfer causing the while the RPTINT bit in the DTCCR source interrupt request is generate completion of the transfer. Transfer start When bits DTCENi0 to DTCENi7 in transfer is started each time the completion of DTCENi7 in transfer is started each time the completion of the data transfer causing the when the data transfer causing the transfer is started each time the completion of the transfer causing the transfer start Transfer stop Normal mode Repeat mode • When bits DTCENi0 to DTCENi7 in transfer is started each time the completion of the data transfer causing the transfer causing to the transfer cau			Repeat mode	repeat area address is initialized a			
Priority of activation sources See Table 22-5 DTC Activation Interrupt request Normal mode When the data transfer causing the the activation source interrupt requereformed on completion of the data Repeat mode When the data transfer causing the while the RPTINT bit in the DTCCR source interrupt request is generate completion of the transfer. Transfer start When bits DTCENi0 to DTCENi7 in transfer is started each time the co Transfer stop Normal mode Repeat mode • When bits DTCENi0 to DTCENi7 in transfer is started each time the co When bits DTCENi0 to DTCENi7 in transfer stop • When bits DTCENi0 to DTCENi7 in transfer is started each time the co When bits DTCENi0 to DTCENi7 • When bits DTCENi0 to DTCENi7 When bits DTCENi0 to DTCENi7 • When bits DTCENi0 to DTCENi7 When bits DTCENi0 to DTCENi7 • When bits DTCENi0 to DTCENi7		Address control	Normal mode	Fixed or incremented			
Interrupt request Normal mode When the data transfer causing the the activation source interrupt requered on completion of the data Repeat mode When the data transfer causing the while the RPTINT bit in the DTCCF source interrupt request is generate completion of the transfer. Transfer start When bits DTCENi0 to DTCENi7 in transfer is started each time the co Transfer stop Normal mode • When bits DTCENi0 to DTCENi7 in transfer causing the when the data transfer causing the transfer causing the when the data transfer causing the when the data transfer causing the transfer			Repeat mode	Addresses of the area not selected			
Image: start Image: start <td< th=""><th></th><th>Priority of activation</th><th>n sources</th><th>See Table 22-5 DTC Activation</th></td<>		Priority of activation	n sources	See Table 22-5 DTC Activation			
Image: Second state of the second s		Interrupt request	Normal mode	the activation source interrupt requ			
Transfer stop Normal mode • When bits DTCENi0 to DTCENi7 Transfer stop • When bits DTCENi0 to DTCENi7 Repeat mode • When bits DTCENi0 to DTCENi7 • When bits DTCENi0 to DTCENi7 • When bits DTCENi0 to DTCENi7			Repeat mode	while the RPTINT bit in the DTCCR source interrupt request is generate			
When the data transfer causing t Repeat mode When bits DTCENi0 to DTCENi7 When the data transfer causing t		Transfer start					
When the data transfer causing t		Transfer stop	Normal mode				
			Repeat mode	When the data transfer causing the second seco			

Note In the HALT and SNOOZE modes, these areas cannot be set as the sources for DTC transfer since the flash memory is stopped.

Remark i = 0 to 3, j = 0 to 23

Specification
cluding general-purpose registers
M area (excluding general-purpose registers), mirror area ^{Note} , 2nd SFR)
M area (excluding general-purpose registers), extended
transfer causing the DTCCTj register value to change from 1
ng the DTCCTj register value to change from 1 to 0, the
nd the DTRLDj register value is reloaded to the DTCCTj
as the repeat area are fixed or incremented.
Sources and Vector Addresses.
DTCCTj register value to change from 1 to 0 is performed, est is generated for the CPU, and interrupt handling is a transfer.
DTCCTj register value to change from 1 to 0 is performed tj register is 1 (interrupt generation enabled), the activation ed for the CPU, and interrupt handling is performed on
the DTCENi registers are 1 (activation enabled), data responding DTC activation sources are generated.
are set to 0 (activation disabled). he DTCCTj register value to change from 1 to 0 is completed.
are set to 0 (activation disabled).

the DTCCTj register value to change from 1 to 0 is completed upt generation enabled).

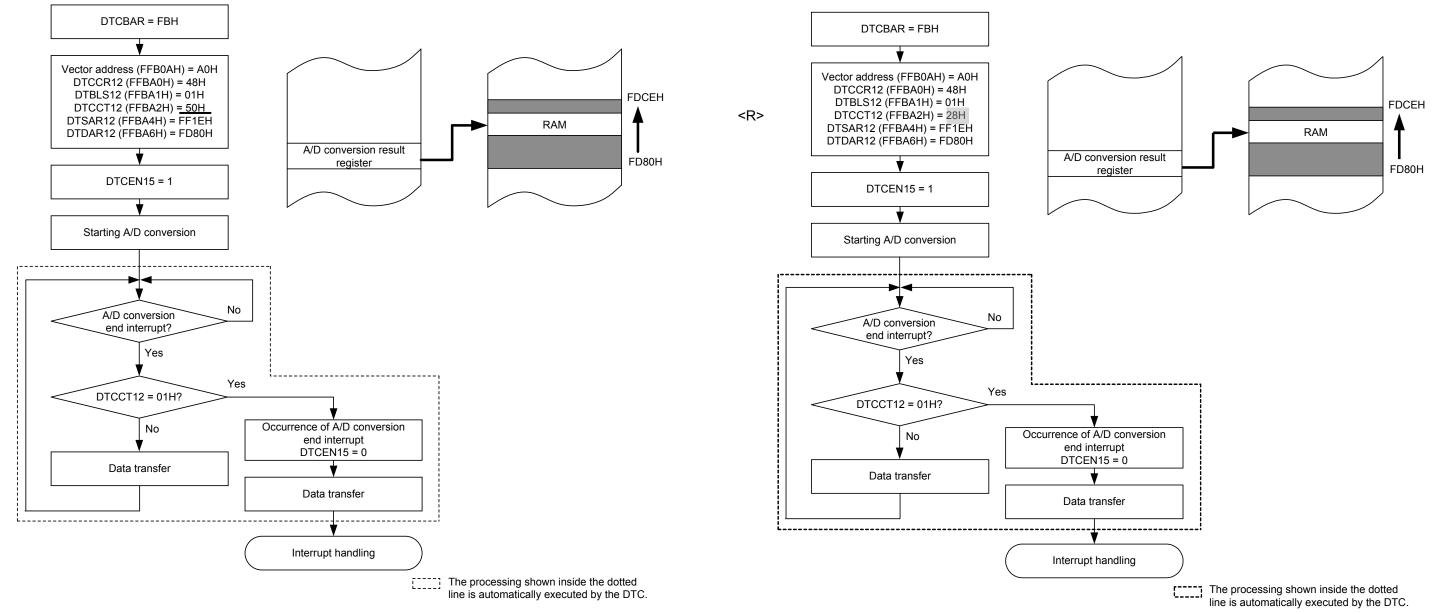

22.4.2 Normal mode

Incorrect:

(1) Example 1 of using normal mode: Consecutively capturing A/D conversion results

The DTC is activated by an A/D conversion end interrupt and the value of the A/D conversion result register is transferred to RAM.

- The vector address is FFB0AH and control data is allocated at FFBA0H to FFBA7H
- Transfers 2-byte data of the A/D conversion result register (FFF1EH, FFF1FH) to 80 bytes of FFD80H to FFDCFH of RAM



Date: Aug. 30, 2016 22.4.2 Normal mode Correct:

(1) Example 1 of using normal mode: Consecutively capturing A/D conversion results The DTC is activated by an A/D conversion end interrupt and the value of the A/D conversion result register is transferred to RAM.

- The vector address is FFB0AH and control data is allocated at FFBA0H to FFBA7H
- <R> Transfers 2-byte data of the A/D conversion result register (FFF1EH, FFF1FH) to 80 bytes of FFD80H to FFDCFH of RAM 40 times

Figure 22-15. Example 1 of Using Normal Mode: Consecutively Capturing A/D Conversion Results

The value of the DTRLD12 register is not used because of normal mode, but initialize the register to 00H when parity error resets are enabled (RPERDIS = 0) using the RAM parity error detection function.

The value of the DTRLD12 register is not used because of normal mode, but initialize the register to 00H when parity error resets are enabled (RPERDIS = 0) using the RAM parity error detection function

RENESAS TECHNICAL UPDATE TN-RL*-A063A/E 22.5.3 DTC pending instruction	Date: Aug. 30, 2016 22.5.3 DTC pending instruction
Incorrect:	Correct:
Even if a DTC transfer request is generated, data transfer is held pending immediately after the following instructions. Also, the DTC is not activated between PREFIX instruction code and the instruction immediately after that code.	Even if a DTC transfer request is generated, data transfer is held pending in not activated between PREFIX instruction code and the instruction immediate
 Call/return instruction Unconditional branch instruction Conditional branch instruction Read access instruction for code flash memory Bit manipulation instructions for IFxx, MKxx, PRxx, and PSW, and an 8-bit manipulation instruction that has the ES register as operand 	 Call/return instruction Unconditional branch instruction Conditional branch instruction Read access instruction for code flash memory Bit manipulation instructions for IFxx, MKxx, PRxx, and PSW, and an 8-b
	<r> • Instruction of Multiply, Divide, Multiply & Accumulate (excluding MULU)</r>
 Cautions 1. When a DTC transfer request is acknowledged, all interrupt requests are held pending until DTC transfer is completed. While the DTC is held pending by the DTC pending instruction, all interrupt requests are held pending. 	 Cautions 1. When a DTC transfer request is acknowledged, all in completed. While the DTC is held pending by the DTC pending instant

ng immediately after the following instructions. Also, the DTC is liately after that code.

8-bit manipulation instruction that has the ES register as operand J)

interrupt requests are held pending until DTC transfer is

nstruction, all interrupt requests are held pending.

23.4.4 Interrupt request hold

Incorrect:

Date: Aug. 30, 2016

<R> 23.4.4 Interrupt servicing during division instruction

Correct:

<R> 23.4.4 Interrupt servicing during division instruction The RL78/I1B handles interrupts during the DIVHU/DIVWU instruction in order to enhance the interrupt response when a division instruction is executed.

· When an interrupt is generated while the DIVHU/DIVWU instruction is executed, the instruction is suspended

An interrupt is generated by the next instruction

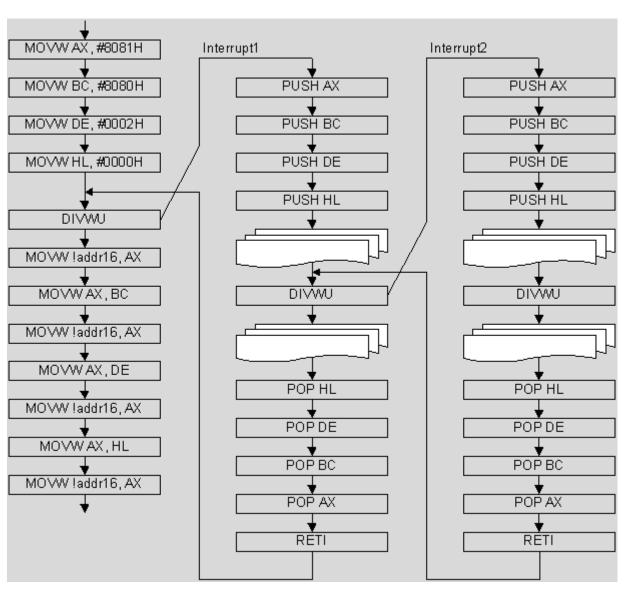
• PC-3 is stacked to execute the DIVHU/DIVWU instruction again

Normal interrupt	Interrupts while Executing DIVHU/DIVWU Instruction
(SP-1) ← PSW	(SP-1) ← PSW
(SP-2) ← (PC)S	(SP-2) ← (PC-3)S
(SP-3) ← (PC)H	(SP-3) ← (PC-3)H
(SP-4) ← (PC)L	(SP-4) ← (PC-3)L
PCS ← 0000	PCS ← 0000
PCH ← (Vector)	$PCH \leftarrow (Vector)$
PCL ← (Vector)	PCL ← (Vector)
SP ← SP-4	SP ← SP-4
IE ← 0	IE ← 0

The AX, BC, DE, and HL registers are used for DIVHU/DIVWU. Use these registers by stacking them for interrupt servicing.

After the instruction is suspended, the PC indicates the next instruction after DIVHU/DIVWU

23.4.4 Interrupt request hold

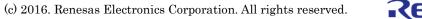

Incorrect:

Date: Aug. 30, 2016

23.4.4 Interrupt servicing during division instruction <R>

Correct:

<R>


Caution Disable interrupts when executing the DIVHU or DIVWU instruction in an interrupt servicing routine.

Alternatively, unless they are executed in the RAM area, note that execution of a DIVHU or DIVWU instruction is possible even with interrupts enabled as long as a NOP instruction is added

immediately after the DIVHU or DIVWU instruction in the assembly language source code. The

following compilers automatically add a NOP instruction immediately after any DIVHU or DIVWU

- instruction output during the build process.
- code
- Service pack 1.40.6 and later versions of the EWRL78 (IAR compiler), for C language source code
- GNURL78 (KPIT compiler), for C language source code

- V. 1.71 and later versions of the CA78K0R (Renesas Electronics compiler), for both C and assembly language source

23.4.4 Interrupt request hold

Incorrect:

There are instructions where, even if an interrupt request is issued while the instructions are being executed, interrupt request acknowledgment is held pending until the end of execution of the next instruction. These instructions (interrupt request hold instructions) are listed below.

- MOV PSW, #byte
- MOV PSW, A
- MOV1 PSW. bit, CY
- SET1 PSW. bit
- CLR1 PSW. bit
- RETB
- RETI
- POP PSW
- BTCLR PSW. bit, \$addr20
- El
- DI
- SKC
- SKNC
- SKZ
- SKNZ
- SKH
- SKNH

 MULHU • Write instructions for the IF0L, IF0H, IF1L, IF1H, IF2L, IF2H, IF3L, MK0L, MK0H, MK1L, MK1H, MK2L, MK2H, MK3L, PR00L, PR00H, <R> <R> MULH PR01L, PR01H, PR02L, PR02H, PR03L, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H, and PR13L registers

Date: Aug. 30, 2016 23.4.5 Interrupt request hold

Correct:

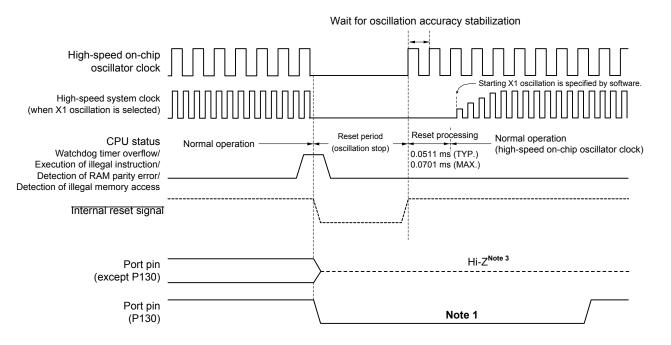
There are instructions where, even if an interrupt request is issued while the instructions are being executed, interrupt request acknowledgment is held pending until the end of execution of the next instruction. These instructions (interrupt request hold instructions) are listed below.

- MOV PSW, #byte
- MOV PSW, A
- MOV1 PSW. bit, CY
- SET1 PSW. bit
- CLR1 PSW. bit
- RETB
- RETI
- POP PSW
- BTCLR PSW, bit, \$addr20
- El
- DI
- SKC
- SKNC
- SKZ
- SKNZ
- SKH
- SKNH

MACHU

<R> • MACH

<R>


• Write instructions for the IF0L, IF0H, IF1L, IF1H, IF2L, IF2H, IF3L, MK0L, MK0H, MK1L, MK1H, MK2L, MK2H, MK3L, PR00L, PR00H, PR01L, PR01H, PR02L, PR02H, PR03L, PR10L, PR10H, PR11L, PR11H, PR12L, PR12H, and PR13L registers

25.1 Timing of Reset Operation

Incorrect:

Figure 25-3. Timing of Reset Due to Watchdog Timer Overflow, Execution of Illegal Instruction,

Detection of RAM Parity Error, or Detection of Illegal Memory

Notes 1. When P130 is set to high-level output before reset is effected, the output signal of P130 can be dummy-output as a reset signal to an external device, because P130 outputs a low level when reset is effected. To release a reset signal to an external device, set P130 to high-level output by software.

2. Reset times (times for release from the external reset state)

After the first release of the POR: 0.672 ms (typ.), 0.832 ms (max.) when the LVD is in use. 0.399 ms (typ.), 0.519 ms (max.) when the LVD is off.

After the second release of the POR: 0.531 ms (typ.), 0.675 ms (max.) when the LVD is in use.

0.259 ms (typ.), 0.362 ms (max.) when the LVD is off

After power is supplied, a voltage stabilization waiting time of about 0.99 ms (typ.) and up to 2.30 ms (max.) is required before reset processing starts after release of the external reset.

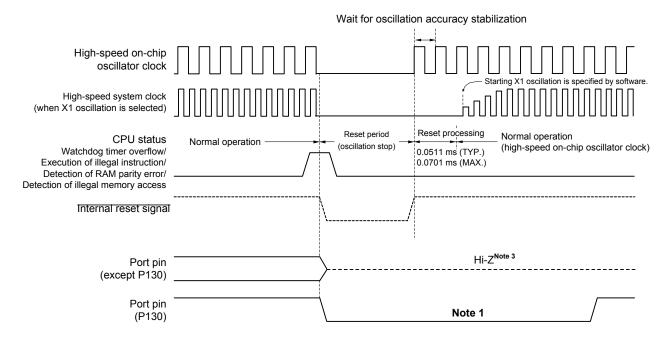
- 3. The state of P40 is as follows.
 - High-impedance during the external reset period or reset period by the POR.
 - High level during other types of reset or after receiving a reset signal (connected to the internal pull-up resistor).

Caution A watchdog timer internal reset resets the watchdog timer.

Reset by POR and LVD circuit supply voltage detection is automatically released when internal VDD ≥ VPOR or internal VDD ≥ VLVD after the reset. After reset processing, execution of the program with the high-speed on-chip oscillator clock as the operating clock starts. For details, see CHAPTER 26 POWER-ON-RESET CIRCUIT or CHAPTER 27 VOLTAGE DETECTOR.

Remark VPOR: POR power supply rise detection voltage

VLVD: LVD detection voltage


Date: Aug. 30, 2016

25.1 Timing of Reset Operation

Correct:

Figure 25-3. Timing of Reset Due to Watchdog Timer Overflow, Execution of Illegal Instruction,

Detection of RAM Parity Error, or Detection of Illegal Memory

- Notes 1. When P130 is set to high-level output before reset is effected, the output signal of P130 can be dummy-output as a reset external device, set P130 to high-level output by software.
 - 2. Reset times (times for release from the external reset state) After the first release of the POR:

After the second release of the POR: 0.531 ms (typ.), 0.675 ms (max.) when the LVD is in use.

After power is supplied, a voltage stabilization waiting time of about 0.99 ms (typ.) and up to 2.30 ms (max.) is required before reset processing starts after release of the external reset.

- 3. The state of P40 is as follows.
 - High-impedance during the external reset period or reset period by the POR.
 - High level during other types of reset or after receiving a reset signal (connected to the internal pull-up resistor).

<R>

Reset by POR and LVD circuit supply voltage detection is automatically released when internal VDD ≥ VPOR or internal VDD ≥ VLVD after the reset. After reset processing, execution of the program with the high-speed on-chip oscillator clock as the operating clock starts. For details, see CHAPTER 26 POWER-ON-RESET CIRCUIT or CHAPTER 27 VOLTAGE DETECTOR.

Remark VPOR: POR power supply rise detection voltage VLVD: LVD detection voltage

Page 48 of 58

signal to an external device, because P130 outputs a low level when reset is effected. To release a reset signal to an

0.672 ms (typ.), 0.832 ms (max.) when the LVD is in use.

0.399 ms (typ.), 0.519 ms (max.) when the LVD is off.

0.259 ms (typ.), 0.362 ms (max.) when the LVD is off.

RENESAS TECHNICAL UPDATE TN-RL*-A063A/E 26.3 Operation of Power-on-reset Circuit Incorrect:

Notes 3. After the interrupt request signal (INTLVI) is generated, the LVIL and LVIMD bits of the voltage detection level register (LVIS) are automatically set to 1. After INTLVI is generated, appropriate settings should be made according to Figure 27-8 Setting Procedure for Operating Voltage Check/Reset and Figure 27-9 Initial Setting of Interrupt and Reset Mode, taking into consideration that the supply voltage might return to the high voltage detection level (VLVDH) or higher without falling below the low voltage detection level (Vlvdl).

Date: Aug. 30, 2016 26.3 Operation of Power-on-reset Circuit Correct:

<R> Notes 3. After the interrupt request signal (INTLVI) is generated, the LVILV and LVIMD bits of the voltage detection (Vlvdl).

level register (LVIS) are automatically set to 1. After INTLVI is generated, appropriate settings should be made according to Figure 27-8 Setting Procedure for Operating Voltage Check/Reset and Figure 27-9 Initial Setting of Interrupt and Reset Mode, taking into consideration that the supply voltage might return to the high voltage detection level (VLVDH) or higher without falling below the low voltage detection level

27.1 Functions of Voltage Detector

Incorrect:

The operation mode and detection voltages (VLVDH, VLVDL, VLVD) for the voltage detector is set by using the option byte (000C1H). The voltage detector (LVD) has the following functions.

- The LVD circuit compares the internal power supply voltage (internal Vbb) that supplied from the Vbb or VBAT pin with the detection voltage (VLVDH, VLVDL, VLVD), and generates an internal reset or internal interrupt signal.
- The detection level for the internal power supply detection voltage (VLVDH, VLVDL, VLVD) can be selected by using the option byte as one of 11 levels (for details, see CHAPTER 32 OPTION BYTE).
- Operable in STOP mode.
- After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 37.4 AC Characteristics. This is done by utilizing the voltage detection circuit or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detection circuit or controlling the externally input reset signal before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H or 010C2H).

Date: Aug. 30, 2016

27.1 Functions of Voltage Detector

Correct:

The operation mode and detection voltages (VLVDH, VLVDL, VLVD) for the voltage detector is set by using the option byte (000C1H). The voltage detector (LVD) has the following functions.

- Te LVD circuit compares the internal power supply voltage (internal Vbb) that supplied from the Vbb or VBAT pin with the detection voltage (VLVDH, VLVDL, VLVD), and generates an internal reset or internal interrupt signal.
- The detection level for the internal power supply detection voltage (VLVDH, VLVDL, VLVD) can be selected by using the option byte as one of 11 levels (for details, see CHAPTER 32 OPTION BYTE).
- Operable in STOP mode.
- After power is supplied, the reset state must be retained until the operating voltage becomes in the range defined in 37.4 AC
- <R> Characteristics. This is done by utilizing the voltage detector or controlling the externally input reset signal. After the power supply is turned off, this LSI should be placed in the STOP mode, or placed in the reset state by utilizing the voltage detection circuit or controlling the externally input reset signal before the voltage falls below the operating range. The range of operating voltage varies with the setting of the user option byte (000C2H or 010C2H).

27.1 Functions of Voltage Detector Incorrect:

The reset and internal interrupt signals are generated in each mode as follows.

Interrupt & Reset Mode (LVIMDS1, LVIMDS0 = 1, 0)	Reset Mode (LVIMDS1, LVIMDS0 = 1, 1)	Interrupt Mode (LVIMDS1, LVIMDS0 = 0, 1)
Generates an interrupt request signal by detecting internal power supply voltage (internal VDD) < VLVDH when the operating voltage falls, and an internal reset by detecting internal power supply voltage (internal VDD) < VLVDL. Releases an internal reset by detecting internal power supply voltage (internal	Releases an internal reset by detecting internal power supply voltage (internal V_{DD}) $\geq V_{LVD}$. <u>Generates an interrupt request signal by</u> <u>detecting internal power supply voltage</u> (internal V_{DD}) < V_{LVD} .	The state of an internal reset by LVD is retained until internal VDD \geq VLVD immediately after reset generation. The internal reset is released when internal VDD \geq VLVD is detected. After that, an interrupt request signal (INTLVI) is generated when internal VDD $<$ VLVD or internal VDD \geq VLVD is detected.
$V_{DD}) \ge V_{LVDH}.$		

While the voltage detector is operating, whether the internal supply voltage or the input voltage from an external input pin is more than or less than the detection level can be checked by reading the voltage detection flag (LVIF: bit 0 of the voltage detection register (LVIM)).

Bit 0 (LVIRF) of the reset control flag register (RESF) is set to 1 if reset occurs. For details of the RESF register, see CHAPTER 25 RESET FUNCTION.

Date: Aug. 30, 2016

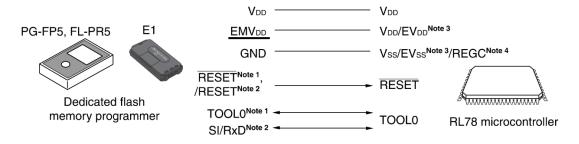
27.1 Functions of Voltage Detector Correct:

The reset and internal interrupt signals are generated in each mode as follows.

	Interrupt & Reset Mode	Reset Mode	Interrupt Mode
	(LVIMDS1, LVIMDS0 = 1, 0)	(LVIMDS1, LVIMDS0 = 1, 1)	(LVIMDS1, LVIMDS0 = 0, 1)
	Generates an interrupt request signal by	Releases an internal reset by detecting	The state of an internal reset by LVD is
	detecting internal power supply voltage	internal power supply voltage (internal	retained until internal VDD \geq VLVD
	(internal VDD) < VLVDH when the operating	$V_{DD}) \ge V_{LVD}.$	immediately after reset generation. The
<r></r>	voltage falls, and an internal reset by	Generates an internal reset by detecting	internal reset is released when internal
	detecting internal power supply voltage	internal power supply voltage (internal	$V_{DD} \ge V_{LVD}$ is detected.
	(internal VDD) < VLVDL.	Vdd) < Vlvd.	After that, an interrupt request signal
	Releases an internal reset by detecting		(INTLVI) is generated when internal VDD
	internal power supply voltage (internal		< VLVD or internal VDD \ge VLVD is detected.
	$V_{DD}) \ge V_{LVDH}.$		

While the voltage detector is operating, whether the internal supply voltage or the input voltage from an external input pin is more than or less than the detection level can be checked by reading the voltage detection flag (LVIF: bit 0 of the voltage detection register (LVIM)).

Bit 0 (LVIRF) of the reset control flag register (RESF) is set to 1 if reset occurs. For details of the RESF register, see CHAPTER 25 RESET FUNCTION.



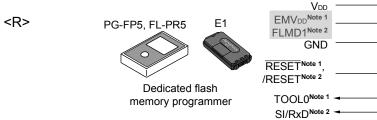
33.1.2 Communication mode Incorrect:

Communication between the dedicated flash memory programmer and the RL78 microcontroller is established by serial communication using the TOOL0 pin via a dedicated single-line UART of the RL78 microcontroller.

Transfer rate: 1 M, 500 k, 250 k, 115.2 kbps

Figure 33-2. Communication with Dedicated Flash Memory Programmer

Notes 1. When using E1 on-chip debugging emulator.


- 2. When using PG-FP5 or FL-PR5.
- 3. 100-pin products only.
- 4. Connect REGC pin to ground via a capacitor (0.47 to 1 μ F).

Date: Aug. 30, 2016 33.1.2 Communication mode Correct:

Communication between the dedicated flash memory programmer and the RL78 microcontroller is established by serial communication using the TOOL0 pin via a dedicated single-line UART of the RL78 microcontroller.

Transfer rate: 1 M, 500 k, 250 k, 115.2 kbps

Figure 33-2. Communication with Dedicated Flash Memory Programmer

Notes 1. When using E1 on-chip debugging emulator.

- 2. When using PG-FP5 or FL-PR5.
- 3. 100-pin products only.
- 4. Connect REGC pin to ground via a capacitor (0.47 to 1 µF).

	Vdd		
	V_{DD}/EV_{DD}^{Note}	3	
	Vss/EVss ^{Note}	³ /REGC ^{Note 4}	
	RESET		WW
→ →	TOOL0	RL78 microcon	troller

33.5 Self-Programming

Incorrect:

The RL78 microcontroller supports a self-programming function that can be used to rewrite the code flash memory via a user program. Because this function allows a user application to rewrite the code flash memory by using the flash selfprogramming library, it can be used to upgrade the program in the field.

Cautions 1. The self-programming function cannot be used when the CPU operates with the subsystem clock.

- 2. To prohibit an interrupt during self-programming, in the same way as in the normal operation mode, execute the self-programming library in the state where the IE flag is cleared (0) by the DI instruction. To enable an interrupt, clear (0) the interrupt mask flag to accept in the state where the IE flag is set (1) by the El instruction, and then execute the self-programming library.
- 3. The high-speed on-chip oscillator needs to oscillate during self-programming. When stopping the high-speed on-chip oscillator, oscillate the high-speed on-chip oscillator clock (HIOSTOP = 0) and execute the self-programming library after 30 μ s elapses.
- 4. The self-programming function cannot be used when the internal power is supplied from the VBAT pin.
- Remarks 1. For details of the self-programming function, refer to RL78 Microcontroller Flash Self Programming Library Type01 User's Manual (R01AN0350)
 - 2. For details of the time required to execute self programming, see the notes on use that accompany the flash self programming library tool.

The self-programming function has two flash memory programming modes; wide voltage mode and full speed mode.

Specify the mode that corresponds to the flash operation mode specified in bits CMODE1 and CMODE0 in option byte 000C2H.

Set to full speed mode when the HS (high speed main) mode is specified. Set to wide voltage mode when the LS (low speed main) mode is specified.

If the argument fsl_flash_voltage_u08 is 00H when the FSL_Init function of the flash self-programming library provided by Renesas Electronics is executed, full speed mode is specified. If the argument is other than 00H, the wide voltage mode is specified.

Remark Using both the wide voltage mode and full speed mode imposes no restrictions on writing, deletion, or verification.

Date: Aug. 30, 2016

33.5 Self-Programming

Correct:

The RL78 microcontroller supports a self-programming function that can be used to rewrite the code flash memory via a user program. Because this function allows a user application to rewrite the code flash memory by using the flash selfprogramming library, it can be used to upgrade the program in the field.

- Cautions 1. The self-programming function cannot be used when the CPU operates with the subsystem clock.
 - 2. To prohibit an interrupt during self-programming, in the same way as in the normal operation mode, execute the self-programming library in the state where the IE flag is cleared (0) by the DI instruction. To enable an interrupt, clear (0) the interrupt mask flag to accept in the state where the IE flag is set (1) by the EI instruction, and then execute the self-programming library.
 - 3. The high-speed on-chip oscillator needs to oscillate during self-programming. When stopping the high-speed on-chip oscillator, oscillate the high-speed on-chip oscillator clock (HIOSTOP = 0) and execute the self-programming library after 30 µs elapses.
 - 4. The self-programming function cannot be used when the internal power is supplied from the VBAT pin.
- <R> Remarks 1. For details of the self-programming function, refer to RL78 Microcontroller Flash Self Programming Library Type01 User's Manual (R01US0050).
 - 2. For details of the time required to execute self programming, see the notes on use that accompany the flash self programming library tool.

The self-programming function has two flash memory programming modes; wide voltage mode and full speed mode.

Specify the mode that corresponds to the flash operation mode specified in bits CMODE1 and CMODE0 in option byte 000C2H.

Set to full speed mode when the HS (high speed main) mode is specified. Set to wide voltage mode when the LS (low speed main) mode is specified.

If the argument fsl_flash_voltage_u08 is 00H when the FSL_Init function of the flash self-programming library provided by Renesas Electronics is executed, full speed mode is specified. If the argument is other than 00H, the wide voltage mode is specified.

Remark Using both the wide voltage mode and full speed mode imposes no restrictions on writing, deletion, or verification.

36. 2 Operation List

Incorrect:

Table 36-5. Operation List (12/18)

Instruction	Mnemonic	Operands	Bytes	Clo	ocks	Operation		Flag	
Group				Note 1	Note 2		Z	AC	CY
Multiply,	MULU	х	1	1	_	$AX \leftarrow A \times X$			
Divide,	MULHU		3	2	-	$BCAX \leftarrow AX \times BC \text{ (unsigned)}$			
Multiply &	MULH		3	2	_	$BCAX \leftarrow AX \times BC$ (signed)			
accumu- late	DIVHU		3	9	_	AX (quotient), DE (remainder) ← AX ÷ DE (unsigned)			
	DIVWU		3	17	_	BCAX (quotient), HLDE (remainder) ← BCAX ÷ HLDE (unsigned)			
	MACHU		3	3	-	$MACR \leftarrow MACR + AX \times BC \text{ (unsigned)}$		×	×
	MACH		3	3	-	MACR ← MACR + AX × BC(signed)		×	×

Notes 1. Number of CPU clocks (fcLK) when the internal RAM area, SFR area, or extended SFR area is accessed, or when no data is accessed.

2. Number of CPU clocks (fcLK) when the code flash area is accessed.

- Remarks 1. Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.
 - 2. MACR indicates the multiplication and accumulation register (MACRH, MACRL).

Date: Aug. 30, 2016

36. 2 Operation List

Correct:

Table 36-5. Operation List (12/18)

Instruction	Mnemonic	Operands	Bytes	Clo	cks	Operation		Flag	
Group				Note 1	Note 2		Z	AC	CY
Multiply,	MULU	Х	1	1	-	$AX \leftarrow A \times X$			
Divide,	MULHU		3	2	-	$BCAX \leftarrow AX \times BC \text{ (unsigned)}$			
Multiply &	MULH		3	2	-	$BCAX \leftarrow AX \times BC \text{ (signed)}$			
accumu- late	DIVHU		3	9	-	AX (quotient), DE (remainder) ← AX ÷ DE (unsigned)			
	DIVWU		3	17	-	BCAX (quotient), HLDE (remainder) ← BCAX ÷ HLDE (unsigned)			
	MACHU		3	3	_	$MACR \leftarrow MACR + AX \times BC \text{ (unsigned)}$		×	×
	MACH		3	3	-	$MACR \leftarrow MACR + AX \times BC(signed)$		×	×

Notes 1. Number of CPU clocks (fcLK) when the internal RAM area, SFR area, or extended SFR area is accessed, or when no data is accessed.

2. Number of CPU clocks (fcLK) when the code flash area is accessed.

Disable interrupts when executing the DIVHU or DIVWU instruction in an interrupt servicing routine. <R> Caution Alternatively, unless they are executed in the RAM area, note that execution of a DIVHU or DIVWU instruction is possible even with interrupts enabled as long as a NOP instruction is added immediately after the DIVHU or DIVWU instruction in the assembly language source code. The following compilers automatically add a NOP instruction immediately after any DIVHU or DIVWU instruction output during the build process. - V. 1.71 and later versions of the CA78K0R (Renesas Electronics compiler), for both C and assembly language source code - Service pack 1.40.6 and later versions of the EWRL78 (IAR compiler), for C language source code - GNURL78 (KPIT compiler), for C language source code

- **Remarks** 1. Number of clock is when program exists in the internal ROM (flash memory) area. If fetching the instruction from the internal RAM area, the number becomes double number plus 3 clocks at a maximum.
 - 2. MACR indicates the multiplication and accumulation register (MACRH, MACRL).

37.3.1 Pin characteristics

Incorrect:

(TA = -40 to +85°C, 1.9 V \leq VDD = EVDD \leq 5.5 V, VSS = EVSS = 0 V)

Items	Symbol	Condit	Conditions				MAX.	Unit
Input leakage current, high	Ішні	P00 to P07, P10 to P17, P30 to P37, P40 to P44, P60 to P62, P70 to P77, P80 to P85, P125 to P127	_				1	μA
	ILIH2	P20 to P25, P137, RESET					1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = V _{DD} ^{Note}	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, Vi = E P30 to P37, P40 to P44, P60 to P62, P70 to P77, P80 to P85, P125 to P127 P127					-1	μA
	Ilil2	P20 to P25, P137, RESET	VI = Vss				-1	μA
	Ililis	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pull-	Ruı	P10 to P17, P30 to P37, P50 to P57,	VI = Vss	$2.4~V \leq \underline{V_{DD}}^{\text{Note}} \leq 5.5~V$	10	20	100	kΩ
up resistance		P70 to P77, P80 to P85, P125 to P127		$1.9~V \leq \underline{V_{\text{DD}}}^{\text{Note}} \leq 5.5~V$	10	30	100	kΩ
	Ru2	P00 to P07, P40 to P44	VI = Vss		10	20	100	kΩ

Note The power supply voltage (VBAT pin or VDD pin) selected by the battery backup feature.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port

Date: Aug. 30, 2016

37.3.1 Pin characteristics

Correct:

(TA = -40 to +85°C, 1.9 V \leq VDD = EVDD \leq 5.5 V, VSS = EVSS

Items	Symbol	Condi	tions		MIN.	TYP.	MAX.	Unit
Input leakage current, high	Іцні	P00 to P07, P10 to P17, P30 to P37, P40 to P44,	Vi = EV _{DD}				1	μA
		P60 to P62, P70 to P77, P80 to P85, P125 to P127						
	ILIH2	P20 to P25, P137, RESET	$V_{\text{I}} = V_{\text{DD}}{}^{\text{Note}}$				1	μA
	Іцнз	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = V _{DD} ^{Note}	In input port or external clock input			1	μA
				In resonator connection			10	μA
Input leakage current, low	ILIL1	P00 to P07, P10 to P17, P30 to P37, P40 to P44, P60 to P62, P70 to P77, P80 to P85, P125 to P127	Vı = EVss				-1	μA
	Ilil2	P20 to P25, P137, RESET	Vı = Vss				-1	μA
	Ilili	P121 to P124 (X1, X2, XT1, XT2, EXCLK, EXCLKS)	VI = Vss	In input port or external clock input			-1	μA
				In resonator connection			-10	μA
On-chip pull-	Ruı	P10 to P17, P30 to P37, P50 to P57,	VI = Vss	$2.4~V \leq EV_{DD} \leq 5.5~V$	10	20	100	kΩ
up resistance		P70 to P77, P80 to P85, P125 to P127		$1.9~V \leq EV_{DD} \leq 5.5~V$	10	30	100	kΩ
	Ru2	P00 to P07, P40 to P44	VI = Vss		10	20	100	kΩ

Note The power supply voltage (VBAT pin or VDD pin) selected by the battery backup feature.

Remark Unless specified otherwise, the characteristics of alternate-function pins are the same as those of the port

pins.

S	=	0	V)
,	_	v	•/

37.3.2 Supply current characteristics

Operating

mode

Incorrect:

Parameter Symbol

DD1

Supply

current^{Not}

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.9 \text{ V} \le \text{V}_{DD} = \text{EV}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{EV}_{SS} = 0 \text{ V})$

HS (high-

speed main)

Conditions

fін = 24 MHz^{Note 3}

(1/4	4)		
	(1/4	(1/4)	(1/4)

mΑ

mΑ

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, 1.9 \text{ V} < \text{V}_{DD} =$	$EV_{DD} < 5.5 V.$	Vss = EVss = 0 V

Parameter	Symbol			Conditions			MIN.	TYP.	MAX.	
Supply	IDD1	Operating	HS (high-	fıн = 24 MHz ^{Note 3}	Basic	Vdd = 5.0 V		1.5		1
Current ^{Note 1}		mode	speed main)		operation	V _{DD} = 3.0 V		1.5		
			mode ^{Note 5}		Normal	VDD = 5.0 V		4.1	6.6	
					operation	VDD = 3.0 V		4.1	6.6	
				fін = 12 MHz ^{Note 3}	Normal	VDD = 5.0 V		2.5	3.8	
					operation	V _{DD} = 3.0 V		2.5	3.8	
				fін = 6 MHz ^{Note 3}	Normal	VDD = 5.0 V		1.6	2.5	
					operation	V _{DD} = 3.0 V		1.6	2.5	
				fін = 3 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		1.2	1.9	
					operation	V _{DD} = 3.0 V		1.2	1.9	
			LS (low-	fін = 6 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.3	2.1	
			speed main)	-	operation	V _{DD} = 2.0 V		1.3	2.1	
			mode ^{Note 5}	fін = 3 MHz ^{Note 3}	Normal	$V_{DD} = 3.0 V$		0.9	1.5	
					operation	$V_{DD} = 2.0 V$	<u> </u>	0.9	1.5	
			HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	5.5	
			speed main)	$V_{DD} = 5.0 V$	operation	Resonator connection		3.6	5.7	
			mode ^{Note 5}	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	5.5	
				$V_{DD} = 3.0 V$	operation	Resonator connection		3.6	5.7	
				f _{MX} = 16 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.4	
				VDD = 5.0 V	operation	Resonator connection		2.9	4.6	
				f _{MX} = 16 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.4	
				$V_{DD} = 3.0 V$	operation	Resonator connection		2.9	4.6	
				f _{MX} = 12 MHz ^{Note 2} ,	Normal	Square wave input		2.3	3.6	
				$V_{DD} = 5.0 V$	operation	Resonator connection		2.4	3.7	
				f _{MX} = 12 MHz ^{Note 2} ,	Normal	Square wave input		2.3	3.6	
				$V_{DD} = 3.0 V$	operation	Resonator connection		2.4	3.7	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.1	3.2	
				$V_{DD} = 5.0 V$	operation	Resonator connection		2.1	3.3	
				f _{MX} = 10 MHz ^{Note 2} ,	Normal	Square wave input		2.1	3.2	
				$V_{DD} = 3.0 V$	operation	Resonator connection		2.1	3.3	
			LS (low-	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.2	2.0	
			speed main) mode ^{Note 5}	VDD = 3.0 V	operation	Resonator connection		1.2	2.1	_
			mode	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.2	2.0	_
				VDD = 2.0 V	operation	Resonator connection		1.2	2.1	_
			Subclock	fsue = 32.768 kHz ^{Note 4} ,	Normal	Square wave input		4.8	5.9	_
			operation	$T_A = -40^{\circ}C$	operation	Resonator connection		4.9	6.0	
				fsue = 32.768 kHz ^{Note 4} ,	Normal	Square wave input		4.9	5.9	_
				T _A = +25°C	operation	Resonator connection		5.0	6.0	_
				fsue = 32.768 kHz ^{Note 4} ,	Normal	Square wave input		4.9	7.6	_
				T _A = +50°C	operation	Resonator connection		5.0	7.7	_
				fsuв = 32.768 kHz ^{Note 4} ,	Normal	Square wave input		5.2	9.3	_
				T _A = +70°C	operation	Resonator connection		5.3	9.4	_
				fsue = 32.768 kHz ^{Note 4} ,	Normal	Square wave input		6.1	13.3	
				T _A = +85°C	operation	Resonator connection		6.2	13.4	

(Notes and Remarks are listed on the next page.)

(Notes and Remarks are listed on the next page.)

Date: Aug. 30, 2016

37.3.2 Supply current characteristics

Correct:

		mode ^{Note 5}			VDD = 3.0 V		<u>2.3</u>		ma
		modeness		Normal	$V_{DD} = 5.0 V$		4.1	6.6	mA
				operation	$V_{DD} = 3.0 V$		4.1	6.6	mA
			fін = 12 MHz ^{Note 3}	Normal	$V_{DD} = 5.0 V$		2.5	3.8	mA
				operation	VDD = 3.0 V	4.1 6.6 2.5 3.8 2.5 3.8 1.6 2.5 1.6 2.5 1.6 2.5 1.6 2.5 1.2 1.9 1.2 1.9 1.3 2.1 0.9 1.5 0.9 1.5 3.4 5.5 3.6 5.7 3.4 5.5 3.6 5.7 2.8 4.4 2.9 4.6 2.8 4.4 2.9 4.6 2.3 3.6 2.4 3.7 2.3 3.6 2.4 3.7 2.3 3.6 2.4 3.7 2.1 3.2 2.1 3.3 2.1 3.2 2.1 3.3 1.2 2.0 1.2 2.0 1.2 2.0 1.2 2.1 3.3 1.2 1.2 2	mA		
			f⊪ = 6 MHz ^{Note 3}	Normal	Vdd = 5.0 V		1.6	2.5	mA
				Normal operation $V_{DD} = 3.0 V$ 4.1 Normal operation $V_{DD} = 5.0 V$ 2.5 te 3Normal operation $V_{DD} = 3.0 V$ 2.5 te 3Normal operation $V_{DD} = 3.0 V$ 1.6 te 3Normal operation $V_{DD} = 3.0 V$ 1.2 te 3Normal operation $V_{DD} = 3.0 V$ 1.2 te 3Normal operation $V_{DD} = 3.0 V$ 1.2 te 3Normal operation $V_{DD} = 3.0 V$ 1.3 te 3Normal operation $V_{DD} = 3.0 V$ 0.9 Note 2, operationNormal operation $V_{DD} = 2.0 V$ 0.9 Note 2, operationNormal operationSquare wave input 3.4 Resonator connection 3.6 3.6 Note 2, operationSquare wave input 2.8 Note 2, operationSquare wave input 2.8 Note 2, operationSquare wave input 2.8 Resonator connection 2.9 2.9 Note 2, operationSquare wave input 2.3 Note 2, operationSquare wave input 2.3 Note 2, operationSquare wave input 2.3 Resonator connection 2.9 Note 2, operationSquare wave input 2.3 Resonator connection 2.4 Note 2, operationSquare wave input 2.3 Resonator connection 2.4 Note 2, operationSquare wave input 2.4	1.6	2.5	mA		
			fin = 3 MHz ^{Note 3}	Normal	V _{DD} = 5.0 V		1.2	1.9	mA
				operation	V _{DD} = 3.0 V		1.2	1.9	mA
		LS (low-	f⊪ = 6 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		1.3	2.1	mA
		speed main)		operation	V _{DD} = 2.0 V		1.3	2.1	mA
		mode ^{Note 5}	f⊪ = 3 MHz ^{Note 3}	Normal	V _{DD} = 3.0 V		0.9	1.5	mA
				operation	V _{DD} = 2.0 V		0.9	1.5	mA
		HS (high-	f _{MX} = 20 MHz ^{Note 2} ,	Normal	Square wave input		3.4	5.5	mA
		speed main)	VDD = 5.0 V	operation			3.6	5.7	mA
		mode ^{Note 5}	f _{MX} = 20 MHz ^{Note 2} ,	Normal					mA
		VDD = 3.0 V	operation	Resonator connection		3.6	5.7	mA	
			f _{MX} = 16 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.4	mA
			$V_{DD} = 5.0 V$	operation	Resonator connection		2.9	4.6	mA
			f _{MX} = 16 MHz ^{Note 2} ,	Normal	Square wave input		2.8	4.4	mA
			$V_{DD} = 3.0 V$	operation	Resonator connection		2.9	4.6	mA
			f _{MX} = 12 MHz ^{Note 2} ,	Normal	Square wave input		2.3	3.6	mA
			$V_{DD} = 5.0 V$	operation	Resonator connection		2.4	3.7	mA
			,	Normal	Square wave input		2.3	3.6	mA
			$V_{DD} = 3.0 V$	operation	Resonator connection		2.4	3.7	mA
			$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.1	3.2	mA
			$V_{DD} = 5.0 V$	operation	Resonator connection		2.1	3.3	mA
			$f_{MX} = 10 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		2.1	3.2	mA
			VDD = 3.0 V	operation	Resonator connection		2.1	3.3	mA
		LS (low-	$f_{MX} = 8 \text{ MHz}^{\text{Note 2}},$	Normal	Square wave input		1.2	2.0	mA
		speed main) mode ^{Note 5}	V _{DD} = 3.0 V	operation	Resonator connection		1.2	2.1	mA
		moderates	$f_{MX} = 8 \text{ MHz}^{Note 2},$	Normal	Square wave input		1.2	2.0	mA
			Vdd = 2.0 V	operation	Resonator connection		1.2	2.1	mA
		Subclock	fsub = 32.768kHz ^{Note 4} ,	Normal	Square wave input		4.8	5.9	μA
		operation	$T_A = -40^{\circ}C$	operation	Resonator connection		4.9	6.0	μA
			$f_{SUB} = 32.768 \text{kHz}^{\text{Note 4}},$	Normal	Square wave input		4.9	5.9	μA
			T _A = +25°C	operation	Resonator connection		5.0	6.0	μA
			$f_{SUB} = 32.768 \text{kHz}^{\text{Note 4}},$	Normal	Square wave input		4.9	7.6	μA
			T _A = +50°C	operation	Resonator connection		5.0	7.7	μA
			$f_{SUB} = 32.768 \text{kHz}^{\text{Note 4}},$	Normal	Square wave input		5.2	9.3	μA
			T _A = +70°C	operation	Resonator connection		5.3	9.4	μA
			fsub = 32.768kHz ^{Note 4} ,	Normal	Square wave input		6.1	13.3	μA
			T _A = +85°C	operation	Resonator connection		6.2	13.4	μA
	•		•						

TYP. MAX. Unit

<u>2.3</u>

<u>2.3</u>

MIN.

 $V_{DD} = 5.0 V$

 $V_{DD} = 3.0 V$

Basic

operation

٤	

(1/A)

37.6.2 24-bit $\Delta \Sigma$ A/D converter characteristics

Incorrect:

(4) 2 kHz sampling mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ AV}_{DD} \le \text{V}_{DD} + 0.3 \text{ V}, 2.4 \text{ V} \le \text{AV}_{DD} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operation clock	fdsad	fx oscillation clock, input external clock or high-		12		MHz
		speed on-chip oscillator clock is used				
Sampling frequency	fs			<u>1935.125</u>		Hz
Oversampling frequency	fos			0.75		MHz
Output data rate	Tdata			512		μS
Data width	RES			24		bit
SNDR	SNDR	x1 gain		80		dB
		High-speed system clock is selected as				
		operating clock of 24-bit $\Delta\Sigma$ A/D converter (bit 0				
		of PCKC register (DSADCK) = 1)				
		x16 gain	69	74		
		High-speed system clock is selected as operating				
		clock of 24-bit $\Delta\Sigma$ A/D converter (bit 0 of PCKC				
		register (DSADCK) = 1)				
		x32 gain	65	69		
		High-speed system clock is selected as operating				
		clock of 24-bit $\Delta\Sigma$ A/D converter (bit 0 of PCKC				
		register (DSADCK) = 1)				
Passband (low pass band)	fchpf	At –3 dB (phase in high pass filter not adjusted)		0.303		Hz
In-band ripple 1	rp1	45 Hz to 55 Hz @50 Hz	-0.01		0.01	dB
		54 Hz to 66 Hz @60 Hz				
In-band ripple 2	rp2	45 Hz to 275 Hz @50 Hz	-0.1		0.1	
		54 Hz to 330 Hz @60 Hz				
In-band ripple 3	rp3	45 Hz to 660 Hz @50 Hz	-0.1		0.1	
		54 Hz to 550 Hz @60 Hz				
Passband (high pass band)	fclpf	3 dB		836		Hz
Stopband (high pass band)	fatt	-80 dB		1273		Hz
Out-band attenuation	ATT1	fs	-80			dB
	ATT2	2 fs	-80			dB

Date: Aug. 30, 2016

37.6.2 24-bit $\Delta \Sigma$ A/D converter characteristics

Correct:

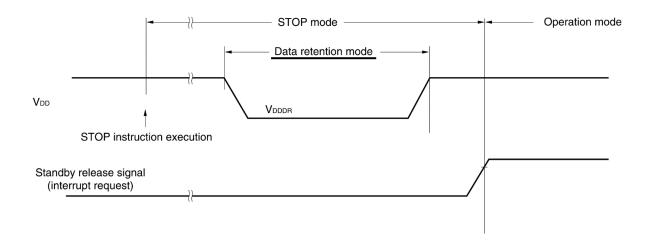
<R>

(4) 2 kHz sampling mode

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{AV}_{DD} \le \text{V}_{DD} + 0.3 \text{ V}, 2.4 \text{ V} \le \text{AV}_{DD} \le 5.5 \text{ V}, 2.4 \text{ V} \le \text{V}_{DD} \le 5.5 \text{ V}, \text{V}_{SS} = \text{AV}_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Operation clock	fdsad	fx oscillation clock, input external clock or high- speed on-chip oscillator clock is used		12		MHz
Sampling frequency	fs			1953.125		Hz
Oversampling frequency	fos			0.75		MHz
Output data rate	Tdata			512		μs
Data width	RES			24		bit
SNDR	SNDR	x1 gain High-speed system clock is selected as operating clock of 24-bit $\Delta\Sigma$ A/D converter (bit 0 of PCKC register (DSADCK) = 1)		80		dB
		x16 gain High-speed system clock is selected as operating clock of 24-bit $\Delta\Sigma$ A/D converter (bit 0 of PCKC register (DSADCK) = 1)	69	74		
		x32 gain High-speed system clock is selected as operating clock of 24-bit $\Delta\Sigma$ A/D converter (bit 0 of PCKC register (DSADCK) = 1)	65	69		
Passband (low pass band)	f Chpf	At –3 dB (phase in high pass filter not adjusted)		0.303		Hz
In-band ripple 1	rp1	45 Hz to 55 Hz @50 Hz 54 Hz to 66 Hz @60 Hz	-0.01		0.01	dB
In-band ripple 2	rp2	45 Hz to 275 Hz @50 Hz 54 Hz to 330 Hz @60 Hz	-0.1		0.1	
In-band ripple 3	rp3	45 Hz to 660 Hz @50 Hz 54 Hz to 550 Hz @60 Hz	-0.1		0.1	
Passband (high pass band)	fclpf	-3 dB		836		Hz
Stopband (high pass band)	fatt	-80 dB		1273		Hz
Out-band attenuation	ATT1	fs	-80			dB
	ATT2	2 fs	-80			dB
	1					

Incorrect:


37.9 Data Memory STOP Mode Low Supply Voltage Data Retention Characteristics

$(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{ Vss} = \text{EVss} = 0 \text{ V})$

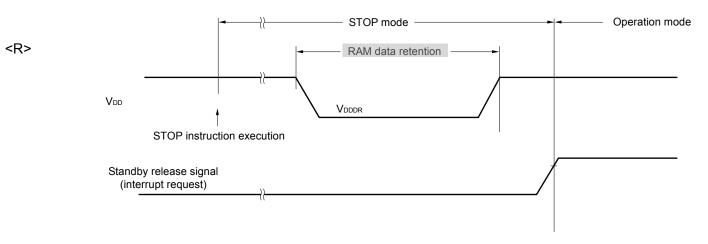
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	VDDDR		1.46 ^{Note}		5.5	V

Note The value depends on the POR detection voltage. When the voltage drops, the data is retained before a POR

reset is effected, but data is not retained when a POR reset is effected.

Date: Aug. 30, 2016

Correct:


<R> 37.9 RAM Data Retention Characteristics

 $(T_A = -40 \text{ to } +85^{\circ}\text{C}, \text{Vss} = \text{EVss} = 0 \text{ V})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
Data retention supply voltage	Vdddr		1.46 ^{Note}		5.5	V

<R> Note The value depends on the POR detection voltage. When the voltage drops, the RAM data is retained before a POR

reset is effected, but RAM data is not retained when a POR reset is effected.

