
 Application Note

R01AN5504EJ0130 Rev.1.30 Page 1 of 244
Dec.27.22

RX23W Group
Bluetooth Low Energy Application Developer's Guide
Introduction
This application note describes how to develop a Bluetooth® Low Energy (Hereinafter referred to as
"Bluetooth LE" or "BLE") application.

"BP:" in the text describes recommendations and risks based on the guideline (Bluetooth® Security and
Privacy Best Practices Guide) published by the Bluetooth SIG so that implementers can select best practices
for security and privacy. Please refer to it.

Target Device
RX23W Group

Related Documents
• Bluetooth Core Specification (https://www.bluetooth.com)
• Bluetooth® Security and Privacy Best Practices Guide (https://www.bluetooth.com)
• RX23W Group Bluetooth Low Energy Profile Developer’s Guide (R01AN6459)
• Bluetooth Low Energy Protocol Stack Basic Package: User's Manual (R01UW0205)
• BLE Module Firmware Integration Technology (R01AN4860)

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc. and any use of
such marks by Renesas Electronics Corporation is under license. Other trademarks and registered
trademarks are the property of their respective owners.

https://www.bluetooth.com/
https://www.bluetooth.com/

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 2 of 244
Dec.27.22

Contents

1. Overview ... 7
1.1 Development Bluetooth Low Energy Application .. 7
1.2 Development environment .. 9
1.2.1 Hardware requirements ... 9
1.2.2 Software requirements .. 10
1.2.3 Tool .. 11
1.3 Available communication features ... 12
1.4 Basic communication features .. 14
1.4.1 Device identification .. 16
1.5 Bluetooth LE Protocol Stack Operation Overview ... 17
1.6 Software structure ... 19
1.6.1 Primary functions ... 20
1.6.2 Surrounding functions ... 24
1.7 Flow of development ... 25
1.8 Use case of this document .. 27
1.9 Locating sections ... 28

2. Adjusting configuration option .. 29
2.1 Configuration Options .. 29
2.2 How to adjust RAM .. 32
2.3 How to configure BD address .. 33
2.3.1 Writing to data area ... 35
2.3.2 How to use Random Address .. 35
2.4 How to configure for minimum current consumption ... 37
2.4.1 Using MCU Low Power Consumption function ... 38

3. How to implement user code ... 41
3.1 Behavior of skeleton program ... 42
3.2 app_main function ... 43
3.2.1 Initialize process (ble_app_init function) ... 44
3.2.2 Main loop and scheduler (R_BLE_Execute) ... 47
3.2.3 End process ... 48
3.3 GAP event (gap_cb function) .. 49
3.4 GATTS event (gatts_cb function) .. 51
3.5 GATTC event (gattc_cb function) .. 52
3.6 VS event (vs_cb function) ... 53
3.7 Server-side Profile API event ([service_name]s_cb function) ... 54
3.8 Client-side Profile API event ([service_name]c_cb function) .. 55
3.9 L2CAP event ... 56
3.10 Event notification function (R_BLE_SetEvent) .. 57

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 3 of 244
Dec.27.22

3.11 RF communication timing notification.. 59

4. app_lib ... 63
4.1 Software Timer .. 63
4.2 Command line ... 67
4.2.1 How to use the standard commands ... 68
4.2.2 How to create a user command .. 71
4.3 Logger ... 75
4.4 Security data management ... 77
4.4.1 Initialization .. 77
4.4.2 Restore the local device keys .. 77
4.4.3 Store the local device keys .. 77
4.4.4 Store the remote device keys .. 78
4.5 Board and LED switch ... 79
4.5.1 Configuration for customer board .. 80
4.5.2 Initialization .. 82
4.5.3 ON or OFF Board LED .. 82
4.5.4 Callback for pressing SW .. 82
4.6 Abstraction API .. 83

5. Advertising ... 85
5.1 Connecting to smartphone .. 85
5.2 Advertising with GAP API .. 86
5.2.1 Advertising Parameter ... 86
5.2.2 Advertising Data / Scan Response Data ... 89
5.2.3 Start Advertising .. 89
5.2.4 Stop Advertising .. 89
5.3 Periodic Advertising with GAP API .. 90
5.3.1 Non-Connectable Advertising Parameter .. 91
5.3.2 Periodic Advertising Parameter ... 91
5.3.3 Periodic Advertising Data .. 92
5.3.4 Start Periodic Advertising .. 92
5.3.5 Stop Periodic Advertising .. 94
5.4 Advertising Data / Scan Response Data / Periodic Advertising Data ... 95
5.4.1 Format ... 95
5.4.2 Advertising Data Update ... 98
5.4.3 Periodic Advertising Data Update ... 98
5.4.4 Buffer Size ... 99
5.5 Advertising with Abstraction API ... 100
5.5.1 White List (Respond to a known device) ... 100
5.5.2 Privacy ... 101
5.6 Connection with Smart Phone ... 102

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 4 of 244
Dec.27.22

5.7 Beacon .. 103

6. Scan .. 104
6.1 Start or stop scan .. 104
6.2 Scan parameters ... 104
6.2.1 Privacy ... 106
6.3 Received information by scan ... 108
6.4 Scan filtering .. 110
6.4.1 Using the White List (Receiving from known devices) .. 110
6.4.2 Duplicate advertising filtering .. 111
6.4.3 Discoverable mode filtering ... 111
6.4.4 Advertising Data filtering ... 111
6.5 Periodic Advertising Synchronization .. 112
6.5.1 Start Scan .. 113
6.5.2 Detect Periodic Advertiser ... 113
6.5.3 Register to the Periodic Advertiser List ... 113
6.5.4 Establish Periodic Advertising Sync .. 113
6.5.5 Receive Periodic Advertising ... 115
6.5.6 Lost Periodic Advertising Sync .. 115
6.5.7 Terminate Periodic Advertising Sync .. 115

7. Connection .. 116
7.1 Requesting Connection ... 116
7.1.1 Using the White List (Connection to a known device) ... 117
7.1.2 Privacy ... 118
7.2 Cancelling Connection Request .. 119
7.3 Multiple Connection ... 120
7.3.1 Connecting to multiple peripheral devices .. 121
7.3.2 Connection to multiple central devices .. 126
7.3.3 Multi role connection ... 130
7.4 Disconnection .. 135

8. Communication .. 136
8.1 Changing PHY ... 136
8.2 Changing maximum transmission packet length ... 139
8.3 Updating connection parameter .. 141
8.4 Changing MTU .. 146
8.5 Flow control ... 148
8.6 High throughput communication .. 149

9. Security ... 150
9.1 Pairing ... 150
9.1.1 Pairing Parameters .. 152

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 5 of 244
Dec.27.22

9.1.2 Key generation and registration .. 156
9.1.3 OOB (Out of Band) data transmission and reception.. 156
9.1.4 Pairing request .. 157
9.1.5 Response to pairing request ... 157
9.1.6 Carrying out pairing method .. 158
9.1.7 Key exchange .. 159
9.1.8 Completion of pairing .. 160
9.2 Bonding ... 161
9.2.1 Store remote device keys .. 162
9.2.2 Store local device keys .. 166
9.2.3 Reset the stored keys .. 166
9.2.4 Delete the stored keys ... 166
9.2.5 Filtering remote devices after bonding .. 167
9.3 Encryption .. 168
9.3.1 Request Encryption ... 168
9.3.2 Respond to an encryption request .. 170
9.4 Privacy ... 173
9.4.1 Generate local device RPA ... 175
9.4.2 Resolve remote device RPA ... 178

10. Profile and service ... 185
10.1 Standard profile and Standard Service ... 186
10.2 APIs of GATT Procedure ... 192
10.2.1 Read operation .. 192
10.2.2 Write operation .. 193
10.2.3 WriteWithoutResponse operation .. 194
10.2.4 Notification operation ... 195
10.2.5 Indication operation ... 197
10.2.6 ReliableWrites operation ... 199
10.2.7 Broadcast Operation ... 201
10.3 Example of using GATT Procedure ... 203
10.3.1 Example for sending data from GATT client ... 203
10.3.2 Example for sending data from GATT server .. 206

11. Debugging ... 208
11.1 Using Logger function ... 209
11.2 Using Command line function ... 211
11.3 Using RF communication timing notification function .. 213
11.4 Checking Server operation .. 218
11.4.1 Using BTTS Beacon Scanning .. 218
11.4.2 Using BTTS Data Comm Master ... 219
11.4.3 Using GATT Browser .. 219

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 6 of 244
Dec.27.22

11.5 Checking Client operation ... 220
11.5.1 Using BTTS Beacon Advertising ... 220
11.5.2 Using BTTS Data Comm Slave ... 221
11.6 Others .. 223
11.6.1 MCU package .. 223
11.6.2 Generating MOT file .. 224
11.6.3 Outputting detail to MAP file .. 225
11.6.4 Optimization ... 225

12. Appendix A : Sample applications .. 226
12.1 Beacon sample .. 229
12.1.1 Remote devices ... 229
12.1.2 Operations ... 229
12.1.3 Advertising Data .. 229
12.1.4 Configuration option .. 231
12.1.5 Configurable parameters ... 231
12.1.6 Command .. 231
12.2 Peripheral sample.. 232
12.2.1 Remote devices ... 232
12.2.2 Operations ... 232
12.2.3 Configuration option .. 234
12.2.4 Configurable parameters ... 234
12.3 Central sample .. 235
12.3.1 Remote devices ... 235
12.3.2 Operations ... 235
12.3.3 Configuration option .. 235
12.3.4 Configurable parameters ... 236
12.4 Multi-role sample ... 237
12.4.1 Topology .. 237
12.4.2 Remote devices ... 238
12.4.3 Operations ... 238
12.4.4 Configuration option .. 241
12.4.5 Configurable parameters ... 242

Revision History .. 243

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 7 of 244
Dec.27.22

1. Overview
1.1 Development Bluetooth Low Energy Application
There are two methods of data communication using Bluetooth Low Energy: connectionless manner and
connection manner. For mesh communication using connectionless manner, refer to "Bluetooth Mesh Stack
Package Startup Guide (R01AN4874)" and “Bluetooth Mesh Developer Guide (R01AN4875)”.

Figure 1-1 Image of Bluetooth LE data communication method

In the connectionless manner, the application data is sent in an advertisement packet. The receiving device
receives the advertisement packet by scanning. The Application perform this communication with the
Generic Access Profile (GAP) for device detection and connection. With this method, the data is
unidirectional communication from the broadcaster to the observer. Since no device is connected, the
advertisement packet can be received by any device.

The connection manner is used for bidirectional communication. The connection manner connects devices
by GAP. Application data is sent and received by Generic Attribute Profile (GATT). GATT provides
communication by the server-client architecture on the communication path of GAP.GATT performs data
communication according to the application profile.

Figure 1-2 Bluetooth LE bidirectional communication

For the application that assumes using Bluetooth LE, Bluetooth SIG publishes the application profiles as
specifications. By implementing this application profile, a device can interconnect with existing devices that
are already working. When developing a new bidirectional communication application, design the application
profile as well as the user program.

The application profile defines the structure of application data exchanged between GATT server and clients
and the method of accessing the database, the setting of communication parameters by GAP, the method of
connecting devices, and the setting of security.

BP: Support for authentication and encryption is recommended when there are modifiable GATT
characteristics (e.g. a door lock mechanism where the remote device manipulates the lock state by
changing the value of the attribute), including custom profile.

This document describes how to implement a program for performing Bluetooth LE communication and
information that is a hint for application profile developing.

Observer

Broadcaster
Connection (bidirectional) Connectionless (unidirectional)

User Program
Bluetooth LE

Application Profile
User Program

Bluetooth LE
Application Profile

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 8 of 244
Dec.27.22

Renesas provides tools to assist with Bluetooth LE application development.

(1) BLE FIT Module
It provides the Bluetooth LE feature that complies with the Bluetooth Core Specification version 5.0
defined by Bluetooth SIG. You can add to your project from Smart Configurator on e2studio and start
Bluetooth LE application development.
The Bluetooth LE feature is provided in library format as a Bluetooth LE Protocol Stack. Bluetooth LE
operation is performed by using the API. The Bluetooth LE Protocol Stack notifies the application of
events related to Bluetooth LE by a callback function to reduce power consumption.
BLE FIT module provides application library (app_lib) to assist application development in addition to
Bluetooth LE Protocol Stack. By using app_lib, you can easily realize the basic operation of Bluetooth
LE.

(2) QE for BLE, QE Utility Module
QE for BLE is a QE tool for designing application profiles with GUI and code generation. Code
generation is performed based on the template file provided by the QE Utility module. The QE Utility
module is provided in the FIT module format or the bundled format for QE for BLE V1.40 or later.
By using these tools, the GATT part of the application profile is designed from the GUI and the API
(service API) for realizing the profile is generated. It is possible to generate not only the designed profile
but also the application profile API exposed to the Bluetooth SIG.

Finally, an example of the Bluetooth LE application development process and use of the Renesas tool is
shown.

Figure 1-3 Bluetooth LE application development procedure and auxiliary tools

Application Profile
develop

Application Profile
implement

Operation check
GATT Browser
BTTS

QE for BLE
QE Utility Module

BLE FIT Module
 R_BLE_API

 app_lib

Development procedure Renesas

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 9 of 244
Dec.27.22

1.2 Development environment
1.2.1 Hardware requirements
Table 1.1 shows the hardware requirements for building and debugging the application.

Table 1.1 Hardware requirements

Hardware Description
Host PC Windows PC with USB interface.
MCU board The board with RX23W

Target Board for RX23W [RTK5RX23W0C00000BJ] or
RSSK RX23W [RTK5523W8AC00001BJ] or
Target Board for RX23W module [RTK5RX23W0C01000BJ]

Note: This document uses Target Board for RX23W for explanation.

On-chip debugging
emulators

E2 emulator [RTE0T00020KCE00000R] or
E2 emulator Lite [RTE0T0002LKCE00000R] or
E20 emulator [R0E000200KCT00] or
E1 emulator [R0E000010KCE00]

When using the RSSK, either emulator is required.
The Target Board has an on-board debugger equivalent to the E2 emulator Lite, so there
is no need to prepare an emulator.

Note: The E1 emulator is discontinued.
Note: This document uses E2 emulator Lite for explanation.

USB cables Used to connect the PC to the emulator and RX23W board.
E2 or E1 emulator: 1 USB A ↔ mini-B cable
Target Board: 2 USB A ↔ micro-B cable
RSSK: 1 USB A ↔ micro-B cable

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 10 of 244
Dec.27.22

1.2.2 Software requirements
Table 1.2 shows the software requirements for building and debugging the application.

Table 1.2 Software requirements

Software Version Description
CC-RX
environment

e² studio v7.6.0 or
later

Integrated development environment (IDE) for Renesas devices.
Note: This document uses e2studio for explanation.

CS+ for CC V8.02.00 or
later

Integrated development environment (IDE) for Renesas devices.
Note: It is recommended using e2studio because CS+ is not support
QE for BLE.

CC-RX compiler V2.08.00 or
later

C/C++ compiler. (Download from e² studio installer)

QE for BLE[RX] v1.0.0 or
later

A plugin for e2studio to generate skeleton programs for application and
profile development.
Note: QE for BLE[RX] has been integrated into QE for
BLE[RA,RE,RX].

QE for BLE[RA,RE,RX]
QE for BLE[RA,RE,RX] Utility

V1.4.0 or
later

BLE FIT module
(r_ble_rx23w)

v1.10 or
later

Required to develop Bluetooth Low Energy applications with Renesas
MCUs.
Note: When using BLE FIT module v2.50 or later, use QE for
BLE[RA,RE,RX] Utility v1.6.0 or later.

BSP FIT module
(r_bsp)

v5.40 or
later

Required to use BLE FIT module.
When using BLE FIT module version 1.01 or later, it is necessary to
change the version of r_bsp to 5.40 or later.

CMT FIT module
(r_cmt_rx)

v4.10 or
later

Required to use BLE FIT module.
Bluetooth LE Protocol Stack uses CMT2 and CMT3. When using the
software timer function of app_lib/timer, more 1 channel is used.

LPC FIT module
(r_lpc_rx)

v1.42 or
later

When using the MCU low power consumption function with the BLE
FIT module, use v1.42 or later.

Flash FIT module
(r_flash_rx)

v4.10 or
later

When using the device-specific data management function of the
optional function with the BLE FIT module, use v4.10 or later.

IAR
environment

IAR Embedded Workbench
for Renesas RX

v4.12.1 or
later

Integrated development environment (IDE) for Renesas devices made
by IAR Systems.
Note: Supported by Bluetooth LE Protocol Stack v1.10 or later.

IAR C/C++ Compiler for
Renesas RX version

v4.12.1 or
later

C/C++ compiler made by IAR Systems.

QE for BLE[RX] or
QE for BLE[RA,RE,RX]

Same with CC-
RX environment

Used by changing from the e2studio created project to IAR project. As
for procedure, refer to “4.9 Create a project on the IAR development
environments” in “BLE Module Firmware Integration Technology
Application Note (R01AN4860)”.

Renesas Flash Programmer V3.06.00 or
later

Tool for programming the on-chip flash memory of Renesas
microcontrollers.

Integer types Uses ANSI C99 “Exact width integer types” in order to make the code
clearer and more portable. These types are defined in stdint.h.

Endian Little endian.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 11 of 244
Dec.27.22

1.2.3 Tool
Application development is supported by the following tools.

Table 1.3 Supporting tools for application development

Tool Description
GATT Browser

Smartphone application to access to GATT Server. Bluetooth Low Energy basic
communication operation and GATT database structure and so on can be confirmed
by smartphone.

BTTS Tool suite to control RX23W connected with Windows PC and USB Serial and
evaluate three functions of RF, Beacon and Data Communication in Bluetooth Core
Specification 5.0. It can be also used when getting the Radio Law Certification for the
device.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 12 of 244
Dec.27.22

1.3 Available communication features
RX23W supports Bluetooth Low Energy (LE) features shown in Table 1.4 and can communicate with the
devices that have LE features.

Table 1.4 LE features

Bluetooth
version

LE features and description Remark

5.0 LE 2M PHY (2 Msym/s PHY for LE)
2Mbps PHY data rate.

High data throughput.
Low power consumption by
short communication time.

5.0 LE Coded PHY (LE Long Range)
500kbps/125kbps PHY data rate.

Extend communication distance.

5.0 LE Advertising Extensions
Enable Advertising by secondary channel.
(Up to 4 independent Advertising can be executed simultaneously
in RX23W.)
Expansion of Advertising Data/Scan Response Data size up from
31 bytes to 1650 bytes.
Advertising by Long Range.
Periodic Advertising is possible.

Wireless interference reduction.
Beacon information expansion.
Establishing connection in long-
distance.
Utilization of secondary channel.

5.0 LE Channel Selection Algorithm #2
Improving the channel hopping algorithm.

Wireless interference reduction.

5.0 High Duty Cycle Non-Connectable Advertising
Shorten minimum Advertising Interval (100ms20ms).

Shortening the time to connect.
Higher frequency of beacon
transmission.

4.2 LE Data Packet Length Extension
Expand the data communication packet size (27 bytes251
bytes).

High data throughput.
Low power consumption by
short communication time.

4.2 LE Secure Connections
Support the pairing with the Elliptic curve Diffie-Hellman (ECDH)
key exchange for passive eavesdropping protection.

Enhanced security.

4.2 Link Layer Privacy
Link Layer supports address resolution of Privacy feature.

Faster address resolution.

4.2 Link Layer Extended Scanner Filter Policies

4.1 Low Duty Cycle Directed Advertising
Support Low Duty Cycle Advertising for reconnection with known
devices.

4.1 32-bit UUID Support in LE
Support 32-bit UUID (extended to 128-bit when used by GATT).

4.1 LE L2CAP Connection-Oriented Channel Support
Support the communication using L2CAP credit based flow control
channel.

4.1 LE Privacy v1.1
Avoid the tracking from other LE devices by changing the BD
Address periodically.

Enhanced security.

4.1 LE Link Layer Topology
Support both Central and Peripheral roles, and can operate as
Central when connecting to one remote device and as Peripheral
when connecting to another remote device.

Enhanced topology.

4.1 LE Ping
Checks whether connection is maintained by a packet
transmission request including MIC field after connection
encryption.

Addendum 2 Appearance Data Type
Appearance characteristic can be used in GAP service.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 13 of 244
Dec.27.22

Bluetooth
version

LE features and description Remark

4.0 Bluetooth Low Energy
- Low Energy Controller

Low Energy Physical Layer (PHY)
Low Energy Link Layer (LL)

- Low Energy Host
Enhancements to L2CAP for Low Energy
Security Manager (SM)

- Enhancements to HCI for Low Energy
- Low Energy Direct Test Mode
- AES Encryption
- Enhancements to GAP for Low Energy
- Attribute Protocol (ATT)
- Generic Attribute profile (GATT)

Low Energy Controller is
mandatory feature.

Low Energy Host is mandatory
feature.

ATT is mandatory feature.
GATT is mandatory feature.

Note: BR/EDR (Basic Rate/Enhanced Data Rate) is not supported.
Note: The features except mandatory feature is optional feature (vendor dependent), so they may be not

supported by devices such as smartphone and so on.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 14 of 244
Dec.27.22

1.4 Basic communication features
The communication topology that can be constructed by the device that have LE features shown in Figure
1-4.

Figure 1-4 Communication topology

In Broadcast, the communication is performed without establishing Connection. Broadcaster (Advertiser)
executes Advertising and sends packets, and Observer (Scanner) executes Scan and receives packets.

Figure 1-5 Advertising and Scan

In Point-to-point, the communication is performed with establishing Connection. Peripheral (Advertiser)
executes Advertising and sends packets, and Central (Scanner) executes Scan and receives packets. One
device requests Connection to the device wanted to connect to as the Initiator, and the other device accepts
and Connection is established. Initiator becomes Central and the other becomes Peripheral. Once
Connection is established, Data communication is possible.

Observer

Broadcaster
Point-to-point (1:1)

Central Peripheral

Broadcast (1:m) Mesh network (m:m)
Node

Node

Node

Node Node

Note: Up to 7 units can be connected

simultaneously in RX23W.
Note: Up to 4 sets can be advertised

simultaneously in RX23W.

Central

Peripheral

39
ch

38
ch

39
ch

38
ch

time

Scan Interval
(20ms～less than 40.96s)

Scan

Scanner

Advertiser

Advertising packet

37
ch

Advertising Interval

(20ms～10485.759375s)

37
ch

Advertising Interval

(20ms～10485.759375s)

37
ch

Note: In actually, the random delay of 0 to 10 ms is added to Advertising Interval for each Advertising.

time

37ch 38ch

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 15 of 244
Dec.27.22

GAP (Generic Access Profile) commands control from Advertising and Scan to establishing Connection.
GATT (Generic Attribute Profile) commands control Data communication after establishing Connection. In
GATT, the side that provides services by storing the sensor data and so on as GATT database is called
Server, and the side that requests the service is called Client. Client can read and write to Server that has
the database. Server can do Indication and Notification to Client. When Client receives Indication, Client
returns the response by executing Confirmation. The following is an example when Central is Client and
Peripheral is Server.

Figure 1-6 Read and Write

Figure 1-7 Indication and Notification

Advertising is described in “5 Advertising”. Scan is described in “6 Scan”. Connection is described in “7
Connection”. Data communication is described in “8 Communication”.

Note: As for Mesh network, refer to “Bluetooth Mesh Stack Package Startup Guide (R01AN4874)”.

Connection Interval
(7.5ms～4s)

Read
or Write

Frame Interval
(150µs)

ClientServer

time

ServerClient

Connection Interval
(7.5ms～4s)

Empty
packet

Frame Interval
(150µs)

Read
or Write
Response

Connection Interval
(7.5ms～4s)

Write
Without
Response

Connection Interval
(7.5ms～4s)

Frame Interval
(150µs)

Frame Interval
(150µs)

Connection Interval
(7.5ms～4s)

Frame Interval
(150µs)

ClientServer

time

ServerClient

Connection Interval
(7.5ms～4s)

Empty
packet

Frame Interval
(150µs)

Indication Confirmation

Connection Interval
(7.5ms～4s)

Notification

Connection Interval
(7.5ms～4s)

Frame Interval
(150µs)

Frame Interval
(150µs)

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 16 of 244
Dec.27.22

1.4.1 Device identification
Devices are identified using Bluetooth Device address (BD address). BD address is described in “2.3 How to
configure BD address”.

You can additionally use Local Name of Advertising Data and Device Name of GAP service. Local Name is
shown in “Table 5.7”. Device Name is shown in “Table 10.2”.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 17 of 244
Dec.27.22

1.5 Bluetooth LE Protocol Stack Operation Overview
The Bluetooth LE Protocol Stack controls the BLE peripheral functions and manages the execution of RF
events. RF event refers to one communication operation at each interval in the following four operation
states specified by Bluetooth LE.

 Advertising
 Scanning
 Initiating
 Connection

The Bluetooth LE Protocol Stack provides the control interface for Bluetooth LE operation as R_BLE API.
The BLE peripheral functions generate an interrupt (BLEIRQ) corresponding to an RF event to the MCU.
When BLEIRQ occurs, it is necessary to call R_BLE_Execute and perform task processing according to the
RF event status. Also, when various R_BLE APIs are called, it is necessary to call R_BLE_Execute to
perform API task processing of the Bluetooth LE Protocol Stack.

When BLE_CFG_RF_DEEP_SLEEP_EN is set to 1 in “2.1 Configuration Options”, when there is no task to
be executed by the Bluetooth LE Protocol Stack, and when there is a time of 80ms or more before the start
of the next RF event time, transition to RF sleep mode to reduce the current consumption of the RF part.
This time does not mean the "interval time" of an RF event, but the "RF idle time" between the completion of
one RF event and the start of the next RF event. Therefore, it is necessary to set the RF event interval to
100ms or more in consideration of the processing time of each layer in order to shift the RF part to sleep
mode. In Scanning operation, the time difference between the Scan interval and Scan window must also be
set to 100ms or more.

The Bluetooth LE Protocol Stack performs RF sleep processing and RF wake-up processing to transition the
RF part to sleep mode. Figure 1-8 shows MCU/RF operation overview with RF sleep.

Figure 1-8 MCU/RF operation overview with RF sleep

While the MCU is idle, it is possible to transition the MCU to the low power consumption mode or execute
processing of the other application. However, if the RF wakeup process by R_BLE_Execute is not performed
before the RF event starts, the RF event cannot be executed. Therefore, application processing must be
implemented so as not to interfere with the R_BLE_Execute call.

R_BLE_Execute
RF Wakeup
Processing

R_BLE_Execute
Event callback,

RF Sleep
Processing

RF W
akeup

RF
Event

(Tx/Rx)
RF

IDLE
RF

IDLE

MCU

RF

RF event interval
RF idle time

RF sleep time

RF W
akeup

RF
Event

(Tx/Rx)
RF

IDLE
RF

IDLE
RF

SLEEP
RF

SLEEP
RF

SLEEP

MCU
IDLE

MCU
IDLE

MCU
IDLE

R_BLE_Execute
RF Wakeup
Processing

R_BLE_Execute
Event callback,

RF Sleep
Processing

MCU
IDLE

MCU
IDLE

BLEIRQ
(RF Wakeup)

BLEIRQ
(RF event)

BLEIRQ
(RF Wakeup)

BLEIRQ
(RF event)

MCU IDLE

R_BLE_Execute

Application processing possible.

Required processing by call R_BLE_Execute.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 18 of 244
Dec.27.22

When BLE_CFG_RF_DEEP_SLEEP_EN is set to 0 in “2.1 Configuration Options ”, or when
BLE_CFG_RF_DEEP_SLEEP_EN is set to 1 but the RF sleep transition condition is not satisfied, the
Bluetooth LE Protocol Stack dose not transition RF part to sleep mode. In this case, the current consumption
during RF idle time increases, but the MCU idle time that can be used by the application increases because
RF sleep processing and RF wakeup processing are not performed. Figure 1-9 shows MCU/RF operation
without RF sleep.

Figure 1-9 MCU/RF operation overview without RF sleep

Regardless of the RF sleep state, if the application process continuously occupies the MCU and
R_BLE_Execute is not called, the connection may not be maintained. Therefore, it is recommended that the
application is processed in short time. For processing that takes a long time, refer to "3.10 Event notification
function (R_BLE_SetEvent)" and execute the processing by dividing it into multiple times.

Note: The Bluetooth LE Protocol Stack initializes the RF hardware state by R_BLE_Open. If the software is
reset during RF communication operation, call R_BLE_Open to initialize the RF hardware state and stop RF
operation.

R_BLE_Execute
Event callback

RF
Event

(Tx/Rx)
RF

IDLE
RF

IDLE

MCU

RF

RF event interval
RF idle time

RF
Event

(Tx/Rx)
RF

IDLE

MCU
IDLE

MCU
IDLE

R_BLE_Execute
Event callback

MCU
IDLE

BLEIRQ
(RF event)

BLEIRQ
(RF event)

MCU IDLE

R_BLE_Execute

Application processing possible.

Required processing by call R_BLE_Execute.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 19 of 244
Dec.27.22

1.6 Software structure
To develop the RX23W Bluetooth LE application, it is necessary to develop the application part and profile
part shown in Figure 1-10.

Figure 1-10 Software structure

Implementation

Supported by BLE FIT module

Code-generated by QE for BLE

Bluetooth LE

architecture Application

GAP (Generic Access Profile) GATT (Generic Attribute Profile)

L2CAP (Logical Link Control and Adaptation Protocol)

ATT (Attribute Protocol)

HCI (Host Controller Interface)

LL (Link Layer)

PHY (Physical Layer)

 Host

 Controller

Hardware (RX23W)

Bluetooth LE Protocol Stack (library)

- R_BLE_API
- Host stack (GAP, SMP, GATT, ATT, L2CAP)
- Scheduler
- HCI
- LL
- Others (Vendor Specific, MCU Low Power Consumption)

SMP (Security Manager Protocol)

Development auxiliary library

app_lib

- Abstraction API (abs)
- Software timer (timer)
- Security data management (secd)
- Profile common (profile_cmn,

discovery) NOTE
- Logger (logger)
- Command Line (cli / cmd)
- LED and Switch control (board)

Application part

Application Framework

Profile part

Profile Framework

- Profile API
- GATT Database
- Profile common (profile_cmn,

discovery) NOTE

FIT module
except BLE

Add the user program using various API.

Generate the any profile using QE
for BLE.

NOTE: Profile common is not provided by BLE FIT v2.50 or later. Please generate using QE
for BLE v1.60 or later.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 20 of 244
Dec.27.22

1.6.1 Primary functions
Constituting BLE FIT module into the project in the integrated development environment e2studio enables to
use the library supporting Bluetooth LE protocol and driver. The skeleton program of the application part
(Application Framework) and the profile part (Profile Framework) can be code-generated by QE for BLE. As
for details of each function block, refer to the document shown in Table 1.5.

Table 1.5 Function blocks

Function blocks Reference document
BLE FIT module BLE Module Firmware Integration Technology (R01AN4860)
Bluetooth LE Protocol
Stack

Bluetooth Low Energy Protocol Stack Basic Package User's Manual (R01UW0205)

app_lib
Profile Framework Bluetooth Low Energy Profile Developer’s Guide (R01AN6459)
Application Framework This document
Mesh Stack Bluetooth Mesh Module Using Firmware Integration Technology (R01AN4930)

Bluetooth Mesh Stack Package Startup Guide (R01AN4874)
Bluetooth Mesh Stack Package Development Guide (R01AN4875)
Note: For your information.

The functions provided by Bluetooth LE Protocol Stack library and the development auxiliary library are
shown in Table 1.6.

Table 1.6 Functions provided by libraries

Functions API/Macro name Include header and Use
Bluetooth LE R_BLE_XXX

R_BLE_GAP_XXX
R_BLE_GATT_GetMtu
R_BLE_GATTS_XXX
R_BLE_GATTC_XXX
R_BLE_L2CAP_XXX

#include "r_ble_rx23w_if.h"
Mandatory
 R_BLE_GAP_XXX

Once registering callback function using R_BLE_GAP_Init, API
result can be received as BLE_GAP_EVENT_XXX as event.

 R_BLE_GATTS_XXX
Once registering callback function using
R_BLE_GATTS_RegisterCb, API result can be received as
BLE_GATTS_EVENT_XXX event.

 R_BLE_GATTC_XXX
Once registering callback function using
R_BLE_GATTC_RegisterCb, API result can be received as
BLE_GATTC_EVENT_XXX event.

 R_BLE_L2CAP_XXX
Once registering callback function using
R_BLE_L2CAP_RegisterCfPsm, API result can be received as
BLE_L2CAP_EVENT_XXX event.

No need to register for R_BLE_XXX and R_BLE_GATT_GetMtu. API
result can be received immediately. R_BLE_XXX_Init,
R_BLE_XXX_RegisterCb, R_BLE_GAP_SetPairingParams can also
receive API result immediately.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 21 of 244
Dec.27.22

Functions API/Macro name Include header and Use
Vendor Specific
(VS)

R_BLE_VS_XXX #include "r_ble_rx23w_if.h"
 Flow control function is available.

 Device specific data management function is disabled in

default. (BLE_CFG_DEV_DATA_DF_BLOCK)

Note: Function to manage self BD address by using data flash.
R_BLE_VS_SetBdAddr and R_BLE_VS_GetBdAddr are available.
Once registering callback function using R_BLE_VS_Init, API result
can be received as BLE_VS_EVENT_XXX event.

MCU Low
Power
Consumption
(LPC)

R_BLE_LPC_XXX #include "r_ble_rx23w_if.h"
Enabled in default (BLE_CFG_MCU_LPC_EN)

No need to register callback function. API result can be received
immediately.

Abstraction API R_BLE_ABS_XXX #include "abs/r_ble_abs_api.h"
Enabled in default (BLE_CFG_ABS_API_EN)

Once registering callback function using R_BLE_ABS_Init, API result
can be received as BLE_GAP_EVENT_XXX /
BLE_GATTS_EVENT_XXX / BLE_GATTC_EVENT_XXX /
BLE_VS_EVENT_XXX event.
Do not change the Abstraction API codes.

Software timer R_BLE_TIMER_XXX #include "timer/r_ble_timer.h"
Enabled in default (BLE_CFG_SOFT_TIMER_EN)

If using Abstraction API, enable this function.
Once registering callback function using R_BLE_TIMER_Create,
timing notification can be received when interrupting by timer.
Note: Use
In app_main.c, call R_BLE_TIMER_Init, R_BLE_TIMER_Create.

Security data
management

R_BLE_SECD_XXX #include "sec_data/r_ble_sec_data.h"
Disabled in default (BLE_CFG_EN_SEC_DATA)

Note: Function to manage the bonding information by using data
flash when pairing.
No need to register callback function. API result can be received
immediately.
Note: Use
In [Component] tab of Smart Configurator, add r_flash_rx.
Set [r_ble_rx23w] [Store Security Data in DataFlash.] to ”Enable”,
Set [Data Flash Block for Security Data Management.] to 0～7. (Set
different block from [Device specific data block on E2 Data Flash.])

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 22 of 244
Dec.27.22

Functions API/Macro name Include header and Use
Profile common R_BLE_DISC_XXX

R_BLE_SERVC_XXX
R_BLE_SERVS_XXX

#include "discovery/r_ble_disc.h"
#include "profile_cmn/r_ble_servc_if.h"
#include "profile_cmn/r_ble_servs_if.h"
Generated by QE for BLE.
 R_BLE_DISC_XXX

Once registering callback function using R_BLE_DISC_Start,
Service Discovery result can be received.

 R_BLE_SERVC_XXX
Once registering callback function using
R_BLE_SERVC_GattcCb, API result can be received.

 R_BLE_SERVS_XXX
Once registering callback function using
R_BLE_SERVS_GattsCb, API result can be received as event.

 Function to receive VS event in SERVS
It is necessary to passing the event data from callback function
registered by R_BLE_VS_Init or R_BLE_ABS_Init to
R_BLE_SERVS_VsCb as it is.

Note: Profile common is not provided by BLE FIT v2.50 or later.
Please generate using QE for BLE v1.60 or later.

Logger BLE_BD_ADDR_STR
BLE_UUID_STR
BLE_LOG
BLE_LOG_ERR
BLE_LOG_WRN
BLE_LOG_DBG

#include "logger/r_ble_logger.h"
Enabled in default (BLE_CFG_LOG_LEVEL)
No need to register callback function.

Command Line R_BLE_CLI_XXX
R_BLE_CMD_AbsGapCb
R_BLE_CMD_VsCb
R_BLE_CMD_SetResetCb

#include "cli/r_ble_cli.h"
#include "cmd/r_ble_cmd_abs.h"
#include "cmd/r_ble_cmd_vs.h"
#include "cmd/r_ble_cmd_sys.h"
Disabled in default (BLE_CFG_CMD_LINE_EN)
Once registering callback function using R_BLE_CLI_RegisterCmds,
event can be received when interrupting by command line input.
 Function to output log Abstraction API

It is necessary to passing the event data from GAP callback
function registered by R_BLE_GAP_Init or R_BLE_ABS_Init to
R_BLE_CMD_AbsGapCb as it is.

 Function to output log of VS
It is necessary to passing the event data from VS callback
function registered by R_BLE_VS_Init or R_BLE_ABS_Init to
R_BLE_CMD_VsCb as it is.

 Function to register callback function notifying reset
Once registering callback function using
R_BLE_CMD_SetResetCb, timing notification can be received
after Bluetooth LE Protocol Stack is reset by “ble reset”
command or R_BLE_ABS_Reset.

Note: Use in Target Board
In [Component] tab of Smart Configurator, check that r_bsp is v5.40
or later, add r_sci_rx and r_byteq, set [r_ble_rx23w]
[Enabled/Disabled command line function] to "Enabled", set [SCI CH
for command line function] to "8". (In order to using SCI8)
Set [r_sci_rx] [Include software support for channel 8] to ”Include”,
set [ASYNC mode TX queue buffer size for channel 8] to ”160”, set
[Transmit end interrupt] to ”Enable”, [Resources] [SCI] [SCI8]
 [RXD8/SMISO8 Pin] and [TXD8/SMOSI8 Pin] to ”Used”.
In app_main.c, define gsp_cmds.
In app_main function, call R_BLE_CLI_Init,
R_BLE_CLI_RegisterCmds, R_BLE_CMD_SetResetCb. In main
loop, call R_BLE_CLI_Process.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 23 of 244
Dec.27.22

Functions API/Macro name Include header and Use
LED and Switch
control

R_BLE_BOARD_XXX #include "board/r_ble_board.h"
Disabled in default (BLE_CFG_BOARD_LED_SW_EN)
Once registering callback function using
R_BLE_BOARD_RegisterSwitchCb, timing notification can be
received when interrupting by pushing switch and so on.
Note: Use in Target Board
In [Component] tab of Smart Configurator, add r_gpio_rx, r_irq_rx.
Set [r_ble_rx23w] [Enabled/Disabled board LED and Switch
control support.] to ”Enable”, [Board Type] to ”Target board”.
Set [r_irq_rx] [Filter for IRQ5] to ”Enable”, [Filter clock divisor for
IRQ5] to ”Divisor1”, [Resources] [ICU] [IRQ5 Pin] to ”Used”.
In app_main function, call R_BLE_BOARD_Init and
R_BLE_BOARD_RegisterSwitchCb.

Profile API R_BLE_[service
name]_XXX

#include "r_ble_[service name].h"
Generated by QE for BLE.
Once registering callback function using R_BLE_[service name]_Init,
event can be received when receiving Write, Read, Indication,
Notification from remote device.

The type of Bluetooth LE Protocol Stack library is selectable according to the feature used in the application.
It is selectable by “2.1 Configuration Options”. The ROM/RAM code size can be reduced by selecting the
type limited features. The features supported by each type are shown in Table 1.7.

Table 1.7 Bluetooth LE Protocol Stack types and its supporting features

Bluetooth LE Feature
Bluetooth LE Protocol Stack type

All features Balance Compact
LE 2M PHY Yes Yes No
LE Coded PHY Yes Yes No
LE Advertising Extensions Yes No No
LE Channel Selection Algorithm #2 Yes Yes No
High Duty Cycle Non-Connectable Advertising Yes Yes Yes
LE Data Packet Length Extension Yes Yes Yes
LE Secure Connections Yes Yes Yes
Link Layer privacy Yes Yes Yes
Link Layer Extended Scanner Filter policies Yes Yes No
Low Duty Cycle Directed Advertising Yes Yes Yes
32-bit UUID Support in LE Yes Yes Yes
LE L2CAP Connection Oriented Channel Support Yes No No
LE Link Layer Topology Yes Yes No
LE Ping Yes Yes Yes

Bluetooth Low Energy
- Enhancements to GAP for Low Energy
- - GAP Role

Central
Peripheral
Observer
Broadcaster

Central
Peripheral
Observer
Broadcaster

Peripheral
Broadcaster

Bluetooth Low Energy
- Generic Attribute profile (GATT)
- - GATT Role

Sever
Client

Sever
Client

Sever
Client

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 24 of 244
Dec.27.22

1.6.2 Surrounding functions
Constituting FIT modules except BLE enables to use the MCU functions except BLE more easily. FIT
modules used mainly are shown in Table 1.8.

Table 1.8 FIT modules

FIT module name Component name Comment
BLE r_ble_rx23w Bluetooth LE basic function

Mandatory for Bluetooth LE software
Interrupt priority used by Bluetooth LE Protocol Stack
such as BLEIRQ, CMT2, CMT3 is fixed to 14 (cannot be
changed by SC)

BLE QE Utility r_ble_qe_utility Profile generation function
Mandatory for QE for BLE
Note: Included in QE for BLE instead of FIT module
in QE for BLE V1.40 or later

Board Support Package (BSP) r_bsp Basic setting for MCU
Mandatory for clock setting and so on
Enable to use RX23W flash memory protection function
(Enable protect the block which device specific data is
written, not erase it when writing firmware by flash
memory writing tool)

IRQ r_irq_rx Set and notify interruption event
Used by LED and Switch control function
Enable to notify to application by detecting interrupt
from switch, sensor and so on.
IRQ interrupt priority is default 15 (can be changed by
SC)

GPIO r_gpio_rx Set and use general I/O pin
Used by LED and Switch control function
Enable to use I/O such as LED and switch and so on
assigned to Pin.

LPC r_lpc_rx Low Power Consumption
Used by MCU Low Power Consumption function

Flash r_flash_rx Rewrite internal flash memory
Used by Security data management function
Used by Device specific data management function
Used as option in HCI mode (v4.10 or later)

SCI r_sci_rx Set and use action mode of SCI
Used by Command Line function
SCI interrupt priority is default 15 (can be changed by
SC)

CMT r_cmt_rx Generate timer event
Mandatory for controlling H/W(RF)
Used by Software timer function too
Interrupt priority of CMT0, CMT1 is default 15 (can be
changed by SC)

Byte type queue buffer (BYTEQ) r_byteq Set and manage byte type ring buffer
Used by Command Line function

Bluetooth Mesh r_mesh_rx23w Support Mesh topology
Used by Mesh function

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 25 of 244
Dec.27.22

1.7 Flow of development
Develop as the following steps. This section describes the procedure for creating a minimum configuration
application (application that executes Advertising). As for standard procedure, refer to “4. BLE FIT module
project” in “BLE Module Firmware Integration Technology (R01AN4860)”.

(1) Install integrated development environment e2studio, Smart Configurator (SC), and QE for BLE.
(2) Create a project on e2studio.
When using Target Board for RX23W, specify R5F523W8AxNG.

When using Target Board for RX23W module, specify R5F523W8CxLN.

(3) Add components of FIT module and QE for BLE by SC, change settings, generate code.
The component settings for minimum configuration are shown in Table 1.9.

Table 1.9 Component settings for minimum configuration

Procedure Standard
procedure

Minimum configuration procedure

Set clock Mandatory Mandatory
Add r_ble_rx23w Mandatory Mandatory
Change r_ble_rx23w Execute No need if leaving the followings disabled.

Command Line function (BLE_CFG_CMD_LINE_EN)
Security data management function (BLE_CFG_EN_SEC_DATA)
Device specific data management function
(BLE_CFG_DEV_DATA_DF_BLOCK)
LED and Switch control function (BLE_CFG_BOARD_LED_SW_EN)
Note: Change MCU Low Power Consumption function
(BLE_CFG_MCU_LPC_EN) to disabled.

Add r_ble_qe_utility Option Mandatory
Note: Not required for QE for BLE V1.40 or later.

Add BLE Profile Creation Option Mandatory
Note: Not required for QE for BLE V1.40 or later.

Change BLE Profile Creation Option No need because Advertising is executed in default setting.
Change r_bsp Execute No need if not using RX23W flash memory protection function.

Note: Change to v5.40 or later.
Add and change r_irq_rx Execute No need if leaving LED and Switch control function

(BLE_CFG_BOARD_LED_SW_EN) disabled.
Add r_gpio_rx Execute No need if leaving LED and Switch control function

(BLE_CFG_BOARD_LED_SW_EN) disabled.
Add r_lpc_rx Execute No need if changing MCU Low Power Consumption function

(BLE_CFG_MCU_LPC_EN) to disabled.
Add r_flash_rx Execute No need if leaving Security data management function

(BLE_CFG_EN_SEC_DATA) and Device specific data management
function (BLE_CFG_DEV_DATA_DF_BLOCK) disabled.

Add and change r_sci_rx Execute No need if leaving Command Line function (BLE_CFG_CMD_LINE_EN)
disabled.

Add r_cmt_rx Mandatory Mandatory
Add r_byteq Execute No need if leaving Command Line function (BLE_CFG_CMD_LINE_EN)

disabled.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 26 of 244
Dec.27.22

(4) Settings after code-generating
If the CMT FIT module is older than v4.50, add the following after the definition of
CMT_RX_NUM_CHANNELS in r_cmt_rx.c.

#if defined(BSP_MCU_RX23W)
#undef CMT_RX_NUM_CHANNELS
#define CMT_RX_NUM_CHANNELS (2)
#endif /* BSP_MCU_RX23W */

Code 1-1 CMT_RX_NUM_CHANNELS の変更

No need changing app_lib/board/r_ble_board.c in BLE FIT module if leaving LED and Switch control function
(BLE_CFG_BOARD_LED_SW_EN) disabled.

(5) Linker setting and Debugging setting on e2studio
Add the followings to the section setting screen in [Project] [Properties] [C/C++ Build] [Settings]
[Tool Settings] [Linker] [Section] [...].
RAM: BLE_B*, BLE_R*
ROM: BLE_C*, BLE_D*, BLE_W*, BLE_L, BLE_P

Add the followings to [Project] [Properties] [C/C++ Build] [Settings] [Tool Settings] [Linker]
[Section] [Symbol file] [ROM to RAM mapped section].
BLE_D=BLE_R
BLE_D_1=BLE_R_1
BLE_D_2=BLE_R_2

Input the following to [Project] [Properties] [C/C++ Build] [Settings] [Build Steps] [Pre-build
steps] [Command(s):].
..\src\smc_gen\r_ble_rx23w\lib\ble_fit_lib_selector.bat

If connecting to the board written firmware with RX23W flash memory protection enabled, change [Run]
[Debug Configurations…] [Renesas GDB Hardware Debugging] [(Project name) HardwareDebug]
[Debugger] [Connection Settings] [Flash] [ID Code] to “45FFFFFFFFFFFFFFFFFFFFFFFFFFFFFF”.

When using Target Board for RX23W, [Run] [Debug Configurations…] [Renesas GDB Hardware
Debugging] [(Project name) HardwareDebug] [Debugger] [Connection Settings] [Power]
[Power Target From The Emulator (MAX 200mA)] is not needed to change.

(6) Use the generated code
Call app_main() from src\[Project name].c in your project.
#include "r_smc_entry.h"

void main(void);
void app_main(void);

void main(void)
{
 app_main();
}

Code 1-2 Call app_main() in the main function
(7) Add and change the code
Develop any application by referring to the following chapters.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 27 of 244
Dec.27.22

1.8 Use case of this document
An application that is connected as Peripheral from Central such as a PC or smartphone and operates as a
GATT server is general. Below is a basic application and its processing.

Table 1.10 Basic application and process

Application Process Description
GATT server Advertising Refer to “5 Advertising”.

Connection Refer to “3.3 GAP event (gap_cb function)”.
When receiving a connection request from Central, Bluetooth LE
Protocol Stack automatically establishes a connection and notifies
BLE_GAP_EVENT_CONN_IND.

Pairing Refer to “9 Security”.
Data communication
(Notification)

Refer to “8 Communication”.

GATT client Scan Refer to “6 Scan”.
Connection Refer to “7 Connection”.
Pairing Refer to “9 Security”.
Data Communication
(Read, Write)

Refer to “8 Communication”.

Other examples of applications that use various FIT modules and Bluetooth LE functions with RX23W are
shown below.

GATT Server application that collects operation logs of industrial equipment and sensor data of healthcare
equipment and uploads them to Clients such as PCs and smartphones

 Refer to "2.4 How to configure for minimum current consumption", "7.3 Multiple Connection" and "9
Security".

GATT Server application that transfers the data downloaded from Clients such as PCs and smartphones and
updates the firmware

 Refer to "8.6 High throughput communication" and "9 Security".

GATT Server application that uploads the image data such as printers and scanners, voice data and audio
data of recording devices to Clients such as PCs and smartphones, and downloads the setting data from
Clients.

 Refer to "8.6 High throughput communication".

GATT Server applications for electronic locks, OA devices, consumer devices, etc. that are operated by
multiple Clients such as smartphones

 Refer to "7.3 Multiple Connection" and "9 Security".

Beacon application that periodically sends out multiple sensor data

 Refer to "5.7 Beacon".

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 28 of 244
Dec.27.22

1.9 Locating sections
The section of the library provided by the Bluetooth LE Protocol Stack and the section of the public source
code used by the library is changed to the section name with the prefix "BLE_" so that the section allocation
can be divided for the purpose of FW update.

Memory map as for RAM, Data Flash ROM(DF), and Code Flash ROM (CF) in demo project in
RX23W(R5F523W8Axxx) and their section placement set by linker on e2studio are shown in below.

 Memory map Section placement
0x00000000 RAM (64 KB) Application section

- SU, SI, B_1, R_1, B_2, R_2, B, R
Bluetooth LE Protocol Stack library section
- BLE_B_1, BLE_B_2, BLE_B, BLE_R_1, BLE_R_2, BLE_R

0x00010000 ：
 ：
0x00100000 DF (Block 0) When enabling Security data management function, block 0 is used in

default.
When enabling Device specific data management function, other blocks
are available.

0x00100400 ：DF size 8 KB
 ：(1 KB * 8 block)
0x00101C00 DF (Block 7)
0x00102000 ：
 ：
0xFFF80000 CF (Block 255) Application section

- C_1, C_2, C, C$DSEC, C$BSEC, C$VECT, D_1, D_2, D, W_1,
W_2, W, L, P

Bluetooth LE Protocol Stack library section
- BLE_C_1, BLE_C_2, BLE_C, BLE_D_1, BLE_D_2, BLE_D,

BLE_W_1, BLE_W_2, BLE_W, BLE_L, BLE_P

0xFFF80800 ：CF size 512 KB
 ：(2 KB * 256 block)
 ：
 ：
 ：
 ：
 ：
 ：
0xFFFF7800 CF (Block 16) When enabling Device specific data management function, block 16 is

used in default.
0xFFFF8000 CF (Block 15)
0xFFFF8800 ：
 ：
0xFFFFF800 CF (Block 0) EXCEPTVECT section (FFFFFF80-FFFFFFFB)

RESETVECT section (FFFFFFFC-FFFFFFFF)

Figure 1-11 Locating sections

As for linker setting, refer to “1.7 Flow of development”.

It can be confirming actual section placement by map file. As for map file, refer to “11.6.3 Outputting detail to
MAP file”.

If using RX23W Start-Up Program Protection function, block 0 to 15 are protected. Therefore, block
(BLE_CFG_DEV_DATA_CF_BLOCK) where device specific data such as BD address is written are
specified as block 16 in default. As for BD address, refer to “2.3 How to configure BD address”.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 29 of 244
Dec.27.22

2. Adjusting configuration option
2.1 Configuration Options

The configuration options of the BLE FIT module are located in the r_ble_rx23w_config.h. The options are
able to be configured in Smart Configurator (SC). The changed options are automatically reflected when
adding the BLE FIT module to the project. The macro and SC display name and setting range are listed in
Table 2.1.

Note: If you edit r_ble_rx23w_config.h directly, depending on the settings in [Project]-[Properties]-[Builders]-
[SC Code Generation Builder], the codes generated when building the project will overwrite the edited
contents. It is recommended to change the setting from SC.

Table 2.1 Configuration Options

Macro
(SC display name)

Setting range
(default)

Description

BLE_CFG_LIB_TYPE
(Type of Bluetooth LE Protocol Stack library)

0: All features, 1: Balance, 2: Compact
(0)

Type of the Bluetooth LE
Protocol Stack.

BLE_CFG_RF_DBG_PUB_ADDR
(Initial Public Address)

Set any value.
({0xFF,0xFF,0xFF,0x50,0x90,0x74})

Initial Public Address.

BLE_CFG_RF_DBG_RAND_ADDR
(Initial Static Address)

Set any value.
({0xFF,0xFF,0xFF,0xFF,0xFF,0xFF})

Initial Static Address.

BLE_CFG_RF_CONN_MAX
(Maximum number of connections)

1 - 7
(7)

Maximum number of
simultaneous connections.

BLE_CFG_RF_CONN_DATA_MAX
(Maximum connection data length)

27 - 251
(251)

Maximum packet data length
(bytes).

BLE_CFG_RF_ADV_DATA_MAX
(Maximum advertising data length)

31 - 1650
(1650)

Maximum advertising data
length (bytes).

BLE_CFG_RF_ADV_SET_MAX
(Maximum advertising set number)

1 - 4
(4)

Maximum number of the
advertising set.

BLE_CFG_RF_SYNC_SET_MAX
(Maximum advertising set number)

1 - 2
(2)

Maximum number of periodic
sync set.

BLE_CFG_EVENT_NOTIFY_CONN_START
(Connection event start notify)

0 - 1
(0)

Enable or disable start
interrupt notification of a
connection complete event.

BLE_CFG_EVENT_NOTIFY_CONN_CLOSE
(Connection event close notify)

0 - 1
(0)

Enable or disable end
interrupt notification of a
connection complete event.

BLE_CFG_EVENT_NOTIFY_ADV_START
(Advertising event start notify)

0 - 1
(0)

Enable or disable the
advertising event start
interrupt notification.

BLE_CFG_EVENT_NOTIFY_ADV_CLOSE
(Advertising event close notify)

0 - 1
(0)

Enable or disable the
advertising event complete
interrupt notification.

BLE_CFG_EVENT_NOTIFY_SCAN_START
(Scanning event start notify)

0 - 1
(0)

Enable or disable the scan
start interrupt notification.

BLE_CFG_EVENT_NOTIFY_SCAN_CLOSE
(Scanning event close notify)

0 - 1
(0)

Enable or disable the scan
complete interrupt notification.

BLE_CFG_EVENT_NOTIFY_INIT_START
(Initiating event start notify)

0 - 1
(0)

Enable or disable the
notification that the scan start
interrupt has occurred in
sending a connection request.

BLE_CFG_EVENT_NOTIFY_INIT_CLOSE
(Initiating event close notify)

0 - 1
(0)

Enable or disable the
notification that the scan
complete interrupt has
occurred in sending a
connection request.

BLE_CFG_EVENT_NOTIFY_DS_START
(RF_DEEP_SLEEP start notify)

0 - 1
(0)

Enable or disable the
RF_DEEP_SLEEP start
notification.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 30 of 244
Dec.27.22

Macro
(SC display name)

Setting range
(default)

Description

BLE_CFG_EVENT_NOTIFY_DS_WAKEUP
(RF_DEEP_SLEEP wakeup notify)

0 - 1
(0)

Enable or disable the
RF_DEEP_SLEEP wakeup
notification.

BLE_CFG_RF_CLVAL
(Capacity adjustment of 32MHz crystal resonator)

0 - 15
(6)

Adjustment value of the
32MHz crystal oscillator.

BLE_CFG_RF_DDC_EN
(DC-DC converter configuration for RF part)

0 - 1
(0)

Enable or disable the DC-DC
on the RF.

BLE_CFG_RF_EXT32K_EN
(Slow clock source for RF part)

0 - 1
(0)

Slow clock source to the RF.

BLE_CFG_RF_MCU_CLKOUT_PORT
(MCU CLKOUT port)

0 - 1
(0)

Port of the MCU CLKOUT.

BLE_CFG_RF_MCU_CLKOUT_FREQ
(MCU clock frequency)

0 - 1
(0)

Output frequency from the
MCU CLKOUT.

BLE_CFG_RF_SCA
(Sleep Clock Accuracy (SCA) for RF slow clock)

0 - 500
(250)

Sleep Clock Accuracy (SCA)
for the RF slow clock.

BLE_CFG_RF_MAX_TX_POW
(Transmission power maximum value)

0 - 1
(1)

Maximum transmit power
configuration.

BLE_CFG_RF_DEF_TX_POW
(Default transmit power)

0 - 1
(0)

Default transmit power level.

BLE_CFG_RF_CLKOUT_EN
(CLKOUT_RF output setting)

Select one of the followings.
 0: No output
 5: 4MHz output
 6: 2MHz output
 7: 1MHz output
(0)

CLKOUT_RF output.

BLE_CFG_RF_DEEP_SLEEP_EN
(RF_DEEP_SLEEP transition)

0 - 1
(1)

Enable or disable the RF Deep
Sleep.

BLE_CFG_MCU_MAIN_CLK_KHZ
(MCU Main Clock Frequency (kHz))

If the HOCO is used, this option is ignored.
If the Main Clock is used, set a value within
the range between 1000 and 20000.
If the PLL Circuit is used, set a value within
the range between 4000 and 12500.
(4000)

MCU main clock frequency
(kHz).

BLE_CFG_DEV_DATA_CF_BLOCK
(Device specific data block on Code Flash (ROM))

-1 - 255
(16)

The Code Flash (ROM) block
stored the device specific
data.

BLE_CFG_DEV_DATA_DF_BLOCK
(Device specific data block on E2 Data Flash)

-1 - 7
(-1)

The E2 Data Flash block
stored the device specific
data.

BLE_CFG_GATT_MTU_SIZE
(MTU Size configured by GATT MTU exchange
procedure)

23 - 247
(247)

The MTU size (bytes) for the
GATT communication.

BLE_CFG_NUM_BOND
(Number of remote device bonding information)

1 - 7
(7)

Maximum number of the
bonding information stored in
the Data Flash.

BLE_CFG_EN_SEC_DATA
(Store Security Data in DataFlash)

0 - 1
(0)

Enable or disable the security
data management.

BLE_CFG_SECD_DATA_DF_BLOCK
(Data Flash Block for Security Data Management)

0 - 7
(0)

The Data Flash block for the
security data management to
store the bonding information.

BLE_CFG_CMD_LINE_EN
(Enabled/Disabled command line function)

0 - 1
(0)

Enable or disable the
command line function.

BLE_CFG_CMD_LINE_CH
(SCI CH for command line function)

1 or 5 or 8
(1)

SCI Channel for the command
line function.

BLE_CFG_BOARD_LED_SW_EN
(Enabled/Disabled board LED and Switch control
support)

0 - 1
(0)

Enable or disable support the
board LED & Switch control.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 31 of 244
Dec.27.22

Macro
(SC display name)

Setting range
(default)

Description

BLE_CFG_BOARD_TYPE
(Board Type)

0 - 3
(0)

Board type.

BLE_CFG_LOG_LEVEL
(Log level)

0 - 3
(3)

Log level.

BLE_CFG_ABS_API_EN
(Abstraction API support)

0 - 1
(1)

Enable or disable support the
Abstraction API.

BLE_CFG_SOFT_TIMER_EN
(Software Timer support)

0 - 1
(1)

Enable or disable support the
software time in app_lib.

BLE_CFG_MCU_LPC_EN
(MCU low power consumption control support)

0 - 1
(1)

Enable or disable support the
MCU low power consumption
control.

BLE_CFG_HCI_MODE_EN
(HCI mode support)

0 - 1
(0)

Select start in HCI mode or
not.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 32 of 244
Dec.27.22

2.2 How to adjust RAM
Some configuration options affect the RAM size. Table 2.2 shows the additional RAM size if one is added to
the configuration option.

Table 2.2 Additional RAM size per configuration option
Configuration Options Setting range

(default) Library Additional
Size (bytes) SC display name Macro

Maximum number of
connections BLE_CFG_RF_CONN_MAX 1 - 7

(7)

All features 1094
Balance 1086
Compact 1074

Maximum connection
data length BLE_CFG_RF_CONN_DATA_MAX 27 - 251

(251) All libraries 9

Maximum advertising
data length BLE_CFG_RF_ADV_DATA_MAX 31 - 1650

(1650) All features Described in
Table 2.3

Maximum advertising
set number *1 BLE_CFG_RF_ADV_SET_MAX 1 - 4

(4) All features 308

Maximum periodic sync
set number *2 BLE_CFG_RF_SYNC_SET_MAX 1 - 2

(2) All features 66

*1 : Simultaneous advertising number.
*2 : Maximum periodic synchronization number.

The additional RAM size of BLE_CFG_RF_ADV_DATA_MAX depends on
BLE_CFG_RF_ADV_SET_MAX. Table 2.3 shows the additional RAM size where
BLE_CFG_RF_ADV_DATA_MAX is changed from the RAM size when BLE_CFG_RF_ADV_DATA_MAX is
set to 0-252 bytes.

Table 2.3 Additional RAM size per BLE_CFG_RF_ADV_DATA_MAX and BLE_CFG_RF_ADV_SET_MAX

M
ax

im
um

 a
dv

er
tis

in
g

se
t n

um
be

r 1
BLE_CFG_RF_ADV_DATA_MAX 0-252 253-504 505-756 757-1008 1009-1260 1261-1512 1513-1650

Additional size (bytes) 0 512 1024 1536 2048 2560 3072

2
BLE_CFG_RF_ADV_DATA_MAX 0-252 253-504 505-756 757-1008 1009-1260 1261-1512 1513-1650

Additional size (bytes) 0 1024 2048 3072 4096 5120 6144

3
BLE_CFG_RF_ADV_DATA_MAX 0-252 253-504 505-756 757-1008 1009-1260 1261-1650

Additional size (bytes) 0 1536 3072 4608 6144 7680

4
BLE_CFG_RF_ADV_DATA_MAX 0-252 253-504 505-756 757-1008 1009-1650

Additional size (bytes) 0 2048 4096 6144 7168

Set the values of maximum advertising data length and maximum advertising set number so that they fall
within the following range.

4250 >= Maximum advertising data length * Maximum number of advertising sets

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 33 of 244
Dec.27.22

2.3 How to configure BD address
Bluetooth Device address (BD address) has the following types.

Table 2.4 BD address types

BD address type Description
Public
device address

Public Address gotten upper 24 bits from IEEE.
Note: Refer to Bluetooth Core Specification Vol 2, PartB, " 1.2
Bluetooth Device Addressing". It can be obtained in the same
way as the MAC address.

Random
device address

Static
address

Random Address where the most significant bit starts with 11 and
the remaining bits can be set randomly to be used.
Cx:xx:xx:xx:xx:xx or Dx:xx:xx:xx:xx:xx or Ex:xx:xx:xx:xx:xx or
Fx:xx:xx:xx:xx:xx
Note: Refer to Bluetooth Core Specification Vol 6, PartB, "1.3.2
Random Device Address".
Note: Bluetooth LE Protocol Stack does not check address
format.
Note: A static address consists of random numbers. The
possibility of duplicate values with other devices is not zero.

Private
address

Non-resolvable
private address

Random Address where the most significant bit starts with 00 and
the remaining bits can be dynamically regenerated.
0x:xx:xx:xx:xx:xx or 1x:xx:xx:xx:xx:xx or 2x:xx:xx:xx:xx:xx or
3x:xx:xx:xx:xx:xx

Resolvable
private address
(RPA)

Random Address where the most significant bit starts with 01 and
the remaining bits can be dynamically regenerated and enhanced
with privacy feature.
4x:xx:xx:xx:xx:xx or 5x:xx:xx:xx:xx:xx or 6x:xx:xx:xx:xx:xx or
7x:xx:xx:xx:xx:xx

Bluetooth devices have an Identity address. Identity address is either Public device address or Static
Address. The device using Privacy function requires an Identity address.

RX23W provides the function to store the static BD address such as Public device address and Static
Address in the data area and user area of the internal ROM. Data flash (DF) can be used as the data area
and code flash (CF) can be used as the user area. They are set as follows in default by Configuration option
of [r_ble_rx23w].

Table 2.5 BD address configurations

Configuration option Initial value
BLE_CFG_DEV_DATA_DF_BLOCK -1 (DF is not used)
BLE_CFG_DEV_DATA_CF_BLOCK 16 (CF block 16 is used)
BLE_CFG_RF_DBG_PUB_ADDR 74:90:50:FF:FF:FF (Firmware initial value of Public Address)
BLE_CFG_RF_DBG_RAND_ADDR FF:FF:FF:FF:FF:FF (Firmware initial value of Random Address)

The BD address can be used by selecting either Public Address or Random Address when starting
Advertising. For details on how to use the set Random Address, refer to "2.3.2 How to use Random
Address".

The BD address is determined as below in R_BLE_Open at application startup according to "5.4.6 BD
address adoption flow" in "Bluetooth Low Energy Protocol Stack Basic Package User's Manual
(R01UW0205)", and stored in the managed RAM of Bluetooth LE Protocol Stack.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 34 of 244
Dec.27.22

Table 2.6 BD address adoption method

Priority BD address adoption method Initial value Description
1 DF is used.

(BLE_CFG_DEV_DATA_DF_BLOCK is set 0 to
7)
Note: Set the different block from the block set
by BLE_CFG_SECD_DATA_DF_BLOCK of
default 0.
Note: DF is not used when setting -1.

For flash initialization:
Public Address
FF:FF:FF:FF:FF:FF
Random Address
FF:FF:FF:FF:FF:FF
Note: ALL 0x00 or 0xFF
is disable.

Used if writing BD address by
outer I/F such as UART after
product shipment.
It can be rewriting by either of
the following methods.

- Rewrite by specifying DF in

R_BLE_VS_SetBdAddr.
- Rewrite by BDAddrWriter, in

case of HCI mode firmware.
Note: Enable Flash FIT module.
Note: Changes are reflected by
resetting RX23W.

2 CF is used.
(BLE_CFG_DEV_DATA_CF_BLOCK is set 0 to
255.)
Note: Because 0 to 15 are Start-Up Program
Protection blocks, when using Start-Up
Program Protection function, do not set 0 to15.
Note: CF is not used when setting -1.

For flash initialization:
Public Address
FF:FF:FF:FF:FF:FF
Random Address
FF:FF:FF:FF:FF:FF
Note: ALL 0x00 or 0xFF
is disable.

Used if writing BD address
together with the firmware at the
time of product shipment.
It can be rewriting by following
methods.
- Rewrite firmware by using

unique code function of
Renesas Flash
Programmer(RFP).

Note: By using RX23W memory
protection function, it can be
guarded against being rewritten
by third parties.

3 Firmware initial value is used.
BLE_CFG_RF_DBG_PUB_ADDR
BLE_CFG_RF_DBG_RAND_ADDR

Public Address
74:90:50:FF:FF:FF
Random Address
FF:FF:FF:FF:FF:FF
Note: ALL 0x00 or 0xFF
is disable.

Used if changing BD address on
debug temporarily.

4 Static value is used Public Address
74:90:50:FF:FF:FF
Random Address
XX:XX:XX:XX:XX:XX

Used when all of the above are
disabled.
Random Address is generated
by MCU unique ID.

Other The managed RAM of Bluetooth LE Protocol
Stack is used by rewriting.

Public Address
XX:XX:XX:XX:XX:XX
Random Address
XX:XX:XX:XX:XX:XX

Used if managing BD address
by application dynamically.
After
BLE_GAP_EVENT_STACK_ON
, rewrite by specifying Current
register in
R_BLE_VS_SetBdAddr.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 35 of 244
Dec.27.22

As for details on rewriting BD address to data area, refer to "2.3.1 Writing to data area".

As for details on rewriting to user area and RX23 memory protection function, refer to "5.4.3 Writing to user
area (ROM)" and "5.4.5 RX23W flash memory protection function" in "Bluetooth Low Energy Protocol Stack
Basic Package User's Manual (R01UW0205)".

2.3.1 Writing to data area
Use R_BLE_VS_SetBdAddr() to write to the data area. If writing HCI mode firmware, use public BD address
writing tool (BDAddrWriter). As for BDAddrWriter, refer to "5.4.4.2 Write to data area using BDAddrWriter
tool" in "Bluetooth Low Energy Protocol Stack Basic Package: User's Manual (R01UW0205)". The written BD
address is used by resetting RX23W once.

2.3.2 How to use Random Address
The following is a sample code for advertising with a Random Address determined by R_BLE_Open.

Get the Random Address selected with R_BLE_VS_GetBdAddr and call R_BLE_ABS_StartLegacyAdv with
the Random Address obtained with the BLE_VS_EVENT_GET_ADDR_COMP event.

static st_ble_abs_legacy_adv_param_t gs_adv_param =
{
 (OMISSION)
 .o_addr_type = BLE_GAP_ADDR_PUBLIC,
};

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 R_BLE_VS_GetBdAddr(BLE_VS_ADDR_AREA_REG, BLE_GAP_ADDR_RAND);
 } break;
 (OMISSION)

static ble_status_t ble_app_init(void);
static void vs_cb(uint16_t type, ble_status_t result, st_ble_vs_evt_data_t *p_data)
{
 (OMISSION)
 switch (type)
 {
 case BLE_VS_EVENT_GET_ADDR_COMP:
 {
 st_ble_vs_get_bd_addr_comp_evt_t * p_get_addr =
 (st_ble_vs_get_bd_addr_comp_evt_t *)p_data->p_param;
 memcpy(gs_adv_param.o_addr, p_get_addr->addr.addr, BLE_BD_ADDR_LEN);
 R_BLE_ABS_StartLegacyAdv(&gs_adv_param);
 } break;
 (OMISSION)

Code 2-1 Sample of using Random Address

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 36 of 244
Dec.27.22

Using Command line function, BD address of DF can be check and rewritten with "vs addr get df" and "vs
addr set df" commands. BD address of the managed RAM of Bluetooth LE Protocol Stack can be checked
and rewritten with "vs addr get curr" and "vs addr set curr".

$ vs addr get curr pub

$ BLE_VS_EVENT_GET_ADDR_COMP result:0x0000, param_len:8

 addr:36:35:34:33:32:31 pub on current register

$ vs addr get df pub

$ BLE_VS_EVENT_GET_ADDR_COMP result:0x0000, param_len:8

 addr:36:35:34:33:32:31 pub on data flash

$ vs addr get curr rnd

$ BLE_VS_EVENT_GET_ADDR_COMP result:0x0000, param_len:8

 addr:D9:7C:E6:81:83:35 rnd on current register

$ vs addr get df rnd

$ BLE_VS_EVENT_GET_ADDR_COMP result:0x0000, param_len:8

 addr:FF:FF:FF:FF:FF:FF rnd on data flash

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 37 of 244
Dec.27.22

2.4 How to configure for minimum current consumption
The following configurations make the current consumption minimize.

Table 2.7 Configurations for minimum current consumption

Configuration options Comments
MCU clock set HOCO clock: Enable

Frequency: 32MHz
Note: Configure on [Clocks] tab in
Smart configurator.
Note: Disable non-used clocks or set
minimum clock frequency.
Note: R_BLE_Open optimizes the
operation of R_BLE_Execute
according to the clock frequency. If
you change the clock frequency
dynamically, call R_BLE_Open again
after R_BLE_Close.

FCLK：x1 (32MHz)
ICLK：x1 (32MHz)
PCLKB：x1 (32MHz)

r_ble_rx23w
component set

DC-DC on the RF: Enable
(BLE_CFG_RF_DDC_EN=1)

Note: Refer to “Guidelines for
Bluetooth Board Design Application
Note (R01AN4534)”.

RF Deep Sleep: Enable
(BLE_CFG_RF_DEEP_SLEEP_EN=1)

MCU Low Power Consumption: Enable
(BLE_CFG_MCU_LPC_EN=1)

Note: Need to call
R_BLE_LPC_EnterLowPowerMode
API after calling R_BLE_Execute API
in main loop.

CLKOUT_RF: No output
(BLE_CFG_RF_CLKOUT_EN=0)

Command line function: Disable
(BLE_CFG_CMD_LINE_EN=0)

LED and Switch control function: Disable
(BLE_CFG_BOARD_LED_SW_EN=0)

RF maximum transmit power: +4dBm +0dBm
(BLE_CFG_RF_MAX_TX_POW=0)

RF default transmit power: High Mid Low
(BLE_CFG_RF_DEF_TX_POW=2)

Note: The transmit current can be
reduced by lowering the RF transmit
power, but the communication range
will be shortened accordingly.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 38 of 244
Dec.27.22

2.4.1 Using MCU Low Power Consumption function
The MCU can be shifted to the low power consumption state even when using the BLE function. The basic
policy of the transition to Low power consumption state is as below.

• After completing the execution of R_BLE_Execute(), until the next R_BLE_Execute() is executed,
Bluetooth LE Protocol Stack does not prevent MCU from the transitioning to Low power consumption
state.

• After confirming that all the used components (including the BLE function) can shift MCU to Low power
consumption state, the application shifts MCU to Low power consumption state.

As a sample program code for low power consumption, a program code (r_ble_pf_lowpower.c) with the
following functions is provided.

• Use LPC FIT module to shifts MCU to Low power consumption state.
• Sleep mode, Deep sleep mode, and Software standby mode are available as Low power consumption

state.
• Use R_BLE_LPC_Init() to initialize Low power consumption function.
• Use R_BLE_LPC_EnterLowPowerMode() to shift to Low power consumption state.

 Disable MCU interrupts
 Check that there is no problem even if each component shifts to Low power consumption state
 Execute the transition processing to Low power consumption state of each component
 Enter MCU to Low power consumption state
 After MCU wakes-up from Low power consumption state, resume each component to the normal

state
• When BLE communication occurs, it resumes from Low power consumption state by RF interrupt.

However, since there is a possibility that RF interrupt may occur during processing for disabling
interrupts, check the status of BLE task once after disabling interrupts, If BLE task state is not free, skip
transition to Low power consumption state of MCU.

The operation status of each component in each low power consumption state is listed “11. Low Power
Consumption Table 11-2” in “RX23W Group User's Manual: Hardware (R01UH0823)”.

As for components other than the BLE function, if adding processing for transition and resume to Low power
consumption state, change the following locations of “r_ble_pf_lowpower.c”.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 39 of 244
Dec.27.22

(1) Checking transition to Low power consumption state

• Software standby mode
In check_software_standby() function, add processing to check if there is no problem even if the
component enters to Software standby mode. Add processing to the location of “/* add check for other
components */” comment in Code 2-2.

static bool check_software_standby(void)
{
 if (g_inhibit_software_standby)
 {
 return false;
 }

 /* (OMISSION) */

 /* If DTC/DMAC/DataFlash is in active, MCU can not enter software standby.
 This code is copied from r_lpc_rx23w.c lpc_lowpower_activate_check. */
 if ((0x0000 != (FLASH.FENTRYR.WORD & 0x0081)) ||
 ((0 == SYSTEM.MSTPCRA.BIT.MSTPA28) &&
 ((1 == DTC.DTCST.BIT.DTCST) || (1 == DMAC.DMAST.BIT.DMST))))
 {
 return false;
 }

 /* add check for other components */

 return true;
}

Code 2-2 Location to check for transition to Software standby mode

• Deep Sleep mode
In check_deep_sleep() function, add processing to check if there is no problem even if entering to Deep
sleep mode when using the Watchdog Timer (WDT). There is no need to add any components other than
the Watchdog Timer (WDT) for checking the transition to Deep sleep mode. Add processing to the
location of “/* add check for other components */” in Code 2-3.

static bool check_deep_sleep(void)
{
 /* If DTC/DMAC/DataFlash is in active, MCU can not enter deep sleep.
 This code is copied from r_lpc_rx23w.c lpc_lowpower_activate_check. */
 if ((0x0000 != (FLASH.FENTRYR.WORD & 0x0081)) ||
 (0 == SYSTEM.MSTPCRA.BIT.MSTPA28))
 {
 return false;
 }

 /* add check for other components */

 return true;
}

Code 2-3 Location to check for transition to Deep sleep mode

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 40 of 244
Dec.27.22

(2) Transition preparation processing to Low power consumption state

In suspend_peripherals() function, add the preparation processing for transition to Low power consumption
state of each component. Add the transition preparation processing according to each low power
consumption state to the location of “/* add implementation for transiting xxx mode */” in Code 2-4.
static void suspend_peripherals(lpc_low_power_mode_t mode)
{
 if (LPC_LP_SW_STANDBY == mode)
 {
 R_BLE_CLI_Terminate();

 /* add implementation for transiting the software standby mode. */
 }
 else if(LPC_LP_DEEP_SLEEP == mode)
 {
 /* add implementation for transiting the deep sleep mode. */
 }
 else if(LPC_LP_SLEEP == mode)
 {
 /* add implementation for transiting the sleep mode. */
 }
 else
 {

 }

}

Code 2-4 Location to add transition preparation for each low power consumption state

(3) Resume processing from Low power consumption state

In resume_peripherals() function, add the resume processing from Low power consumption state of each
component. Add the resume process according to each low power consumption state to the location of "/*
add implementation for transiting the active state. */" in Code 2-5.
static void resume_peripherals(lpc_low_power_mode_t mode)
{
 if (LPC_LP_SW_STANDBY == mode)
 {
 R_BLE_CLI_Init();

 /* add implementation for transiting the active state. */
 }
 else if(LPC_LP_DEEP_SLEEP == mode)
 {
 /* add implementation for transiting the active state. */
 }
 else if(LPC_LP_SLEEP == mode)
 {
 /* add implementation for transiting the active state. */
 }
 else
 {

 }
}

Code 2-5 Location to add resume processing from each low power consumption state

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 41 of 244
Dec.27.22

3. How to implement user code
QE for BLE does not only code-generate the designed profile part but also the application processing
corresponding to GAP role (Central/Peripheral) into src\smc_gen\Config_BLE_Profile. Once just only
creating a project for each GAP role and code-generating, the mutually connectable programs are generated
as app_main.c. As for the behavior of the generated program, refer to "3.1 Behavior of skeleton program".

Applications can be developed by adding/modifying user code using various APIs in the following functions
of app_main.c. Some APIs, once are executed, immediately returns the result as the return value of the
function, but most APIs are queued and executed as events in the scheduler, and the execution results are
returned as event notifications to the event handler.

Table 3.1 Functions of app_main.c

Function of app_main.c Description
app_main function The app_main function has a main loop.

The following API is used before the main loop.
- Initialization API

This is a required function. Register an event handler or interrupt
handler as a callback function in the Bluetooth LE Protocol Stack
scheduler. Also register the GATT database. It is explained in
"3.2.1 Initialization process (ble_app_init function) (* transfer)".

The following API is used in the main loop.
- R_BLE_Execute

This is a required function. Run the scheduler to handle the event
and return the result to your callback function. It is explained in
"3.2.2 Main loop and scheduler (R_BLE_Execute) (* transfer)".

- R_BLE_CLI_Process
Used when the command line function is enabled.

- R_BLE_LPC_EnterLowPowerMode
This is used when the MCU low power consumption function is
enabled.

Callback function Event handler Called when GAP / GATTS / GATTC / VS / Profile Server / Profile
Client / L2CAP / DISC event occurs.
Note: The RF communication timing notification is called from the LL
 scheduler when an RF interrupt occurs.
Note: The software timer is called from the CMT FIT module
Bluetooth LE Protocol Stack scheduler when a timer interrupt occurs.
[Note] LED of LED and Switch control does not use notification.
Switch is called from the IRQ FIT module Bluetooth LE Protocol
Stack scheduler when a switch press interrupt occurs.

Interrupt handler When the command line function is enabled, it is called from the SCI
FIT module when a UART transmission/reception interrupt occurs.

If dividing the process of app_main.c into another file, right-click the Config_BLE_Profile folder on e2studio
and add another file by the following procedure.
Add [arbitrary name].c from [New] [Source File].
Add [arbitrary name].h from [New] [Header File].

As for details of API parameters, refer to R_BLE API document (r_ble_api_spec.chm).

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 42 of 244
Dec.27.22

3.1 Behavior of skeleton program
The behavior of the skeleton program generated by QE for BLE and the main events to be notified are
shown below. The Bluetooth LE Protocol Stack automatically handles the dotted line responses and
operations, so no code is required.

Figure 3-1 Behaviour of skeleton program generated by QE for BLE

Central
(GATT Client)

Peripheral
(GATT Server)

Power ON

Stack ON

BLE_GAP_EVENT_STACK_ON BLE_GAP_EVENT_STACK_ON
Advertising using device name

(RBLE_DEV)

Advertising

Scan with filtering using device
name (RBLE_DEV)

BLE_GAP_EVENT_ADV_REPT_IND

BLE_GAP_EVENT_CONN_IND BLE_GAP_EVENT_CONN_IND

BLE_GAP_EVENT_DATA_LEN CHG

BLE_GAP_EVENT_DATA_LEN CHG

Start service discovery for
designed profile

BLE_GATTC_CONN_IND

Complete discovery

disc_comp_cb

QE for BLE code-generation

Power ON
Stack ON

Connection request

Connection establish

Bluetooth LE Protocol Stack
automation process

Response service discovery

Connection response

Request changing maximum packet length

Response changing maximum packet length

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 43 of 244
Dec.27.22

3.2 app_main function
The app_main function performs initialization processing and implementation of the main loop. When using
the timer, board setting, command line, etc., the initialization process is performed by the app_main function.

Note: When using QE for BLE, the source code of the app_main function is automatically generated.

Code 3-1 shows an example of the app_main function.

/* CommandLine parameters */
static const st_ble_cli_cmd_t * const gsp_cmds[] =
{
 &g_abs_cmd,
 &g_vs_cmd,
 &g_sys_cmd,
 &g_ble_cmd
};

void app_main(void)
{
 /* Initialize BLE */
 R_BLE_Open();

 /* Configure the board */
 R_BLE_BOARD_Init();

 /* Initialize the Low Power Control function */
 R_BLE_LPC_Init();

 /* Initialize timer for ABS & LED blink */
 R_BLE_TIMER_Init();

 /* Configure CommandLine */
 R_BLE_CLI_Init();
 R_BLE_CLI_RegisterCmds(gsp_cmds, ARRAY_SIZE(gsp_cmds));
 R_BLE_CMD_SetResetCb(ble_app_init);

 /* Initialize BLE host stack and profiles */
 ble_app_init();

 /* main loop */
 while (1)
 {
 /* Process Command Line */
 R_BLE_CLI_Process();
 /* Process Event */
 R_BLE_Execute();
 /* Enter the Lower Power Mode */
 R_BLE_LPC_EnterLowPowerMode();
 }
}

Code 3-1 app_main function example

Bluetooth LE Protocol Stack initialization (R_BLE_Open)

Note: Be sure to call at the beginning of the app_main function.

Board initialization (BLE_BOARD_Init)

MCU low Power Consumption function initialization (R_BLE_LPC_Init)

Application timer initialization (R_BLE_TIMER_Init)

Command line initialization (R_BLE_CLI_Init)

Host stack and profile initialization (ble_app_init)

Main loop (Call R_BLE_Execute, Transition to MCU low power
consumption state by R_BLE_LPC_EnterLowPowerMode)

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 44 of 244
Dec.27.22

3.2.1 Initialize process (ble_app_init function)
The ble_app_init function initializes the host stack and profile. Register the callback function and GATT
database.
Note: When using QE for BLE, the source code of the ble_app_init function is automatically generated.

Code 3-2 shows an example of the ble_app_init function.

static ble_status_t ble_app_init(void)
{
 ble_status_t status;

 g_conn_hdl = BLE_GAP_INVALID_CONN_HDL;
 gs_timer_hdl = BLE_TIMER_INVALID_HDL;

 /* Initialize host stack */
 status = R_BLE_ABS_Init(&gs_abs_init_param);
 if (BLE_SUCCESS != status)
 {
 return BLE_ERR_INVALID_OPERATION;
 }

 /* Initialize GATT Database */
 status = R_BLE_GATTS_SetDbInst(&g_gatt_db_table);
 if (BLE_SUCCESS != status)
 {
 return BLE_ERR_INVALID_OPERATION;
 }

 /* Initialize GATT Server */
 status = R_BLE_SERVS_Init();
 if (BLE_SUCCESS != status)
 {
 return BLE_ERR_INVALID_OPERATION;
 }

 /* Initialize GATT client */
 status = R_BLE_SERVC_Init();
 if (BLE_SUCCESS != status)
 {
 return BLE_ERR_INVALID_OPERATION;
 }

 /* Initialize GATT Discovery Library */
 status = R_BLE_DISC_Init();
 if (BLE_SUCCESS != status)
 {
 return BLE_ERR_INVALID_OPERATION;
 }

 /* Initialize LED and Switch Service */
 status = R_BLE_LSC_Init(lss_cb);
 if (BLE_SUCCESS != status)
 {
 return BLE_ERR_INVALID_OPERATION;
 }

 /* Create timer for LED blink */
 status = R_BLE_TIMER_Create(&gs_timer_hdl, 1, BLE_TIMER_PERIODIC, timer_cb);
 if (BLE_SUCCESS != status)
 {
 return BLE_ERR_INVALID_OPERATION;
 }

 return status;
}

Code 3-2 ble_app_init function example

Host stack initialization (R_BLE_ABS_Init)
Note: When not using Abstraction API, use below.
R_BLE_GAP_Init
R_BLE_VS_Init
R_BLE_GATTS_Init
R_BLE_GATTC_Init

GATT database registration (R_BLE_GATTS_SetDbInst)
Note: Code-generated when GATT role is set as whichever
Server and Client by QE for BLE.

GATT Server function initialization (R_BLE_SERVS_Init)
Note: Code-generated when GATT role is set as whichever Server and Client by QE
for BLE.

Software timer creation (R_BLE_TIMER_Create)

GATT Client function initialization (R_BLE_SERVC_Init)
Note: Code-generated when GATT role is set as whichever Server and Client by
QE for BLE.

Service Discovery function initialization (R_BLE_DISC_Init)
Note: Code-generated when GAP role is set as Central by QE for BLE.

Service initialization
(R_BLE_[service name]S_Init or R_BLE_[service name]C_Init)
Note: Code-generated as R_BLE_[service name]S_Init) when GATT
role is set as Server by QE for BLE.
Note: Code-generated as R_BLE_[service name]C_Init) when GATT
role is set as Client by QE for BLE.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 45 of 244
Dec.27.22

3.2.1.1 Registering callback function
By registering the callback function in the application, it is possible to process at the reception timing of
various events. Table 3.2 shows the callback registration API of each function block.

Table 3.2 Callback registration API

Function block Callback registration API Comment

GAP R_BLE_ABS_Init or
R_BLE_GAP_Init

Registered callback function is called
when receiving the result of
R_BLE_GAP_XXX such as
Advertising, Scan, Connection
establishment and so on.

GATT Server
(Profile common)

R_BLE_ABS_Init or
R_BLE_GATTS_RegisterCb

Registered callback function is called
when accessed from GATT Client.

GATT Client
(Profile common)

R_BLE_ABS_Init or
R_BLE_GATTC_RegisterCb

Registered callback function is called
when accessed from GATT Server.

Service Discovery
(Profile common) R_BLE_DISC_Start() Registered callback function is called

when completing Service Discovery.

Vendor Specific R_BLE_ABS_Init or
R_BLE_VS_Init

Registered callback function is called
when receiving the result of
R_BLE_VS_XXX.

L2CAP R_BLE_L2CAP_RegisterCfPsm()

Registered callback function is called
when receiving the result of
R_BLE_L2CAP_XXX such as that
the response of L2CAP Credit-Based
Flow Control request is received,
L2CAP Credit-Based Flow Control is
received and so on.
Note: Not code-generated by QE for
BLE.

LED and Switch
control R_BLE_BOARD_RegisterSwitchCb()

Registered callback function is called
when receiving the result of
R_BLE_BOARD_XXX such as that
the board switch is pushed and so
on.
Note: Not code-generated by QE for
BLE.

Software timer R_BLE_TIMER_Create()

Registered callback function is called
when receiving the result of
R_BLE_TIMER_XXX such as that the
specifying time has passed and so
on.
Note: Not code-generated by QE for
BLE.

Server-side profile
API

R_BLE_XXXS_Init()
(XXX is Service name)

Registered callback function is called
when accessed from Client.

Client-side profile API
R_BLE_XXXC_Init()
(XXX is Service name)

Registered callback function is called
when accessed from Server.

Note: R_BLE_ABS_Init can register GAP, GATT Server, GATT Client, and VS callback functions together.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 46 of 244
Dec.27.22

3.2.1.2 Registering GATT database (R_BLE_GATTS_SetDbInst)
When creating a GATT service application that operates as a GATT server, QE for BLE generates a service
database code in the following file.

 gatt_db.c
 gatt_db.h

This GATT database is registered in the application by R_BLE_GATTS_SetDbInst.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 47 of 244
Dec.27.22

3.2.2 Main loop and scheduler (R_BLE_Execute)
Bluetooth LE Protocol Stack uses a scheduler to process the API called by the application. Please call
R_BLE_Execute in the main loop to operate the scheduler. The event that occurred is notified to the
registered callback function.

The scheduler processes the task according to the message queue sent to the task of each layer of
Bluetooth LE Protocol Stack by R_BLE_Execute. Figure 3-2 shows the basic sequence chart of Bluetooth LE
Protocol Stack.

Figure 3-2 Basic sequence chart of Bluetooth LE Protocol Stack

R_BLE API Scheduler Host Stack Link Layer(LL) BLE H/WApplication

Call R_BLE API

return R_BLE API

Send Message to
Host Stack

Call R_BLE_Execute()

return R_BLE_Execute()

Execute Task

return

Send Message to LL

Execute Task

return

Access BLE H/W
Send Message to Host Stack

BLE Interrupt

Execute Task

return
return

callback
R_BLE event callback

return

Send Message to LL

Call R_BLE_Execute()

return R_BLE_Execute()

Execute Task

return

Access BLE H/W
Send Message to Host Stack

Execute Task

return

callback

return

R_BLE event callback

return

Function Call

Send Message

return

BLE Interrupt

Access BLE H/W

Software HardwareSource Code Library
Bluetooth LE Protcol Stack

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 48 of 244
Dec.27.22

3.2.3 End process
If your application exits from the main loop, call the following APIs to terminate the Bluetooth LE Protocol
Stack and app_lib.

[Bluetooth LE Protocol Stack]

R_BLE_Close()

R_BLE_GAP_Terminate()

[Software Timer]

R_BLE_TIMER_Terminate()

[Command Line]

R_BLE_CLI_Terminate()

The Abstraction API provides R_BLE_ABS_Reset() as the finalization sample. This API calls the above
APIs.

Note: Since R_BLE_Close() stops RF H/W, when resetting software during RF communication, be sure to
call R_BLE_Close() before resetting.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 49 of 244
Dec.27.22

3.3 GAP event (gap_cb function)
GAP callback function receives following events.

enum e_ble_gap_evt_t {
 BLE_GAP_EVENT_INVALID = 0x1001,
 BLE_GAP_EVENT_STACK_ON,
 BLE_GAP_EVENT_STACK_OFF,
 BLE_GAP_EVENT_LOC_VER_INFO,
 BLE_GAP_EVENT_HW_ERR,
 BLE_GAP_EVENT_CMD_ERR = 0x1101,
 BLE_GAP_EVENT_ADV_REPT_IND,
 BLE_GAP_EVENT_ADV_PARAM_SET_COMP,
 BLE_GAP_EVENT_ADV_DATA_UPD_COMP,
 BLE_GAP_EVENT_ADV_ON,
 BLE_GAP_EVENT_ADV_OFF,
 BLE_GAP_EVENT_PERD_ADV_PARAM_SET_COMP,
 BLE_GAP_EVENT_PERD_ADV_ON,
 BLE_GAP_EVENT_PERD_ADV_OFF,
 BLE_GAP_EVENT_ADV_SET_REMOVE_COMP,
 BLE_GAP_EVENT_SCAN_ON,
 BLE_GAP_EVENT_SCAN_OFF,
 BLE_GAP_EVENT_SCAN_TO,
 BLE_GAP_EVENT_CREATE_CONN_COMP,
 BLE_GAP_EVENT_CONN_IND,
 BLE_GAP_EVENT_DISCONN_IND,
 BLE_GAP_EVENT_CONN_CANCEL_COMP,
 BLE_GAP_EVENT_WHITE_LIST_CONF_COMP,
 BLE_GAP_EVENT_RAND_ADDR_SET_COMP,
 BLE_GAP_EVENT_CH_MAP_RD_COMP,
 BLE_GAP_EVENT_CH_MAP_SET_COMP,
 BLE_GAP_EVENT_RSSI_RD_COMP,
 BLE_GAP_EVENT_GET_REM_DEV_INFO,
 BLE_GAP_EVENT_CONN_PARAM_UPD_COMP,
 BLE_GAP_EVENT_CONN_PARAM_UPD_REQ,
 BLE_GAP_EVENT_AUTH_PL_TO_EXPIRED,
 BLE_GAP_EVENT_SET_DATA_LEN_COMP,
 BLE_GAP_EVENT_DATA_LEN_CHG,
 BLE_GAP_EVENT_RSLV_LIST_CONF_COMP,
 BLE_GAP_EVENT_RPA_EN_COMP,
 BLE_GAP_EVENT_SET_RPA_TO_COMP,
 BLE_GAP_EVENT_RD_RPA_COMP,
 BLE_GAP_EVENT_PHY_UPD,
 BLE_GAP_EVENT_PHY_SET_COMP,
 BLE_GAP_EVENT_DEF_PHY_SET_COMP,
 BLE_GAP_EVENT_PHY_RD_COMP,
 BLE_GAP_EVENT_SCAN_REQ_RECV,
 BLE_GAP_EVENT_CREATE_SYNC_COMP,
 BLE_GAP_EVENT_SYNC_EST,
 BLE_GAP_EVENT_SYNC_TERM,
 BLE_GAP_EVENT_SYNC_LOST,
 BLE_GAP_EVENT_SYNC_CREATE_CANCEL_COMP,
 BLE_GAP_EVENT_PERD_LIST_CONF_COMP,
 BLE_GAP_EVENT_PRIV_MODE_SET_COMP,
 BLE_GAP_EVENT_PAIRING_REQ = 0x1401,
 BLE_GAP_EVENT_PASSKEY_ENTRY_REQ,
 BLE_GAP_EVENT_PASSKEY_DISPLAY_REQ,
 BLE_GAP_EVENT_NUM_COMP_REQ,
 BLE_GAP_EVENT_KEY_PRESS_NTF,
 BLE_GAP_EVENT_PAIRING_COMP,
 BLE_GAP_EVENT_ENC_CHG,
 BLE_GAP_EVENT_PEER_KEY_INFO,
 BLE_GAP_EVENT_EX_KEY_REQ,
 BLE_GAP_EVENT_LTK_REQ,
 BLE_GAP_EVENT_LTK_RSP_COMP,
 BLE_GAP_EVENT_SC_OOB_CREATE_COMP
}

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 50 of 244
Dec.27.22

Reception condition of the frequently occurring events are shown below.

Table 3.3 Frequently occurring event of GAP callback

Event Reception condition
BLE_GAP_EVENT_STACK_ON(0x1001) Complete R_BLE_GAP_Init
BLE_GAP_EVENT_ADV_PARAM_SET_COMP(0x1003) Complete R_BLE_GAP_SetAdvParam
BLE_GAP_EVENT_ADV_DATA_UPD_COMP (0x1004) Complete R_BLE_GAP_SetAdvSresData
BLE_GAP_EVENT_ADV_ON (0x1005) Start Advertising
BLE_GAP_EVENT_ADV_OFF (0x1006) End Advertising
BLE_GAP_EVENT_SCAN_ON (0x1111) Start Scan
BLE_GAP_EVENT_SCAN_OFF (0x1112) End Scan
BLE_GAP_EVENT_CONN_IND (0x1115) Start Connection
BLE_GAP_EVENT_CONN_IND (0x1115) End Connection
BLE_GAP_EVENT_DISCONN_IND (0x1116) End Disconnection

GAP callback function is following.

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 ble_app_gapcb(type, result, p_data);

 switch(type)
 {
 /* TODO: Set callback events of GAP. Check BLE API reference for events. */
 Note: Add processing when an event is received here.

Code 3-3 GAP callback function

Note: If the result is other than BLE_SUCCESS, the data notified by p_data will be an undefined value.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 51 of 244
Dec.27.22

3.4 GATTS event (gatts_cb function)
GATT server (GATTS) callback function receives following events.

enum e_r_ble_gatts_evt_t {
 BLE_GATTS_EVENT_EX_MTU_REQ = 0x3002,
 BLE_GATTS_EVENT_READ_BY_TYPE_RSP_COMP = 0x3009,
 BLE_GATTS_EVENT_READ_RSP_COMP = 0x300B,
 BLE_GATTS_EVENT_READ_BLOB_RSP_COMP = 0x300D,
 BLE_GATTS_EVENT_READ_MULTI_RSP_COMP = 0x300F,
 BLE_GATTS_EVENT_WRITE_RSP_COMP = 0x3013,
 BLE_GATTS_EVENT_PREPARE_WRITE_RSP_COMP = 0x3017,
 BLE_GATTS_EVENT_EXE_WRITE_RSP_COMP = 0x3019,
 BLE_GATTS_EVENT_HDL_VAL_CNF = 0x301E,
 BLE_GATTS_EVENT_DB_ACCESS_IND = 0x3040,
 BLE_GATTS_EVENT_CONN_IND = 0x3081,
 BLE_GATTS_EVENT_DISCONN_IND = 0x3082,
 BLE_GATTS_EVENT_INVALID = 0x30FF
}

Reception condition of frequently occurring events are shown below.

Table 3.4 Frequently occurring events of GATTS callback

Event Reception condition
BLE_GATTS_EVENT_CONN_IND(0x3081) Establish Connection

BLE_GATTS_EVENT_EX_MTU_REQ(0x3002) Changing MTU is requested from GATT Client
after Connection

BLE_GATTS_EVENT_DB_ACCESS_IND(0x3040) Accessed to GATT database
BLE_GATTS_EVENT_READ_BY_TYPE_RSP_COMP(0x3009) Complete sending Read By Type Response
BLE_GATTS_EVENT_WRITE_RSP_COMP(0x3013) Complete sending Write Response

BLE_GATTS_EVENT_HDL_VAL_CNF(0x301E) Complete receiving Confirmation from GATT
Client

BLE_GATTS_EVENT_DISCONN_IND(0x3082) End Disconnection

GATTS callback function is following.

static void gatts_cb(uint16_t type, ble_status_t result, st_ble_gatts_evt_data_t *p_data)
{
 R_BLE_SERVS_GattsCb(type, result, p_data);

 switch(type)
 {
 /* TODO: Set callback events of GATTS. Check BLE API reference for events. */
 Note: Add processing when an event is received here.

Code 3-4 GATTS callback function

Note: If the result is other than BLE_SUCCESS, the data notified by p_data will be an undefined value.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 52 of 244
Dec.27.22

3.5 GATTC event (gattc_cb function)
GATT client (GATTC) callback function receives following events.

enum e_r_ble_gattc_evt_t {
 BLE_GATTC_EVENT_ERROR_RSP = 0x4001,
 BLE_GATTC_EVENT_EX_MTU_RSP = 0x4003,
 BLE_GATTC_EVENT_CHAR_READ_BY_UUID_RSP = 0x4009,
 BLE_GATTC_EVENT_CHAR_READ_RSP = 0x400B,
 BLE_GATTC_EVENT_CHAR_PART_READ_RSP = 0x400D,
 BLE_GATTC_EVENT_MULTI_CHAR_READ_RSP = 0x400F,
 BLE_GATTC_EVENT_CHAR_WRITE_RSP = 0x4013,
 BLE_GATTC_EVENT_CHAR_PART_WRITE_RSP = 0x4017,
 BLE_GATTC_EVENT_HDL_VAL_NTF = 0x401B,
 BLE_GATTC_EVENT_HDL_VAL_IND = 0x401D,
 BLE_GATTC_EVENT_CONN_IND = 0x4081,
 BLE_GATTC_EVENT_DISCONN_IND = 0x4082,
 BLE_GATTC_EVENT_PRIM_SERV_16_DISC_IND = 0x40E0,
 BLE_GATTC_EVENT_PRIM_SERV_128_DISC_IND = 0x40E1,
 BLE_GATTC_EVENT_ALL_PRIM_SERV_DISC_COMP = 0x40E2,
 BLE_GATTC_EVENT_PRIM_SERV_DISC_COMP = 0x40E3,
 BLE_GATTC_EVENT_SECOND_SERV_16_DISC_IND = 0x40E4,
 BLE_GATTC_EVENT_SECOND_SERV_128_DISC_IND = 0x40E5,
 BLE_GATTC_EVENT_ALL_SECOND_SERV_DISC_COMP = 0x40E6,
 BLE_GATTC_EVENT_INC_SERV_16_DISC_IND = 0x40E7,
 BLE_GATTC_EVENT_INC_SERV_128_DISC_IND = 0x40E8,
 BLE_GATTC_EVENT_INC_SERV_DISC_COMP = 0x40E9,
 BLE_GATTC_EVENT_CHAR_16_DISC_IND = 0x40EA,
 BLE_GATTC_EVENT_CHAR_128_DISC_IND = 0x40EB,
 BLE_GATTC_EVENT_ALL_CHAR_DISC_COMP = 0x40EC,
 BLE_GATTC_EVENT_CHAR_DISC_COMP = 0x40ED,
 BLE_GATTC_EVENT_CHAR_DESC_16_DISC_IND = 0x40EE,
 BLE_GATTC_EVENT_CHAR_DESC_128_DISC_IND = 0x40EF,
 BLE_GATTC_EVENT_ALL_CHAR_DESC_DISC_COMP = 0x40F0,
 BLE_GATTC_EVENT_LONG_CHAR_READ_COMP = 0x40F1,
 BLE_GATTC_EVENT_LONG_CHAR_WRITE_COMP = 0x40F2,
 BLE_GATTC_EVENT_RELIABLE_WRITES_TX_COMP = 0x40F3,
 BLE_GATTC_EVENT_RELIABLE_WRITES_COMP = 0x40F4,
 BLE_GATTC_EVENT_INVALID = 0x40FF
}

Reception condition of frequently occurring events are shown below.

Table 3.5 Frequently occurring events of GATTC callback

Event Reception condition
BLE_GATTC_EVENT_CONN_IND(0x4081) Establish Connection

BLE_GATTC_EVENT_EX_MTU_RSP(0x4003) Request Changing MTU to GATT Server after Connection and
receive normal response

BLE_GATTC_EVENT_ERROR_RSP(0x4001) Receive error response from GATT Server
BLE_GATTC_EVENT_HDL_VAL_NTF(0x401B) Complete receiving Notification
BLE_GATTC_EVENT_HDL_VAL_IND(0x401D) Complete receiving Indication
BLE_GATTC_EVENT_DISCONN_IND(0x4082) End Disconnection

GATTC callback function is following.

static void gattc_cb(uint16_t type, ble_status_t result, st_ble_gattc_evt_data_t *p_data)
{
 R_BLE_SERVC_GattcCb(type, result, p_data);

 switch(type)
 {
 /* TODO: Set callback events of GATTC. Check BLE API reference for events. */
 Note: Add processing when an event is received here.

Code 3-5 GATTC callback function

Note: If the result is other than BLE_SUCCESS, the data notified by p_data will be an undefined value.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 53 of 244
Dec.27.22

3.6 VS event (vs_cb function)
Vender specific (VS) callback function receives following events.

enum e_r_ble_vs_evt_t {
 BLE_VS_EVENT_SET_TX_POWER = 0x8001,
 BLE_VS_EVENT_GET_TX_POWER = 0x8002,
 BLE_VS_EVENT_TX_TEST_START = 0x8003,
 BLE_VS_EVENT_TX_TEST_TERM = 0x8004,
 BLE_VS_EVENT_RX_TEST_START = 0x8005,
 BLE_VS_EVENT_TEST_END = 0x8006,
 BLE_VS_EVENT_SET_CODING_SCHEME_COMP = 0x8007,
 BLE_VS_EVENT_RF_CONTROL_COMP = 0x8008,
 BLE_VS_EVENT_SET_ADDR_COMP = 0x8009,
 BLE_VS_EVENT_GET_ADDR_COMP = 0x800A,
 BLE_VS_EVENT_GET_RAND = 0x800B,
 BLE_VS_EVENT_TX_FLOW_STATE_CHG = 0x800C,
 BLE_VS_EVENT_FAIL_DETECT = 0x800D,
 BLE_VS_EVENT_SET_SCAN_CH_MAP = 0x800E,
 BLE_VS_EVENT_GET_SCAN_CH_MAP = 0x800F,
 BLE_VS_EVENT_INVALID = 0x80FF
}

Reception condition of frequently occurring events are shown below.

Table 3.6 Frequently occurring events of VS callback

Event Reception condition
BLE_VS_EVENT_SET_TX_POWER(0x8001) Complete R_BLE_VS_SetTxPower
BLE_VS_EVENT_GET_TX_POWER(0x8002) Complete R_BLE_VS_GetTxPower
BLE_VS_EVENT_SET_ADDR_COMP(0x8009) Complete R_BLE_VS_SetBdAddr
BLE_VS_EVENT_GET_ADDR_COMP(0x800A) Complete R_BLE_VS_GetBdAddr

VS callback function is following.

static void vs_cb(uint16_t type, ble_status_t result, st_ble_vs_evt_data_t *p_data)
{
 R_BLE_SERVS_VsCb(type, result, p_data);

 switch(type)
 {
 /* TODO: Set callback events of VS. Check BLE API reference for events. */
 Note: Add processing when an event is received here.

Code 3-6 VS callback function

Note: If the result is other than BLE_SUCCESS, the data notified by p_data will be an undefined value.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 54 of 244
Dec.27.22

3.7 Server-side Profile API event ([service_name]s_cb function)
Callback function of the server-side Profile API receives following events.

enum e_ble_servs_event_t {
 BLE_SERVS_WRITE_REQ = 0x00,
 BLE_SERVS_WRITE_CMD = 0x01,
 BLE_SERVS_WRITE_COMP = 0x02,
 BLE_SERVS_READ_REQ = 0x03,
 BLE_SERVS_HDL_VAL_CNF = 0x04
}

enum e_ble_[service name]s_event_t {
 BLE_[service name]S_EVENT_[characteristic name]_WRITE_REQ = 0xXX00,
 BLE_[service name]S_EVENT_[characteristic name]_WRITE_CMD= 0xXX01,
 BLE_[service name]S_EVENT_[characteristic name]_WRITE_COMP = 0xXX02,
 BLE_[service name]S_EVENT_[characteristic name]_READ_REQ = 0xXX03,
 BLE_[service name]S_EVENT_[characteristic name]_HDL_VAL_CNF = 0xXX04,
 BLE_[service name]S_EVENT_[characteristic name]_[descriptor name]_WRITE_REQ = 0xYY00,
 BLE_[service name]S_EVENT_[characteristic name]_[descriptor name]_READ_REQ = 0xYY03,
 :
 :
}

Note: The 10th to 15th bits are serial numbers that distinguish attributes (characteristics and descriptors). XX and YY are 00, 04, 08,
10, ..., FC.

Reception condition of frequently occurring events are shown below.

Table 3.7 Frequently occurring events of Profile Server callback

Event Reception condition
XXX_WRITE_REQ (0xXXX0) Complete receiving Write Request
XXX_WRITE_CMD (0xXXX1) Complete receiving Write Without Response
XXX_WRITE_COMP (0xXXX2) Complete sending Write Response
XXX_READ_REQ (0xXXX3) Complete receiving Read Request
XXX_HDL_VAL_CNF (0xXXX4) Complete receiving Confirmation

Callback function of server-side profile API is following. (Example of ls service)

static void lss_cb(uint16_t type, ble_status_t result, st_ble_servs_evt_data_t *p_data)
{
 switch(type)
 {
 Note: Add processing when an event is received here.

Code 3-7 Profile Server callback function

Note: If the result is other than BLE_SUCCESS, the data notified by p_data will be an undefined value.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 55 of 244
Dec.27.22

3.8 Client-side Profile API event ([service_name]c_cb function)
Callback function of the client-side profile API receives following events.

enum e_ble_servc_event_t {
 BLE_SERVC_WRITE_RSP,
 BLE_SERVC_READ_RSP,
 BLE_SERVC_HDL_VAL_NTF,
 BLE_SERVC_HDL_VAL_IND
}

enum e_ble_[service name]c_event_t {
 BLE_[service name]C_EVENT_[characteristic name]_WRITE_RSP = 0xXX00,
 BLE_[service name]C_EVENT_[characteristic name]_READ_RSP= 0xXX01,
 BLE_[service name]C_EVENT_[characteristic name]_HDL_VAL_NTF = 0xXX02,
 BLE_[service name]C_EVENT_[characteristic name]_HDL_VAL_IND = 0xXX03,
 BLE_[service name]C_EVENT_[characteristic name]_[descriptor name]_WRITE_RSP = 0xYY00,
 BLE_[service name]C_EVENT_[characteristic name]_[descriptor name]_READ_RSP = 0xYY01,
 :
 :
}

Note: The 10th to 15th bits are serial numbers that distinguish attributes (characteristics and descriptors). XX and YY are 00, 04, 08,
10, ..., FC.

Reception condition of the frequently occurring events are shown below.

Table 3.8 Frequently occurring events of Profile Client callback

Event Reception condition
XXX_WRITE_RSP (0xXXX0) Complete receiving Write Response
XXX_READ_RSP (0xXXX1) Complete receiving Read Response
XXX_HDL_VAL_NTF (0xXXX2) Complete receiving Notification
XXX_HDL_VAL_IND (0xXXX3) Complete receiving Indication

Callback function of client-side profile API is following. (Example of ls service)

static void lsc_cb(uint16_t type, ble_status_t result, st_ble_servc_evt_data_t *p_data)
{
 (void)result;
 (void)p_data;

 switch (type)
 {
 /* TODO: Set callback events of lsc. Check BLE API reference or e_ble_lsc_event_t for events. */
 Note: Add processing when an event is received here.

Code 3-8 Profile Client callback function

Note: If the result is other than BLE_SUCCESS, the data notified by p_data will be an undefined value.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 56 of 244
Dec.27.22

3.9 L2CAP event
L2CAP callback function receives following events.

enum e_r_ble_l2cap_cf_evt_t {
 BLE_L2CAP_EVENT_CF_CONN_CNF = 0x5001,
 BLE_L2CAP_EVENT_CF_CONN_IND = 0x5002,
 BLE_L2CAP_EVENT_CF_DISCONN_CNF = 0x5003,
 BLE_L2CAP_EVENT_CF_DISCONN_IND = 0x5004,
 BLE_L2CAP_EVENT_CF_RX_DATA_IND = 0x5005,
 BLE_L2CAP_EVENT_CF_LOW_RX_CRD_IND = 0x5006,
 BLE_L2CAP_EVENT_CF_TX_CRD_IND = 0x5007,
 BLE_L2CAP_EVENT_CF_TX_DATA_CNF = 0x5008,
 BLE_L2CAP_EVENT_CMD_REJ = 0x5009
}

L2CAP callback function is following.

static void l2cap_cb(uint16_t type, ble_status_t result, st_ble_l2cap_cf_evt_data_t *p_data)
{
 switch (type)
 {
 Note: Add processing when an event is received here.

Code 3-9 L2CAP callback function

Note: If the result is other than BLE_SUCCESS, the data notified by p_data will be an undefined value.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 57 of 244
Dec.27.22

3.10 Event notification function (R_BLE_SetEvent)
Calling R_BLE_SetEvent enables to queue events to the scheduler of Bluetooth LE Protocol Stack.

Bluetooth LE Protocol Stack checks the event status with R_BLE_Execute, if the event is queued, calls the
callback function registered with R_BLE_SetEvent.

Note: The maximum number of events that can be queued is 8.

This function is mainly used in the following cases.

 The time-consuming processing in the interrupt handler should be executed outside the interrupt
handler.
Note: RF control processing of Bluetooth LE Protocol Stack is processed by MCU with high priority. To
reduce the impact on RF control processing, it is recommended that the application processing time is
short (recommended time is within 30% of RF idle time after completion of RF event processing). Use
R_BLE_SetEvent to divide long-time processing into multiple callbacks and execute.

 The function that cannot be executed in the interrupt handler should be called outside the interrupt
handler.

The sequence chart of R_BLE_SetEvent is shown below.

Figure 3-3 Sequence chart of R_BLE_SetEvent

Code 3-10 shows a sample of turning on/off the LED between RF control processing (Advertising). In order
to reduce the influence on the next Advertising, the event is queued at the end of Advertising and the LED is
turned on and off.

[src\smc_gen\r_ble_rx23w\src\platform\r_ble_pf_functions.c]
extern void sw_ntf_recv_event(void);
BLE_SECTION_P void r_ble_rf_notify_event_close(uint32_t param)
{
 /* Note: Do not processing long time here. */
 switch((uint16_t)(param>>16))
 {
 case BLE_EVENT_TYPE_ADV:
 {
 R_BLE_SetEvent(sw_ntf_recv_event);
 } break;

R_BLE API Scheduler Host Stack

Call R_BLE SetEvent

return R_BLE SetEvent

Send Message to
Host Stack

Call R_BLE_Execute()

return R_BLE_Execute()

Execute Task

return

callback

return

R_BLE event callback

return

Link Layer(LL) BLE H/WApplication

Function Call

Send Message

return

BLE Interrupt

Access BLE H/W

Software HardwareSource Code Library
Bluetooth LE Protcol Stack

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 58 of 244
Dec.27.22

 }
}

[app_main.c]
#include "board/r_ble_board.h"

void sw_ntf_recv_event(void)
{
 R_BLE_BOARD_ToggleLEDState(BLE_BOARD_LED1);
}

void app_main(void)
{
 /* Configure the board */
 R_BLE_BOARD_Init();

Note: LED and Switch control function is used. Refer to "1.5.1 Main Functions" to enable the functions and generate code.
Note: RF communication timing notification function is used. Double-click [project name].scfg in e2studio, change [Component]
[Middleware] [Generic] [r_ble_rx23w] [Advertising event close notify.] to “Enable”, and generate code.

Code 3-10 Event notification example (1)

Code 3-11 shows a sample of queuing an event from the interrupt handler sw_cb and turning on/off the LED
when SW1 is pressed.

[app_main.c]
#include "board/r_ble_board.h"

void sw_ntf_recv_event(void)
{
 R_BLE_BOARD_ToggleLEDState(BLE_BOARD_LED1);
}

static void sw_cb(void)
{
 R_BLE_SetEvent(sw_ntf_recv_event);
}

void app_main(void)
{
 /* Configure the board */
 R_BLE_BOARD_Init();
 R_BLE_BOARD_RegisterSwitchCb(BLE_BOARD_SW2, sw_cb);

Note: LED and Switch control function is used. Refer to "1.5.1 Main Functions" to enable the functions and generate code.

Code 3-11 Event notification example (2)

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 59 of 244
Dec.27.22

3.11 RF communication timing notification
In order to perform application development synchronized with RF event shown in "1.5 Bluetooth LE Protocol
Stack Operation Overview", it is necessary to use the RF communication timing notification function and
"3.10 Event notification function (R_BLE_SetEvent)". The following shows how to use RF communication
timing notification function.

Select the communication timing wanted to notify from the following settings and set it to "Enable".

Table 3.9 Configuration of RF communication timing notification

Configuration option Value
BLE_CFG_EVENT_NOTIFY_CONN_START 1: Enable
BLE_CFG_EVENT_NOTIFY_CONN_CLOSE 1: Enable
BLE_CFG_EVENT_NOTIFY_ADV_START 1: Enable
BLE_CFG_EVENT_NOTIFY_ADV_CLOSE 1: Enable
BLE_CFG_EVENT_NOTIFY_SCAN_START 1: Enable
BLE_CFG_EVENT_NOTIFY_SCAN_CLOSE 1: Enable
BLE_CFG_EVENT_NOTIFY_INIT_START 1: Enable
BLE_CFG_EVENT_NOTIFY_INIT_CLOSE 1: Enable
BLE_CFG_EVENT_NOTIFY_DS_START 1: Enable
BLE_CFG_EVENT_NOTIFY_DS_WAKEUP 1: Enable

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 60 of 244
Dec.27.22

The sequence chart of RF communication timing notification is shown below.

Figure 3-4 Sequence chart of RF communication timing notification

The following is the sample that displays the log on the command line using R_BLE_SetEvent in the
reception of RF communication timing. This sample uses Command line function. Enable the function and
code-generate, referring to "1.6.1 Primary functions".

R_BLE API Scheduler Host Stack Link Layer(LL) BLE H/WApplication

Call R_BLE API

return R_BLE API

Send Message to
Host Stack

Call R_BLE_Execute()

return R_BLE_Execute()

Execute Task

return

Send Message to LL

Execute Task

return

Access BLE H/W
Send Message to Host Stack

BLE Interrupt

Execute Task

return
return

callback
R_BLE event callback

return

Send Message to LL

Call R_BLE_Execute()

return R_BLE_Execute()

Execute Task

return

Access BLE H/W
Send Message to Host Stack

Execute Task

return

callback

return

R_BLE event callback

return

Function Call

Send Message

return

BLE Interrupt

Access BLE H/W

Software HardwareSource Code Library
Bluetooth LE Protcol Stack

r_ble_event_notify_xxx callback

return

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 61 of 244
Dec.27.22

The following code makes logs of RF communication timing notification outputted.
[src\smc_gen\r_ble_rx23w\src\platform\r_ble_pf_functions.c]
(OMISSION)

#include "cli/r_ble_cli.h"
#define pf R_BLE_CLI_Printf
void rf_ntf_recv_event(void)
{
 pf("RF event has come!!\n");
}

(OMISSION)

BLE_SECTION_P void r_ble_rf_notify_event_start(uint32_t param)
{
 /* Note: Do not processing long time here. */
 switch((uint16_t)(param>>16))
 {
 case 0x0000:/*BLE_EVENT_TYPE_CONN*/
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 case 0x0001:/*BLE_EVENT_TYPE_ADV*/
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 case 0x0002:/*BLE_EVENT_TYPE_SCAN*/
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 case 0x0003:/*BLE_EVENT_TYPE_INITIATOR*/
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 }
}

(OMISSION)

BLE_SECTION_P void r_ble_rf_notify_event_close(uint32_t param)
{
 /* Note: Do not processing long time here. */
 switch((uint16_t)(param>>16))
 {
 case 0x0000:/*BLE_EVENT_TYPE_CONN*/
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 case 0x0001:/*BLE_EVENT_TYPE_ADV*/
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 case 0x0002:/*BLE_EVENT_TYPE_SCAN*/
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 case 0x0003:/*BLE_EVENT_TYPE_INITIATOR*/
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 }
}

(OMISSION)

BLE_SECTION_P void r_ble_rf_notify_deep_sleep(uint32_t param)
{
 /* Note: Do not processing long time here. */
 switch(param)
 {
 case BLE_EVENT_TYPE_RF_DS_START:
 {

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 62 of 244
Dec.27.22

 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 case BLE_EVENT_TYPE_RF_DS_CLOSE:
 {
 R_BLE_SetEvent(rf_ntf_recv_event);
 } break;
 }
}

(OMISSION)

Code 3-12 Sample log display of RF communication timing notification (r_ble_pf_functions.c)

The following code operates only the input and output of Command line function.

[app_main.c]
(OMISSION)

#include "cli/r_ble_cli.h"

(OMISSION)

void app_main(void)
{
 (OMISSION)
 /* Configure CommandLine */
 R_BLE_CLI_Init();
 (OMISSION)
 while (1)
 {
 /* Process Command Line */
 R_BLE_CLI_Process();
 (OMISSION)

Code 3-13 Sample log display of RF communication timing notification (app_main.c)

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 63 of 244
Dec.27.22

4. app_lib
The app_lib is the supplementary library to assist application development. By using app_lib, you can easily
realize the basic operation of Bluetooth LE.

4.1 Software Timer
Software Timer provides timer functionality to applications.

The features of Software Timer are as follows:

• Software Timer uses one channel of Compare Match Timer (CMT). To control CMT, CMT FIT Module
(r_cmt_rx) is used. A CMT channel used is allocated by the r_cmt_rx dynamically, then the channel is
released when application finishes using Software Timer.

• Timeout time of Software Timer is specified in units of milliseconds. Callback function is invoked when
Software Timer is triggered and the timeout time expires.

• Software Timer has two operation modes.

 Periodic Notification mode (BLE_TIMER_PERIODIC): Once application starts operation of
Software Timer channel, expiration of timeout time is notified periodically.

 One-Shot Notification mode (BLE_TIMER_ONE_SHOT): When application starts operation of
Software Timer channel, expiration of timeout time is notified only once.

• Software Timer has multiple channels. Timeout time, operation mode, and callback function can be set
independently for each channel.

• The number of Software Timer channels is defined by the BLE_TIMER_NUM_OF_SLOT macro (default
is 10) and can be changed. Note that 24bytes management area is required on RAM per channel.

Notes for using Software Timer are as follows:

• If a long timeout time is specified, or if multiple channels are used, timeout is delayed because CMT
operation is started and stopped repeatedly.

• CMT suspends its operation on Software Standby Mode, which is low power consumption mode of CPU.
Do not transition to Software Standby Mode while Software Timer is running.

• Abstraction API uses Software Timer. If application uses Abstraction API, invoke the
R_BLE_TIMER_Init(), which is the initialization function of Software Timer, before invoking
R_BLE_ABS_Init(), which is the initialization function of Abstraction API.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 64 of 244
Dec.27.22

Software Timer provides the following API to applications. For more information about API specification, refer
to the R_BLE API documentation.

Table 4.1 Software Timer API

Software Timer API Description

R_BLE_TIMER_Init Initialize Software Timer
R_BLE_TIMER_Terminate Terminate Software Timer
R_BLE_TIMER_Create Allocate Software Timer channel and set operation parameters
R_BLE_TIMER_Delete Release Software Timer channel
R_BLE_TIMER_Start Start operation of Software Timer channel
R_BLE_TIMER_Stop Stop operation of Software Timer channel
R_BLE_TIMER_UpdateTimeout Update timeout time and start operation of Software Timer channel

The state transition of Software Timer is shown in Figure 4-1.

R_BLE_TIMER_Init

R_BLE_TIMER_Create R_BLE_TIMER_Delete

R_BLE_TIMER_Start /
R_BLE_TIMER_UpdateTimeoutChannel-allocated

state
(Channel stoped) R_BLE_TIMER_Stop

R_BLE_TIMER_UpdateTimeout

R_BLE_TIMER_PERIODIC Timeout Time
expires

R_BLE_TIMER_ONE_SHOT

Channel-running
state

R_BLE_TIMER_Terminate

Initialized
state

Uninitialized
state

Timeout state
callback notification

Figure 4-1 State Transition of Software Timer
 R_BLE_TIMER_UpdateTimeout() can be invoked on the Timeout state too.
 R_BLE_TIMER_Delete() can be invoked on the Running state and the Timeout state too.

Example implementation of Software Timer is shown as below.

 Include header file of Software Timer and initialize Software Timer with the R_BLE_TIMER_Init().

/* Include Software Timer header */

#include "timer/r_ble_timer.h"

{

 /* Initialize Software Timer */

 R_BLE_TIMER_Init();

}

Code 4-1 Initializing Software Timer

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 65 of 244
Dec.27.22

 Allocate a channel of Software Timer and specify the following operation parameters with the

R_BLE_TIMER_Create(). Also, the R_BLE_TIMER_Create() returns handle value to identify the

Software Timer channel allocated.

 Timeout Time (in units of milliseconds)

 Callback function to notify timeout

 Operation Mode: BLE_TIMER_PERIODIC or BLE_TIMER_ONE_SHOT

Note that application attempts to allocate channels more than the number of channels
(BLE_TIMER_NUM_OF_SLOT) that can be allocated, the R_BLE_TIMER_Create() returns the
BLE_ERR_LIMIT_EXCEEDED error code.

static void timer_cb(uint32_t timer_hdl)
{
}

{
 /* Allocate Software Timer channel */
 ble_status_t status;
 status = R_BLE_TIMER_Create(&gs_timer_hdl, 1000, BLE_TIMER_PERIODIC, timer_cb);

 /* Start operation of Software Timer channel */
 R_BLE_TIMER_Start(gs_timer_hdl);
}

Code 4-2 Allocating and Starting Software Timer Channel

 Start operation of Software Time channel with either the R_BLE_TIMER_Start() or the

R_BLE_TIMER_UpdateTimeout(). When timeout time expires, callback function which is registered
with the R_BLE_TIMER_Create() is invoked.

 Operation of Software Timer channel can be stopped with the R_BLE_TIMER_Stop().

 Software Timer channel allocated can be used any number of times.

/* Handle of Software Timer Handle */
static uint32_t gs_timer_hdl;

{
 /* Start Operation of Software Timer Channel */
 R_BLE_TIMER_Start(gs_timer_hdl);

 /* Update timeout time and start operation of Software Time channel */
 R_BLE_TIMER_UpdateTimeout(gs_timer_hdl, 500);

 /* Stop operation of Software Timer Channel */
 R_BLE_TIMER_Stop(gs_timer_hdl);
}

Code 4-3 Starting, Updating, and Stopping Operation of Software Timer Channel

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 66 of 244
Dec.27.22

 If Software Timer channel allocated is no longer needed, it can be released with the

R_BLE_TIMER_Delete().
{

 /* Release Software Timer Channel */

 R_BLE_TIMER_Delete(&gs_timer_hdl);

}

Code 4-4 Releasing Software Timer Channel

 If Software Timer is no longer used, it can be terminated with the R_BLE_TIMER_Terminate().

Note that the R_BLE_TIMER_Terminate() must be invoked after releasing all Software Timer

channels.
{

 /* Terminate Software Timer */

 R_BLE_TIMER_Terminate();

}
Code 4-5 Terminating Software Timer

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 67 of 244
Dec.27.22

4.2 Command line
The command line feature provides a function to execute BLE control commands through a terminal
emulator that supports VT100 emulation. If you use the command line feature, add the SCI FIT module and
the BYTE Queue FIT module in Table 1.8 to your project. Set the configuration options as Table 4.2.

Table 4.2 Configuration options for the command line feature

Configuration option Value
BLE_CFG_CMD_LINE_EN 1: Enable
BLE_CFG_CMD_LINE_CH

SCI channel for the command line feature.
Select one of the following.
 1: SCI1
 5: SCI5
 8: SCI8
 12: SCI12 (Only BGA 85pin)

By default, the commands in Table 4.3 are supported. For more information about the commands refer to
“Bluetooth Low Energy Protocol Stack Basic Package User’s Manual (R01UW0205)”.

Table 4.3 Supported Command List
Standard
Command Subcommand Description

gap

adv Start Advertising.
scan Start Scan.
conn Send a Connection Request.
disconn Disconnect
device Display the connecting device list.
priv Enable privacy feature in the local device.
conn_cfg Configure a connection.
wl Register a remote device in the White List.
auth Start pairing or encryption.
sync Establish a Periodic Sync.
ver Display the version information.

vs

txp Set /Get the transmit power.
scheme Set the Coding Scheme of the Coded PHY.
test Operate the Direct Test Mode (DTM) to test the RF.
addr Set / Get the local BD_ADDR.
rand Generate a random number.

sys stby Set software standby mode.

ble reset Reset the Bluetooth LE Protocol Stack.
close Terminate the Bluetooth LE Protocol Stack.

The following sections describe how to change the code to add the command line feature to your application.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 68 of 244
Dec.27.22

4.2.1 How to use the standard commands
(1) Include Header file
Include the below header files for the standard commands.

/* Include the header files for standard commands. */
#include "cmd/r_ble_cmd_abs.h"
#include "cmd/r_ble_cmd_vs.h"
#include "cmd/r_ble_cmd_sys.h"

Code 4-6 Header files for the standard commands

(2) Initialization and registration of the commands
To use the command line feature, call the APIs in Table 4.4 in application initialization.

Table 4.4 APIs called in the command line feature initialization
API Description
R_BLE_CLI_Init Initialize the SCI FIT module.
R_BLE_CLI_RegisterCmds Register the commands.

R_BLE_CMD_SetResetCb Register a callback that restarts the Bluetooth LE
Protocol Stack after reset.

An example of adding the command line APIs to application initialization is shown in below.

/** some code is omitted **/

/* CommandLine parameters */
static const st_ble_cli_cmd_t * const gsp_cmds[] =
{
 &g_abs_cmd,
 &g_vs_cmd,
 &g_sys_cmd,
 &g_ble_cmd
};

/** some code is omitted **/
/* Reset BLE Protocol Stack */
static void ble_host_stack_init(void)
{
 ble_app_init();
}

/** some code is omitted **/

/* Initialize BLE Protocol Stack */
static ble_status_t ble_app_init(void)
{
 ble_status_t status;

 /* Initialize host stack */
 status = R_BLE_ABS_Init(&gs_abs_init_param);
 if (BLE_SUCCESS != status)
 {
 return BLE_ERR_INVALID_OPERATION;
 }

 /** some code is omitted **/
}
/** some code is omitted **/

void app_main(void)
{
 /* Initialize BLE */
 R_BLE_Open();

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 69 of 244
Dec.27.22

 /** some code is omitted **/

 /* Configure CommandLine */
 R_BLE_CLI_Init();
 R_BLE_CLI_RegisterCmds(gsp_cmds, ARRAY_SIZE(gsp_cmds));
 R_BLE_CMD_SetResetCb(ble_host_stack_init);
 /** some code is omitted **/
}

Code 4-7 Sample of adding the command line initialization

(3) Callback
Add the functions in Table 4.5 to the callbacks to process the BLE events in executing command.

Table 4.5 Command line functions added to the callbacks
Callback Function Description

GAP Callback R_BLE_CMD_AbsGapCb Process the events generated by the
gap command.

VS Callback R_BLE_CMD_VsCb Process the events generated by the vs
command.

An example of adding the command line functions in Table 4.5 to the callback is shown in below.

/** some code is omitted **/
/* GAP Callback */
void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 R_BLE_CMD_AbsGapCb(type, result, p_data);
 /** some code is omitted **/
}

/** some code is omitted **/
/* Vendor Specific Callback */
void vs_cb(uint16_t type, ble_status_t result, st_ble_vs_evt_data_t *p_data)
{
 R_BLE_CMD_VsCb(type, result, p_data);
 /** some code is omitted **/
}
/** some code is omitted **/

Code 4-8 Sample of adding the command line function to the callbacks

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 70 of 244
Dec.27.22

(4) Main loop
To execute a command, add the below function to the application main loop.

Table 4.6 Command line function added to the main loop
API Description

R_BLE_CLI_Process Process the characters input through a terminal
emulator.

An example of adding the command line function in Table 4.6 to the main loop is shown in below.
/* main loop */
void app_main(void)
{
 /** some code is omitted **/
 /* main loop */
 while (1)
 {
 /* Process Command Line */
 R_BLE_CLI_Process();
 /* Process Event */
 R_BLE_Execute();
 /** some code is omitted **/
 }
}

Code 4-9 Sample of adding the command line to the main loop

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 71 of 244
Dec.27.22

4.2.2 How to create a user command
In the command line feature, you can create your own commands by defining commands in the
st_ble_cli_cmd_t type variable. This section describes an example of creating a new command to operate
the custom profile LED Switch service Client (hereafter “lsc”) provided in the demo project.

(1) Include header files
Include r_ble_cmd.h and r_ble_clli.h for the command line interface.

/* Include the header files for command line. */
#include "cmd/r_ble_cmd.h"
#include "cli/r_ble_cli.h"

Code 4-10 Command line header files

(2) Command definition
Define command name, subcommand group, number of subcommands, and the message string output by
“help” command. For “lsc” command, define a command structure variable as shown below.
/* Command definition */
const st_ble_cli_cmd_t g_lsc_cmd =
{
 .p_name = "lsc", /* Command name */
 .p_cmds = lsc_sub_cmds, /* Subcommand group */
 .num_of_cmds = ARRAY_SIZE(lsc_sub_cmds), /* Number of subcommands */
 .p_help = "Sub Command: set_switch_state_ntf, write_led_blink_rate\n"
 "Try 'lsc sub-cmd help' for more information", /* Message for help */
};

Code 4-11 Sample of command definitions

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 72 of 244
Dec.27.22

(3) Subcommand definition
Define subcommand. For “lsc” command, define a subcommand structure variable as shown in below. If you
want to create a command such as the "Connection command” or "Scan command” that manually abort the
process, you need to set an abort handler. During execution of a command for which the abort handler is set,
no other command input will be accepted until the command execution is aborted by pressing Ctrl + C key.

/* Subcommand definition */
static const st_ble_cli_cmd_t lsc_set_switch_state_ntf_cmd =
{
 .p_name = "set_switch_state_ntf", /* Subcommand name */
 .exec = cmd_lsc_set_switch_state_ntf, /* Subcommand function */
 .p_help = "Usage: lsc set_switch_state_ntf conn_hdl value", /* Message for help */
};

/** some code is omitted **/

/* Subcommand definition */
static const st_ble_cli_cmd_t lsc_write_led_blink_rate_cmd =
{
 .p_name = "write_led_blink_rate", /* Subcommand name */
 .exec = cmd_lsc_write_led_blink_rate, /* Subcommand function */
 .p_help = "Usage: lsc write_led_blink_rate conn_hdl blink_rate", /* Message for help */
};

/** some code is omitted **/

/* Subcommand definition */
static const st_ble_cli_cmd_t lsc_conn_lss_cmd =
{
 .p_name = "conn_lss", /* Subcommand name */
 .exec = cmd_lsc_conn_lss, /* Subcommand function */
 .abort = abort_lsc_conn, /* Abort handler */
 .p_help = "Usage: lsc conn_lss XX:XX:XX:XX:XX:XX addr_type", /* Message for help */
};

/** some code is omitted **/

/* Subcommand group */
static const st_ble_cli_cmd_t * const lsc_sub_cmds[] =
{
 &lsc_set_switch_state_ntf_cmd, /* Subcommand */
 &lsc_write_led_blink_rate_cmd, /* Subcommand */
 &lsc_conn_lss_cmd, /* Subcommand */
};

Code 4-12 Sample of Subcommand definitions

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 73 of 244
Dec.27.22

(4) Subcommand function definition
Define the function to be processed when the subcommand is executed. For “lsc” command, define a
subcommand function as shown in below.

/*--
lsc set_switch_state_ntf command
--*/
static void cmd_lsc_set_switch_state_ntf(int argc, char *argv[])
{
 if (argc != 3)
 {
 pf("lsc %s: unrecognized operands\n", argv[0]);
 return;
 }

 uint16_t conn_hdl;
 conn_hdl = (uint16_t)strtol(argv[1], NULL, 0);

 long value = strtol(argv[2], NULL, 0);
 ble_status_t ret;
 ret = R_BLE_LSC_WriteSwitchStateCliCnfg(conn_hdl, (uint16_t *)&value);

 if (ret != BLE_SUCCESS)
 {
 pf("lsc %s: failed with 0x%04X\n", argv[0], ret);
 return;
 }
}

Code 4-13 Sample of Subcommand function definition

(5) Abort handler
Define a function to stop by pressing Ctrl + C key in executing subcommand. An example of an abort handler
is shown below.

/*--
lsc connect lss abort handler
--*/
static void abort_lsc_conn(void)
{
 R_BLE_GAP_CancelCreateConn();
}

Code 4-14 Sample of Abort handler

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 74 of 244
Dec.27.22

(6) Registering commands
After defining the command and subcommand, register the command using R_BLE_CLI_RegisterCmds()
API as shown in below so that it can be used as an application-specific command.

/* Registering commands */
static const st_ble_cli_cmd_t * const gsp_cmds[] =
{
 &g_abs_cmd,
 &g_vs_cmd,
 &g_lsc_cmd /* Command to be added */
};

/** some code is omitted **/

void app_main(void)
{
 /** some code is omitted **/

 R_BLE_CLI_Init(); /* Initialize the command line */
 R_BLE_CLI_RegisterCmds(gsp_cmds, ARRAY_SIZE(gsp_cmds)); /* Register commands */

 /** some code is omitted **/
 /* main loop */
 while (1)
 {
 /* Process Command Line */
 R_BLE_CLI_Process();
 /* Process Event */
 R_BLE_Execute();
 /** some code is omitted **/
 }
}

Code 4-15 Sample of initialization and command registration

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 75 of 244
Dec.27.22

4.3 Logger
The Logger function provides the following log message output functions.

 Three log levels (ERROR, WARNING, DEBUG)

 Log message output is written in the same format as printf() function.

 Provision of functions that convert BD addresses and UUID into character strings.

Log messages are output on “Renesas Debug Virtual Console” (debug console) feature in e2 studio.

Therefore, it is possible to display arbitrary character strings even in an application environment that does
not use a terminal emulator such as a command line interface feature. However, if there are many outputs to
the debug console, the MCU processing may be occupied and BLE communication may not be performed
normally. If a phenomenon such as BLE communication disconnection occurs while using the logger
function, disable the logger function or reduce the output information.

The log level is set using BLE_CFG_LOG_LEVEL configuration option that specifies the log level for the
entire project. Table 4.7 shows the setting values of BLE_CFG_LOG_LEVEL and log output settings.

Table 4.7 Setting BLE_CFG_LOG_LEVEL

BLE_CFG_LOG_LEVEL value Description
0 No log message output
1 ERROR log message output
2 ERROR and WARNING log message output
3 ERROR and WARNING and DEBUG log message output

The log output uses the macro for log output shown in Table 4.7, which is defined in r_ble_logger.h.

Table 4.8 Setting BLE_CFG_LOG_LEVEL

Macro Name LOG_LABEL Description
BLE_LOG_ERR ERR For ERROR log message output
BLE_LOG_WRN WRN For WARNING log message output
BLE_LOG_DBG DBG For DEBUG log message output

Use the log message output macro to set the log in the same format as printf() as follows.

BLE_LOG_DBG("BLE_GAP_EVENT_STACK_ON \n");

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 76 of 244
Dec.27.22

Log messages are output in the following format.

module_tag: [LOG_LABEL] (function:line) log_body \n

“module_tag” can specify the tag to be added to the log for each module by “BLE_LOG_TAG” macro.
Define “BLE_LOG_TAG” macro before including r_ble_logger.h.

#define BLE_LOG_TAG “app_main”
#include “logger/r_lib_logger.h”

Code 4-16 Inclusion of logger header

In the previous example, the log is output as follows: “module_tag” is set to “app_main”.

app_main: [DBG] (ble_app_gapcb:238) BLE_GAP_EVENT_STACK_ON

In addition, BLE_BD_ADDR_STR() and BLE_UUID_STR() functions are provided for output of BD address
and 16-bit/128-bit UUID log messages. BLE_BD_ADDR_STR() function returns string in BD address format
when BD address byte array and address type are specified as parameters. BLE_UUID_STR() function
returns a UUID format string when UUID byte array and UUID type are specified as parameters. Refer to
“R_BLE API document (r_ble_api_spec.chm)” for details.

BLE_ADDR_STR() and BLE_UUID_STR() functions are used as follows:

BLE_LOG_DBG(“Connected to %s\n”, BLE_ADDR_STR(addr, addr_type));
BLE_LOG_DBG(“UUID: %s\n”, BLE_UUID_STR(uuid, uuid_type));

Code 4-17 Sample of using BLE_ADDR_STR() and BLE_UUID_STR()

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 77 of 244
Dec.27.22

4.4 Security data management
BLE application can use the security data management to manage the keys exchanged by pairing. This
feature stores the keys in RX23W E2 Data Flash. If you use the security data management, add the Flash
FIT module in Table 1.8. Set the configuration options in Table 4.9.

Table 4.9 The security data management configuration option

Configuration option Description
BLE_CFG_EN_SEC_DATA 1: Enable
BLE_CFG_SECD_DATA_DF_BLOCK

The number of the Data Flash block that the security data
management uses to store the keys.
Range : 0 to 7
Set other than block number for other use.

BLE_CFG_NUM_BOND

Set the number of the bonding information.
Range : 1 to 7
When you change this value during development, after
writing the firmware, delete the bonding information by
R_BLE_GAP_DeleteBondInfo() or “gap auth del remote
all” command.

Because the Abstraction API use the security management data, it does not need to implement the following
if it is enabled.

4.4.1 Initialization
The security data management is initialized by R_BLE_SECD_Init. The initialization restores the keys in
Data Flash and reset those to the Bluetooth LE Protocol Stack.

4.4.2 Restore the local device keys
Restore the local device keys (IRK, CSRK) in Data Flash by R_BLE_SECD_ReadLocInfo. The keys are
reset to the Bluetooth LE Protocol Stack by the APIs in Table 9.10. LTK is the common between the local
device and the remote device.

4.4.3 Store the local device keys
After generating the local IRK and CSRK, those are stored by R_BLE_SECD_WriteLocInfo.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 78 of 244
Dec.27.22

4.4.4 Store the remote device keys
To store the keys and the key information distributed by the remote device in pairing, call the APIs in Table
4.10 in the GAP Callback.

Table 4.10 APIs used to store the remote device keys.
Security data management API Description
R_BLE_SECD_RecvRemKeys Store the keys distributed by remote device.
R_BLE_SECD_WriteRemKeys Store the key information received from remote device.

An example of storing the keys and the key information received from a remote device is shown below.

/* GAP Callback */
void gap_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_event_data)
{
 switch(event_type)
 {
 /** some code is omitted **/
 case BLE_GAP_EVENT_PAIRING_COMP :
 {
 if(BLE_SUCCESS == event_result)
 {
 st_ble_gap_pairing_info_evt_t * p_param;
 p_param = (st_ble_gap_pairing_info_evt_t *)p_event_data->p_param;
 R_BLE_SECD_WriteRemKeys(&p_param->bd_addr, &p_param->auth_info);
 }
 }
 break;

 case BLE_GAP_EVENT_PEER_KEY_INFO :
 {
 st_ble_gap_peer_key_info_evt_t * p_param;
 p_param = (st_ble_gap_peer_key_info_evt_t *)p_event_data->p_param;
 R_BLE_SECD_RecvRemKeys(&p_param->bd_addr, &p_param->key_ex_param);
 }
 break;
 /** some code is omitted **/
 }
}

Code 4-18 Sample of storing received keys and key information

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 79 of 244
Dec.27.22

4.5 Board and LED switch
LED and Push-switch on the board can be controlled by setting the configuration options shown in Table
4.11 according to the board environment.

Table 4.11 LED and Push-switch Configuration Options

Configuration Options Set Value
BLE_CFG_BOARD_LED_SW_EN 1

BLE_CFG_BOARD_TYPE
0 (Customer board)
1 (Target Board)
2 (RSSK)

Include the below header file to control LED and Push-switch.

/* Include LED and Push-switch control header file */
#include "board/r_ble_board.h"

Code 4-19 Inclusion of LED and Switch control header file

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 80 of 244
Dec.27.22

4.5.1 Configuration for customer board
If you use your original board, set the configuration option in Table 4.11 and change the following points in
app_lib/board/r_ble_board.c .

(1) Macro definition of LED and Push-Switch (SW)
Change the following macro definition to match the Customer board environment.

 BLE_BOARD_SW1_IRQ

 BLE_BOARD_SW2_IRQ

 BLE_BOARD_LED1_PIN

 BLE_BOARD_LED2_PIN

#if (BLE_CFG_BOARD_TYPE == 1) /* for RX23W Target Board(TB) */
#define BLE_BOARD_SW1_IRQ (IRQ_NUM_5)
#define BLE_BOARD_SW2_IRQ (IRQ_NUM_5)
#define BLE_BOARD_LED1_PIN (GPIO_PORT_C_PIN_0)
#define BLE_BOARD_LED2_PIN (GPIO_PORT_B_PIN_0)
#elif (BLE_CFG_BOARD_TYPE == 2) /* for RX23W RSSK board */
#define BLE_BOARD_SW1_IRQ (IRQ_NUM_1)
#define BLE_BOARD_SW2_IRQ (IRQ_NUM_0)
#define BLE_BOARD_LED1_PIN (GPIO_PORT_4_PIN_2)
#define BLE_BOARD_LED2_PIN (GPIO_PORT_4_PIN_3)
#else /* BLE_CFG_BOARD_TYPE */ /* for Custom board */
#define BLE_BOARD_SW1_IRQ (IRQ_NUM_7)
#define BLE_BOARD_SW2_IRQ (IRQ_NUM_5)
#define BLE_BOARD_LED1_PIN (GPIO_PORT_C_PIN_5)
#define BLE_BOARD_LED2_PIN (GPIO_PORT_C_PIN_6)
#endif /* BLE_CFG_BOARD_TYPE */

Code 4-20 Changes to LED and SW macro definitions

In the above example, IRQ7 is assigned to SW1 and IRQ5 is assigned to SW2, LED1 is set to PC5 pin, and
LED2 is set to PC6 pin.

Change this location to match the
customer board environment.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 81 of 244
Dec.27.22

(2) Register setting in irq_pin_set()
In order to set the pins used in the IRQ for the Push-Switch (SW) on the customer board, change code the
MCU register setting location in the irq_pin_set() function to match the customer board environment.

#if (BLE_CFG_BOARD_TYPE == 1)
 /*Set IRQ5 pin */
 PORT1.PMR.BIT.B5 = 0U;
 PORT1.PDR.BIT.B5 = 0U;
 MPC.P15PFS.BYTE = 0x40U;
#elif (BLE_CFG_BOARD_TYPE == 2)
 /*Set IRQ0 pin */
 PORT3.PMR.BIT.B0 = 0U;
 PORT3.PDR.BIT.B0 = 0U;
 MPC.P30PFS.BYTE = 0x40U;
 /*Set IRQ1 pin */
 PORT3.PMR.BIT.B1 = 0U;
 PORT3.PDR.BIT.B1 = 0U;
 MPC.P31PFS.BYTE = 0x40U;
#else /* (BLE_CFG_BOARD_TYPE == x) */
 /*Set IRQ5 pin */
 PORT1.PMR.BIT.B5 = 0U;
 PORT1.PDR.BIT.B5 = 0U;
 MPC.P15PFS.BYTE = 0x40U;
 /*Set IRQ7 pin */
 PORT1.PMR.BIT.B7 = 0U;
 PORT1.PDR.BIT.B7 = 0U;
 MPC.P17PFS.BYTE = 0x40U;
#endif /* (BLE_CFG_BOARD_TYPE == x) */

Code 4-21 Changes to irq_pin_set()

In the above example, P17 pin is set for IRQ7 for SW1, and P15 pin is set for IRQ5 for SW2.

Change this location to match the
customer board environment.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 82 of 244
Dec.27.22

4.5.2 Initialization
To control LED and Push-switch, R_BLE_BOARD_Init is call in application initialization.

void app_main(void)
{
 /* Initialize BLE */
 R_BLE_Open();

 /* Configure the board */
 R_BLE_BOARD_Init();
 /* some code is omitted. */

}

Code 4-22 Led and SW control initialization

4.5.3 ON or OFF Board LED
The following APIs turns the LED on the board on or off.

 R_BLE_BOARD_SetLEDState

 R_BLE_BOARD_ToggleLEDState

R_BLE_BOARD_SetLEDState specifies the state to be set.

R_BLE_BOARD_ToggleLEDState reverses the LED state.

4.5.4 Callback for pressing SW
Call R_BLE_BOARD_RegisterSwitchCb to register a function to process after pressing SW.

An example of the sw_cb callback called by pressing SW2 is shown below.
static void sw_cb(void)
{
 R_BLE_BOARD_ToggleLEDState(BLE_BOARD_LED1);
}

/** some code is omitted **/

void app_main(void)
{
 /* Initialize BLE */
 R_BLE_Open();

 /* Configure the board */
 R_BLE_BOARD_Init();
 R_BLE_BOARD_RegisterSwitchCb(BLE_BOARD_SW2, sw_cb);
 /* some code is omitted. */
}

Code 4-23 Sample of callback allocated for SW press

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 83 of 244
Dec.27.22

4.6 Abstraction API
The Abstraction API is intended to make it easier to use the functions often used in the Bluetooth LE
Protocol Stack. The Abstraction API internally uses GAP, GATT server, GATT client, and Vendor Specific
API to realize each function. Table 4.12 shows the APIs called by the Abstraction APIs and the events
notified as a result. Refer to the R_BLE API document (r_ble_api_spec.chm) for detailed specifications of
each Abstraction API. Do not change the Abstraction API codes.

Table 4.12 APIs and Events used by the Abstraction API

Abstraction API Description API to use Events

R_BLE_ABS_Init

The initialization process is as
follows.
1. Initialize the host stack
2. GAP, GATTS, GATTC,
 Notify VS event
 For the callback of
 Register
3. Pairing parameters
 Configuration

R_BLE_GAP_Init BLE_GAP_EVENT_STACK_ON

R_BLE_GAP_SetPairingParams BLE_GAP_EVENT_LOC_VER_INFO

R_BLE_VS_Init

R_BLE_GATTS_SetDbInst

R_BLE_GATTS_Init

R_BLE_GATTS_RegisterCb

R_BLE_GATTC_Init

R_BLE_GATTC_RegisterCb

R_BLE_GAP_GetVerInfo

R_BLE_SECD_Init

R_BLE_SECD_ReadLocInfo

R_BLE_GAP_SetLocIdInfo

R_BLE_ABS_Reset Bluetooth LE Protocol Stack
Perform a reset.

R_BLE_Close

R_BLE_GAP_Terminate

R_BLE_Open

R_BLE_SetEvent

R_BLE_ABS_StartLegacyAdv

Set the parameters and
Advertising Data for Legacy
Advertising, and start
Advertising.

R_BLE_GAP_SetAdvParam BLE_GAP_EVENT_ADV_PARAM_SET_COMP

R_BLE_GAP_SetAdvSresData BLE_GAP_EVENT_ADV_DATA_UPD_COMP

R_BLE_GAP_StartAdv BLE_GAP_EVENT_ADV_ON

 BLE_GAP_EVENT_ADV_OFF

R_BLE_ABS_StartExtAdv
Set parameters for Extended
Advertising and Advertising
Data, and start Advertising

R_BLE_GAP_SetAdvParam BLE_GAP_EVENT_ADV_PARAM_SET_COMP

R_BLE_GAP_SetAdvSresData BLE_GAP_EVENT_ADV_DATA_UPD_COMP

R_BLE_GAP_StartAdv BLE_GAP_EVENT_ADV_ON

 BLE_GAP_EVENT_ADV_OFF

R_BLE_ABS_StartNonConnAdv

Set the parameters and
Advertising Data for Non-
Connectable Advertising and
start Advertising.

R_BLE_GAP_SetAdvParam BLE_GAP_EVENT_ADV_PARAM_SET_COMP

R_BLE_GAP_SetAdvSresData BLE_GAP_EVENT_ADV_DATA_UPD_COMP

R_BLE_GAP_StartAdv BLE_GAP_EVENT_ADV_ON

 BLE_GAP_EVENT_ADV_OFF

R_BLE_ABS_StartPerdAdv

Set parameters for Periodic
Advertising and Periodic
Advertising Data, and start
Advertising.

R_BLE_GAP_SetAdvParam BLE_GAP_EVENT_ADV_PARAM_SET_COMP

R_BLE_GAP_SetAdvSresData BLE_GAP_EVENT_ADV_DATA_UPD_COMP

R_BLE_GAP_SetPerdAdvParam BLE_GAP_EVENT_PERD_ADV_PARAM_SET_COMP

R_BLE_GAP_StartPerdAdv BLE_GAP_EVENT_PERD_ADV_ON

R_BLE_GAP_StartAdv BLE_GAP_EVENT_ADV_ON

 BLE_GAP_EVENT_ADV_OFF

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 84 of 244
Dec.27.22

Abstraction API Description API to use Events

R_BLE_ABS_StartScan Set up Scan and start. R_BLE_GAP_StartScan

BLE_GAP_EVENT_SCAN_ON

BLE_GAP_EVENT_SCAN_OFF

BLE_GAP_EVENT_SCAN_TO

BLE_GAP_EVENT_ADV_REPT_IND

R_BLE_ABS_CreateConn Create a connection request.

R_BLE_TIMER_Create BLE_GAP_EVENT_CREATE_CONN_COMP

R_BLE_GAP_CreateConn BLE_GAP_EVENT_CONN_CANCEL_COMP

R_BLE_TIMER_Start BLE_GAP_EVENT_CONN_IND

R_BLE_GAP_CancelCreateConn

R_BLE_TIMER_Delete

R_BLE_TIMER_Stop

R_BLE_TIMER_Delete

R_BLE_ABS_SetLocPrivacy Sets the privacy of the local
device.

R_BLE_GAP_EnableRpa BLE_GAP_EVENT_RPA_EN_COMP

R_BLE_VS_GetRand BLE_VS_EVENT_GET_RAND

R_BLE_GAP_SetLocIdInfo BLE_GAP_EVENT_RSLV_LIST_CONF_COMP

R_BLE_GAP_ConfRslvList BLE_GAP_EVENT_PRIV_MODE_SET_COMP

R_BLE_GAP_SetPrivMode

R_BLE_ABS_StartAuth
The pairing will start.
If it is already paired,
 encryption will start.

R_BLE_GAP_GetDevSecInfo BLE_GAP_EVENT_PAIRING_REQ

R_BLE_GAP_StartPairing BLE_GAP_EVENT_PASSKEY_ENTRY_REQ

R_BLE_GAP_ReplyPasskeyEntry BLE_GAP_EVENT_PASSKEY_DISPLAY_REQ

R_BLE_GAP_ReplyNumComp BLE_GAP_EVENT_NUM_COMP_REQ

R_BLE_GAP_ReplyExKeyInfoReq BLE_GAP_EVENT_KEY_PRESS_NTF

R_BLE_GAP_StartEnc BLE_GAP_EVENT_PEER_KEY_INFO

R_BLE_GAP_ReplyLtkReq BLE_GAP_EVENT_EX_KEY_REQ

 BLE_GAP_EVENT_PAIRING_COMP

 BLE_GAP_EVENT_LTK_REQ

 BLE_GAP_EVENT_LTK_RSP_COMP

 BLE_GAP_EVENT_ENC_CHG

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 85 of 244
Dec.27.22

5. Advertising
Bluetooth LE device sends data to nearby scanning devices by advertising.

5.1 Connecting to smartphone
Figure 5-1 shows the advertising procedure in an application. Details of each step are explained in the
following chapters. If you use the Abstraction API, the procedure from 5.2 to 5.2.3 are performed by an
Abstraction advertising API call. Regarding to the way of using the API, refer to 5.5.

Figure 5-1 Advertising Procedure

Set Advertising Parameter

Set Advertising Data

Start Advertising

Stop Advertising

Update Advertising Data /
Scan Response Data

[Advertising Data]

[No Advertising Data]

[Scan Response Data]

[No Scan Response Data]

[Update]

[No update]

Set Scan Response Data

[Update]
[No update]

Step performed by one ABS API call.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 86 of 244
Dec.27.22

5.2 Advertising with GAP API
5.2.1 Advertising Parameter
It is necessary to set the advertising parameters by R_BLE_GAP_SetAdvParam to starting advertising.
These parameters cannot be changed during advertising. If you use the Abstraction API, the procedure does
not need. The following sections describe the parameter settings for some Use Cases.

5.2.1.1 Adverting Type
Select the advertising type from the below items and set a value in Figure 5-1 to the adv_prop_type field in
the st_ble_gap_adv_param_t structure.

 Response to a connection request from remote device (Connectable or Non-Connectable)
 Response to a scan request from remote device (Scannable or Non-Scannable)
 Designation of remote address (Direct or Undirect)
 Type of advertising that a remote device supports (legacy or extended advertising)
 Maximum size of the Advertising Data

Table 5.1 Advertising type and the adv_prop_type field

Advertising Type Advertising PDU The adv_prop_type field value legacy or
extended Max Size(byte)

Connectable and
Scannable
Undirected *5

ADV_IND BLE_GAP_LEGACY_PROP_ADV_IND legacy 31

Connectable
Undirected

ADV_EXT_IND BLE_GAP_EXT_PROP_ADV_CONN_NOSCAN_UNDIRECT extended 245*1*4 AUX_ADV_IND

Connectable
Directed

ADV_DIRECT_IND BLE_GAP_LEGACY_PROP_ADV_DIRECT_IND or
BLE_GAP_LEGACY_PROP_ADV_HDC_DIRECT_IND legacy 0

ADV_EXT_IND BLE_GAP_EXT_PROP_ADV_CONN_NOSCAN_DIRECT or
BLE_GAP_EXT_PROP_ADV_CONN_NOSCAN_HDC_DIRECT extended 239*1*4 AUX_ADV_IND

Non-Connectable
and
Non-Scannable
Undirected

ADV_NONCONN_IND BLE_GAP_LEGACY_PROP_ADV_NONCONN_IND legacy 31
ADV_EXT_IND

BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_UNDIRECT extended
BLE_CFG_RF_
ADV_DATA_
MAX*4

AUX_ADV_IND
AUX_CHAIN_IND*2

Non-Connectable
and
Non-Scannable
Directed

ADV_EXT_IND
BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_DIRECT or
BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_HDC_DIRECT extended

BLE_CFG_RF_
ADV_DATA_
MAX*4

AUX_ADV_IND

AUX_CHAIN_IND*3

Scannable
Undirected *5

ADV_SCAN_IND BLE_GAP_LEGACY_PROP_ADV_SCAN_IND legacy 31
ADV_EXT_IND BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_UNDIRECT extended 0 AUX_ADV_IND

Scannable
Directed *5

ADV_EXT_IND BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_DIRECT or
BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_HDC_DIRECT extended 0 AUX_ADV_IND

*1 : If the BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER is added to adv_prop_type, it’s Max Size -1
byte.

*2 : If the size of Advertising Data is 245 bytes or less (It’s reduced -18 bytes when using Periodic
advertising. It’s reduced -1 byte when using BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER), since
Advertising Data can be sent only with AUX_ADV_IND, AUX_CHAIN ID is not used.
*3 : If the size of Advertising Data is 239 bytes or less (It’s reduced -18 bytes when using Periodic
advertising. It’s reduced -1 byte when using BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER), since
Advertising Data can be sent only with AUX_ADV_IND, AUX_CHAIN ID is not used.
*4 : If the size of Advertising Data is 230 bytes or more, since Advertising Data is divided according to
Bluetooth specification, combine them on the receiver if necessary.
*5 : The relationship between Scan Response Data and PDU and type is shown in Figure 5-3.

The supported advertising type depends on the Bluetooth LE Protocol Stack library type. All features library
supports legacy and extended advertising. Balance and Compact libraries only support the legacy
advertising. If a scanner supports only the legacy advertising, it cannot receive extended advertising packets.
If the advertising type is extended and non-scannable, each PDU is sent in order shown in Figure 5-2. The
advDelay is a random delay from 0 to 10ms.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 87 of 244
Dec.27.22

Figure 5-2 Extended Advertising PDU

If the advertising type is scannable and the Scan Response Data is set, the Scan Response Data shown in
Table 5.2 are sent as Figure 5-3 against a scan request.

Table 5.2 Scan Response Data

Value set to the adv_prop_type field Scan Response
Data PDU

legacy or
extended

Max Size
(Byte)

BLE_GAP_LEGACY_PROP_ADV_IND
BLE_GAP_LEGACY_PROP_ADV_SCAN_IND SCAN_RSP legacy 31

BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_UNDIRECT
BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_DIRECT
BLE_GAP_EXT_PROP_ADV_NOCONN_SCAN_HDC_DIRECT

AUX_SCAN_RSP
extended

BLE_CFG_RF_
ADV_DATA_
MAX*2 *3 AUX_CHAIN_IND*1

*1 : If the Scan Response Data is 253 bytes or less (It’s reduced -1 byte when using
BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER), since Scan Response Data can be sent only
with AUX_SCAN_RSP, AUX_CHAIN ID is not used.

*2 : If the BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER is added to adv_prop_type, it’s Max
Size -1 byte.

*3 : If the size of Scan Response Data is 230 bytes or more, since Scan Response Data is divided
according to Bluetooth specification, combine them on the receiver if necessary.

Figure 5-3 Scannable Advertising PDU

The blue box shows the PDU from a remote device.

If the advertising type is Direct, set a remote device address to the p_addr_type and the p_addr field in the
st_ble_gap_adv_param_t structure.

If the advertising type is Extended, set the PHY that sends Advertising to the adv_phy and the sec_adv_phy
field in the st_ble_gap_adv_param_t structure. Specify the PHY (1M PHY or Coded PHY) of the primary
channel (CH:37/38/39) for adv_phy. Specify the PHY (1M PHY, 2M PHY or Coded PHY) of the secondary
channel (other than CH:37/38/39) for sec_adv_phy.

ADV_EXT
_IND

AUX_ADV
_IND

AUX_CHAIN
_IND

Advertising Interval

ADV_EXT
_IND

ADV_EXT
_IND

CH : 37 CH : 38 CH : 39

...

ADV_EXT
_IND

AUX_ADV
_IND

AUX_CHAIN
_IND

ADV_EXT
_IND

ADV_EXT
_IND

CH : 37 CH : 38 CH : 39

...

advDelay

ADV_EXT
_IND

AUX_ADV
_IND

AUX_CHAIN
_IND

ADV_EXT
_IND

ADV_EXT
_IND

CH : 37 CH : 38 CH : 39

...AUX_SCAN
_REQ

AUX_SCAN
_RSP

ADV_EXT
_IND

CH : 37

...

Advertising Interval advDelay

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 88 of 244
Dec.27.22

5.2.1.2 Using the White List (Respond to a known device)
If the advertising type is Connectable and Scannable, using the White List can filter remote devices that
sends a request. If the requesting device BD_ADDR is known to the local device, perform the 1, 2 steps.

1. Register a known device BD_ADDR to the White List

Call R_BLE_GAP_ConfWhiteList to register a known device.

Note: The White List cannot be added/deleted when the White List filter enabled operation (advertising,
scanning, connection request) is executed.

2. Set the Advertising filter policy
Set the value in Table 5.3 to the filter_policy field in the st_ble_gap_adv_param_t structure.

Table 5.3 The value set to the filter_policy field
Value set to the filter_policy field Description

BLE_GAP_SCAN_ALLOW_
ADV_ALL(0x00) Respond to scan requests and connection requests from all devices.

BLE_GAP_ADV_ALLOW_
SCAN_WLST_CONN_ANY(0x01)

Respond to scan requests from whitelisted devices and respond to connection
requests from all devices.

BLE_GAP_ADV_ALLOW_
SCAN_ANY_CONN_WLST(0x02)

Respond to scan requests from all devices and respond to connection requests from
whitelisted devices.

BLE_GAP_ADV_ALLOW_
SCAN_WLST_CONN_WLST(0x03) Respond to scan requests and connection requests from whitelisted devices.

5.2.1.3 Privacy
The privacy feature is available to prevent the other devices from tracing the advertising packets. Prepare for
the privacy feature in advance according to “9.4.1 Generate local device RPA”. Set the value in Table 5.4 to
the field in the st_ble_gap_adv_param_t structure and the address included in the advertising packets are
changed to a different address periodically (the default update interval is 900 seconds. Interval can be
changed with R_BLE_GAP_SetRpaTo()).

Table 5.4 The parameters used for the privacy feature
Field Value Description

o_addr_type
BLE_GAP_ADDR_RPA_ID_PUBLIC(0x02) Specify the value if the Identity Address registered by

R_BLE_GAP_SetLocIdInfo is Public Address.

BLE_GAP_ADDR_RPA_ID_RANDOM(0x03) Specify the value if the Identity Address registered by
R_BLE_GAP_SetLocIdInfo is Static Address.

o_addr Specify the Static Address registered by
R_BLE_GAP_SetLocIdInfo.

Specify the value if the o_addr_type is
BLE_GAP_ADDR_RPA_ID_RANDOM(0x03).

p_addr_type Specify the remote device Identity Address
registered by R_BLE_GAP_ConfRslvList(). ― p_addr

BP: Including advertising data that uniquely identifies a device may defeat the purpose of using private addresses to hide the

device. Advertisement payloads obfuscation is recommended when using private addressing.
BP: The advertising data can be used to track the device even if the device address changes periodically to different addresses. It

is therefore recommended to update the address and data at the same time.

5.2.1.4 Concurrent Execution
If All features library is used, the number of the BLE_CFG_RF_ADV_SET_MAX value advertisings are
available concurrently. The advertisings are identified by the advertising handle shown by the adv_hdl field in
the st_ble_gap_ext_adv_param_t structure. In each of the procedures in Figure 5-1, the target advertising is
specified by the advertising handle.

Balance and Compact libraries are available only one advertising concurrently.

If the Abstraction API and the GAP API are simultaneously used, note that the advertising handle is not
available during advertising.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 89 of 244
Dec.27.22

5.2.2 Advertising Data / Scan Response Data
For details about setting Advertising Data / Scan Response Data, refer to “5.4 Advertising Data / Scan
Response Data / Periodic Advertising Data”.

For details updating Advertising Data / Scan Response Data setting, refer to “5.4.2 Advertising Data Update”.

5.2.3 Start Advertising
When starting advertising, call the following API.

ble_status_t R_BLE_GAP_StartAdv (uint8_t adv_hdl,

 uint16_t duration,

 uint8_t max_extd_adv_evts)

If using the All features library, the API specifies the advertising continuing period (duration x 10ms) or the
number of sending advertising packets (max_extd_adv_evts).

5.2.4 Stop Advertising
Connectable advertising terminates when the local device connects to a remote device.

The API for stopping advertising is as follows.

ble_status_t R_BLE_GAP_StopAdv (uint8_t adv_hdl)

If 252 bytes or more Extended Advertising data is to be updated, because it cannot be updated due to
Bluetooth specification, the advertising needs to be stopped before update.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 90 of 244
Dec.27.22

5.3 Periodic Advertising with GAP API
Periodic Advertising is used in case of sending at a fixed interval. The All features library supports Periodic
Advertising. Figure 5-4 shows the procedure for Periodic Advertising in application. The following sections
describes the details of Periodic Advertising procedure.

Figure 5-4 Periodic Advertising procedure

Set Non-Connectable
Advertising Parameters

Set Advertising Data

Set Periodic Advertising
Parameters

Set Periodic Advertising Data

Start Periodic Advertising

Start Advertising

Update Periodic
Advertising Data

Stop Periodic Advertising

Stop Advertising

[Advertising Data]
[No Advertising Data]

[Periodic Advertising Data]
[No Periodic Advertising Data]

[Update]

[No update]

[Update]

[No update]

Step performed by one ABS API call.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 91 of 244
Dec.27.22

5.3.1 Non-Connectable Advertising Parameter
Set the advertising parameters by R_BLE_GAP_SetAdvParam to start Periodic Advertising. Non-
Connectable advertising in Table 5.1 is used for Periodic Advertising.

 BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_UNDIRECT
 BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_DIRECT
 BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_HDC_DIRECT

5.3.2 Periodic Advertising Parameter
When setting the Periodic Advertising parameters, call the following API.

ble_status_t R_BLE_GAP_SetPerdAdvParam(st_ble_gap_perd_adv_param_t * p_perd_adv_param)

Setting the Periodic Advertising parameters, AUX_SYNC_IND and AUX_CHAIN_IND PDUs in Table 5.5
follows the Non-Connectable Advertising PDUs (ADV_EXT_INDs and AUX_ADV_IND) the PDUs. Figure 5-5
shows the difference of the intervals by R_BLE_GAP_SetAdvParam and R_BLE_GAP_SetPerdAdvParam.

Table 5.5 Periodic Advertising PDU

Advertising Type Periodic Advertising PDU legacy or
extended

Maximum Size
(Bytes)

Periodic Advertising
AUX_SYNC_IND

extended
BLE_CFG_RF_
ADV_DATA_
MAX*2 *3 AUX_CHAIN_IND*1

*1 : If the size of Periodic Advertising Data is 253 bytes or less (It’s reduced -1 byte when using
BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER), since Periodic Advertising Data can be
sent only with AUX_SYNC_IND, AUX_CHAIN ID is not used.
*2 : If the BLE_GAP_EXT_PROP_ADV_INCLUDE_TX_POWER is added to adv_prop_type, it’s
Max Size -1 byte.
*3 : If the size of Periodic Advertising Data is 248 bytes or more, since Periodic Advertising
Data is divided according to Bluetooth specification, combine them on the receiver if necessary.

Figure 5-5 Periodic Advertising PDUs

ADV_EXT
_INDs

AUX_ADV
_IND

AUX_SYNC
_IND

AUX_CHAIN
_IND

AUX_CHAIN
_IND

ADV_EXT
_INDs

AUX_ADV
_IND

AUX_SYNC
_IND

AUX_CHAIN
_IND

AUX_CHAIN
_IND

Periodic Advertising Interval : R_BLE_SetPerdAdvParam()

Advertising Interval : R_BLE_GAP_SetAdvParam() advDelay

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 92 of 244
Dec.27.22

5.3.3 Periodic Advertising Data
For details about setting the Periodic Advertising Data, refer to “5.4 Advertising Data / Scan Response Data /
Periodic Advertising Data”.

For details updating Periodic Advertising Data, refer to “5.4.3 Periodic Advertising Data Update”.

5.3.4 Start Periodic Advertising
When starting Periodic Advertising, call the following API.

ble_status_t R_BLE_GAP_StartPerdAdv (uint8_t adv_hdl)

If the Non-Connectable advertising has not been started and the advertising PDUs has not been sent, the
Periodic Advertising PDU is not sent by calling this API.

An example of starting Periodic Advertising is shown below.

/* Advertising data */
static uint8_t gs_adv_data[] =
{

 /* Flag (mandatory) */
 2, /* Data Size */
 0x01, /* Data Type: Flag */
 (BLE_GAP_AD_FLAGS_LE_GEN_DISC_MODE |
 BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED), /* Data */

 /* Complete Local Name */
 9, /* Data Size */
 0x09, /* Data Type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /* Data */
};

/* Periodic Advertising Data */
static uint8_t gs_perd_adv_data[] =
{

 /* Complete Local Name */
 9, /* Data Size */
 0xFF, /* Data Flag: Manufacturer Specific data type */
 0x36, 0x00,/* Company ID: Renesas Electronics Corporation */
 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, /* Data */

};

/* some code is omitted. */
static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 ble_app_gapcb(type, result, p_data);
 st_ble_gap_adv_set_evt_t * p_adv_set_param;

 switch(type)
 {
 case BLE_GAP_EVENT_STACK_ON :
 {
 st_ble_gap_adv_param_t adv_param =
 {
 .adv_hdl = 0x02,
 .adv_prop_type = BLE_GAP_EXT_PROP_ADV_NOCONN_NOSCAN_UNDIRECT,
 .adv_intv_min = 0x0200,
 .adv_intv_max = 0x0200,
 .adv_ch_map = BLE_GAP_ADV_CH_ALL,
 .o_addr_type = BLE_GAP_ADDR_PUBLIC,
 .filter_policy = BLE_GAP_ADV_ALLOW_SCAN_ANY_CONN_ANY,
 .adv_phy = BLE_GAP_ADV_PHY_1M,
 .sec_adv_phy = BLE_GAP_ADV_PHY_1M,
 };
 /* Set Advertising parameter */
 R_BLE_GAP_SetAdvParam(&adv_param);

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 93 of 244
Dec.27.22

 }
 break;

 case BLE_GAP_EVENT_ADV_PARAM_SET_COMP :
 {
 p_adv_set_param = (st_ble_gap_adv_set_evt_t *)p_data->p_param;
 st_ble_gap_adv_data_t adv_data_param = {
 .adv_hdl = 0x02,
 .data_type = BLE_GAP_ADV_DATA_MODE,
 .data_length = ARRAY_SIZE(gs_adv_data),
 .p_data = gs_adv_data ,
 };
 /* Set Advertising Data */
 R_BLE_GAP_SetAdvSresData(&adv_data_param);
 }
 break;

 case BLE_GAP_EVENT_PERD_ADV_PARAM_SET_COMP :
 {
 /* Periodic Advertising Data parameter */
 st_ble_gap_adv_data_t perd_adv_data_param = {
 .adv_hdl = 0x02,
 .data_type = BLE_GAP_PERD_ADV_DATA_MODE,
 .data_length = ARRAY_SIZE(gs_perd_adv_data),
 .p_data = gs_perd_adv_data ,
 };

 /* Set Periodic Advertising Data */
 R_BLE_GAP_SetAdvSresData(&perd_adv_data_param);
 }
 break;

 case BLE_GAP_EVENT_PERD_ADV_ON :
 {
 p_adv_set_param = (st_ble_gap_adv_set_evt_t *)p_data->p_param;
 /* Start Advertising */
 R_BLE_GAP_StartAdv(0x02, 0, 0);
 }
 break;

 case BLE_GAP_EVENT_ADV_DATA_UPD_COMP :
 {
 st_ble_gap_adv_data_evt_t * p_adv_data_set_param;
 p_adv_data_set_param = (st_ble_gap_adv_data_evt_t *)p_data->p_param;
 if(BLE_GAP_ADV_DATA_MODE == p_adv_data_set_param->data_type)
 {
 st_ble_gap_perd_adv_param_t perd_param =
 {
 .adv_hdl = 0x02,
 .prop_type = 0x0000,
 .perd_intv_min = 0x0100,
 .perd_intv_max = 0x0100,
 };
 /* Set Periodic Advertising parameter */
 R_BLE_GAP_SetPerdAdvParam(&perd_param);
 }
 else
 {
 if(BLE_GAP_PERD_ADV_DATA_MODE == p_adv_data_set_param->data_type)
 {
 /* Start Periodic Advertising parameter */
 R_BLE_GAP_StartPerdAdv(0x02);
 }
 }
 }
 break;

 default:
 break;
 }
}

Code 5-1 Sample of starting Periodic Advertising

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 94 of 244
Dec.27.22

5.3.5 Stop Periodic Advertising
The API for stopping Periodic Advertising is as follows.

ble_status_t R_BLE_GAP_StopPerdAdv(uint8_t adv_hdl)

This API stops only the PDUs in Table 5.5.

If 253 bytes or more Periodic Advertising data is to be updated, because it cannot be updated due to
Bluetooth specification, the Periodic Advertising needs to be stopped before update.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 95 of 244
Dec.27.22

5.4 Advertising Data / Scan Response Data / Periodic Advertising Data
Setting Advertising Data / Scan Response Data / Periodic Advertising Data and updating those use
R_BLE_GAP_SetAdvSresData. The format of Advertising Data, Scan Response Data and Periodic
Advertising Data are same. The data_type field in the st_ble_gap_adv_data_t structure varies as Table 5.6.

Table 5.6 Value set to the data_type field
Data Type Value set to the data_type field

Advertising Data BLE_GAP_ADV_DATA_MODE(0x00)
Scan Response Data BLE_GAP_SCAN_RSP_DATA_MODE(0x01)
Periodic Advertising Data BLE_GAP_PERD_ADV_DATA_MODE(0x02)

If Scan Response data setting follows Advertising data setting, after calling R_BLE_GAP_SetAdvSresData to
set Advertising Data, confirm the Advertising Data setting completion and call R_BLE_GAP_SetAdvSresData
to set Scan Response Data in the GAP callback.

5.4.1 Format
Figure 5-6 shows the data format.

Figure 5-6 Advertising Data / Scan Response Data / Periodic Advertising Data format

Advertising Data / Scan Response Data / Periodic Advertising Data includes one more AD structures. Each
AD structure consists of Length and AD Type and AD Data. The Length is the sum of the size of AD type (1
byte) and the size of the AD Data. The AD Type defined by Bluetooth SIG is written in “Supplement to the
Bluetooth Core Specification (CSS)”. Table 5.7 shows the AD type often used.

AD Structure 1 AD Structure 2 ... AD Structure N

Length Data

AD Type AD Data

1 byte Length byte

1 byte Length - 1 byte

Advertising Data / Scan Response Data / Periodic Advertising Data

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 96 of 244
Dec.27.22

Table 5.7 AD Type and AD Data
Data type AD Type AD Data

Flags 0x01

Used for Connectable advertising.
The Flags value used for Bluetooth LE is as follows.

Octet Bit Description

0 0 LE Limited Discoverable Mode
0 1 LE General Discoverable Mode
0 2 BR/EDR Not Supported.

A scanner is available Discoverable Mode for filtering by the mode.
If adding Discoverable Mode, select Limited or General.

Service
UUID

Incomplete List of 16-bit Service UUIDs 0x02
UUID List.
The AD Type varies depending on the size.
If the AD Data includes all UUIDs, select Complete List.
If the AD Data include not all UUIDs, select Incomplete List.

Complete List of 16-bit Service UUIDs 0x03
Incomplete List of 32-bit Service UUIDs 0x04
Complete List of 32-bit Service UUIDs 0x05
Incomplete List of 128-bit Service UUIDs 0x06
Complete List of 128-bit Service UUIDs 0x07

Local
Name

Shortened Local Name 0x08 Strings that show the first half of the device name.
Complete Local Name 0x09 Complete Device Name.

Manufacturer Specific Data 0xFF

More than 2 bytes manufacturer specific data.
First 2 bytes shows the Company ID.
For details of the Company ID, refer to Assigned Number
(https://www.bluetooth.com/specifications/assigned-numbers/)

An example of setting the Advertising Data including Flags and Complete Local Name and the Scan
Response Data including Complete Local Name is shown below.

/* Advertising Data */
uint8_t gs_adv_data[] =
{
 /* Flags */
 2, /* Data Size: 2byte */
 0x01, /* AD type: Flags */
 (BLE_GAP_AD_FLAGS_LE_GEN_DISC_MODE |
 BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED), /* Data */

 /* Complete Local Name */
 9, /* Data Size: 9byte */
 0x09, /* AD type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /* Data */
};

/* Scan_Response Data */
uint8_t gs_sres_data[] =
{
 /* Complete Local Name */
 9, /* Data Size: 9byte */
 0x09, /* AD type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /* Data */

};
/* some code is omitted. */

/* Advertising Data parameter */
st_ble_gap_adv_data_t adv_data_param = {
 .adv_hdl = 0x00,
 .data_type = BLE_GAP_ADV_DATA_MODE,
 .data_length = ARRAY_SIZE(gs_adv_data),
 .p_data = gs_adv_data ,
};

/* Scan_Response Data parameter */
st_ble_gap_adv_data_t sres_data_param = {
 .adv_hdl = 0x00,
 .data_type = BLE_GAP_SCAN_RSP_DATA_MODE,
 .data_length = ARRAY_SIZE(gs_sres_data),
 .p_data = gs_sres_data,
};

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 97 of 244
Dec.27.22

/* some code is omitted. */

/* Set Advertising Data */
R_BLE_GAP_SetAdvSresData(&adv_data_param);

/* some code is omitted. */

/* GAP Callback */
void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {
 /* some code is omitted. */
 case BLE_GAP_EVENT_ADV_DATA_UPD_COMP :
 st_ble_gap_adv_data_evt_t * p_adv_data_set_param;
 p_adv_data_set_param = (st_ble_gap_adv_data_evt_t *)p_data->p_param;
 if((0x00 == p_adv_data_set_param->adv_hdl) &&
 (BLE_GAP_ADV_DATA_MODE == p_adv_data_set_param->data_type))
 {
 R_BLE_GAP_SetAdvSresData(&sres_data_param);
 }
 break;

 /* some code is omitted. */

 }
}

Code 5-2 : Sample of setting Advertising Data and Scan Response Data

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 98 of 244
Dec.27.22

5.4.2 Advertising Data Update
If the requirement in Table 5.8 is fulfilled, the Advertising Data or the Scan Response Data can be updated in
advertising.

Table 5.8 Requirement for updating Advertising Data or Scan Response Data in advertising
Advertising type Requirement
Legacy advertising No requirement
Extended advertising The data length is 251 bytes or less.

Set the following parameters and call R_BLE_GAP_SetAdvSresData to update Advertising Data or Scan
Response Data.
st_ble_gap_adv_data_t adv_data_param = {
 .adv_hdl = “Advertising handle of the advertising data to be update”,
 .data_type = “BLE_GAP_ADV_DATA_MODE or BLE_GAP_SCAN_RSP_DATA_MODE”,
 .data_length = “Size of the data to be updated”,
 .p_data = “Pointer to the data to be updated”,
};

Code 5-3 Parameters for updating Advertising Data / Scan Response Data

If updating 252 bytes or more Advertising Data in extended advertising, stop the advertising according to
“5.2.4” and update the data by R_BLE_GAP_SetAdvSresData.

5.4.3 Periodic Advertising Data Update
If the requirement in Table 5.9 is fulfilled, Periodic Advertising Data can be updated in advertising.

Table 5.9 Requirement for updating Periodic Advertising Data
Advertising type Requirement
Periodic Advertising The data length is 252 bytes or less.

Set the following parameters and call R_BLE_GAP_SetAdvSresData to update Periodic Advertising Data.
st_ble_gap_adv_data_t adv_data_param = {
 .adv_hdl = “Advertising handle of the Periodic Advertising Data to be update”,
 .data_type = BLE_GAP_PERD_ADV_DATA_MODE,
 .data_length = “Size of the data to be updated”,
 .p_data = “Pointer to the data to be updated”,
};

Code 5-4 Parameters for updating Periodic Advertising Data

If updating 253 bytes or more Periodic Advertising Data in Periodic Advertising, stop the Periodic Advertising
according to “5.3.5” and update the data by R_BLE_GAP_SetAdvSresData.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 99 of 244
Dec.27.22

5.4.4 Buffer Size
The size of the buffer for Advertising Data / Scan Response Data in the Bluetooth LE Protocol Stack is 4250
bytes. As shown in Table 5.1, extended advertising can be set Advertising Data or Scan Response Data up
to the BLE_CFG_RF_ADV_DATA_MAX value. The sum of Advertising Data / Scan Response Data in
advertising simultaneously needs to be 4250 bytes or less.

The size of the buffer for Periodic Advertising Data in the Bluetooth LE Protocol Stack is 4306 bytes. Periodic
Advertising can be set Periodic Advertising Data up to the BLE_CFG_RF_ADV_DATA_MAX value. The sum
of Periodic Advertising Data in Periodic Advertising simultaneously needs to be 4306 bytes or less.

Figure 5-7 and Figure 5-8 show a sample of Advertising Data in advertising simultaneously. Here the
BLE_CFG_RF_ADV_DATA_MAX value is 1650. R_BLE_GAP_GetRemainAdvBufSize() gets the free sizes
of the buffer for Advertising Data / Scan Response Data.

Figure 5-7 Successful sample of setting Advertising Data

Figure 5-8 Failed sample of setting Advertising Data

Advertising
Data

= 1000 bytes

Advertising
Data

= 1000 bytes

Advertising handle #0 #1 #2

Advertising Data Size 1000 bytes

Configuraiton of Advertising Data in
Advertising handle #0-3 is successful,
because the sum of Advertising Data in
Advertising Set #0-3 does not exceed 4250 bytes.

Advertising
Data

= 1000 bytes

Advertising
Data

= 1000 bytes

1000 bytes 1000 bytes 1000 bytes

#3

Advertising
Data

= 1650 bytes

Advertising
Data

= 1650 bytes

Advertising
Data

= 1650 bytes

Advertising handle #0 #1 #2

Advertising Data Size 1650 bytes 1650 bytes 1650 bytes

Configuraiton of Advertising Data in
Advertising handle #2 is failed,
because the sum of Advertising Data in
Advertising Set #0-2 exceeds 4250 bytes.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 100 of 244
Dec.27.22

5.5 Advertising with Abstraction API
If you use the Abstraction API, the procedure from setting advertising parameters to starting advertising are
performed by an Abstraction API call. Table 5.10 shows the advertising type supported by the Abstraction
API.

Table 5.10 Advertising type supported by the Abstraction API

Abstraction API Legacy or
Extended Advertising Type Advertising PDU Advertising

handle

Maximum
Advertising
Data Size (Bytes)

R_BLE_ABS_StartLegacyAdv Legacy

Connectable and

ADV_IND 0 31 Scannable

Undirected

R_BLE_ABS_StartExtAdv Extended

Connectable ADV_EXT_IND

1

245
Undirected AUX_ADV_IND

Connectable ADV_EXT_IND
239

Directed AUX_ADV_IND

R_BLE_ABS_StartNonConnAdv

Legacy Non-Connectable and ADV_NONCONN_IND

2

31

Extended

Non-Scannable ADV_EXT_IND
BLE_CFG_RF_
ADV_DATA_
MAX

Undirected AUX_ADV_IND

 AUX_CHAIN_IND

Non-Connectable and ADV_EXT_IND
BLE_CFG_RF_
ADV_DATA_
MAX

Non-Scannable AUX_ADV_IND

Directed AUX_CHAIN_IND

R_BLE_ABS_StartPerdAdv Extended Periodic

ADV_EXT_IND

3
BLE_CFG_RF_
ADV_DATA_
MAX

AUX_ADV_IND

AUX_SYNC_IND

AUX_CHAIN_IND

If the Abstraction API and the GAP API are simultaneously used, note that the advertising handle is not
available during advertising.

5.5.1 White List (Respond to a known device)
The White List is available by R_BLE_ABS_StartLegacyAdv and R_BLE_ABS_StartExtAdv. According to the
following procedure, the White List can filter remote devices that sends a request.

1. Register a known device BD_ADDR to the White List
Call R_BLE_GAP_ConfWhiteList to register a known device.

Note: The White List cannot be added/deleted when the White List filter enabled operation (advertising,
scanning, connection request) is executed.

2. Set the Advertising filter policy
Set the value in Table 5.3 to the filter field in the st_ble_abs_legacy_adv_param_t (if using
R_BLE_ABS_StartLegacyAdv) or the st_ble_abs_ext_adv_param_t (if using
R_BLE_ABS_StartExtAdv) structure .

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 101 of 244
Dec.27.22

5.5.2 Privacy
The privacy feature is available by R_BLE_ABS_StartLegacyAdv, R_BLE_ABS_StartExtAdv,
R_BLE_ABS_StartNonConnAdv, R_BLE_ABS_StartPerdAdv. Prepare for the privacy feature in advance
according to “9.4.1 Generate local device RPA”. Set the value in Table 5.11 to the fields in the
st_ble_abs_legacy_adv_param_t or the st_ble_abs_ext_adv_param_t or the
st_ble_abs_non_conn_adv_param_t structure. The address included in advertising packets is RPA and are
changed to a different address periodically (the default update interval is 900 seconds. Interval can be
changed with R_BLE_GAP_SetRpaTo()).

Table 5.11 The parameters used for the privacy feature
Field Value Description

o_addr_type

BLE_GAP_ADDR_RPA_ID_PUBLIC(0x02)
Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
Public Address.

BLE_GAP_ADDR_RPA_ID_RANDOM(0x03)
Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
Public Address.

o_addr Specify the Static Address registered by
R_BLE_GAP_SetLocIdInfo.

Specify the value if the o_addr_type is
BLE_GAP_ADDR_RPA_ID_RANDOM(0x03).

p_addr Specify the remote device Identity Address
registered by R_BLE_GAP_ConfRslvList().

―

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 102 of 244
Dec.27.22

5.6 Connection with Smart Phone
Call R_BLE_ABS_StartLegacyAdv to send connectable Legacy Advertising packets to connect to a Smart
Phone. An example of sending advertising packets to connect with Smart Phone is shown below.

/* Advertising Data */
static uint8_t gs_adv_data[] =
{
 /* Flag (mandatory) */
 2, /**< Data Size */
 0x01, /**< Data Flag: Flag */
 (BLE_GAP_AD_FLAGS_LE_GEN_DISC_MODE | BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED), /**< Data Value */

 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Flag: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */

};

/* Scan_Response Data */
static uint8_t gs_sres_data[] =
{
 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Flag: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */

};

/* Advertising parameters */
static st_ble_abs_legacy_adv_param_t gs_adv_param =
{
 .slow_adv_intv = 0x00A0,
 .slow_period = 0,
 .p_adv_data = gs_adv_data,
 .adv_data_length = ARRAY_SIZE(gs_adv_data),
 .p_sres_data = gs_sres_data,
 .sres_data_length = ARRAY_SIZE(gs_sres_data),
 .adv_ch_map = BLE_GAP_ADV_CH_ALL,
 .filter = BLE_ABS_ADV_ALLOW_CONN_ANY,
 .o_addr_type = BLE_GAP_ADDR_PUBLIC,
 .o_addr = {0},
};

/** some code is omitted **/

/* Start Advertising */
R_BLE_ABS_StartLegacyAdv(&gs_adv_param);

Code 5-5 Sample of advertising for connecting with Smart Phone

When starting advertising, the BLE_GAP_EVENT_ADV_ON event is notified. After the event notification,
Smart Phones can detect the device to connect.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 103 of 244
Dec.27.22

5.7 Beacon
An example of sending non-connectable advertising packets as beacon by calling
R_BLE_ABS_StartNonConnAdv is shown below.

/* Advertising Data */
static uint8_t gs_adv_data[] =
{
 /* Flag */
 2, /**< Data Size */
 0x01, /**< Data Flag: Flag */
 BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED, /**< Data Value */

 /* Complete Local Name */
 9, /* Data Size */
 0x09, /* Data Flag: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /* Data */

};

/* Advertising parameters */
static st_ble_abs_non_conn_adv_param_t gs_non_conn_adv_param =
{
 .p_addr = NULL,
 .p_adv_data = gs_adv_data,
 .adv_intv = 0x00A0,
 .duration = 0,
 .adv_data_length = ARRAY_SIZE(gs_adv_data),
 .adv_ch_map = BLE_GAP_ADV_CH_ALL,
 .o_addr_type = BLE_GAP_ADDR_PUBLIC,
 .adv_phy = BLE_GAP_ADV_PHY_1M,
 .sec_adv_phy = BLE_GAP_ADV_PHY_1M,
 .o_addr = {0},
};

/** some code is omitted **/

/* Start Advertising */
R_BLE_ABS_StartNonConnAdv (&gs_non_conn_adv_param);

Code 5-6 Sample of using R_BLE_ABS_StartNonConnAdv

When starting advertising, the BLE_GAP_EVENT_ADV_ON event is notified. After the event notification, a
remote device can detect the beacon by scan.

Smart Phone may support only the legacy advertising type of non-connectable advertising packet. Send
advertising packets which the scanner can detect the packets.

If you use iBeacon (Apple Inc) or Eddystone (Google), use non-connectable advertising. For more
information, refer to the following.

iBeacon : https://developer.apple.com/ibeacon/

Eddystone : https://github.com/google/eddystone

https://developer.apple.com/ibeacon/
https://github.com/google/eddystone

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 104 of 244
Dec.27.22

6. Scan
Bluetooth LE device receives advertising packets from other devices by scan. If your device scan, use the All
features or Balance type Bluetooth LE Protocol Stack library. The All features library can receive the
extended advertising and legacy advertising packets. The Balance library receives only the legacy
advertising packet.

6.1 Start or stop scan
Scan starts by calling one of the following APIs.

Start Scan API :

- R_BLE_GAP_StartScan

- R_BLE_ABS_StartScan

If the period parameter of the above APIs is set to other than 0, the scan stops after the period is expired.
Otherwise scan stops by calling the following API. If the target device is found or you want to change the
scan parameters, stop the scan.

Stop Scan API:

- R_BLE_GAP_StopScan

6.2 Scan parameters
Table 6.1 –Table 6.5 show the Start Scan APIs parameters.

[R_BLE_GAP_StartScan]: parameter 1(st_ble_gap_scan_param_t *), parameter 2(st_ble_gap_scan_on_t *)

Table 6.1 st_ble_gap_scan_param_t structure
Type Field Description

uint8_t o_addr_type Address type included in a scan request packet with active
scan.

uint8_t filter_policy The filter policy which packets from what kind of device can
be received.

st_ble_gap_scan_phy_param_t * p_phy_param_1M 1MPHY scan parameters.
st_ble_gap_scan_phy_param_t * p_phy_param_coded Coded PHY scan parameters.

Table 6.2 st_ble_gap_scan_phy_param_t structure

Type Field Description

uint8_t scan_type Select active or passive scan.
If you use Scan Response Data, select active scan.

uint16_t scan_intv Scan interval.
uint16_t scan_window Scan window.

Table 6.3 st_ble_gap_scan_on_t structure
Type Field Description
uint8_t proc_type Scan procedure type.

uint8_t filter_dups Specify whether receiving the same advertising packet from
the same device or not.

uint16_t duration Scan duration.
uint16_t period Scan period.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 105 of 244
Dec.27.22

[R_BLE_ABS_StartScan]

Table 6.4 st_ble_abs_scan_param_t structure
Type Field Description
st_ble_abs_scan_phy_param_t * p_phy_param_1M 1MPHY scan parameters.
st_ble_abs_scan_phy_param_t * p_phy_param_coded Coded PHY scan parameters.
uint8_t * p_filter_data Scan Filtering Data.
uint16_t fast_period Fast scan period.
uint16_t slow_period Slow scan period.
uint16_t filter_data_length Scan Filtering Data size.

uint8_t dev_filter The filter policy which packets from what kind of device can
be received.

uint8_t filter_dups Specify whether receiving the same advertising packet from
the same device or not.

uint8_t filter_ad_type AD_TYPE of Scan Filtering Data.

Table 6.5 st_ble_abs_scan_phy_param_t structure
Type Field Description
uint16_t fast_intv Fast scan interval.
uint16_t slow_intv Fast scan window.
uint16_t fast_window Slow scan interval.
uint16_t slow_window Slow scan window.

uint8_t scan_type Select active or passive scan.
If you use Scan Response Data, select active scan.

The p_phy_param_1M and the p_phy_param_coded field specify the PHY of scan. Setting the
p_phy_param_1M is required to receive Advertising that the primary channels (CH:37/38/39) use 1M PHY.
Setting the p_phy_param_coded is required to receive Advertising that primary channels use Coded PHY.

The scan interval, scan window, duration and period field specify the interval and period of scan.

Figure 6-1 shows those parameters relationship.

Figure 6-1 The relationship of scan interval, window, duration, period

The “fast_xxx” and “slow_xxx” fields of R_BLE_ABS_StartScan are set to change the scan frequency.
As use case, the fast scan increases a detection probability of the target device and the slow scan decreases
the scan frequency. Figure 6-2 shows the relationship between the fast scan and slow scan. Table 6.6 shows
the event regarding the fast scan and slow scan.

CH 37 CH 38 CH 39 CH 37 CH 38 CH 39CH 39 CH 37 CH 38 CH 39 CH 37 CH 38 CH 39CH 39

Scan
Window

Scan
Interval

Scan duration

Scan period

Scan duration

Scan period

Scan
Window

Scan
Interval

・・・
・・・ ・・・

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 106 of 244
Dec.27.22

Figure 6-2 The relationship between the fast scan and slow scan

Table 6.6 The event regarding the fast scan and slow scan
Library Type Scan Start Scan Switch Scan End

All features BLE_GAP_EVENT_SCAN_ON BLE_GAP_EVENT_SCAN_TO
BLE_GAP_EVENT_SCAN_ON BLE_GAP_EVENT_SCAN_TO

Balance BLE_GAP_EVENT_SCAN_ON BLE_GAP_EVENT_SCAN_OFF
BLE_GAP_EVENT_SCAN_ON BLE_GAP_EVENT_SCAN_OFF

6.2.1 Privacy
The privacy feature can set the address in a scan request to RPA. According to “9.4.1 Generate local device
RPA”, prepare for the privacy feature in advance. If the local device uses RPA by R_BLE_GAP_StartScan,
the following field in the st_ble_gap_scan_param_t structure(Table 6.1) needs to be set to the value shown
in Table 6.7 to enable the privacy feature.

Table 6.7 The parameters used for the privacy feature (R_BLE_GAP_StartScan)
Field Value Description

o_addr_type

BLE_GAP_ADDR_RPA_ID_PUBLIC(0x02)
Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
Public Address.

BLE_GAP_ADDR_RPA_ID_RANDOM(0x03)
Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
Static Address.

fast_period : other than 0

slow_period : 0

fast_period : 0

slow_period : other than 0

fast_period : other than 0

slow_period : other than 0

slow_period : 0
fast_period : 0

Scan with slow_intv/slow_window

Scan with fast_intv/fast_window Scan with slow_intv/slow_window

Scan with fast_intv/fast_window

Scan with slow_intv/slow_window

Scan with slow_intv/slow_window

Scan Switch

Scan Switch

Scan Start
Scan End

Scan Start

Scan End
Scan Start

Scan Start

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 107 of 244
Dec.27.22

If the local device uses RPA by R_BLE_ABS_StartScan, the following field in the st_ble_abs_scan_param_t
structure(Table 6.4) needs to be set to the value shown in Table 6.8 to enable the privacy feature. For more
details about this field, see API document.

Table 6.8 The parameters used for the privacy feature (R_BLE_ABS_StartScan)
Field Value Description

dev_filter

BLE_ABS_SCAN_ALL_RPA_PUBLIC
(BLE_GAP_SCAN_ALLOW_ADV_ALL |
(BLE_GAP_ADDR_RPA_ID_PUBLIC << 4))

Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
Public Address.

BLE_ABS_SCAN_WLST_RPA_PUBLIC
(BLE_GAP_SCAN_ALLOW_ADV_WLST |
(BLE_GAP_ADDR_RPA_ID_PUBLIC << 4))

BLE_ABS_SCAN_EXC_DIR_RPA_PUBLIC
(BLE_GAP_SCAN_ALLOW_ADV_EXCEPT_DIRECTED |
(BLE_GAP_ADDR_RPA_ID_PUBLIC << 4))

BLE_ABS_SCAN_EXC_DIR_WLST_RPA_PUBLIC
(BLE_GAP_SCAN_ALLOW_ADV_EXCEPT_DIRECTED_WLST |
(BLE_GAP_ADDR_RPA_ID_PUBLIC << 4))

BLE_ABS_SCAN_ALL_RPA_STATIC
(BLE_GAP_SCAN_ALLOW_ADV_ALL |
(BLE_GAP_ADDR_RPA_ID_RANDOM << 4))

Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
Static Address.

BLE_ABS_SCAN_WLST_RPA_STATIC
(BLE_GAP_SCAN_ALLOW_ADV_WLST |
(BLE_GAP_ADDR_RPA_ID_RANDOM << 4))

BLE_ABS_SCAN_EXC_DIR_RPA_STATIC
(BLE_GAP_SCAN_ALLOW_ADV_EXCEPT_DIRECTED |
(BLE_GAP_ADDR_RPA_ID_RANDOM << 4))

BLE_ABS_SCAN_EXC_DIR_WLST_RPA_STATIC
(BLE_GAP_SCAN_ALLOW_ADV_EXCEPT_DIRECTED_WLST |
(BLE_GAP_ADDR_RPA_ID_RANDOM << 4))

If RPA generation and resolution are enabled by dev_filter a(), active scan will not be performed on remote
devices that use Non-resolvable private address.

BP: When supporting privacy, it is recommended to limit the use of scannable advertisements and active
scanning to avoid the risk of devices being tracked.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 108 of 244
Dec.27.22

6.3 Received information by scan
After calling the Start Scan API, the Bluetooth LE Protocol Stack notifies receiving an advertising packet from
another device using the BLE_GAP_EVENT_ADV_REPT_IND event. If the sender uses AUX_CHAIN_IND,
Advertising Data will be notified separately. Furthermore, since the size of Advertising Data that can be
notified to upper layer according to Bluetooth specification is 229 byte or less, 230 byte or more Advertising
Data will be notified separately. Combine them on the receiver if necessary.

Figure 6-3 Dividing and combining Advertising Data

Received advertising packet is stored in a st_ble_gap_adv_rept_evt_t structure variable. Table 6.9 shows
st_ble_gap_adv_rept_evt_t structure.

Table 6.9 st_ble_gap_adv_rept_evt_t structure

Type Field Description

 uint8_t adv_rpt_type Advertising type.

 union {

 st_ble_gap_adv_rept_t * p_adv_rpt If the Balance library is used, a received
advertising packet is notified by this field.

 st_ble_gap_ext_adv_rept_t * p_ext_adv_rpt If the All features library is used, a received
advertising packet is notified by this field.

 st_ble_gap_perd_adv_rept_t * p_per_adv_rpt
A received periodic advertising packet is notified
by this field.
Only the All features library can use the field.

 } param;

Depending on the Bluetooth LE Protocol Stack, the field of advertising varies. Table 6.10 and Table 6.11
show the advertising field.

Table 6.10 st_ble_gap_adv_rept_t structure

Type Field Description
uint8_t num Number of received advertising. This field is always 1.
uint8_t adv_type Advertising packet type.
uint8_t addr_type Address type of received advertising packet.
uint8_t * p_addr Address of received advertising packet.
uint8_t len Size of received advertising data.
int8_t rssi Received advertising RSSI.
uint8_t * p_data Received advertising data.

Advertising Data (max 1650)Application

Payload C
R

CHeader
(AUX_CHAIN_IND)

Advertising Data (max 1650)

Payload

Pa
yl

oa
d

Payload

Pa
yl

oa
d

Payload

Pa
yl

oa
d

Application

Payload C
R

CHeader
(AUX_ADV_IND) Payload C

R
CHeader

(AUX_CHAIN_IND)

Advertising Report
(BLE_GAP_EVENT_ADV_REPT_IND)

Advertising Report Advertising Report Advertising Report Advertising Report

Advertising Packet Advertising Packet Advertising Packet

Advertising Report

Scanner

Advertiser

Header Header Header Header Header Header

...

...

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 109 of 244
Dec.27.22

Table 6.11 st_ble_gap_ext_adv_rept_t structure
Type Field Description
uint8_t num Number of received advertising. This field is always 1.
uint8_t adv_type Advertising packet type.
uint8_t addr_type Address type of received advertising packet.
uint8_t * p_addr Address of received advertising packet.
uint8_t adv_phy Primary PHY for Advertising.
uint8_t sec_adv_phy Secondary PHY for Advertising.
uint8_t adv_sid Advertising SID.
int8_t tx_pwr Tx power.
int8_t rssi Received advertising RSSI.
uint16_t perd_adv_intv Periodic advertising interval.
uint8_t dir_addr_type Address type included in Direct Advertising packet.
uint8_t * p_dir_addr Address included in Direct Advertising packet.
uint8_t len Size of received advertising data.
uint8_t * p_data Received advertising data.

For more information about the above structures, refer to the API document.

An example of displaying the RSSI included in a received advertising packet is shown below.
/* GAP callback function */
void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 /** some code is omitted **/
 case BLE_GAP_EVENT_ADV_REPT_IND:
 {
 st_ble_gap_adv_rept_evt_t *adv_rept_evt_param =
 (st_ble_gap_adv_rept_evt_t *)data->p_param;

 switch (adv_rept_evt_param->adv_rpt_type)
 {
 /* receive legacy advertising PDU */
 case 0x00:
 {
 st_ble_gap_adv_rept_t *adv_rept_param =
 (st_ble_gap_adv_rept_t *)adv_rept_evt_param->param.p_adv_rpt;

 printf("RSSI : %d \n", adv_rept_param->rssi);
 } break;

 /* receive extended advertising PDU */
 case 0x01:
 {
 st_ble_gap_ext_adv_rept_t *ext_adv_rept_param =
 (st_ble_gap_ext_adv_rept_t *)ext_adv_rept_param->
 param.p_ext_adv_rpt;

 printf("RSSI : %d \n", ext_adv_rept_param->rssi);
 } break;
 /** some code is omitted **/

Code 6-1 Sample of displaying the RSSI included in a received advertising packet

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 110 of 244
Dec.27.22

6.4 Scan filtering
It is possible to filter received advertising packets by scan. The filtering can be used if you want to notify the
essential advertising packets to your application.

The filtering by the APIs is as follows.

 Using the White List

 Duplicate advertising filtering

 Discoverable mode filtering

 Advertising Data filtering

6.4.1 Using the White List (Receiving from known devices)
If the BD_ADDR of the device which of advertising packets are to received is known, filter advertising
packets by this method. Before starting scan, perform the 1, 2 steps.

1. Register the BD_ADDR of the remote device which sends advertising packets by the White List.
Call R_BLE_GAP_ConfWhiteList to register a known device.

Note: The White List cannot be added/deleted when the White List filter enabled operation (advertising,
scanning, connection request) is executed.

2. Set the below Scan Filter Policy parameters of the Start Scan API parameter to
BLE_GAP_SCAN_ALLOW_ADV_WLST(0x01).

 The filter_policy field of the st_ble_gap_scan_param_t structure (R_BLE_GAP_StartScan)

 The dev_filter field of the st_ble_abs_scan_param_t structure (R_BLE_ABS_StartScan)

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 111 of 244
Dec.27.22

6.4.2 Duplicate advertising filtering
If you do not want to receive duplicate advertising packets from same device, set the duplicate filtering.
Set the below Scan Filter Policy parameters of the Start Scan API parameter to
BLE_GAP_SCAN_ALLOW_ADV_WLST(0x01).

 The filter_policy field of the st_ble_gap_scan_param_t structure (R_BLE_GAP_StartScan)

 The dev_filter field of the st_ble_abs_scan_param_t structure (R_BLE_ABS_StartScan)

The duplicate filtering can filter same advertising packets from 8 devices at most. If there are more than 9
advertising devices, same advertising packets of the 9th and subsequent devices cannot be filtered and the
application receives those.

6.4.3 Discoverable mode filtering
Advertising packets are filtered with Discoverable Mode because of the Flag AD_TYPE included in
advertising data. The Abstraction API does not support this feature. Table 6.12 shows the value to be set to
the proc_type field in the st_ble_gap_scan_on_t structure of R_BLE_GAP_StartScan.

Table 6.12 The value to be set for filtering with Discoverable Mode
Value Description
BLE_GAP_SC_PROC_OBS(0x00) Receive advertising packets without regard to Discoverable Mode.
BLE_GAP_SC_PROC_LIM(0x01) Receive advertising packets in LE Limited Discoverable Mode.
BLE_GAP_SC_PROC_GEN(0x02) Receive advertising packets in LE General Discoverable Mode.

6.4.4 Advertising Data filtering
The Abstraction API can filter by the data included in advertising data. Specify the data for filtering to the
following parameters in the st_ble_abs_scan_param_t structure.

p_filter_data: The filtered data.

filter_data_length: The filtered data size.

filter_ad_type: The AD_TYPE of the filtered data.
/* Scan filter data */
static uint8_t gs_filter_data[] =
{
 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */
};

/* Scan parameters */
static st_ble_abs_scan_param_t gs_scan_param =
{
 .p_phy_param_1M = &gs_scan_phy_param,
 .p_filter_data = gs_filter_data,
 .slow_period = 0,
 .filter_data_length = ARRAY_SIZE(gs_filter_data),
 .dev_filter = BLE_GAP_SCAN_ALLOW_ADV_ALL,
 .filter_dups = BLE_GAP_SCAN_FILT_DUPLIC_ENABLE,
};

Code 6-2 Sample of advertising data filtering

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 112 of 244
Dec.27.22

6.5 Periodic Advertising Synchronization
A scanner can establish a Periodic Advertising Synchronization (Sync) with an advertiser due to the
AUX_ADV_IND information. Figure 6-4 shows the procedure that a scanner establishes a Periodic
Advertising Sync in application. The following sections describes the details of Periodic Advertising Sync
procedure.

Figure 6-4 Periodic Advertising Sync procedure

Start Scan

Detect Periodic Advertiser

Establish Periodic
Advertising Sync

Terminate Periodic
Advertising Sync

Lost Periodic Advertising
Sync

Step performed by one ABS API call.

[The advertiser stops
 Periodic Advertising.]

[The scanner terminates
 the Periodic Advertising Sync.]

Register to
the Periodic Advertiser List

[The Periodic Advertiser List is used.]

[The Periodic Advertiser List is not used.]

Receive Periodic
Advertising

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 113 of 244
Dec.27.22

6.5.1 Start Scan
Start scan according to “6.1 Start or stop scan”.

6.5.2 Detect Periodic Advertiser
The scanner can establish a Periodic Advertising Sync with the advertiser if the perd_adv_intv (shown in
Table 6.11) included in a received advertising packet is not 0. Specify the advertiser with the addr_type,
p_addr, adv_sid field in Table 6.11 according to “6.5.3 Register to the Periodic Advertiser List“ or “6.5.4
Establish Periodic Advertising Sync”.

6.5.3 Register to the Periodic Advertiser List
Select using the Periodic Advertiser List or the remote device address to point to the advertiser for
establishing a Periodic Advertising Sync. If using the Periodic Advertiser List, call
R_BLE_GAP_ConfPerdAdvList to register a known device.

6.5.4 Establish Periodic Advertising Sync
Call R_BLE_GAP_CreateSync to establish a Periodic Advertising Sync. When a Periodic Advertising Sync
has been established, the BLE_GAP_EVENT_SYNC_EST event is notified. To cancel establishing a
Periodic Advertising Sync after calling R_BLE_GAP_CreateSync, call R_BLE_GAP_CancelCreateSync.
When the cancellation has been completed, the BLE_GAP_EVENT_SYNC_EST event that the result is
BLE_ERR_NOT_YET_READY(0x0012) is notified.

The maximum number of Periodic Advertising Syncs is the value of the BLE_CFG_RF_SYNC_SET_MAX
option. An example of from starting scan to establishing a Periodic Advertising Sync is shown below.

/** some code is omitted **/

static st_ble_dev_addr_t gs_sync_advr;
static uint8_t gs_adv_sid;

static st_ble_abs_scan_phy_param_t gs_phy_param_1M =
{
 .fast_intv = 0x0200,
 .slow_intv = 0x0800,
 .fast_window = 0x0100,
 .slow_window = 0x0100,
 .scan_type = BLE_GAP_SCAN_PASSIVE,
};

static st_ble_abs_scan_param_t gs_scan_param =
{
 .p_phy_param_1M = &gs_phy_param_1M,
 .p_phy_param_coded = NULL,
 .p_filter_data = NULL,
 .fast_period = 0x0100,
 .slow_period = 0x0000,
 .filter_data_length = 0,
 .dev_filter = BLE_GAP_SCAN_ALLOW_ADV_ALL,
 .filter_dups = BLE_GAP_SCAN_FILT_DUPLIC_DISABLE,
};

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 /** some code is omitted **/
 switch(type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 R_BLE_ABS_StartScan(&gs_scan_param);
 } break;

 case BLE_GAP_EVENT_ADV_REPT_IND:
 {
 st_ble_gap_adv_rept_evt_t * p_adv_rept_evt_param =

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 114 of 244
Dec.27.22

 (st_ble_gap_adv_rept_evt_t *)p_data->p_param;

 switch (p_adv_rept_evt_param->adv_rpt_type)
 {
 case 0x01:
 {
 st_ble_gap_ext_adv_rept_t * p_ext_adv_rept_param =
 (st_ble_gap_ext_adv_rept_t *)p_adv_rept_evt_param->param.p_ext_adv_rpt;

 if(0x0000 != p_ext_adv_rept_param->perd_adv_intv)
 {
 /* found */
 memcpy(gs_sync_advr.addr, p_ext_adv_rept_param->p_addr,
 BLE_BD_ADDR_LEN);
 gs_sync_advr.type = p_ext_adv_rept_param->addr_type;
 gs_adv_sid = p_ext_adv_rept_param->adv_sid;
 R_BLE_GAP_ConfPerdAdvList(BLE_GAP_LIST_ADD_DEV,
 &gs_sync_advr,
 &gs_adv_sid,
 1);
 }

 } break;
 /** some code is omitted **/
 }
 } break;

 case BLE_GAP_EVENT_PERD_LIST_CONF_COMP:
 {
 R_BLE_GAP_CreateSync(NULL, 0, 100, 100);
 } break;

 case BLE_GAP_EVENT_SYNC_EST:
 {
 if(BLE_SUCCESS == result)
 {
 R_BLE_CLI_Printf("sync established.\n");
 }
 } break;

 /** some code is omitted **/
 }
}

/** some code is omitted **/

Code 6-3 Sample of establishing a Periodic Advertising Sync

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 115 of 244
Dec.27.22

6.5.5 Receive Periodic Advertising
After the Periodic Advertising Sync has been established with the advertiser, receiving a Periodic Advertising
packet is notified by the BLE_GAP_EVENT_ADV_REPT_IND event. A received Periodic Advertising packet
is stored in a st_ble_gap_adv_rept_evt_t type (Table 6.9) variable. Table 6.13 shows the
st_ble_gap_perd_adv_rept_t structure in case of Periodic Advertising.

Table 6.13 st_ble_gap_perd_adv_rept_t structure
Type Field Description
uint16_t sync_hdl Sync handle identifying an Established Periodic Advertising Sync.
int8_t tx_pwr Tx power
int8_t rssi RSSI
uint8_t rfu Reserved for future use
uint8_t data_status Status of Periodic Advertising Data
uint8_t len Periodic Advertising Data Size
uint8_t * p_data Periodic Advertising Data

6.5.6 Lost Periodic Advertising Sync
If the advertiser stops Periodic Advertising, loss of the Periodic Advertising Sync is notified through the
BLE_GAP_EVENT_SYNC_LOST event is notified.

6.5.7 Terminate Periodic Advertising Sync
By calling BLE_GAP_TerminateSync, the scanner terminates the Periodic Advertising Sync. When the
Periodic Advertising Sync has been terminated, user application is notified through the
BLE_GAP_EVENT_SYNC_TERM event.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 116 of 244
Dec.27.22

7. Connection
7.1 Requesting Connection
Central device sends a connection request to Peripheral device running Connectable Advertising.by the
below APIs. Peripheral device that receives a connection request terminates Connectable Advertising and
responds to the connection request.

Connection Request API:
 R_BLE_GAP_CreateConn
 R_BLE_ABS_CreateConn

For more information about the above APIs parameters, refer to the following items in the API document.

 R_BLE_GAP_CreateConn:
 st_ble_gap_create_conn_param_t

 R_BLE_ABS_CreateConn:
 st_ble_abs_conn_param_t

Setting the following is required to connect with the remote device that the primary channels (CH:37/38/39)
of Advertising use 1M PHY.
The p_conn_param_1M field in st_ble_gap_create_conn_param_t structure used by
R_BLE_GAP_CreateConn.
The p_conn_1M field in st_ble_abs_conn_param_t structure used by the R_BLE_ABS_CreateConn.

Setting the following is required to connect with the remote device that primary channels of Advertising use
Coded PHY.
The p_conn_param_coded field in st_ble_gap_create_conn_param_t structure used by
R_BLE_GAP_CreateConn.
The p_conn_coded field in st_ble_abs_conn_param_t structure used by the R_BLE_ABS_CreateConn.

The PHY after establishing a connection will be the PHY specified in the secondary channel (other than
CH:37/38/39) of Advertising.

When the connection is established, the connection handle is notified in the BLE_GAP_EVENT_CONN_IND
event. Since the connection handle is assigned a number that does not overlap with other connections in the
range from 0 to BLE_CFG_RF_CONN_MAX-1 in the lower 3 bits, it can be masked as shown in the sample
below and used as the index of the management array of the connection handle.

#define BLE_APP_CONN_HDL_MASK (0x0007)
uint16_t g_conn_hdl[BLE_CFG_RF_CONN_MAX];
void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
/** some code is omitted **/
 case BLE_GAP_EVENT_CONN_IND:
 {
 if (BLE_SUCCESS == result)
 {
 /* Store connection handle */
 st_ble_gap_conn_evt_t *p_gap_conn_evt_param = (st_ble_gap_conn_evt_t *)p_data->p_param;
 uint16_t index = p_gap_conn_evt_param->conn_hdl & BLE_APP_CONN_HDL_MASK;
 g_conn_hdl[index] = p_gap_conn_evt_param->conn_hdl;

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 117 of 244
Dec.27.22

7.1.1 Using the White List (Connection to a known device)
It is possible to send a connection request after registering a known device in the White List. If reconnecting
to the known device, use the White List. The procedure is as follows.

1. Register the BD_ADDR of the remote device which is reconnected by the White List.
Call R_BLE_GAP_ConfWhiteList to register a known device.

Note: The White List cannot be added/deleted when the White List filter enabled operation (advertising,
scanning, connection request) is executed.

2. Set the following connection parameters

 The init_filter_policy field in st_ble_gap_create_conn_param_t structure used by
R_BLE_GAP_CreateConn.

 The filter field in st_ble_abs_conn_param_t structure used by the R_BLE_ABS_CreateConn.

Set the above parameters to BLE_GAP_INIT_FILT_USE_WLST(0x01) to send a connection
request to a known device in the White List.

An example of connecting a remote device registered in the White List is shown below.

/* remote device address */
dev.addr = {"Remote device BD_ADDR" };
dev.type = BLE_GAP_ADDR_PUBLIC;

/* register remote device to white list */
R_BLE_GAP_ConfWhiteList(BLE_GAP_LIST_ADD_DEV, &dev, 1);

/** some code is omitted **/

/* reconnect */
st_ble_gap_conn_param_t conn_1M = {
 .conn_intv_min = 0x0100,
 .conn_intv_max = 0x0100,
 .conn_latency = 0x0000,
 .sup_to = 0x03BB,
 .min_ce_length = 0xFFFF,
 .max_ce_length = 0xFFFF,
};

st_ble_gap_create_conn_param_t conn_param;
conn_param.init_filter_policy = BLE_GAP_INIT_FILT_USE_WLST;
conn_param.own_addr_type = BLE_GAP_ADDR_PUBLIC;

/* set connection parameters for 1M */
st_ble_gap_conn_phy_param_t conn_phy_1M = {
 .scan_intv = 0x0300,
 .scan_window = 0x0300,
 p_conn_param = &conn_1M,
};

conn_param.p_conn_param_1M = &conn_phy_1M;

R_BLE_GAP_CreateConn(&conn_param);

/** some code is omitted **/

Code 7-1 Connection Request using the White List

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 118 of 244
Dec.27.22

7.1.2 Privacy
The privacy feature can set the address in a connection request to RPA. According to “9.4.1 Generate local
device RPA”, prepare for the privacy feature in advance. If the local device uses RPA by
R_BLE_GAP_CreateConn, the following fields in the st_ble_gap_create_conn_param_t structure need to be
set to the values shown in Table 7.1 to enable the privacy feature.

Table 7.1 The parameters used for the privacy feature (R_BLE_GAP_CreateConn)
Field Value Description

own_addr_type

BLE_GAP_ADDR_RPA_ID_PUBLIC(0x02)
Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
Public Address.

BLE_GAP_ADDR_RPA_ID_RANDOM(0x03)
Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
Static Address.

remote_bd_addr_type Specify the remote device address registered by
R_BLE_GAP_ConfRslvList. ―

If the local device uses RPA by R_BLE_ABS_CreateConn, the following fields in the
st_ble_abs_conn_param_t structure need to be set to the values shown in Table 7.2 to enable the privacy
feature.

Table 7.2 The parameters used for the privacy feature (R_BLE_ABS_CreateConn)
Field Value Description

filter

BLE_ABS_CONN_USE_ADDR_RPA_PUBLIC
(BLE_GAP_INIT_FILT_USE_ADDR |
(BLE_GAP_ADDR_RPA_ID_PUBLIC << 4))

Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
Public Address.

BLE_ABS_CONN_USE_WLST_RPA_PUBLIC
(BLE_GAP_INIT_FILT_USE_WLST |
(BLE_GAP_ADDR_RPA_ID_PUBLIC << 4))

BLE_ABS_CONN_USE_ADDR_RPA_STATIC
(BLE_GAP_INIT_FILT_USE_ADDR |
(BLE_GAP_ADDR_RPA_ID_RANDOM << 4))

Specify the value if the Identity Address
registered by R_BLE_GAP_SetLocIdInfo is
Public Address.

BLE_ABS_CONN_USE_WLST_RPA_STATIC
(BLE_GAP_INIT_FILT_USE_WLST |
(BLE_GAP_ADDR_RPA_ID_RANDOM << 4))

remote_bd_addr_type Specify the remote device address registered by
R_BLE_GAP_ConfRslvList. ―

remote_bd_addr

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 119 of 244
Dec.27.22

7.2 Cancelling Connection Request
A connection request cannot be sent until the connection is established by a previous connection request or
until the connection request is cancelled. After sending a connection request, if you want to send another
connection request, cancel the previous connection request by BLE_GAP_CancelCreateConn. After
cancelling the request, the BLE_GAP_EVENT_CONN_IND event is notified with the result
BLE_ERR_INVALID_HDL(0x000E).

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 120 of 244
Dec.27.22

7.3 Multiple Connection
This chapter describes how to connect to multiple devices at the same time and the precautions to be taken
when doing so. With the Bluetooth LE Protocol Stack, up to 7 devices can be connected simultaneously. The
connection procedure is the same as for one-to-one communication. The application specifies the connection
device using the connection handle that is notified when connecting. The connection handle is allocated for
the connection, so even if it is the same device, it will change when reconnecting.

The attribute handle for accessing the characteristic in the GATT database is device specific. When
connecting to multiple devices as a GATT client, it is necessary to hold an attribute handle for each GATT
server. By using Profile Common of app_lib, you can hold the attribute handle for each device up to 10 in the
order of connection.

When connecting from multiple devices as a GATT server, there are some such as Client Configuration
Characteristic Descriptor whose specifications hold values for each device. If accessed from multiple clients,
set the GATT database properties to hold the respective values.

An implementation example of application code that connects multiple devices for each expected use case is
explained.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 121 of 244
Dec.27.22

7.3.1 Connecting to multiple peripheral devices
It communicates with multiple peripheral devices, with itself as the central. For example, assume an
application that aggregates multiple sensor data. Here, the central device is the GATT client.

Figure 7-1 Connection with multiple peripheral devices

To ensure a reliable connection one by one, the central device connects in sequence with the completion of
service discovery as a break. Below shows a sequence chart and an implementation example when
connecting using app_lib of the Bluetooth LE Protocol Stack. Repeat this procedure to connect multiple
peripheral devices.

Central
(GATT Client)

Peripheral
(GATT Server)

Peripheral
(GATT Server)

Peripheral
(GATT Server)

Peripheral
(GATT Server)

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 122 of 244
Dec.27.22

Figure 7-2 Sequence chart when connecting to a peripheral device (The circled numbers in the chart

correspond to the numbers in Code 7-3 below.)

Central
(GATT Client)

R_BLE_ABS_StartScan

Bluetooth LE
Protcol Stack

BLE_GAP_EVENT_ADV_REPT_IND

R_BLE_GAP_StopScan

BLE_GAP_EVENT_SCAN_OFF

R_BLE_ABS_CreateConn

BLE_GAP_EVENT_CONN_IND

BLE_GATTC_EVENT_CONN_IND

R_BLE_DISC_Start

disc_comp_cb

R_BLE_ABS_StartScan

Peripheral
(GATT Server)

Advertising

Connection Request

Connection Response

Service Discovery

Service Information

Restarts scanning to connect to
other devices after service discovery

①

②

③

④

⑤

⑥

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 123 of 244
Dec.27.22

/* Scan phy parameters */
static st_ble_abs_scan_phy_param_t gs_scan_phy_param =
{
 /* TODO: Modify scan phy parameter. */
 .fast_intv = 0x200,
 .fast_window = 0x100,
 .slow_intv = 0x200,
 .slow_window = 0x100,
 .scan_type = BLE_GAP_SCAN_PASSIVE,
};

/* Scan filter data */
static uint8_t gs_filter_data[] =
{
 /* TODO: Modify filter of advertise data. Value of Data Flag is defined in
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile */

 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */
};

/* Scan parameters */
static st_ble_abs_scan_param_t gs_scan_param =
{
 /* TODO: Modify scan parameter. */
 .p_phy_param_1M = &gs_scan_phy_param,
 .p_filter_data = gs_filter_data,
 .slow_period = 0,
 .filter_data_length = ARRAY_SIZE(gs_filter_data),
 .dev_filter = BLE_GAP_SCAN_ALLOW_ADV_ALL,
 .filter_dups = BLE_GAP_SCAN_FILT_DUPLIC_ENABLE,
};

/* Connection phy parameters */
static st_ble_abs_conn_phy_param_t gs_conn_phy_param =
{
 /* TODO: Modify connection phy parameter. */
 .conn_intv = 0x0130,
 .conn_latency = 0x0000,
 .sup_to = 0x03BB,
};

/* Connection device address */
static st_ble_dev_addr_t gs_conn_bd_addr;

/* Connection parameters */
static st_ble_abs_conn_param_t gs_conn_param =
{
 .p_conn_1M = &gs_conn_phy_param,
 .p_addr = &gs_conn_bd_addr, /**< Set BD address of connecting device. */
 .filter = BLE_GAP_INIT_FILT_USE_ADDR,
 .conn_to = 5,
};

Code 7-2 Setting initial values for scan parameters and connection parameters

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 124 of 244
Dec.27.22

/* Connection handle */
uint16_t g_conn_hdl[BLE_CFG_RF_CONN_MAX];
static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_STACK_ON: /* (1) */
 {
 R_BLE_ABS_StartScan(&gs_scan_param);

 } break;

 case BLE_GAP_EVENT_CONN_IND: /* (4) */
 {

 if (BLE_SUCCESS == result)
 {
 st_ble_gap_conn_evt_t *p_gap_conn_evt_param =
 (st_ble_gap_conn_evt_t *)p_data->p_param;

 for(uint8_t i=0;i<BLE_CFG_RF_CONN_MAX;i++)
 {
 if(g_conn_hdl[i] == BLE_GAP_INVALID_CONN_HDL)
 {
 g_conn_hdl[i] = p_gap_conn_evt_param->conn_hdl;
 }
 }

 }
 } break;

 case BLE_GAP_EVENT_DISCONN_IND:
 {
 st_ble_gap_disconn_evt_t *p_gap_disconn_evt_param =
 (st_ble_gap_disconn_evt_t*)p_data->p_param;

 for(uint8_t i=0;i<BLE_CFG_RF_CONN_MAX;i++)
 {
 if(g_conn_hdl[i] == p_gap_disconn_evt_param->conn_hdl)
 {
 g_conn_hdl[i] = BLE_GAP_INVALID_CONN_HDL;
 }
 }
 } break;

 case BLE_GAP_EVENT_ADV_REPT_IND: /* (2) */
 {
 st_ble_gap_adv_rept_evt_t *p_adv_rept_param = (st_ble_gap_adv_rept_evt_t *)p_data->p_param;
 st_ble_gap_ext_adv_rept_t *p_ext_adv_rept_param = (st_ble_gap_ext_adv_rept_t
*)p_adv_rept_param->param.p_ext_adv_rpt;
 gs_conn_param.p_addr->type = p_ext_adv_rept_param->addr_type;
 memcpy(gs_conn_param.p_addr->addr, p_ext_adv_rept_param->p_addr, BLE_BD_ADDR_LEN)

 R_BLE_GAP_StopScan();
 } break;

 case BLE_GAP_EVENT_SCAN_OFF: /* (3) */
 {
 R_BLE_ABS_CreateConn(&gs_conn_param);
 }
 default:
 {
 /* Do nothing. */
 } break;
 }
}

Code 7-3 Implementation example of GAP callback function when connecting multiple units

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 125 of 244
Dec.27.22

/* XXX Service UUID */
static uint8_t XXXC_UUID[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00 };

/* Service discovery parameters */
static st_ble_disc_entry_t gs_disc_entries[] = {

 {
 .p_uuid = XXXC_UUID,
 .uuid_type = BLE_GATT_128_BIT_UUID_FORMAT,

 .serv_cb = R_BLE_XXXC_ServDiscCb,
 },
};

static void disc_comp_cb(uint16_t conn_hdl)
{
 /* TODO: Add function after discovery completed */
 BLE_ABS_StartScan(&gs_scan_param); /* (6) */
 return;
}

static void gattc_cb(uint16_t type, ble_status_t result, st_ble_gattc_evt_data_t *p_data)
{
 R_BLE_SERVC_GattcCb(type, result, p_data);

 switch(type)
 {
 /* TODO: Set callback events of GATTC. Check BLE API reference for events. */

 case BLE_GATTC_EVENT_CONN_IND: /* (5) */
 {
 R_BLE_DISC_Start(p_data->conn_hdl, gs_disc_entries, ARRAY_SIZE(gs_disc_entries), disc_comp_cb);
 } break;

 default:
 {
 /* Do nothing. */
 } break;
 }
}

Code 7-4 Implementation example of service discovery using Profile Common Library

If you register R_BLE_XXXC_ServDiscCb of Service API (r_ble_xxxc.c) generated by QE for BLE in
Discovery in Profile Common of app_lib (bold frame in Code 7-4), attribute handle of each device is retained
in Service API through Profile Common. By using the Service API, the application can access the GATT
database of each device using the connection handle without managing the attribute handle of each device.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 126 of 244
Dec.27.22

7.3.2 Connection to multiple central devices
It uses itself as a peripheral to communicate with multiple central devices. For example, it is assumed that
home appliances are controlled from multiple smartphones. Here, the peripheral device is the GATT server.

Figure 7-3 Connection with multiple central devices

Advertising stops when connected from Central. After connecting, it resumes advertising and accepts the
connection from another device.

Below show a sequence chart and an implementation example when connecting using app_lib of the
Bluetooth LE Protocol Stack. Repeat this procedure to accept connections from multiple central devices.

Figure 7-4 Sequence chart when connecting to a central device

Peripheral
(GATT Server)

Central
(GATT Client)

Central
(GATT Client)

Central
(GATT Client)

Peripheral
(GATT Server)

R_BLE_ABS_StartLegacyAdv

Bluetooth LE
Protcol Stack

BLE_GAP_EVENT_ADV_OFF

BLE_GAP_EVENT_CONN_IND

R_BLE_ABS_StartLegacyAdv

Central
(GATT Client)

Scan

Connection Request

Connection Response

BLE_GAP_EVENT_ADV_ON

Resumes advertising to accept connection
from another device.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 127 of 244
Dec.27.22

/* Advertising data */
static uint8_t gs_adv_data[] =
{
 /* TODO: Modify advertise data. Value of Data Flag is defined in
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile */

 /* Flag (mandatory) */
 2, /**< Data Size */
 0x01, /**< Data Type: Flag */
 (BLE_GAP_AD_FLAGS_LE_GEN_DISC_MODE | BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED), /**< Data Value */

 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */
};

/* Scan response Data */
static uint8_t gs_sres_data[] =
{
 /* TODO: Modify scan response data. Value of Data Flag is defined in
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile */

 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Type: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'D', 'E', 'V', /**< Data Value */
};

/* Advertising parameters */
static st_ble_abs_legacy_adv_param_t gs_adv_param =
{
 /* TODO: Modify advertise parameters. */
 .slow_adv_intv = 0x300,
 .slow_period = 0,
 .p_adv_data = gs_adv_data,
 .adv_data_length = ARRAY_SIZE(gs_adv_data),
 .p_sres_data = gs_sres_data,
 .sres_data_length= ARRAY_SIZE(gs_sres_data),
 .adv_ch_map = BLE_GAP_ADV_CH_ALL,
 .filter = BLE_ABS_ADV_ALLOW_CONN_ANY,
 .o_addr_type = BLE_GAP_ADDR_PUBLIC,
};

Code 7-5 Advertise packet and parameter settings

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 128 of 244
Dec.27.22

uint16_t g_conn_hdl[BLE_CFG_RF_CONN_MAX];

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 R_BLE_ABS_StartLegacyAdv(&gs_adv_param);
 } break;

 case BLE_GAP_EVENT_CONN_IND:
 {

 if (BLE_SUCCESS == result)
 {
 st_ble_gap_conn_evt_t *p_gap_conn_evt_param =
 (st_ble_gap_conn_evt_t *)p_data->p_param;
 R_BLE_ABS_StartLegacyAdv(&gs_adv_param);
 for(uint8_t i=0;i<BLE_CFG_RF_CONN_MAX;i++)
 {
 if(g_conn_hdl[i] == BLE_GAP_INVALID_CONN_HDL)
 {
 g_conn_hdl[i] = p_gap_conn_evt_param->conn_hdl;
 }

 }
 }
 } break;

 case BLE_GAP_EVENT_DISCONN_IND:
 {
 st_ble_gap_disconn_evt_t *p_gap_disconn_evt_param = (st_ble_gap_disconn_evt_t*)p_data->p_param;

 for(uint8_t i=0;i<BLE_CFG_RF_CONN_MAX;i++)
 {
 if(g_conn_hdl[i] == p_gap_disconn_evt_param->conn_hdl)
 {
 g_conn_hdl[i] = BLE_GAP_INVALID_CONN_HDL;
 }
 }
 } break;

 default:
 {
 /* Do nothing. */
 } break;
 }
}

Code 7-6 Example implementation of GAP callback function when accepting connections from

multiple centrals

In Bluetooth Low Energy, the Central (central device) controls the communication timing. Therefore, when
multiple central devices are connected, the communication timing may accidentally collide and disconnect
early. To prevent this, it is recommended to update the connection parameters so that there is a margin in
peripheral latency and supervision timeout time. For updating the connection parameters, refer to "8.3
Updating connection parameter".

The GATT server may expose a common characteristic value to all connected GATT clients, or may expose
a different value for each client. For example, when exposing different values for each client such as Client
Configuration Characteristic Descriptor, check “Peer Specific” of Aux Properties on the characteristic screen
of QE for BLE. As a result, the table of values and options held in the GATT database of the Bluetooth LE
Protocol Stack are changed, and different values are held for up to 7 clients. A database value is returned for
each client accessed.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 129 of 244
Dec.27.22

Figure 7-5 Setting to retain the value of characteristic for each device

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 130 of 244
Dec.27.22

7.3.3 Multi role connection
In Bluetooth Low Energy communication, different GAP roles can be implemented for multiple devices that
connect at the same time. It communicates centrally to one device and as a peripheral to another device.
Here, the local device is the GATT server for the central device and the GATT client for the peripheral
device.

Figure 7-6 Multi roll connection example

Multi roll connections both advertise and scan to connect to both central and peripheral devices. Applications
that make multi roll connections retain the connection handle and GAP role. GAP role of Local Device for the
connection is posted in the BLE_GAP_EVENT_CONN_IND event. Below shows an implementation example
of the GAP callback function when connecting as a central and peripheral. GAP callback function is
implemented for each role. For scan and advertising settings, refer to Code 7-4(Scan) and Code
7-5(Advertise) above.

Peripheral
(GATT Server)

Central
(GATT Client)

Central
(GATT Client)

Peripheral
(GATT Server)

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 131 of 244
Dec.27.22

/* Connection handle */
uint16_t g_central_conn_hdl;

static void ble_central_gapcb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 R_BLE_ABS_StartScan(&gs_scan_param);
 } break;

 case BLE_GAP_EVENT_CONN_IND:
 {
 if (BLE_SUCCESS == result)
 {
 st_ble_gap_conn_evt_t *p_gap_conn_evt_param =
 (st_ble_gap_conn_evt_t *)p_data->p_param;
 if(0x00 == p_gap_conn_evt_param->role)
 {
 g_central_conn_hdl = p_gap_conn_evt_param->conn_hdl;
 }
 }
 } break;

 case BLE_GAP_EVENT_DISCONN_IND:
 {
 st_ble_gap_disconn_evt_t *p_gap_disconn_evt_param =
 (st_ble_gap_disconn_evt_t *)p_data->p_param;
 if(p_gap_disconn_evt_param->conn_hdl == g_central_conn_hdl)
 {
 g_central_conn_hdl = BLE_GAP_INVALID_CONN_HDL;
 }
 } break;

 case BLE_GAP_EVENT_CONN_PARAM_UPD_REQ:
 {
 st_ble_gap_conn_upd_req_evt_t *p_conn_upd_req_evt_param =
 (st_ble_gap_conn_upd_req_evt_t *)p_data->p_param;
 if(p_conn_upd_req_evt_param->conn_hdl == g_central_conn_hdl)
 {
 st_ble_gap_conn_param_t conn_updt_param = {
 .conn_intv_min = p_conn_upd_req_evt_param->conn_intv_min,
 .conn_intv_max = p_conn_upd_req_evt_param->conn_intv_max,
 .conn_latency = p_conn_upd_req_evt_param->conn_latency,
 .sup_to = p_conn_upd_req_evt_param->sup_to,
 };

 R_BLE_GAP_UpdConn(p_conn_upd_req_evt_param->conn_hdl,
 BLE_GAP_CONN_UPD_MODE_RSP,
 BLE_GAP_CONN_UPD_ACCEPT,
 &conn_updt_param);
 }
 } break;
 case BLE_GAP_EVENT_ADV_REPT_IND:
 {
 st_ble_gap_adv_rept_evt_t *p_adv_rept_param =
 (st_ble_gap_adv_rept_evt_t *)p_data->p_param;
 st_ble_gap_ext_adv_rept_t *p_ext_adv_rept_param =
 (st_ble_gap_ext_adv_rept_t *)p_adv_rept_param->param.p_ext_adv_rpt;

 gs_conn_param.p_addr->type = p_ext_adv_rept_param->addr_type;
 memcpy(gs_conn_param.p_addr->addr, p_ext_adv_rept_param->p_addr, BLE_BD_ADDR_LEN);

 R_BLE_GAP_StopScan();
 } break;

 case BLE_GAP_EVENT_SCAN_OFF:
 {
 R_BLE_ABS_CreateConn(&gs_conn_param);
 }break;

 default:
 {

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 132 of 244
Dec.27.22

 /* Do nothing. */
 } break;
 }
}

Code 7-7 Example of GAP callback function when connecting as a central role

/* Connection handle */
uint16_t g_peripheral_conn_hdl;

static void ble_peripheral_gapcb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 R_BLE_ABS_StartLegacyAdv(&gs_adv_param);
 } break;

 case BLE_GAP_EVENT_CONN_IND:
 {
 if (BLE_SUCCESS == result)
 {
 st_ble_gap_conn_evt_t *p_gap_conn_evt_param = (st_ble_gap_conn_evt_t *)p_data->p_param;
 if(0x01 == p_gap_conn_evt_param->role)
 {
 g_peripheral_conn_hdl = p_gap_conn_evt_param->conn_hdl;
 }
 }
 } break;

 case BLE_GAP_EVENT_CONN_PARAM_UPD_REQ:
 {
 st_ble_gap_conn_upd_req_evt_t *p_conn_upd_req_evt_param =
 (st_ble_gap_conn_upd_req_evt_t *)p_data->p_param;

 if(p_conn_upd_req_evt_param->conn_hdl == g_peripheral_conn_hdl)
 {
 st_ble_gap_conn_param_t conn_updt_param = {
 .conn_intv_min = p_conn_upd_req_evt_param->conn_intv_min,
 .conn_intv_max = p_conn_upd_req_evt_param->conn_intv_max,
 .conn_latency = p_conn_upd_req_evt_param->conn_latency,
 .sup_to = p_conn_upd_req_evt_param->sup_to,
 };

 R_BLE_GAP_UpdConn(p_conn_upd_req_evt_param->conn_hdl,
 BLE_GAP_CONN_UPD_MODE_RSP,
 BLE_GAP_CONN_UPD_ACCEPT,
 &conn_updt_param);
 }
 } break;

 case BLE_GAP_EVENT_DISCONN_IND:
 {
 st_ble_gap_disconn_evt_t *p_gap_disconn_evt_param =
 (st_ble_gap_disconn_evt_t *)p_data->p_param;
 if(p_gap_disconn_evt_param->conn_hdl == g_peripheral_conn_hdl)
 {
 g_peripheral_conn_hdl = BLE_GAP_INVALID_CONN_HDL;
 }
 } break;

 default:
 {
 /* Do Nothing */
 }break;
}

Code 7-8 Example of GAP callback function when connected as a peripheral device

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 133 of 244
Dec.27.22

GAP callback function is implemented for each role.
static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 ble_peripheral_gapcb(type, result, p_data);
 ble_central_gapcb(type, result, p_data);
}

Code 7-9 Call GAP callback function for each role

Applications with multi role connections may implement both GATT clients and GATT servers. Use QE for
BLE to generate service API for both GATT client and GATT server. On the QE for BLE service screen,
check both the server and client and generate the code.

Figure 7-7 Select GATT Role on Service Screen

 This time, when it is a central device, it operates as a GATT client, so service discovery is performed when it
is connected to a peripheral device.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 134 of 244
Dec.27.22

/* XXX Service UUID */
static uint8_t XXXC_UUID[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00 };

/* Service discovery parameters */
static st_ble_disc_entry_t gs_disc_entries[] = {

 {
 .p_uuid = XXXC_UUID,
 .uuid_type = BLE_GATT_128_BIT_UUID_FORMAT,
 .serv_cb = R_BLE_XXXC_ServDiscCb,
 },
};
static void disc_comp_cb(uint16_t conn_hdl)
{
 /* TODO: Add function after discovery completed */
 return;
}

static void gattc_cb(uint16_t type, ble_status_t result, st_ble_gattc_evt_data_t *p_data)
{
 R_BLE_SERVC_GattcCb(type, result, p_data);

 switch(type)
 {
 /* TODO: Set callback events of GATTC. Check BLE API reference for events. */

 case BLE_GATTC_EVENT_CONN_IND:
 {
 if(g_central_conn_hdl == p_data->conn_hdl)
 {
 R_BLE_DISC_Start(p_data->conn_hdl, gs_disc_entries, ARRAY_SIZE(gs_disc_entries),
disc_comp_cb);
 }
 } break;

 default:
 {
 /* Do nothing. */
 } break;
 }
}

Code 7-10 Implementation example of service discovery as a central device

If you register R_BLE_XXXC_ServDiscCb of Service API (r_ble_xxxc.c) generated by QE for BLE in
Discovery in Profile Common of app_lib (bold frame in Code 7-10), attribute handle of each device is
retained in Service API through Profile Common. By using the Service API, the application can access the
GATT database of each device using the connection handle without managing the attribute handle of each
device.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 135 of 244
Dec.27.22

7.4 Disconnection
If the currently established link is disconnected, call the following API.

ble_status_t R_BLE_GAP_Disconnect(uint16_t conn_hdl, uint8_t reason)

Specify the connection handle with the conn_hdl parameter and the disconnection reason with the reason
parameter. Normally, 0x13 (REMOTE USER TERMINATED CONNECTION) is specified as the
disconnection reason. For more information about the disconnection reason, refer to “Bluetooth Core
Specification Vol. 2 Part D, 2 Error Code Descriptions”. Central and peripheral device can call this API.

When the disconnection occurs, the BLE_GAP_EVENT_DISCONN_IND event is notified to the application.
The disconnection reason is notified in the reason field of the st_ble_gap_disconn_evt_t structure by the
BLE_GAP_EVENT_DISCONN_IND event.

If the local device disconnects the link by R_BLE_GAP_Disconnect,
reason: 0x16 (Connection Terminated by Local Host) will be notified.

If the remote device disconnects the link,
reason: 0x13 (Remote User Terminated Connection) will be notified in most cases. Otherwise, the
disconnection reason that the remote device specifies will be notified.

If no packet is received within 6 connection intervals after starting a connection,
(for example, in an environment with many active scanning devices, peripheral device is busy responding to
scan requests and cannot respond to connection request)
reason: 0x3E (Connection Failed to be Established) is notified.
As for connection interval, refer to "8.3 Updating connection parameter".

After establishing a connection, if no packet is received within the supervision timeout period,
reason: 0x08 (Connection Timeout) is notified.
As for supervision timeout, refer to "8.3 Updating connection parameter".

If the LTK of the local device and the remote device do not match when encryption is started,
reason: 0x3D (Connection Terminated due to MIC Failure) is notified.
Delete the bonding information and try pairing again, as the remote device cannot be trusted.
As for LTK, refer to "9.1 Pairing".

Note: When reconnecting to a disconnected remote device, the peripheral side needs to execute
Connectable Advertising again.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 136 of 244
Dec.27.22

8. Communication
In Bluetooth Low Energy, you can adjust the communication speed and power consumption to suit your
application by changing the communication parameters. Table 8.1 shows the communication parameters
described in this chapter and the libraries that support the functions. The optional feature may not be
supported by the remote device.

Table 8.1 Communication parameters
Communication
Parameter

Feature name Description Library Role

PHY LE 2M PHY
LE Coded PHY
LE 1M PHY
(optional other
than 1M)

Determined by Central's connection
request and Peripheral's Advertising
parameters when connecting.
This can be changed after the
connection.

All features / Balance
All features / Balance
All libraries

Central / Peripheral

Maximums transmit
packet length

LE Data Length
Extension
(optional)

Can extend Maximum number of
transmitted bytes 27 251 bytes.
The initial value is the value
specified by
BLE_CFG_RF_CONN_DATA_MAX.
This can be changed after the
connection.

All libraries Central / Peripheral

Connection parameters - Determined by Central's connection
request parameters when
connecting.
This can be changed after the
connection.

All libraries Central / Peripheral

MTU - The initial value is 23 bytes.
This can be changed only once
during the connection.

All libraries Client

The following explains how to use the API to change the communication parameters. Refer to the R_BLE
API document (r_ble_api_spec.chm) included in the "RX23W Group BLE Module Firmware Integration
Technology Application Note (R01AN4860)" for details on the API.

8.1 Changing PHY
PHY is a parameter that indicates the physical layer modulation method and coding scheme. Changing this
parameter, it is expected that throughput and radio wave reach will be improved. The modulation method
and coding scheme are shown below.

 LE 1M PHY

This is the basic modulation method of Bluetooth Low Energy. Compatible with all Bluetooth Low
Energy devices. Set for applications that connect to an unspecified number of devices.

 LE 2M PHY

This is a modulation method that doubles the symbol rate from LE 1M PHY and shortens the packet
transmission time. It is used when performing high throughput communication. Since the packet
transmission time is shortened, you can expect a reduction in power consumption.

 LE Coded PHY

A modulation method in which a forward error correction code (coding scheme) of 1/2 or 1/8 is added to
the header and payload of the packet. Improves packet arrival rate. It increases the certainty of data
arrival and makes it possible to extend the communication distance compared to the past.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 137 of 244
Dec.27.22

To change the PHY, use the R_BLE_GAP_SetPhy function of GAP API. For the argument, specify the
connection handle whose settings you want to change, the modulation scheme for transmission (tx_phys),
the modulation scheme for reception (rx_phys), and the coding scheme for transmission (phy_options). The
receiving coding scheme does not change.

Figure 8-1 show the sequence chart when changing the PHY from the local device. Local device can change
it from either role. The remote device can specify the PHY that allows changes with the
R_BLE_GAP_SetDefPhy function. If not specified, all PHYs are accepted.

Figure 8-1 Sequence chart when changing PHY

The sample code when changing the PHY to LE Coded PHY (S=8) is shown below. Multiple PHYs can be
specified by bit sum. If you specify multiple PHYs, including the PHY in use, the PHY in use will not change.
If you specify multiple PHYs without including the PHY in use, the PHY will change to the fastest PHY. The
PHY you specify also applies to PHYs that allow modification from remote devices. The PHY in use can be
obtained with the R_BLE_GAP_ReadPhy function.

st_ble_gap_set_phy_param_t set_phy = {
 .tx_phys = BLE_GAP_SET_PHYS_HOST_PREF_CD,
 .rx_phys = BLE_GAP_SET_PHYS_HOST_PREF_CD,
 .phy_options = BLE_GAP_SET_PHYS_OP_HOST_PREF_S_8
};

R_BLE_GAP_SetPhy(conn_hdl, &set_phy);

Code 8-1 Code to change PHY to LE Coded PHY (S=8)

Local Device
(Central)

Remote Device
(Peripheral)

Application Bluetooth LE
Protcol Stack

Bluetooth LE
Protcol Stack

R_BLE_GAP_SetPhy

BLE_GAP_EVENT_PHY_SET_COMP
LL_PHY_REQ

LL_PHY_RSP

LL_PHY_UPDATE_IND

BLE_GAP_EVENT_PHY_UPD

Application

BLE_GAP_EVENT_PHY_UPD

LL_PHY_RSP

R_BLE_GAP_SetDefPhy

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 138 of 244
Dec.27.22

Due to the change of PHY, two events are notified to the application. These events are notified to the GAP
callback function (gap_cb).

 BLE _GAP_EVENT_PHY_SET_COMP
Notified when the controller layer of the local device accepts the PHY change.

 BLE_GAP_EVENT_PHY_UPD
Notified when the remote device accepts the PHY change. The notified event data, tx_phy and rx_phy,
represent the actual PHY used when transmitting from the local device to the remote device and from
the remote device to the local device respectively.

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch (type)
 {
 case BLE_GAP_EVENT_PHY_SET_COMP:
 {
 if(BLE_SUCCESS == result)
 {
 st_ble_gap_conn_hdl_evt_t *event_data =
 (st_ble_gap_conn_hdl_evt_t *)p_data->p_param;
 /*PHY parameter change in event_data->conn_hdl reaches Link Layer */
 }
 else if(BLE_ERR_INVALID_HDL == result)
 {
 st_ble_gap_conn_hdl_evt_t *event_data =
 (st_ble_gap_conn_hdl_evt_t *)p_data->p_param;
 /*The connection for event_data->conn_hdl was not found.*/
 }
 else
 {
 /* Do Nothing */
 }
 } break;

 case BLE_GAP_EVENT_PHY_UPD:
 {
 st_ble_gap_phy_upd_evt_t * event_data =
 (st_ble_gap_phy_upd_evt_t *)p_data->p_param;
 } break;
 }

}

Code 8-2 Event that occurs when PHY is changed

When the PHY is changed, the transmission time for the transmission packet length changes. The Bluetooth
LE Protocol Stack will also automatically change the maximum transmission packet length described later
according to the PHY. When changed to LE Coded PHY, the maximum transmission packet length is set to
251 bytes and the transmission time is set to 27 bytes, 2704µsec. If changing the maximum send packet
length to 28 bytes or more, see "8.2 Changing maximum transmission packet length" below.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 139 of 244
Dec.27.22

8.2 Changing maximum transmission packet length
This parameter sets the maximum packet length in the Link Layer. When transmitting and receiving
application data that exceeds 23 bytes, you can perform efficient communication by extending the
transmitting packet length. Packet length extension requires the remote device to support the LE Data
Packet Length Extension feature developed in Bluetooth 4.2.

To change the maximum transmission packet length, specify the maximum number of bytes to be
transmitted and the maximum transmission time. The packet transmission time is depended on the PHY
settings in the previous chapter. The maximum transmitting packet length and maximum transmit time that
can be set depending on whether the LE Data Packet Length Extension and LE Coded PHY are supported
are shown below.

Table 8.2 Relationship between PHY and maximum transmit packet length and maximum transmit time

LE Data Packet Length
Extension

LE Coded PHY feature
supported

Parameters with names
ending in “Octets”

Parameters with names
ending in “Time"

Min Max Min Max
No No 27 27 328 328
Yes No 27 251 328 2120
No Yes 27 27 328 2704
Yes Yes 27 251 328 17040

Bluetooth Core Specification V5.00 Vol 6, Part B

When connected to a remote device, the Bluetooth LE Protocol Stack request to change the maximum
transmission packet length to the value specified by BLE_CFG_RF_CONN_DATA_MAX.

To change the maximum transmission packet length, use the R_BLE_GAP_SetDataLen function of GAP
API. For the argument, specify the connection handle whose settings you want to change, the maximum
number of bytes to send, and the maximum send time. Enter the maximum transmission time in
microseconds. The Bluetooth LE Protocol Stack gives priority to the smaller of the specified maximum
number of transmission bytes and maximum transmission time. Figure 8-2 show the sequence chart when
changing the maximum transmission packet length.

Figure 8-2 Sequence chart when changing the maximum transmission packet length

Application Bluetooth LE
Protcol Stack

Bluetooth LE
Protcol Stack

R_BLE_GAP_SetDatalen

BLE_GAP_EVENT_SET_DATA_LEN_COMP
LL_LENGTH_REQ

LL_LENGTH_RSP

BLE_GAP_EVENT_DATA_LEN_CHG

Application

BLE_GAP_EVENT_DATA_LEN_CHG

Local Device
(Central)

Remote Device
(Peripheral)

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 140 of 244
Dec.27.22

Below is an example of expanding the packet length to 251 bytes when using the LE 1M PHY.

uint16_t tx_octets = 251;
uint16_t tx_time = 2120;

R_BLE_GAP_SetDataLen(conn_hdl, tx_octets, tx_time);

Code 8-3 Example of transmit packet length change request

Two events are notified to the application by changing the transmission packet length. These events are
notified to the GAP callback function (gap_cb).

 BLE_GAP_EVENT_SET_DATA_LEN_COMP
Occurs when the change in transmitted packet length is accepted by the controller layer.

 BLE_GAP_EVENT_DATA_LEN_CHG
Occurs when the send packet length changes with the remote device. This does not occur if the other
party does not support LE Data Packet Length Extension.

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {
 case BLE_GAP_EVENT_SET_DATA_LEN_COMP:
 {
 st_ble_gap_conn_hdl_evt_t * event_data =

(st_ble_gap_conn_hdl_evt_t *)p_data->p_param;
 /* Do Nothing */
 } break;
 case BLE_GAP_EVENT_DATA_LEN_CHG:
 {
 st_ble_gap_data_len_chg_evt_t * event_data =

(st_ble_gap_data_len_chg_evt_t *)p_data->p_param;
 /* Do Nothing */
 } break;
 }

}

Code 8-4 Change packet length event

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 141 of 244
Dec.27.22

8.3 Updating connection parameter
Connection parameters are parameters related to communication frequency. Setting connection parameters
is important for the efficient operation of your application. The connection parameters include the following
items.

 Connection Interval

The interval between packet exchanges. Shortening the connection interval improves throughput and
power consumption. On the contrary, if you lengthen the connection interval, the power consumption will
decrease.

 Peripheral Latency

The number of times the Peripheral will ignore packets from the Central. When the Peripheral receives a
packet from the Central, it returns a response. If there is no data to be transmitted from the Peripheral,
the packet from the Central can be ignored for the number of times set for Peripheral Latency. The
Peripheral does not have to return the response for that number of times, so the power consumption
can be reduced.

Figure 8-3 Schematic diagram of Peripheral Latency and connection event

 Supervision Timeout

This is the time from when the packet reception is stopped until the disconnection. If no packet arrives
within this time after the last packet is received, it is determined to be disconnected. Set to perform
packet exchange more than once within the supervision timeout period.

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑇𝑇𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑇𝑇(𝑇𝑇𝑆𝑆𝑆𝑆𝑚𝑚) > �1 + 𝑃𝑃𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆ℎ𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒 𝐿𝐿𝑒𝑒𝑇𝑇𝑆𝑆𝑆𝑆𝑚𝑚𝐿𝐿(𝑆𝑆𝑆𝑆𝑇𝑇𝑛𝑛𝑆𝑆𝑆𝑆)� ∗ 𝐶𝐶𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆 𝐼𝐼𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒(𝑇𝑇𝑆𝑆𝑆𝑆𝑚𝑚) ∗ 2

 Connection Event Time

Specify the connection event time that occurs at each connection interval. If 0 is set, packets will be
exchanged only once for each round trip per connection event, and if 0xffff is specified, packets will be
exchanged until the next connection event or until the More Data bit is not set.

Central

Peripheral

Connection Event

Connection Interval

Peripheral Latency = 4

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 142 of 244
Dec.27.22

When the connection event time is set to 0

 When the connection event time is set to 0xffff

Figure 8-4 Schematic diagram of connection event time and packet exchange

The Central determines and changes the connection parameters, but Peripherals can request the changes.
Also, the connection parameters can be updated any number of times during the connection. The application
flexibly updates the connection parameters to achieve efficient data communication. For example, it is
effective to change the connection interval at the following cases.

 In case that application will set connection interval shorter.
If there is no data to send for a while

Perform data communication simultaneously with multiple communication partners

 In case that application will set connection interval longer.
Run service discovery

Send small data in a short time at once

Figure 8-5 show the sequence chart for updating the connection parameters. The local device is the central
and the remote device is the peripheral. For connection parameter updates, the PDUs that the Link Layer
interacts with will depend on the role of the device being updated and support for the procedure, but at the
application level, there is not much difference. For other roles, please refer to the R_BLE API document
(r_ble_api_spec.chm) included in "RX23W Group BLE Module Firmware Integration Technology Application
Note (R01AN4860)" for details of PDUs exchanged in Link Layer.

Note: The parameter described as Connection Latency in the R_BLE_API document is the same as
Peripheral Latency. Read this as Peripheral Latency in this document.

Central

Peripheral

Connection Event

Connection Interval

Central

Peripheral

Connection Event

Connection Interval

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 143 of 244
Dec.27.22

Figure 8-5 Sequence chart when updating connection parameters

Use R_BLE_GAP_UpdConn function of GAP_API for request/response of connection parameter update.
The following is an example of requesting to update the connection parameters from the local device.

st_ble_gap_conn_param_t conn_param = {
 .conn_intv_min = 0x0006, //Connection Interval
 .conn_intv_max = 0x0006,
 .conn_latency = 0x0000, //Peripheral Latency
 .sup_to = 0x0C80, //Supervision timeout
 .max_ce_length = 0xffff, //Connection event time
 .min_ce_length = 0xffff
};

R_BLE_GAP_UpdConn(conn_hdl , BLE_GAP_CONN_UPD_MODE_REQ , 0 , &conn_param);

Code 8-5 Implementation example of connection parameter update request

The application is notified of two events by updating the connection parameters. These events are notified to
the GAP callback function (gap_cb).

 BLE_GAP_EVENT_CONN_PARAM_UPD_REQ

Notified when a request to update connection parameters is received from the remote device.
Implement the process of whether to accept the request.

 BLE_GAP_EVENT_CONN_PARAM_UPD_COMP

You will be notified when the connection parameters have been updated. The result variable contains
information about whether the request to update the connection parameters was accepted, and the
event variable contains the connection parameters used in the actual connection.

Application Bluetooth LE
Protcol Stack

Bluetooth LE
Protcol Stack

R_BLE_GAP_UpdateConn

LL_CONNECTION_PARAM_REQ

BLE_GAP_EVENT_CONN_PARAM_UPD_COMP

BLE_GAP_CONN_PARAM_UPD_REQ

Application

Local Device
(Central)

Remote Device
(Peripheral)

LL_CONNECTION_PARAM_RSP

LL_CONNECTION_UPDATE_IND

R_BLE_GAP_UpdateConn

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 144 of 244
Dec.27.22

The following is an implementation example of the response to the connection parameter update request
from the remote device. In this example, it accepts all requests from remote devices. This process is
implemented in app_main.c generated by QE for BLE.

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {

case BLE_GAP_EVENT_CONN_PARAM_UPD_REQ:
{

 st_ble_gap_conn_upd_req_evt_t *p_conn_upd_req_evt_param =
(st_ble_gap_conn_upd_req_evt_t *)p_data->p_param;

 st_ble_gap_conn_param_t conn_updt_param = {
 .conn_intv_min = p_conn_upd_req_evt_param->conn_intv_min,
 .conn_intv_max = p_conn_upd_req_evt_param->conn_intv_max,
 .conn_latency = p_conn_upd_req_evt_param->conn_latency,
 .sup_to = p_conn_upd_req_evt_param->sup_to,
 };

 R_BLE_GAP_UpdConn(p_conn_upd_req_evt_param->conn_hdl,
 BLE_GAP_CONN_UPD_MODE_RSP,
 BLE_GAP_CONN_UPD_ACCEPT,
 &conn_updt_param);

 } break;
 }

}

Code 8-6 Implementation example of response to connection parameter update request event

When connecting to a smartphone, update of connection parameters may not be accepted depending on the
OS. For example, for iOS, design guidelines for accessories for Apple devices
(https://developer.apple.com/accessories/Accessory-Design-Guidelines.pdf)

If the remote device rejects, BLE_ERR_INVALID_ARG(0x0003) is stored in the result variable at the time of
BLE_GAP_EVENT_CONN_PARAM_UPD_COMP event notification.

The following is an implementation example in which the parameters are updated and requested again after
being rejected by the remote device.

https://developer.apple.com/accessories/Accessory-Design-Guidelines.pdf

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 145 of 244
Dec.27.22

Static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {

case BLE_GAP_EVENT_CONN_PARAM_UPD_COMP:
{
 if(BLE_ERR_INVALID_ARG == result)
{

 st_ble_gap_conn_param_t conn_param = {
 .conn_intv_min = 0x0028, /* Connection Interval */
 .conn_intv_max = 0x0028,
 .conn_latency = 0x0000, /* Peripheral Latency */
 .sup_to = 0x0C80, /* Supervision timeout */
 .max_ce_length = 0xffff, /* Connection event time */
 .min_ce_length = 0xffff

 };

 R_BLE_GAP_UpdConn(conn_hdl ,
BLE_GAP_CONN_UPD_MODE_REQ ,
0 ,
&conn_param);

}

} break;
 }

}

Code 8-7 Request to update connection parameters after being rejected by remote device

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 146 of 244
Dec.27.22

8.4 Changing MTU
MTU represents the maximum packet length in GATT. The initial value is the minimum value of 23 bytes.
This is called the default MTU. The maximum size when performing data communication by Read
Characteristic Value, Write Characteristic Value, Write Without Response, Notification, and Indication
operations, which are the main procedures of GATT, depends on the MTU.

When the default MTU is used, the client uses GATT Read Long Characteristic Value to read data greater
than 22 bytes and Write Long Characteristic Value to write data greater than 20 bytes. These procedures
have higher communication overhead than Read Characteristic Value and Write Characteristic Value. Also,
with the default MTU, data greater than 20 bytes cannot be sent by Notification or Indication from the server.
The MTU can be changed from the GATT client only once during the connection.

To minimize overhead, adjust the relationship between MTU and maximum send packet length to be below.

𝑀𝑀𝑇𝑇𝑀𝑀(𝑛𝑛𝐿𝐿𝑇𝑇𝑆𝑆) = 𝑀𝑀𝑒𝑒𝑀𝑀𝑆𝑆𝑇𝑇𝑆𝑆𝑇𝑇 𝑇𝑇𝑆𝑆𝑒𝑒𝑆𝑆𝑆𝑆𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑒𝑒𝑚𝑚𝑝𝑝𝑆𝑆𝑇𝑇 𝑒𝑒𝑆𝑆𝑆𝑆𝑙𝑙𝑇𝑇ℎ(𝑛𝑛𝐿𝐿𝑇𝑇𝑆𝑆) − 4(𝑛𝑛𝐿𝐿𝑇𝑇𝑆𝑆)

Figure 8-6 show the sequence chart when changing the MTU.

Figure 8-6 Sequence chart when changing MTU

To change the MTU, use the R_BLE_GATTC_ReqExMtu function of GATT Client API. Specify the supported
MTU as an argument.

Uint16_t mtu = 247
R_BLE_GATTC_ReqExMtu(conn_hdl, mtu);

Code 8-8 MTU change request example

Application Bluetooth LE
Protcol Stack

Bluetooth LE
Protcol Stack

R_BLE_GATTC_ReqExMtu

LL_Data_Packet

BLE_GATTC_EVENT_EX_MTU_RSP

Application

Local Device
(Client)

Remote Device
(Server)

LL_ack

LL_DATA_Packet
LL_ack

BLE_GATTS_EVENT_EX_MTU_REQ

R_BLE_GATTS_RspExMtu

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 147 of 244
Dec.27.22

Two events are notified to the application by changing the MTU. These events are notified to the GATT client
or GATT server callback functions (gattc_cb, gatts_cb).

 BLE_GATTS_EVENT_EX_MTU_REQ

The server is notified when an MTU change request is received from a client device (gatts_cb). The
server returns the MTU it supports in this event.

 BLE_GATTC_EVENT_EX_MTU_RSP

The client is notified when it receives an Exchange MTU Response from the server device (gattc_cb).
The smaller of the MTU supported by itself and the MTU included in the response is the actual MTU
used.

Code 8-9 show an example implementation of a response to a GATT server Exchange MTU Request. For
the response, use R_BLE_GATTS_RspExMtu function of GATT Server API. For the argument, specify the
MTU supported by the local device. This process is implemented in R_BLE_SERVS_GattsCb function
provided by Profile Common Server Library of app_lib. The size of the MTU returned by the GATT server is
set in the BLE_CFG_GATT_MTU_SIZE configuration option. If you want to generate GATT server code from
QE for BLE, your application does not need to implement MTU response.

Static void gatts_cb(uint16_t type, ble_status_t result, st_ble_gatts_evt_data_t
*p_data)
{
 switch (type)
 {
 case BLE_GATTS_EVENT_EX_MTU_REQ:
 {
 R_BLE_GATTS_RspExMtu(p_data->conn_hdl, BLE_CFG_GATT_MTU_SIZE);
 } break;
 }
}

Code 8-9 Example of response to MTU change request

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 148 of 244
Dec.27.22

8.5 Flow control
The Bluetooth LE Protocol Stack has a flow control function to send large application data in a short time. To
realize the flow control function, the Bluetooth LE Protocol Stack has 10 send buffers for application
communication. When the flow control function is enabled, the application is notified of events according to
the number of empty send buffers.

The table below shows the number of empty buffers and event notification timing. The event is triggered
when the application repeatedly calls the send function and the number of empty buffers decreases to the
set lower limit. In response to this event, the application stops calling the send function and prevents the
buffer from overflowing.

Figure 8-7 Number of empty buffers and events

When the Bluetooth LE Protocol Stack transmits to the remote device, the number of empty buffers
increases. An event occurs when the number of empty buffers reaches the set upper limit. The event is
triggered when the application repeatedly calls the send function and the number of empty buffers decreases
to the set lower limit. Upon receiving this event, the call to the send function is resumed. By repeating this,
large data can be transmitted efficiently.

Figure 8-8 Number of empty buffers and events

The flow control function is enabled by the R_BLE_VS_SetTxLimit function and
R_BLE_VS_StartTxFlowEvtNtf function of Vendor Specific API.

Use the R_BLE_VS_SetTxLimit function to set the lower limit and upper limit of the empty number of the
buffer where the event occurs. Execute the R_BLE_VS_StartTxFlowEvtNtf function to enable event
notification.

Event Occurrence
BLE_VS_EVENT_TX_FLOW_STATE_CHG

state : BLE_VS_TX_FLOW_CTL_OFF

Low Water Mark (3)

packet full empty

Event Occurrence
BLE_VS_EVENT_TX_FLOW_STATE_CHG

state : BLE_VS_TX_FLOW_CTL_ON

High Water Mark (7)

packet full empty

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 149 of 244
Dec.27.22

/* Enable Vender Specific Tx Flow Control */
#define LOW_WATER_MARK (3)
#define HIGH_WATER_MARK (7)

R_BLE_VS_SetTxLimit(LOW_WATER_MARK, HIGH_WATER_MARK);
R_BLE_VS_StartTxFlowEvtNtf();

Code 8-10 Start of flow control feature

The flow control feature notifies the application of the BLE_VS_EVENT_TX_FLOW_STATE_CHG event.

Information indicating the current buffer status is stored in this event variable. An example of using the flow
control function is shown below. In this example, when the empty number in the buffer recovers to the High
Water Mark, the send function is called only (10-Low Water Mark) times and continuous transmission is
performed so that the buffer does not overflow. R_BLE_ServsCharNotification function is a sample. Please
rewrite to the function of the service used.

Static void vs_cb(uint16_t type, ble_status_t result, st_ble_vs_evt_data_t *p_data)
{
 R_BLE_SERVS_VsCb(type, result, p_data);

 switch(type)
 {
 case BLE_VS_EVENT_TX_FLOW_STATE_CHG:
 {
 /* Apprize TxFlowState changed to txflow API */

 st_ble_vs_tx_flow_chg_evt_t * evt_data=
(st_ble_vs_tx_flow_chg_evt_t *)p_data->p_param;

 if(BLE_VS_TX_FLOW_CTL_ON == evt_data->state)
 {
 for (int i=0; i<(10-LOW_WATER_MARK); i++)

 {
 R_BLE_ServsCharNotification(conn_hdl, &app_data);
 }

 }
 else
 {
 /* Do Nothing */
 }
 } break;

}

Code 8-11 Implementation example of sending by flow control feature event

8.6 High throughput communication
When performing high-throughput communication using Bluetooth Low Energy, it is important to set the
communication parameters to optimal values and call the send function continuously using the flow control
function. Please refer to the application note “Sample program for high-speed communication (R01AN5437)”
for details on high-throughput communication.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 150 of 244
Dec.27.22

9. Security
This section describes the security functions provided by Bluetooth Low Energy.

In order to select the necessary security functions for the final product, it is important to determine the
product use case and clarify the security requirements.

9.1 Pairing
Pairing procedure is necessary to use Bluetooth security features. In the case such as the following, pairing
is necessary.

 There is GATT characteristics that can be changed.
 Requires address resolving for private addresses.
 Protect a device from malicious attacks such as data eavesdropping, falsification, and device tracking.

Pairing exchanges the keys with a remote device. The keys to be exchanged are followings. The remote
device keys are notified by BLE_GAP_EVENT_PEER_KEY_INFO event. For more information about how to
get the keys, see “9.1.7 Key exchange”.

 LTK (Long Term Key), EDIV, Rand
Communication data encryption uses LTK (Key exchange is not enforced in LE Secure Connections).

 IRK (Identity Resolving Key), Identity Address
Privacy function uses IRK.

 CSRK (Connection Signature Resolving Key)
Signed data send/receive uses CSRK.

Pairing mechanism has LE Legacy pairing and LE Secure Connections.

LE Secure Connections is supported from Bluetooth version 4.2. LE legacy pairing is the paring mechanism
is used by the device which does not support LE Secure Connections.

If a remote device supports LE Secure Connections, the Bluetooth LE Protocol Stack performs LE Secure
Connections. If a remote device does not support LE Secure Connections, the Bluetooth LE Protocol Stack
performs LE Legacy Pairing.

BP: LE Secure Connections is the most secure pairing and encryption mechanism where LTK is not sent
over the air. LTK also has enough entropy at 16 octets to protect encrypted links from brute force
attacks. Because of these things, for those designing more secure products, recommend supporting
LE Secure Connections unless there are restrictions on the remote device side.
In order to avoid attacks from attackers who aim at the security down mechanism, when performing
pairing only with LE Secure Connections (not accept LE legacy pairing), set
BLE_GAP_SC_STRICT(0x01) in Table 9.9 to the sec_conn_only member of the parameter structure
of BLE_GAP_SetPairingParams or R_BLE_ABS_Init API.

BP: Signed data is provided for devices that want to avoid the overhead of encryption, and by ensuring
data integrity, data falsification by attackers can be avoided. However, since it does not support
protection against eavesdropping through encryption, it is possible for attackers to use replay attacks
(unauthorized access by spoofing the user by using the data obtained by eavesdropping on
communication). Therefore, it is recommended to avoid using signed data and support encryption.

The pairing procedure in an application is shown in Figure 9-1. The following sections describe the details of
pairing steps.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 151 of 244
Dec.27.22

Figure 9-1 Pairing procedure in application

Set Pairing Parameter

Transmit / Receive OOB Data

Generate and register keys

Response to pairing request

Carrying out pairing method

Completion of pairing

Key exchange

[Pairing by OOB is enabled.]

[Pairing by OOB is disabled.]

[Local device starts pairing.]

[Remote device starts pairing.]

Pairing request

Step automatically performed by ABS API .

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 152 of 244
Dec.27.22

9.1.1 Pairing Parameters
Set the pairing parameters before starting the pairing procedure. The pairing parameters are set with the
following APIs. Call the API before starting pairing.

R_BLE_GAP_SetPairingParams

R_BLE_ABS_Init

Table 9.1 shows the pairing parameters. The following sections describes the details of the parameters.

Table 9.1 Pairing Parameters

 API R_BLE_ABS_Init R_BLE_GAP_SetPairingPar

ams

Value Range QE for BLE default

settings

R_BLE_ABS_Init Parameter

Structure

st_ble_abs_pairing_para

m_t

st_ble_gap_pairing_param_t

1. Input Output capabilities iocap iocap BLE_GAP_IOCAP_DISPLAY_
ONLY(0x00)

BLE_GAP_IOCAP_NOINP
UT_
NOOUTPUT(0x03)

BLE_GAP_IOCAP_DISPLAY_
YESNO(0x01)

BLE_GAP_IOCAP_KEYBOARD_
ONLY(0x02)

BLE_GAP_IOCAP_NOINPUT_
NOOUTPUT(0x03)

BLE_GAP_IOCAP_KEYBOARD_
DISPLAY(0x04)

2. MITM Protection Request mitm mitm BLE_GAP_SEC_MITM_BEST_
EFFORT(0x00)

BLE_GAP_SEC_MITM_BE
ST_
EFFORT(0x00)

BLE_GAP_SEC_MITM_STRICT(0x01)

3. Bonding No parameter
Fixed to BLE_GAP_
BONDING(0x01)

bonding BLE_GAP_BONDING_NONE(0x00) BLE_GAP_BONDING(0x01)

BLE_GAP_BONDING(0x01)

4.
Encryption
Key Size

Max Size No parameter
Fixed to 16

max_key_size 7 to 16 16

Min Size max_key_size min_key_size 16

5.
Exchange
Key type

Keys that local
device
distributes

loc_key_dist loc_key_dist 0(Keys are not distributed.) BLE_GAP_KEY_DIST_
ENCKEY(0x01)

BLE_GAP_KEY_DIST_ENCKEY(0x01)

Keys that local
device
requests to
distribute

rem_key_dist rem_key_dist BLE_GAP_KEY_DIST_IDKEY(0x02) 0

BLE_GAP_KEY_DIST_SIGNKEY(0x04)

6. Key Press Notification
Support

No parameter
Fixed to BLE_GAP_
SC_KEY_PRESS_
NTF_NOT_SPRT

key_notf BLE_GAP_SC_KEY_PRESS_NTF_
NOT_SPRT(0x00)

BLE_GAP_SC_KEY_PRES
S_
NTF_NOT_SPRT(0x00)

BLE_GAP_SC_KEY_PRESS_NTF_SPRT(
0x01)

7. LE Secure Connections
Request

sec_conn_only sec_conn_only BLE_GAP_SC_BEST_
EFFORT(0x00)

BLE_GAP_SC_BEST_
EFFORT(0x00)

BLE_GAP_SC_STRICT(0x01)

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 153 of 244
Dec.27.22

1. Input Output capabilities

Table 9.4 shows the input capability (Table 9.2) and the output capability (Table 9.3) that local device
supports.

Table 9.2 Input capability
Input capability Description
No Input Device cannot indicate “Yes” and “No”.
Yes / No Device can indicate “Yes” and “No”.
Keyboard Device can indicate “Yes” and “No” and input numbers 0 through 9.

Table 9.3 Output capability
Output capability Description
No Output Device cannot display 6-digit number.
Numeric output Device can display 6-digit number.

Table 9.4 Input Output capability

Output
No output Numeric output

Input No input NoInputNoOutput
BLE_GAP_IOCAP_NOINPUT_NOOUTPUT(0x03)

DisplayOnly
BLE_GAP_IOCAP_DISPLAY_ONLY(0x00)

Yes / No NoInputNoOutput
BLE_GAP_IOCAP_NOINPUT_NOOUTPUT(0x03)

DisplayYesNo
BLE_GAP_IOCAP_DISPLAY_YESNO(0x01)

Keyboard KeyboardOnly
BLE_GAP_IOCAP_KEYBOARD_ONLY(0x02)

KeyboardDisplay
BLE_GAP_IOCAP_KEYBOARD_DISPLAY(0x04)

2. MITM(Man-In-The-Middle) protection

Table 9.5 shows settings for the MITM protection request parameter.

Table 9.5 MITM Protection
MITM Protection Settings
Depending on remote device BLE_GAP_SEC_MITM_BEST_EFFORT(0x00)
Required BLE_GAP_SEC_MITM_STRICT(0x01)

Completing pairing with any pairing method other than Just Works according to “9.1.6 Carrying out pairing
method” enables the MITM protection. If the MITM Protection is “Required” and the combination of the
devices Input Output capabilities results in “Just Works” described in Table 9.13, the pairing is failed.

BP: For LE Secure Connections, it is recommended to design devices that support authenticated pairing
using input, output or OOB mechanism to reduce the chances of a MITM obtaining a shared secret
key during pairing.

3. Bonding

Table 9.6 shows the bonding parameter settings for whether the local device perform bonding or not. For
more details about bonding, refer to “9.2 Bonding”.

Table 9.6 Bonding
Bonding Type Settings
No bonding BLE_GAP_BONDING_NONE(0x00)
Bonding BLE_GAP_BONDING(0x01)

If the application uses R_BLE_ABS_Init, the bonding type is fixed to “Bonding”.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 154 of 244
Dec.27.22

4. Encryption Key Size

Select encryption key size between 7 to 16 bytes. It is recommended that the encryption key size is 16 bytes
because a short encryption key size can cause an access rejection to the remote device.

BP: Recommend setting it to maximum entropy (16 octets) to protect encrypted links from

brute force attacks.

5. Type of key exchanged by pairing

Table 9.7 shows the type of keys which local device distributes and requests the remote device to distribute
in pairing.

Table 9.7 Key Type

Key type Settings
LTK, EDIV, Rand BLE_GAP_KEY_DIST_ENCKEY(0x01)
IRK, Identity Address BLE_GAP_KEY_DIST_IDKEY(0x02)
CSRK BLE_GAP_KEY_DIST_SIGNKEY(0x04)

6. Key Press Notification support

Key Press Notification is used when Passkey Entry is selected according to “9.1.6 Carrying out pairing
method”. If Key Press Notification is supported, the event is notified to the remote device when the local
device key is pressed. Specify the feature support with the value in Table 9.8.

Table 9.8 Key Press Notification support

Key Press Notification Support Value
Not Support BLE_GAP_SC_KEY_PRESS_NTF_NOT_SPRT(0x00)
Support BLE_GAP_SC_KEY_PRESS_NTF_SPRT(0x01)

If the Abstraction API is enabled, the Key Press Notification support is fixed to “Not Support”.

7. LE Secure Connections Requirement

Determine whether pairing is permitted by only LE Secure Connections or not with the parameter in Table
9.9.

Table 9.9 Secure Connections Only Requirement
LE Secure Connections Only Requirement Value
Depending on the remote device BLE_GAP_SC_BEST_EFFORT(0x00)
Required BLE_GAP_SC_STRICT(0x01)

When LE legacy pairing starts with BLE_GAP_SC_STRICT specified,
BLE_ERR_SMP_LE_AUTH_REQ_NOT_MET(0x2003) is notified by result in
BLE_GAP_EVENT_PAIRING_COMP event.

An example of setting the pairing parameters by R_BLE_GAP_SetPairingParams is shown below.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 155 of 244
Dec.27.22

st_ble_gap_pairing_param_t pairing_param = {
 .iocap = BLE_GAP_IOCAP_NOINPUT_NOOUTPUT,
 .mitm = BLE_GAP_SEC_MITM_BEST_EFFORT,
 .bonding = BLE_GAP_BONDING,
 .max_key_size = 16,
 .min_key_size = 16,
 .loc_key_dist = BLE_GAP_KEY_DIST_ENCKEY | BLE_GAP_KEY_DIST_IDKEY,
 .rem_key_dist = BLE_GAP_KEY_DIST_ENCKEY | BLE_GAP_KEY_DIST_IDKEY,
 .key_notf = BLE_GAP_SC_KEY_PRESS_NTF_NOT_SPRT,
 .sec_conn_only = BLE_GAP_SC_BEST_EFFORT,
};

R_BLE_GAP_SetPairingParams(&pairing_param);

Code 9-1 An example of setting pairing parameter

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 156 of 244
Dec.27.22

9.1.2 Key generation and registration
Generate IRK and CSRK distributed by “9.1.7 Key exchange”. The random number generated by
R_BLE_VS_GetRand can be used as IRK or CSRK. The generated keys are registered by the APIs in Table
9.10.

Table 9.10 The APIs used for key generation
Key API for key generation
IRK, Identity Address R_BLE_ABS_SetLocPrivacy*1 or

R_BLE_GAP_SetLocIdInfo
CSRK R_BLE_GAP_SetLocCsrk
*1 : R_BLE_ABS_SetLocPrivacy generates and registers the local device IRK and

uses current Public Address or Static Address as Identity Address.

An example of key generation and registry is shown below.
/** some code is omitted **/
/* IRK generation */
R_BLE_VS_GetRand(0x10);
/** some code is omitted **/

/* Vendor Specific Callback function */
void vs_cb(uint16_t event_type, ble_status_t result,
 st_ble_vs_evt_data_t * p_event_data)
{

 /** some code is omitted **/
 case BLE_VS_EVENT_GET_RAND
 {
 st_ble_vs_get_rand_comp_evt_t * p_rand_param;
 p_rand_param = (st_ble_vs_get_rand_comp_evt_t *)p_event_data->p_param;
 /* register local IRK and identity address */
 R_BLE_GAP_SetLocIdInfo(&loc_bd_addr, p_rand_param);
 } break;

 /** some code is omitted **/
}

Code 9-2 An example of key generation and registry

If the application does not use RPA (Resolvable Private Address), it does not need to generate and register
the local device IRK. If the application does not sends/receives with the signed data, it does not need to
generate and register the local device CSRK. The local device LTK (case of LE legacy pairing includes
EDIV, Rand) is generated by the protocol stack as needed, so there is no need to generate and register on
the application before start pairing.

BP: EDIV is included in the data exchanged between devices paired with LE legacy pairing. EDIV is

unique to a particular pair of devices, allowing tracking of paired devices using EDIV when using
private addresses. It is recommended to periodically establish new pairings/bonds between devices to
update the EDIV to prevent long-term tracking.

9.1.3 OOB (Out of Band) data transmission and reception
If local device and remote device have a common means of communications except Bluetooth (OOB) , the
data for pairing can be transmitted and received through OOB. The data consists of confirm value (16 bytes)
and random value (16 bytes). It needs to meet the condition in Table 9.11 to do pairing by OOB. If OOB is
available, the data is transmitted and received before starting pairing.

Table 9.11 The condition to do pairing by OOB
Pairing mechanism Condition
LE Secure Connections The one device can transmit the data for pairing by OOB and the other can receive it.
LE legacy pairing Both devices can transmit and receive the data for pairing by OOB.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 157 of 244
Dec.27.22

When pairing data is received from the remote device by OOB, register the remote device address and
received data with R_BLE_GAP_SetRemOobData. This informs the remote device that OOB was able to
receive the data when exchanging the pairing parameters.

If the local device sends data by OOB, call R_BLE_GAP_CreateScOobData. This API generates confirm
value (16 bytes) and random value (16 bytes) according to SMP specifications. When data generation is
complete, the BLE_GAP_EVENT_SC_OOB_CREATE_COMP event is notified. Send the generated data in
OOB to the remote device.

BP: The TK (Temporary Key) exchanged in OOB has a maximum entropy of 128 bits and is the most

resistant to MITM attacks. Support for the OOB mechanism is recommended if LE legacy pairing
needs to be supported.

9.1.4 Pairing request
Call the below APIs to request to start pairing from local device.

R_BLE_ABS_StartAuth
R_BLE_GAP_StartPairing

The APIs can be called from both a Central and a Peripheral.

9.1.5 Response to pairing request
If a pairing request is received from a remote device, BLE_GAP_EVENT_PAIRING_REQ event is notified.
Respond to the request event by R_BLE_GAP_ReplyPairing.

An example of a response to a pairing request is shown as below.
/* GAP Callback */
void gap_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_event_data)
{
 /** some code is omitted **/
 case BLE_GAP_EVENT_PAIRING_REQ :
 {
 st_ble_gap_pairing_info_evt_t * p_param;
 p_param = (st_ble_gap_pairing_info_evt_t *)p_event_data->p_param;
 R_BLE_GAP_ReplyPairing(p_param->conn_hdl, BLE_GAP_PAIRING_ACCEPT);
 }
 break;
 /** some code is omitted **/

Code 9-3 Response to a pairing request

If the Abstraction API is enabled, when receiving BLE_GAP_EVENT_PAIRING_REQ event, call
R_BLE_GAP_ReplyPairing to automatically respond to a pairing request.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 158 of 244
Dec.27.22

9.1.6 Carrying out pairing method
By starting pairing or responding to pairing request, local device, and the remote device exchange pairing
parameters. After exchanging the parameters, both devices select a pairing method from Table 9.12 and
perform the pairing method.

Table 9.12 Pairing Method
Pairing Method Description MITM Protection
OOB The application does not need to manage pairing, because

the Bluetooth LE Protocol Stack processes the OOB data
previously received/transmitted.

Enable

Passkey Entry The one device displays a 6-digit number, the other inputs
the number.

Enable

Numeric Comparison Both devices display a 6-digit number. Check if two
numbers are same.

Enable

Just Works The application does not need to manage pairing, because
it is automatically performed.

Disable

According to 1-3, the pairing method is determined.

1. If the OOB data is received/transmitted before pairing, the OOB pairing method is selected.

2. If the OOB data is not received/transmitted and both devices do not require the MITM protection, the
Just Works pairing method is selected.

3. If the OOB data is not received/transmitted and which device requires the MITM protection, the
pairing method is determined according to Table 9.13.

Table 9.13 Pairing Method Selection
Peripheral Central

DisplayOnly DisplayYesNo KeyboardOnly NoInputNoOutput KeyboardDisplay

DisplayOnly Just Works Just Works Passkey Entry Just Works Passkey Entry

DisplayYesNo Just Works Just Works
(LE legacy pairing)

Passkey Entry Just Works Passkey Entry
(LE legacy pairing)

Numeric Comparison
(LE Secure

Connections)

Numeric Comparison
(LE Secure

Connections)

KeyboardOnly Passkey
Entry

Passkey Entry Passkey Entry Just Works Passkey Entry

NoInputNoOutput Just Works Just Works Just Works Just Works Just Works

KeyboardDisplay Passkey
Entry

Passkey Entry
(LE legacy pairing)

Passkey Entry Just Works Passkey Entry
(LE legacy pairing)

Numeric Comparison
(LE Secure

Connections)

Numeric Comparison
(LE Secure

Connections)

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 159 of 244
Dec.27.22

The pairing events and the API used for the response, depend on from the selected pairing method.

 Just Works, OOB
No events are notified to an application. It is not necessary to respond with APIs.

 Passkey Entry
[Input device]
BLE_GAP_EVENT_PASSKEY_ENTRY_REQ event which requires to input 6-digit number is notified to
an application. If the application receives the event and the remote device displays a 6-digit number, the
application inputs the number by R_BLE_GAP_ReplyPasskeyEntry. By input “gap auth passkey
xxxxxx(6-digit passkey)”, the command line feature calls R_BLE_GAP_ReplyPasskeyEntry to respond to
BLE_GAP_EVENT_PASSKEY_ENTRY_REQ event.
If the Key Press Notification support is ON(Table 9.8), the type of the input keys is notified to the remote
device.

[Display device]
BLE_GAP_EVENT_PASSKEY_DISPLAY_REQ event which requires to display 6-digit number is notified
to an application. If the application receives the event, display the number. When the command line is
enabled, the 6-digit number is shown. If remote device supports the Key Press Notification feature, the
input key information is notified to the application with BLE_GAP_EVENT_KEY_PRESS_NTF event. After
the remote device has completed to input the keys, continue to the next section.

 Numeric Comparison
BLE_GAP_EVENT_NUM_COMP_REQ event which requires to check whether the number displayed on
both devices are same. If the application receives the event, display the number. After checking the
number displayed on the remote device, send the result by R_BLE_GAP_ReplyNumComp.

BP: When using except for OOB pairing methods, having the UX/UI inform the end-user that there are

certain security or privacy risks is beneficial in mitigating security or privacy risks.

9.1.7 Key exchange
After the completion of the pairing method, both devices exchange keys. The link with the remote device is
encrypted before key exchange and the completion is notified by BLE_GAP_EVENT_ENC_CHG event.

When the keys are distributed from the remote device, BLE_GAP_EVENT_PEER_KEY_INFO event is
notified. Refer to “9.2.1 Store remote device keys ” for storing the keys received in the event.

When the local device is required to distribute the keys, BLE_GAP_EVENT_EX_KEY_REQ event is notified.
The local device responds to the request with R_BLE_GAP_ReplyExKeyInfoReq. An example of the
response to the key distribution request is shown below.

/* GAP Callback */
void gap_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_event_data)
{
 /** some code is omitted **/
 case BLE_GAP_EVENT_EX_KEY_REQ :
 {
 st_ble_gap_conn_hdl_evt_t * p_param;
 p_param = (st_ble_gap_conn_hdl_evt_t *)p_event_data->p_param;
 R_BLE_GAP_ReplyExKeyInfoReq(p_param->conn_hdl);
 }
 break;
 /** some code is omitted **/

Code 9-4 Sample of responding to a key distribute request

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 160 of 244
Dec.27.22

If the Abstraction API is enabled, when BLE_GAP_EVENT_EX_KEY_REQ is notified, call
R_BLE_GAP_ReplyExKeyInfoReq to automatically respond to the key distribution request.

9.1.8 Completion of pairing
When the pairing has been completed, the BLE_GAP_EVENT_PAIRING_COMP event is notified. If the
pairing is successful, the event result is BLE_SUCCESS(0x0000). Any other value indicates a pairing failure.

If pairing is not completed within 30 seconds,
result: BLE_ERR_SMP_LE_TO(0x2011)
will be notified. Try pairing again.

If the bonding information about the remote device is lost, but the information remains in the Resolving List,
result: BLE_ERR_SMP_LE_DHKEY_CHECK_FAIL(0x200B)
will be notified. Delete the information about that device from the Resolving List as well using
R_BLE_GAP_ConfRslvList().

If the bonding information was lost and the encryption could not be requested,
result: BLE_ERR_SMP_LE_LOC_KEY_MISSING(0x2014)
will be notified. Refer to "9.3.1 Request Encryption".

BP: If the pairing procedure fails, a waiting interval must elapse before initiating the next pairing with the
same remote address. The wait interval increases exponentially with each repeated pairing procedure
failure (maximum wait interval is implementation dependent). Introducing a wait interval reduces the
ability of an attacker to repeatedly attempt the pairing procedure using different keys.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 161 of 244
Dec.27.22

9.2 Bonding
The bonding process stores the keys exchanged during pairing. Because of bonding, pairing does not need
to be done in reconnecting a paired device. Figure 9-2 shows the procedure of bonding and reset the keys to
the Bluetooth LE Protocol Stack.

Figure 9-2 Bonding procedure

Start Pairing

Complete pairing

Store remote device keys

Store remote device
key information

Terminate Bluetooth LE
Protocol Stack

Restore keys into
Bluetooth LE Protocol Stack

Start Bluetooth LE Protocol Stack

Generate local device keys

Store local device keys

Restart Bluetooth LE
Protocol Stack

Step automatically performed by ABS API .

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 162 of 244
Dec.27.22

9.2.1 Store remote device keys
Store remote device keys and key information received by the following events in the Data Flash.

BLE_GAP_EVENT_PEER_KEY_INFO (key)

BLE_GAP_EVENT_PAIRING_COMP (key information)

An example of storing remote device keys is shown in below.
case BLE_GAP_EVENT_PAIRING_COMP :
 {
 if(BLE_SUCCESS == event_result)
 {
 st_ble_gap_pairing_info_evt_t * p_param;
 p_param = (st_ble_gap_pairing_info_evt_t *)p_event_data->p_param;
 /* Add code storing p_param->auth_info into the Data Flash. */
 }
 }
 break;

case BLE_GAP_EVENT_PEER_KEY_INFO :
 {
 st_ble_gap_peer_key_info_evt_t * p_param;
 p_param = (st_ble_gap_peer_key_info_evt_t *)p_event_data->p_param;
 /* Add code storing p_param->key_ex_param into the Data Flash. */

 }
 break;

Code 9-5 Sample of storing received keys

If you want to resolve the bonded remote device address, you have to also register the remote device IRK
and Identity Address to Resolving List.

If the Abstraction API and the security data management are enabled, the keys received by
BLE_GAP_EVENT_PEER_KEY_INFO event and the key information received by
BLE_GAP_EVENT_PAIRING_COMP event are automatically stored.

If the Abstraction API and the security data management are disabled, the keys and the key information are
not stored automatically.

Information (remote device keys) are stored in RAM and DataFlash. Bonding information can be stored in
RAM up to BLE_CFG_RF_CONN_MAX and stored in DataFlash up to BLE_CFG_NUM_BOND. A bonding
information is stored in order of bonding and if a new one is stored over the upper limit, the stack library
deletes the oldest one and stores the new one according to the following policies.

 In RAM, the oldest bonding information of which the device is not connected is first
automatically deleted.

 In DataFlash, the oldest bonding information is first automatically deleted regardless of the
connection state.

If you do not want to automatically delete the bonding information, you have to check a bonding except for
desired device and do not allow to bond beyond the desired bonding number in your application. For
example, if you want to connect with only bonded devices, the bonding information control with White List
such as “9.2.5 Filtering remote devices after bonding” is effective. It is recommended that
BLE_CFG_RF_CONN_MAX and BLE_CFG_NUM_BOND are set to the same number and the desired
bonding number + 1.

An example that the desired bonding number is 2 (BLE_CFG_RF_CONN_MAX=3,
BLE_CFG_NUM_BOND=3) is shown in Figure 9-3 and Figure 9-4. The changes are shown in bold text.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 163 of 244
Dec.27.22

Figure 9-3 Bonding information management in RAM, DataFlash (1)

Connected (Device A) Pre-bonded (Device A) Free

Conneciotn information(RAM) Bonding information
(RAM)

Bonding information
(DataFlash)

Free Free Free

Free Free Free

Connect
(Device A)

Connected (Device A) Bonded (Device A) Bonded (Device A)

Free Free Free

Free Free Free

Pairing
(Device A)

Connected (Device A) Bonded (Device A) Bonded (Device A)

Connected (Device B) Pre-bonded (Device B) Free

Free Free Free

Connect
(Device B)

Connected (Device A) Bonded (Device A) Bonded (Device A)

Connected (Device B) Bonded (Device B) Bonded (Device B)

Free Free Free

Pairing
(Device B)

Connected (Device A) Bonded (Device A) Bonded (Device A)

Connected (Device B) Bonded (Device B) Bonded (Device B)

Connected (Device C) Pre-bonded (Device C) Free

Connected (Device A) Bonded (Device A) Bonded (Device A)

Connected (Device B) Bonded (Device B) Bonded (Device B)

Connected (Device C) Bonded (Device C) Bonded (Device C)

The stored area is full by a bonding that exceeded the desired bonding number (=2).

Pairing
(Device C)

Connect
(Device C)

old

new

old

new

old

new

old

new

old

new

old

new

Bonded (Device A) Bonded (Device A)

Connected (Device B) Pre-bonded (Device B)

Bonded (Device B) Bonded (Device B)

Connected (Device C) Pre-bonded (Device C)

Bonded (Device C)

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 164 of 244
Dec.27.22

Figure 9-4 Bonding information management in RAM, DataFlash (2)

Conneciotn information(RAM) Bonding information
(RAM)

Bonding information
(DataFlash)

Disconnect
(Device B)

Connect
(Device D)

Disconnect
(Device D)

Connect
(Device D)

Pairing
(Device D)

The Device A bonding information in DataFlash is automatically deleted by
a bonding that exceeded the desired bonding number (=2).

Connected (Device A) Bonded (Device A) Bonded (Device A)

Free Bonded (Device B) Bonded (Device B)

Connected (Device C) Bonded (Device C) Bonded (Device C)

Connected (Device A) Bonded (Device A) Bonded (Device A)

Connected (Device C) Bonded (Device C) Bonded (Device B)

Connected (Device D) Pre-bonded (Device D) Bonded (Device C)

The bonding information for the desired device is automaticall deleted.

Connected (Device A) Bonded (Device A) Bonded (Device A)

Connected (Device C) Bonded (Device C) Bonded (Device B)

Free Free Bonded (Device C)

Connected (Device A) Bonded (Device A) Bonded (Device A)

Connected (Device C) Bonded (Device C) Bonded (Device B)

Connected (Device D) Pre-bonded (Device D) Bonded (Device C)

Connected (Device A) Bonded (Device A) Bonded (Device B)

Connected (Device C) Bonded (Device C) Bonded (Device C)

Connected (Device D) Bonded (Device D) Bonded (Device D)

old

new

old

new

old

new

old

new

old

new

Disconnect
(Device B)

Connect
(Device D)

Free

Connected (Device C)

Connected (Device D) Pre-bonded (Device D)

Bonded (Device C)

The bonding information in DataFlash is copied to RAM by reboot.

Free Bonded (Device B) Bonded (Device B)

Free Bonded (Device C) Bonded (Device C)

Free Bonded (Device D) Bonded (Device D)

old

new

Reboot

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 165 of 244
Dec.27.22

9.2.1.1 Bonding information in RAM
Because bonding information in RAM is managed in the same area as the connection information, even if
pairing or bonding is not done, the oldest bonding information of which the device is not connected is
automatically deleted, and the area is released.

For more information about how to reconfigure the deleted bonding information from RAM, see section “9.2.3
Reset the stored keys”.

9.2.1.2 Bonding information in DataFlash
If a bonding information is stored in DataFlash exceeding BLE_CFG_NUM_BOND, the oldest bonding
information is automatically deleted regardless of the connection status and the new one is overwritten as
shown in Figure 9-3,Figure 9-4.

If you do not want to automatically delete the bonding information in DataFlash, your application has to
monitor the bonding number not to exceed BLE_CFG_NUM_BOND by deleting the bonding information first
and then doing pairing or bonding and so on. For more information about how to delete the bonding
information, see section “9.2.4 Delete the stored keys”.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 166 of 244
Dec.27.22

9.2.2 Store local device keys
If the local device uses the privacy feature, the IRK and the Identity Address are registered by
R_BLE_GAP_SetLocIdInfo or R_BLE_ABS_SetLocPrivacy need to be stored.

If the local device sends/receives signed data packets, the CSRK registered by R_BLE_GAP_SetLocCsrk
needs to be stored.

When the security data management configuration option is enabled, R_BLE_SECD_WriteLocInfo
described in “4.4.3 Store the local device keys” can store the local device IRK and CSRK in the Data Flash.

When the Abstraction API and security data management configuration options are enabled, the local device
IRK generated by R_BLE_ABS_SetLocPrivacy is automatically stored in the Data Flash with
R_BLE_SECD_WriteLocInfo.

9.2.3 Reset the stored keys
When the Bluetooth LE Protocol Stack restarts, the stored keys in the device need to be reset to the stack by
R_BLE_GAP_SetBondInfo.

If the Abstraction API and security data management configuration options are enabled, the stored keys are
automatically reset to the Bluetooth LE Protocol Stack in restarting.

If you want to resolve the bonded remote device address, you must also reconfigure the remote device IRK
and Identity Address in Resolving List.

9.2.4 Delete the stored keys
When the bonding information in the remote device deleted, delete the one in the local device by specifying
the remote device address as the second parameter of R_BLE_GAP_DeleteBondInfo.

Likewise, when the bonding information (the remote device security data) in the local device deleted, it is
also necessary to delete the bonding information in the remote device.

If only one of the devices deleted the bonding information, the following issues will occur, and the security
feature cannot be used.

 The device cannot access to the GATT service that the encryption security requirement is
configured to due to the loss of LTK.

 The device cannot resolve the remote device address and cannot connect to the remote device
Identity Address due to the loss of IRK.

The bonding information that needs to be deleted is shown in Figure 9-5 if ether a RX23W device or a
remote device deletes the bonding information.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 167 of 244
Dec.27.22

Figure 9-5 The bonding information that needs to be deleted if either device deletes it.

If the bonded remote device address was resolved, you must also delete the device IRK and Identity
Address from Resolving List.

9.2.5 Filtering remote devices after bonding
If you want to connect or communicate to the bonded device, you should register the remote device address
to the White List. White List can register 4 devices in case of All features library and register 8 devices in
case of Balance and Compact library. For more information about the use of White List, see 5.2.1.2 and
5.5.1 for Peripheral and 6.4.1 and 7.1.1 for Central.

When the RX23W device reboots, it is necessary to reconfigure the remote device addresses to White List.

If the local device deletes the stored key, delete the remote device address from White List.

RX23W Device A (address A) Bluetooth LE Device B (address B)

Local Device Security Data

Local IRK
Local Identity Address

Remote Device Security Data 1

Remote Device Security Data 2

...

Remote Device Security Data 3

...

Remote Device Security Data X

...
Local Device Security Data

Local IRK
Local Identity Address

Remote Device Security Data 1

Remote Device Security Data 3

...
Remote Device Security Data Y

...

Remote Device Security Data 2

...

Remote IRK
Remote Identity Address

Remote IRK
Remote Identity Address

X=BLE_CFG_NUM_BOND Y=Maixmum bonding number

Delete

Delete

Remote CSRK

Local CSRK Local CSRK

Remote CSRK

LTK
EDIV and Rand

LTK
EDIV and Rand

Remote Address = address B

Remote Address = address A

The keys that Device A generated are indicated by a solid line.
The keys that Device B generated are indicated by a dotted line.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 168 of 244
Dec.27.22

9.3 Encryption
Bluetooth LE enables secure communication by encrypting data packets. The encryption in reconnection
after pairing uses the key exchanged by pairing.

BP: If the encryption procedures fails, do not attempt to circumvent the failure or connect by other means.

Switching to less secure options for convenience is the desired outcome for attackers. Failures at any
stage should be aware of the potential for attackers to gain access through vulnerabilities or repeated
attempts.

9.3.1 Request Encryption
After pairing and bonding, call the one of the following APIs to request encryption when the local device
reconnects with the remote device. A peripheral sends Security Request packet and a central sends
LL_ENC_REQ packet to request the link encryption.

R_BLE_ABS_StartAuth
R_BLE_GAP_StartEnc

If the encryption has been completed successfully,
BLE_GAP_EVENT_ENC_CHG
Result: BLE_SUCCESS (0x0000)
event will be notified.

Depending on the remote device implementation, the remote device does not respond to an encryption
request from a peripheral device. In this case, if the above API is called, pairing may start.

The encryption request sequence is shown below.

(1) Encryption request from local device(Central)

Figure 9-6 Sequence of encryption request from local device(Central)

R_BLE &
Host Stack ControllerApp Peripheral A

Link Established

R_BLE_GAP_StartEnc()

[Encryption
 from local Central]

LTK exchanged

R_BLE API

R_BLE Event

HCI_LE_Start_Encryption

LL_ENC_REQ

LL_ENC_RSP

HCI_Command_Status

LL_START_ENC_REQ

LL_START_ENC_RSP

LL_START_ENC_RSP

HCI_Encryption_Change
BLE_GAP_EVENT_ENC_CHG

ABS API

R_BLE_ABS_StartAuth()

ABS API

R_BLE_GAP_GetDevSecInfo()

R_BLE_GAP_StartEnc()

alt

LL_REJECT_IND or
LL_REJECT_EXT_IND

alt

HCI_Encryption_ChangeBLE_GAP_EVENT_ENC_CHG
result : BLE_ERR_NOT_FOUND
 (0x000D)

Use ABS API

Not use ABS API

Encryption success

Encryption failure

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 169 of 244
Dec.27.22

If the remote device (Peripheral) lost the pair configuration (bonding information) before the local
device (Central) sends an encryption request,
BLE_GAP_EVENT_ENC_CHG
Result: BLE_SUCCESS (0x000D)
event will be notified, and the encryption will fail. Although the link is still established, the device
(Central) cannot access the service for which the encryption security requirement has been
configured.
In this case, the local device (Central) also needs to delete the bonding information and perform
pairing procedures again to access the service.

If the local device (Central) lost the bonding information before sending an encryption request, the
local device (Central) will send a pairing request and then start encryption.

(2) Encryption request from local device(Peripheral)

Figure 9-7 Sequence of encryption request from local device(Peripheral)

If the local device (Peripheral) lost the bonding information before sending an encryption request,
BLE_GAP_EVENT_PAIRING_COMP
Result: BLE_ERR_SMP_LE_LOC_KEY_MISSING(0x2014)
event will be notified, and the encryption will fail. Although the link is still established, the device
(Central) cannot access the service for which the encryption security requirement has been
configured.

R_BLE &
Host Stack ControllerABS API Central A

R_BLE_GAP_ReplyLtkReq()

[Encryption
 from local Peripheral]

R_BLE API

R_BLE Event

HCI_LE_Long_Term_Key_Request_Reply

LL_ENC_REQ

LL_ENC_RSP
HCI_LE_Long_Term_Key_Request

LL_START_ENC_REQ

LL_START_ENC_RSP

LL_START_ENC_RSP
HCI_Encryption_Change

BLE_GAP_EVENT_LTK_REQ

HCI_Command_Complete

BLE_GAP_EVENT_ENC_CHG

R_BLE_GAP_StartEnc()

security request
LL_Data_Packet / LL_Ack

ABS API

App

R_BLE_GAP_StartEnc()

R_BLE_GAP_GetDevSecInfo()R_BLE_ABS_StartAuth()

R_BLE_GAP_ReplyLtkReq()

BLE_GAP_EVENT_LTK_REQ

Link Established

LTK exchanged

alt

alt

HCI_LE_Long_Term_Key_Request_
Negative_Reply

HCI_Command_CompleteBLE_GAP_EVENT_LTK_RSP_COMP
response = 0x01 LL_REJECT_IND

BLE_GAP_EVENT_PAIRING_COMP
result : BLE_ERR_SMP_LE_LOC_
 KEY_MISSING(0x2014)

alt

BLE_GAP_EVENT_LTK_RSP_COMP

Use ABS API

Not use ABS API

Use ABS API

Not use ABS API

Encryption success

Encryption failure

R_BLE_GAP_StartPairing()
alt

Bonding Information
Missing

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 170 of 244
Dec.27.22

In this case, the remote device (Central) also needs to delete the bonding information and perform
pairing procedures again to access the service.

If the remote device (Central) lost the bonding information before the local device (Peripheral) sends
an encryption request, the remote device (Central) will send a pairing request and then start
encryption.

9.3.2 Respond to an encryption request
Response to encryption request differs depending on the role.
If you use the Abstraction API, it automatically replies to the remote device.
The response to encryption request sequence is shown below.

(1) Response to an encryption request from remote device(Central)

Figure 9-8 Sequence of response to an encryption request from remote device(Central)

When receiving an encryption request from a remote device, BLE_GAP_EVENT_LTK_REQ event will
be notified. Local device (Peripheral) needs to reply to the encryption request by using
R_BLE_GAP_ReplyLtkReq API with the parameter of BLE_GAP_EVENT_LTK_REQ event as an
argument. When the LTK exchange is successfully completed, BLE_GAP_EVENT_LTK_RSP_COMP
event will be notified.
If the encryption has been completed successfully,
BLE_GAP_EVENT_ENC_CHG
Result: BLE_SUCCESS (0x0000)
event will be notified.

R_BLE &
Host Stack ControllerApp Central A

R_BLE_GAP_ReplyLtkReq()

[Encryption
 from remote Central]

R_BLE API

R_BLE Event

HCI_LE_Long_Term_Key_Request_Reply

LL_ENC_REQ

LL_ENC_RSPHCI_LE_Long_Term_Key_Request

LL_START_ENC_REQ

LL_START_ENC_RSP

LL_START_ENC_RSP
HCI_Encryption_Change

BLE_GAP_EVENT_LTK_REQ

HCI_Command_Complete

BLE_GAP_EVENT_ENC_CHG

ABS API

Link Established

LTK exchanged

BLE_GAP_EVENT_LTK_REQ

R_BLE_GAP_ReplyLtkReq()

alt

HCI_LE_Long_Term_Key_Request_
Negative_Reply

HCI_Command_CompleteBLE_GAP_EVENT_LTK_RSP_COMP
response = 0x01 LL_REJECT_IND

alt

BLE_GAP_EVENT_LTK_RSP_COMP

Use ABS API

Not use ABS API

Encryption success

Encryption failure

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 171 of 244
Dec.27.22

If the local device (Peripheral) lost the bonding information before the remote device (Central) sends
an encryption request and then the local device (Peripheral) calls R_BLE_GAP_ReplyLtkReq,
BLE_GAP_EVENT_LTK_RSP_COMP
response (Event data): 0x01
event will be notified, and the encryption will fail. Although the link is still established, the device
(Central) cannot access the service for which the encryption security requirement has been
configured.

In this case, the remote device (Central) also needs to delete the bonding information and perform
pairing procedures again to access the service.

If the remote device (Central) lost the bonding information before sending an encryption request, the
remote device (Central) will send a pairing request and then start encryption.
When the local device (Peripheral) connects to a smart phone (Central) for the first time, the local
device is required to respond to a pairing request but is not required to respond to an encryption
request. When the local device (Peripheral) connects to the paired smart phone, the local device
(Peripheral) is required to respond to an encryption request.

An example of an encryption request from the remote device (Central) event and the response API is
shown below.

/* GAP Callback */
void gap_cb(uint16_t event_type, ble_status_t event_result,
 st_ble_evt_data_t * p_event_data)
{
 /** some code is omitted **/
 /* Receive encryption request from a remote device */
 case BLE_GAP_EVENT_LTK_REQ :
 {
 st_ble_gap_ltk_req_evt_t * p_param;
 p_param = (st_ble_gap_ltk_req_evt_t *)p_event_data->p_param;
 R_BLE_GAP_ReplyLtkReq(p_param->conn_hdl, p_param->ediv,
 p_param->p_peer_rand, BLE_GAP_LTK_REQ_ACCEPT);
 }
 break;
 /** some code is omitted **/

Code 9-6 Sample of responding an encryption request from the remote device(Central) in the event

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 172 of 244
Dec.27.22

(2) Response to an encryption request from remote device(Peripheral)

Figure 9-9 Sequence of response to an encryption request from remote device(Peripheral)

When receiving an encryption request from a remote device (Peripheral),
BLE_GAP_EVENT_PAIRING_REQ event will be notified. Local device (Central) need to reply the
encryption request by using R_BLE_GAP_ReplyPairing API with the parameter of
BLE_GAP_EVENT_PAIRING_REQ event as an argument. If the bonding has been done,
this API responds to the encryption request.
If the encryption has been completed successfully,
BLE_GAP_EVENT_ENC_CHG
Result: BLE_SUCCESS (0x0000)
event will be notified.

If the remote device (Peripheral) lost the bonding information before sending an encryption request,
BLE_GAP_EVENT_ENC_CHG
Result: BLE_SUCCESS (0x000D)
event will be notified, and the encryption will fail. Although the link is still established, the device
(Central) cannot access the service for which the encryption security requirement has been
configured.
In this case, the local device (Central) also needs to delete the bonding information and perform
pairing procedures again to access the service.

If the local device (Central) lost the bonding information before a remote device (Peripheral) sends an
encryption request, the local device (Central) sends a pairing request and then start encryption.

An example of an encryption request from a remote device (Peripheral) event and the response API is
the same as Code 9-3.

R_BLE &
Host Stack ControllerABS API Peripheral A

[Encryption
 from remote Peripheral]

R_BLE API

R_BLE Event

HCI_LE_Start_Encryption

LL_ENC_REQ

LL_ENC_RSP

HCI_Command_Status

LL_START_ENC_REQ

LL_START_ENC_RSP

LL_START_ENC_RSP
HCI_Encryption_Change

BLE_GAP_EVENT_ENC_CHG

LL_Data_Packet / LL_Ack
security request

BLE_GAP_EVENT_PAIRING_REQ

App

Link Established

LTK exchanged

R_BLE_GAP_ReplyPairing()

BLE_GAP_EVENT_PAIRING_REQ

Confirm that
pairing has been done.

R_BLE_GAP_ReplyPairing()

alt

LL_REJECT_IND or
LL_REJECT_EXT_IND

HCI_Encryption_Change
BLE_GAP_EVENT_ENC_CHG
result : BLE_ERR_NOT_FOUND
 (0x000D)

alt

Use ABS API

Not use ABS API

Encryption success

Encryption failure

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 173 of 244
Dec.27.22

9.4 Privacy
The privacy feature allows the local device to periodically change the address used by Advertising, Scan
Request and Connection Request to another address to avoid being tracked by other devices. There are two
privacy mode: Network Privacy Mode and Device Privacy Mode. In Device Privacy Mode, if the local device
uses RPA (Resolvable Private Address), the local device will accept Advertising, Scan Request and
Connection Request regardless of the remote address type. In Network Privacy Mode, if the local device
uses RPA, the local device will not accept Advertising, Scan Request and Connection Request including
identity address of the remote device. By default, the local device is Network Privacy Mode. RPA is
generated and resolved by Resolving List in the local device.

Up to 8 sets of the IRK (Remote IRK) and Identity Address (ID) of the remote device and the IRK (Local IRK)
of the local device can be registered in the Resolving List.

If the local device generates an RPA to initiate Advertising, scanning, or connection, the Local IRK and the
ID of the remote device are registered to the Resolving List in advance, and the Resolving List is searched
by the specified ID of the remote device. Details on how to generate RPA are given in 9.4.1.

When resolving RPA included in Advertising, Scan Request, and Connection Request from a remote device,
you need to register the Remote IRK and ID obtained by pairing procedure with the remote device together
with the Local IRK to the Resolving List. The local device will search a set which the received RPA match the
RPA calculated from the IRK and ID of the Resolving List. Details on how to resolve RPA are given in 9.4.2.

Figure 9-10 shows an image of generating and resolving RPA using the Resolving List in Advertising.

Figure 9-10 Image of Resolving List

The pairing procedure in an application is shown in Figure 9-11. The following sections describe the details
of pairing steps.

Local device Air Remote device
(ID=X, IRK=XXXX..XXXX) (ID=Y, IRK=YYYY..YYYY)

Generate RPA Resolving List
Advertising (from X to Y)-> 1 ID=Z

Remote IRK=ZZZZ..ZZZZ
Local IRK=XXXX..XXXX

2 ID=Y ->Advertising (from RPA x)
If the ID matches, Remote IRK=YYYY..YYYY RPA can be generated with Local IRK.

Local IRK=XXXX..XXXX

:
:
:
:

8 blank

Resolve RPA Resolving List
1 ID=Z

Remote IRK=ZZZZ..ZZZZ
Local IRK=XXXX..XXXX

<-Advertising (from Y) 2 ID=Y <-Advertising (from RPA y)
RPA can be resolved with Remote IRK. Remote IRK=YYYY..YYYY If the ID and IRK match,

Local IRK=XXXX..XXXX

:
:
:
:

8 blank

* ID=Identity Address

search

search

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 174 of 244
Dec.27.22

Figure 9-11 Privacy procedure in application

Pairing

[only Resolve remote device RPA]

Step automatically performed by ABS API .

Register Local IRK and ID

[Generate local device RPA]

Register in the Resolving List

[Device Privacy Mode]

Set Privacy Mode

Start RPA feature

[Network Privacy Mode]

[only Generate local device RPA]

Register in the Resolving List

[Device Privacy Mode]

Set Privacy Mode

[Network Privacy Mode]

[Resolve remote device RPA]

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 175 of 244
Dec.27.22

9.4.1 Generate local device RPA
Before local device uses RPA, perform the following step1-4. The API calls in step 1-4 can replace
R_BLE_ABS_SetLocPrivacy.

1. Register local device key (IRK) and BD address
Call R_BLE_VS_GetRand to generate the random value (16 bytes) notified by
BLE_VS_EVENT_GET_RAND event as IRK. The IRK and Identity Address are registered by
R_BLE_GAP_SetLocIdInfo into the Bluetooth LE Protocol Stack. The IRK is distributed to the remote
device in pairing.

2. Register the IRK in the Resolving List
Call R_BLE_GAP_ConfRslvList to register the IRK generated by 1 in the Resolving List. A set of
Identity Address and IRK of a remote device needs to be registered to associate with the local device
IRK. Set the Identity Address and IRK of the remote device to all 0x00 to associate with the local
device IRK.. The completion is notified by BLE_GAP_EVENT_RSLV_LIST_CONF_COMP event.

3. Set Privacy Mode
If Network Privacy Mode which is the default is used, the procedure does not need to be done.
Call R_BLE_GAP_SetPrivMode to set the privacy mode. The completion is notified by
BLE_GAP_EVENT_PRIV_MODE_SET_COMP event.

4. Start RPA feature
Call R_BLE_GAP_EnableRpa to enable the RPA generation and resolution. The completion is notified
by BLE_GAP_EVENT_RPA_EN_COMP event.

An example of the procedures 1-4 is shown below. If the Local device generates RPA, destination address
must match the Identity Address in the Resolving List.
/** some code is omitted **/
#include "sec_data/r_ble_sec_data.h"
/** some code is omitted **/
st_ble_dev_addr_t gs_loc_bd_addr;
st_ble_dev_addr_t gs_rem_bd_addr;

/* Advertising parameters */
static st_ble_abs_legacy_adv_param_t gs_adv_param =
{
 /* TODO: Modify advertise parameters. */
 .p_addr = &gs_rem_bd_addr,
 .o_addr_type = BLE_GAP_ADDR_RPA_ID_PUBLIC,
 /** some code is omitted **/
};
/** some code is omitted **/

/* Vendor Specific callback function */
void vscb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_data)
{
 switch(event_type)
 {
 /** some code is omitted **/
 case BLE_VS_EVENT_GET_RAND :
 {
 st_ble_vs_get_rand_comp_evt_t * p_rand_param;
 p_rand_param = (st_ble_vs_get_rand_comp_evt_t *)p_data->p_param;
 R_BLE_GAP_SetLocIdInfo(&gs_loc_bd_addr, p_rand_param->p_rand);

 /* store local id info */
 R_BLE_SECD_WriteLocInfo(&gs_loc_bd_addr, p_rand_param->p_rand, NULL);

 /* Set all zero remote address & remote IRK */
 st_ble_gap_rslv_list_key_set_t peer_irk;

 memset(peer_irk.remote_irk, 0x00, BLE_GAP_IRK_SIZE);
 peer_irk.local_irk_type = BLE_GAP_RL_LOC_KEY_REGISTERED;
 memset(gs_rem_bd_addr.addr, 0x00, BLE_BD_ADDR_LEN);

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 176 of 244
Dec.27.22

 gs_rem_bd_addr.type = BLE_GAP_ADDR_PUBLIC;

 /* Add local IRK to resolving list */
 R_BLE_GAP_ConfRslvList(BLE_GAP_LIST_ADD_DEV, &gs_rem_bd_addr, &peer_irk, 1);
 }
 break;
 /** some code is omitted **/
 }
}

/* GAP Callback */
void gap_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_data)
{
 switch(event_type)
 {
 /** some code is omitted **/
 case BLE_GAP_EVENT_RSLV_LIST_CONF_COMP :
 {
 st_ble_gap_rslv_list_conf_evt_t * p_rslv_list_conf;
 p_rslv_list_conf = (st_ble_gap_rslv_list_conf_evt_t *)p_data->p_param;
 if(BLE_GAP_LIST_ADD_DEV == p_rslv_list_conf->op_code)
 {
 uint8_t priv_mode;
 priv_mode = BLE_GAP_NET_PRIV_MODE ;

 /* Set Network Privacy Mode. */
 R_BLE_GAP_SetPrivMode(&gs_rem_bd_addr, &priv_mode, 1);
 }
 }
 break;

 case BLE_GAP_EVENT_PRIV_MODE_SET_COMP :
 {
 /* Enable RPA. */
 R_BLE_GAP_EnableRpa(BLE_GAP_RPA_ENABLED);
 }
 break;

 case BLE_GAP_EVENT_LOC_VER_INFO:
 {
 st_ble_gap_loc_dev_info_evt_t * ev_param;
 ev_param = (st_ble_gap_loc_dev_info_evt_t *)p_data->p_param;
 gs_loc_bd_addr = ev_param->l_dev_addr;
 /* Generate IRK */
 R_BLE_VS_GetRand(BLE_GAP_IRK_SIZE);
 } break;

 case BLE_GAP_EVENT_RPA_EN_COMP:
 {
 /* Start advertising */
 R_BLE_ABS_StartLegacyAdv(&gs_adv_param);
 } break;
 /** some code is omitted **/
 }
}

Code 9-7 Prepare for using RPA in the local device (1)

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 177 of 244
Dec.27.22

An example using R_BLE_ABS_SetLocPrivacy is shown below.
/** some code is omitted */
st_ble_dev_addr_t gs_rem_bd_addr;

/* Advertising parameters */
static st_ble_abs_legacy_adv_param_t gs_adv_param =
{
 /* TODO: Modify advertise parameters. */
 .p_addr = &gs_rem_bd_addr,
 .o_addr_type = BLE_GAP_ADDR_RPA_ID_PUBLIC,
 /** some code is omitted */
};
/** some code is omitted */

/* GAP Callback */
void gap_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_data)
{
 switch(event_type)
 {
 case BLE_GAP_EVENT_LOC_VER_INFO:
 {
 R_BLE_ABS_SetLocPrivacy(NULL, BLE_GAP_DEV_PRIV_MODE);
 } break;

 case BLE_GAP_EVENT_RPA_EN_COMP:
 {
 /* Start advertising */
 memset(gs_adv_param.p_addr->addr, 0x00, BLE_BD_ADDR_LEN);
 gs_adv_param.p_addr->type = BLE_GAP_ADDR_PUBLIC;
 R_BLE_ABS_StartLegacyAdv(&gs_adv_param);
 } break;
 /** some code is omitted */
 }
}

Code 9-8 Prepare for using RPA in the local device (2)

When the local device Advertising or Scan Request or Connection Request operation with specified the RPA
as own address, the packet includes the RPA.

[Advertising]

When setting the advertising parameters by R_BLE_GAP_SetAdvParam, configure the parameters in Table
5.4.

[Scan]

When setting the scan parameters by R_BLE_GAP_StartScan, configure RPA as own address type. Refer to
“6.2.1 Privacy”.

[Connection]

When create a connection by R_BLE_GAP_CreateConn, configure RPA as own address type. Refer to
“7.1.2 Privacy”.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 178 of 244
Dec.27.22

9.4.2 Resolve remote device RPA
Remote device RPA is resolved according to the following procedure.

1. Start RPA feature
Call R_BLE_GAP_EnableRpa to enable the RPA generation and resolution. The completion is notified
by BLE_GAP_EVENT_RPA_EN_COMP event. This step can be replaced by
R_BLE_ABS_SetLocPrivacy. If the local device does not use RPA, set a local IRK of the first
parameter of R_BLE_ABS_SetLocPrivacy to all zeros.

2. Pairing

Receive the remote device IRK and Identity Address by pairing. For more detail about pairing, see “9.1
Pairing”.

3. Register remote device key (IRK) and BD address
Call R_BLE_GAP_ConfRslvList to register the remote device IRK and Identity Address in the
Resolving List. The local device IRK is also registered at that time. If the local device does not use
RPA, set a local IRK to all zeros by setting the local_irk_type in st_ble_gap_rslv_list_key_set_t type
array of third parameter to BLE_GAP_RL_LOC_KEY_ALL_ZERO. The completion of the registry is
notified by BLE_GAP_EVENT_RSLV_LIST_CONF_COMP event.

4. Set Privacy Mode
If Network Privacy Mode which is the default is used, the procedure does not need to be done.
Call the R_BLE_GAP_SetPrivMode to set the privacy mode. The completion is notified by
BLE_GAP_EVENT_PRIV_MODE_SET_COMP event.

5. Resolve RPA
After the procedures 1-3, the Bluetooth LE Protocol Stack can resolve the remote device RPA
included in the received packet. Because of RPA resolution, the remote device address included in the
event notified to the application becomes Identity Address.

An example of the procedures 1-5 is shown below. If the Local device resolves the RPA of the Remote
device, the Identity Address and the IRK in the Resolving List must match Identity Address and IRK of the
Remote device.
/** some code is omitted **/
static st_ble_abs_scan_phy_param_t gs_phy_param_1M =
{
 .fast_intv = 0x0200,
 .slow_intv = 0x0800,
 .fast_window = 0x0100,
 .slow_window = 0x0100,
 .scan_type = BLE_GAP_SCAN_PASSIVE,
};
static st_ble_abs_scan_param_t gs_scan_param =
{
 .p_phy_param_1M = &gs_phy_param_1M,
 .p_phy_param_coded = NULL,
 .p_filter_data = NULL,
 .fast_period = 0x0100,
 .slow_period = 0x0000,
 .filter_data_length = 0,
 .dev_filter = BLE_ABS_SCAN_ALL_STATIC,
 .filter_dups = BLE_GAP_SCAN_FILT_DUPLIC_DISABLE,
};
static st_ble_abs_conn_phy_param_t gs_conn_phy_param =
{
 .conn_intv = 0x0130,
 .conn_latency = 0x0000,
 .sup_to = 0x03BB,
};
static st_ble_dev_addr_t gs_conn_bd_addr;

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 179 of 244
Dec.27.22

static st_ble_abs_conn_param_t gs_conn_param =
{
 .p_conn_1M = &gs_conn_phy_param,
 .p_addr = &gs_conn_bd_addr, /**< Set BD address of connecting device. */
 .filter = BLE_ABS_CONN_USE_ADDR_STATIC,
 .conn_to = 5,
};
static st_ble_abs_pairing_param_t gs_abs_pairing_param =
{
 .iocap = BLE_GAP_IOCAP_NOINPUT_NOOUTPUT,
 .mitm = BLE_GAP_SEC_MITM_BEST_EFFORT,
 .sec_conn_only = BLE_GAP_SC_BEST_EFFORT,
 .loc_key_dist = BLE_GAP_KEY_DIST_ENCKEY,
 .rem_key_dist = BLE_GAP_KEY_DIST_ENCKEY | BLE_GAP_KEY_DIST_IDKEY,
 .max_key_size = 16,
};
st_ble_dev_addr_t r_id_addr;
/** some code is omitted **/

void gap_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_data)
{
 /** some code is omitted **/
 switch(event_type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 R_BLE_VS_GetBdAddr(BLE_VS_ADDR_AREA_REG, BLE_GAP_ADDR_RAND);
 } break;
 case BLE_GAP_EVENT_RPA_EN_COMP:
 {
 R_BLE_ABS_StartScan(&gs_scan_param);
 } break;
 case BLE_GAP_EVENT_ADV_REPT_IND:
 {
 st_ble_gap_adv_rept_evt_t *p_adv_rept_param = (st_ble_gap_adv_rept_evt_t *)p_data->p_param;
 st_ble_gap_ext_adv_rept_t *p_ext_adv_rept_param = (st_ble_gap_ext_adv_rept_t
*)p_adv_rept_param->param.p_ext_adv_rpt;
 gs_conn_param.p_addr->type = p_ext_adv_rept_param->addr_type;
 memcpy(gs_conn_param.p_addr->addr, p_ext_adv_rept_param->p_addr, BLE_BD_ADDR_LEN);
 R_BLE_GAP_StopScan();
 } break;
 case BLE_GAP_EVENT_SCAN_OFF:
 {
 R_BLE_ABS_CreateConn(&gs_conn_param);
 } break;
 case BLE_GAP_EVENT_CONN_IND:
 {
 st_ble_gap_conn_evt_t *p_gap_conn_evt_param =
 (st_ble_gap_conn_evt_t *)p_data->p_param;
 R_BLE_ABS_StartAuth(p_gap_conn_evt_param->conn_hdl);
 } break;
 case BLE_GAP_EVENT_PEER_KEY_INFO:
 {
 st_ble_gap_peer_key_info_evt_t *p_peer_key_info_evt_param =
 (st_ble_gap_peer_key_info_evt_t *)p_data->p_param;
 st_ble_gap_key_dist_t * key_info;
 st_ble_gap_rslv_list_key_set_t key_set;
 key_info = p_peer_key_info_evt_param->key_ex_param.p_keys_info;
 R_BLE_CLI_Printf("keys : 0x%02x\n", p_peer_key_info_evt_param->key_ex_param.keys);
 if(0 != (BLE_GAP_KEY_DIST_IDKEY & p_peer_key_info_evt_param->key_ex_param.keys))
 {
 /* Add remote address & irk to the resolving list. */
 memcpy(key_set.remote_irk, key_info->id_info, BLE_GAP_IRK_SIZE);
 key_set.local_irk_type = BLE_GAP_RL_LOC_KEY_REGISTERED;
 memcpy(r_id_addr.addr, &key_info->id_addr_info[1], BLE_BD_ADDR_LEN);
 r_id_addr.type = key_info->id_addr_info[0];
 R_BLE_GAP_ConfRslvList(BLE_GAP_LIST_ADD_DEV, &r_id_addr, &key_set, 1);
 }
 } break;
 case BLE_GAP_EVENT_RSLV_LIST_CONF_COMP :
 {
 st_ble_gap_rslv_list_conf_evt_t * p_rslv_list_conf;
 p_rslv_list_conf = (st_ble_gap_rslv_list_conf_evt_t *)p_data->p_param;
 if(BLE_GAP_LIST_ADD_DEV == p_rslv_list_conf->op_code)

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 180 of 244
Dec.27.22

 {
 uint8_t priv_mode;
 priv_mode = BLE_GAP_NET_PRIV_MODE ;
 /* Set Network Privacy Mode. */
 R_BLE_GAP_SetPrivMode(&r_id_addr, &priv_mode, 1);
 }
 }
 break;
 /** some code is omitted **/
 }
}

/* Vendor Specific callback function */
void vs_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_data)
{
 switch(type)
 {
 case BLE_VS_EVENT_GET_ADDR_COMP:
 {
 /* Enable RPA. */
 R_BLE_GAP_EnableRpa(BLE_GAP_RPA_ENABLED);
 } break;
 }
}
/** some code is omitted **/

Code 9-9 Sample for resolving RPA of remote device (1)

An example using R_BLE_ABS_SetLocPrivacy is shown below.
/** some code is omitted **/
#include "sec_data/r_ble_sec_data.h"
typedef struct
{
 /* identity address */
 st_ble_dev_addr_t idaddr[BLE_CFG_NUM_BOND + 1];
 /* local & remote IRK set */
 st_ble_gap_rslv_list_key_set_t key_set[BLE_CFG_NUM_BOND + 1];
 /* the number of identity info stored in Data Flash */
 uint8_t gs_bond_cnt;
} st_ble_app_idinfo_t;
static st_ble_app_idinfo_t gs_idinfo;
static st_ble_gap_rslv_list_key_set_t g_ble_peer_dummy_irk;
static st_ble_abs_scan_phy_param_t gs_phy_param_1M =
{
 .fast_intv = 0x0200,
 .slow_intv = 0x0800,
 .fast_window = 0x0100,
 .slow_window = 0x0100,
 .scan_type = BLE_GAP_SCAN_PASSIVE,
};
static st_ble_abs_scan_param_t gs_scan_param =
{
 .p_phy_param_1M = &gs_phy_param_1M,
 .p_phy_param_coded = NULL,
 .p_filter_data = NULL,
 .fast_period = 0x0100,
 .slow_period = 0x0000,
 .filter_data_length = 0,
 .dev_filter = BLE_ABS_SCAN_ALL_STATIC,
 .filter_dups = BLE_GAP_SCAN_FILT_DUPLIC_DISABLE,
};
static st_ble_abs_conn_phy_param_t gs_conn_phy_param =
{
 .conn_intv = 0x0130,
 .conn_latency = 0x0000,
 .sup_to = 0x03BB,
};
static st_ble_dev_addr_t gs_conn_bd_addr;
static st_ble_abs_conn_param_t gs_conn_param =
{
 .p_conn_1M = &gs_conn_phy_param,

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 181 of 244
Dec.27.22

 .p_addr = &gs_conn_bd_addr, /**< Set BD address of connecting device. */
 .filter = BLE_ABS_CONN_USE_ADDR_STATIC,
 .conn_to = 5,
};
static st_ble_abs_pairing_param_t gs_abs_pairing_param =
{
 .iocap = BLE_GAP_IOCAP_NOINPUT_NOOUTPUT,
 .mitm = BLE_GAP_SEC_MITM_BEST_EFFORT,
 .sec_conn_only = BLE_GAP_SC_BEST_EFFORT,
 .loc_key_dist = BLE_GAP_KEY_DIST_ENCKEY,
 .rem_key_dist = BLE_GAP_KEY_DIST_ENCKEY | BLE_GAP_KEY_DIST_IDKEY,
 .max_key_size = 16,
};
static void ble_app_start_scan(void)
{
 R_BLE_ABS_StartScan(&gs_scan_param);
}
static void ble_app_conn_set_event(void)
{
 R_BLE_ABS_CreateConn(&gs_conn_param);
}
/** some code is omitted **/

void gap_cb(uint16_t event_type, ble_status_t event_result, st_ble_evt_data_t * p_data)
{
 /** some code is omitted **/
 switch(event_type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {
 R_BLE_VS_GetBdAddr(BLE_VS_ADDR_AREA_REG, BLE_GAP_ADDR_RAND);
 } break;
 case BLE_GAP_EVENT_RPA_EN_COMP:
 {
 if((0 != gs_idinfo.gs_bond_cnt))
 {
 /* register remote address & irk */
 R_BLE_GAP_ConfRslvList(BLE_GAP_LIST_ADD_DEV,
 gs_idinfo.idaddr,
 gs_idinfo.key_set,
 gs_idinfo.gs_bond_cnt);
 R_BLE_SetEvent(ble_app_start_scan);
 }
 else
 {
 ble_app_start_scan();
 }
 } break;
 case BLE_GAP_EVENT_ADV_REPT_IND:
 {
 st_ble_gap_adv_rept_evt_t *p_adv_rept_param = (st_ble_gap_adv_rept_evt_t *)p_data->p_param;
 st_ble_gap_ext_adv_rept_t *p_ext_adv_rept_param = (st_ble_gap_ext_adv_rept_t
*)p_adv_rept_param->param.p_ext_adv_rpt;
 gs_conn_param.p_addr->type = p_ext_adv_rept_param->addr_type;
 memcpy(gs_conn_param.p_addr->addr, p_ext_adv_rept_param->p_addr, BLE_BD_ADDR_LEN);
 R_BLE_GAP_StopScan();
 } break;
 case BLE_GAP_EVENT_SCAN_OFF:
 {
 st_ble_gap_rslv_list_key_set_t * p_key_set;
 uint8_t i;
 uint8_t peer_addr_type;
 peer_addr_type = gs_conn_param.p_addr->type;
 gs_conn_param.p_addr->type = gs_conn_param.p_addr->type % 2;
 if(BLE_GAP_ADDR_RAND < peer_addr_type)
 {
 /* Local device can resolve the remote device address. */
 R_BLE_SECD_GetIdInfo(gs_idinfo.idaddr, gs_idinfo.key_set, &gs_idinfo.gs_bond_cnt);
 R_BLE_CLI_Printf("Remote IRK count :0x%02x \n", gs_idinfo.gs_bond_cnt);
 p_key_set = NULL;
 if(0 != gs_idinfo.gs_bond_cnt)
 {
 for(i=0; i<BLE_CFG_NUM_BOND + 1; i++)
 {

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 182 of 244
Dec.27.22

 if(0 == memcmp(gs_idinfo.idaddr[i].addr, gs_conn_param.p_addr,
sizeof(st_ble_dev_addr_t)))
 {
 p_key_set = &gs_idinfo.key_set[i];
 break;
 }
 }
 }
 if(NULL == p_key_set)
 {
 p_key_set = &g_ble_peer_dummy_irk;
 }
 p_key_set->local_irk_type = BLE_GAP_RL_LOC_KEY_ALL_ZERO;
 R_BLE_GAP_ConfRslvList(BLE_GAP_LIST_ADD_DEV, gs_conn_param.p_addr, p_key_set, 1);
 R_BLE_SetEvent(ble_app_conn_set_event);
 }
 else
 {
 /* Local device can't resolve the remote device address. */
 ble_app_conn_set_event();
 }
 } break;
 case BLE_GAP_EVENT_PEER_KEY_INFO:
 {
 st_ble_gap_peer_key_info_evt_t *p_peer_key_info_evt_param =
 (st_ble_gap_peer_key_info_evt_t *)p_data->p_param;
 st_ble_gap_key_dist_t * key_info;
 st_ble_gap_rslv_list_key_set_t key_set;
 key_info = p_peer_key_info_evt_param->key_ex_param.p_keys_info;
 R_BLE_CLI_Printf("keys : 0x%02x\n", p_peer_key_info_evt_param->key_ex_param.keys);
 if(0 != (BLE_GAP_KEY_DIST_IDKEY & p_peer_key_info_evt_param->key_ex_param.keys))
 {
 /* Add remote address & irk to the resolving list. */
 st_ble_dev_addr_t r_id_addr;
 memcpy(key_set.remote_irk, key_info->id_info, BLE_GAP_IRK_SIZE);
 key_set.local_irk_type = BLE_GAP_RL_LOC_KEY_REGISTERED;
 memcpy(r_id_addr.addr, &key_info->id_addr_info[1], BLE_BD_ADDR_LEN);
 r_id_addr.type = key_info->id_addr_info[0];
 R_BLE_GAP_ConfRslvList(BLE_GAP_LIST_ADD_DEV, &r_id_addr, &key_set, 1);
 }
 } break;
 /** some code is omitted **/
 }
}
static void vs_cb(uint16_t type, ble_status_t result, st_ble_vs_evt_data_t *p_data)
{
 switch(type)
 {
 case BLE_VS_EVENT_GET_ADDR_COMP:
 {
 /* Get remote irk & identity address from Data Flash. */
 R_BLE_SECD_GetIdInfo(gs_idinfo.idaddr, gs_idinfo.key_set, &gs_idinfo.gs_bond_cnt);
 R_BLE_CLI_Printf("Remote IRK count :0x%02x \n", gs_idinfo.gs_bond_cnt);
 if((0 != gs_idinfo.gs_bond_cnt))
 {
 /* Already create local irk and have remote irk. */
 R_BLE_GAP_EnableRpa(BLE_GAP_RPA_ENABLED);
 }
 else
 {
 /* Initial state or remote device did not distribute irk. */
 uint8_t irk[BLE_GAP_IRK_SIZE];
 uint8_t irk_check[BLE_GAP_IRK_SIZE];
 uint8_t * p_irk;
 st_ble_dev_addr_t idaddr;
 ble_status_t retval;
 retval = R_BLE_SECD_ReadLocInfo(&idaddr, irk, NULL);
 memset(irk_check, 0x00, BLE_GAP_IRK_SIZE);
 p_irk = NULL;
 if((BLE_SUCCESS == retval) && (0 != memcmp(irk_check, irk, BLE_GAP_IRK_SIZE)))
 {
 p_irk = irk;
 }
 R_BLE_ABS_SetLocPrivacy(p_irk, BLE_ABS_PRIV_NET_STATIC_IDADDR);

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 183 of 244
Dec.27.22

 }
 } break;
 }
}
static void disc_comp_cb(uint16_t conn_hdl)
{
 R_BLE_CLI_Printf("disc finished\n");
 R_BLE_ABS_StartAuth(conn_hdl);
 return;
}
/** some code is omitted **/

Code 9-10 Sample for resolving RPA of remote device (2)

After resolving the RPA, you will need to use the Identity Address to connect and to register the whitelist.

If you restart the Bluetooth LE Protocol Stack, you will need to reset the key stored on the device to the
Resolving List by R_BLE_GAP_ConfRslvList.

Please refer to "9.2.3 Reset the stored keys ".

9.4.2.1 Not generate local device RPA
If the local device resolves remote device RPA but doesn’t generate own RPA and uses Public Address or
Static Address, change app_main.c according to the following.

1. Change g_ble_peer_dummy_irk.

Set the local_irk_type field in the g_ble_peer_dummy_irk variable defined the Abstraction API to
BLE_GAP_RL_LOC_KEY_ALL_ZERO before call R_BLE_ABS_Init() such as Code 9-11.

/**
 User global variables
***/
/* Start user code for global variables. Do not edit comment generated here */
extern st_ble_gap_rslv_list_key_set_t g_ble_peer_dummy_irk;
/* End user code. Do not edit comment generated here */
…

static ble_status_t ble_init(void)
{
 ble_status_t status;

/* Start user code for global value initialization. Do not edit comment generated here */
 g_ble_peer_dummy_irk.local_irk_type = BLE_GAP_RL_LOC_KEY_ALL_ZERO;

/* End user code. Do not edit comment generated here */

 /* Initialize the Low Power Control function */
 R_BLE_LPC_Init();

 /* Initialize Timer Library */
 R_BLE_TIMER_Init();

 /* Initialize host stack */
 status = R_BLE_ABS_Init(&gs_abs_init_param);
 if (BLE_SUCCESS != status)
 {
 return BLE_ERR_INVALID_OPERATION;
 }

Code 9-11 Sample for changing g_ble_peer_dummy_irk

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 184 of 244
Dec.27.22

2. Change the value obtained by R_BLE_SECD_GetIdInfo().

If you set the value obtained by R_BLE_SECD_GetIdInfo() to Resolving List, change the local_irk_type
field in the st_ble_gap_rslv_list_key_set_t type array obtained as the second parameter to
BLE_GAP_RL_LOC_KEY_ALL_ZERO and then call R_BLE_GAP_ConfRslvList() such as Code 9-12.

static void ble_app_set_resolving_list(void)
{
 st_ble_dev_addr_t idaddr[BLE_CFG_NUM_BOND + 1] = {0};
 st_ble_gap_rslv_list_key_set_t key_set[BLE_CFG_NUM_BOND + 1] = {0};
 uint8_t cnt = 0;
 uint8_t i;

 /* Get remote irk & identity address from Data Flash. */
 R_BLE_SECD_GetIdInfo(idaddr, key_set, &cnt);

 if(0 !=cnt)
 {
 for(i=0; i<cnt; i++)
 {
 key_set[i].local_irk_type = BLE_GAP_RL_LOC_KEY_ALL_ZERO;
 }

 R_BLE_GAP_ConfRslvList(BLE_GAP_LIST_ADD_DEV, idaddr, key_set, cnt);

Code 9-12 Sample for changing the value obtained by R_BLE_SECD_GetIdInfo()

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 185 of 244
Dec.27.22

10. Profile and service
Profiles in Bluetooth LE communication are mechanisms for ensuring interoperability between devices by

defining the services and communication protocols that application share. Profile-based data communication
is achieved by accessing a common data structure called GATT database. As shown in Figure 10-1, the
GATT database consists of one or more services and the characteristics they contain. Services consist of
one or more characteristic that enable profile functionality, and characteristics define data structures and
access procedures. The procedure for accessing characteristics is called GATT procedure, and this
procedure defines how to send and receive data.

The user profile can be designed using QE for BLE. For information on how to design profiles using QE for
BLE, refer “RX23W Group Bluetooth Low Energy Profile Developer’s Guide (R01AN6459)”.

This chapter introduces the profiles and services provided by Renesas and explains APIs for each GATT
procedure including examples of how to use them.

Figure 10-1 Data structure of GATT database

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 186 of 244
Dec.27.22

10.1 Standard profile and Standard Service
Standard profiles and services can be used in user applications using QE for BLE. RX23W supports the

standard profiles and services listed in Table 10.1. Table 10.2 lists the characteristics that make up each
standard service.

Table 10.1 Profile supported by RX23W

Usage Profile Service

Healthcare

Blood Pressure Profile BLS DIS

Health Thermometer Profile HTS DIS

Heart Rate Profile HRS DIS

Glucose Profile GLS DIS

Pulse Oximeter Profile
PLXS DIS BAS CTS

BMS

Continuous Glucose Monitoring Profile CGMS DIS BMS

Reconnection Configuration Profile RCS BMS

Insulin Delivery Profile
IDS DIS BAS CTS

BMS IAS

Sports and Fitness

Cycling Power Profile CPS DIS BAS

Cycling Speed and Cadence Profile CSCS DIS

Running Speed and Cadence Profile RSCS DIS

Location and Navigation Profile LNS DIS BAS

Weight Scale Profile
WSS BCS DIS BAS

CTS UDS

Fitness Machine Profile FTMS DIS UDS

Environmental Sensing Profile ESS DIS BAS

Radio tag
Find Me Profile IAS

Proximity Profile IAS LLS TPS

Smartphone

Alert Notification Profile ANS

Phone Alert Status Profile PASS

Time Profile CTS NDCS RTUS

HID (Human
Interface Device)

HID over GATT Profile HIDS DIS BAS

Scan Parameters Profile SCPS

Industrial equipment Automation IO Profile AIOS

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 187 of 244
Dec.27.22

Table 10.2 Structure of standard service

Service Characteristic GATT Procedure

Alert Notification Service
ANS

Supported New Alert Category Read

New Alert Notify

Supported Unread Alert Category Read

Unread Alert Status Notify

Automation IO Service
AIOS

Digital 0 Read, Write, WriteWithoutResponse,
Notify

Digital 1 Read, Write, WriteWithoutResponse,
Notify

Analog 0 Read, Write, WriteWithoutResponse,
Notify

Analog 1 Read, Write, WriteWithoutResponse,
Notify

Aggregate Read, Notify

Battery Service
BAS

Battery Level Read, Notify

Blood Pressure Service
BLS

Blood Pressure Measurement Indicate

Intermediate Cuff Pressure Notify

Blood Pressure Feature Read, Indicate

Body Composition
Service
BCS

Body Composition Feature Read

Body Composition Measurement Indicate

Bond Management
Service
BMS

Bond Management Control Point Write, ReliableWrite

Bond Management Feature Read, Indicate

Continuous Glucose
Monitoring Service
CGMS

CGM Measurement Notify

CGM Feature Read, Indicate

CGM Status Read

CGM Session Start Time Read, Write

CGM Session Run Time Read

Record Access Control Point Write, Indicate

CGM Specific Ops Control Point Write, Indicate

Current Time Service
CTS

Current Time Read, Write, Notify

Local Time Information Read, Write

Reference Time Information Read

Cycling Power Service
CPS

Cycling Power Measurement Notify, Broadcast

Cycling Power Feature Read

Sensor Location Read

Cycling Power Vector Notify

Cycling Power Control Point Write, Indicate

Cycling Speed and
Cadence Service
CSCS

CSC Measurement Notify

CSC Feature Read

Sensor Location Read

SC Control Point Write, Indicate

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 188 of 244
Dec.27.22

Service Characteristic GATT Procedure

Device Information
Service
DIS

Manufacturer Name String Read

Model Number String Read

Serial Number String Read

Hardware Revision String Read

Firmware Revision String Read

Software Revision String Read

System ID Read
IEEE 11073-20601 Regulatory
Certification Data List Read

PnP ID Read

Environmental Sensing
Service
ESS

Descriptor Value Changed Indicate

Temperature 0 Read, Notify

Temperature 1 Read, Notify

Elevation 0 Read, Notify

Elevation 1 Read, Notify

Fitness Machine Service
FTMS

Fitness Machine Feature Read

Treadmill Data Notify

Cross Trainer Data Notify

Step Climber Data Notify

Stair Climber Data Notify

Rower Data Notify

Indoor Bike Data Notify

Training Status Read, Notify

Supported Speed Range Read

Supported Inclination Range Read

Supported Resistance Level Range Read

Supported Power Range Read

Supported Heart Rate Range Read

Fitness Machine Control Point Write, Indicate

Fitness Machine Status Notify

GAP Service
GAP

Device Name Read, Write
Appearance Read
Peripheral Preferred Connection
Parameters Read

Central Address Resolution Read
Resolvable Private Address Only Read

GATT Service
GATT Service Changed Indicate

Glucose Service
GLS

Glucose Measurement Notify
Glucose Measurement Context Notify
Glucose Feature Read, Indicate
Record Access Control Point Write, Indicate

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 189 of 244
Dec.27.22

Service Characteristic GATT Procedure

Health Thermometer
Service
HTS

Temperature Measurement Indicate

Temperature Type Read

Intermediate Temperature Notify

Measurement Interval Read, Write, Indicate

Heart Rate Service
HRS

Heart Rate Measurement Notify

Body Sensor Location Read

Heart Rate Control Point Write

Human Interface Device
Service
HIDS

Protocol Mode Read, WriteWithoutResponse

Report Read, Write, WriteWithoutResponse,
Notify

Report Map Read

Boot Keyboard Input Report Read, Write, Notify

Boot Keyboard Output Report Read, Write, WriteWithoutResponse

Boot Mouse Input Report Read, Write, Notify

HID Information Read

HID Control Point WriteWithoutResponse
Immediate Alert Service
IAS Alert Level WriteWithoutResponse

Insulin Delivery Service
IDS

IDD Status Changed Read, Indicate

IDD Status Read, Indicate

IDD Annunciation Status Read, Indicate

IDD Features Read, Indicate

IDD Status Reader Control Point Write, Indicate

IDD Command Control Point Write, Indicate

IDD Command Data InformativeText, Notify

IDD Record Access Control Point Write, Indicate

IDD History Data InformativeText, Notify
Link Loss Service
LLS Alert Level Read, Write

Location and Navigation
Service
LNS

LN Feature Read

Location and Speed Notify

Position Quality Read

LN Control Point Write, Indicate

Navigation Notify
Next DST Change
Service
NDCS

Time with DST Read

Object Transfer Service
OTS

OTS Feature Read

Object Name Read, Write

Object Type Read

Object Size Read

Object First-Created Read, Write

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 190 of 244
Dec.27.22

Service Characteristic GATT Procedure
Object Last-Modified Read, Write

Object ID Read

Object Properties Read, Write

Object Action Control Point Write, Indicate

Object List Control Point Write, Indicate

Object List Filter 0 Read, Write

Object List Filter 1 Read, Write

Object List Filter 2 Read, Write

Object Changed Indicate

Phone Alert Status
Service
PASS

Alert Status Read, Notify

Ringer Setting Read, Notify

Ringer Control point WriteWithoutResponse

Pulse Oximeter Service
PLXS

PLX Spot-Check Measurement Indicate

PLX Continuous Measurement Notify

PLX Features Read, Indicate

Record Access Control Point Write, Indicate

Reconnection
Configuration Service
RCS

RC Feature Read, Indicate

RC Settings Read, Notify
Reconnection Configuration Control
Point Write, Indicate

Reference Time Update
Service
RTUS

Time Update Control Point WriteWithoutResponse

Time Update State Read

Running Speed and
Cadence Service
RSCS

RSC Measurement Notify

RSC Feature Read

Sensor Location Read

SC Control Point Write, Indicate
Scan Parameters
Service
SCPS

Scan Interval Window WriteWithoutResponse

Scan Refresh Notify
Tx Power Service
TPS Tx Power Level Read

User Data Service
UDS

First Name Read, Write

Last Name Read, Write

Email Address Read, Write

Age Read, Write

Date of Birth Read, Write

Gender Read, Write

Weight Read, Write

Height Read, Write

VO2 Max Read, Write

Heart Rate Max Read, Write

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 191 of 244
Dec.27.22

Service Characteristic GATT Procedure
Resting Heart Rate Read, Write

Maximum Recommended Heart Rate Read, Write

Aerobic Threshold Read, Write

Anaerobic Threshold Read, Write
Sport Type for Aerobic and Anaerobic
Thresholds Read, Write

Date of Threshold Assessment Read, Write

Waist Circumference Read, Write

Hip Circumference Read, Write

Fat Burn Heart Rate Lower Limit Read, Write

Fat Burn Heart Rate Upper Limit Read, Write

Aerobic Heart Rate Lower Limit Read, Write

Aerobic Heart Rate Upper Limit Read, Write

Anaerobic Heart Rate Lower Limit Read, Write

Anaerobic Heart Rate Upper Limit Read, Write

Five Zone Heart Rate Limits Read, Write

Three Zone Heart Rate Limits Read, Write

Two Zone Heart Rate Limit Read, Write

Database Change Increment Read, Write, Notify

User Index Read

User Control Point Write, Indicate

Language Read, Write

Registered User Read, Write

Preferred Units Read, Write

High Resolution Height Read, Write

Middle Name Read, Write

Stride Length Read, Write

Handedness Read, Write

Device Wearing Position Read, Write

Four Zone Heart Rate Limits Read, Write

High Intensity Exercise Threshold Read, Write

Activity Goal Read, Write

Sedentary Interval Notification Read, Write

Caloric Intake Read, Write

Weight Scale Service
WSS

Weight Scale Feature Read

Weight Measurement Indicate

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 192 of 244
Dec.27.22

10.2 APIs of GATT Procedure
QE for BLE generates APIs depending on the GATT procedure set to the characteristic. This section
describes how to implement each GATT procedure that can be configured from QE for BLE.
In the following description, we will use the function name and event name which will be generated from QE
for BLE. Abbreviation of the service is set to “XXX” and abbreviation of characteristic is set to “YYY” in QE for
BLE.

10.2.1 Read operation
Read operation is a procedure of the GATT client to check the data configured in the GATT database of the
GATT server. Using this procedure is recommended when checking the configuration and status of the
GATT server.

GATT server:
When GATT server receives “Read Request”, Bluetooth LE Protocol Stack transmits “Read Response” with
the value set in the GATT database. The event “BLE_XXX_EVENT_YYY_READ_REQ” occurs after
receiving “Read Response” but before determining the data to be send in “Read Response”. If you want to
change the data to be transmitted, use function “R_BLE_XXX_SetYYY()” to change the value set in the
GATT database. You can also send errors by using the function “R_BLE_GATTS_SetErrRsp()”.

GATT client:
“Read Request” can be transmitted by using the function “R_BLE_XXX_ReadYYY()” in Application. The
event “BLE_XXX_EVENT_YYY_READ_RSP” notifies the data received in “Read Response” to the
application. The data notified in this event is in form of a structure in Field of QE for BLE because decode
function is used in Bluetooth LE Protocol Stack. Read operation is completed when the event
“BLE_XXX_EVENT _YYY_READ_RSP” is notified. You can start following operation after this event.

Figure 10-2 Flow of Read operation

Client Device

Application Bluetooth LE
Protocol Stack

Server Device

ApplicationBluetooth LE
Protocol Stack

Function
R_BLE_XXX_ReadYYY()

Event
BLE_XXX_EVENT_YYY_READ_REQ

Read Request

Event
BLE_XXX_EVENT_YYY_READ_RSP

Read Response

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 193 of 244
Dec.27.22

10.2.2 Write operation
Write operation is a procedure to change the GATT database of the GATT server by sending data from the
GATT client. GATT client can check whether the submitted data is reflected in the GATT database in
response from the GATT server. Using this procedure is recommended when you want to change the
settings of the GATT server.

GATT server:
Data received in “Write Request” is notified to the application by the event
“BLE_XXX_EVENT_YYY_WRITE_REQ” and “BLE_XXX_EVENT_WRITE_COMP”. The data notified in this
event is in form of a structure in Field of QE for BLE because decode function is used in Bluetooth LE
Protocol Stack. Event “BLE_XXX_EVENT_WRITE_REQ” is an event to check the data received by “Write
Request” before being written to the GATT database. If you receive invalid data, use function
“R_BLE_GATTS_SetErrRsp()” to send an error and the data would not be reflected in the GATT database. If
you do not send an error, Bluetooth LE Protocol Stack sends “Write Response”, so you do not need to add
any process to respond in application. Event “BLE_XXX_EVENT_YYY_WRITE_COMP” is an event after the
data received by “Write Request” is reflected in the GATT database and “Write Response” is sent. Process
that references GATT database directly or corresponds to the data received by “Write Request” should be
added after this event.

GATT client:
You can sent “Write Request” by using the function “R_BLE_XXX_WriteYYY()” in application. Result of the
Write operation can be checked by the event “BLE_XXX_EVENT_YYY_WRITE_RSP”. Write operation is
completed when the event “BLE_XXX_EVENT _YYY_WRITE_RSP” is notified. You can start following
operation after this event.

Figure 10-3 Flow of Write operation

Client Device

Application Bluetooth LE
Protocol Stack

Server Device

ApplicationBluetooth LE
Protocol Stack

Function
R_BLE_XXX_WriteYYY()

Event
BLE_XXX_EVENT_YYY_WRITE_REQ

Write Request

Event
BLE_XXX_EVENT_YYY_WRITE_RSP

Write Response

Event
BLE_XXX_EVENT_YYY_WRITE_COMP

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 194 of 244
Dec.27.22

10.2.3 WriteWithoutResponse operation
WriteWithoutResponse operation is a procedure to change the GATT database of the GATT server by
sending data from the GATT client. Because there is no response from the GATT server, it is possible to
continuously transmit data from GATT client and lower power consumption of GATT server devices, while it
is not possible to verify that the data sent by GATT client is reflected in the GATT database. Using this
procedure is recommended when you need low power consumption on your device, or when you need to
send data continuously from GATT client.

GATT server:
Data received in “Write Command” is notified to application by the event
“BLE_XXX_EVENT_YYY_WRITE_CMD”. The data notified in this event is in form of a structure in Field of
QE for BLE because decode function is used in Bluetooth LE Protocol Stack. When the event
“BLE_XXX_EVENT_YYY_WRITE_CMD” is notified, changes to the GATT database are not reflected, so do
not add any action that directly references the GATT database.

GATT client:
You can send “Write Command” by using the function “R_BLE_XXX_WriteWithoutResponseYYY()” in
application. WriteWithoutResponse operation is completed when the function
“R_BLE_XXX_WriteWithoutResponseYYY()” is used. You can start following operation after this event.

Figure 10-4 Flow of WriteWithoutResponse operation

Client Device

Application Bluetooth LE
Protocol Stack

Server Device

ApplicationBluetooth LE
Protocol Stack

Function
R_BLE_XXX_WriteWithoutResponseYYY()

Event
BLE_XXX_EVENT_YYY_WRITE_CMD

Write Command

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 195 of 244
Dec.27.22

10.2.4 Notification operation
Notification operation is a procedure to send data from the GATT server to the GATT client. For Notification
operation, the CCCD must have been added as a descriptor. The GATT client must also set the CCCD to the
appropriate value before the operation. Because there is no response from the GATT client, it is possible to
send data continuously from the GATT server, but it is not possible to verify that the GATT client received the
data sent from GATT server. Using this procedure is recommended when you want to send data
continuously from the GATT server.

GATT server:
Before the operation, verify that the CCCD has been changed to an appropriate value. Make sure that
“BLE_GATTS_CLI_CNFG_NOTIFICATION (0x0001)” is written in the event
“BLE_XXX_EVENT_YYY_CLI_CNFG_WRITE_COMP”, which is the event after the Write operation of
CCCD. You can send “Handle Value Notification” by using the function “R_BLE_XXX_NotifyYYY()”. If the
value of CCCD has not changed, the function “R_BLE_XXX_NotifyYYY()” returns the
macro ”BLE_ERR_INVALID_OPERATION” and does not send ” Handle Value Notification” from GATT
server. Notification operation is completed when the function “R_BLE_XXX_NotifyYYY()” is used. You can
start following operation after this event.

GATT client:
Before the operation, it is necessary to change the value of CCCD to the appropriate value. Write
“BLE_GATTS_CLI_CNFG_NOTIFICATION (0x0001)” to CCCD of characteristic which performs Notification
operation. Data received in “Handle Value Notification” is notified to the application by the event
“BLE_XXX_EVENT_YYY_HDL_VAL_NTF”. The data notified in this event is in form of a structure in Field of
QE for BLE because decode function is used in Bluetooth LE Protocol Stack.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 196 of 244
Dec.27.22

Figure 10-5 Flow of Notification operation

Client Device

Application Bluetooth LE
Protocol Stack

Server Device

ApplicationBluetooth LE
Protocol Stack

Function
R_BLE_XXX_WriteYYYCliCnfg()

Event
BLE_XXX_EVENT_YYY_CLI_CNFG_WRITE_REQ

Write Request

Event
BLE_XXX_EVENT_YYY_CLI_CNFG_WRITE_RSP

Write Response

Event
BLE_XXX_EVENT_YYY_CLI_CNFG_WRITE_COMP

Function
R_BLE_XXX_NotifyYYY()

Handle Value Notification

Event
BLE_XXX_EVENT_YYY_HDL_VAL_NTF

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 197 of 244
Dec.27.22

10.2.5 Indication operation
The Indication operation is a procedure to send data from GATT server to GATT client. For the Indication
operation, the CCCD must have been added as a descriptor. The GATT client must also set the CCCD to the
appropriate value before the operation. GATT server can verify that GATT client has received data sent from
GATT server in a response from GATT client.

GATT server:
Before the operation, verify that the CCCD has been changed to appropriate value. Make sure that
“BLE_GATTS_CLI_CNFG_INDICTION (0x0002)” is written in the event
“BLE_XXX_EVENT_YYY_CLI_CNFG_WRITE_COMP”, which is the event after the Write operation of
CCCD. You can send “Handle Value Indication” by using the function “R_BLE_XXX_IndicateYYY()”. If the
value of the CCCD has not changed, the function “R_BLE_XXX_IndicateYYY()” returns the
macro ”BLE_ERR_INVALID_OPERATION” and does not send ”Handle Value Indication” from GATT server.
Indication operation is completed when the event “BLE_XXX_EVENT_YYY_HDL_VAL_CNF” is notified. You
can start following operation after this event.

GATT client:
Before the operation, it is necessary to change the value of CCCD to the appropriate value. Write
“BLE_GATTS_CLI_CNFG_INDICATION (0x0002)” to CCCD of characteristic which performs Indication
operation. Data received in “Handle Value Indication” is notified to the application by the event
“BLE_XXX_EVENT_YYY_HDL_VAL_IND”. The data notified in this event is in form of a structure in Field of
QE for BLE because decode function is used in Bluetooth LE Protocol Stack. After the event
“BLE_XXX_EVENT_YYY_HDL_VAL_IND”, Bluetooth LE Protocol Stack sends “Handle Value Confirmation”,
so you do not need to add any process to respond in application.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 198 of 244
Dec.27.22

Figure 10-6 Flow of Indication operation

Client Device

Application Bluetooth LE
Protocol Stack

Server Device

ApplicationBluetooth LE
Protocol Stack

Function
R_BLE_XXX_WriteYYYCliCnfg()

Event
BLE_XXX_EVENT_YYY_CLI_CNFG_WRITE_REQ

Write Request

Event
BLE_XXX_EVENT_YYY_CLI_CNFG_WRITE_RSP

Write Response

Function
R_BLE_XXX_IndicateYYY()

Handle Value Indication

Event
BLE_XXX_EVENT_YYY_HDL_VAL_IND

Handle Value Confirmation

Event
BLE_XXX_EVENT_YYY_CLI_CNFG_WRITE_COMP

Event
BLE_XXX_EVENT_YYY_HDL_VAL_CNF

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 199 of 244
Dec.27.22

10.2.6 ReliableWrites operation
The ReliableWrites operation is a procedure to send data from GATT client to GATT server, ensure that the
correct values are written, and then reflected it in the GATT database. There are two steps for ReliableWrites
operation. In first step, GATT client sends data using “Prepare Write Request” and GATT server holds it in
queue. GATT client can verify that the correct data is being written in “Prepare Write Response”. In second
step, GATT server reflects the data held in queue in GATT database when receives “Execute Write
Request”. Using this procedure is recommended when you want highly reliable data communication.
APIs of ReliableWrites operation is not included in the API of service generated from QE for BLE, so it must
be implemented using APIs from Bluetooth LE Protocol Stack. In addition, Characteristic Extended
Properties Descriptor must have been added as a descriptor for ReliableWrites operation.

GATT server:
Before the operation, reserve a queue for receiving data using function
“R_BLE_GATTS_SetPrepareQueue()”. Size of the queue to be reserved should be greater than the total size
of the characteristic which is able to ReliableWrites operation (if the total size is 6, specify value greater than
or equal to 7). Data received in “Prepare Write Request” is notified to the application in the event
“BLE_XXX_EVENT_YYY_WRITE_REQ”. The event “BLE_XXX_EVENT_YYY_WRITE_COMP” notifies the
application that GATT server received “Execute Write Request” and data held in the queue is reflected in
GATT database.

GATT client:
You can send “Prepare Write Request” using the function “R_BLE_GATTC_ReliableWrites()” in application.
You can receive “Prepare Write Response” for each data transmitted, and you can check the data in the
event “BLE_GATTC_EVENT_RELIABLE_WRITE_TX_COMP”. After verifying that GATT server is receiving
the correct data, use the function “R_BLE_GATTC_ExecWrite()” to send “Execute Write Request” for
reflecting data in GATT database. If confirmed data is incorrect, use the function
“R_BLE_GATTC_ExecWrite()” to send “Execute Write Request” to discard the data held by GATT server.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 200 of 244
Dec.27.22

Figure 10-7 Flow of ReliableWrites operation

Client Device

Application Bluetooth LE
Protocol Stack

Server Device

ApplicationBluetooth LE
Protocol Stack

Function
R_BLE_GATTC_ReliableWrites()

Event
BLE_XXX_EVENT_YYY_WRITE_REQ

Prepare Write Request

Event
BLE_GATTC_EVENT_RELIABLE_WRITES_TX_COMP

Prepare Write Response

Function
R_BLE_GATTS_SetPrepareQueue()

Function
R_BLE_GATTC_ExecWrite()

Execute Write Request

Execute Write Response

Event
BLE_GATTC_EVENT_RELIABLE_WRITES_COMP

Event
BLE_XXX_EVENT_YYY_WRITE_COMP

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 201 of 244
Dec.27.22

10.2.7 Broadcast Operation
Broadcast operation is a procedure for transmitting data without connection to an unspecified number of

devices. The sender device is called Broadcaster and uses the Advertising operation. The receiver device is
called Observer and uses the Scan operation. Because of the communication without a connection, there is
no limit in number of devices that the Broadcaster can communicate at once, but it cannot be guaranteed
that the receiver device is receiving data.

APIs of Broadcast operation is not included in the API of service generated from QE for BLE, so it must be
implemented using APIs from Bluetooth LE Protocol Stack. In addition, Server Characteristic Configuration
Properties Descriptor must be added as a descriptor for Broadcast operation.

GATT server (Broadcaster):
Advertising operation is used for sending data. For an overview of advertising operation, refer to “5.
Advertising”.
Note that when Advertising as Broadcast operation, there are following limitations:
 For the advertising type specification (5.2.1.1), set adv_prop_type field with value indicated in “Non-

Connectable and Non-Scannable Undirected” or “Non-Connectable and Non-Scannable Directed” in
Table 5.1.

 For Advertising Data configuration (5.4), you can communicate service data by setting AD structure
which has “service Data (0x16 for 16-bit UUIDs, 0x21 for 128-bit UUIDs)” for AD type and service
UUIDs and data for AD data. If you want to configure AD structure with AD type of ”Flags (0x01)”, do not
set “LE Limited Discoverable Mode” or “LE General Discoverable Mode”.

GATT client (Observer):
Scan operation is used for receiving data. For an overview of scan operation, refer to “6. Scan”. There are no
restrictions on the scan operation but set scan parameters so that you can receive the Advertising Event sent
by Broadcaster.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 202 of 244
Dec.27.22

Figure 10-8 Flow of Broadcast operation

Client Device...

Application Bluetooth LE
Protocol Stack

Server Device...

ApplicationBluetooth LE
Protocol Stack

Function
R_BLE_GAP_SetAdvParam()

Adverting

Event
BLE_GATTC_EVENT_ADV_REPT_IND

Event
BLE_GAP_EVENT_ADV_PARAM_SET_COMP

Function
R_BLE_GAP_SetAdvSresData()

Event
BLE_GAP_EVENT_ADV_DATA_UPD_COMP

Function
R_BLE_GAP_StartAdv()

Event
BLE_GAP_EVENT_ADV_ON

Function
R_BLE_GAP_StartScan()

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 203 of 244
Dec.27.22

10.3 Example of using GATT Procedure
In this section, we will show how to implement GATT procedure in user application with use cases using

LED Switch Service used in the demo application. Table 10.3 shows the configuration of the LED Switch
Service.

Table 10.3 Structure of LED Switch Service

Service Characteristic GATT Procedure
LED Switch Service
LSS

LED Blink Rate Read, Write

Switch State Notify

10.3.1 Example for sending data from GATT client
Use case: Change GATT server device’s LED blink rate by pushing GATT client device’s switch
Use LSS LED Blink Rate characteristic to change the blinking speed of the GATT server-side LED when the
switch on the GATT client-side board is pressed. After the switch is pressed, GATT client uses Read
operation to check the current LED Blink Rate value, and then uses Write operation to send the new value.
The GATT server changes the LED Blink speed by using received value.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 204 of 244
Dec.27.22

/* some code is omitted */

#include "timer/r_ble_timer.h"
static uint32_t gs_timer_hdl;
#include "board/r_ble_board.h"

/* some code is omitted */

static void timer_cb(uint32_t timer_hdl)
{
 R_BLE_BOARD_ToggleLEDState(BLE_BOARD_LED2);
}

/* some code is omitted */

static void lss_cb(uint16_t type, ble_status_t result, st_ble_servs_evt_data_t
*p_data)
{
 switch(type)
 {
 case BLE_LSS_EVENT_BLINK_RATE_WRITE_COMP:
 {
 uint8_t rate = *(uint8_t *)p_data->p_param;
 if (0 == rate)
 {
 R_BLE_TIMER_Stop(gs_timer_hdl);
 R_BLE_BOARD_SetLEDState(BLE_BOARD_LED2, false);
 }
 else
 {
 R_BLE_TIMER_UpdateTimeout(gs_timer_hdl, rate * 100);
 }
 } break;

 default:
 break;
 }
}

/* some code is omitted */
void app_main(void)
{
 /* Initialize BLE */
 R_BLE_Open();

 R_BLE_TIMER_Init();
 R_BLE_TIMER_Create(&gs_timer_hdl, 1, BLE_TIMER_PERIODIC, timer_cb);

 R_BLE_BOARD_Init();

/* some code is omitted */
}

Code 10-1 Implementation in app_main.c for GATT server

Referring received data to
timer

Blink LED in each callback of
Timer

Add library for using Timer and
LED

Initialization of Timer and
LED

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 205 of 244
Dec.27.22

/* some code is omitted */

#include "board/r_ble_board.h"
#define LED_RATE_LOW (0x01)
#define LED_RATE_HIGH (0xff)

/* some code is omitted */

static void sw_cb(void)
{
 R_BLE_LSC_ReadBlinkRate(g_conn_hdl);
}

/* some code is omitted */

static void lsc_cb(uint16_t type, ble_status_t result, st_ble_servs_evt_data_t
*p_data)
{
 switch(type)
 {
 case BLE_LSC_EVENT_BLINK_RATE_READ_RSP:
 {
 uint8_t read_rate = *(uint8_t *)p_data->p_param;
 uint8_t write_rate = 0;
 if (LED_RATE_LOW == read_rate)
 {
 write_rate = LED_RATE_HIGH;
 }
 else
 {
 write_rate = LED_RATE_LOW;
 }

 R_BLE_LSC_WriteBlinkRate(g_conn_hdl, &write_rate);
 } break;

 default:
 break;
 }
}

/* some code is omitted */

void app_main(void)
{
 /* Initialize BLE */
 R_BLE_Open();

 R_BLE_BOARD_Init();
 R_BLE_BOARD_RegisterSwitchCb(BLE_BOARD_SW2, sw_cb);

/* some code is omitted */
}

Code 10-2 Implementation in app_main.c for GATT client

Start Read operation in callback of
switch input

Start Write operation depending on
received value

Add library for using switch

Initialization of switch

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 206 of 244
Dec.27.22

10.3.2 Example for sending data from GATT server
Use case: Blink GATT client device’s LED by pressing GATT server device’s switch
Blink the GATT client-side LED using LSS Switch State characteristic each time a switch on the GATT
server-side board is pressed. GATT server sends the number of times it was pressed using the Notification
operation each time the switch is pressed. The GATT client side lights up when received value is odd
number and turns off received value is even number.

/* */

#include "board/r_ble_board.h"

/* some code is omitted */

static uint8_t switch_count = 0;

/* some code is omitted */

static void sw_cb(void)
{
 switch_count++;
 R_BLE_LSS_NotifySwitchState(g_conn_hdl, &switch_count);
}

/* some code is omitted */

void app_main(void)
{
 /* Initialize BLE */
 R_BLE_Open();

 R_BLE_BOARD_Init();
 R_BLE_BOARD_RegisterSwitchCb(BLE_BOARD_SW2, sw_cb);

/* some code is omitted */
}

Code 10-3 Implementation in app_main.c for GATT server

Start Notification operation in
callback of switch input

initialization of switch

Add library for using switch

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 207 of 244
Dec.27.22

/* some code is omitted */

#include "board/r_ble_board.h"

/* some code is omitted */

static void lsc_cb(uint16_t type, ble_status_t result, st_ble_servs_evt_data_t
*p_data)
{
 switch(type)
 {
 case BLE_LSC_EVENT_SWITCH_STATE_HDL_VAL_NTF:
 {
 uint8_t ntf_state = *(uint8_t *)p_data->p_param;
 if (ntf_state % 2 == 0)
 {
 R_BLE_BOARD_SetLEDState(BLE_BOARD_LED2, false);
 }
 else
 {
 R_BLE_BOARD_SetLEDState(BLE_BOARD_LED2, true);
 }

 } break;

 default:
 break;
 }
}

/* some code is omitted */

static void disc_comp_cb(uint16_t conn_hdl)
{
 /* TODO: Add function after discovery completed */
 static uint16_t s_cccd_req;
 s_cccd_req = BLE_GATTS_CLI_CNFG_NOTIFICATION;
 R_BLE_LSC_WriteSwitchStateCliCnfg(g_conn_hdl, &s_cccd_req);
 return;
}

/* some code is omitted */

void app_main(void)
{
 /* Initialize BLE */
 R_BLE_Open();

 R_BLE_BOARD_Init();

/* some code is omitted */

}

Code 10-4 Implementation in app_main.c for GATT client

Blink LED depending on
received value

Initialization of LED

Write CCCD after
discovery is completed

Add library for using
LED

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 208 of 244
Dec.27.22

11. Debugging
GATT Server application needs to confirm Advertising, Connection, GATT database, Indication, Notification,
Read Response, Write Response. Beacon Scanning and Data Comm Master of BTTS, and GATT Browser
are available.

The GATT Client application needs to confirm Scan, Connection, Service Discovery, Read Request, Write
Request, and Confirmation. Beacon Advertising and Data Comm Slave of BTTS are available.

Note: Not all functions can be evaluated with GATT Browser or BTTS.

Logger function is available for application survey. Using Logger function enables to output logs to the debug
console on e2studio or IAR.

As for GATT Browser, refer to "GATTBrowser for Android Smartphone Application Instruction manual
(R01AN3802)" or "GATTBrowser for iOS Smartphone Application Instruction manual (R21AN0017)".

As for BTTS, refer to "Bluetooth Test Tool Suite operating instructions (R01AN4554)". As for Logger function
details, refer to "5.2 Logger" in "Bluetooth Low Energy Protocol Stack Basic Package: User's Manual
(R01UW0205)".

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 209 of 244
Dec.27.22

11.1 Using Logger function
If changing BLE_DEFAULT_LOG_LEVEL or BLE_LOG_LEVEL before including r_ble_logger.h, the log level
can be changed. If both are defined, the one defined last will be adopted. If either of them is set to 0, the log
output will be disabled. If the log level is set as 1, BLE_LOG_ERR, if set as 2, BLE_LOG_ERR /
BLE_LOG_WRN, if set as 3, BLE_LOG_ERR / BLE_LOG_WRN / BLE_LOG_DBG macro functions are
enabled, if setting as 4 or more and using BLE_LOG macro function, the log level can be expanded.

If changing BLE_LOG_TAG before including r_ble_logger.h, the log tag can be extended.

The following is an example of code that extends the log level and checks arguments of
R_BLE_ABS_StartLegacyAdv. Logger function is used in app_main.c and the newly created source file
(appapp.c).

[app_main.c]
#define BLE_DEFAULT_LOG_LEVEL (1)
#define BLE_LOG_LEVEL (4)
#define BLE_LOG_TAG "app_main"
#include "logger/r_ble_logger.h"
#define BLE_LOG_XXX(...) BLE_LOG(4, "XXX", __VA_ARGS__)
extern void appapp(void);

//static st_ble_abs_legacy_adv_param_t gs_adv_param =
st_ble_abs_legacy_adv_param_t gs_adv_param =
(OMISSION)

 switch (type)
 {
 case BLE_GAP_EVENT_STACK_ON:
 {

 BLE_LOG_ERR("R_BLE_ABS_StartLegacyAdv");
 BLE_LOG_WRN("interval=%f", gs_adv_param.slow_adv_intv * 0.625);
 for(int i=0; i<gs_adv_param.adv_data_length; i++){
 BLE_LOG_DBG("data[%02X]", gs_adv_param.p_adv_data[i]);
 }
 appapp();
 BLE_LOG_XXX("advlen=%d, sreslen=%d", gs_adv_param.adv_data_length,
gs_adv_param.sres_data_length);
 R_BLE_ABS_StartLegacyAdv(&gs_adv_param);
(OMISSION)

Code 11-1 Code example for checking arguments of R_BLE_ABS_StartLegacyAdv (app_main.c)
[appapp.c]
#include "r_ble_rx23w_if.h"
#include "abs/r_ble_abs_api.h"
#define BLE_DEFAULT_LOG_LEVEL (1)
#define BLE_LOG_LEVEL (5)
#define BLE_LOG_TAG "appapp"
#include "logger/r_ble_logger.h"
#define BLE_LOG_YYY(...) BLE_LOG(5, "YYY", __VA_ARGS__)
extern st_ble_abs_legacy_adv_param_t gs_adv_param;

void appapp(void)
{
 for(int i=0; i<gs_adv_param.sres_data_length; i++){
 BLE_LOG_YYY("data[%02X]", gs_adv_param.p_sres_data[i]);
 }
}

Code 11-2 Code example for checking arguments of R_BLE_ABS_StartLegacyAdv (appapp.c)
Logs of Logger function are displayed in [Renesas Views] [Debug] [Renesas Debug Virtual Console]
on e2studio. One line is displayed by one logger call, therefore line breaks are not required. The logs
displayed in the debug console are not cleared automatically at the next debug execution. Clear by [Clear]
from right-click.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 210 of 244
Dec.27.22

Figure 11-1 Logs displayed by Logger function

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 211 of 244
Dec.27.22

11.2 Using Command line function
Enable Command line function and code-generate, referring to "1.6.1 Primary functions". The code for using
the standard Command line function built into the library is below.

[app_main.c]
#include "cli/r_ble_cli.h"
#include "cmd/r_ble_cmd_abs.h"
#include "cmd/r_ble_cmd_vs.h"
#include "cmd/r_ble_cmd_sys.h"
/* CommandLine parameters */
static const st_ble_cli_cmd_t * const gsp_cmds[] =
{
 &g_abs_cmd,
 &g_vs_cmd,
 &g_sys_cmd,
 &g_ble_cmd
};

(OMISSION)

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 R_BLE_CMD_AbsGapCb(type, result, p_data);
(OMISSION)

static void vs_cb(uint16_t type, ble_status_t result, st_ble_vs_evt_data_t *p_data)
{
 R_BLE_CMD_VsCb(type, result, p_data);
(OMISSION)

void app_main(void)
{
 (OMISSION)
 /* Configure CommandLine */
 R_BLE_CLI_Init();
 R_BLE_CLI_RegisterCmds(gsp_cmds, ARRAY_SIZE(gsp_cmds));
 R_BLE_CMD_SetResetCb(ble_app_init);
 (OMISSION)

 /* main loop */
 while (1)
 {
 /* Process Command Line */
 R_BLE_CLI_Process();
 (OMISSION)

Code 11-3 Example of using the command line function

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 212 of 244
Dec.27.22

From the terminal, the input example of Scan Connect Disconnect is below.

$
$ gap scan 0x09 0x52
74:90:50:FF:FF:FF pub ff 0000
74:90:50:FF:FF:FF pub ff 0000
74:90:50:FF:FF:FF pub ff 0000

$ receive BLE_GAP_EVENT_SCAN_OFF result : 0x0000

$ gap conn 74:90:50:ff:ff:ff pub
receive BLE_GAP_EVENT_CONN_IND result : 0x0000
gap: connected conn_hdl:0x0020, addr:74:90:50:FF:FF:FF pub

$ receive BLE_GAP_EVENT_DATA_LEN_CHG result : 0x0000, conn_hdl : 0x0020
tx_octets : 0x00fb
tx_time : 0x0848
rx_octets : 0x00fb
rx_time : 0x0848

$ gap disconn 0x20
$ receive BLE_GAP_EVENT_DISCONN_IND result : 0x0000
gap: disconnected conn_hdl:0x0020, addr:74:90:50:FF:FF:FF pub, reason:0x16

$
$

Only Advertising that includes data whose Complete Local Name (0x09) starts with “R”
(0x52) will be scanned.
Note: When "gap scan 0x09 0x52,0x42" is specified, only Advertising that includes data
whose Complete Local Name (0x09) starts with "RB" will be scanned.
Note: The gap scan command is stopped by pressing [Ctrl]+[c] or gap scan stop.

Specify the BD address and address type to
connect.

Specify the connection handle and
disconnect.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 213 of 244
Dec.27.22

11.3 Using RF communication timing notification function
The sample displaying logs with "rf log on" command to check the RF communication timing is below. This
sample uses Command line function and RF communication timing notification function. Enable these
functions and code-generate, referring to "1.6.1 Primary functions" and "3.11 RF communication timing".
Newly create r_ble_cmd_rf.h in “src” folder.

[src\r_ble_cmd_rf.h]
#include "r_ble_rx23w_if.h"
#include "cli/r_ble_cli.h"

#ifndef R_BLE_CMD_RF_H_
#define R_BLE_CMD_RF_H_

typedef struct
{
 uint32_t elapsed_time;
 uint16_t event_type;
 uint16_t event_data;
 uint8_t start_end;
} st_ble_rf_log_t;

#define BLE_RF_LOG_NUM_MAX 1000
extern st_ble_rf_log_t gs_rf_log[BLE_RF_LOG_NUM_MAX];
extern uint32_t gs_rf_log_idx;
extern uint32_t gs_timer_elapsed_time;
extern const st_ble_cli_cmd_t g_rf_cmd;
extern void save_rf_log(uint16_t event_type, uint16_t event_data, uint8_t start_end);

#endif /* R_BLE_CMD_RF_H_ */

Code 11-4 Sample to display log of RF communication timing (r_ble_cmd_rf.h)

Newly create r_ble_cmd_rf.c in “src” folder.

[src\r_ble_cmd_rf.c]
#include "r_ble_rx23w_if.h"
#include "cmd/r_ble_cmd.h"
#include "r_ble_cmd_rf.h"

#if (BLE_CFG_CMD_LINE_EN == 1) && (BLE_CFG_HCI_MODE_EN == 0)

#define pf R_BLE_CLI_Printf
st_ble_rf_log_t gs_rf_log[BLE_RF_LOG_NUM_MAX];
uint32_t gs_rf_log_idx = 0;
uint32_t gs_timer_elapsed_time;

void save_rf_log(uint16_t event_type, uint16_t event_data, uint8_t start_end)
{
 gs_rf_log[gs_rf_log_idx].elapsed_time = gs_timer_elapsed_time;
 gs_rf_log[gs_rf_log_idx].event_type = event_type;
 gs_rf_log[gs_rf_log_idx].event_data = event_data;
 gs_rf_log[gs_rf_log_idx].start_end = start_end;
 gs_rf_log_idx++;
 if(gs_rf_log_idx >= BLE_RF_LOG_NUM_MAX){
 gs_rf_log_idx = 0;
 }
}

static void show_rf_log(uint32_t elapsed_time, uint16_t event_type, uint16_t event_data, uint8_t
start_end)
{
 switch(event_type)
 {
 case 0x0000:/*BLE_EVENT_TYPE_CONN*/
 {
 if(start_end == 1){ pf("%010d,ConnS,%d\n", elapsed_time, event_data); }
 if(start_end == 2){ pf("%010d,ConnE,%d\n", elapsed_time, event_data); }
 } break;
 case 0x0001:/*BLE_EVENT_TYPE_ADV*/

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 214 of 244
Dec.27.22

 {
 if(start_end == 1){ pf("%010d,AdvS,%d\n", elapsed_time, event_data); }
 if(start_end == 2){ pf("%010d,AdvE,%d\n", elapsed_time, event_data); }
 } break;
 case 0x0002:/*BLE_EVENT_TYPE_SCAN*/
 {
 if(start_end == 1){ pf("%010d,ScanS,%d\n", elapsed_time, event_data); }
 if(start_end == 2){ pf("%010d,ScanE,%d\n", elapsed_time, event_data); }
 } break;
 case 0x0003:/*BLE_EVENT_TYPE_INITIATOR*/
 {
 if(start_end == 1){ pf("%010d,InitS,%d\n", elapsed_time, event_data); }
 if(start_end == 2){ pf("%010d,InitE,%d\n", elapsed_time, event_data); }
 } break;
 case 0x0004:/*BLE_EVENT_TYPE_RF_DS_START*//*BLE_EVENT_TYPE_RF_DS_CLOSE*/
 {
 if(start_end == 1){ pf("%010d,SleepS,%d\n", elapsed_time, event_data); }
 if(start_end == 2){ pf("%010d,SleepE,%d\n", elapsed_time, event_data); }
 } break;
 default:
 {
 } break;
 }
}

static void exec_rf_log(int argc, char *argv[])
{
 ble_status_t status;
 if (strcmp(argv[1], "on") == 0)
 {
 R_BLE_CLI_Printf("time,type,data\n");
 for(int i=0; i<BLE_RF_LOG_NUM_MAX; i++){
 show_rf_log(gs_rf_log[i].elapsed_time, gs_rf_log[i].event_type, gs_rf_log[i].event_data,
gs_rf_log[i].start_end);
 }
 }
 else
 {
 pf("rf %s: unrecognized operands\n", argv[0]);
 }
}

static const st_ble_cli_cmd_t rf_log_cmd = {
 .p_name = "log",
 .exec = exec_rf_log,
 .p_help = "Usage: rf log (on)\n"
 "Show rf_event or not",
};

static const st_ble_cli_cmd_t * const rf_sub_cmds[] = {
 &rf_log_cmd,
};

const st_ble_cli_cmd_t g_rf_cmd = {
 .p_name = "rf",
 .p_cmds = rf_sub_cmds,
 .num_of_cmds = ARRAY_SIZE(rf_sub_cmds),
 .p_help = "Sub Command: log\n"
 "Try 'rf sub-command help' for more information",
};

const st_ble_cli_cmd_t g_rf_cmd;

#endif /* (BLE_CFG_CMD_LINE_EN == 1) && (BLE_CFG_HCI_MODE_EN == 0) */

Code 11-5 Sample to display log of RF communication timing (r_ble_cmd_rf.c)

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 215 of 244
Dec.27.22

The following code saves the RF communication timing notification as logs.

[src\smc_gen\r_ble_rx23w\src\platform\r_ble_pf_functions.c]
extern uint32_t gs_timer_elapsed_time;
#include "../../../../../src/r_ble_cmd_rf.h"

BLE_SECTION_P void r_ble_rf_notify_event_start(uint32_t param)
{
 /* Note: Do not processing long time here. */
 switch((uint16_t)(param>>16))
 {
 case 0x0000:/*BLE_EVENT_TYPE_CONN*/
 {
 save_rf_log(BLE_EVENT_TYPE_CONN, 0x0000, 0x01);
 } break;
 case 0x0001:/*BLE_EVENT_TYPE_ADV*/
 {
 save_rf_log(BLE_EVENT_TYPE_ADV, 0x0000, 0x01);
 } break;
 case 0x0002:/*BLE_EVENT_TYPE_SCAN*/
 {
 save_rf_log(BLE_EVENT_TYPE_SCAN, 0x0000, 0x01);
 } break;
 case 0x0003:/*BLE_EVENT_TYPE_INITIATOR*/
 {
 save_rf_log(BLE_EVENT_TYPE_INITIATOR, 0x0000, 0x01);
 } break;
 }
}
BLE_SECTION_P void r_ble_rf_notify_event_close(uint32_t param)
{
 /* Note: Do not processing long time here. */
 switch((uint16_t)(param>>16))
 {
 case 0x0000:/*BLE_EVENT_TYPE_CONN*/
 {
 save_rf_log(BLE_EVENT_TYPE_CONN, 0x0000, 0x02);
 } break;
 case 0x0001:/*BLE_EVENT_TYPE_ADV*/
 {
 save_rf_log(BLE_EVENT_TYPE_ADV, 0x0000, 0x02);
 } break;
 case 0x0002:/*BLE_EVENT_TYPE_SCAN*/
 {
 save_rf_log(BLE_EVENT_TYPE_SCAN, 0x0000, 0x02);
 } break;
 case 0x0003:/*BLE_EVENT_TYPE_INITIATOR*/
 {
 save_rf_log(BLE_EVENT_TYPE_INITIATOR, 0x0000, 0x02);
 } break;
 }
}

BLE_SECTION_P void r_ble_rf_notify_deep_sleep(uint32_t param)
{
 /* Note: Do not processing long time here. */
 switch(param)
 {
 case BLE_EVENT_TYPE_RF_DS_START:
 {
 save_rf_log(0x0004, 0x0000, 0x01);
 } break;
 case BLE_EVENT_TYPE_RF_DS_CLOSE:
 {
 save_rf_log(0x0004, 0x0000, 0x02);
 } break;
 }
}

Code 11-6 Sample to display RF communication timing log (save log)

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 216 of 244
Dec.27.22

The following code uses Software timer and increments the timer count in 1ms cycles.

Code 11-7 Sample to display RF communication timing log (timer count increment)

[app_main.c]
#include "timer/r_ble_timer.h"
/* timer handle */
static uint32_t gs_timer_hdl;

#include "cli/r_ble_cli.h"
#include "../../../src/r_ble_cmd_rf.h"
/* CommandLine parameters */
static const st_ble_cli_cmd_t * const gsp_cmds[] =
{
 &g_rf_cmd,
};

(OMISSION)

static void timer_cb(uint32_t timer_hdl)
{
 gs_timer_elapsed_time++;
}

void app_main(void)
{
 (OMISSION)
 /* Initialize timer */
 R_BLE_TIMER_Init();
 /* Create timer */
 gs_timer_hdl = BLE_TIMER_INVALID_HDL;
 gs_timer_elapsed_time = 0;
 R_BLE_TIMER_Create(&gs_timer_hdl, 1, BLE_TIMER_PERIODIC, timer_cb);
 R_BLE_TIMER_Start(gs_timer_hdl);
 /* Configure CommandLine */
 R_BLE_CLI_Init();
 R_BLE_CLI_RegisterCmds(gsp_cmds, ARRAY_SIZE(gsp_cmds));
 R_BLE_CMD_SetResetCb(ble_app_init);
 while (1)
 {
 /* Process Command Line */
 R_BLE_CLI_Process();
 (OMISSION)

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 217 of 244
Dec.27.22

When inputting "rf log on" command, the following logs will be outputted. If inputting "rf log on" command
during connection, the loop processing for log output occupies CPU and does not finish its processing within
RF idle time, therefore connection may not be maintained. For the outline of MCU/RF operation, refer to "1.5
Bluetooth LE Protocol Stack Operation Overview".

[Log of AdvertisingConnection]
0000019851,AdvS,0
0000019854,AdvE,0
0000019854,SleepS,0
0000020286,SleepE,0
0000020289,AdvS,0
0000020292,AdvE,0
0000020293,SleepS,0
0000020728,SleepE,0
0000020731,AdvS,0
0000021069,ConnS,0
0000021070,ConnE,0
0000021392,ConnS,0
0000021394,ConnE,0
0000021715,ConnS,0
0000021715,ConnE,0
0000022038,ConnS,0
0000022038,ConnE,0
0000022360,ConnS,0
0000022361,ConnE,0
0000022683,ConnS,0
0000022684,ConnE,0
0000022686,SleepS,0
0000023025,SleepE,0
0000023028,ConnS,0
0000023029,ConnE,0
0000023029,SleepS,0
0000023370,SleepE,0
0000023373,ConnS,0
0000023374,ConnE,0

[Log of ScanConnection]
0000002629,ScanS,0
0000002776,ScanE,0
0000002776,SleepS,0
0000002918,SleepE,0
0000002920,ScanS,0
0000003067,ScanE,0
0000003067,SleepS,0
0000003209,SleepE,0
0000003211,ScanS,0
0000003234,InitS,0
0000003261,InitE,0
0000003287,InitS,0
0000003314,InitE,0
0000003341,InitS,0
0000003368,InitE,0
0000003395,InitS,0
0000003442,ConnS,0
0000003442,ConnE,0
0000003761,ConnS,0
0000003763,ConnE,0
0000004081,ConnS,0
0000004082,ConnE,0
0000004401,ConnS,0
0000004402,ConnE,0
0000004405,SleepS,0
0000004734,SleepE,0
0000004736,ConnS,0
0000004737,ConnE,0
0000004737,SleepS,0
0000005080,SleepE,0

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 218 of 244
Dec.27.22

11.4 Checking Server operation
11.4.1 Using BTTS Beacon Scanning
Using Beacon Scanning enables to output the Advertising reception status as logs from Peripheral. In the
example below, Advertising where Advertising Interval is 480 ms is received. It can be seen being received
at intervals of 484 ms from 49 seconds 172 to 49 seconds 656. It can be also see receiving Scan response
data after each Advertising.

[17] 15:08:49:172 (result = 0x0000)
BLE_GAP_EVENT_ADV_REPT_IND
 adv_rpt_type = 0x01
 p_ext_adv_rpt:
 num = 0x01 adv_type = 0x0013
 addr_type = 0x00 p_addr = 0xFF,0xFF,0xFF,0x50,0x90,0x74
 adv_phy = 0x01 sec_adv_phy = 0x00
 adv_sid = 0xFF tx_pwr = 0x7F rssi = -37
 perd_adv_intv = 0x0000
 dir_addr_type = 0x00 p_dir_addr = 0x00,0x00,0x00,0x00,0x00,0x00
 len = 0x0D p_data = 0x02,0x01,0x06,0x09,0x09,0x52,0x42,0x4C,0x45,0x2D,0x44,0x45,0x56

[18] 15:08:49:174 (result = 0x0000)
BLE_GAP_EVENT_ADV_REPT_IND
 adv_rpt_type = 0x01
 p_ext_adv_rpt:
 num = 0x01 adv_type = 0x001B
 addr_type = 0x00 p_addr = 0xFF,0xFF,0xFF,0x50,0x90,0x74
 adv_phy = 0x01 sec_adv_phy = 0x00
 adv_sid = 0xFF tx_pwr = 0x7F rssi = -37
 perd_adv_intv = 0x0000
 dir_addr_type = 0x00 p_dir_addr = 0x00,0x00,0x00,0x00,0x00,0x00
 len = 0x0A p_data = 0x09,0x09,0x52,0x42,0x4C,0x45,0x2D,0x44,0x45,0x56

[19] 15:08:49:656 (result = 0x0000)
BLE_GAP_EVENT_ADV_REPT_IND
 adv_rpt_type = 0x01
 p_ext_adv_rpt:
 num = 0x01 adv_type = 0x0013
 addr_type = 0x00 p_addr = 0xFF,0xFF,0xFF,0x50,0x90,0x74
 adv_phy = 0x01 sec_adv_phy = 0x00
 adv_sid = 0xFF tx_pwr = 0x7F rssi = -37
 perd_adv_intv = 0x0000
 dir_addr_type = 0x00 p_dir_addr = 0x00,0x00,0x00,0x00,0x00,0x00
 len = 0x0D p_data = 0x02,0x01,0x06,0x09,0x09,0x52,0x42,0x4C,0x45,0x2D,0x44,0x45,0x56

[20] 15:08:49:658 (result = 0x0000)
BLE_GAP_EVENT_ADV_REPT_IND
 adv_rpt_type = 0x01
 p_ext_adv_rpt:
 num = 0x01 adv_type = 0x001B
 addr_type = 0x00 p_addr = 0xFF,0xFF,0xFF,0x50,0x90,0x74
 adv_phy = 0x01 sec_adv_phy = 0x00
 adv_sid = 0xFF tx_pwr = 0x7F rssi = -37
 perd_adv_intv = 0x0000
 dir_addr_type = 0x00 p_dir_addr = 0x00,0x00,0x00,0x00,0x00,0x00
 len = 0x0A p_data = 0x09,0x09,0x52,0x42,0x4C,0x45,0x2D,0x44,0x45,0x56

0x00 : Advertising Report.
0x01 : Extended Advertising Report.
0x02 : Periodic Advertising Report.

Connectable advertising &&
Scannable advertising &&
Legacy advertising PDU

Connectable advertising &&
Scannable advertising &&
Scan response &&
Legacy advertising PDU

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 219 of 244
Dec.27.22

11.4.2 Using BTTS Data Comm Master
Using Data Comm Master enables to check Write Response by executing consecutive Write Request to
Server application that added the following Throughput service with QE for BLE.

CUSTOM SERVICE
UUID: 9CEF3D10-7FAB-49DC-AB89-762C9079FE96
PRIMARY SERVICE

CUSTOM CHARACTERISTIC
UUID: 9CEF3D11-7FAB-49DC-AB89-762C9079FE96
Properties: Write / Write Without Response

CUSTOM CHARACTERISTIC
UUID: 9CEF3D12-7FAB-49DC-AB89-762C9079FE96
Properties: Indicate / Notify
Descriptors:
Client Characteristic Configuration
UUID: 0x2920

In the following example, Write Request with Connection Interval of 1000 ms is sent. Since Write Response
is received at the next connection event and Write Request is sent at the next connection event, it can be
seen transmitting at about 2000 ms intervals from 16 seconds 332 to 18 seconds 349.

[61] 16:58:16:332 (result = 0x0000)
R_BLE_GATTC_WriteChar
 conn_hdl : 0x0020
 write_data ->
 attr_hdl : 0x0012
 value ->
 value_len : 0x00F4
 value : (OMISSION because of long data)

[62] 16:58:18:348 (result = 0x0000)
BLE_GATTC_EVENT_CHAR_WRITE_RSP
 value_hdl : 0x0012

[63] 16:58:18:349 (result = 0x0000)
R_BLE_GATTC_WriteChar
 conn_hdl : 0x0020
 write_data ->
 attr_hdl : 0x0012
 value ->
 value_len : 0x00F4
 value : (OMISSION because of long data)
[64] 16:58:20:365 (result = 0x0000)
BLE_GATTC_EVENT_CHAR_WRITE_RSP
 value_hdl : 0x0012

11.4.3 Using GATT Browser
It enables to check the GATT database, Indication, Notification, Read Response, Write Response by
connecting to Client application.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 220 of 244
Dec.27.22

11.5 Checking Client operation
11.5.1 Using BTTS Beacon Advertising
Using Beacon Advertising enables to send Advertising to Client. If using Command line function on Client
side, Scan is checked.

If adding the following code, start of Scan and reception of Advertising are displayed.

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {
 case BLE_GAP_EVENT_SCAN_ON:
 {
 R_BLE_CLI_Printf("receive BLE_GAP_EVENT_SCAN_ON result : 0x%04x\n", result);
 } break;
 case BLE_GAP_EVENT_ADV_REPT_IND:
 {
 R_BLE_CLI_Printf("receive BLE_GAP_EVENT_ADV_REPT_IND result : 0x%04x\n", result);
 } break;
 (OMISSION)

Code 11-8 Display example of starting Scan and receiving Advertising on client side

The following is the execution result. Since Advertising by Beacon Advertising is non-connectable,
Connection will fail.

$ gap scan 0x09 0x52
receive BLE_GAP_EVENT_SCAN_ON result : 0x0000
74:90:50:FF:FF:FF pub ff 0000
receive BLE_GAP_EVENT_ADV_REPT_IND result : 0x0000
receive BLE_GAP_EVENT_SCAN_OFF result : 0x0000

$ receive BLE_GAP_EVENT_CONN_IND result : 0x000e

$

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 221 of 244
Dec.27.22

11.5.2 Using BTTS Data Comm Slave
Using Data Comm Slave enables to check Confirmation by executing continuous Indication to Client
application that added the following Throughput service with QE for BLE. Connection, Service Discovery,
and Write Request are also checked.

CUSTOM SERVICE (Please set the abbreviation of this service to “th”)
UUID: 9CEF3D10-7FAB-49DC-AB89-762C9079FE96
PRIMARY SERVICE

CUSTOM CHARACTERISTIC
UUID: 9CEF3D11-7FAB-49DC-AB89-762C9079FE96
Properties: Write / Write Without Response

CUSTOM CHARACTERISTIC (Character abbreviation should be thin)
UUID: 9CEF3D12-7FAB-49DC-AB89-762C9079FE96
Properties: Indicate / Notify
Descriptors:
Client Characteristic Configuration
UUID: 0x2920

When Connection parameter update request is notified by the remote device, the local device must return
Response. Add the following code inside GAP callback in app_main.c.

static void gap_cb(uint16_t type, ble_status_t result, st_ble_evt_data_t *p_data)
{
 switch(type)
 {
 case BLE_GAP_EVENT_CONN_PARAM_UPD_REQ:
 {
 st_ble_gap_conn_upd_req_evt_t *p_conn_upd_req_evt_param =
 (st_ble_gap_conn_upd_req_evt_t *)p_data->p_param;

 st_ble_gap_conn_param_t conn_updt_param = {
 .conn_intv_min = p_conn_upd_req_evt_param->conn_intv_min,
 .conn_intv_max = p_conn_upd_req_evt_param->conn_intv_max,
 .conn_latency = p_conn_upd_req_evt_param->conn_latency,
 .sup_to = p_conn_upd_req_evt_param->sup_to,
 };

 R_BLE_GAP_UpdConn(p_conn_upd_req_evt_param->conn_hdl,
 BLE_GAP_CONN_UPD_MODE_RSP,
 BLE_GAP_CONN_UPD_ACCEPT,
 &conn_updt_param);
 } break;
 (OMISSION)

Code 11-9 Sample response to connection parameter update request

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 222 of 244
Dec.27.22

It is necessary to execute Write Request to enable Indication to Throughput characteristic of Throughput
service of Data Comm Slave. Add the following code inside disc callback in app_main.c. It is called when
Service Discovery discovers Server side Throughput service.

static void disc_comp_cb(uint16_t conn_hdl)
{
 /* TODO: Add function after discovery completed */
 {
 uint16_t s_cccd_req;
 s_cccd_req = BLE_GATTS_CLI_CNFG_NOTIFICATION | BLE_GATTS_CLI_CNFG_INDICATION;
 R_BLE_THC_WriteThinCliCnfg(g_conn_hdl, &s_cccd_req);
 }
 (OMISSION)

Code 11-10 Example of enabling Indication in disc callback

In the following example, Indication with Connection Interval of 1000 ms is sent. Since Confirmation is
received at the next connection event and Indication is sent at the next connection event, it can be seen
transmitting data at the interval of about 2000 ms from 25.266 seconds to 27.286 seconds.
[62] 19:03:25:266 (result = 0x0000)
R_BLE_GATTS_Indication
 conn_hdl : 0x0060
 ind_data ->
 attr_hdl : 0x0005
 value ->
 value_len : 0x0014
 value : 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x10 0x11 0x12 0x13

[63] 19:03:27:286 (result = 0x0000)
BLE_GATTS_EVENT_HDL_VAL_CNF
 attr_hdl : 0x0005

[64] 19:03:27:286 (result = 0x0000)
R_BLE_GATTS_Indication
 conn_hdl : 0x0060
 ind_data ->
 attr_hdl : 0x0005
 value ->
 value_len : 0x0014
 value : 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F
0x10 0x11 0x12 0x13

[65] 19:03:29:207 (result = 0x0000)
BLE_GATTS_EVENT_HDL_VAL_CNF
 attr_hdl : 0x0005

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 223 of 244
Dec.27.22

11.6 Others
11.6.1 MCU package
In e2studio, [Renesas Views] [Smart Configurator] [MCU Package] will show the pin layout of RX23W.
It enables to check whether the settings match to the connection to such as LED and Switch and so on.

Figure 11-2 RX23W pinout

In Target Board, it is connected as follows.

Table 11.1 Target Board Pin Connection

Pin No. Pin name Comment
1 VCL Digital power supply
2 MD MCU header CN3 (can be used arbitrarily)
3 XCIN
4 XCOUT
5 RES# MCU header CN3 (RES)
6 P37 MCU header CN3 (can be used arbitrarily)
7 VSS MCU header CN3 (GND)
8 P36 MCU header CN3 (can be used arbitrarily)
9 VCC MCU header CN3 (TGV)
10 P35 MCU header CN3 (can be used arbitrarily)
11 P31 MCU header CN3 (can be used arbitrarily), Pmod™ connector
12 P30 MCU header CN3 (can be used arbitrarily), Pmod™ connector
13 P27 MCU header CN3 (can be used arbitrarily), Pmod™ connector
14 P26 MCU header CN3 (can be used arbitrarily), Pmod™ connector

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 224 of 244
Dec.27.22

Pin No. Pin name Comment
15 P17 MCU header CN3 (can be used arbitrarily)
16 P16 MCU header CN3 (can be used arbitrarily)
17 P15 SW1 (used as IRQ5), MCU header CN3 (can be used arbitrarily)
18 P14 MCU header CN3 (can be used arbitrarily)
19 VCC_USB
20 USB0_DM MCU header CN3 (can be used arbitrarily)
21 USB0_DP MCU header CN3 (can be used arbitrarily)
22 VSS_USB
23 PC7 UART communication (used as TXD8), MCU header CN3 (can be used arbitrarily)
24 PC6 UART communication (used as RXD8), MCU header CN3 (can be used arbitrarily)
25 PC5 MCU header CN3 (can be used arbitrarily)
26 PC4 MCU header CN3 (can be used arbitrarily)
27 PC3 MCU header CN3 (can be used arbitrarily)
28 ICGND GND, Bluetooth Low Energy hardware
29 PC2 MCU header CN4 (can be used arbitrarily)
30 PC0 LED1, MCU header CN4 (can be used arbitrarily)
31 PB7 MCU header CN4 (can be used arbitrarily), Pmod™ connector
32 ANT Bluetooth Low Energy hardware
33 PB1 MCU header CN4 (can be used arbitrarily), Pmod™ connector, IRQ4
34 VCC Digital power supply, MCU header CN4(VCC)
35 PB0 LED2, MCU header CN4 (can be used arbitrarily)
36 VSS Digital power supply, MCU header CN4(GND)
37 XTAL2_RF

38 XTAL1_RF

39 AVCC_RF Bluetooth Low Energy hardware
40 DCLOUT Bluetooth Low Energy hardware
41 PE4 MCU header CN4 (can be used arbitrarily)
42 PE3 MCU header CN4 (can be used arbitrarily)
43 PE2 MCU header CN4 (can be used arbitrarily)
44 VCC_RF Bluetooth Low Energy hardware
45 DCLIN_D Bluetooth Low Energy hardware
46 DCLIN_A Bluetooth Low Energy hardware
47 PD3 Bluetooth Low Energy hardware (CLKOUT_RF), MCU header CN4 (can be used

arbitrarily), Pmod™ connector
48 P47 MCU header CN4 (can be used arbitrarily)
49 P46 MCU header CN4 (can be used arbitrarily)
50 P45 MCU header CN4 (can be used arbitrarily)
51 P41 MCU header CN4 (can be used arbitrarily)
52 VREFL0 Analog power supply, MCU header CN4 (VRL)
53 VREFH0 Analog power supply, MCU header CN4 (VRH)
54 AVCC0 Analog power supply, MCU header CN4 (AVC)
55 P05 MCU header CN4 (can be used arbitrarily), Pmod™ connector
56 AVSS0 Analog power supply, MCU header CN4 (AVS)

11.6.2 Generating MOT file
When checking [Project] [Properties] [C/C++ Build] [Settings] [Tool Settings] [Converter]
[Output] [Output hex file] to ON, and setting [Output file type] to "Motorola S format file", MOT file is
generated.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 225 of 244
Dec.27.22

11.6.3 Outputting detail to MAP file
When checking [Project] [Properties] [C/C++ Build] [Settings] [Tool Settings] [Linker] [List]
 [Generate list file] to ON, and setting [Specify listfile features] to “Specify all contents”, the details of MAP
file are outputted.

11.6.4 Optimization
When setting [Project] [Properties] [C/C++ Build] [Settings] [Tool Settings] [Compiler]
[Optimization] [Optimization level] to "Level 0: Do not perform optimization", the memory contents can be
confirmed during debugging.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 226 of 244
Dec.27.22

12. Appendix A : Sample applications
Table 12.1 shows the sample applications for Target Board for RX23W attached to this APN.

Table 12.1 Sample applications

Application Project Reference

Beacon sample ble_demo_tbrx23w_beacon_sample 4.2.2 How to create a user command
5.5 Advertising with Abstraction API
5.7 Beacon

Peripheral sample ble_demo_tbrx23w_peripheral_sample 5.5 Advertising with Abstraction API
5.6 Connection with Smart Phone
7.3.2 Connection to multiple central devices
8.4 Changing MTU
9.1.1 Pairing Parameters
9.4 Privacy
10.2.4 Notification operation
10.3.2 Example for sending data from GATT server

Central sample ble_demo_tbrx23w_central_sample 6.1 Start or stop scan
6.2 Scan parameters
6.3 Received information by scan
6.4.4 Advertising Data filtering
7.1 Requesting Connection
7.3.1 Connecting to multiple peripheral devices
8.1 Changing PHY
8.4 Changing MTU
9.1.1 Pairing Parameters
9.1.4 Pairing request
9.3.1 Request Encryption
9.4 Privacy
10.2.2 Write operation
10.3.1 Example for sending data from GATT client

Multi-role sample ble_demo_tbrx23w_multirole_sample 5.5 Advertising with Abstraction API
5.6 Connection with Smart Phone
6.1 Start or stop scan
6.2 Scan parameters
6.3 Received information by scan
6.4.4 Advertising Data filtering
7.1 Requesting Connection
7.3 Multiple Connection
8.1 Changing PHY
8.4 Changing MTU
9.1.1 Pairing Parameters
9.1.4 Pairing request
9.3.1 Request Encryption
9.4 Privacy
10.2.2 Write operation
10.2.4 Notification operation
10.3 Example of using GATT Procedure

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 227 of 244
Dec.27.22

Table 12.2 shows the sample applications environment. The sample applications use the FIT modules in the
RX Driver Package v1.29 (https://www.renesas.com/software-tool/rx-driver-package) except the BLE FIT and
the QE utility.

Table 12.2 Sample Applications environment

Item Contents
Integrated development

environment

Renesas Electronics e2 studio V7.8.0

Renesas Electronics e2 studio 2021-04

C compiler Renesas Electronics C/C++ Compiler Package for RX Family V2.08.00

Board Target Board for RX23W

BLE FIT version 2.11

QE utility version 1.10

BSP version 5.63

LPC FIT version 2.01

CMT FIT version 4.70

IRQ FIT version 3.60

GPIO FIT version 3.70

SCI FIT version 3.70

BYTE_Q FIT version 1.82

How to import the sample application in e2 studio is described below.

(1) Right click the application developer’s guide (Title : RX23W Group Bluetooth Low Energy Application
Developer’s Guide Application Note, Document No : R01AN5504EJYYYY (YYYY : version)) on Smart
Browser and select “Sample Code (import projects)”.

Figure 12-1 Sample application project import

https://www.renesas.com/software-tool/rx-driver-package

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 228 of 244
Dec.27.22

(2) Download r01an5504xxYYYY-rx23w-ble-adev.zip(YYYY : version) to the desired location. After the

download has been completed, “Select import package” window is displayed. Select a sample
application project.

Figure 12-2 Import package selection

(3) When “Finish” button on “Import” window has been pressed, the sample application project is imported.

Figure 12-3 Project import

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 229 of 244
Dec.27.22

12.1 Beacon sample
12.1.1 Remote devices
Advertising packets from the beacon sample can be received with scan on the following remote devices.

 iOS device

 Android device

12.1.2 Operations
The beacon sample starts Non connectable undirected advertising (ADV_NONCONN_IND) after the boot.

12.1.3 Advertising Data
Specify the following Advertising Data type with BLE_APP_BEACON_TYPE in app_main.c.

0: iBeacon (default)

1: Eddystone

2: broadcast mode

Each Advertising Data type is described below.

 iBeacon

The iBeacon specification is published in https://developer.apple.com/ibeacon.

The details of the Advertising Data are follows.

/* Advertising data */
static uint8_t gs_adv_data[] =
{
 /* TODO: Modify advertise data. Value of Data Flag is defined in
 https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile */

 /* Flag (mandatory) */
 2, /**< Data Size */
 0x01, /**< Data Type: Flag */
 (BLE_GAP_AD_FLAGS_LE_GEN_DISC_MODE | BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED), /**< Data Value */

 /* Manufacturer data */
 0x1A, /**< Data Size */
 0xFF, /**< Data Type: Manufacturer data */
 0x4C, 0x00, /**< Company ID: Apple */
 0x02, 0x15, /**< Beacon Type: */
 0x32, 0x46, 0x6a, 0x3a, 0x75, 0x52, 0xdb, 0xb4,
 0x97, 0x49, 0x19, 0x70, 0xd8, 0x56, 0x98, 0xaa, /**< UUID: 32466a3a-7552-dbb4-9749-1970d85698aa */
 0x00, 0x01, /**< Major: 1 */
 0x00, 0x00, /**< Minor: 0 */
 0x00, /**< Measured Power: */
};

Code 12-1 Default Advertising Data for iBeacon

You need to change the above UUID to your application specific value and the Major and Minor version
to your application version. Measured Power are needed to change the power value measured
according to iBeacon specification.

https://developer.apple.com/ibeacon

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 230 of 244
Dec.27.22

 Eddystone

The Eddystone specification is published in https://github.com/google/eddystone.

The beacon sample provides the Eddystone-URL type. This sample does not support the Eddystone
Configuration GATT Service. The details of the Advertising Data are follows.

/* Advertising data */
static uint8_t gs_adv_data[] =
{
 /* TODO: Modify advertise data. Value of Data Flag is defined in
 https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile */

 /* Flag (mandatory) */
 2, /**< Data Size */
 0x01, /**< Data Type: Flag */
 (BLE_GAP_AD_FLAGS_LE_GEN_DISC_MODE | BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED), /**< Data Value */

 /* Complete list of 16bit Service UUIDs */
 3, /**< Data Size */
 0x03, /**< Data Type: Complete list of 16bit Service UUIDs */
 0xAA, 0xFE, /**< 16bit Eddystone UUID */

 /* Service Data */
 14, /**< Data Size */
 0x16, /**< Data Type: Service Data */
 0xAA, 0xFE, /**< 16bit Eddystone UUID */
 0x10, /**< Frame Type: URL */
 0x00, /**< Tx power: 0 dBm */
 0x01, /**< URL Scheme: https://www. */
 0x72, 0x65, 0x6E, 0x65, 0x73, 0x61, 0x73, 0x07 /**< Encoded URL: renesas.com */
};

Code 12-2 Default Advertising Data for Eddystone

You need to change the above Data Size, URL Scheme and Encoded URL in Service Data to suit to
your application.

 Broadcast mode

The broadcast mode Advertising Data does not include “LE General Discoverable Mode” and “LE
Limited Discoverable Mode” in the Flags to meet the Broadcast Mode condition defined in Bluetooth
Core Specification.

/* Advertising Data */
static uint8_t gs_adv_data[] =
{
 /* TODO: Modify advertise data. Value of Data Flag is defined in
https://www.bluetooth.com/specifications/assigned-numbers/generic-access-profile */

 /* Flag (mandatory) */
 2, /**< Data Size */
 0x01, /**< Data Flag: Flag */
 BLE_GAP_AD_FLAGS_BR_EDR_NOT_SUPPORTED, /**< Data Value */

 /* Complete Local Name */
 9, /**< Data Size */
 0x09, /**< Data Flag: Complete Local Name */
 'R', 'B', 'L', 'E', '-', 'A', 'D', 'V', /**< Data Value */

};

Code 12-3 Default Advertising Data for broadcast mode

https://github.com/google/eddystone

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 231 of 244
Dec.27.22

12.1.4 Configuration option
Table 12.3 shows the BLE FIT configuration options changed from the default for the beacon sample.

Table 12.3 Changed configuration options

Macro
(SC display name)

Value

BLE_CFG_LIB_TYPE
(Type of Bluetooth LE Protocol Stack library)

2: Compact

BLE_CFG_RF_CONN_MAX
(Maximum number of connections)

1

BLE_CFG_CMD_LINE_EN
(Enabled/Disabled command line function)

1: Enable

BLE_CFG_CMD_LINE_CH
(SCI CH for command line function)

8

BLE_CFG_BOARD_LED_SW_EN
(Enabled/Disabled board LED and Switch
control support)

1: Enable

BLE_CFG_BOARD_TYPE
(Board Type)

1: Target Board

12.1.5 Configurable parameters

(1) Address
Specify the following address type with BLE_BEACON_ADDR_TYPE in app_main.c.

BLE_GAP_ADDR_RAND : Static Address (default)
BLE_GAP_ADDR_RPA_ID_RANDOM : RPA(static) address

(2) Advertising Data, Advertising parameters
The gs_adv_data (Advertising Data), gs_adv_param (Advertising parameters) variables in app_main.c

are configurable according to each beacon specification in “12.1.3 Advertising Data”.

12.1.6 Command
If the beacon sample uses RPA, it supports the following command to display the current RPA.

beacon lrpa

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 232 of 244
Dec.27.22

12.2 Peripheral sample
12.2.1 Remote devices
The peripheral sample supports connections with the following remote devices.

 Central sample

 Multi-role sample

 iOS device

 Android device

12.2.2 Operations
The peripheral sample works as follows.

 The peripheral sample starts Connectable undirected advertising (ADV_IND) after the boot.
It starts fast advertising (interval: 30ms) in the first 30s and changes to slow advertising (interval:
1000ms) in the next 30s.

 By scanning from a remote device, it is detected as the “RBLE-P-DEV” device name.

Figure 12-4 Scan result on central device

 After connection establishment, if the simultaneous multiple connections feature is not supported, the
peripheral sample stops the advertising. Otherwise, it continues the advertising. For changing the
simultaneous multiple connections feature, refer “12.2.4(3)”.

 If a remote device searches GATT Services in the peripheral sample, the following service and
characteristics are detected.

Table 12.4 Detected service and characteristics

Service, characteristic UUID

LED Switch service 58831926-5F05-4267-AB01-B4968E8EFCE0

Switch State characteristic 58837F57-5F05-4267-AB01-B4968E8EFCE0

LED Blink Rate characteristic 5883C32F-5F05-4267-AB01-B4968E8EFCE0

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 233 of 244
Dec.27.22

Figure 12-5 Detected GATT service and characteristics

 The peripheral sample sets BLE_GATT_DB_SER_SECURITY_UNAUTH |
BLE_GATT_DB_SER_SECURITY_ENC to the second parameter which indicates LED Switch service
security requirement in the gs_gatt_service variable in gatt_db.c. Therefore, if a remote device accesses
a characteristic in LED Switch service, it requires pairing.

static const st_ble_gatts_db_serv_cfg_t gs_gatt_service[] =
{
 /* some code is omitted */
 /* LED Switch Service */
 {
 /* Num of Services */
 {
 1,
 },
 /* Description */
 BLE_GATT_DB_SER_SECURITY_UNAUTH | BLE_GATT_DB_SER_SECURITY_ENC,
 /* Service Start Handle */
 0x0010,
 /* Service End Handle */
 0x0015,
 /* Characteristic Start Index */
 6,
 /* Characteristic End Index */
 7,
 },

};

Code 12-4 LED Switch service security requirement

 After the remote device enables the Switch State characteristic Notification, the peripheral sample
sends a Notification after SW1 is pressed on the board.

 If the remote device writes a value to the LED Blink Rate characteristic, the LED on the board blinks at
the value x 100ms interval. When writing zero to the characteristic, the LED will turn off.

 If the link is disconnected, the peripheral sample restarts advertising.

 When press the reset button while pressing SW1, the bonding information is deleted.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 234 of 244
Dec.27.22

12.2.3 Configuration option
Table 12.5 shows the BLE FIT configuration options changed from the default for the peripheral sample.

Table 12.5 Changed configuration options

Macro
(SC display name)

Value

BLE_CFG_LIB_TYPE
(Type of Bluetooth LE Protocol Stack library)

1: Balance

BLE_CFG_RF_CONN_MAX
(Maximum number of connections)

3

BLE_CFG_NUM_BOND
(Number of remote device bonding
information)

3

BLE_CFG_EN_SEC_DATA
(Store Security Data in DataFlash)

1: Enable

BLE_CFG_CMD_LINE_EN
(Enabled/Disabled command line function)

1: Enable

BLE_CFG_CMD_LINE_CH
(SCI CH for command line function)

8

BLE_CFG_BOARD_LED_SW_EN
(Enabled/Disabled board LED and Switch
control support)

1: Enable

BLE_CFG_BOARD_TYPE
(Board Type)

1: Target Board

12.2.4 Configurable parameters

(1) Address
Specify the following address type with BLE_PERIPHERAL_ADDR_TYPE in app_main.c.

BLE_GAP_ADDR_RAND : Static Address (default)
BLE_GAP_ADDR_RPA_ID_RANDOM : RPA(static) address

(2) Advertising Data, Scan Response Data, Advertising parameters
The gs_adv_data (Advertising Data), gs_sres_data (Scan Response Data) and gs_adv_param

(Advertising parameters) variables in app_main.c are configurable. If you change the device name
included in gs_adv_data or gs_sres_data and the peripheral sample connects with a Central sample,
change the scan filter in the Central sample.

(3) Simultaneous multiple connections feature

If the BLE_PERIPHERAL_MULTI_CONNS macro in app_main.c is enabled, the peripheral sample
supports the simultaneous multiple connections feature.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 235 of 244
Dec.27.22

12.3 Central sample
12.3.1 Remote devices
The central sample supports connection with the following remote device.

 Peripheral sample

12.3.2 Operations
The central sample works as follows.

 The central sample starts scan to detect a peripheral sample after booting.
It starts fast scan (interval: 60ms, window: 30ms) in a first 10s and then continues slow scan (interval:
1200ms, window: 11.25ms) for 10s. After stopping scan, the central sample restarts scan by pressing
SW1.

 After detecting a peripheral sample, the central sample stops scan. It sends a connection request to the
detected peripheral sample.

 After connection establishment, the packet length is updated.

 After packet length update, a MTU change request is sent to the remote device.
If the PHY is changed, a PHY change request is sent to the remote device before sending a MTU
change request.

 When receiving a MTU change response from the remote device, the central sample discovers LED
Switch service in Table 12.4.

 After service discovery, the central sample writes 1 to the CCCD of the Switch State characteristic.

 If pairing is not completed, the peripheral sample returns an error. When the central sample receives the
error, it starts pairing. If pairing is completed but encryption is not completed, the peripheral sample
returns an error. When the central sample receives the error, it starts encryption.

 When pairing and encryption are completed, the central sample writes 1 to the CCCD again.

 Then after pressing SW1 on the peripheral sample board, the switch state characteristic is sent to the
central sample as Notification.

 When press the reset button while pressing SW1, the bonding information is deleted.

12.3.3 Configuration option
Table 12.6 shows the BLE FIT configuration options changed from the default for the central sample.

Table 12.6 Changed configuration options

Macro
(SC display name)

Value

BLE_CFG_LIB_TYPE
(Type of Bluetooth LE Protocol Stack library)

1: Balance

BLE_CFG_RF_CONN_MAX
(Maximum number of connections)

3

BLE_CFG_NUM_BOND
(Number of remote device bonding
information)

3

BLE_CFG_EN_SEC_DATA
(Store Security Data in DataFlash)

1: Enable

BLE_CFG_CMD_LINE_EN
(Enabled/Disabled command line function)

1: Enable

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 236 of 244
Dec.27.22

Macro
(SC display name)

Value

BLE_CFG_CMD_LINE_CH
(SCI CH for command line function)

8

BLE_CFG_BOARD_LED_SW_EN
(Enabled/Disabled board LED and Switch
control support)

1: Enable

BLE_CFG_BOARD_TYPE
(Board Type)

1: Target Board

12.3.4 Configurable parameters

(1) Address
Specify the following address type with BLE_CENTRAL_ADDR_TYPE in app_main.c.

BLE_GAP_ADDR_RAND : Static Address (default)
BLE_GAP_ADDR_RPA_ID_RANDOM : RPA(static) address

(2) Scan parameters, connection parameters
The gs_scan_phy_param, gs_scan_param (scan parameters) and gs_conn_phy_param,

gs_conn_param (connection parameters) variables in app_main.c are configurable. If you change the
peripheral sample device name included in the advertising data or scan response data, change the
gs_filter_data as scan filter.

(3) PHY

If you want to change PHY from 1M to 2M after connection establishment, set the
BLE_APP_CHANGE_PHY_2M macro in app_main.c to 1. The default value is zero.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 237 of 244
Dec.27.22

12.4 Multi-role sample
12.4.1 Topology
The multi-role sample connects with a central device and a peripheral sample and bridges the characteristic
written from the central device or notified from the peripheral sample. Figure 12-6 shows the multi-role
sample topology.

Figure 12-6 Multi-role sample topology

The multi-role sample adds LED Switch Bridge service which includes Bridged Switch State characteristic
(Figure 12-7) and Bridged LED Blink Rate characteristic (Figure 12-8) to implement the bridge between the
central device and the peripheral sample. The Bridged Switch State characteristic includes a Bluetooth
device address to indicate which peripheral sample sends a notification. After conversion from the LED
Switch Bridge service characteristic to the LED Switch service characteristic, the multi-role sample sends
write request for the LED Switch service to the peripheral samples. Similarly, after conversion from the LED
Switch service characteristic to the LED Switch Bridge service characteristic, the multi-role sample sends
notification for the LED Switch Bridge service to the central device.

Figure 12-7 Bridged Switch State characteristic

Figure 12-8 Bridged LED Blink Rate characteristic

Peripheral
sample 1

Multi-role
sample

Central device

Peripheral
sample 2

Write Bridged LED
Blink Rate characteristic

Peripheral
sample 1

Multi-role
sample

Central device

Peripheral
sample 2

Notification
Switch State Characteristic

Notification
Bridged Switch State

Characteristic

LED Switch Bridge Service

LED Switch Service

LED Switch Bridge Service

LED Switch Service LED Switch Service LED Switch Service

Notification
Switch State Characteristic

Write LED Blink Rate
Characteristic

Write LED Blink Rate
Characteristic

LED Blink Rate Bridge Switch State Bridge

LED Switch Service API

LED Switch Bridge Service API

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 238 of 244
Dec.27.22

12.4.2 Remote devices
The multi-role sample supports connection with the following remote device.

[Peripheral role] :

 iOS device

 Android device

[Central role] :

 Peripheral sample

12.4.3 Operations
The multi-role sample works as follows.

[Connection to the central device] :

 The multi-role sample starts Connectable undirected advertising (ADV_IND) after the boot.
It starts fast advertising (interval: 30ms) in the first 30s and changes to slow advertising (interval:
1000ms) in the next 30s.

 By scanning from a remote device, it is detected as the “RBLE-MULTI-DEV” device name.

Figure 12-9 Scan result on central device

 After connection establishment, the multi-role sample stops advertising. The multi-role sample connects
simultaneously to only one central device.

 If a remote device searches GATT Services in the multi-role sample, the following service and
characteristics are detected.

Table 12.7 Detected service and characteristics

Service, characteristic UUID

LED Switch Bridge service 908DCB17-7F42-44AC-AB9D-C36F63DCEBD8

Bridged Switch State characteristic 4CC8C6EC-3954-41D1-8CFF-3F2FE5EC0180

Bridged LED Blink Rate characteristic 458B6862-6D2C-4356-8B2E-B88BCE7F0C84

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 239 of 244
Dec.27.22

Figure 12-10 Detected GATT service and characteristics

 The multi-role sample sets BLE_GATT_DB_SER_SECURITY_UNAUTH |
BLE_GATT_DB_SER_SECURITY_ENC to the second parameter which indicates LED Switch Bridge
service security requirement in the gs_gatt_service variable in gatt_db.c. Therefore, if a remote device
accesses a characteristic in LED Switch Bridge service, it requires pairing.

static const st_ble_gatts_db_serv_cfg_t gs_gatt_service[] =
{
 /* Some code is omitted */
 /* LED Switch Bridge Service */
 {
 /* Num of Services */
 {
 1,
 },
 /* Description */
 BLE_GATT_DB_SER_SECURITY_UNAUTH | BLE_GATT_DB_SER_SECURITY_ENC,
 /* Service Start Handle */
 0x0010,
 /* Service End Handle */
 0x0015,
 /* Characteristic Start Index */
 6,
 /* Characteristic End Index */
 7,
 },
};

Code 12-5 LED Switch Bridge service security requirement

 If the link with the central device is disconnected, the multi-role sample restarts advertising.

[Connection to the peripheral sample] :

 The multi-role sample starts scan to detect a peripheral sample after pressing SW1.
It starts fast scan (interval: 60ms, window: 30ms) in a first 10s and then continues slow scan (interval:
1200ms, window: 11.25ms) for 10s. After stopping scan, the central sample restarts scan by pressing
SW1.

 After detecting a peripheral sample, the multi-role sample stops scan. It sends a connection request to
the detected peripheral sample.

 After connection establishment, the packet length is updated.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 240 of 244
Dec.27.22

 After packet length update, a MTU change request is sent to the remote device.
If the PHY is changed, a PHY change request is sent to the remote device before sending a MTU
change request.

 When receiving a MTU change response from the remote device, the multi-role sample discovers LED
Switch service.

 After service discovery, the multi-role sample writes 1 to the CCCD of the Switch State characteristic.

 If pairing is not completed, the peripheral sample returns an error. When the multi-role sample receives
the error, it starts pairing. If pairing is completed but encryption is not completed, the peripheral sample
returns an error. When the multi-role sample receives the error, it starts encryption.

 When pairing and encryption are completed, the multi-role sample writes 1 to the CCCD again.

 Then after pressing SW1 on the peripheral sample board, the switch state characteristic is sent to the
multi-role sample as Notification.

[Delete the bonding information] :

 When press the reset button while pressing SW1, the bonding information is deleted.

[Switch State characteristic bridge] :

After the following configurations are complete, when pressing SW1, the multi-role sample converts the
Switch State characteristic in the LED Switch State service to the Bridged Switch State characteristic in the
LED Switch Bridged service and sends write request including the data. Therefore, the Bridged Switch State
characteristic is notified to the central device as shown Figure 12-11 . This characteristic includes the Switch
State and the peripheral sample address as shown Figure 12-7 .

 After connection with the central device, set 1 to the CCCD of the Bridged Switch State characteristic
from the central device.

 After connection with the peripheral sample, the multi-role sample automatically sets 1 the CCCD of the
Switch State characteristic.

Figure 12-11 Bridged Switch State characteristic notification to central device

Bridged Switch State

characteristic

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 241 of 244
Dec.27.22

[LED Blink Rate characteristic bridge] :

After connection with the central device and the peripheral sample, when the central device writes a value to
the Bridged LED Blink Rate characteristic as shown Figure 12-12, the LED blinks at the value x 100ms
interval.

Figure 12-12 Bridged LED Blink Rate characteristic write from central device

12.4.4 Configuration option
Table 12.8 shows the BLE FIT configuration options changed from the default for the multi-role sample.

Table 12.8 Changed configuration options

Macro
(SC display name)

Value

BLE_CFG_LIB_TYPE
(Type of Bluetooth LE Protocol Stack library)

1: Balance

BLE_CFG_RF_CONN_MAX
(Maximum number of connections)

3

BLE_CFG_NUM_BOND
(Number of remote device bonding
information)

3

BLE_CFG_EN_SEC_DATA
(Store Security Data in DataFlash)

1: Enable

BLE_CFG_CMD_LINE_EN
(Enabled/Disabled command line function)

1: Enable

BLE_CFG_CMD_LINE_CH
(SCI CH for command line function)

8

BLE_CFG_BOARD_LED_SW_EN
(Enabled/Disabled board LED and Switch
control support)

1: Enable

BLE_CFG_BOARD_TYPE
(Board Type)

1: Target Board

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 242 of 244
Dec.27.22

12.4.5 Configurable parameters

(1) Address
Specify the following address type with BLE_MULTIROLE_ADDR_TYPE in app_main.c.

BLE_GAP_ADDR_RAND : Static Address (default)
BLE_GAP_ADDR_RPA_ID_RANDOM : RPA(static) address

(2) PHY
If you want to change PHY from 1M to 2M after connection establishment as central role, set the

BLE_APP_CHANGE_PHY_2M macro in app_main.c to 1. The default value is zero.

(3) Advertising Data, Scan Response Data, Advertising parameters
The gs_adv_data (Advertising Data), gs_sres_data (Scan Response Data) and gs_adv_param

(Advertising parameters) variables in app_main.c are configurable.

(4) Scan parameters, connection parameters
The gs_scan_phy_param, gs_scan_param (scan parameters) and gs_conn_phy_param,

gs_conn_param (connection parameters) variables in app_main.c are configurable. If you change the
peripheral sample device name included in the advertising data or scan response data, change the
gs_filter_data as scan filter.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 243 of 244
Dec.27.22

Revision History

Rev. Date
Description
Page Summary

1.00 Jul.28.2020 — First edition issued.
1.10

May.31.2021

84, 87, 89,
92, 96, 96,
98, 105

Fixed the size of Advertising Data.

149 Fixed Table 9.5.
Added that the pairing will fail if the input/output functions of both
devices are Just Works when MITM protection is required.

167 Fixed that if local device does not use RPA and resolves a remote
device address, set all zeros IRK in resolving list.

214 Added “12. Appendix A : Sample applications”.
Program Added sample applications.

1.20 Jun.30.2022 21, 83 Added “Do not change the Abstraction API codes.”.
106-107 Added how to enable privacy feature by the scan Abstraction API.
116 Added how to retain the connection handles.
118-118 Added how to enable privacy feature by the connection Abstraction

API.
162-165 Added the relationship between the bonding number and the

maximum simultaneous connection number.
166-167 Added the description about deleting the bonding information.
167 Added how to connect to only the bonded device.

168-172 Added the sequence if encryption was failed.

173-184 Added the supplementary description of RPA.

1.30

Dec.27.2022 1, 7, 88, 107,
150, 153,
154, 156,
157, 159,
160, 168

Added recommendations and risk descriptions based on the
"Bluetooth® Security and Privacy Best Practices Guide" published by
the Bluetooth SIG so that implementers can select the best practices
for security and privacy.

88, 101 Added about RPA default update interval and API to change update
interval.

154 Added about notification information when LE legacy pairing starts
with Secure Connection Only specified.

175 When the local device uses RPA, the setting value of Identity Address
and IRK of the remote device to be associated is changed from
"dummy" to "all 0x00", and the registration condition ("only the local
device is uses RPA or it is in unpaired state") removed.
Also changed the related example code from "0xAA" and "0x55" to
"0x00".

8, 10, 25 Added the provision format of QE Utility for QE for BLE V1.40 or later.
16 Added “1.4.1 Device identification”.
18 Added the explanation about initializing RF hardware state.
23, 29 Added how to select library type.
24 Added the explanation about interrupt priority.
33 Added note about Public device address and Static address.
37 Added the explanation about R_BLE_Open and clock frequency.
48 Added the explanation about R_BLE_Close and RF H/W stop.
49-56 Added p_data when result is other than BLE_SUCCESS.
86 Added that parameters cannot be changed during Advertising.
87, 105, 116 Added the explanation about PHY of Advertising / Scan / Connection.
88, 100, 110,
117

Added that White List cannot be set while it is used.

88, 101 Added explanation about o_addr for Privacy.
135 Added an explanation for the reason for disconnection.
136 Added libraries and roles that can change communication parameters.

RX23W Group Bluetooth Low Energy Application Developer's Guide

R01AN5504EJ0130 Rev.1.30 Page 244 of 244
Dec.27.22

137 Added the explanation about PHY that allows modification.
160 Added the explanation about result when pairing fails.
174 Added a figure for privacy procedures.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products
The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.
2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.
3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.
4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.
5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2022 Renesas Electronics Corporation. All rights reserved.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your
product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use
of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,
or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this
document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics
or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,
manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any
and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for
each Renesas Electronics product depends on the product’s quality grade, as indicated below.
 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space
system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics
disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product
that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics
hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but
not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS
ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING
RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,
HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND
ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT
PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH
RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO
THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for
Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by
Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas
Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such
specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific
characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability
product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics
products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily
injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as
safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for
aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are
responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas
Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of
controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these
applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance
with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is
prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations
promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or
transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.
(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.
(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,
Koto-ku, Tokyo 135-0061, Japan
www.renesas.com

 For further information on a product, technology, the most up-to-date
version of a document, or your nearest sales office, please visit:
www.renesas.com/contact/.

Trademarks
Renesas and the Renesas logo are trademarks of Renesas Electronics
Corporation. All trademarks and registered trademarks are the property
of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Overview
	1.1 Development Bluetooth Low Energy Application
	(1) BLE FIT Module
	(2) QE for BLE, QE Utility Module

	1.2 Development environment
	1.2.1 Hardware requirements
	1.2.2 Software requirements
	1.2.3 Tool

	1.3 Available communication features
	1.4 Basic communication features
	1.4.1 Device identification

	1.5 Bluetooth LE Protocol Stack Operation Overview
	1.6 Software structure
	1.6.1 Primary functions
	1.6.2 Surrounding functions

	1.7 Flow of development
	(1) Install integrated development environment e2studio, Smart Configurator (SC), and QE for BLE.
	(2) Create a project on e2studio.
	(3) Add components of FIT module and QE for BLE by SC, change settings, generate code.
	(4) Settings after code-generating
	(5) Linker setting and Debugging setting on e2studio
	(6) Use the generated code
	(7) Add and change the code

	1.8 Use case of this document
	1.9 Locating sections

	2. Adjusting configuration option
	2.1 Configuration Options
	2.2 How to adjust RAM
	2.3 How to configure BD address
	2.3.1 Writing to data area
	2.3.2 How to use Random Address

	2.4 How to configure for minimum current consumption
	2.4.1 Using MCU Low Power Consumption function
	(1) Checking transition to Low power consumption state
	(2) Transition preparation processing to Low power consumption state
	(3) Resume processing from Low power consumption state

	3. How to implement user code
	3.1 Behavior of skeleton program
	3.2 app_main function
	3.2.1 Initialize process (ble_app_init function)
	3.2.1.1 Registering callback function
	3.2.1.2 Registering GATT database (R_BLE_GATTS_SetDbInst)

	3.2.2 Main loop and scheduler (R_BLE_Execute)
	3.2.3 End process

	3.3 GAP event (gap_cb function)
	3.4 GATTS event (gatts_cb function)
	3.5 GATTC event (gattc_cb function)
	3.6 VS event (vs_cb function)
	3.7 Server-side Profile API event ([service_name]s_cb function)
	3.8 Client-side Profile API event ([service_name]c_cb function)
	3.9 L2CAP event
	3.10 Event notification function (R_BLE_SetEvent)
	3.11 RF communication timing notification

	4. app_lib
	4.1 Software Timer
	4.2 Command line
	4.2.1 How to use the standard commands
	(1) Include Header file
	(2) Initialization and registration of the commands
	(3) Callback
	(4) Main loop

	4.2.2 How to create a user command
	(1) Include header files
	(2) Command definition
	(3) Subcommand definition
	(4) Subcommand function definition
	(5) Abort handler
	(6) Registering commands

	4.3 Logger
	4.4 Security data management
	4.4.1 Initialization
	4.4.2 Restore the local device keys
	4.4.3 Store the local device keys
	4.4.4 Store the remote device keys

	4.5 Board and LED switch
	4.5.1 Configuration for customer board
	(1) Macro definition of LED and Push-Switch (SW)
	(2) Register setting in irq_pin_set()

	4.5.2 Initialization
	4.5.3 ON or OFF Board LED
	4.5.4 Callback for pressing SW

	4.6 Abstraction API

	5. Advertising
	5.1 Connecting to smartphone
	5.2 Advertising with GAP API
	5.2.1 Advertising Parameter
	5.2.1.1 Adverting Type
	5.2.1.2 Using the White List (Respond to a known device)
	5.2.1.3 Privacy
	5.2.1.4 Concurrent Execution

	5.2.2 Advertising Data / Scan Response Data
	5.2.3 Start Advertising
	5.2.4 Stop Advertising

	5.3 Periodic Advertising with GAP API
	5.3.1 Non-Connectable Advertising Parameter
	5.3.2 Periodic Advertising Parameter
	5.3.3 Periodic Advertising Data
	5.3.4 Start Periodic Advertising
	5.3.5 Stop Periodic Advertising

	5.4 Advertising Data / Scan Response Data / Periodic Advertising Data
	5.4.1 Format
	5.4.2 Advertising Data Update
	5.4.3 Periodic Advertising Data Update
	5.4.4 Buffer Size

	5.5 Advertising with Abstraction API
	5.5.1 White List (Respond to a known device)
	5.5.2 Privacy

	5.6 Connection with Smart Phone
	5.7 Beacon

	6. Scan
	6.1 Start or stop scan
	6.2 Scan parameters
	6.2.1 Privacy

	6.3 Received information by scan
	6.4 Scan filtering
	6.4.1 Using the White List (Receiving from known devices)
	6.4.2 Duplicate advertising filtering
	6.4.3 Discoverable mode filtering
	6.4.4 Advertising Data filtering

	6.5 Periodic Advertising Synchronization
	6.5.1 Start Scan
	6.5.2 Detect Periodic Advertiser
	6.5.3 Register to the Periodic Advertiser List
	6.5.4 Establish Periodic Advertising Sync
	6.5.5 Receive Periodic Advertising
	6.5.6 Lost Periodic Advertising Sync
	6.5.7 Terminate Periodic Advertising Sync

	7. Connection
	7.1 Requesting Connection
	7.1.1 Using the White List (Connection to a known device)
	7.1.2 Privacy

	7.2 Cancelling Connection Request
	7.3 Multiple Connection
	7.3.1 Connecting to multiple peripheral devices
	7.3.2 Connection to multiple central devices
	7.3.3 Multi role connection

	7.4 Disconnection

	8. Communication
	8.1 Changing PHY
	8.2 Changing maximum transmission packet length
	8.3 Updating connection parameter
	8.4 Changing MTU
	8.5 Flow control
	8.6 High throughput communication

	9. Security
	9.1 Pairing
	9.1.1 Pairing Parameters
	9.1.2 Key generation and registration
	9.1.3 OOB (Out of Band) data transmission and reception
	9.1.4 Pairing request
	9.1.5 Response to pairing request
	9.1.6 Carrying out pairing method
	9.1.7 Key exchange
	9.1.8 Completion of pairing

	9.2 Bonding
	9.2.1 Store remote device keys
	9.2.1.1 Bonding information in RAM
	9.2.1.2 Bonding information in DataFlash

	9.2.2 Store local device keys
	9.2.3 Reset the stored keys
	9.2.4 Delete the stored keys
	9.2.5 Filtering remote devices after bonding

	9.3 Encryption
	9.3.1 Request Encryption
	(1) Encryption request from local device(Central)
	(2) Encryption request from local device(Peripheral)

	9.3.2 Respond to an encryption request
	(1) Response to an encryption request from remote device(Central)
	(2) Response to an encryption request from remote device(Peripheral)

	9.4 Privacy
	9.4.1 Generate local device RPA
	9.4.2 Resolve remote device RPA
	9.4.2.1 Not generate local device RPA

	10. Profile and service
	10.1 Standard profile and Standard Service
	10.2 APIs of GATT Procedure
	10.2.1 Read operation
	10.2.2 Write operation
	10.2.3 WriteWithoutResponse operation
	10.2.4 Notification operation
	10.2.5 Indication operation
	10.2.6 ReliableWrites operation
	10.2.7 Broadcast Operation

	10.3 Example of using GATT Procedure
	10.3.1 Example for sending data from GATT client
	10.3.2 Example for sending data from GATT server

	11. Debugging
	11.1 Using Logger function
	11.2 Using Command line function
	11.3 Using RF communication timing notification function
	11.4 Checking Server operation
	11.4.1 Using BTTS Beacon Scanning
	11.4.2 Using BTTS Data Comm Master
	11.4.3 Using GATT Browser

	11.5 Checking Client operation
	11.5.1 Using BTTS Beacon Advertising
	11.5.2 Using BTTS Data Comm Slave

	11.6 Others
	11.6.1 MCU package
	11.6.2 Generating MOT file
	11.6.3 Outputting detail to MAP file
	11.6.4 Optimization

	12. Appendix A : Sample applications
	12.1 Beacon sample
	12.1.1 Remote devices
	12.1.2 Operations
	12.1.3 Advertising Data
	12.1.4 Configuration option
	12.1.5 Configurable parameters
	(1) Address
	(2) Advertising Data, Advertising parameters

	12.1.6 Command

	12.2 Peripheral sample
	12.2.1 Remote devices
	12.2.2 Operations
	12.2.3 Configuration option
	12.2.4 Configurable parameters
	(1) Address
	(2) Advertising Data, Scan Response Data, Advertising parameters
	(3) Simultaneous multiple connections feature

	12.3 Central sample
	12.3.1 Remote devices
	12.3.2 Operations
	12.3.3 Configuration option
	12.3.4 Configurable parameters
	(1) Address
	(2) Scan parameters, connection parameters
	(3) PHY

	12.4 Multi-role sample
	12.4.1 Topology
	12.4.2 Remote devices
	12.4.3 Operations
	12.4.4 Configuration option
	12.4.5 Configurable parameters
	(1) Address
	(2) PHY
	(3) Advertising Data, Scan Response Data, Advertising parameters
	(4) Scan parameters, connection parameters

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice
	Contact information
	Corporate Headquarters
	Trademarks

