
 Application Note

R01AN2571EJ0400 Rev.4.00 Page 1 of 42

May.31.23

RX Family

LPT Module Using Firmware Integration Technology

Abstract

This application note describes the LPT module using firmware integration technology (FIT). This module
uses the low-power timer (LPT) to produce a signal to exit software standby mode. The MCU can periodically
exit software standby mode using this module with software standby mode and ELC. Supported device can
generate PWM waveform.

Hereinafter this module is referred to as the “LPT FIT module”.

Target Devices

The following is a list of devices that are currently supported by this API:

 RX113 Group

 RX130 Group

 RX140 Group

 RX231, RX230 Groups

 RX23W Group

 RX23E-B Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Target Compilers

 Renesas Electronics C/C++ Compiler Package for RX Family (V2.05.00 or higher)

 GCC for Renesas RX

 IAR C/C++ Compiler for Renesas RX

For details of the confirmed operation contents of each compiler, refer to “7.1 Operation Confirmation
Environment".

Related Documents

For additional information associated with this document, refer to the following application notes.

 Firmware Integration Technology User’s Manual (R01AN1833)

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 2 of 42

May.31.23

Contents

1. Specifications .. 4

1.1 LPT FIT Module ... 4

1.2 Overview of the LPT FIT Module ... 4

1.3 API Overview ... 5

1.4 Processing Example .. 6

1.5 State Transition ... 7

2. API Information .. 8

2.1 Hardware Requirements ... 8

2.2 Software Requirements ... 8

2.3 Supported Toolchains ... 8

2.4 Interrupt Vector .. 8

2.5 Header Files .. 8

2.6 Integer Types ... 8

2.7 Configuration Overview ... 9

2.8 Code Size .. 10

2.9 Parameters .. 11

2.10 Return Values .. 11

2.11 Adding the FIT Module to Your Project ... 12

3. API Functions .. 13

R_LPT_Open () ... 13

R_LPT_InitChan () ... 15

R_LPT_SetCMT () ... 18

R_LPT_InitPWM () ... 20

R_LPT_Control () ... 22

R_LPT_FinalChan () .. 24

R_LPT_Close () ... 26

R_LPT_GetVersion () .. 28

4. Pin Setting ... 29

5. Sample Code ... 30

6. Demo Projects ... 33

6.1 lpt_demo_rskrx231 .. 33

6.2 lpt_demo_rskrx113 .. 33

6.3 lpt_demo_tbkrx140 .. 34

6.4 Adding a Demo to a Workspace .. 34

6.5 Downloading Demo Projects ... 34

7. Appendices .. 35

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 3 of 42

May.31.23

7.1 Operation Confirmation Environment .. 35

7.2 Troubleshooting ... 40

Revision History .. 41

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 4 of 42

May.31.23

1. Specifications

The LPT FIT module supports the LPT which is the RX Family peripheral function and produces a signal to
exit software standby mode.

The MCU can periodically exit software standby mode using this module with software standby mode and
the event link controller (ELC). Supported device can generate PWM waveform.

1.1 LPT FIT Module

The LPT FIT module can be used by being implemented in a project as an API. See section 2.11 Adding the
FIT Module to Your Project for details on methods to implement this FIT module into a project.

1.2 Overview of the LPT FIT Module

Settings for operating the LPT are configured by calling the R_LPT_Open function in this module. Also the
LPT cycle is specified by calling R_LPT_Open function.

The compare match cycle is specified by calling R_LPT_InitChan function. Calling the R_LPT_InitChan
function the selected compare match channel is enabled and the compare match cycle is set.

If the compare match cycle needs to be changed after the LPT has started operating, call the
R_LPT_SetCMT function.

When starting LPT count, call the R_LPT_Control function using the LPT_CMD_START command.

When stopping LPT count, call the R_LPT_Control function using the LPT_CMD_STOP command.

When resetting LPT count, call the R_LPT_Control function using the LPT_CMD_COUNT_RESET command.

When starting PWM output, call the R_LPT_Control function using the LPT_CMD_PWM_START command.

When stopping PWM output, call the R_LPT_Control function using the LPT_CMD_PWM_STOP command.

Transition from software standby mode to the ELC operation enable state is triggered by the compare match
0 occurrence.

When compare match 1 occur, the interrupt request, the event output to ELC, the transition to snooze mode
request, and the DMAC start request.

If the LPT module needs to be closed after the LPT has opend, call the R_LPT_Close.

When using this module, the LPT must not be controlled by any other modules.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 5 of 42

May.31.23

1.3 API Overview

Table 1.1 lists the API functions included in the module.

Table 1.1 API Functions

Function Description

R_LPT_Open Initialize the LPT module and set LPT cycle.

R_LPT_InitChan Enable the selected channel and set the compare match cycle.

R_LPT_SetCMT Set the compare match cycle for the selected channel.

R_LPT_InitPWM Set the PWM output configuration of the selected channel.

R_LPT_Control Controls start/stop/reset of LPT count and start/stop of PWM output.

R_LPT_FinalChan Disable the selected channel.

R_LPT_Close Releases the LPT module.

R_LPT_GetVersion Returns the version of this module.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 6 of 42

May.31.23

1.4 Processing Example

Figure 1.1 shows an example of processing. The following is an example of the LPT FIT module.

Exiting software standby mode

 with the LPT

LPT initialization

R_LPT_Open()

LPT channel initialization

R_LPT_InitChan()

End

[6] Enters software standby mode.

[3] Initializes the LPT using the LPT cycle as the argument.

Has
periodic operation been

completed?

Yes

No

[7] The MCU enters normal mode with LPT
compare match 0 and executes the
interrupt handling.

[8] Determines whether to complete the periodic operation for

　 exiting software standby mode.

[9] Stops the LPT count operation.

Release the LPT

R_LPT_Close()

Stop the LPT count

R_LPT_Control(LPT_CMD_STOP)

Enable the ELC.

Links the LPT compare match event of

ELC to the ICU (LPT dedicated

interrupt)

Specify the interrupt controller

Enter software standby mode

Interrupt handling

[1] Specifies the interrupt controller.

[2] Specifies the ELC to trigger the ICU (LPT dedicated interrupt).

[4] Enables compare match and sets the compare match

　 cycle as an argument to cancel the software standby.

[10] Releases the LPT.

Start LPT count

R_LPT_Control

(LPT_CMD_START)

[5] Starts LPT count.

Figure 1.1 Processing Example of the LPT FIT Module

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 7 of 42

May.31.23

1.5 State Transition

Figure 1.2 shows the state transition diagram for this module.

The following is the state transition of the LPT FIT module as an example.

R_LPT_GetVersion() called

[Reset released]

R_LPT_Open() called/
[In normal operation] Initializes the LPT

LPT count stop state

Uninitialized state

R_LPT_Control(LPT_CMD_STOP) called/
[In normal operation] Stops the LPT count

R_LPT_Control(LPT_CMD_START) called/
[In normal operation] Starts LPT count Compare match 0/

Continues counting

LPT counting state

Cycle matched/Clears the counter
and continues counting

Notation conventions

State
Event[condition]/
Action on the event

R_LPT_Control(LPT_CMD_COUNT_RESET) called
/[In normal operation] Resets the LPT count

Uninitialized state

R_LPT_Close() called/
[In normal operation] Releases the LPT

R_LPT_InitChan() called/
[In normal operation] Initializes the channel

Figure 1.2 LPT FIT Module State Transition Diagram

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 8 of 42

May.31.23

2. API Information

This FIT module has been confirmed to operate under the following conditions.

2.1 Hardware Requirements

This driver requires your MCU support the following features:

 Low-power timer (LPT)

 Event link controller (ELC)

 Low power consumption (LPC)

2.2 Software Requirements

This driver is dependent upon the following packages:

 Renesas Board Support Package (r_bsp)

2.3 Supported Toolchains

This driver has been confirmed to work with the toolchain listed in 7.1, Operation Confirmation Environment.

2.4 Interrupt Vector

This FIT module does not use interrupt vectors.

2.5 Header Files

All API calls and their supporting interface definitions are located in r_lpt_rx_if.h.

2.6 Integer Types

This project uses ANSI C99. These types are defined in stdint.h.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 9 of 42

May.31.23

2.7 Configuration Overview

The configuration options in this module are specified in r_lpt _rx_config.h. The option names and setting
values are listed in the table below.

Configuration options in r_lpt_rx_config.h

#define LPT_CFG_PARAM_CHECKING_ENABLE

 (BSP_CFG_PARAM_CHECKING_ENABLE)
Selects whether to include parameter checking in the code.
The parameter checking is processing to check parameters
and is located in the beginning of each function.
- When this is set to 0, code for parameter checking is not
generated.
- When this is set to 1, code for parameter checking is

generated and executed.

#define LPT_CFG_LPT_CLOCK_SOURCE (0)

A default value is

“BSP_CFG_PARAM_CHECKING_ENABLE” which

is defined in r_bsp_config.h file.

Selects the clock source for the low-power timer.
- When this is set to 0, the sub-clock oscillator is selected.
- When this is set to 1, the IWDT-dedicated on-chip

oscillator is selected.
- When this is set to 1, the 4 divided low-speed on-chip

oscillator is selected.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 10 of 42

May.31.23

2.8 Code Size

The sizes of ROM, RAM and maximum stack usage associated with this module are listed below.

The ROM (code and constants) and RAM (global data) sizes are determined by the build-time configuration
options described in 2.7, Configuration Overview.

The values in the table below are confirmed under the following conditions.

Module Revision: r_lpt_rx rev4.00

Compiler Version: Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00

(Compiler option is default setting when using the Smart Configurator.)

GCC for Renesas RX 8.3.0.202202

(Compiler option is default setting when using the Smart Configurator.)

IAR C/C++ Compiler for Renesas RX version 4.20.3

(The default settings of the integrated development environment.)

Configuration Options: Default settings

ROM, RAM and Stack Code Sizes

Device Category Memory Used

Renesas Compiler GCC IAR Compiler

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

With
Parameter
Checking

Without
Parameter
Checking

RX113

RX130

RX230

RX231

RX23W

RX23E-B

ROM 712 bytes 704 bytes 1,484 bytes 1,460 bytes 1,370 bytes 1,314 bytes

RAM 0 bytes 0 bytes 0 bytes

STACK 76 bytes 76 bytes - 76 bytes 76 bytes

RX140

ROM 1072 bytes 1057 bytes 2228 bytes 2188 bytes 1835 bytes 1817 bytes

RAM 0 bytes 0 bytes 0 bytes

STACK 94 bytes 94 bytes - 76 bytes 76 bytes

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 11 of 42

May.31.23

2.9 Parameters

This section describes the parameter the enumeration used by the API functions in this module. The
enumeration is located in r_lpt_rx_if.h as are the prototype declarations of API functions.

typedef enum e_lpt_ch

{

 LPT_CH0=0, /* LPT channel 0 */

 LPT_CH1, /* LPT channel 1 */

 LPT_NUM_CH

} lpt_ch_t;

typedef enum e_lpt_cmd

{

LPT_CMD_START, /* Start LPT count */

LPT_CMD_STOP /* Stop LPT count */

LPT_CMD_COUNT_RESET, /* Reset LPT count */

LPT_CMD_PWM_START, /* Start PWM output */

LPT_CMD_PWM_STOP /* Stop PWM output */

} lpt_cmd_t;

typedef struct st_lpt_pwm_cfg

{

 lpt_pwm_polarity_t output_polarity; /* Output polarity */

 lpt_pwm_level_t output_level; /* Output level */

}lpt_pwm_cfg_t;

2.10 Return Values

This section describes return values of API functions. This enumeration is located in r_lpt_rx_if.h as are the
prototype declarations of API functions.

typedef enum /* Status codes for LPT APIs */

{

 LPT_SUCCESS: /* Processing completed successfully. */

 LPT_ERR_LOCK_FUNC: /* Operating. LPT has been used. */

 LPT_ERR_INVALID_ARG: /* Argument has an invalid value. */

 LPT_ERR_CONDITION_NOT_MET: /* Condition not met. */

 LPT_ERR_INVALID_CH, /* Channel is invalid. */

 LPT_ERR_NULL_PTR /* Received null ptr. missing required argument */

} lpt_err_t;

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 12 of 42

May.31.23

2.11 Adding the FIT Module to Your Project

This module must be added to each project in which it is used. Renesas recommends the method using the
Smart Configurator described in (1) or (3) or (5) below. However, the Smart Configurator only supports some
RX devices. Please use the methods of (2) or (4) for RX devices that are not supported by the Smart
Configurator.

(1) Adding the FIT module to your project using the Smart Configurator in e2 studio
By using the Smart Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Smart Configurator User’s Guide: e2 studio (R20AN0451)” for details.

(2) Adding the FIT module to your project using the FIT Configurator in e2 studio
By using the FIT Configurator in e2 studio, the FIT module is automatically added to your project.
Refer to “RX Family Adding Firmware Integration Technology Modules to Projects (R01AN1723)”
for details.

(3) Adding the FIT module to your project using the Smart Configurator in CS+
By using the Smart Configurator Standalone version in CS+, the FIT module is automatically added
to your project. Refer to “RX Smart Configurator User’s Guide: CS+ (R20AN0470)” for details.

(4) Adding the FIT module to your project in CS+
In CS+, please manually add the FIT module to your project. Refer to “RX Family Adding Firmware
Integration Technology Modules to CS+ Projects (R01AN1826)” for details.

(5) Adding the FIT module to your project using the Smart Configurator in IAREW
By using the Smart Configurator Standalone version, the FIT module is automatically added to your
project. Refer to “RX Smart Configurator User’s Guide: IAREW (R20AN0535)” for details.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 13 of 42

May.31.23

3. API Functions

R_LPT_Open ()

The function initializes the LPT FIT module. This function must be called before calling any other API
functions.

Format

lpt_err_t R_LPT_Open (

 uint32_t const lpt_period

)

Parameters

uint32_t const lpt_period

LPT cycle (unit: s)

Return Values
LPT_SUCCESS: /* Processing completed successfully. */
LPT_ERR_LOCK_FUNC: /* Operating. LPT has been used. */
LPT_ERR_INVALID_ARG: /* Argument has an invalid value. */

Properties
Prototyped in r_lpt_rx_if.h.

Description
The initialization is performed to start LPT operation and then the LPT cycle specified with the argument is
set.
Operations included in the initialization are as follows:

 Sets exiting software standby mode using the LPT.

 Sets the LPT clock source and the division ratio.

 Sets the LPT cycle.

 Provides the LPT clock.

 Resets the LPT.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 14 of 42

May.31.23

Example
void main(void)

{

lpt_err_t err;

uint32_t lpt_period;

lpt_period = 100000;

err = R_LPT_Open(period);

if (LPT_SUCCESS != err)

{

 while(1) { };

}

}

Special Notes
Call this function while the LPT clock source oscillation is stabilized.

When the sub-clock oscillator is selected as the LPT clock source, the LPT cycle must be specified from 92
to 64000488. But if using device that supported "no clock division", the LPT cycle must be specified from 46
to 64000488.
When the IWDT-dedicated on-chip oscillator is selected as the LPT clock source, the LPT cycle must be
specified from 200 to 139811199. But if using device that supported "no clock division", the LPT cycle must
be specified from 100 to 139811199.
When the LOCO is selected as the LPT clock source, the LPT cycle must be specified from 2 to 2097167.
When the IWDT-dedicated on-chip oscillator is selected as the LPT clock source, set the
OFS0.IWDTSLCSTP bit to 0 (counting stop is disabled) in IWDT auto-start mode, and set the
IWDTCSTPR.SLCSTP bit to 0 (counting stop is disabled) in other modes.
When the LOCO clock is selected as the LPT clock source , set the LFOCR.LOFXIN bit to 1
(counting stop is disabled) in other modes.
MCU executes the program after MCU waits for the stability time for Main Clock Oscillator Wait Control
Register (SMOSCWTCR) when MCU is resumed from software standby mode.
Set snooze mode before calling this function when using snooze mode.
If wakeup from software standby mode using low-power timer is enabled, disable entry snooze mode setting.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 15 of 42

May.31.23

R_LPT_InitChan ()

This function enable compare match and sets the value of LPT compare match.

Format
lpt_err_t R_LPT_InitChan (

lpt_ch_t chan,

uint32_t const cmt_period

)

Parameters
lpt_err_t chan
Channel to initialize.

uint32_t const cmt_period
LPT Compare match timer (unit: microsecond)

Return Values
LPT_SUCCESS: /* Processing completed successfully. */
LPT_ERR_INVALID_ARG: /* Argument has an invalid value. */
LPT_ERR_CONDITION_NOT_MET /* Condition not met. */
LPT_ERR_INVALID_CH /* Selected channel is invalid */

Properties
Prototyped in r_lpt_rx_if.h.

Description
This API function performed to enable compare match and sets the value of LPT compare match with the
argument.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 16 of 42

May.31.23

Example
void main(void)

{

 lpt_err_t err;

 uint32_t lpt_period;

lpt_ch_t chan;

uint32_t const cmt_period;

 lpt_period = 100000;

 err = R_LPT_Open(lpt_period);

 if (LPT_SUCCESS != err)

 {

 while(1) { };

 }

 :

 :

 chan = LPT_CH0;

 cmt_period = 100000;

 err = R_LPT_InitChan (chan, cmt_period);

 if (LPT_SUCCESS != err)

 {

 while(1) { };

 }

 :

 :

}

Special Notes:

When executing this function, set the value corresponding to the clock source for the compare match cycle of
the argument as well as the LPT cycle. See R_LPT_Open () for details.

Set the value of Table 3.1 or higher for the compare match cycle of the argument according to the
LPCNTPSSEL register set by R_LPT_Open. If the value of cmt_period is less than Table 3.1, it returns
LPT_ERR_INVALID_ARG. For the LPCNTPSSEL register, refer to the hardware manual of each device.

Set the value of cmt_period to a value less than or equal the LPT period. If the value of cmt_period is greater
than the LPT period, LPT_ERR_INVALID_ARG is returned.

This function must be called while LPT count stops. If this function is called during counting,
LPT_ERR_CONDITION_NOT_MET is returned.

If the PWM output is enabled and the selected channel is 1, set the compare match cycle to the equal value
as the LPT cycle. If the compare match cycle is set to a value different from the LPT cycle when the PWM
output is enabled and the selected channel is 1, LPT_ERR_CONDITION_NOT_MET is returned.

Channel 1 can only be selected on some devices. If channel 1 is selected on unsupported device,
LPT_ERR_INVALID_CH is returned.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 17 of 42

May.31.23

Table 3.1 Compare match cycle setting minimum value

Clock source LPCNTPSSEL

0 1 2 3 4 5

Sub-Clock 46 92 184 367 733 1465

IWDT 100 200 400 800 1600 3200

LOCO 2 3 6 12 24 48

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 18 of 42

May.31.23

R_LPT_SetCMT ()

This function set the value of LPT compare match.

Format
lpt_err_t R_LPT_SetCMT (

lpt_ch_t chan,

uint32_t const cmt_period

)

Parameters
lpt_err_t chan
Channel to initialize.

uint32_t const cmt_period
LPT Compare match timer (unit: microsecond)

Return Values
LPT_SUCCESS /* Argument has an invalid value */
LPT_ERR_INVALID_ARG /* Argument has an invalid value */
LPT_ERR_CONDITION_NOT_MET /* Condition not met */
LPT_ERR_INVALID_CH /* Selected channel is invalid */

Properties
Prototyped in r_lpt_rx_if.h.

Description
This API function performed to set the value of LPT compare match with the argument.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 19 of 42

May.31.23

Example
void main(void)

{

 lpt_err_t err;

 uint32_t lpt_period;

lpt_ch_t chan;

uint32_t const cmt_period;

 lpt_period = 100000;

 err = R_LPT_Open(lpt_period);

 if (LPT_SUCCESS != err)

 {

 while(1) { };

 }

 :

 :

 chan = LPT_CH0;

 cmt_period = 100000;

 err = R_LPT_InitChan (chan, cmt_period);

 if (LPT_SUCCESS != err)

 {

 while(1) { };

 }

 :

 :

cmt_period = 50000;

 err = R_LPT_SetCMT (chan, cmt_period);

 if (LPT_SUCCESS != err)

 {

 while(1) { };

 }

}

Special Notes:

Set cmt_period to the value corresponding to the clock source. Also, set a value equal to or greater than
"[Minimum LPT period of selected clock source] x 2 LPCNTPSSEL register" for the compare match cycle of the
argument. See the R_LPT_Open () for more information.

Set the value of cmt_period to a value less than or equal the LPT period. If the value of cmt_period is greater
than the LPT period, LPT_ERR_INVALID_ARG is returned.

This function must be called while LPT count stops. If this function is called during counting,
LPT_ERR_CONDITION_NOT_MET is returned. But if selected cannel 0 and PWM output is enable, this
function can be called.

If the PWM output is enabled and the selected channel is 1, set the compare match cycle to the equal value
as the LPT cycle. If the compare match cycle 1 is set to a value different from the LPT cycle when the PWM
output is enabled, LPT_ERR_CONDITION_NOT_MET is returned.

Channel 1 can only be selected on some devices. If channel 1 is selected on an unsupported device,
LPT_ERR_INVALID_CH is returned.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 20 of 42

May.31.23

R_LPT_InitPWM ()

This function set the PWM configuration.

Format
lpt_err_t R_ R_LPT_InitPWM (

lpt_ch_t chan,

lpt_pwm_cfg_t * const p_config

)

Parameters
lpt_err_t chan
LPT channel.

lpt_pwm_cfg_t * const p_config
PWM configuration.

This module supports the following PWM settings: The PWM output characteristics are determined by setting
the following structural elements in "p_config".

typedef enum e_lpt_pwm_polarity

{

 output_polarity_low=0, /* Output polarity low */

 output_polarity_high /* Output polarity high */

} lpt_pwm_polarity_t;

typedef enum e_lpt_pwm_level

{

 output_level_low=0, /* Output level low */

 output_level_high /* Output level high */

} lpt_pwm_level_t;

Return Values
LPT_SUCCESS /* Processing completed successfully */
LPT_ERR_CONDITION_NOT_MET /* Condition not met */
LPT_ERR_INVALID_CH /* Selected channel is invalid */
LPT_ERR_NULL_PTR /* p_config is NULL */

Properties
Prototyped in r_lpt_rx_if.h.

Description
This API function sets the PWM configuration.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 21 of 42

May.31.23

Example
void main(void)

{

 lpt_err_t err;

 uint32_t lpt_period;

lpt_ch_t chan;

uint32_t const cmt_period;

lpt_pwm_cfg_t const pwm_config;

 lpt_period = 100000;

 err = R_LPT_Open(lpt_period);

 if (LPT_SUCCESS != err)

 {

 while(1) { };

 }

 :

 :

 chan = LPT_CH0;

 cmt_period = 100000;

 err = R_LPT_InitChan (chan, cmt_period);

 if (LPT_SUCCESS != err)

 {

 while(1) { };

 }

 :

 :

pwm_config.output_polarity = output_polarity_high;

pwm_config.output_level = output_level_low;

 err = R_ R_LPT_InitPWM (chan, &pwm_config);

 if (LPT_SUCCESS != err)

 {

 while(1) { };

 }

}

Special Notes:
This function must be executed while LPT count stops. If this function is executed during counting,
LPT_ERR_CONDITION_NOT_MET is returned.

PWM function can only executed on channel 0. If this function is executed with channel 1 selected,
LPT_ERR_INVALID_CH is returned.

Set a valid value in the argument p_config. If this function is executed with an invalid value in p_config,
LPT_ERR_NULL_PTR is returned.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 22 of 42

May.31.23

R_LPT_Control ()

This function performs processing to start, stop, or reset LPT count and start, stop PWM output.

Format

lpt_err_t R_LPT_Control (

 lpt_cmd_t const cmd /* Command */

)

Parameters

lpt_cmd_t const cmd
Command to be executed (see 2.9, Parameters).

Return Values
LPT_SUCCESS: /* Processing completed successfully. */
LPT_ ERR_INVALID_ARG: /* Argument has an invalid value. */
LPT_ERR_CONDITION_NOT_MET /* Condition not met. */

Properties
Prototyped in r_lpt_rx_if.h.

Description
This API function controls start/stop of LPT count and start and stop of PWM output.

The counter reset command (LPT_CMD_COUNT_RESET) must be executed while LPT count stops. If
LPT_CMD_COUNT_RESET is executed during counting, LPT_ERR_CONDITION_NOT_MET is returned.

The PWM start/stop command (LPT_CMD_PWM_START/LPT_CMD_PWM_STOP) must be executed while
LPT count stops. If LPT_CMD_PWM_START or LPT_CMD_PWM_STOP is executed during counting,
LPT_ERR_CONDITION_NOT_MET is returned.

The LPT cycle and compare match 1 cycle must be equal when executing the PWM start command. If the
values of LPT cycle and compare match 1 cycle are not equal, LPT_ERR_CONDITION_NOT_MET is
returned.

LPT_CMD_PWM_START and LPT_CMD_PWM_STOP command can only execute on some device. If
LPT_CMD_PWM_START or LPT_CMD_PWM_STOP is executed on unsupported device,
LPT_ERR_INVALID_ARG is returned.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 23 of 42

May.31.23

Example
void main(void)

{

 lpt_err_t err;

 uint32_t lpt_period;

lpt_ch_t chan;

uint32_t const cmt_period;

 lpt_period = 100000;

 err = R_LPT_Open(lpt_period);

 if (LPT_SUCCESS != err)

 {

 while(1) { };

 }

 :

 :

 chan = LPT_CH0;

 cmt_period = 100000;

 err = R_LPT_InitChan (chan, cmt_period);

 if (LPT_SUCCESS != err)

 {

 while(1) { };

 }

 :

 :

 err = R_LPT_Control(LPT_CMD_START);

 if (LPT_SUCCESS != err)

 {

 while(1) { };

 }

 :

 :

}

Special Notes
Call this function after the LPT have been configured in the R_LPT_Open and R_LPT_InitChan function.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 24 of 42

May.31.23

R_LPT_FinalChan ()

This function finalizes compare match.

Format
lpt_err_t R_LPT_FinalChan (

lpt_ch_t chan,

)

Parameters
lpt_err_t chan
Channel to finalize.

Return Values
LPT_SUCCESS /* Processing completed successfully */
LPT_ERR_CONDITION_NOT_MET /* Condition not met */
LPT_ERR_INVALID_CH /* Selected channel is invalid */

Properties
Prototyped in r_lpt_rx_if.h.

Description
This API function performed to finalize compare match selected channel.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 25 of 42

May.31.23

Example
void main(void)

{

 lpt_err_t err;

 uint32_t lpt_period;

lpt_ch_t chan;

uint32_t const cmt_period;

 lpt_period = 100000;

 err = R_LPT_Open(lpt_period);

 if (LPT_SUCCESS != err)

 {

 while(1) { };

 }

 :

 :

 chan = LPT_CH0;

 cmt_period = 100000;

 err = R_LPT_InitChan (chan, cmt_period);

 if (LPT_SUCCESS != err)

 {

 while(1) { };

 }

 :

 :

 err = R_LPT_FinalChan (chan);

 if (LPT_SUCCESS != err)

 {

 while(1) { };

 }

}

Special Notes:
This function must be called while LPT count stops. If this function is called during counting,
LPT_ERR_CONDITION_NOT_MET is returned.

Channel 1 can only be selected on some devices. If channel 1 is selected on unsupported device,
LPT_ERR_INVALID_CH is returned.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 26 of 42

May.31.23

R_LPT_Close ()

This function performs processing to stop the LPT.

Format

lpt_err_t R_LPT_Close (

 void

)

Parameters

None

Return Values
LPT_SUCCESS: /* Processing completed successfully. */

Properties
Prototyped in r_lpt_rx_if.h.

Description
The following operations are performed to stop the LPT.

 Stops the LPT.

 Resets the LPT if the LPT clock is provided.

 Stops the LPT clock.

 Resets the value of LPT compare match 0.

 Resets the value of LPT compare match 1.

 Resets the LPT cycle.

 Resets low-power timer control register 1.

 Disables exiting software standby mode using the LPT.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 27 of 42

May.31.23

Example
void main(void)

{

lpt_err_t err;

uint32_t lpt_period;

period = 100000;

err = R_LPT_Open(period);

if (LPT_SUCCESS != err)

{

 while(1) { };

}

err = R_LPT_Close();

if (LPT_SUCCESS != err)

{

 while(1) { };

}

}

Special Notes
Configure the LPT settings in the R_LPT_Open function first, wait one or more cycles of the LPT clock
source, and then call this function.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 28 of 42

May.31.23

R_LPT_GetVersion ()

This function returns the module version.

Format

uint32_t R_LPT_GetVersion (

 void

)

Parameters

None

Return Values
Version number

Properties
Prototyped in r_lpt_rx_if.h.

Description
Returns the module version number. The version number is encoded where the top 2 bytes are the major
version number and the bottom 2 bytes are the minor version number.

Example
void main(void)

{

 uint32_t version;

 version = R_LPT_GetVersion();

while(1) { };

}

Special Notes
None

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 29 of 42

May.31.23

4. Pin Setting

To use the PWM function with the low power timer FIT module, input/output signals of the peripheral
function have to be allocated to pins with the multi-function pin controller (MPC). This pin allocation is
referred to as “pin setting” in this document.

When performing the pin setting in the e2 studio, the pin setting feature of the FIT configurator or the
Smart Configurator can be used. When using the pin setting feature, a source file is generated
according to the option selected in the Pin Setting window in the FIT configurator or the Smart
Configurator. Pins are configured by calling the function defined in the source file. Refer to Table 4.1
for details.

Table 4.1 Function Output by the FIT Configurator

MCU Used Function to be Output Remarks

RX140 R_LPT_PinSet_LPT() When using the PWM function

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 30 of 42

May.31.23

5. Sample Code

This section describes the sample code for periodically exiting software standby mode using the LPT.

Operations are performed in the following order.

(1) Calls the R_LPC_LowPowerModeConfigure function to enable software standby mode.

(2) Cancels the module stop state for the ELC.

(3) Disables maskable interrupts.

(4) Disables DTC activation by the ELSR19I interrupt to set the communication target of the ELSR19I
interrupt to the CPU.

(5) Disables the ELSR19I interrupt.

(6) Specifies the interrupt priority level of the ELSR19I interrupt higher than the processor interrupt
priority level (IPL).

(7) Enables the ELSR19I interrupt.

(8) Enables the ELC function.

(9) Links the LPT compare match event of ELC to ICU (LPT dedicated interrupt).

(10) Calls the R_LPT_Open function to enable for the LPT FIT module to use the LPT.

(11) Calls the R_LPT_InitChan function to enable compare matching.

(12) Calls the R_LPT_Control function to start LPT count.

(13) Calls the R_LPC_LowPowerModeActivate function to enter software standby mode.

(14) With LPT compare match 0 occurrence, enters normal operation mode and then calls ELSR19I
interrupt exception handling.

(15) Returns step 12 after executing user processing after exiting software standby mode.

• This sample code supports on RX113.

• This program uses the LPC FIT module. About the LPC FIT module, please refer to Renesas
Electronics Website.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 31 of 42

May.31.23

#include “platform.h”

#include “r_lpc_rx100_if.h”

#include “r_lpt_rx_if.h”

void main(void);

void main(void)

{

 lpt_err_t lpt_err;

 uint32_t lpt_period;

 lpc_err_t lpc_err;

 lpt_ch_t chan;

 uint32_t const cmt_period;

 /* ---- Disable to stop counting in sleep mode. ---- */

 IWDT.IWDTCSTPR.BIT.SLCSTP = 0;

 /* ---- Software standby mode setting ---- */

 lpc_err = R_LPC_LowPowerModeConfigure(LPC_LP_SW_STANDBY);

 if (LPC_SUCCESS != lpc_err)

 {

 while(1) { };

 }

 /* Cancel the module stop state for the ELC. */

 R_BSP_RegisterProtectDisable(BSP_REG_PROTECT_LPC_CGC_SWR);

 MSTP(ELC) = 0;

 R_BSP_RegisterProtectEnable(BSP_REG_PROTECT_LPC_CGC_SWR);

 /* ---- Disable maskable interrupts. ---- */

 R_BSP_InterruptsDisable();

 /* ---- ELSR19I interrupt settings ---- */

 ICU.DTCER[80].BIT.DTCE = 0;

 ICU.IER[0x0A].BIT.IEN0 = 0;

 ICU.IPR[80].BIT.IPR = 15;

 ICU.IER[0x0A].BIT.IEN0 = 1;

 while (1 != ICU.IER[0x0A].BIT.IEN0)

 {

 /* Check if the written value is correctly reflected. */

 }

 /* ---- ELC settings ---- */

 ELC.ELCR.BIT.ELCON = 1; /* ELC function is enabled. */

 ELC.ELSR[19].BIT.ELS = 0x5D; /* Links the LPT compare match event of ELC (5Dh)

to ICU (LPT dedicated interrupt). */

 /* ---- LPT initialization ---- */

 Lpt_period = 100000; /* LPT cycle = 100000[µs] */
 lpt_err = R_LPT_Open(lpt_period);

 if (LPT_SUCCESS != lpt_err)

 {

 while(1) { };

 }

 /* ---- LPT compare match 0 initialization ---- */

 cmt_period = 100000; /* compare match cycle = 100000[µs] */

 chan = LPT_CH0; /* compare match channel 0 */

 err = R_LPT_InitChan (chan, cmt_period);

 if (LPT_SUCCESS != err)

 {

 while(1) { };

 }

 /* ---- Start LPT count. ---- */

 lpt_err = R_LPT_Control(LPT_CMD_START);

 if (LPT_SUCCESS != lpt_err)

 {

 while(1) { };

 }

 while(1)

 {

 /* ---- Enter software standby mode. ---- */

 lpc_err = R_LPC_LowPowerModeActivate(NULL);

 if (LPC_SUCCESS != lpc_err)

 {

When the IWDT-dedicated on-chip oscillator is selected
as the LPT clock source, the setting not to stop the clock
during software standby is required.

Transition from the ELC operation enable
state to normal operation mode is made
using the ELSR19I interrupt.

The ELSR19I interrupt is triggered by
completion of the transition from software
standby mode to the ELC operation
enable state.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 32 of 42

May.31.23

 while(1) { };

 }

 /* ---- Write user processing after exiting software standby mode. ---- */

 }

}

Figure 5.1 Example of Processing for Periodically Exiting Software Standby Mode Using the LPT

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 33 of 42

May.31.23

6. Demo Projects

Demo projects are complete stand-alone programs. They include function main() that utilizes the module
and its dependent modules (e.g. r_bsp). This FIT module has the following demo projects:

The following demo project works only on Ver 3.00 or later.

6.1 lpt_demo_rskrx231

This section describes the sample code for periodically exiting software standby mode using the LPT.

The demo will be executed through these steps:

(1) Configured LPC module for Software standby mode

(2) Configure IWDT clock not to stop counting in Software standby mode

(3) Cancel module stop-state for ELC

(4) Disable DTC activation so the interrupt request will send directly to CPU

(5) Configure ELC module Low-power timer count down match event

(6) Start ELC and LPT operation

(7) Main loop: Enter software standby mode in 3 seconds and then return back to normal operation mode

Notes:

• This program uses the LPC FIT module. About the LPC FIT module, please refer to Renesas
Electronics Website

• When debugging with e2 studio, to know if the program is in Software Standby mode or Normal
mode, user can observe the program running status on the bottom left corner of e2 studio
window:

o Standby: the program is in Software Standby mode.

o Running: the program is in Normal mode.

• To enable the LPT clock source, the LTP clock source (BSP_CFG_LPT_CLOCK_SOURCE) of
BSP is changed from the initial value to the IWDT dedicated on-chip oscillator .

How to confirm:

• Program will print out a message on the console notify about entering software standby mode.

• Program will enter software standby mode in 3 seconds, CPU and all peripheral functions
without setting of module stop state will stop in this mode.

• After 3 seconds, program will return back to normal mode, print out a notify message on the
console and blink LED 0 in 1 second.

6.2 lpt_demo_rskrx113

The lpt_demo_rskrx113 program is identical to lpt_demo_rskrx231.

Note: To enable the LPT clock source, the LPT clock source (BSP_CFG_LPT_CLOCK_SOURCE) of BSP is
changed from the initial value to the IWDT dedicated on-chip oscillator.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 34 of 42

May.31.23

6.3 lpt_demo_tbkrx140

This section describes the sample code for PWM output using the LPT.

The demo will be executed through these steps:

(1) Configured LPT module

(2) Set the PWM waveform output

(3) Set the pins for PWM output

(4) Start PWM operation

(5) Main loop: Start LPT operation and the PWM waveform is output at a duty ratio of 50% (1 second
interval)

Notes:

• To enable the LPT clock source, the LTP clock source (BSP_CFG_LPT_CLOCK_SOURCE) of
BSP is changed from the initial value to the IWDT dedicated on-chip oscillator.

How to confirm:

• Attach the terminal of a measuring device such as an oscilloscope to P26 (CN16).

• When you run the program, you can see the PWM output with a duty ratio of 50% (1 second
interval).

6.4 Adding a Demo to a Workspace

Demo projects are found in the FIT Demos subdirectory of the distribution file for this application note. To
add a demo project to a workspace, select File >> Import >> General >> Existing Projects into Workspace ,
then click “Next”. From the Import Projects dialog, choose the “Select archive file” radio button. “Browse” to
the FIT Demos subdirectory, select the desired demo zip file, then click “Finish”.

6.5 Downloading Demo Projects

Demo projects are not included in the RX Driver Package. When using the demo project, the FIT module
needs to be downloaded. To download the FIT module, right click on the required application note and select
“Sample Code (download)” from the context menu in the Smart Browser >> Application Notes tab.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 35 of 42

May.31.23

7. Appendices

7.1 Operation Confirmation Environment

This section describes operation confirmation environment for the LPT FIT module.

Table 7.1 Operation Confirmation Environment (Rev. 4.00)

Item Contents

Integrated development

environment
Renesas Electronics e2 studio 2022-10 (22.10.0)

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.04.00

Compiler option: Compiler option is default setting when using the Smart

Configurator.

GCC for Renesas RX 8.3.0.202202

Compiler option: Compiler option is default setting when using the Smart

Configurator.

IAR C/C++ Compiler for Renesas RX version 4.20.3
Compiler option: The default settings of the integrated development

environment.

Endian Big endian/little endian

Revision of the module Rev.4.00

Board used Renesas Solution Starter Kit for RX23E-B (product No: RTK0ES1001C00001BJ)

Table 7.2 Operation Confirmation Environment (Rev. 3.01)

Item Contents

Integrated development

environment
Renesas Electronics e2 studio 2022-01 (22.4.0)

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00

Compiler option: Compiler option is default setting when using the Smart

Configurator.

GCC for Renesas RX 8.3.0.202104

Compiler option: Compiler option is default setting when using the Smart

Configurator.

IAR C/C++ Compiler for Renesas RX version 4.20.1
Compiler option: The default settings of the integrated development

environment.

Endian Big endian/little endian

Revision of the module Rev.3.01

Board used Target board for RX140（product No: RTK5RX140xxxxxxxxx）

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 36 of 42

May.31.23

Table 7.3 Operation Confirmation Environment (Rev. 3.00)

Item Contents

Integrated development

environment
Renesas Electronics e2 studio 2021-07 (21.1.0)

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.03.00

Compiler option: The following option is added to the default settings of the

integrated development environment.

-lang = c99

GCC for Renesas RX 8.3.0.202004

Compiler option: The following option is added to the default settings of

the integrated development environment.

-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.20.1
Compiler option: The default settings of the integrated development

environment.

Endian Big endian/little endian

Revision of the module Rev.3.00

Board used

Renesas Starter Kit for RX113（product No: R0K505113SxxxBE）

Renesas Starter Kit for RX130（product No: R0K5051SxxxBE）

Target board for RX140（product No: RTK5RX140xxxxxxxxx）

Renesas Starter Kit for RX231（product No: R0K505231SxxxBE）

Table 7.4 Operation Confirmation Environment (Rev. 2.01)

Item Contents

Integrated development

environment
Renesas Electronics e2 studio 2020-10 (20.10.0)

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00

Compiler option: The following option is added to the default settings of the

integrated development environment.

-lang = c99

Endian Big endian/little endian

Revision of the module Rev.2.01

Board used
Renesas Starter Kit for RX113 (product No: R0K505113SxxxBE)

Renesas Starter Kit for RX231 (product No: R0K505231SxxxBE)

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 37 of 42

May.31.23

Table 7.5 Operation Confirmation Environment (Rev. 2.00)

Item Contents

Integrated development

environment

Renesas Electronics e2 studio Version 7.8.0

IAR Embedded Workbench for Renesas 4.14.01

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.02.00

Compiler option: The following option is added to the default settings of the

integrated development environment.

-lang = c99

GCC for Renesas RX 8.03.00.201904

Compiler option: The following option is added to the default settings of the

integrated development environment.

-std=gnu99

IAR C/C++ Compiler for Renesas RX version 4.14.01
Compiler option: The default settings of the integrated development

environment.

Endian Big endian/little endian

Revision of the module Rev.2.00

Board used
Renesas Solution Starter Kit for RX23W (product No.: RTK5523Wxxxxxxxxxx)

Renesas Starter Kit for RX231 (product No.: R0K505231xxxxxx)

Table 7.6 Operation Confirmation Environment (Rev. 1.23)

Item Contents

Integrated development

environment
Renesas Electronics e2 studio Version 7.3.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00

Compiler option: The following option is added to the default settings of the

integrated development environment.

-lang = c99

Endian Big endian/little endian

Revision of the module Rev.1.23

Table 7.7 Operation Confirmation Environment (Rev. 1.22)

Item Contents

Integrated development

environment
Renesas Electronics e2 studio Version 7.3.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V3.01.00

Compiler option: The following option is added to the default settings of the

integrated development environment.

-lang = c99

Endian Big endian/little endian

Revision of the module Rev.1.22

Board used Renesas Starter Kit+ for RX113 (product No: R0K505113SxxxBE)

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 38 of 42

May.31.23

Table 7.8 Operation Confirmation Environment (Rev. 1.21)

Item Contents

Integrated development

environment
Renesas Electronics e2 studio Version 6.0.0

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00

Compiler option: The following option is added to the default settings of the

integrated development environment.

-lang = c99

Endian Big endian/little endian

Revision of the module Rev.1.21

Board used Renesas Starter Kit+ for RX130-512KB (product No: RTK5051308SxxxxxBE)

Table 7.9 Operation Confirmation Environment (Rev. 1.20)

Item Contents

Integrated development

environment
Renesas Electronics e2 studio Version 6.0.0.001

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.07.00

Compiler option: The following option is added to the default settings of the

integrated development environment.

-lang = c99

Endian Big endian/little endian

Revision of the module Rev.1.20

Board used Renesas Starter Kit+ for RX130-512KB (product No: RTK5051308SxxxxxBE)

Table 7.10 Operation Confirmation Environment (Rev. 1.11)

Item Contents

Integrated development

environment
Renesas Electronics e2 studio Version 5.0.1.005

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.05.00

Compiler option: The following option is added to the default settings of the

integrated development environment.

-lang = c99

Endian Big endian/little endian

Revision of the module Rev.1.11

Board used

Renesas Starter Kit+ for RX113 (product No: R0K505113SxxxBE)

Renesas Starter Kit+ for RX231 (product No: R0K505231SxxxBE)

Renesas Starter Kit+ for RX130 (product No: RTK5005130SxxxxxBE)

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 39 of 42

May.31.23

Table 7.11 Operation Confirmation Environment (Rev. 1.10)

Item Contents

Integrated development

environment
Renesas Electronics e2 studio Version 5.0.0.043

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.04.01

Compiler option: The following option is added to the default settings of the

integrated development environment.

-lang = c99

Endian Big endian/little endian

Revision of the module Rev.1.10

Board used

Renesas Starter Kit+ for RX113 (product No: R0K505113SxxxBE)

Renesas Starter Kit+ for RX231 (product No: R0K505231SxxxBE)

Renesas Starter Kit+ for RX130 (product No: RTK5005130SxxxxxBE)

Table 7.12 Operation Confirmation Environment (Rev. 1.00)

Item Contents

Integrated development

environment
Renesas Electronics e2 studio Version 4.2.0.012

C compiler

Renesas Electronics C/C++ Compiler Package for RX Family V2.04.01

Compiler option: The following option is added to the default settings of the

integrated development environment.

-lang = c99

Endian Big endian/little endian

Revision of the module Rev.1.00

Board used Renesas Starter Kit+ for RX113 (product No: R0K505113SxxxBE)

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 40 of 42

May.31.23

7.2 Troubleshooting

(1) Q: I have added the FIT module to the project and built it. Then I got the error: Could not open source file
“platform.h”.

A: The FIT module may not be added to the project properly. Check if the method for adding FIT modules
is correct with the following documents:

⚫ Using CS+:

Application note “Adding Firmware Integration Technology Modules to CS+ Projects
(R01AN1826)”

⚫ Using e2 studio:

Application note “Adding Firmware Integration Technology Modules to Projects (R01AN1723)”

When using a FIT module, the board support package FIT module (BSP module) must also be added to
the project. Refer to the application note “Board Support Package Module Using Firmware Integration
Technology (R01AN1685)”.

(2) Q: I have added the FIT module to the project and built it. Then I got the error: This MCU is not supported
by the current r_lpt_rx module.

A: The FIT module you added may not support the target device chosen in your project. Check the
supported devices of added FIT modules.

(3) Q: I have added the FIT module to the project and built it. Then I got an error for when the configuration
setting is wrong.

A: The setting in the file “r_lpt_rx_config.h” may be wrong. Check the file “r_lpt_rx_config.h”. If there is a
wrong setting, set the correct value for that. Refer to 2.7, Configuration Overview for details.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 41 of 42

May.31.23

Revision History

Rev. Date

Description

Page Summary

1.00 Mar.1.16 - First edition issued

1.10 July.1.16 all Added supported devices for RX130, RX231 and RX230.

All Improved the Accuracy of the LPT periodic time when using

the IWDT-dedicated on-chip oscillator to LPT clock source.

10 Changed the periodic range for the argument of the API when

LPT using the IWDT oscillator by improved influence to the

Accuracy of the LPT periodic time.

10 Added the note for the LPT periodic time on special note of

section 3.1.

1.11 Oct.1.16 All Added the LPT counter reset command

(LPT_CMD_COUNT_RESET) for the R_LPT_Control function.

 8, 13 Added LPT_ERR_CONDITION_NOT_MET to the Return

Values.

 Program Added the LPT counter reset command

(LPT_CMD_COUNT_RESET) for the R_LPT_Control function.

 Program Added LPT_ERR_CONDITION_NOT_MET as the return

value.

1.20 Oct.1.17 all Added supported devices for RX130-512KB.

 1 Added the following document to Related Documents.

“Renesas e2 studio Smart Configurator User Guide

(R20AN0451)”

 3, 7 Move "Required memory size" in Chapter 1.2 to chapter 2.7.

 8 Revised 2.11 Adding the FIT Module to Your Project.

 17, 18 Added 5.1 Operation Confirmation Environment.

 19 Added 5.2 Troubleshooting.

1.21 Oct.31.17 17 Added 5. Demo Projects

 18 6.1 Operation Confirmation Environment:

Added table for Rev.1.21

 20 6.2 Troubleshooting: Added 2 more questions

1.22 Nov.16.18 – Added document number in XML

 8 Updated “2.11 Adding the FIT Module to Your Project”

Added “2.12 “for”, “while” and “do while” statements”

 18 Added table for Rev.1.22

1.23 Apr.1.19 – Changes associated with functions:

Added support setting function of configuration option Using

GUI on Smart Configurator.

[Description]

Added a setting file to support configuration option setting

function by GUI.

 3 Moved 1.3 API Overview.

 4 Changed 1.4 Processing Example.

 5 Changed 1.5 State Transition.

 6 Changed 2 API Information.

Added 2.4 Interrupt Vector.

 7 Changed 2.8 Code Size.

 8 Changed 2.9 Parameters.

Deleted Callback Function.

 9 Changed 2.12 “for”, “while” and “do while” statements.

 15 Changed R_LPT_GetVersion.

RX Family LPT Module Using Firmware Integration Technology

R01AN2571EJ0400 Rev.4.00 Page 42 of 42

May.31.23

Rev. Date

Description

Page Summary

1.23 Apr.1.19 19 6.1 Operation Confirmation Environment:

Added table for Rev.1.23.

2.00 Jun.10.20 - Added support for RX23W

Modified comment of API function to Doxygen style.

Update the following compilers

- GCC for Renesas RX

- IAR C/C++ Compiler for Renesas RX.

 1 Added Target Compilers.

 1 Related Documents: Deleted the following documents

Firmware Integration Technology User’s Manual (R01AN1833)

RX Family Adding Firmware Integration Technology Modules

to Projects (R01AN1723)

RX Family Adding Firmware Integration Technology Modules

to CS+ Projects (R01AN1826)

Renesas e2 studio Smart Configurator User Guide

(R20AN0451)

 7 Changed 2.8 Code Size.

 8 Changed 2.11 Adding the FIT Module to Your Project.

 9 Deleted Target devices describing “WAIT_LOOP”.

 10..15 Deleted the Reentrant for each API in 3. API Functions.

 19 Changed 5.1 lpt_demo_rskrx231.

Changed 5.2 lpt_demo_rskrx113.

 21 6.1 Operation Confirmation Environment:

Added table for Rev.2.00.

2.01 Nov.30.20 - Updated the sample code project due to the upgrade of the

development environment.

3.00 Jul.31.21 - Added support for RX140.

Added function R_LPT_InitChan, R_LPT_SetCMT,

R_LPT_FinalChan, R_LPT_InitPWM.

Added the PWM start/stop command

(LPT_CMD_PWM_START/LPT_CMD_PWM_STOP)

for the R_LPT_Control function.

3.01 Jan.31.22 13..15 Delete to “2.12.1 Adding FIT Modules by using the Smart

Configurator standalone version”

 Program Added note for RX140 UMH Rev1.00

r_lpt_rx140.c Fixed the initialization setting of LPT

4.00 May.31.23 All Added supported devices for RX23E-B.

9 Change the specification of parameter check definition.

Program r_lpt_rx_config.h Change LPT_CFG_PARAM_CHECKING to

LPT_CFG_PARAM_CHECKING_ENABLE.

r_lpt_rx_private.h Removed definition of

LPT_CFG_PARAM_CHECKING_ENABLE.

General Precautions in the Handling of Microprocessing Unit and Microcontroller
Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps

must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be

adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity.

Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and

measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor

devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of

register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset

pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins

in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the

level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O

pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal

elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are

generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of

the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal

become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program

execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator

during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal

produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

6. Voltage application waveform at input pin

Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL

(Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the

input level is fixed, and also in the transition period when the input level passes through the area between VIL (Max.) and VIH (Min.).

7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these

addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms

of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values,

operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-

evaluation test for the given product.

© 2023 Renesas Electronics Corporation. All rights reserved.

Notice

1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products

and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your

product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use

of these circuits, software, or information.

2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights,

or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this

document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.

3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics

or others.

4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export,

manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.

5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any

and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.

6. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for

each Renesas Electronics product depends on the product’s quality grade, as indicated below.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home

electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key

financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas

Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to

human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space

system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics

disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product

that is inconsistent with any Renesas Electronics data sheet, user’s manual or other Renesas Electronics document.

7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics

hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but

not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS

ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING

RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE,

HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION (“Vulnerability Issues”). RENESAS ELECTRONICS DISCLAIMS ANY AND

ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT

PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH

RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO

THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.

8. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for

Handling and Using Semiconductor Devices” in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by

Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas

Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such

specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific

characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability

product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics

products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily

injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as

safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for

aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are

responsible for evaluating the safety of the final products or systems manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas

Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of

controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these

applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance

with applicable laws and regulations.

11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations

promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.

12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or

transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.

13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas

Electronics products.

(Note1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled

subsidiaries.

(Note2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters Contact information
TOYOSU FORESIA, 3-2-24 Toyosu,

Koto-ku, Tokyo 135-0061, Japan

www.renesas.com

 For further information on a product, technology, the most up-to-date

version of a document, or your nearest sales office, please visit:

www.renesas.com/contact/.

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics

Corporation. All trademarks and registered trademarks are the property

of their respective owners.

https://www.renesas.com/
https://www.renesas.com/contact/

	1. Specifications
	1.1 LPT FIT Module
	1.2 Overview of the LPT FIT Module
	1.3 API Overview
	1.4 Processing Example
	1.5 State Transition

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Interrupt Vector
	2.5 Header Files
	2.6 Integer Types
	2.7 Configuration Overview
	2.8 Code Size
	2.9 Parameters
	2.10 Return Values
	2.11 Adding the FIT Module to Your Project

	3. API Functions
	R_LPT_Open ()
	R_LPT_InitChan ()
	R_LPT_SetCMT ()
	R_LPT_InitPWM ()
	R_LPT_Control ()
	R_LPT_FinalChan ()
	R_LPT_Close ()
	R_LPT_GetVersion ()

	4. Pin Setting
	5. Sample Code
	6. Demo Projects
	6.1 lpt_demo_rskrx231
	6.2 lpt_demo_rskrx113
	6.3 lpt_demo_tbkrx140
	6.4 Adding a Demo to a Workspace
	6.5 Downloading Demo Projects

	7. Appendices
	7.1 Operation Confirmation Environment
	7.2 Troubleshooting

	Revision History
	General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products
	Notice

