
 APPLICATION NOTE

R01AN2175EJ0101 Rev. 1.01 Page 1 of 22
Jan. 27, 2015

RX Family
IrDA Module
Using Firmware Integration Technology

Abstract
This document describes the IrDA module using firmware integration technology (FIT).

The module generates IrDA communication waveforms, and transmits and receives data via infrared light using the
infrared data association (IrDA) interface and serial communications interface (SCI). This module is hereinafter referred
to as the IrDA FIT module.

Products
The module currently supports the following product.

 RX113 Group

When using this application note with other Renesas MCUs, careful evaluation is recommended after making
modifications to comply with the alternate MCU.

Related Documents
For additional information associated with this document, refer to the following application notes.

 Firmware Integration Technology User's Manual (R01AN1833EU)

 Board Support Package Module Using Firmware Integration Technology (R01AN1685EU)

 Adding Firmware Integration Technology Modules to Projects (R01AN1723EU)

 Adding Firmware Integration Technology Modules to CS+ Projects (R01AN1826EJ)

R01AN2175EJ0101
Rev. 1.01

Jan. 27, 2015

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 2 of 22
Jan. 27, 2015

Contents

1. Overview ... 3
1.1 IrDA FIT Module ... 3
1.2 Outline of the APIs ... 3
1.3 Overview of the IrDA FIT Module .. 4
1.4 State Transitions .. 5

2. API Information ... 6
2.1 Hardware Requirements .. 6
2.2 Software Requirements ... 6
2.3 Supported Toolchains .. 6
2.4 Header Files ... 6
2.5 Integer Types ... 6
2.6 Configuration Overview .. 7
2.7 Parameters... 8
2.8 Return Values .. 8
2.9 Callback Function .. 9
2.10 Adding the FIT Module to Your Project .. 10

3. API Functions ... 11
3.1 R_IRDA_SCI_Open () .. 11
3.2 R_IRDA_SCI_Close () ... 13
3.3 R_IRDA_SCI_Send () .. 15
3.4 R_IRDA_SCI_Receive () ... 17
3.5 R_IRDA_SCI_Control () ... 19
3.6 R_IRDA_SCI_GetVersion () .. 21

4. Provided Modules ... 22

5. Reference Documents .. 22

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 3 of 22
Jan. 27, 2015

1. Overview
This module supports the RX Series peripheral function, IrDA, and transmits and receives IrDA data communication
waveforms based on the IrDA (Infrared Data Association) standard 1.0.

The module supports the TXI, TEI, RXI, and ERI interrupts.

The module cannot be used in cooperation with the DMAC, DTC, or ELC, and does not support multiple interrupts.
The I flag must be set to 1 for using interrupts in the module.

1.1 IrDA FIT Module
This module is implemented in a project and used as the APIs. Refer to 2.10 Adding the FIT Module to Your Project for
details on implementing the module to the project.

1.2 Outline of the APIs
Table 1.1 lists the API functions included in the module and Table 1.2 lists the Required Memory Sizes.

Table 1.1 API Functions

Function Description
R_IRDA_SCI_Open Initializes the IrDA for using this module.

R_IRDA_SCI_Close Releases the IrDA module.

R_IRDA_SCI_Send Starts IrDA data transmission.

R_IRDA_SCI_Receive Starts IrDA data reception.

R_IRDA_SCI_Control Performs internal processing such as releasing the transmit or receive buffer.

R_IRDA_SCI_GetVersion Returns the module version.

Table 1.2 Required Memory Sizes

Memory Used Size Remarks
ROM 2086 bytes
RAM 184 bytes
Maximum user stack usage 80 bytes
Maximum interrupt stack usage 76 bytes
* The configuration options when measuring each memory size are set to default values listed in 2.6

Configuration Overview.
* The table lists values when the default values are set to the compile options.

The required memory size varies depending on the C compiler version and compile options.

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 4 of 22
Jan. 27, 2015

1.3 Overview of the IrDA FIT Module
In this module, sizes of the transmit and receive buffers, and communication pins can be selected by specifying
constants defined in config.h.

The transmit and receive buffer sizes are specified with IRDA_SCI_CFG_CHi_TX_BUFSIZ and
IRDA_SCI_CFG_CHi_RX_BUFSIZ, and they can be changed depending on the usage amount.

The communication pins are specified with IRDA_SCI_CFG_CHi_IRTXD_SEL and
IRDA_SCI_CFG_CHi_IRRXD_SEL.

The results selected with the constants can be checked in r_irda_sci_rxXXX.h (rxXXX indicates the product used).

The settings required for IrDA communication is configured by calling the R_IRDA_SCI_Open function in the module.
The bit rate, high pulse width, and interrupt priority level can be specified by settings in the user program. With these
settings, the IrDA is released from the module-stop state, and registers required for using the IrDA are specified.

The R_IRDA_SCI_Open function returns the address for the handle information as the response. Then the handle works
as an internal structure that maintains pointers to the I/O registers for the channel, buffers, or other important
information until the R_IRDA_SCI_Close function is executed.

To change communication settings such as the bit rate after the communication is complete, execute the
R_IRDA_SCI_Close function, specify arguments to be changed, and then execute the R_IRDA_SCI_Open function.

When transmitting data, specify the address for the transmit data and the transmit size, and then call the
R_IRDA_SCI_Send function. If no transmission is being performed, write the first byte of data to the TDR register and
store the rest of data in the transmit buffer. If the transmission is being performed, all transmit data is stored in the
transmit buffer and the data is written to the TDR register in order within the TXI interrupt handler. In the TXI interrupt
handler, the size of data stored in the transmit buffer is checked and the data in the transmit buffer is written to the TDR
register. The TEI interrupt is enabled with the TXI interrupt while no data is stored in the transmit buffer, and the
callback function is called in the TEI interrupt handler.

The RXI interrupt is used for data reception. Data is stored in the receive buffer and then the callback function is called
in the RXI interrupt handler. Data in the receive buffer is read with the R_IRDA_SCI_Receive function by specifying
the area address for data storage and the size for read operation. If a communication error occurs during communication,
the ERI interrupt occurs. In the ERI interrupt handler, the type of communication error and received data are stored, and
then the callback function is called.

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 5 of 22
Jan. 27, 2015

1.4 State Transitions
The module has the following three states: uninitialized state, idle state, and communicating state.

Figure 1.1 shows the State Transitions in the IrDA FIT Module.

R_IRDA_SCI_Close() called
[Communication condition changed]/[Module closed]

R_IRDA_SCI_GetVersion() called
R_IRDA_SCI_Send() called
 [Error occurred]/Sets the error state when returning
R_IRDA_SCI_Receive() called
 [Error occurred]/Sets the error state when returning
R_IRDA_SCI_Control() called
 [Normal operation]/Controls the buffer
 [Error occurred]/Sets the error state when returning

[Reset released]

Notation conventions

State
Event[condition]/Action on the event

R_IRDA_SCI_Open() called
[Communication condition changed]/[Module opened]

R_IRDA_SCI_Receive() called
 [Normal operation]/Reads received data

Idle state

Uninitialized state

Data transmission
 No transmit data
 [Normal end]/Ends communication
Data reception
 No reception

Data transmission
 R_IRDA_SCI_Send() called
 [Normal operation]/Starts transmission
Data reception
 Starts reception

[Data transmission/reception]
Communicating

Communicating

Figure 1.1 State Transitions in the IrDA FIT Module

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 6 of 22
Jan. 27, 2015

2. API Information
The sample code accompanying this application note has been run and confirmed under the conditions below.

2.1 Hardware Requirements
This driver requires your MCU support the following feature:

 The IrDA interface

2.2 Software Requirements
This driver is dependent upon the following packages:

 r_bsp

 r_byteq

2.3 Supported Toolchains
This driver is tested and works with the following toolchain:

 Renesas RX Toolchain v.2.02

2.4 Header Files
All API calls and their supporting interface definitions are located in r_irda_sci_rx_if.h. Available setting options when
compiling are located in r_irda_sci_rx_config.h. Files r_irda_sci_rx_if.h and r_irda_sci_rx_config.h must be included in
the user application.

2.5 Integer Types
This project uses ANSI C99. These types are defined in stdint.h.

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 7 of 22
Jan. 27, 2015

2.6 Configuration Overview
The configuration options in this module are specified in r_irda_sci_rx_config.h. The option names and setting values
are listed in the table below.

Configuration options in r_irda_sci_rx_config.h

#define
IRDA_SCI_CFG_PARAM_CHECKING (1)

Selects whether to include parameter checking in the code. The
parameter checking is processing to check parameters and is
located in the beginning of each function.
- When this is set to 0, code for parameter checking is not
generated.
- When this is set to 1, code for parameter checking is generated

and executed.
#define IRDA_SCI_CFG_CHi_INCLUDED
i = 0 to 12
- When i = 5, the default value = 1
- When i = other than 5, the default

value = 0

Selects whether to use available channels.
- When this is set to 0, code for relevant processes for the channel

is not generated.
- When this is set to 1, code for relevant processes for the channel

is generated.
IRDA_SCI_CFG_CHi_IRTXD_SEL
i = 0 to 12
- When i = 5, the default value = 1

Selects the IRTXD pin for each channel.
- For channel 5, 1(PC2), 2(PA3), or 3(PA2) can be selected.

IRDA_SCI_CFG_CHi_IRRXD_SEL
i = 0 to 12
- When i = 5, the default value = 1

Selects the IRRXD pin for each channel.
- For channel 5, 1(PC3) or 2(PA4) can be selected.

#define
IRDA_SCI_CFG_CHi_IRTXD_INACTIVE_LEVEL
i = 0 to 12
- When i = 5, the default value = 1

Indicates the level of the selected IRTXD pin when the
R_IRDA_SCI_Close function is executed.
- When this is set to 0, the selected IRTXD pin outputs low.
- When this is set to 1, the selected IRTXD pin outputs high.

#define
IRDA_SCI_CFG_CHi_IRRXD_INACTIVE_LEVEL
i = 0 to 12
- When i = 5, the default value = 1

Indicates the level of the selected IRRXD pin when the
R_IRDA_SCI_Close function is executed.
- When this is set to 0, the selected IRRXD pin outputs low.
- When this is set to 1, the selected IRRXD pin outputs high.

#define
IRDA_SCI_CFG_CHi_DATA_POLARITY
i = 0 to 12
- When i = 5, the default value = 1

Selects the high pulse width that the IRTXD pin outputs during
communication.
The value to be selected is the same value of the IrDA Clock Select
bit in the IrDA Control Register (IRCR.IRCKS bit). Read the
explanation for the bit and specify the value for this option.

#define
IRDA_SCI_CFG_CHi_TX_BUFSIZ (80)
i = 0 to 12
- Default value = 80

Specifies the size of the buffer used as the transmit queue for each
channel.
If IRDA_SCI_CFG_CHi_INCLUDED for the corresponding
channel is set to 0, the buffer is not maintained.

#define
IRDA_SCI_CFG_CH0_RX_BUFSIZ (80)
i = 0 to 12
- Default value = 80

Specifies the size of the buffer used as the receive queue for each
channel.
If IRDA_SCI_CFG_CHi_INCLUDED for the corresponding
channel is set to 0, the buffer is not maintained.

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 8 of 22
Jan. 27, 2015

2.7 Parameters
This section describes the parameter structure used by the API functions in this module. The structure is located in
r_irda_sci_rx_if.h as are the external declarations of API functions.

typedef struct st_irda_sci
{
 uint32_t baud_rate; /* Communication bit rate */
 uint8_t clk_out_width; /* Setting value for the high pulse output width of the

IrDA IRTXD pin */
 uint8_t int_priority; /* Interrupt priority level for TXI, TEI, RXI, and ERI;

1 = low, 15 = high */
} irda_sci_t;

typedef struct st_irda_sci_ch_ctrl * irda_sci_hdl_t; /* Handle for the IrDA channel */

The structure ‘irda_sci_hdl_t’ has to be declared with the automatic variable or the global variable for each channel.
This structure operates using the structure variable specified when calling the R_IRDA_SCI_Open function. After the
R_IRDA_SCI_Open function is executed, the area for the structure has to be maintained until the R_IRDA_SCI_Close
function is executed.

2.8 Return Values
This section describes return values of API functions. This enumeration is located in r_irda_sci_rx_if.h as are the
external declarations of API functions.

typedef enum /* Status code of the IrDA APIs */
{
 IRDA_SCI_SUCCESS, /* Processing completed successfully. */
 IRDA_SCI_ERR_LOCK_FUNC, /* Selected channel has been hardware-locked. */
 IRDA_SCI_ERR_BAD_CHAN, /* Invalid channel number */
 IRDA_SCI_ERR_OMITTED_CHAN, /* IRDA_SCI_CFG_CHi_INCLUDED in r_irda_sci_rx_config.h

is 0. */
 IRDA_SCI_ERR_CH_NOT_CLOSED, /* Channel currently in operation.

The specified channel has already been used */
 IRDA_SCI_ERR_INVALID_ARG, /* Invalid member included in the structure. */
 IRDA_SCI_ERR_NULL_PTR, /* Specified structure member is NULL. */
 IRDA_SCI_ERR_QUEUE_UNAVAILABLE, /* Transmit queue, receive queue, or both

cannot be opened. */
 IRDA_SCI_ERR_INSUFFICIENT_SPACE, /* Not enough space in the queue to store

all data. */
 IRDA_SCI_ERR_INSUFFICIENT_DATA, /* Receive queue does not have data for

the specified size. */
} irda_sci_err_t;

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 9 of 22
Jan. 27, 2015

2.9 Callback Function
In this module, the callback function is called when the TEI, RXI, or ERI interrupt occurs.

To specify the callback function, set the address of the function to be registered as the callback function to the argument
of the R_IRDA_SCI_Open function.

The callback function has one parameter. The parameter is the pointer to the structure and defined as void type to be
consistent with the callback functions in other FIT modules.

typedef struct st_irda_sci_cb_args
{
 irda_sci_hdl_t hdl;
 irda_sci_cb_event_t event;
 uint8_t byte; /* Receive data */
} irda_sci_cb_args_t;

The ‘hdl’ parameter is the handle for the channel, the ‘event’ parameter is defined in the following enum, and the ‘byte’
parameter stores the receive data.

typedef enum e_irda_sci_cb_event
{
 IRDA_SCI_EVT_TEI, /* TEI interrupt occurred; transmitter is in idle state. */
 IRDA_SCI_EVT_RX_CHAR, /* A character received and already placed in the queue. */
 IRDA_SCI_EVT_RXBUF_OVFL, /* Receive queue is full and cannot store data

anymore. */
 IRDA_SCI_EVT_FRAMING_ERR, /* Hardware framing error in the receiver. */
 IRDA_SCI_EVT_OVFL_ERR /* Hardware overrun error in the receiver. */
} irda_sci_cb_event_t;

The following shows a sample of the callback function.

void MyCallback(void *p_args)
{
 irda_sci_cb_args_t *args;
 args = (irda_sci_cb_args_t *)p_args;
 if (IRDA_SCI_EVT_RX_CHAR == args->event)
 {
 // from RXI interrupt; character placed in queue is in args->byte
 nop();
 }
#if SCI_CFG_TEI_INCLUDED
 else if (IRDA_SCI_EVT_TEI == args->event)
 {
 // from TEI interrupt; transmitter is idle
 // possibly disable external transceiver here
 nop();
 }
#endif
 else if (IRDA_SCI_EVT_RXBUF_OVFL == args->event)
 {
 // from RXI interrupt; receive queue is full
 // unsaved char is in args->byte
 // will need to increase buffer size or reduce baud rate
 nop();
 }

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 10 of 22
Jan. 27, 2015

 else if (IRDA_SCI_EVT_OVFL_ERR == args->event)
 {
 // from ERI/Group12 interrupt; receiver overflow error occurred
 // error char is in args->byte
 // error condition is cleared in ERI routine
 nop();
 }
 else if (IRDA_SCI_EVT_FRAMING_ERR == args->event)
 {
 // from ERI/Group12 interrupt; receiver framing error occurred
 // error char is in args->byte; if = 0, received BREAK condition
 // error condition is cleared in ERI routine
 nop();
 }
}

2.10 Adding the FIT Module to Your Project
The FIT module must be added to each project in the e2 studio.

You can use the FIT plug-in to add the FIT module to your project, or the module can be added manually.

It is recommended to use the FIT plug-in as you can add the module to your project easily and also it will automatically
update the include file paths for you.

To add the FIT module using the plug-in, refer to chapter 2. “Adding FIT Modules to e2 studio Projects Using FIT
Plug-In” in the “Adding Firmware Integration Technology Modules to Projects” application note (R01AN1723EU).

To add the FIT module manually, refer to chapter 3. “Adding FIT Modules to e2 studio Projects Manually” in the
“Adding Firmware Integration Technology Modules to Projects (R01AN1723EU)”

When using the FIT module, the BSP FIT module also needs to be added. For details on adding the BSP FIT module,
refer to the “Board Support Package Module Using Firmware Integration Technology” application note
(R01AN1685EU).

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 11 of 22
Jan. 27, 2015

3. API Functions

3.1 R_IRDA_SCI_Open ()
This function configures the SCI to operate the IrDA, enables interrupts, configures port settings for pins IRTXD and
IRRXD, and returns the channel handle for use with other API functions.

Format
irda_sci_err_t R_IRDA_SCI_Open(uint8_t const chan,
 irda_sci_t * const p_cfg,
 void (* const p_callback)(void *p_args),
 irda_sci_hdl_t * const p_hdl);

Parameters
chan SCI channel used in the IrDA FIT module (available channel is channel 5)

p_cfg Pointer to the structure (refer to 2.7 Parameters for details)

p_callback Pointer to the function called from the interrupt which occurs at completion of a
reception/transmission (TEI) or detection of a receive error.

p_hdl Pointer to the handle for the channel

Return Values
IRDA_SCI_SUCCESS: /* Processing completed successfully. */
IRDA_SCI_ERR_LOCK_FUNC: /* Selected channel has been hardware-locked. */
IRDA_SCI_ERR_BAD_CHAN: /* Invalid channel number */
IRDA_SCI_ERR_OMITTED_CHAN: /* IRDA_SCI_CFG_CHi_INCLUDED in r_irda_sci_rx_config.h

is 0. */
IRDA_SCI_ERR_CH_NOT_CLOSED: /* Channel currently in operation.

The specified channel has already been used. */
IRDA_SCI_ERR_INVALID_ARG: /* Invalid member included in the structure. */
IRDA_SCI_ERR_QUEUE_UNAVAILABLE: Transmit queue, receive queue, or both cannot be opened. */

Properties
Prototyped in r_irda_sci_rx_if.h.

Description
The initialization is performed to start IrDA communication and returns the handle for use with other API functions to
‘*p_hdl’. Operations included in the initialization are as follows:

 Enables the IrDA functions and specifies the polarity of the communication pins (set the IRCR.IRE bit to 1 and
specify bits IRCR.IRRXINV and IRCR.IRTXINV).

 Initializes registers associated with SCI channel 5 (asynchronous mode, ABCS bit is 0, 2 stop bits).

 Enables SCI5 transmission (set the SCR.TE bit to 1).

 Specifies the Pmn pin function control register (PmnPFS (m = 4, C; n = 2, 3, 4)) for the IRRXD5 pin, and then
specifies the port mode register (PMR) to the peripheral function (set the corresponding bit in the PMR register to
1).

 Waits for 18 / (bit rate of 16 × SCI5).

 Specifies the high pulse width of the IRTXD output (specify the IRCR.IRCKS bit).

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 12 of 22
Jan. 27, 2015

 Enables the RXI and ERI interrupts (set the corresponding bit in the IER register to 1).

 Enables serial reception (set the SCR.RE bit to 1).

 Specifies the Pmn pin function control register (PmnPFS) for the IRTXD5 pin, and then specifies the port mode
register (PMR) to the peripheral function (set the corresponding bit in the PMR register to 1).

 Enables the TXI interrupt (set the corresponding bit in the IER register to 1).

Reentrant
No

Example
irda_sci_hdl_t Console;
void main(void)
{
 irda_sci_err_t err;
 irda_control config;

 config.baud_rate = 115200;
 config.clk_out_width = IRDA_SCI_OUT_WIDTH_3_16;
 config.int_priority = 2; /* 1=lowest, 15=highest */
 err = R_IRDA_SCI_Open(IRDA_SCI_CH5, &config, MyCallback, &Console);
 if (IRDA_SCI_SUCCESS != err)
 {
 while(1) { };
 }
 …
}

* Refer to 2.9 Callback Function for the sample of the callback function.

Special Notes
This API function implements the algorithm that calculates the optimum values of bits SMR.CKS, SEMR.ABCS, and
the BRR register according to BSP_PCLKB_HZ defined in mcu_info.h of the BSP module (1).

This API function also verifies the high pulse width of the IRTXD output is within the specification range (2).
Notes:

1. This does not guarantee a low bit error rate for all peripheral clock/bit rate combinations.
2. The specification range is as follows:

Minimum: 1.41 µs
Maximum: (3/16 + 2.5%) × bit rate or (3/16 × bit rate) + 1.08 µs

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 13 of 22
Jan. 27, 2015

3.2 R_IRDA_SCI_Close ()
To stop the IrDA, this function performs the initialization for the SCI channel specified with the handle, disables
interrupts, and configures port settings for pins IRTXD and IRRXD.

Format
irda_sci_err_t R_IRDA_SCI_Close(
 irda_sci_hdl_t const hdl /* Structure data */
)

Parameters
p_hdl Handle for the channel

Return Values
IRDA_SCI_SUCCESS: /* Processing completed successfully. */
IRDA_SCI_ERR_NULL_PTR: /* Specified structure member is NULL. */

Properties
Prototyped in r_irda_sci_rx_if.h.

Description
The initialization is performed to stop IrDA communication. Operations included in the initialization are as follows:

 Specifies the Pmn pin function control register (PmnPFS) for the IRTXD5 pin, and then specifies the port mode
register (PMR) to a general port (set the corresponding bit in the PMR register to 0).

 Disables the TXI and TEI interrupts (set the corresponding bit in the IER register to 0).

 Disables serial reception (set the SCR.RE bit to 0).

 Disables the RXI and ERI interrupts (set the corresponding bit in the IER register to 0).

 Initializes the high pulse width of the IRTXD output (specify the IRCR.IRCKS bit).

 Specifies the Pmn pin function control register (PmnPFS) for the IRRXD5 pin, and then specifies the port mode
register (PMR) to a general port (set the corresponding bit in the PMR register to 0).

 Disables SCI5 transmission (set the TE bit to 0).

 Initializes registers associated with SCI channel 5.

 Clears the IR flags for the TXI, TEI, RXI, and ERI interrupts.

 Disables the IrDA functions and sets the initial setting value to the polarity of the communication pins (set bits
IRCR.IRE, IRCR.IRRXINV, and IRCR.IRTXINV to 0).

Reentrant
No

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 14 of 22
Jan. 27, 2015

Example
irda_sci_hdl_t Console;

void main(void)
{
 irda_sci_err_t err;
 irda_control config;

 config.baud_rate = 115200;
 config.clk_out_width = IRDA_SCI_OUT_WIDTH_3_16;
 config.int_priority = 2; /* 1=lowest, 15=highest */
 err = R_IRDA_SCI_Open(IRDA_SCI_CH5, &config, MyCallback, &Console);
 if (IRDA_SCI_SUCCESS != err)
 {
 while(1) { };
 }
 …
 err = R_IRDA_SCI_Close(Console);
 if (IRDA_SCI_SUCCESS != err)
 {
 while(1) { };
 }
 ……
}

* Refer to 2.9 Callback Function for the sample of the callback function.

Special Notes
If this API function is called during transmission or reception, the ongoing transmission or reception is canceled.
Execute this function after the TEI interrupt is executed and also when not performing transmission and reception.

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 15 of 22
Jan. 27, 2015

3.3 R_IRDA_SCI_Send ()
When no transmission is being performed (IDLE state), this function sets the data to the transmit buffer register and
starts transmission. If transmission is being performed, the function stores the data in the transmit data queue, and then
performs transmission with an interrupt handler.

Format
irda_sci_err_t R_IRDA_SCI_Send(
 irda_sci_hdl_t const hdl /* Structure data */
)

Parameters
p_hdl Handle for the channel

Return Values
IRDA_SCI_SUCCESS: /* Processing completed successfully. */
IRDA_SCI_ERR_NULL_PTR: /* Specified structure member is NULL. */
IRDA_SCI_ERR_INSUFFICIENT_SPACE: /* Not enough space in the queue to store all data. */

Properties
Prototyped in r_irda_sci_rx_if.h.

Description
This API function stores transmit data in the transmit queue to transfer the data from the SCI channel specified by the
handle. When the API function is called, if no transmission is being performed, the function executes processing to start
transmission.

When the transmission is completed, the callback function specified with R_SCI_Open() is processed.

Reentrant
No

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 16 of 22
Jan. 27, 2015

Example
#define ONETIME_SEND_SIZE 16

irda_sci_hdl_t Console;
uint8_t data_send_buf[ONETIME_SEND_SIZE] =
{80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95};

void main(void)
{
 irda_sci_err_t err;
 irda_control config;
 uint16_t cnt;

 config.baud_rate = 115200;
 config.clk_out_width = IRDA_SCI_OUT_WIDTH_3_16;
 config.int_priority = 2; /* 1=lowest, 15=highest */
 err = R_IRDA_SCI_Open(IRDA_SCI_CH5, &config, MyCallback, &Console);
 if (IRDA_SCI_SUCCESS != err)
 {
 while(1) { };
 }
 /* Get the size of the send buffer, if there is free space, passing the

transmitted data. */
 R_IRDA_SCI_Control(Console, IRDA_SCI_CMD_TX_Q_BYTES_FREE, (void *)&cnt);
 if (cnt - ONETIME_SEND_SIZE > 0)
 {
 /* Pass the transmitted data. If transmission idle and starts transmission. */
 err = R_IRDA_SCI_Send(Console,&data_send_buf[0], ONETIME_SEND_SIZE);
 if (IRDA_SCI_SUCCESS != err)
 {
 while(1) { };
 }
 }
}

* Refer to 2.9 Callback Function for the sample of the callback function.

Special Notes
For the callback function executed at completion of transmission, refer to 2.9 Callback Function.

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 17 of 22
Jan. 27, 2015

3.4 R_IRDA_SCI_Receive ()
This API function reads the data stored in the receive queue with the RXI interrupt.

Format
irda_sci_err_t R_IRDA_SCI_Receive(
 irda_sci_hdl_t const hdl /* Structure data */
)

Parameters
p_hdl Handle for the channel

Return Values
IRDA_SCI_SUCCESS: /* Processing completed successfully. */
IRDA_SCI_ERR_NULL_PTR: /* Specified structure member is NULL. */
IRDA_SCI_ERR_INSUFFICIENT_ DATA: /* Receive queue does not have data for

the specified size. */

Properties
Prototyped in r_irda_sci_rx_if.h.

Description
This API function reads the received data from the receive queue corresponding to the SCI channel specified by the
handle. If the receive queue does not have data for the specified size, an error is returned and wait processing for
reception is not performed.

If a communication error occurs during reception, the callback function specified in R_SCI_Open() is processed. Thus
the received data is not read when an error occurs.

Reentrant
No

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 18 of 22
Jan. 27, 2015

Example
irda_sci_hdl_t Console;
uint8_t data_recv_buf[80];

void main(void)
{
 irda_sci_err_t err;
 irda_control config;
 uint16_t cnt;

 config.baud_rate = 115200;
 config.clk_out_width = IRDA_SCI_OUT_WIDTH_3_16;
 config.int_priority = 2; /* 1=lowest, 15=highest */
 err = R_IRDA_SCI_Open(IRDA_SCI_CH5, &config, MyCallback, &Console);
 if (IRDA_SCI_SUCCESS != err)
 {
 while(1) { };
 }
 /* Whether the buffer is receiving data, I want to check. */
 R_IRDA_SCI_Control(Console, IRDA_SCI_CMD_RX_Q_BYTES_AVAIL_TO_READ, (void *)&cnt);
 if (0 != cnt)
 {
 /* Retrieve the data of the size stored. */
 err = R_IRDA_SCI_Receive(Console,&data_recv_buf[cnt_data],cnt);
 if (IRDA_SCI_SUCCESS != err)
 {
 while(1) { };
 }
 }
}

* Refer to 2.9 Callback Function for the sample of the callback function.

Special Notes
For the callback function executed when a communication error occurs during reception, refer to 2.9 Callback Function.

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 19 of 22
Jan. 27, 2015

3.5 R_IRDA_SCI_Control ()
This API function verifies the status of the transmit and receive buffers. The usage size of the buffers can be checked or
the buffers can be cleared with appropriate commands.

Format
irda_sci_err_t R_IRDA_SCI_Control(
 irda_sci_hdl_t const hdl, /* Structure data */
 irda_sci_cmd_t const cmd, /* Command to be executed */
 void *p_args /* Pointer to arguments (content varies depending on the command) */
)

Parameters
p_hdl Handle for the channel

cmd Command to be executed (see below)

p_args Pointer to arguments and cast into the void* type. The content varies depending on the
command.

Commands which can be specified with ‘cmd’ are as follows:

typedef enum e_irda_sci_cmd
{
 IRDA_SCI_CMD_TX_Q_FLUSH, /* flush transmit queue */
 IRDA_SCI_CMD_RX_Q_FLUSH, /* flush receive queue */
 IRDA_SCI_CMD_TX_Q_BYTES_FREE, /* get count of unused transmit queue bytes */
 IRDA_SCI_CMD_RX_Q_BYTES_AVAIL_TO_READ, /* get num bytes ready for reading */
} irda_sci_cmd_t;

When the IRDA_SCI_CMD_TX_Q_BYTES_FREE or IRDA_SCI_CMD_RX_Q_BYTES_AVAIL_TO_READ is
set as the command, ‘p_args’ becomes the pointer to the variable which stores the count value in uint16_t
type.

Return Values
IRDA_SCI_SUCCESS: /* Processing completed successfully. */
IRDA_SCI_ERR_NULL_PTR: /* Specified structure member is NULL. */
IRDA_SCI_ERR_INVALID_ARG: /* Invalid ‘cmd’ or ‘p_args’ value */

Properties
Prototyped in r_irda_sci_rx_if.h.

Description
This API function is used to read the driver status.

Reentrant
No

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 20 of 22
Jan. 27, 2015

Example
void MyCallback(void *p_args)
{
 irda_sci_cb_args_t *args;
 args = (irda_sci_cb_args_t *)p_args;
 if (args->event == IRDA_SCI_EVT_RX_CHAR)
 {
 // from RXI interrupt; character placed in queue is in args->byte
 nop();
 }
 else if (args->event == IRDA_SCI_EVT_TEI)
 {
 /* The received data, is an invalid value. Delete the received data. */
 R_IRDA_SCI_Control(Console, IRDA_SCI_CMD_TX_Q_FLUSH,(void *)NULL);
 }
 else if (args->event == IRDA_SCI_EVT_RXBUF_OVFL)
 {
 /* The received data, is an invalid value. Delete the received data. */
 R_IRDA_SCI_Control(Console, IRDA_SCI_CMD_RX_Q_FLUSH,(void *)NULL);
 }
 else if (args->event == IRDA_SCI_EVT_OVFL_ERR)
 {
 /* The received data, is an invalid value. Delete the received data. */
 R_IRDA_SCI_Control(Console, IRDA_SCI_CMD_RX_Q_FLUSH,(void *)NULL);
 }
 else if (args->event == IRDA_SCI_EVT_FRAMING_ERR)
 {
 /* The received data, is an invalid value. Delete the received data. */
 R_IRDA_SCI_Control(Console, IRDA_SCI_CMD_RX_Q_FLUSH,(void *)NULL);
 }
}

* For methods to use other commands, refer to the Examples in 3.3 R_IRDA_SCI_Send () and 3.4
R_IRDA_SCI_Receive ().

Special Notes
None

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 21 of 22
Jan. 27, 2015

3.6 R_IRDA_SCI_GetVersion ()
This function returns the module version.

Format
uint32_t R_IRDA_SCI_GetVersion(void)

Parameters
None

Return Values
Version number

Properties
Prototyped in r_irda_sci_rx_if.h.

Description
Returns the module version number. The version number is encoded where the top 2 bytes are the major version
number and the bottom 2 bytes are the minor version number.

Reentrant
No

Example
void main(void)
{
 uint32_t version;
 …
 version = R_IRDA_GetVersion();
 while(1) { };
}

Special Notes
This function is inlined using ‘#pragma inline’.

RX Family IrDA Module
Using Firmware Integration Technology

R01AN2175EJ0101 Rev. 1.01 Page 22 of 22
Jan. 27, 2015

4. Provided Modules
The modules provided can be downloaded from the Renesas Electronics website.

5. Reference Documents
User’s Manual: Hardware

The latest version can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

User’s Manual: Development Tools

[e2 studio] RX Family Compiler CC-RX V2.01.00 User's Manual: RX Coding (R20UT2748EJ)
The latest version can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

http://www.renesas.com/
http://www.renesas.com/contact/

A-1

REVISION HISTORY RX Family Application Note
IrDA Module Using Firmware Integration Technology

Rev. Date
Description

Page Summary
1.00 Dec. 1, 2014 — First edition issued
1.01 Jan. 27, 2015

14,16,
18

Modified the following in the Example of the R_IRDA_SCI_Close
function.
- Deleted extra "}" in the second if statement.

Modified the following in the Example of the R_IRDA_SCI_Send
function.
- Added "}" to the second if statement.

Modified the following in the Example of the R_IRDA_SCI_Receive
function.
- Added "}" to the second if statement.

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products
The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the
products covered by this document, refer to the relevant sections of the document as well as any technical updates that
have been issued for the products.

1. Handling of Unused Pins
Handle unused pins in accordance with the directions given under Handling of Unused Pins in the
manual.
 The input pins of CMOS products are generally in the high-impedance state. In operation with an

unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an
associated shoot-through current flows internally, and malfunctions occur due to the false
recognition of the pin state as an input signal become possible. Unused pins should be handled as
described under Handling of Unused Pins in the manual.

2. Processing at Power-on
The state of the product is undefined at the moment when power is supplied.
 The states of internal circuits in the LSI are indeterminate and the states of register settings and

pins are undefined at the moment when power is supplied.
In a finished product where the reset signal is applied to the external reset pin, the states of pins
are not guaranteed from the moment when power is supplied until the reset process is completed.
In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function
are not guaranteed from the moment when power is supplied until the power reaches the level at
which resetting has been specified.

3. Prohibition of Access to Reserved Addresses
Access to reserved addresses is prohibited.
 The reserved addresses are provided for the possible future expansion of functions. Do not access

these addresses; the correct operation of LSI is not guaranteed if they are accessed.
4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable.
When switching the clock signal during program execution, wait until the target clock signal has
stabilized.
 When the clock signal is generated with an external resonator (or from an external oscillator)

during a reset, ensure that the reset line is only released after full stabilization of the clock signal.
Moreover, when switching to a clock signal produced with an external resonator (or by an external
oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products
Before changing from one product to another, i.e. to a product with a different part number, confirm
that the change will not lead to problems.
 The characteristics of an MPU or MCU in the same group but having a different part number may

differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect
the ranges of electrical characteristics, such as characteristic values, operating margins, immunity
to noise, and amount of radiated noise. When changing to a product with a different part number,
implement a system-evaluation test for the given product.

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or

third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

the product's quality grade, as indicated below.

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

equipment; and industrial robots etc.

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical

implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it

in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses

incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or systems manufactured by you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or

regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the

development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and

regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the

contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics

products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALII Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2015 Renesas Electronics Corporation. All rights reserved.
Colophon 5.0

	1. Overview
	1.1 IrDA FIT Module
	1.2 Outline of the APIs
	1.3 Overview of the IrDA FIT Module
	1.4 State Transitions

	2. API Information
	2.1 Hardware Requirements
	2.2 Software Requirements
	2.3 Supported Toolchains
	2.4 Header Files
	2.5 Integer Types
	2.6 Configuration Overview
	2.7 Parameters
	2.8 Return Values
	2.9 Callback Function
	2.10 Adding the FIT Module to Your Project

	3. API Functions
	3.1 R_IRDA_SCI_Open ()
	3.2 R_IRDA_SCI_Close ()
	3.3 R_IRDA_SCI_Send ()
	3.4 R_IRDA_SCI_Receive ()
	3.5 R_IRDA_SCI_Control ()
	3.6 R_IRDA_SCI_GetVersion ()

	4. Provided Modules
	5. Reference Documents

