
 Application Notes

RX-family C/C++ Compiler Package
REJ06J0099-0100

Rev.1.00
Apr 20, 2010

Application Notes: Compiler Usage Guide
Tips for Efficient Programming Edition

This document introduces techniques for efficient programming for version 1.0 of the
RX-family C/C++ compiler.

Table of contents

1. Introduction.. 2

2. Specifying data.. 4
2.1 Data structures .. 4
2.2 Variables and the const type... 5
2.3 Local variables and global variables ... 6
2.4 Member offsets for structure declarations... 7
2.5 Bit field allocation .. 8
2.6 Loop control variables ... 9
2.7 External variable access optimization during base register specification 11
2.8 Specification order for linker section addresses during external variable access optimization 13

3. Function calls .. 15
3.1 Function modularization .. 15
3.2 Function interfaces.. 16

4. Calculation methods.. 18
4.1 Reducing loop iterations.. 18
4.2 Making use of tables ... 21

5. Branching .. 23

6. Interrupts ... 25

7. Inline expansion .. 27
Website and Support ... 29

REJ06J0099-0100 Rev.1.00 Page 1 of 31

2010.04.20

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 2 of 31

2010.04.20

1. Introduction

The RX-family C/C++ compiler performs its own optimizations, but programming techniques can be used to increase

performance even more.

This document introduces techniques that we would like users to try in order to create efficient programs.

There are two ways to evaluate a program: by how fast it executes, and by how small it is. The principles for creating

efficient programs are as follows:

(1) Principles for improving execution speed

Since execution speed depends on frequently executed and complex statements, make sure you understand and

focus on what they process.

(2) Principles for reducing size

To reduce program size, factor out common processing, and refactor complex functions.

In addition to the code generated by the compiler, the execution speed in production changes due to such factors as

the memory architecture and interrupts. Try running the various techniques introduced in this document, check their

results, and apply what works.

The expanded assembly language code in this document can be obtained from the command line using the RX-family

C/C++ compiler as follows:

ccrx <C-language-file> -output=src -cpu=rx600

Note that expanded assembly language code may change due to future improvements to programs existing before or

after the improvements, or to the compiler.

The execution speed for code in this document can be measured using the simulator debugger included with the

compiler package. Note that the number of cycles for external memory access is measured as 1. Use these measurement

results as values for reference.

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 3 of 31

2010.04.20

Table 1-1 lists techniques for efficient programming.

Table 1-1 List of techniques for efficient programming
No. Item ROM

efficiency
RAM

efficiency
Execution
speed

Ref.

1 Data structures Good -- Good 2.1
2 Variables and the const type -- Good -- 2.2
3 Local variables and global variables Good -- Good 2.3
4 Member offsets for structure declarations Good -- -- 2.4
5 Bit field allocation Good -- -- 2.5
6 Loop control variables Poor -- Good 2.6

7
External variable access optimization during base register
specification Good -- Good

2.7

8
Specification order for linker section addresses during external
variable access optimization Good -- Good 2.8

9 Function modularization Good -- -- 3.1
10 Function interfaces -- Good Good 3.2
11 Reducing loop iterations Poor -- Good 4.1
12 Making use of tables Poor -- Good 4.2
13 Branching -- -- Good 5
14 Interrupts Good -- Good 6
15 Inline expansion -- -- Good 7

Legend:
Good: Improves performance
Poor: May degrade performance

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 4 of 31

2010.04.20

2. Specifying data

Table 2-1 lists items that need to be kept in mind regarding data.

Table 2-1 Precautions when specifying data
Item Precaution Ref.

Data type
specifiers, types,
and modifiers

• Attempts to decrease data size may result in increased program size. Keep the
purpose of the data in mind when performing type declarations.

• Keep in mind that program size may change according to whether data is signed or
unsigned.

• For initialization data with values that do not change within a program, add the const
operator to reduce memory usage.

2.2

Data consistency • Allocate data areas to prevent wasted space.
Defining and
viewing structures

• Pointer variables can be used for structures with data that is frequently accessed or
changed to reduce the program size.

• Bit fields can be used to shrink the data size.

2.1

Making use of
internal ROM/RAM

• Since internal memory is much faster to access than external memory, store as many
common variables as possible in internal memory.

--

2.1 Data structures
 Overview

Related data can be declared in a structure to improve execution speed.

 Description

When related data is referenced repeatedly in the same function, structures can be used to improve efficiency by

facilitating the creation of code that uses relative access, and making it easier to pass by argument. Since the access

scope is limited for relative access, aggregating frequently accessed data at the beginning of a structure is effective.

Structuring data makes it easier to perform tuning that changes the data representation.

 Example usage

The following substitutes numbers for variables a, b, and c.
Source code before

int a, b, c;

void func()

{

 a = 1;

 b = 2;

 c = 3;

}

Source code after

struct s{

 int a;

 int b;

 int c;

} s1;

void func()

{

 register struct s *p=&s1;

 p->a = 1;

 p->b = 2;

 p->c = 3;

}

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 5 of 31

2010.04.20

Expanded assembly code before

_ func:

 MOV.L #_a,R4

 MOV.L #00000001H,[R4]

 MOV.L #_b,R4

 MOV.L #00000002H,[R4]

 MOV.L #_c,R4

 MOV.L #00000003H,[R4]

 RTS

Expanded assembly code after

_func:

 MOV.L #_s1,R5

 MOV.L #00000001H,[R5]

 MOV.L #00000002H,04H[R5]

 MOV.L #00000003H,08H[R5]

 RTS

 Code size and execution speed before and after

Code size (in bytes) Execution speed (in cycles) CPU type
Before After Before After

RX610 28 15 9 7

2.2 Variables and the const type
 Overview

Use the const type to declare variables with unchanging values.

 Description

Variables with initial values are usually transferred from the ROM area to the RAM area at startup, and processed

using the RAM area. Therefore, when programs contain initialization data within unchanging values, this secured RAM

area is wasted. The const operator can be added to such initialization data to conserve used memory by preventing

transfer during startup to the RAM area.

In addition, using ROM is easier when programs are created based on the premise that initial values do not change.

 Example usage

The following sets 5 items of initialization data.
Source code before

char a[] =

 {1, 2, 3, 4, 5};

Initial values are copied from ROM to RAM and
then processed.

Source code after

const char a[] =

 {1, 2, 3, 4, 5};

Initial values are processed as is in ROM.

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 6 of 31

2010.04.20

2.3 Local variables and global variables
 Overview

Locally used variables such as temporary variables and loop counters can be declared as local variables within

functions to improve execution speed.

 Description

Make sure that anything that can be used as a local variable is declared as a local variable, not as a global variable.

Since the values of global variables can change due to function calls and pointer operations, they reduce the efficiency

of optimizations.

Using local variables provides the following benefits:

a. They are inexpensive to access.

b. They can be allocated to a register.

c. They are efficiently optimized.

 Example usage

The following shows cases in which a global variable (before) and a local variable (after) is used as a temporary

variable.
Source code before

int tmp;

void func(int* a, int* b)

{

 tmp = *a;

 *a = *b;

 *b = tmp;

}

Expanded assembly code before

__func:

 MOV.L #_tmp,R4

 MOV.L [R1],[R4]

 MOV.L [R2],[R1]

 MOV.L [R4],[R2]

 RTS

Source code after

void func(int* a, int* b)

{

 int tmp;

 tmp = *a;

 *a = *b;

 *b = tmp;

}

Expanded assembly code after

__func:

 MOV.L [R1],R5

 MOV.L [R2],[R1]

 MOV.L R5,[R2]

 RTS

 Code size and execution speed before and after

Code size (in bytes) Execution speed (in cycles) CPU type
Before After Before After

RX610 13 7 13 9

RX-family C/C++ Compiler Package Application Notes

2.4 Member offsets for structure declarations
 Overview

Code size can be improved by declaring frequently used members of structure at the beginning.

 Description

Structure members are accessed by incrementing the offset of the structure address. Since smaller offsets mean

smaller sizes, declare frequently used members first.

The most efficient cases are when the signed char and unsigned char types are within the first 32 bytes, short and

unsigned short types are within the first 64 bytes, and int, unsigned, long, and unsigned long types are within the first

128 bytes.

 Example usage

The following shows an example in which the code changes based on structure offset.
Source code before

struct str {

 long L1[8];

 char C1;

};

struct str STR1;

char x;

void func()

{

 x = STR1.C1;

}

Expanded assembly code before

_func:

 MOV.L #_STR1,R4

 MOVU.B 20H[R4],R5

 MOV.L #_x,R4

 MOV.B R5,[R4]

 RTS

Source code after

struct str {

 char C1;

 long L1[8];

};

struct str STR1;

char x;

void func()

{

 x = STR1.C1;

}

Expanded assembly code after

_func:

 MOV.L #_STR1,R4

 MOVU.B [R4],R5

 MOV.L #_x,R4

 MOV.B R5,[R4]

 RTS

 Code size and execution speed before and after

Code size (in bytes) Execution speed (in cycles) CPU type
Before After Before After

RX610 18 17 8 8

REJ06J0099-0100 Rev.1.00 Page 7 of 31

2010.04.20

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 8 of 31

2010.04.20

 Precautions

When defining a structure, keep the alignment count in mind when declaring members.

The alignment count of a structure matches the largest alignment value in the structure, so that the size of the

structure is a multiple of the alignment count. This means that, because the next alignment is guaranteed the size of an

unused area is included when the end of a structure does not match the alignment count of the structure itself.
Source code before

/* Since the largest member is an int type, the
alignment is 4 */

struct str {

 char C1; /* 1 byte + 3 bytes for alignment
*/

 long L1; /* 4 bytes */

 char C2; /* 1 byte */

 char C3; /* 1 byte */

 char C4; /* 1 byte + 1 byte for alignment
*/

}STR1;

str size before

 .SECTION B,DATA,ALIGN=4

 .glb _STR1

_STR1: ; static: STR1

 .blkl 3

Source code after

/* Since the largest member is an int type, the
alignment is 4 */

struct str {

 char C1; /* 1 byte */

 char C2; /* 1 byte */

 char C3; /* 1 byte */

 char C4; /* 1 byte */

 long L1; /* 4 bytes */

}STR1;

str size after

 .SECTION B,DATA,ALIGN=4

 .glb _STR1

_STR1: ; static: STR1

 .blkl 2

2.5 Bit field allocation
 Overview

Make sure that consecutively set bit fields are allocated within the same structure.

 Description

The data in a bit field needs to be accessed each time a different bit field member is accessed. By allocating related

bit fields together within the same structure, this access can be completed in one run.

 Example usage

The following shows an example in which the size is improved by allocating related bit fields within the same

structure.
Source code before

struct str

{

 int flag1:1;

}b1,b2,b3;

Source code after

struct str

{

 int flag1:1;

 int flag2:1;

 int flag3:1;

}a1;

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 9 of 31

2010.04.20

void func()

{

 b1.flag1 = 1;

 b2.flag1 = 1;

 b3.flag1 = 1;

}

Expanded assembly code before

_func:

 MOV.L #_b1,R5

 BSET #00H,[R5]

 MOV.L #_b2,R5

 BSET #00H,[R5]

 MOV.L #_b3,R5

 BSET #00H,[R5]

 RTS

void func()

{

 a1.flag1 = 1;

 a1.flag2 = 1;

 a1.flag3 = 1;

}

Expanded assembly code after

_func:

 MOV.L #_a1,R4

 MOVU.B [R4],R5

 OR #07H,R5

 MOV.B R5,[R4]

 RTS

 Code size and execution speed before and after

Code size (in bytes) Execution speed (in cycles) CPU type
Before After Before After

RX610 25 13 14 9

2.6 Loop control variables
 Overview

Changing loop control variables to a 4-byte integer type (signed long/unsigned long) facilitates loop expansion

optimizations, which can improve execution speed.

 Description

Loop expansion optimizations cannot be performed when, during evaluation of a loop termination condition, a

difference in size prevents a loop control variable from expressing the compared data. For example, when the loop

control variable is a signed char, but the compared data is a signed long, loop expansion optimization is not performed.

Accordingly, loop expansion optimization is more easily applied for signed long types than for signed char or signed

short types. To take advantage of loop expansion optimization, use a 4-byte integer type for loop control variables.

 Example usage
Source code before

signed long array_size=16;

signed char array[16];

void func()

{

Source code after

signed long array_size=16;

signed char array[16];

void func()

{

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 10 of 31

2010.04.20

 signed char i;

 for(i=0;i<array_size;i++)

 {

 array[i]=0;

 }

}

Expanded assembly code before

<when loop=2 is specified>

_func:

 MOV.L #_array_size,R4

 MOV.L [R4],R2

 MOV.L #00000000H,R5

 BRA L11

L12:

 MOV.L #_array,R4

 MOV.L #00000000H,R3

 MOV.B R3,[R5,R4]

 ADD #01H,R5

L11:

 MOV.B R5,R5

 CMP R2,R5

 BLT L12

L13:

 RTS

 signed long i;

 for(i=0;i<array_size;i++)

 {

 array[i]=0;

 }

}

Expanded assembly code after

<when loop=2 is specified>

_func:

 MOV.L #_array_size,R5

 MOV.L [R5],R2

 MOV.L #00000000H,R4

 ADD #0FFFFFFFFH,R2,R3

 CMP R3,R2

 BLE L12

L11:

 MOV.L #_array,R1

 MOV.L R1,R5

 BRA L13

L14:

 MOV.W #0000H,[R5]

 ADD #02H,R5

 ADD #02H,R4

L13:

 CMP R3,R4

 BLT L14

L15:

 CMP R2,R4

 BGE L17

L16:

 MOV.L #00000000H,R5

 MOV.B R5,[R4,R1]

 RTS

L12:

 MOV.L #_array,R5

 MOV.L #00000000H,R3

L19:

 CMP R2,R4

 BGE L17

L20:

 MOV.B R3,[R5+]

 ADD #01H,R4

 BRA L19

RX-family C/C++ Compiler Package Application Notes
L17:

 RTS

 Code size and execution speed before and after

Code size (in
bytes)

Execution speed
(in cycles)

CPU
type

Before After Before After
RX610 32 67 171 82

2.7 External variable access optimization during base register specification
 Overview

When a specific register is used as a base register during access to ROM/RAM sections across an entire project, it can

be combined with external variable access optimization to reduce code size.

 Description

When R13 is specified for the base register of the RAM section, access to the RAM section is performed relative to

the R13 register. Also, if external variable success optimization between modules is enabled, the relative values for the

R13 register are optimized, so that instruction sizes are reduced for values within the 8-bit range. The base register can

be specified from the HEW menu by choosing Build -> RX Standard ToolChain -> CPU -> Base register, as shown in

Figure 1.

Figure 1 Base register setting

REJ06J0099-0100 Rev.1.00 Page 11 of 31

2010.04.20

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 12 of 31

2010.04.20

 Example usage
Source code before

int a;

int b;

int c;

int d;

void func()

{

 a=0;

 b=1;

 c=2;

 d=3;

}

Expanded assembly code before

_func:

 MOV.L #_a,R4

 MOV.L #00000000H,[R4]

 MOV.L #_b,R4

 MOV.L #00000001H,[R4]

 MOV.L #_c,R4

 MOV.L #00000002H,[R4]

 MOV.L #_d,R4

 MOV.L #00000003H,[R4]

 RTS

Source code after

int a;

int b;

int c;

int d;

void func()

{

 a=0;

 b=1;

 c=2;

 d=3;

}

Expanded assembly code after

_func:

 MOV.L #00000000H,_a-__RAM_TOP:16[R13]

 MOV.L #00000001H,_b-__RAM_TOP:16[R13]

 MOV.L #00000002H,_c-__RAM_TOP:16[R13]

 MOV.L #00000003H,_d-__RAM_TOP:16[R13]

 RTS

 Code size and execution speed before and after

Code size (in bytes) Execution speed (in cycles) CPU type
Before After Before After

RX610 14 10 11 7

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 13 of 31

2010.04.20

2.8 Specification order for linker section addresses during external variable access
optimization

 Overview

When external variable access optimization is enabled, the order of section allocation in the linker can be changed to

reduce code size.

 Description

For instructions that use the relative register format to access memory, instruction size can be reduced by using

smaller displacement values. The section allocation order in the linker can be changed as follows to improve code size:

- Moving sections that frequently access external variables earlier within a function.

- Moving sections with external variables that have small type sizes earlier.

Note that, since external variable access optimization requires compilation twice, the build time might be longer.

 Example usage
Source code before

/* D_1 section */

char d11=0, d12=0, d13=0, d14=0;

/* D_2 section */

short d21=0, d22=0, d23=0, d24=0, dmy2[12]={0};

/* D section */

int d41=0, d42=0, d43=0, d44=0, dmy4[60]={0};

void func(int a){

 d11 = a;

 d12 = a;

 d13 = a;

 d14 = a;

 d21 = a;

 d22 = a;

 d23 = a;

 d24 = a;

 d41 = a;

 d42 = a;

 d43 = a;

 d44 = a;

}

Expanded assembly code before

<When the section allocation order is D,D_2,D_1 or
D*>

Source code after

/* D_1 section */

char d11=0, d12=0, d13=0, d14=0;

/* D_2 section */

short d21=0, d22=0, d23=0, d24=0, dmy2[12]={0};

/* D section */

int d41=0, d42=0, d43=0, d44=0, dmy4[60]={0};

void func(int a){

 d11 = a;

 d12 = a;

 d13 = a;

 d14 = a;

 d21 = a;

 d22 = a;

 d23 = a;

 d24 = a;

 d41 = a;

 d42 = a;

 d43 = a;

 d44 = a;

}

Expanded assembly code after

<When the section allocation order is D_1,D_2,D>

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 14 of 31

2010.04.20

_func:

 MOV.L #_d41,R4

 MOV.B R1,0120H[R4]

 MOV.B R1,0121H[R4]

 MOV.B R1,0122H[R4]

 MOV.B R1,0123H[R4]

 MOV.W R1,0100H[R4]

 MOV.W R1,0102H[R4]

 MOV.W R1,0104H[R4]

 MOV.W R1,0106H[R4]

 MOV.L R1,[R4]

 MOV.L R1,04H[R4]

 MOV.L R1,08H[R4]

 MOV.L R1,0CH[R4]

 RTS

_func:

 MOV.L #_d11,R4

 MOV.B R1,[R4]

 MOV.B R1,01H[R4]

 MOV.B R1,02H[R4]

 MOV.B R1,03H[R4]

 MOV.W R1,04H[R4]

 MOV.W R1,06H[R4]

 MOV.W R1,08H[R4]

 MOV.W R1,0AH[R4]

 MOV.L R1,24H[R4]

 MOV.L R1,28H[R4]

 MOV.L R1,2CH[R4]

 MOV.L R1,30H[R4]

 RTS

 Code size and execution speed before and after

Code size (in bytes) Execution speed (in cycles) CPU type
Before After Before After

RX610 43 31 20 18

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 15 of 31

2010.04.20

3. Function calls

Table 3-1 lists things to keep in mind regarding function calls.

Table 3-1 Precautions regarding function calls
Item Precaution Ref.

Function position • Keep tightly coupled functions together in the same file. 3.1
Interfaces • Be strict with regard to the number of arguments (up to 4), so that all arguments can be

allocated to the register.
• For functions with many arguments, put the arguments in a structure and pass them by

pointer.

3.2

Macro
substitution

• When many function calls exist, their execution speed can be improved by macro
substitution. Note that macros will increase the program size, so use only as appropriate.

--

3.1 Function modularization
 Overview

Size can be improved by grouping tightly coupled functions into a single file.

 Description

When functions in different files are called, they are expanded into 4-byte BSR instructions, but when functions in

the same file are called, they are expanded into 3-byte BSR instructions when the call scope is close, allowing compact

objects to be generated.

Also, modularization facilitates corrections during tune-ups.

 Example usage

In this example, function g is called from function f.
Source code before

extern void sub(void);

int func()

{

 sub();

 return(0);

}

Expanded assembly code before

 _func:

 BSR _sub ;length A

 MOV.L #00000000H,R1

 RTS

Source code after

void sub(void)

{

}

int func()

{

 sub();

 return (0);

}

Expanded assembly code after

 _func:

 BSR _sub ;length W

 MOV.L #00000000H,R1

 RTS

RX-family C/C++ Compiler Package Application Notes

 Code size and execution speed before and after

Code size (in bytes) Execution speed (in cycles) CPU type
Before After Before After

RX610 7 6 9 9

3.2 Function interfaces
 Overview

Adjusting function arguments can decrease RAM consumption and improve execution speed.

For details, see 8.2 Function call interfaces in the compiler manual.

 Description

Be selective about argument counts, so that all arguments (up to 4) fit within the register. When using many

arguments, put them in a structure and then pass it as a pointer. If the structure itself is passed rather than as a pointer,

the structure might not be able to fit in the register when received. Making sure that arguments fit in the register

simplifies processing for call and function entry and exit points, and helps to conserve stack area.

Note that registers R1 to R4 are used for arguments.

 Example usage

In the following, function f has four more arguments than the number of in the registers available for arguments.

REJ06J0099-0100 Rev.1.00 Page 16 of 31

2010.04.20

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 17 of 31

2010.04.20

Source code before

void call_func ()

{

 func(1,2,3,4,5,6,7,8);

}

Expanded assembly code before

_call_func:

 SUB #04H,R0

 MOV.L #08070605H,[R0]

 MOV.L #00000004H,R4

 MOV.L #00000003H,R3

 MOV.L #00000002H,R2

 MOV.L #00000001H,R1

 BSR _func

 ADD #04H,R0

 RTS

Source code after

struct str{

 char a;

 char b;

 char c;

 char d;

 char e;

 char f;

 char g;

 char h;

};

struct str arg = {1,2,3,4,5,6,7,8};

void call_func ()

{

 func(&arg);

}

Expanded assembly code after

_ call_func:

 MOV.L #_arg,R1

 BRA _func

 Code size and execution speed before and after

Code size (in bytes) Execution speed (in cycles) CPU type
Before After Before After

RX610 16 8 16 4

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 18 of 31

2010.04.20

4. Calculation methods

Table 4-1 lists items to keep in mind regarding calculation methods.

Table 4-1 Precautions regarding calculation methods
Item Precaution Ref.

Reducing loop
iterations

 Consider merging loop statements with identical or similar loop conditions.
• Try loop expansion.

4.1

Using fast
algorithms

 Consider algorithms that do not require much execution time, such as quicksort for
arrays.

--

Making use of
tables

 Consider using tables for switch statements in which the processing for each case is
nearly identical.
 Execution speed can often be improved by storing results calculated ahead of time in
a table, and then referencing the table values when a calculation result is needed.
However, note in this case that ROM space will increase, so decide based on both
required execution speed and available ROM space.

0

Conditional
expressions

Comparisons of constants to 0 helps to generate efficient code. --

4.1 Reducing loop iterations
 Overview

Loops can be expanded to greatly improve execution speed.

 Description

Loop expansion is particularly effective for inner loops. Since loop expansion increases program size, apply it only to

improve execution speed despite the cost in program size.

 Example usage

The following initializes array a[].
Source code before

extern int a[100];

void func()

{

 int i;

 for (i = 0; i < 100; i++) {

 a[i] = 0;

 }

}

Expanded assembly code before

_func:

 MOV.L #00000064H,R4

 MOV.L #_a,R5

 MOV.L #00000000H,R3

Source code after

extern int a[100];

void func()

{

 int i;

 for (i = 0; i < 100; i+=2)

 {

 a[i] = 0;

 a[i+1] = 0;

 }

}

Expanded assembly code before

_func:

 MOV.L #00000032H,R4

 MOV.L #_a,R5

L11:

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 19 of 31

2010.04.20

L11:

 MOV.L R3,[R5+]

 SUB #01H,R4

 BNE L11

L12:

 RTS

 MOV.L #00000000H,[R5]

 MOV.L #00000000H,04H[R5]

 ADD #08H,R5

 SUB #01H,R4

 BNE L11

L12:

 RTS

 Code size and execution speed before and after

Code size (in bytes) Execution speed (in cycles) CPU type
Before After Before After

RX610 19 22 504 353

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 20 of 31

2010.04.20

 Notes

Specify loop options to perform loop expansion optimization. When the loop option is specified in the before source

code below and the code is compiled, the same assembly expansion code is output as the assembly expansion code in

the after source code.

Source code before

extern int a[100];

void func()

{

 int i;

 for (i = 0; i < 100; i++) {

 a[i] = 0;

 }

}

Expanded assembly code before

<loop=2 指定時>

_func:

 MOV.L #00000032H,R4

 MOV.L #_a,R5

L11:

 MOV.L #00000000H,[R5]

 MOV.L #00000000H,04H[R5]

 ADD #08H,R5

 SUB #01H,R4

 BNE L11

L12:

 RTS

Source code after

extern int a[100];

void func()

{

 int i;

 for (i = 0; i < 100; i+=2)

 {

 a[i] = 0;

 a[i+1] = 0;

 }

}

Expanded assembly code after

_func:

 MOV.L #00000032H,R4

 MOV.L #_a,R5

L11:

 MOV.L #00000000H,[R5]

 MOV.L #00000000H,04H[R5]

 ADD #08H,R5

 SUB #01H,R4

 BNE L11

L12:

 RTS

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 21 of 31

2010.04.20

4.2 Making use of tables
 Overview

Execution speed can be improved by using tables instead of branch switch statements.

 Description

Consider using tables when the processing for each case in a switch statement is largely the same.

 Example usage

In the following, the character constant replacing variable ch changes depending on the value of variable i.
Source code before

char func(int i)

{

 char ch;

 switch (i) {

 case 0:

 ch = 'a'; break;

 case 1:

 ch = 'x'; break;

 case 2:

 ch = 'b'; break;

 }

 return (ch);

}

Expanded assembly code before

_func:

 CMP #00H,R1

 BEQ L17

L16:

 CMP #01H,R1

 BEQ L19

L18:

 CMP #02H,R1

 BEQ L20

 BRA L21

L12:

L17:

 MOV.L #00000061H,R1

 BRA L21

L13:

L19:

 MOV.L #00000078H,R1

Source code after

char chbuf[] = { 'a', 'x', 'b' };

char func(int i)

{

 return (chbuf[i]);

}

Expanded assembly code after

_func:

 MOV.L #_chbuf,R4

 MOVU.B [R1,R4],R1

 RTS

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 22 of 31

2010.04.20

 BRA L21

L14:

L20:

 MOV.L #00000062H,R1

L11:

L21:

 MOVU.B R1,R1

 RTS

 Code size and execution speed before and after

Code size (in bytes) Execution speed (in cycles) CPU type
Before After Before After

RX610 28 10 13 6
Note: For i=2

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 23 of 31

2010.04.20

5. Branching
 Overview

Execution speed can be improved by changing the placement of branch cases.

 Description

When an else if statement is used to perform comparison in order, the execution speed of the terminal case suffers

when the cases grow. Therefore, place frequently branched cases first.

 Example usage

In the following, the return value differs depending on the argument value.
Source code before

int func(int a)

{

 if (a==1)

 a = 2;

 else if (a==2)

 a = 4;

 else if (a==3)

 a = 8;

 else

 a = 0;

 return (a);

}

Expanded assembly code before

_func:

 CMP #01H,R1

 BEQ L11

L12:

 CMP #02H,R1

 BNE L14

L13:

 MOV.L #00000004H,R1

 RTS

L14:

 CMP #03H,R1

 BNE L17

L16:

 MOV.L #00000008H,R1

 RTS

L17:

Source code after

int func(int a)

{

 if (a==3)

 a = 8;

 else if (a==2)

 a = 4;

 else if (a==1)

 a = 2;

 else

 a = 0;

 return (a);

}

Expanded assembly code after

_func:

 CMP #03H,R1

 BEQ L11

L12:

 CMP #02H,R1

 BNE L14

L13:

 MOV.L #00000004H,R1

 RTS

L14:

 CMP #01H,R1

 BNE L17

L16:

 MOV.L #00000002H,R1

 RTS

L17:

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 24 of 31

2010.04.20

 MOV.L #00000000H,R1

 RTS

L11:

 MOV.L #00000002H,R1

 RTS

 MOV.L #00000000H,R1

 RTS

L11:

 MOV.L #00000008H,R1

 RTS

Code size and execution speed before and after

Code size (in bytes) Execution speed (in cycles) CPU type
Before After Before After

RX610 22 22 11 7
Note: For a=3

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 25 of 31

2010.04.20

6. Interrupts
 Overview

Fast interrupt functionality can be used to reduce interrupt response times.

 Description

Expected interrupt response times might not be achieved when many registers are saved or restored before or after

interrupt processing. In such cases, the fast interrupt specification (fint) can be used along with the fint_register option

to prevent register saving and restoration thereby shortening interrupt response time.

However, keep in mind that, since fewer registers can be used by other functions when the fint_register option is used,

overall program efficiency might suffer.

 Example usage

Source code before

#pragma interrupt int_func

volatile int count;

void int_func()

{

 count++;

}

Expanded assembly code before

_int_func:

 PUSHM R4-R5

 MOV.L #_count,R4

 MOV.L [R4],R5

 ADD #01H,R5

 MOV.L R5,[R4]

 POPM R4-R5

 RTE

Source code after

#pragma interrupt int_func(fint)

volatile int count;

void int_func()

{

 count++;

}

Expanded assembly code after

<When the fint_register=2 option is specified>

_int_func:

 MOV.L #_count,R12

 MOV.L [R12],R13

 ADD #01H,R13

 MOV.L R13,[R12]

 RTFI

 Code size and execution speed before and after

Code size (in bytes) Execution speed (in cycles) CPU type
Before After Before After

RX610 18 14 23 14

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 26 of 31

2010.04.20

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 27 of 31

2010.04.20

7. Inline expansion
 Overview

Execution speed can be improved by expanding frequently called functions inline.

 Description

Execution speed can be improved by expanding frequently called functions inline. This is especially true for

functions called within loops. However, since inline expansion can result in increased program size, apply this method

only to improve execution speed despite the cost in program size.

 Example usage

The following switches the elements in array a and array b.
Source code before

int x[10], y[10];

static void sub(int *a, int *b, int i)

{

 int temp;

 temp = a[i];

 a[i] = b[i];

 b[i] = temp;

}

void func()

{

 int i;

 for (i=0;i<10;i++)

 sub(x, y, i);

}

Expanded assembly code before

__$sub:

 SHLL #02H,R3

 ADD R3,R1

 MOV.L [R1],R5

 ADD R3,R2

 MOV.L [R2],[R1]

 MOV.L R5,[R2]

 RTS

_func:

Source code after

int x[10], y[10];

#pragma inline (sub)

static void sub(int *a, int *b, int i)

{

 int temp;

 temp = a[i];

 a[i] = b[i];

 b[i] = temp;

}

void func()

{

 int i;

 for (i=0;i<10;i++)

 sub(x, y, i);

}

Expanded assembly code after

; sub code has decreased due to

; inline expansion

RX-family C/C++ Compiler Package Application Notes
 PUSHM R6-R8

 MOV.L #00000000H,R6

 MOV.L #_x,R7

 MOV.L #_y,R8

L12:

 MOV.L R6,R3

 MOV.L R7,R1

 MOV.L R8,R2

 ADD #01H,R6

 BSR __$sub

 CMP #0AH,R6

 BLT L12

L13:

 RTSD #0CH,R6-R8

_func:

 MOV.L #0000000AH,R1

 MOV.L #_y,R2

 MOV.L #_x,R3

L11:

 MOV.L [R3],R4

 MOV.L [R2],R5

 MOV.L R4,[R2+]

 MOV.L R5,[R3+]

 SUB #01H,R1

 BNE L11

L12:

 RTS

 Code size and execution speed before and after

Code size (in bytes) Execution speed (in cycles) CPU type
Before After Before After

RX610 47 29 119 84

REJ06J0099-0100 Rev.1.00 Page 28 of 31

2010.04.20

RX-family C/C++ Compiler Package Application Notes

REJ06J0099-0100 Rev.1.00 Page 29 of 31

2010.04.20

Website and Support
• Renesas Electronics Website

http://www.renesas.com/

• Inquiries

http://www.renesas.com/inquiry

All trademarks and registered trademarks are the property of their respective owners.

http://www.renesas.com/
http://www.renesas.com/inquiry

Revision Record
Description

Rev.

Date Page Summary
1.00 Apr.20.10 — First edition issued
— — — —
— — — —
— — — —
— — — —
— — — —
— — — —
— — — —

Notice
1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas

Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to

be disclosed by Renesas Electronics such as that disclosed through our website.

2. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or

technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or

others.

3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.

4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for

the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the

use of these circuits, software, or information.

5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and

regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to

the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is

prohibited under any applicable domestic or foreign laws or regulations.

6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics

assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.

7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product

depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas

Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics product for any application for

which it is not intended without the prior written consent of Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the

use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics.

The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.

 "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools;

 personal electronic equipment; and industrial robots.

 "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; safety equipment; and medical equipment not specifically

 designed for life support.

 "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical

 implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.

8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage

range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the

use of Renesas Electronics products beyond such specified ranges.

9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and

malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the

possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to

redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult,

please evaluate the safety of the final products or system manufactured by you.

10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics

products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes

no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.

11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.

(Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.

(Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc.
2880 Scott Boulevard Santa Clara, CA 95050-2554, U.S.A.
Tel: +1-408-588-6000, Fax: +1-408-588-6130
Renesas Electronics Canada Limited
1101 Nicholson Road, Newmarket, Ontario L3Y 9C3, Canada
Tel: +1-905-898-5441, Fax: +1-905-898-3220
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
7th Floor, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100083, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 204, 205, AZIA Center, No.1233 Lujiazui Ring Rd., Pudong District, Shanghai 200120, China
Tel: +86-21-5877-1818, Fax: +86-21-6887-7858 / -7898
Renesas Electronics Hong Kong Limited
Unit 1601-1613, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2886-9318, Fax: +852 2886-9022/9044
Renesas Electronics Taiwan Co., Ltd.
7F, No. 363 Fu Shing North Road Taipei, Taiwan, R.O.C.
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
1 harbourFront Avenue, #06-10, keppel Bay Tower, Singapore 098632
Tel: +65-6213-0200, Fax: +65-6278-8001
Renesas Electronics Malaysia Sdn.Bhd.
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics Korea Co., Ltd.
11F., Samik Lavied' or Bldg., 720-2 Yeoksam-Dong, Kangnam-Ku, Seoul 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2010 Renesas Electronics Corporation. All rights reserved.

Colophon 1.0

	1. Introduction
	2. Specifying data
	2.1 Data structures
	2.2 Variables and the const type
	2.3 Local variables and global variables
	2.4 Member offsets for structure declarations
	2.5 Bit field allocation
	2.6 Loop control variables
	2.7 External variable access optimization during base register specification
	2.8 Specification order for linker section addresses during external variable access optimization

	3. Function calls
	3.1 Function modularization
	3.2 Function interfaces

	4. Calculation methods
	4.1 Reducing loop iterations
	4.2 Making use of tables

	5. Branching
	6. Interrupts
	7. Inline expansion
	 Website and Support

