

RL78/L13

How to Output Remote Control Signals CC-RL

R01AN3120EJ0100 Rev. 1.00 Feb. 08, 2016

Abstract

This document describes the how to output remote control signals using the RL78/L13 timer array unit (remote control output function).

Products

RL78/L13

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

Contents

1.	Spe	cifica	ations	3
_				
2.	Оре	eratır	ng Confirmation Conditions	3
3.	Har	dwar	re	4
-			dware Configuration	
			S Used	
	0.2		, 000	
4.	Soft	ware	9	5
	4.1	Ope	eration Overview	5
	4.2	Opti	ion Byte Settings	8
			stants	
	4.4	Fund	ctions	8
	4.5	Fund	ction Specifications	g
	4.6	Flow	vcharts	11
	4.6		Overall Flowchart	
	4.6	.2	Initialization	11
	4.6	.3	Peripheral Function Initialization	11
	4.6		CPU Clock Initialization	
	4.6	.5	TAU0 Initialization	13
	4.6	.6	TAU02 Start Setting	47
	4.6	.7	TAU02 Stop Setting	49
	4.6	.8	Main Processing	51
	4.6	.9	Main Initialization	52
	4.6	.10	Remote Control Output Control Processing	53
5.	San	nple	Code	58
6	Pof	oron	ce Documents	59

1. Specifications

In this application note, a PWM waveform for remote control is generated by the remote control output function of the timer array unit (TAU).

When the sample program detects that the key connected to port P137 has been pressed, the RL78/L13 outputs remote control signals.

The system clock frequency is set low (operation enabled from 1.8 V) to reduce the operating voltage of the remote control.

Table 1.1 lists the peripheral function and its application. Figure 1.1 shows the remote control signal output.

Table 1.1 Peripheral Function and Its Application

Peripheral Function	Application			
TAU	Generates and outputs remote control signals			
Port input	Key input			

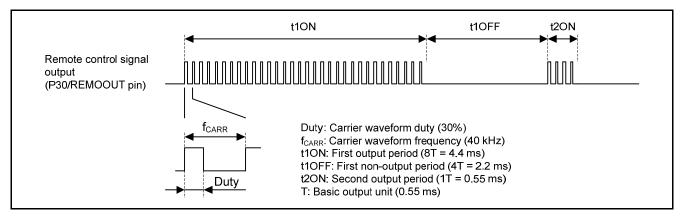


Figure 1.1 Remote Control Signal Output

2. Operating Confirmation Conditions

The sample code accompanying this application note has been run and confirmed under the conditions below.

Table 2.1 Operation Confirmation Conditions

Item	Contents			
MCU used	RL78/L13 (R5F10WMGA)			
Operating frequencies	High-speed on-chip oscillator clock (fHOCO): 8 MHz			
	CPU/peripheral hardware clock (fclk): 8 MHz			
Operating voltage	3.3 V (operation enabled from 1.8 to 5.5 V)			
	LVD operation (V _{LVD}): 1.77 V at the rising edge or 1.73 V at the falling edge			
	in reset mode			
Integrated development	Renesas Electronics Corporation			
environment (CS+)	CS+ V3.01.00			
C compiler (CS+)	Renesas Electronics Corporation			
	CC-RL V1.01.00			
Integrated development	Renesas Electronics Corporation			
environment (e ² studio)	e ² studio V4.0.0.26			
C compiler (e ² studio)	Renesas Electronics Corporation			
	CC-RL V1.01.00			
Board used	Renesas Starter Kit for RL78/L13 CPU Board (R0K5010WMS000BE)			

3. Hardware

3.1 Hardware Configuration

Figure 3.1 shows a connection example.

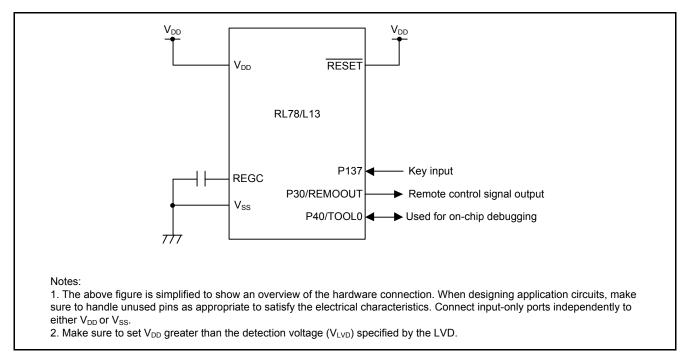


Figure 3.1 Connection Example

3.2 Pins Used

Table 3.1 lists the pins used and their functions.

Table 3.1 Pin Used and Their Functions

Pin Name	I/O	Function		
P30/REMOOUT Output		Outputs remote control signals		
P137	Input	Key input		

4. Software

4.1 Operation Overview

The sample program detects that a key (SW1) on the Renesas Starter Kit for RL78/L13 CPU board has been pressed and held down, and remote control signals are output from the RL78/L13 REMOOUT pin.

TAU generates a carrier waveform and mask waveform to synthesize a PWM waveform to output remote control signals.

TAU settings:

- Specify the remote control output function of the PWM output function as the operating mode
- Use channels 4 and 5 to generate a carrier waveform
- Set the carrier waveform frequency to 40 kHz, and duty cycle to 30% (active high period)
- Use channels 2 and 3 to generate a mask waveform
- Specify f_{CLK} at 8 MHz as the count source
- Disable interrupts INTTM02, INTTM03, INTTM04, and INTTM05

Figure 4.1 shows the behavior of remote control output.

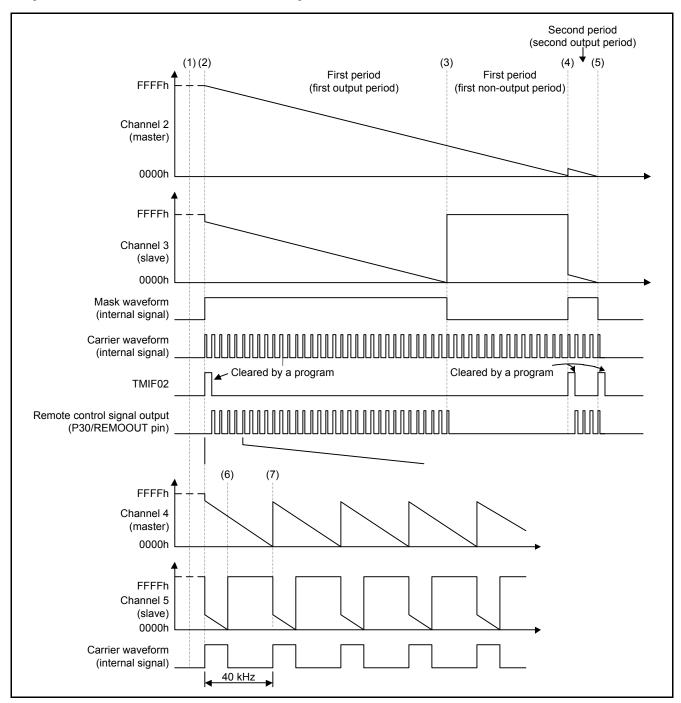


Figure 4.1 Behavior of Remote Control Output

(1) Detects a key has been pressed

RL78/L13 waits until the switch (SW1) connected to port P137 is pressed (low signal). RL78/L13 starts remote control output when it detects the key has been pressed.

(2) Remote control output is started

RL78/L13 starts remote control output. Set the count value of the first period in channels 4 (TDR04 register), 5 (TDR05 register), 2 (TDR02 register), and 3 (TDR03 register) to start timers on each channel. Then, set the count value of the second period in registers TDR02 and TDR03.

(3) Starts the first non-output period

When channel 3 underflows, the remote control output is stopped.

(4) Starts the second period

When the INTTM02 interrupt request is generated at the rising edge of the mask waveform, RL78/L13 starts remote control output in the second period. Set the TDR03 register to 0000H to stop the remote control output.

(5) Remote control output is stopped

When the INTTM02 interrupt request is generated at the rising edge of the mask waveform, the RL78/L13 waits until the INTTM05 interrupt request is generated, and stops timers for each channel.

(6) A carrier waveform (internal signal) is at low-level

When the count value of channel 5 underflows, RL78/L13 outputs the carrier waveform (internal signal) at low.

(7) A carrier waveform (internal signal) is at high-level

When channel 4 underflows, channel 5 starts counting and RL78/L13 outputs the carrier waveform (internal signal) at high.

4.2 Option Byte Settings

Table 4.1 lists the option byte settings.

Table 4.1 Option Byte Settings

Address	Setting Value	Contents			
000C0H/010C0H	11101111B	Stops the watchdog timer			
		(counting is stopped when a reset is canceled)			
000C1H/010C1H	00011011B	Sets the LVD in reset mode			
		Detection voltage: 1.77 V at the rising edge, 1.73 V at the falling edge			
000C2H/010C2H	10101010B	Sets the high-speed on-chip oscillator clock to 8 MHz, and in LS (low-speed main) mode			
000C3H/010C3H	10000100B	Enables on-chip debugging			

4.3 Constants

Table 4.2 lists the constants used in the sample code.

Table 4.2 Constants Used in the Sample Code

Constant Name	Setting Value	Contents		
_112F_TAU_TDR02_VALUE	112FH	TDR02 register setting value		
_1130_TAU_TDR03_VALUE	1130H	TDR03 register setting value		
_0000_TAU_TDR03_VALUE	0	TDR03 register setting value		
KEY_IN	P137	Key input port		
KEY_OFF	1	Key input is off		
KEY_ON	0	Key input is on		

4.4 Functions

Table 4.3 lists the functions.

Table 4.3 Functions

Function Name	Outline				
hdwinit	Initialization				
R_Systeminit	Peripheral function initialization				
R_CGC_Create	CPU clock initialization				
R_TAU0_Create	TAU0 initialization				
R_TAU0_Channel2_Start	TAU02 start setting				
R_TAU0_Channel2_Stop	TAU02 stop setting				
main	Main processing				
R_MAIN_UserInit	Main initialization				
remocon_transmit_control	Remote control output control processing				

4.5 Function Specifications

The following tables list the sample code function specifications.

hdwinit

Outline Initialization Header None

Declaration void hdwinit(void)

Description Initializes the peripheral functions.

Arguments None Return Value None

R_Systeminit

Outline Peripheral function initialization

Header None

Declaration void R_Systeminit(void)

Description Initializes the peripheral functions used in this application note.

Arguments None Return Value None

R_CGC_Create

Outline CPU clock initialization

Header r_cg_cgc.h

Declarationvoid R_CGC_Create(void)DescriptionInitializes the CPU clock.

Arguments None Return Value None

R_TAU0_Create

Outline TAU0 initialization

Header r_cg_tau.h

Declaration void R_TAU0_Create(void)

Description Initializes TAU0 to use as the remote control output function.

Arguments None Return Value None

R_TAU0_Channel2_Start

Outline TAU02 start setting

Header r_cg_tau.h

Declaration void R_TAU0_Channel2_Start(void)

Description Starts count of TAU0 channels 2 through 5.

Arguments None Return Value None

R_TAU0_Channel2_Stop

Outline TAU02 stop setting

Header r_cg_tau.h

Declaration void R_TAU0_Channel2_Stop(void)

Description Sets channels 2, 3, 4, and 5 of TAU0 to stop counting and outputting values.

Arguments None Return Value None

main

Outline Main processing

Header None

Declaration void main(void)

Description Performs the main processing.

Arguments None Return Value None

R MAIN UserInit

Outline Main initialization

Header None

Declaration void R_MAIN_UserInit(void)

Description Performs processing required to initialize the main processing.

Arguments None Return Value None

remocon_transmit_control

Outline Remote control output control processing

Header None

Declaration static void remocon_transmit_control(void)

Description Controls the remote control output.

Arguments None Return Value None

4.6 Flowcharts

4.6.1 Overall Flowchart

Figure 4.2 shows the overall flow.

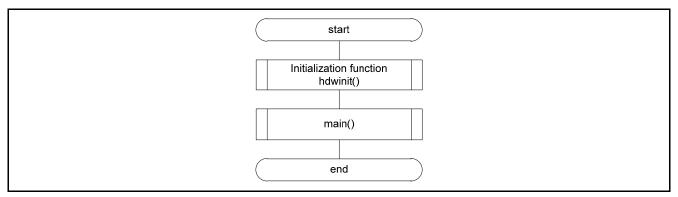


Figure 4.2 Overall Flow

4.6.2 Initialization

Figure 4.3 shows the initialization.

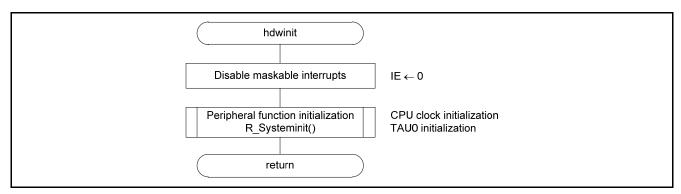


Figure 4.3 Initialization

4.6.3 Peripheral Function Initialization

Figure 4.4 shows the peripheral function initialization.

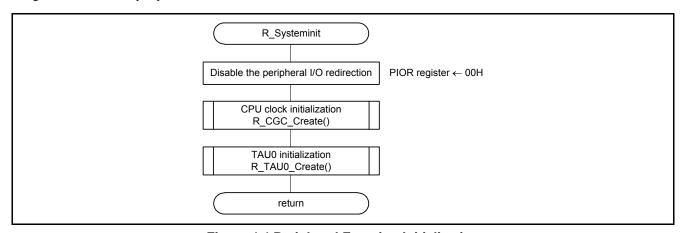


Figure 4.4 Peripheral Function Initialization

4.6.4 CPU Clock Initialization

Figure 4.5 shows the CPU clock initialization.

Figure 4.5 CPU Clock Initialization

4.6.5 TAU0 Initialization

Figure 4.6 to Figure 4.9 show TAU0 initialization.

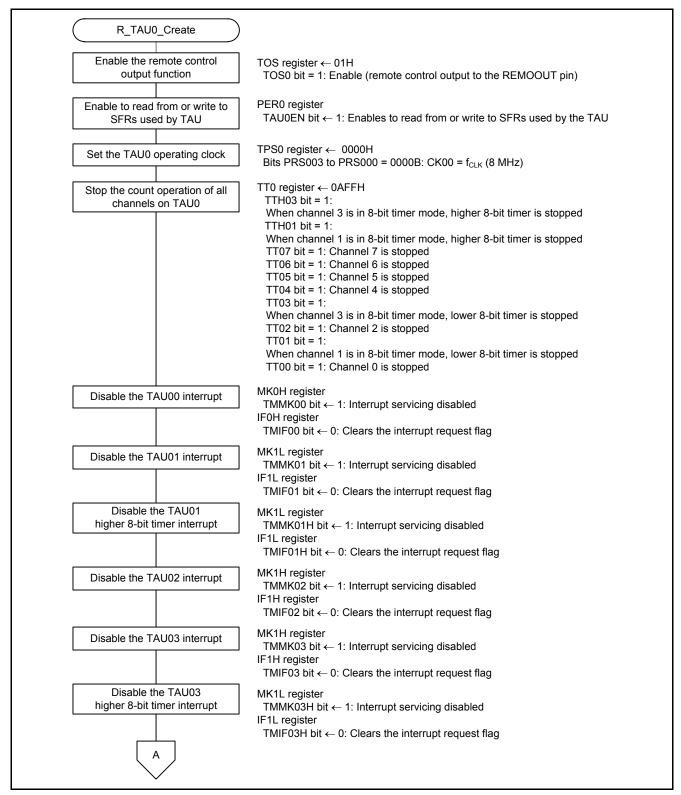


Figure 4.6 TAU0 Initialization (1/4)

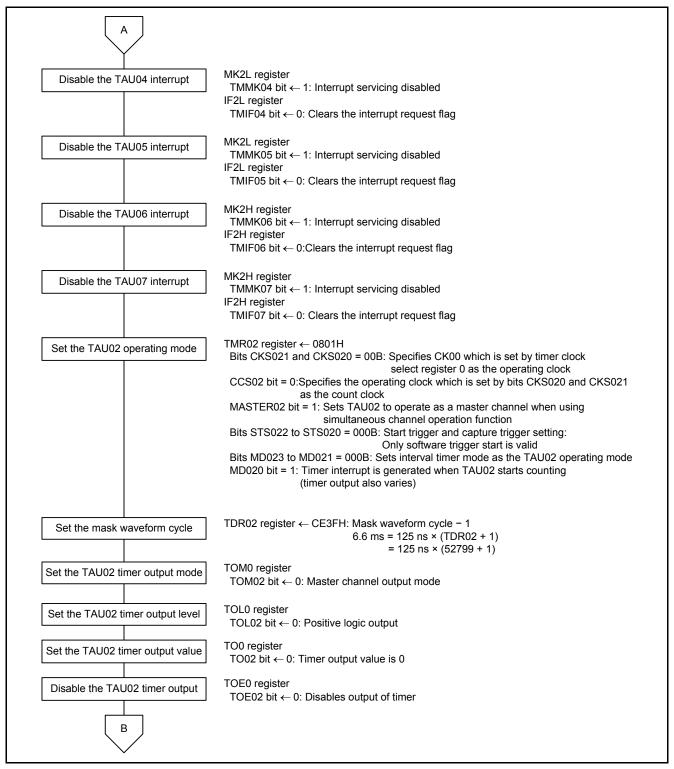


Figure 4.7 TAU0 Initialization (2/4)

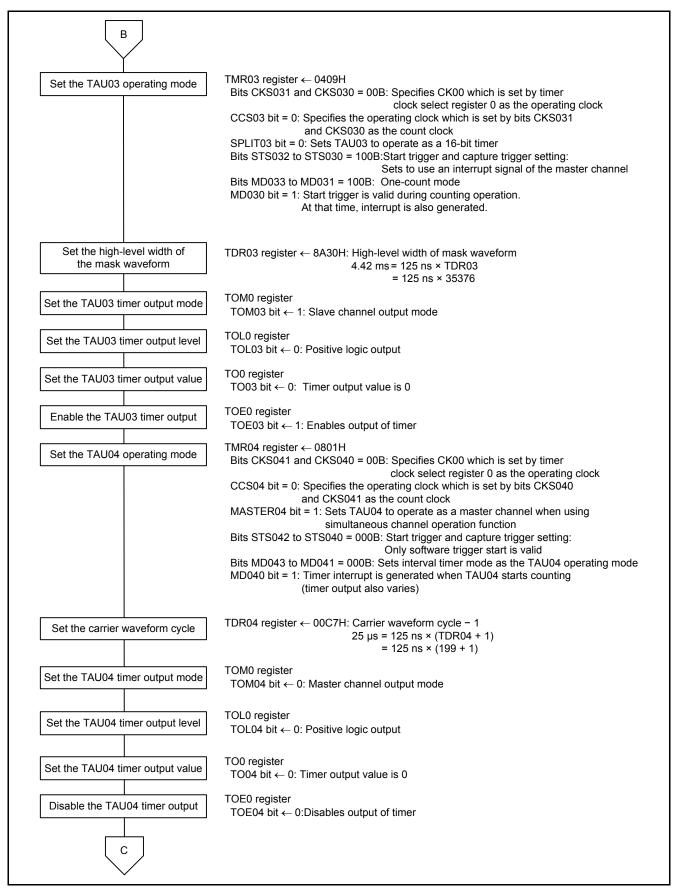


Figure 4.8 TAU0 Initialization (3/4)

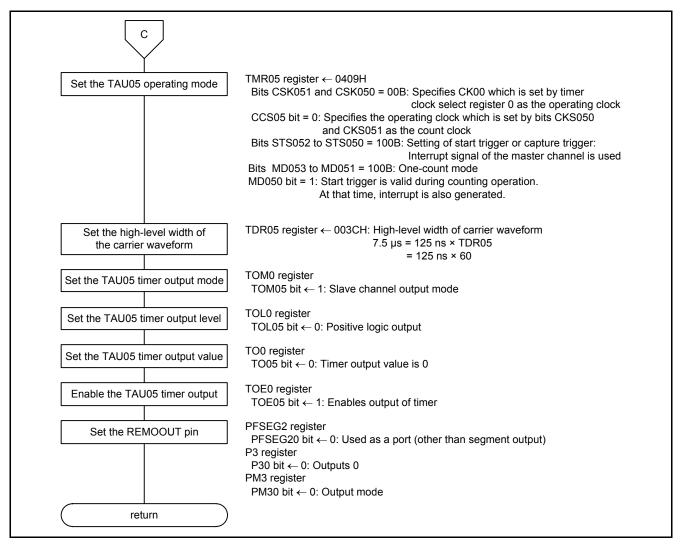


Figure 4.9 TAU0 Initialization (4/4)

Enabling the remote control output function

• Timer output select register (TOS)

Symbol
TOS
Value

_	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	TOS0
	_	_	-	-	-	-	-	1

• Bit 0

TOS0 bit	Function				
0	Disable (channels 2, 3, 4, and 5 are used for timer output)				
1	Enable (remote control output to the REMOOUT pin)				

Enabling to read from or write to SFRs used by TAU

• Peripheral enable register 0 (PER0)

Symbol
PER0
Value

7	6	5	4	3	2	1	0
RTCWEN	0	ADCEN	IICA0EN	SAU1EN	SAU0EN	0	TAU0EN
×	-	×	×	×	×	-	1

• Bit 0

TAU0EN bit	Function
0	Stops supplying an input clockWriting to SFRs used by timer array unit is disabledTimer array unit is in reset status
1	Enables supplying an input clockReading from or writing to SFRs used by timer array unit is enabled

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

×: Unused bit; blank cell: unchanged bit; -: reserved bit or unallocated bit

Setting the TAU0 operating clock

• Timer clock select register 0 (TPS0) Sets the TAU0 operating clock to 8 MHz.

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TPS0	0	0	PRS	PRS	0	0	PRS									
			031	030			021	020	013	012	011	010	003	002	001	000
Value	_	ı	×	×	_	_	×	×	×	×	×	×	0	0	0	0

• Bits 3 to 0

PRS	PRS	PRS	PRS			Select the c	perating clock (Cl	K00)	
003	002	001	000		f _{CLK} =				
					2 MHz	5 MHz	10 MHz	20 MHz	24 MHz
0	0	0	0	f _{CLK}	2 MHz	5 MHz	10 MHz	20 MHz	24 MHz
0	0	0	1	f _{CLK} /2	1 MHz	2.5 MHz	5 MHz	10 MHz	12 MHz
0	0	1	0	$f_{CLK}/2^2$	500 kHz	1.25 MHz	2.5 MHz	5 MHz	6 MHz
0	0	1	1	$f_{CLK}/2^3$	250 kHz	625 kHz	1.25 MHz	2.5 MHz	3 MHz
0	1	0	0	f _{CLK} /2 ⁴	125 kHz	312.5 kHz	625 kHz	1.25 MHz	1.5 MHz
0	1	0	1	f _{CLK} /2 ⁵	62.5 kHz	156.2 kHz	312.5 kHz	625 kHz	750 kHz
0	1	1	0	f _{CLK} /2 ⁶	31.25 kHz	78.1 kHz	156.2 kHz	312.5 kHz	375 kHz
0	1	1	1	$f_{CLK}/2^7$	15.62 kHz	39.1 kHz	78.1 kHz	156.2 kHz	187.5 kHz
1	0	0	0	f _{CLK} /2 ⁸	7.81 kHz	19.5 kHz	39.1 kHz	78.1 kHz	93.8 kHz
1	0	0	1	f _{CLK} /2 ⁹	3.91 kHz	9.76 kHz	19.5 kHz	39.1 kHz	46. 9 kHz
1	0	1	0	f _{CLK} /2 ¹⁰	1.95 kHz	4.88 kHz	9.76 kHz	19.5 kHz	23.4 kHz
1	0	1	1	f _{CLK} /2 ¹¹	976 Hz	2.44 kHz	4.88 kHz	9.76 kHz	11.7 kHz
1	1	0	0	f _{CLK} /2 ¹²	488 Hz	1.22 kHz	2.44 kHz	4.88 kHz	5.86 kHz
1	1	0	1	f _{CLK} /2 ¹³	244 Hz	610 Hz	1.22 kHz	2.44 kHz	2.93 kHz
1	1	1	0	f _{CLK} /2 ¹⁴	122 Hz	305 Hz	610 Hz	1.22 kHz	1.46 kHz
1	1	1	1	$f_{CLK}/2^{15}$	61 Hz	153 Hz	305 Hz	610 Hz	732 Hz

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

Stopping the count operation of all channels on TAU0

• Timer channel stop register 0 (TT0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TT0	0	0	0	0	TTH	0	TTH	0	TT							
					03		01		07	06	05	04	03	02	01	00
Value	_	_	_	_	1	_	1	_	1	1	1	1	1	1	1	1

• Bit 11

TTH03 bit	Function
0	No trigger operation
1	Operation is stopped (stop trigger is generated)

• Bit 9

TTH01 bit	Function
0	No trigger operation
1	Operation is stopped (stop trigger is generated)

• Bits 7 to 0

TT0n bit	Function (n = 0 to 7)
0	No trigger operation
1	Operation is stopped (stop trigger is generated) This bit is the trigger to stop operation of the lower 8-bit timer for TT01 and TT03 when channel 1 or 3 is in 8-bit timer mode.

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

×: Unused bit; blank cell: unchanged bit; -: reserved bit or unallocated bit

Disabling the TAU00 interrupt

• Interrupt mask flag register (MK0H)

Symbol	7	6	5	4	3	2	1	0
MK0H	SRMK0	TMMK00	STMK0	DMAMK1	DMAMK0	SREMK2	SRMK2	STMK2
			CSIMK00					
			IICMK00					
Value	×	1	×	×	×	×	×	×

• Bit 6

TMMK00 bit	Function
0	Interrupt servicing enabled
1	Interrupt servicing disabled

• Interrupt request flag register (IF0H)

Symbol	7	6	5	4	3	2	1	0
IF0H	SRIF0	TMIF00	STIF0 CSIIF00	DMAIF1	DMAIF0	SREIF2	SRIF2	STIF2
			IICIF00					
Value	×	0	×	×	×	×	×	×

• Bit 6

TMIF00 bit	Function
0	No interrupt request signal is generated
1	Interrupt request signal is generated, interrupt request status

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

×: Unused bit; blank cell: unchanged bit; -: reserved bit or unallocated bit

Disabling the TAU01 interrupt

• Interrupt mask flag register (MK1L)

Symbol	7	6	5	4	3	2	1	0
MK1L	TMMK01	1	RTITMK	IICAMK0	SREMK1	SRMK1	STMK1	SREMK0
					TMMK03H		CSIMK10	TMMK01H
							IICMK10	
Value	1	_	×	×		×	×	

• Bit 7

TMMK01 bit	Function
0	Interrupt servicing enabled
1	Interrupt servicing disabled

• Interrupt request flag register (IF1L)

1111 0 11 th	104000 1100	0815001 (11 12)	,					
Symbol	7	6	5	4	3	2	1	0
IF1L	TMIF01	0	RTITIF	IICAIF0	SREIF1	SRIF1	STIF1	SREIF0
					TMIF03H		CSIIF10	TMIF01H
							IICIF10	
Value	0	_	×	×		×	×	

• Bit 7

TMIF01 bit	Function				
0	No interrupt request signal is generated				
1	Interrupt request signal is generated, interrupt request status				

Disabling the TAU01 higher 8-bit timer interrupt

• Interrupt mask flag register (MK1L)

Symbol	7	6	5	4	3	2	1	0
MK1L	TMMK01	1	RTITMK	IICAMK0	SREMK1	SRMK1	STMK1	SREMK0
					TMMK03H		CSIMK10	TMMK01H
							IICMK10	
Value			×	×		×	×	1

• Bit 0

TMMK01H bit	Function
0	Interrupt servicing enabled
1	Interrupt servicing disabled

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

• Interrupt request flag register (IF1L)

Symbol	7	6	5	4	3	2	1	0
IF1L	TMIF01	0	RTITIF	IICAIF0	SREIF1	SRIF1	STIF1	SREIF0
					TMIF03H		CSIIF10	TMIF01H
							IICIF10	
Value		-	×	×		×	×	0

• Bit 0

TMIF01H bit	Function
0	No interrupt request signal is generated
1	Interrupt request signal is generated, interrupt request status

Disabling the TAU02 interrupt

• Interrupt mask flag register (MK1H)

Symbol	7	6	5	4	3	2	1	0
MK1H	SRMK3	STMK3	KRMK	TMKAMK	RTCMK	ADMK	TMMK03	TMMK02
Value	×	×	×	×	×	×		1

• Bit 0

TMMK02 bit	Function
0	Interrupt servicing enabled
1	Interrupt servicing disabled

• Interrupt request flag register (IF1H)

Symbol	7	6	5	4	3	2	1	0
IF1H	SRIF3	STIF3	KRIF	TMKAIF	RTCIF	ADIF	TMIF03	TMIF02
Value	×	×	×	×	×	×		0

• Bit 0

TMIF02 bit	Function
0	No interrupt request signal is generated
1	Interrupt request signal is generated, interrupt request status

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

×: Unused bit; blank cell: unchanged bit; -: reserved bit or unallocated bit

Disabling the TAU03 interrupt

• Interrupt mask flag register (MK1H)

Symbol
MK1H
Value

7	6	5	4	3	2	1	0
SRMK3	STMK3	KRMK	TMKAMK	RTCMK	ADMK	TMMK03	TMMK02
×	×	×	×	×	×	1	

• Bit 1

TMMK03 bit	Function
0	Interrupt servicing enabled
1	Interrupt servicing disabled

• Interrupt request flag register (IF1H)

Symbol
IF1H
Value

7	6	5	4	3	2	1	0
SRIF3	STIF3	KRIF	TMKAIF	RTCIF	ADIF	TMIF03	TMIF02
×	×	×	×	×	×	0	

• Bit 1

TMIF03 bit	Function
0	No interrupt request signal is generated
1	Interrupt request signal is generated, interrupt request status

Disabling the TAU03 higher 8-bit timer interrupt

• Interrupt mask flag register (MK1L)

MK1	L

Value

Symbol

7	6	5	4	3	2	1	0
TMMK01	1	RTITMK	IICAMK0	SREMK1	SRMK1	STMK1	SREMK0
				TMMK03H		CSIMK10	TMMK01H
						IICMK10	
	_	×	×	1	×	×	

• Bit 3

TMMK03H bit	Function
0	Interrupt servicing enabled
1	Interrupt servicing disabled

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

• Interrupt request flag register (IF1L)

Symbol						
IF1L						
Value						

7	6	5	4	3	2	1	0
TMIF01	0	RTITIF	IICAIF0	SREIF1	SRIF1	STIF1	SREIF0
				TMIF03H		CSIIF10	TMIF01H
						IICIF10	
	_	×	×	0	×	×	

• Bit 3

TMIF03H bit	Function					
0	No interrupt request signal is generated					
1	Interrupt request signal is generated, interrupt request status					

Disabling the TAU04 interrupt

• Interrupt mask flag register (MK2L)

Symbol MK2L Value

7	6	5	4	3	2	1	0
CMPMK1	CMPMK0	LCDMK0	PMK7	PMK6	TMMK05	TMMK04	TKBMK20
×	×	×	×	×		1	×

• Bit 1

TMMK04 bit	Function
0	Interrupt servicing enabled
1	Interrupt servicing disabled

• Interrupt request flag register (IF2L)

Symbol IF2L Value

7	6	5	4	3	2	1	0
CMPIF1	CMPIF0	LCDIF0	PIF7	PIF6	TMIF05	TMIF04	TKBIF20
×	×	×	×	×		0	×

• Bit 1

TMIF04 bit	Function
0	No interrupt request signal is generated
1	Interrupt request signal is generated, interrupt request status

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

Disabling the TAU05 interrupt

• Interrupt mask flag register (MK2L)

Symbo
MK2L
Value

	6	5	4	3	2	1	U
CMPMK1	CMPMK0	LCDMK0	PMK7	PMK6	TMMK05	TMMK04	TKBMK20
×	×	×	×	×	1		×

• Bit 2

TMMK05 bit	Function
0	Interrupt servicing enabled
1	Interrupt servicing disabled

• Interrupt request flag register (IF2L)

Symbo
IF2L
Value

7	6	5	4	3	2	1	0
CMPIF1	CMPIF0	LCDIF0	PIF7	PIF6	TMIF05	TMIF04	TKBIF20
×	×	×	×	×	0		×

• Bit 2

TMIF05 bit	Function					
0	No interrupt request signal is generated					
1	Interrupt request signal is generated, interrupt request status					

Disabling the TAU06 interrupt

• Interrupt mask flag register (MK2H)

Symbol MK2H Value

7	6	5	4	3	2	1	0
FLMK	1	MDMK	SREMK3	1	1	TMMK07	TMMK06
×	1	×	×	_	_		1

• Bit 2

TMMK06 bit	Function
0	Interrupt servicing enabled
1	Interrupt servicing disabled

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

• Interrupt request flag register (IF2H)

Symbol IF2H Value

7	6	5	4	3	2	1	0
FLIF	0	MDIF	SREIF3	0	0	TMIF07	TMIF06
×	-	×	×	-	-		0

• Bit 0

TMIF06 bit	Function
0	No interrupt request signal is generated
1	Interrupt request signal is generated, interrupt request status

Disabling the TAU07 interrupt

• Interrupt mask flag register (MK2H)

Symbol MK2H Value

7	6	5	4	3	2	1	0
FLMK	1	MDMK	SREMK3	1	1	TMMK07	TMMK06
×	_	×	×	_	_	1	

• Bit 1

TMMK07 bit	Function
0	Interrupt servicing enabled
1	Interrupt servicing disabled

• Interrupt request flag register (IF2H)

Symbol IF2H Value

7	6	5	4	3	2	1	0
FLIF	0	MDIF	SREIF3	0	0	TMIF07	TMIF06
×	_	×	×	_	_	0	

• Bit 1

TMIF07 bit	Function
0	No interrupt request signal is generated
1	Interrupt request signal is generated, interrupt request status

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

×: Unused bit; blank cell: unchanged bit; -: reserved bit or unallocated bit

Setting the TAU02 operating mode

- Timer mode register 02 (TMR02)
 - Operating clock (f_{MCK}): CK00
 - Count clock (f_{TCLK}): f_{MCK}
 - TAU02 operates as: Master channel when using simultaneous channel operation function
 - Start trigger: Only software trigger start is valid
 - Operating mode: Interval timer mode (timer interrupt is generated when TAU02 starts counting)

Symbol	
TMR02	
Value	

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CKS	0	ccs	MASTER	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
021	020		02	02	022	021	020	021	020			023	022	021	020
0	0	_	0	1	0	0	0	×	×	_	_	0	0	0	1

Bits 15 and 14

CKS021 bit	CKS020 bit	Function
0	0	Operating clock CK00 set by timer clock select register 0 (TPS0)
0	1	Operating clock CK02 set by timer clock select register 0 (TPS0)
1	0	Operating clock CK01 set by timer clock select register 0 (TPS0)
1	1	Operating clock CK03 set by timer clock select register 0 (TPS0)

Operating clock (f_{MCK}) is used by the edge detector. A count clock (f_{TCLK}) and a sampling clock are generated according to the setting of the CCS00 bit. Operating clocks CK02 and CK03 can only be selected on channels 1 and 3.

• Bit 12

CCS02 bit	Function						
0	Operating clock (f _{MCK}) specified by bits CKS020 and CKS021						
1	Valid edge of the input signal input from the Tl02 pin						
Count clock	Count clock (f _{TCLK}) is used by the timer counter, output controller, and interrupt controller.						

• Bit 11

MASTER02 bit	Function
0	Operates in independent channel operation function or as a slave channel in simultaneous channel operation function
1	Operates as the master channel in simultaneous channel operation function

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

• Bits 10 to 8

STS 022	STS 021	STS 020	Function
0	0	0	Only software trigger start is valid (other trigger sources are unselected)
0	0	1	Valid edge of the TI02 pin input is used as both the start trigger and capture trigger
0	1	0	Both edges of the TI02 pin input are used as a start trigger and a capture trigger
1	0	0	Interrupt signal of the master channel is used (when the channel is used as a slave channel with the simultaneous channel operation function)
Othe	r than a	bove	Setting prohibited

• Bits 3 to 1

MD 023	MD 022	MD 021	Function	Corresponding function	TCR operation
0	0	0	Interval timer mode	Interval timer, square wave output, PWM output (master)	Counting down
0	1	0	Capture mode	Input pulse interval measurement	Counting up
0	1	1	Event counter mode	External event counter	Counting down
1	0	0	One-count mode	Delay counter, one-shot pulse output, PWM output (slave)	Counting down
1	1	0	Capture & one- count mode	Measurement of high-/low-level width of input signal	Counting up
	ther that above		Setting prohibited	t	

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

• Bit 0

Operating mode (Value set by bits MD023 to MD021, see the previous table)	MD 020	Function
• Interval timer mode (0, 0, 0)	0	Timer interrupt is not generated when TAU02 starts counting (timer output does not vary, either).
• Capture mode (0, 1, 0)	1	Timer interrupt is generated when TAU02 starts counting (timer output also varies).
• Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when TAU02 starts counting (timer output does not vary, either)
One-count mode	0	Start trigger is invalid while TAU02 is counting. At that time, interrupt is not generated, either.
(1, 0, 0)	1	Start trigger is valid while TAU02 is counting. At that time, interrupt is also generated.
Capture & one-count mode (1, 1, 0)	0	Timer interrupt is not generated when TAU02 starts counting (timer output does not vary, either). Start trigger is invalid while TAU02 is counting. At that time, interrupt is not generated, either.
Other than above		Setting prohibited

Setting the mask waveform cycle

• Timer data register 02 (TDR02) Sets the mask waveform cycle to 6.6 ms.

 $[6.6 \text{ ms} = 1/f_{TCLK} \times (TDR02 + 1) = 1/8 \text{ MHz} \times (52799 + 1)]$

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TDR02	_	-	ı	_	_	_	ı	-	_	-	_	ı	_	-	ı	_
Value		CE3FH (52799)														

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

Setting the TAU02 timer output mode

• Timer output mode register 0 (TOM0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOM0	0	0	0	0	0	0	0	0	TOM	0						
									07	06	05	04	03	02	01	
Value	_	_	_	_	_	-	_	_	×	×				0	×	_

• Bit 2

TOM02 bit	Function
0	Master channel output mode (to produce toggle output by timer interrupt request signal, INTTM02)
1	Slave channel output mode (output is set by timer interrupt request signal INTTM02 of the master channel, and reset by timer interrupt request signal INTTM0p of the slave channel) (p is greater than 2 and less than or equal to 7)

Setting the TAU02 timer output level

• Timer output level register 0 (TOL0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOL0	0	0	0	0	0	0	0	0	TOL	0						
									07	06	05	04	03	02	01	
Value	_	_	_	_	_	_	_	_	×	×				0	×	_

• Bit 2

TOL02 bit	Function
0	Positive logic output (high active)
1	Negative logic output (low active)

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

×: Unused bit; blank cell: unchanged bit; -: reserved bit or unallocated bit

Setting the TAU02 timer output value

• Timer output register 0 (TO0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TO0	0	0	0	0	0	0	0	0	TO07	TO06	TO05	TO04	TO03	TO02	TO01	TO00
Value	-	-	-	_	ı	_	_	-	×	×				0	×	×

• Bit 2

TO02 bit	Function
0	Timer output value is 0
1	Timer output value is 1

Disabling the TAU02 timer output

• Timer output enable register 0 (TOE0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOE0	0	0	0	0	0	0	0	0	TOE							
									07	06	05	04	03	02	01	00
Value	-	_	-	_	_	_	-	-	×	×				0	×	×

• Bit 2

TOE02 bit	Function
0	Disables output of timer. Output is fixed without reflecting the timer operation on the TO02 bit. Writing to the TO02 bit is enabled.
1	Enables output of timer. Reflects the timer operation on the TO02 bit, and generates an output waveform. Writing to the TO02 bit is ignored.

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

×: Unused bit; blank cell: unchanged bit; -: reserved bit or unallocated bit

Setting the TAU03 operating mode

- Timer mode register 03 (TMR03)
 - Operating clock (f_{MCK}): CK00
 - Count clock (f_{TCLK}): f_{MCK}
 - TAU03 operates as: 16-bit timer
 - Start trigger: Interrupt signal of the master channel is used
 - Operating mode: One-count mode (Start trigger while TAU03 is counting is valid)

Symbol TMR03

Value

15	14	13	12	11	10	9	8		6	5	4	3	2	1	U
CKS	CKS	0	ccs	SPLIT	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
031	030		03	03	032	031	030	031	030			033	032	031	030
0	0	_	0	0	1	0	0	×	×	_	_	1	0	0	1

• Bits 15 and 14

CKS031 bit	CKS030 bit	Function
0	0	Operating clock CK00 set by timer clock select register 0 (TPS0)
0	1	Operating clock CK02 set by timer clock select register 0 (TPS0)
1	0	Operating clock CK01 set by timer clock select register 0 (TPS0)
1	1	Operating clock CK03 set by timer clock select register 0 (TPS0)

Operating clock (f_{MCK}) is used by the edge detector. A count clock (f_{TCLK}) and a sampling clock are generated according to the setting of the CCS00 bit.

Operating clocks CK02 and CK03 can only be selected on channels 1 and 3.

• Bit 12

CCS03 bit	Function									
0	Operating clock (f _{MCK}) specified by bits CKS030 and CKS031									
1	Valid edge of the input signal input from the TI03 pin									
Count clock	Count clock (f _{TCLK}) is used by the timer counter, output controller, and interrupt controller.									

• Bit 11

SPLIT03 bit	Function
0	Operates as a 16-bit timer (Operates in independent channel operation function or as a slave channel in simultaneous channel operation function)
1	Operates as an 8-bit timer

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

×: Unused bit; blank cell: unchanged bit; -: reserved bit or unallocated bit

• Bits 10 to 8

STS 032	STS 031	STS 030	Function
0	0	0	Only software trigger start is valid (other trigger sources are unselected)
0	0	1	Valid edge of the TI03 pin input is used as both the start trigger and capture trigger
0	1	0	Both edges of the TI03 pin input are used as a start trigger and a capture trigger
1	0	0	Interrupt signal of the master channel is used (when the channel is used as a slave channel with the simultaneous channel operation function)
Othe	r than a	bove	Setting prohibited

• Bits 3 to 1

MD 033	MD 032	MD 031	Function	Corresponding function	TCR operation			
0	0	0	Interval timer mode	Interval timer, square wave output, PWM output (master)	Counting down			
0	1	0	Capture mode	Input pulse interval measurement	Counting up			
0	1	1	Event counter mode	External event counter	Counting down			
1	0	0	One-count mode	Delay counter, one-shot pulse output, PWM output (slave)	Counting down			
1	1	0	Capture & one- count mode	Measurement of high-/low-level width of input signal	Counting up			
Other than above			Setting prohibited	b				

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

• Bit 0

Operating mode (Value set by bits MD033 to MD031, see the previous table)	MD 030	Function
• Interval timer mode (0, 0, 0)	0	Timer interrupt is not generated when TAU03 starts counting (timer output does not vary, either).
• Capture mode (0, 1, 0)	1	Timer interrupt is generated when TAU03 starts counting (timer output also varies).
• Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when TAU03 starts counting (timer output does not vary, either)
One-count mode	0	Start trigger is invalid while TAU03 is counting. At that time, interrupt is not generated, either.
(1, 0, 0)	1	Start trigger is valid while TAU03 is counting. At that time, interrupt is also generated.
Capture & one-count mode (1, 1, 0)	0	Timer interrupt is not generated when TAU03 starts counting (timer output does not vary, either). Start trigger is invalid while TAU03 is counting. At that time, interrupt is not generated, either.
Other than above		Setting prohibited

Setting the high-level width of the mask waveform

• Timer data register 03 (TDR03) Sets the high-level width of the mask waveform to 4.42 ms.

 $(4.42 \text{ ms} = 1/f_{TCLK} \times TDR03 = 1/8 \text{ MHz} \times 35376)$

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TDR03	_	_	ı	_	_	_	ı	-	_	_	_	_	_	_	_	_
Value	8A30H (35376)															

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

Setting the TAU03 timer output mode

• Timer output mode register 0 (TOM0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOM0	0	0	0	0	0	0	0	0	TOM	0						
									07	06	05	04	03	02	01	
Value	_	-	-	_	_	_	_	_	×	×			1		×	_

• Bit 3

TOM03 bit	Function
0	Master channel output mode (to produce toggle output by timer interrupt request signal, INTTM03)
1	Slave channel output mode (output is set by timer interrupt request signal INTTM03 of the master channel, and reset by timer interrupt request signal INTTM0p of the slave channel) (p is greater than 3 and less than or equal to 7)

Setting the TAU03 timer output level

• Timer output level register 0 (TOL0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOL0	0	0	0	0	0	0	0	0	TOL	0						
									07	06	05	04	03	02	01	
Value	_	_	_	_	_	_	_	_	×	×			0		×	_

• Bit 3

TOL03 bit	Function
0	Positive logic output (high active)
1	Negative logic output (low active)

Setting the TAU03 timer output value

• Timer output register 0 (TO0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TO0	0	0	0	0	0	0	0	0	TO07	TO06	TO05	TO04	TO03	TO02	TO01	TO00
Value	_	_	_	_	_	_	_	_	×	×			0		×	×

• Bit 3

TO03 bit	Function
0	Timer output value is 0
1	Timer output value is 1

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

Enabling the TAU03 timer output

• Timer output enable register 0 (TOE0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOE0	0	0	0	0	0	0	0	0	TOE							
									07	06	05	04	03	02	01	00
Value	_	_	-	_	-	-	_	_	×	×			1		×	×

• Bit 3

TOE03 bit	Function					
0	Disables output of timer. Output is fixed without reflecting the timer operation on the TO03 bit. Writing to the TO03 bit is enabled.					
1	Enables output of timer. Reflects the timer operation on the TO03 bit, and generates an output waveform. Writing to the TO03 bit is ignored.					

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

Setting the TAU04 operating mode

- Timer mode register 04 (TMR04)
 - Operating clock (f_{MCK}): CK00
 - Count clock (f_{TCLK}): f_{MCK}
 - TAU03 operates as: Master channel when using simultaneous channel operation function
 - Start trigger: Only software trigger start is valid
 - Operating mode: Interval timer mode (Timer interrupt is generated when TAU04 starts counting)

Symbol TMR04

Value

15	14	13	12	11	10	9	8		6	5	4	3	2	1	0
CKS	CKS	0	ccs	MASTER	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
041	040		04	04	042	041	040	041	040			043	042	041	040
0	0	_	0	1	0	0	0	×	×	_	_	0	0	0	1

• Bits 15 and 14

CKS041 bit	CKS040 bit	Function
0	0	Operating clock CK00 set by timer clock select register 0 (TPS0)
0	1	Operating clock CK02 set by timer clock select register 0 (TPS0)
1	0	Operating clock CK01 set by timer clock select register 0 (TPS0)
1	1	Operating clock CK03 set by timer clock select register 0 (TPS0)

Operating clock (f_{MCK}) is used by the edge detector. A count clock (f_{TCLK}) and a sampling clock are generated according to the setting of the CCS00 bit. Operating clocks CK02 and CK03 can only be selected on channels 1 and 3.

• Bit 12

CCS04 bit	Function								
0	Operating clock (f _{MCK}) specified by bits CKS040 and CKS041								
1	Valid edge of the input signal input from the TI04 pin								
Count clock (f _{TCLK}) is used by the timer counter, output controller, and interrupt controller.									

• Bit 11

MASTER04 bit	Function
0	Operates in independent channel operation function or as a slave channel in simultaneous channel operation function
1	Operates as the master channel in simultaneous channel operation function

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

×: Unused bit; blank cell: unchanged bit; -: reserved bit or unallocated bit

• Bits 10 to 8

STS 042	STS 041	STS 040	Function
0	0	0	Only software trigger start is valid (other trigger sources are unselected)
0	0	1	Valid edge of the TI04 pin input is used as both the start trigger and capture trigger
0	1	0	Both edges of the TI04 pin input are used as a start trigger and a capture trigger
1	0	0	Interrupt signal of the master channel is used (when the channel is used as a slave channel with the simultaneous channel operation function)
Othe	r than a	bove	Setting prohibited

• Bits 3 to 1

MD 043	MD 042	MD 041	Function	Corresponding function	TCR operation					
0	0	0	Interval timer mode	Interval timer, square wave output, PWM output (master)	Counting down					
0	1	0	Capture mode	Input pulse interval measurement	Counting up					
0	1	1	Event counter mode	External event counter	Counting down					
1	0	0	One-count mode	Delay counter, one-shot pulse output, PWM output (slave)	Counting down					
1	1	0	Capture & one- count mode	Measurement of high-/low-level width of input signal	Counting up					
Other than above			Setting prohibited	Setting prohibited						

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

• Bit 0

Operating mode (Value set by bits MD043 to MD041, see the previous table)	MD 040	Function
• Interval timer mode (0, 0, 0)	0	Timer interrupt is not generated when TAU04 starts counting (timer output does not vary, either).
• Capture mode (0, 1, 0)	1	Timer interrupt is generated when TAU04 starts counting (timer output also varies).
• Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when TAU04 starts counting (timer output does not vary, either)
One-count mode	0	Start trigger is invalid while TAU04 is counting. At that time, interrupt is not generated, either.
(1, 0, 0)	1	Start trigger is valid while TAU04 is counting. At that time, interrupt is also generated.
Capture & one-count mode (1, 1, 0)	0	Timer interrupt is not generated when TAU04 starts counting (timer output does not vary, either). Start trigger is invalid while TAU04 is counting. At that time, interrupt is not generated, either.
Other than above		Setting prohibited

Setting the carrier waveform cycle

• Timer data register 04 (TDR04) Sets the carrier waveform cycle to 25 μs.

[25 μ s = 1/fTCLK × (TDR04 + 1) = 1/8 MHz × (199 + 1)]

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TDR04	-	ı	-	-	1	-	ı	-	_	_	_	ı	_	_	ı	_
Value		00C7H (199)														

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

Setting the TAU04 timer output mode

• Timer output mode register 0 (TOM0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOM0	0	0	0	0	0	0	0	0	TOM	0						
									07	06	05	04	03	02	01	
Value	_	_	_	_	_	_	_	_	×	×		0			×	_

• Bit 4

TOM04 bit	Function
0	Master channel output mode (to produce toggle output by timer interrupt request signal, INTTM04)
1	Slave channel output mode (output is set by timer interrupt request signal INTTM04 of the master channel, and reset by timer interrupt request signal INTTM0p of the slave channel) (p is greater than 4 and less than or equal to 7)

Setting the TAU04 timer output level

• Timer output level register 0 (TOL0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOL0	0	0	0	0	0	0	0	0	TOL 07	TOL 06	TOL 05	TOL 04	TOL 03	TOL 02	TOL 01	0
Value	_	_	_	_	_	_	_	_	×	×		0			×	

• Bit 4

TOL04 bit	Function
0	Positive logic output (high active)
1	Negative logic output (low active)

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

×: Unused bit; blank cell: unchanged bit; -: reserved bit or unallocated bit

Setting the TAU04 timer output value

• Timer output register 0 (TO0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TO0	0	0	0	0	0	0	0	0	TO07	TO06	TO05	TO04	TO03	TO02	TO01	TO00
Value	_	_	_	-	_	_	_	-	×	×		0			×	×

• Bit 4

TO04 bit	Function
0	Timer output value is 0
1	Timer output value is 1

Disabling the TAU04 timer output

• Timer output enable register 0 (TOE0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOE0	0	0	0	0	0	0	0	0	TOE							
									07	06	05	04	03	02	01	00
Value	-	_	-	ı	_	_	_	ı	×	×		0			×	×

• Bit 4

TOE04 bit	Function
0	Disables output of timer. Output is fixed without reflecting the timer operation on the TO04 bit. Writing to the TO04 bit is enabled.
1	Enables output of timer. Reflects the timer operation on the TO04 bit, and generates an output waveform. Writing to the TO04 bit is ignored.

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

×: Unused bit; blank cell: unchanged bit; -: reserved bit or unallocated bit

Setting the TAU05 operating mode

- Timer mode register 05 (TMR05)
 - Operating clock (f_{MCK}): CK00
 - Count clock (f_{TCLK}): f_{MCK}
 - Start trigger: Interrupt signal of the master channel is used
 - Operating mode: One-count mode (Start trigger while TAU05 is counting is valid)

Symbol TMR05

Value

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
CKS	CKS	0	ccs	0	STS	STS	STS	CIS	CIS	0	0	MD	MD	MD	MD
051	050		05		052	051	050	051	050			053	052	051	050
0	0	_	0	_	1	0	0	×	×	_	_	1	0	0	1

• Bits 15 and 14

CKS051 bit	CKS050 bit	Function
0	0	Operating clock CK00 set by timer clock select register 0 (TPS0)
0	1	Operating clock CK02 set by timer clock select register 0 (TPS0)
1	0	Operating clock CK01 set by timer clock select register 0 (TPS0)
1	1	Operating clock CK03 set by timer clock select register 0 (TPS0)

Operating clock (f_{MCK}) is used by the edge detector. A count clock (f_{TCLK}) and a sampling clock are generated according to the setting of the CCS00 bit.

Operating clocks CK02 and CK03 can only be selected on channels 1 and 3.

• Bit 12

CCS05 bit	Function								
0	Operating clock (f _{MCK}) specified by bits CKS050 and CKS051								
1	1 Valid edge of the input signal input from the TI05 pin								
Count clock	Count clock (ftclk) is used by the timer counter, output controller, and interrupt controller.								

• Bits 10 to 8

STS 052	STS 051	STS 050	Function
0	0	0	Only software trigger start is valid (other trigger sources are unselected)
0	0	1	Valid edge of the TI03 pin input is used as both the start trigger and capture trigger
0	1	0	Both edges of the TI03 pin input are used as a start trigger and a capture trigger
1	0	0	Interrupt signal of the master channel is used (when the channel is used as a slave channel with the simultaneous channel operation function)
Othe	r than a	bove	Setting prohibited

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

• Bits 3 to 1

MD 053	MD 052	MD 051	Function	Corresponding function	TCR operation				
0	0	0	Interval timer mode	Interval timer, square wave output, PWM output (master)	Counting down				
0	1	0	Capture mode	Input pulse interval measurement	Counting up				
0	1	1	Event counter mode	External event counter	Counting down				
1	0	0	One-count mode	Delay counter, one-shot pulse output, PWM output (slave)	Counting down				
1	1	0	Capture & one- count mode	Measurement of high-/low-level width of input signal	Counting up				
	ther the		Setting prohibited						

• Bit 0

Operating mode (Value set by bits MD053 to MD051, see the previous table)	MD 050	Function
• Interval timer mode (0, 0, 0)	0	Timer interrupt is not generated when TAU05 starts counting (timer output does not vary, either).
• Capture mode (0, 1, 0)	1	Timer interrupt is generated when TAU05 starts counting (timer output also varies).
• Event counter mode (0, 1, 1)	0	Timer interrupt is not generated when TAU05 starts counting (timer output does not vary, either)
One-count mode	0	Start trigger is invalid while TAU05 is counting. At that time, interrupt is not generated, either.
(1, 0, 0)	1	Start trigger is valid while TAU05 is counting. At that time, interrupt is also generated.
Capture & one-count mode (1, 1, 0)	0	Timer interrupt is not generated when TAU05 starts counting (timer output does not vary, either). Start trigger is invalid while TAU05 is counting. At that time, interrupt is not generated, either.
Other than above		Setting prohibited

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

Setting the high-level width of the carrier waveform

• Timer data register 05 (TDR05)

Sets the high-level width of the carrier waveform to 7.5 µs.

 $(7.5 \mu s = 1/f_{TCLK} \times TDR05 = 1/8 MHz \times 60)$

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TDR05	_	-	ı	_	_	_	_	-	_	_	_	_	_	_	-	_
Value							0	03CH	(60)							

Setting the TAU05 timer output mode

• Timer output mode register 0 (TOM0)

Symbol
TOM0
Value

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	0	TOM	0						
								07	06	05	04	03	02	01	
_	-		_	_	_	_	_	×	×	1				×	

• Bit 5

TOM05 bit	Function
0	Master channel output mode (to produce toggle output by timer interrupt request signal, INTTM05)
1	Slave channel output mode (output is set by timer interrupt request signal INTTM05 of the master channel, and reset by timer interrupt request signal INTTM0p of the slave channel) (p is greater than 5 and less than or equal to 7)

Setting the TAU05 timer output level

• Timer output level register 0 (TOL0)

TOL0
Value

Symbol

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	0	0	0	0	0	0	0	0	TOL	TOL	TOL 05	TOL	TOL	TOL	TOL	0
									07	06	05	04	03	02	01	
	_	_	_	_	_	_	_	_	×	×	0				×	_

• Bit 5

TOL05 bit	Function								
0	Positive logic output (high active)								
1	Negative logic output (low active)								

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

Setting the TAU05 timer output value

• Timer output register 0 (TO0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TO0	0	0	0	0	0	0	0	0	TO07	TO06	TO05	TO04	TO03	TO02	TO01	TO00
Value	_	_	_	_	_	_	_	_	×	×	0				×	×

• Bit 5

TO05 bit	Function
0	Timer output value is 0
1	Timer output value is 1

Enabling the TAU05 timer output

• Timer output enable register 0 (TOE0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOE0	0	0	0	0	0	0	0	0	TOE							
									07	06	05	04	03	02	01	00
Value	-	-	-	_	_	_	_	ı	×	×	1				×	×

• Bit 5

TOE05 bit	Function
0	Disables output of timer. Output is fixed without reflecting the timer operation on the TO05 bit. Writing to the TO05 bit is enabled.
1	Enables output of timer. Reflects the timer operation on the TO05 bit, and generates an output waveform. Writing to the TO05 bit is ignored.

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

×: Unused bit; blank cell: unchanged bit; -: reserved bit or unallocated bit

Setting the REMOOUT pin

• LCD port function register 2 (PFSEG2)

Symbol
PFSEG2
Value

7	6	5	4	3	2	1	0
PFSEG23	PFSEG22	PFSEG21	PFSEG20	PFSEG19	PFSEG18	PFSEG17	PFSEG16
×	×	×	0	×	×	×	×

• Bit 4

PFSEG20 bit	Function
0	P30 pin is used as a port (other than segment output)
1	P30 is used as segment output

• Port register 3 (P3)

Symbol
P3
Value

7	6	5	4	3	2	1	0
0	0	P35	P34	P33	P32	P31	P30
_	-	×	×	×	×	×	0

• Bit 0

P30 bit	Function
0	Outputs 0
1	Outputs 1

• Port mode register 3 (PM3)

Symbol PM3 Value

7	6	5	4	3	2	1	0
1	1	PM35	PM34	РМ3	PM32	PM31	PM30
_	-	×	×	×	×	×	0

• Bit 0

PM30 bit	Function
0	Output mode (output buffer on)
1	Input mode (output buffer off)

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

4.6.6 TAU02 Start Setting

Figure 4.10 shows TAU02 start setting.

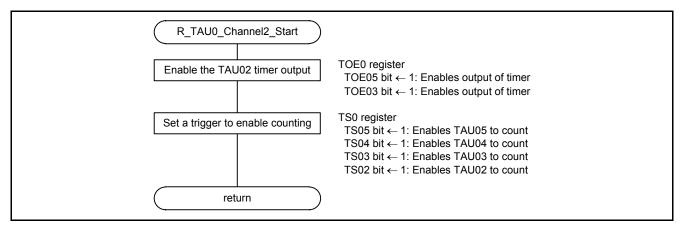


Figure 4.10 TAU02 Start Setting

Enabling the TAU02 timer output

• Timer output enable register 0 (TOE0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOE0	0	0	0	0	0	0	0	0	TOE							
									07	06	05	04	03	02	01	00
Value	_	_	-	_	_	_	_	-	×	×	1		1		×	×

• Bits 5 and 3

TOE0n bit	Function (n = 3 and 5)
0	Disables output of timer. Output is fixed without reflecting the timer operation on the TO0n bit. Writing to the TO0n bit is enabled.
1	Enables output of timer. Reflects the timer operation on the TO0n bit, and generates an output waveform. Writing to the TO0n bit is ignored.

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

Setting a trigger to enable counting

• Timer channel start register 0 (TS0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TS0	0	0	0	0	TSH	0	TSH	0	TS07	TS06	TS05	TS04	TS03	TS02	TS01	TS00
					03		01									
Value	_	_	-	_	×	ı	×	1	×	×	1	1	1	1	×	×

• Bits 5 to 2

TS0n bit	Function (n = 2 to 5)
0	No trigger operation
1	The TE0n bit is set to 1 and count operation is enabled.

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

4.6.7 TAU02 Stop Setting

Figure 4.11 shows TAU02 stop setting.

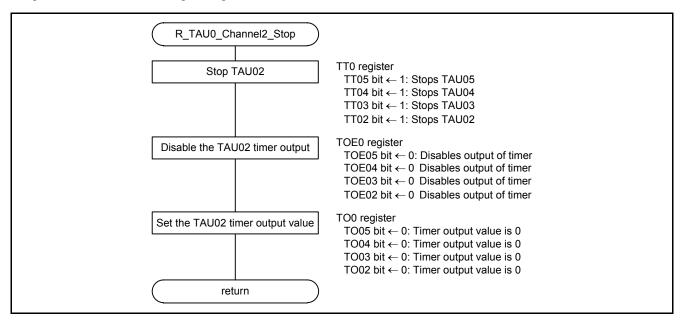


Figure 4.11 TAU02 Stop Setting

Stopping TAU02

• Timer channel stop register 0 (TT0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TT0	0	0	0	0	TTH	0	TTH	0	TT							
					03		01		07	06	05	04	03	02	01	00
Value	-	-	_	_	×	_	×	_	×	×	1	1	1	1	×	×

• Bits 5 to 2

TT0n bit	Function (n = 2 to 5)
0	No trigger operation
1	Operation is stopped (stop trigger is generated) This bit is the trigger to stop operation of the lower 8-bit timer for TT01 and TT03 when channel 1 or 3 is in 8-bit timer mode.

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

Disabling the TAU02 timer output

• Timer output enable register 0 (TOE0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TOE0	0	0	0	0	0	0	0	0	TOE							
									07	06	05	04	03	02	01	00
Value	_	_	ı	_	_	_	_	-	×	×	0	0	0	0	×	×

• Bits 5 to 2

TOE0n bit	Function (n = 2 to 5)
0	Disables output of timer. Output is fixed without reflecting the timer operation on the TO0n bit. Writing to the TO0n bit is enabled.
1	Enables output of timer. Reflects the timer operation on the TO0n bit, and generates an output waveform. Writing to the TO0n bit is ignored.

Setting the TAU02 timer output value

• Timer output register 0 (TO0)

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TO0	0	0	0	0	0	0	0	0	TO07	TO06	TO05	TO04	TO03	TO02	TO01	TO00
Value	_	_	_	_	_	_	_	_	×	×	0	0	0	0	×	×

• Bits 5 to 2

TO0n bit	Function
0	Timer output value is 0
1	Timer output value is 1

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

×: Unused bit; blank cell: unchanged bit; -: reserved bit or unallocated bit

4.6.8 Main Processing

Figure 4.12 shows the main processing.

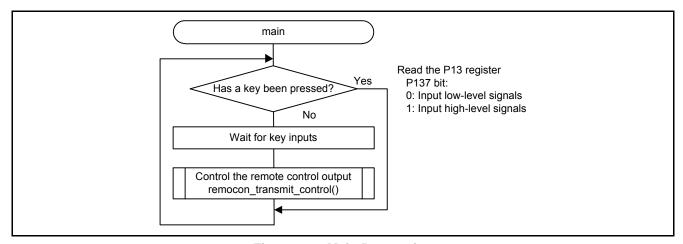


Figure 4.12 Main Processing

Reading port P137

• Port register 13 (P13)

Symbol	7	6	5	4	3	2	1	0
P13	P137	0	0	0	0	0	0	P130

• Bit 7

P137 bit	Function
0	Input low-level signals
1	Input high-level signals

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

4.6.9 Main Initialization

Figure 4.13 shows the main initialization.

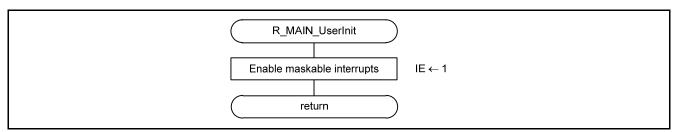


Figure 4.13 Main Initialization

4.6.10 Remote Control Output Control Processing

Figure 4.14 and Figure 4.15 shows the remote control output control processing.

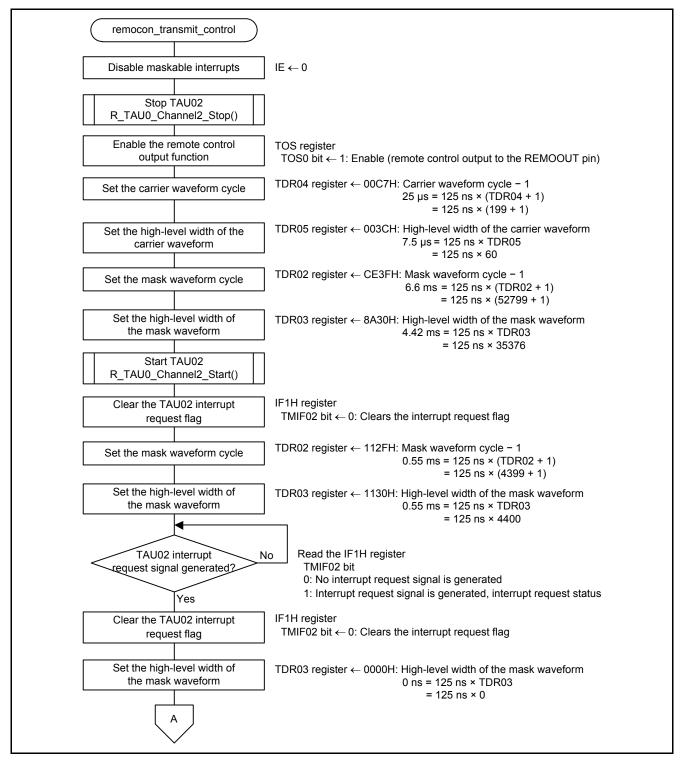


Figure 4.14 Remote Control Output Control Setting (1/2)

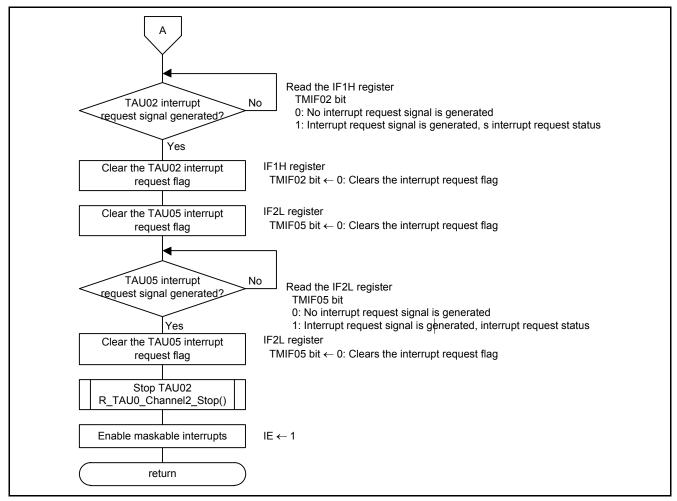


Figure 4.15 Remote Control Output Control Setting (2/2)

Enabling the remote control output function

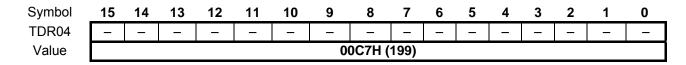
• Timer output select register (TOS)

Symbol	7	6	5	4	3	2	1	0
TOS	0	0	0	0	0	0	0	TOS0
Value	-	_	-	-	_	-	-	1

• Bit 0

TOS0 bit	Function
0	Disable (channels 2, 3, 4, and 5 are used for timer output)
1	Enable (remote control output to the REMOOUT pin)

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.


Legend symbol:

Setting the carrier waveform cycle

• Timer data register 04 (TDR04)

Sets the carrier waveform cycle to 25 μs.

 $[25 \mu s = 1/f_{TCLK} \times (TDR04 + 1) = 1/8 \text{ MHz} \times (199 + 1)]$

Setting the high-level width of the carrier waveform

• Timer data register 05 (TDR05)

Sets the high-level width of the carrier waveform to 7.5 μs.

 $(7.5 \mu s = 1/f_{TCLK} \times TDR05 = 1/8 MHz \times 60)$

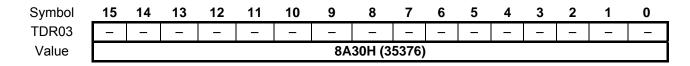
Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TDR05	_	-	-	_	_	_	-	-	_	_	-	-	_	_	-	_
Value							0	03CH	(60)							

Setting the mask waveform cycle

• Timer data register 02 (TDR02)

Sets the mask waveform cycle to 6.6 ms.

 $[6.6 \text{ ms} = 1/f_{TCLK} \times (TDR02 + 1) = 1/8 \text{ MHz} \times (52799 + 1)]$


Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TDR02	_	ı	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Value							CE	3FH (5	2799)							

Setting the high-level width of the mask waveform

• Timer data register 03 (TDR03)

Sets the high-level width of the mask waveform to 4.42 ms.

 $(4.42 \text{ ms} = 1/f_{TCLK} \times TDR03 = 1/8 \text{ MHz} \times 35376)$

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

Clearing the TAU02 interrupt request flag

• Interrupt request flag register (IF1H)

Symbol IF1H Value

7	6	5	4	3	2	1	0
SRIF3	STIF3	KRIF	TMKAIF	RTCIF	ADIF	TMIF03	TMIF02
×	×	×	×	×	×		0

• Bit 0

TMIF02 bit	Function
0	No interrupt request signal is generated
1	Interrupt request signal is generated, interrupt request status

Setting the mask waveform cycle

• Timer data register 02 (TDR02)

Sets the mask waveform cycle to 0.55 ms.

 $[0.55 \text{ ms} = 1/f_{TCLK} \times (TDR02 + 1) = 1/8 \text{ MHz} \times (4399 + 1)]$

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TDR02	_	_	-	-	_	-	-	-	-	-	_	-	-	ı	-	_
Value							11	2FH (4	399)							

Setting the high-level width of the mask waveform

• Timer data register 03 (TDR03)

Sets the high-level width of the mask waveform to 0.55 ms.

 $(0.55 \text{ ms} = 1/f_{TCLK} \times TDR03 = 1/8 \text{ MHz} \times 4400)$

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TDR03	_	_	-	-	I	-	_	ı	_	-	-	_	_	-	-	-
Value							11	30H (4	400)							

Waiting until the TAU02 interrupt request signal is generated

• Interrupt request flag register (IF1H)

Symbol	7	6	5	4	3	2	1	0
IF1H	SRIF3	STIF3	KRIF	TMKAIF	RTCIF	ADIF	TMIF03	TMIF02

• Bit 0

TMIF02 bit	Function					
0	No interrupt request signal is generated					
1	Interrupt request signal is generated, interrupt request status					

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

Setting the high-level width of the mask waveform

• Timer data register 03 (TDR03)

Sets the high-level width of the mask waveform to 0 ns.

 $(0 \text{ ns} = 1/f_{TCLK} \times TDR03 = 1/8 \text{ MHz} \times 0)$

Symbol	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
TDR03	_	ı	-	_	_	_	ı	-	_	_	_	-	_	_	-	_
Value								0000H	(0)							

Clearing the TAU05 interrupt request flag

• Interrupt request flag register (IF2L)

Symbol	7	6	5	4	3	2	1	0
IF2L	CMPIF1	CMPIF0	LCDIF0	PIF7	PIF6	TMIF05	TMIF04	TKBIF20
Value	×	×	×	×	×	0		×

• Bit 2

TMIF05 bit	Function					
0	No interrupt request signal is generated					
1	Interrupt request signal is generated, interrupt request status					

Waiting until the TAU05 interrupt request signal is generated

• Interrupt request flag register (IF2L)

Symbol	7	6	5	4	3	2	1	0
IF2L	CMPIF1	CMPIF0	LCDIF0	PIF7	PIF6	TMIF05	TMIF04	TKBIF20

• Bit 2

TMIF05 bit	Function					
0	No interrupt request signal is generated					
1	Interrupt request signal is generated, interrupt request status					

For details on register setting, refer to the RL78/L13 User's Manual: Hardware.

Legend symbol:

×: Unused bit; blank cell: unchanged bit; -: reserved bit or unallocated bit

5. Sample Code

Sample code can be downloaded from the Renesas Electronics website.

6. Reference Documents

User's Manual: Hardware

RL78/L13 User's Manual: Hardware (R01UH0382E) RL78 Family User's Manual: Software (R01US0015E)

The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News

The latest information can be downloaded from the Renesas Electronics website.

Website and Support

Renesas Electronics website

http://www.renesas.com

Inquiries

http://www.renesas.com/contact/

REVISION HISTORY	RL78/L13 How to Output the Remote Control Signals
------------------	---

Pov	Doto		Description
Rev.	Date	Page	Summary
1.00	Feb. 08, 2016	_	First edition issued

All trademarks and registered trademarks are the property of their respective owners.

General Precautions in the Handling of MPU/MCU Products

The following usage notes are applicable to all MPU/MCU products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Handling of Unused Pins

Handle unused pins in accordance with the directions given under Handling of Unused Pins in the manual.

The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible. Unused pins should be handled as described under Handling of Unused Pins in the manual.

2. Processing at Power-on

The state of the product is undefined at the moment when power is supplied.

- The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the moment when power is supplied.
 In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the moment when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the moment when power is supplied until the power reaches the level at which resetting has been specified.
- 3. Prohibition of Access to Reserved Addresses

Access to reserved addresses is prohibited.

The reserved addresses are provided for the possible future expansion of functions. Do not access
these addresses; the correct operation of LSI is not guaranteed if they are accessed.

4. Clock Signals

After applying a reset, only release the reset line after the operating clock signal has become stable. When switching the clock signal during program execution, wait until the target clock signal has stabilized.

— When the clock signal is generated with an external resonator (or from an external oscillator) during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Moreover, when switching to a clock signal produced with an external resonator (or by an external oscillator) while program execution is in progress, wait until the target clock signal is stable.

5. Differences between Products

Before changing from one product to another, i.e. to a product with a different part number, confirm that the change will not lead to problems.

The characteristics of an MPU or MCU in the same group but having a different part number may differ in terms of the internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information
- 2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein
- 3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or
- 4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration, modification, copy or otherwise misappropriation of Renesas Electronics product.
- 5. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The recommended applications for each Renesas Electronics product depends on

"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic

"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-crime systems; and safety equipment etc.

Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas Electronics.

- 6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges
- 7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, lease evaluate the safety of the final products or systems manufactured by you
- 8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use Renesas Electronics products or technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas Electronics products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations
- 10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of unauthorized use of Renesas Electronics
- 11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majority-owned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics

SALES OFFICES

Renesas Electronics Corporation

http://www.renesas.com

Refer to "http://www.renesas.com/" for the latest and detailed information.

Renesas Electronics America Inc. 2801 Scott Boulevard Santa Clara, CA 95050-2549, U.S.A. Tel: +1-408-588-6000, Fax: +1-408-588-6130

Renesas Electronics Canada Limited 9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3 Tel: +1-905-237-2004

Renesas Electronics Europe Limited

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K Tel: +44-1628-585-100, Fax: +44-1628-585-900

Renesas Electronics Europe GmbH

Arcadiastrasse 10, 40472 Düsseldorf, German Tel: +49-211-6503-0, Fax: +49-211-6503-1327

Renesas Electronics (China) Co., Ltd. Room 1709, Quantum Plaza. No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China Tel: +88-10-8235-1155, Fax: +88-10-8235-7679

Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999

Renesas Electronics Hong Kong Limited

Treireads Electronics from Knotig Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022

Renesas Electronics Taiwan Co., Ltd. 13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan Tel: +886-2-8175-9600, Fax: +886 2-8175-9670

Renesas Electronics Singapore Pte. Ltd. 80 Bendemeer Road, Unit #06-02 Hyllux Innovation Centre, Singapore 339949 Tel: +65-6213-0200, Fax: +65-6213-0300

Renesas Electronics Malaysia Sdn.Bhd. Unit 1207, Block B. Menara Amcorp, Amco

1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia +60-3-7955-9390, Fax: +60-3-7955-9510

Renesas Electronics India Pvt. Ltd. No.777C, 100 Feet Road, HAL II Stage, Indiranagar, Bangalore, India Tel: +91-80-67208700, Fax: +91-80-67208777

Renesas Electronics Korea Co., Ltd. 12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea Tel: +82-2-558-3737, Fax: +82-2-558-5141

© 2016 Renesas Electronics Corporation. All rights reserved.