

RL78/G14, H8/36109

Migration Guide from H8 to RL78: IIC2

Introduction

This application note describes how to migrate the I²C Bus Interface 2 (IIC2) of the H8/36109 to the serial interface IICA of the RL78/G14 (100-pin package).

Target Device

RL78/G14, H8/36109

When using this application note with other Renesas MCUs, careful evaluation is recommended after making modifications to comply with the alternate MCU.

RENESAS

Contents

	Functions of I ² C Bus Interface 2 (IIC2) of H8/36109 and serial interface IICA of RL78/G		
2.	Summary of Differences between Functions	4	
3.	Comparison between Registers	5	
4.	Sample Code for Serial interface IICA	8	
5.	Documents for Reference	8	
Re	vision History	o	

1. Functions of I²C Bus Interface 2 (IIC2) of H8/36109 and serial interface IICA of RL78/G14

Table 1.1 shows the functions of the I2C Bus Interface 2 (IIC2) of H8/36109, and Table 1.2 shows the functions of the serial interface IICA of RL78/G14.

Table 1.1 Functions of I²C Bus Interface 2 (IIC2)

Function	Explanation
I ² C bus format communication	Communication conforming to the I ² C bus format
Clocked synchronous serial	Clocked synchronous serial communication (8-bit data, MSB- or LSB-first
format communication	selectable)

Table 1.2 Functions of serial interface IICA

Function	Explanation
I ² C bus mode	This mode is used for 8-bit data transfers with several devices via two
(multimaster supported)	lines: a serial clock (SCLAn) line and a serial data bus (SDAAn) line.
	This mode complies with the I2C bus format and the master device can generated "start condition", "address", "transfer direction specification", "data", and "stop condition" data to the slave device, via the serial data bus. The slave device automatically detects these received status and data by hardware. This function can simplify the part of application program that controls the I2C bus.

Remarks1. For RL78/G14, n: Channel number (n = 0, 1)

Remarks2. Different products are provided with different functions. For details, refer to the appropriate user's manuals (hardware).

Table 1.3 shows the serial interface IICA of RL78/G14 functions corresponding to the I2C Bus Interface 2 (IIC2) of H8/361094.

Table 1.3 Correspondence between Functions

H8/36109	RL78/G14
IIC2	IICA
I ² C bus format communication	I ² C bus mode
Clocked synchronous serial format communication	Substituted by 3-wire serial I/O (CSI) of SAU

I²C bus format communication of I²C bus interface 2 (IIC2) corresponds to I²C bus mode of IICA.

Clocked synchronous serial format communication of I^2C bus interface 2 (IIC2) virtually corresponds to the 3-wire serial I/O (CSI) of the serial array unit (SAU).

2. Summary of Differences between Functions

Table 2.1 summarizes the differences between the functions IIC2 and IICA.

Table 2.1 Summary of Differences between Functions

Item	H8/36109	RL78/G14	
	I ² C bus interface 2 (IIC2)	Serial interface IICA	
Communication format	I ² C bus format	I ² C bus format	
Input / output pin	- SCL (Input/output)	- SCLA0, SCLA1 (Note)	
	IIC serial clock input/output	Serial clock input/output of serial	
	- SDA (Input/output)	interface IICA0, IICA1 (Note)	
	IIC serial data input/output	- SDAA0, SDAA1 (Note)	
		Serial data input/output of serial interface IICA0, IICA1 (Note)	
Transfer clock	Internal clock (In master mode) /	Internal clock (In master mode) /	
	External clock (In slave mode)	External clock (In slave mode)	
Interrupt generation timing	- Transmit data empty	- Falling edge of eighth or ninth clock of	
	(including slave-address match),	the serial clock	
	- Transmit end	(set by the WTIMn bit) (Note)	
	- Receive data full	- Interrupt request generated when a stop	
	(including slave-address match)	condition is detected	
	- Arbitration lost	(set by the SPIEn bit)	
	- NACK detection		
	- Stop condition detection		
Detection of ACK / NACK	Yes	Yes	
Bit synchronization / wait function	Yes	Yes	
Detection of arbitration lost	Yes	Yes	
Selection of acknowledge	Yes	Yes	
output levels when			
receiving			
Noise canceler	Yes	Yes	
Return from standby mode (STOP mode)	None	Yes (In slave mode)	

Note. 80, 100-pin products only.

3. Comparison between Registers

Table 3.1 to Table 3.3 compares the registers for the H8/36109 IIC2 and the registers for the RL78/G14 IICA.

Table 3.1 Comparison between Registers (1/3)

	Legis 3.1 Comparison between Regis	T ,	
Item	H8/36109	RL78/G14 Serial interface IICA	
Control of IIC2 input aloak august.	I ² C bus interface 2 (IIC2)		
Control of IIC2 input clock supply	MSTCR1 register MSTIIC bit	None	
Control of serial interface IICAn	None	PER0 register	
input clock supply		IICA1EN bit (Note), IICA0EN bit	
I ² C bus control register 1	ICCR1 register	None	
I ² C Bus Interface Enable	ICCR1 register	IICCTLn0 register	
	ICE bit	IICEn bit	
Reception Disable	ICCR1 register	None	
	RCVD bit		
Master/Slave Select	ICCR1 register	None	
	MST bit, TRS bit	- Master communication state is	
		entered when a start condition (ST)	
		is detected after ST is generated.	
		- Slave state is entered when a match	
		of the slave address is detected.	
Transfer Clock Select	ICCR1 register	IICCTLn1 register	
	CKS3 - CKS0 bit	PRSn bit	
		IICWLn register	
		IICWHn register	
I ² C Bus Control Register 2	ICCR2 register	None	
Bus Busy	ICCR2 register	IICFn register	
	BBSY bit	IICBSYn bit	
Start/Stop Issue Condition Disable	ICCR2 register	IICCTLn0 register	
	SCP bit STTn bit, SPTn bit		
SDA Output Value Control	ICCR2 register	IICCTLn1 register	
	SDAO bit	DADn bit	
SDAO Write Protect	ICCR2 register None		
	SDAOP bit		
SCL output level monitor	ICCR2 register	IICCTLn1 register	
	SCLO bit	CLDn bit	
IIC Control Part Reset	ICCR2 register	IICCTLn0 register	
	IICRST bit IICEn bit		
I ² C Bus Mode Register	ICMR register	None	
MSB-First / LSB-First Select	ICMR register	None	
	MLS bit		
Wait Insertion Bit	ICMR register	IICCTLn0 register	
	WAIT bit	WTIMn bit	
BC Write Protect	ICMR register	None	
	BCWP bit		
Bit Counter	ICMR register	None	
	BC2 - BC0 bit		

Note. 80, 100-pin products only. Remark. For RL78/G14, n = 0, 1

Table 3.2 Comparison between Registers (2/3)

Item	Able 3.2 Comparison between Regis H8/36109	RL78/G14	
item	I ² C bus interface 2 (IIC2)	Serial interface IICA	
I2C Pue Interrupt Enable Begister	ICIER register	None	
I ² C Bus Interrupt Enable Register	Š		
Transmit Interrupt Enable	ICIER register TIE bit	None	
Too sout Find Internation Finds		HOOTI O it	
Transmit End Interrupt Enable	ICIER register	IICCTLn0 register	
<u> </u>	TEIE bit	WTIMn bit	
Receive Interrupt Enable	ICIER register	IICCTLn0 register	
	RIE bit	WTIMn bit	
NACK Receive Interrupt Enable	ICIER register	None	
	NAKIE		
Stop Condition Detection Interrupt	ICIER register	IICCTLn0 register	
Enable	STIE bit	SPIEn bit	
Acknowledge Bit Judgment Select	ICIER register	None	
	ACKE bit		
Receive Acknowledge	ICIER register	IICSn register	
	ACKBR bit	ACKDn bit	
Transmit Acknowledge	ICIER register	IICCTLn0 register	
	ACKBT bit	ACKEn bit	
I ² C Bus Status Register	ICSR register	None	
Transmit Data Register Empty	ICSR register	None	
	TDRE bit		
Transmit End	ICSR register	None	
	TEND bit		
Receive Data Register Full	ICSR register	None	
	RDRF bit		
No Acknowledge Detection Flag	ICSR register	None	
	NACKF bit		
Stop Condition Detection Flag	ICSR register	IICSn register	
	STOP bit	SPDn bit	
Arbitration Lost Flag / Overrun	ICSR register	IICSn register	
Error Flag	AL/OVE bit	ALDn bit	
Slave Address Recognition Flag	ICSR register	IICSn register	
3	AAS bit	COIn bit	
General Call Address Recognition	ICSR register	IICSn register	
Flag	ADZ bit	EXCn bit	
Slave Address Register	SAR register	None	
Slave Address	SAR register	SVAn register	
Ciavo / Iddi Coo	SVA6 - SVA0 bit Upper 7 bits (bit 0 fixed to 0)		
Format Select	SAR register	None	
i oimat Select	FS bit		
12C Bug Transmit Data Basistan		IICAn register	
I ² C Bus Transmit Data Register	ICDRT register	IICAn register	

Remark. For RL78/G14, n = 0, 1

Table 3.3 Comparison between Registers (3/3)

Item	H8/36109	RL78/G14
	I ² C bus interface 2 (IIC2)	Serial interface IICA
Exit from communications	None	IICCTLn0 register
		LRELn bit
Wait cancellation	None	IICCTLn0 register
		WRELn bit
Master status check flag	None	IICSn register
		MSTSn bit
Detection of transmit/receive	None	IICSn register
status		TRCn bit
Detection of start condition	None	IICSn register
		STDn bit
STTn clear flag	None	IICFn register
		STCFn bit
Initial start enable trigger	None	IICFn register
		STCENn bit
Communication reservation	None	IICFn register
function disable bit		IICRSVn bit
Control of address match wakeup	None	IICCTLn1 register
		WUPn bit
Operation mode switching	None	IICCTLn1 register
		SMCn bit
Digital filter operation control	None	IICCTLn1 register
		DFCn bit

Remark. For RL78/G14, n = 0, 1

4. Sample Code for Serial interface IICA

The sample code for the serial interface IICA is explained in the following application notes.

- RL78/G13 Serial Interface IICA (for Master Transmission/Reception) CC-RL (R01AN2759)
- RL78/G13 Serial Interface IICA (for Slave Transmission/Reception) CC-RL (R01AN2760)

5. Documents for Reference

User's Manual:

- RL78/G14 User's Manual: Hardware (R01UH0186)
- H8/36109 Group User's Manual: Hardware (R01UH0294)

The latest versions can be downloaded from the Renesas Electronics website.

Technical Update/Technical News:

The latest information can be downloaded from the Renesas Electronics website.

Revision History

		Description	
Rev.	Date	Page	Summary
1.00	Jun.08, 2020	-	First edition issued

General Precautions in the Handling of Microprocessing Unit and Microcontroller Unit Products

The following usage notes are applicable to all Microprocessing unit and Microcontroller unit products from Renesas. For detailed usage notes on the products covered by this document, refer to the relevant sections of the document as well as any technical updates that have been issued for the products.

1. Precaution against Electrostatic Discharge (ESD)

A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used. This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit boards with mounted semiconductor devices.

2. Processing at power-on

The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches the level at which resetting is specified.

3. Input of signal during power-off state

Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-off state as described in your product documentation.

4. Handling of unused pins

Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state, extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally, and malfunctions occur due to the false recognition of the pin state as an input signal become possible.

5. Clock signals

After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or by an external oscillator while program execution is in progress, wait until the target clock signal is stable.

- 6. Voltage application waveform at input pin
 - Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device stays in the area between V_{IL} (Max.) and V_{IH} (Min.) due to noise, for example, the device may malfunction. Take care to prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the input level passes through the area between V_{IL} (Max.) and V_{IH} (Min.).
- 7. Prohibition of access to reserved addresses

Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.

8. Differences between products

Before changing from one product to another, for example to a product with a different part number, confirm that the change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins, immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a system-evaluation test for the given product.

Notice

- 1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by you or third parties arising from the use of these circuits, software, or information.
- 2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application examples.
- 3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others
- 4. You shall be responsible for determining what licenses are required from any third parties, and obtaining such licenses for the lawful import, export, manufacture, sales, utilization, distribution or other disposal of any products incorporating Renesas Electronics products, if required.
- 5. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by you or third parties arising from such alteration, modification, copying or reverse engineering.
- 6. Renesas Electronics products are classified according to the following two quality grades: "Standard" and "High Quality". The intended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; industrial robots; etc.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.

Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user's manual or other Renesas Electronics document.

- 7. No semiconductor product is absolutely secure. Notwithstanding any security measures or features that may be implemented in Renesas Electronics hardware or software products, Renesas Electronics shall have absolutely no liability arising out of any vulnerability or security breach, including but not limited to any unauthorized access to or use of a Renesas Electronics product or a system that uses a Renesas Electronics product. RENESAS ELECTRONICS DOES NOT WARRANT OR GUARANTEE THAT RENESAS ELECTRONICS PRODUCTS, OR ANY SYSTEMS CREATED USING RENESAS ELECTRONICS PRODUCTS WILL BE INVULNERABLE OR FREE FROM CORRUPTION, ATTACK, VIRUSES, INTERFERENCE, HACKING, DATA LOSS OR THEFT, OR OTHER SECURITY INTRUSION ("Vulnerability Issues"). RENESAS ELECTRONICS DISCLAIMS ANY AND ALL RESPONSIBILITY OR LIABILITY ARISING FROM OR RELATED TO ANY VULNERABILITY ISSUES. FURTHERMORE, TO THE EXTENT PERMITTED BY APPLICABLE LAW, RENESAS ELECTRONICS DISCLAIMS ANY AND ALL WARRANTIES, EXPRESS OR IMPLIED, WITH RESPECT TO THIS DOCUMENT AND ANY RELATED OR ACCOMPANYING SOFTWARE OR HARDWARE, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE.
- 8. When using Renesas Electronics products, refer to the latest product information (data sheets, user's manuals, application notes, "General Notes for Handling and Using Semiconductor Devices" in the reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or transactions.
- 12. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third party in advance of the contents and conditions set forth in this document.
- 13. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 14. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
- (Note1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
- (Note2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

(Rev.5.0-1 October 2020)

Corporate Headquarters

TOYOSU FORESIA, 3-2-24 Toyosu, Koto-ku, Tokyo 135-0061, Japan www.renesas.com

Trademarks

Renesas and the Renesas logo are trademarks of Renesas Electronics Corporation. All trademarks and registered trademarks are the property of their respective owners.

Contact information

For further information on a product, technology, the most up-to-date version of a document, or your nearest sales office, please visit: www.renesas.com/contact/.