
Tool News

RENESAS TOOL NEWS on June 16, 2008: 080616/tn6

Notes on Using the Real-Time OSes
--M3T-MR308/4 and M3T-MR30/4--

for the M16C MCU Family

Please take note of the following problems in using the real-time OSes-- M3T-MR308/4 and
M3T-MR30/4--for the M16C MCU family:

With using mailboxes with the TA_MPRI property (NOTE 1)
With calculating stack usage
NOTE:
1. TA_MPRI is the mailbox property for arranging the messages in a queue in priority order.

1. Problem with using Mailboxes with the TA_MPRI Property
1.1 Products and Versions Concerned
 (1) Real-time OS--M3T-MR308/4--for the M32C series (NOTE 2)
 V.4.00 Release 00 through V.4.00 Release 02, and
 V.4.00 Release 02A
 (2) Real-time OS--M3T-MR30/4--for the M16C series (NOTE 3)
 V.4.00 Release 00

 NOTES:
 2. The M32C series is the generic name of the M32C/80 and M16C/80
 series.
 3. The M16C series is the generic name of the M16C/60, /30, /20,
 /10, /Tiny, and R8C/Tiny series.

1.2 Description
 If the snd_mbx or isnd_mbx service call is issued to a mailbox with
 the TA_MPRI property to send messages, they may be incorrectly sent,
 and indefinite values be written to indefinite areas.

1.3 Conditions

 This problem may occur if the following conditions are all satisfied:
 (1) The snd_mbx or isnd_mbx service call is issued to a mailbox with
 the TA_MPRI property.
 (2) Two or more messages are stored in the mailbox in (1).
 (3) During the execution of the service call in (1), an interrupt is
 generated, the interrupt handler issues the iprcv_mbx service
 call, and messages stored in the mailbox in (1) are delivered.

1.4 Workarounds
 Before and after issuing the snd_mbx or isnd_mbx service call, disable
 and enable interrupt respectively as follows:

 (1) In the case of a task having issued the snd_mbx service call
 Do not use the interrupt enable bit, but disable interrupts
 by changing the processor interrupt priority level IPL to
 the kernel interrupt masking level (OS interrupt disabled level);
 then enable interrupts by restoring the level.

 void task(VP_INT exinf)
 {

 /* Interrupt disabled */
 #pragma ASM
 ; Shown below is an example where kernel interrupt masking level
 ; (OS interrupt disabled level) is 7.
 LDIPL #7
 NOP
 NOP
 NOP
 #pragma ENDASM
 snd_mbx(ID_mbx,(T_MSG *)&msg);
 /* Interrupt enabled */
 #pragma ASM
 ; IPL value is usually 0 during execution of tasks.
 LDIPL #0
 NOP
 NOP
 NOP
 #pragma ENDASM

 }

 (2) In the case of the interrupt handler having issued the isnd_mbx
 service call
 Avoid the problem in either of the following ways:
 (a) Perform the same procedure as Workaround (1)
 (b) Clear and set the interrupt enable bit to disable
 interrupts and enable them.

 void inthand(void)
 {

 /* Workaround (a) */
 /* Interrupt disabled */
 #pragma ASM
 ; Shown below is an example where kernel interrupt masking level
 ; (OS interrupt disabled level) is 7.
 LDIPL #7
 NOP
 NOP
 NOP
 #pragma ENDASM
 isnd_mbx(ID_mbx,(T_MSG *)&msg);
 /* Interrupt enabled */
 #pragma ASM
 ; IPL resumes value just before interrupt handler issuing isnd_mbx.
 LDIPL #3
 NOP
 NOP
 NOP
 #pragma ENDASM

 /* Workaround (b) */
 /* Interrupt disabled */
 #pragma ASM
 FCLR I
 #pragma ENDASM
 isnd_mbx(ID_mbx,(T_MSG *)&msg);
 /* Interrupt enabled */
 #pragma ASM
 FSET I
 NOP
 #pragma ENDASM

 }

 Notice:
 Depending on your MCU, place and remove NOP instructions after the
 LDIPL, FSET, and FCLR instructions according to the timing at which
 the IPL is changed by the execution of the LDIPL instruction and
 at which the status of the I flag is reflected by the execution of
 the FSET and FCLR instructions.

1.5 Schedule of Fixing the Problem
 This problem have already been fixed in M3T-MR30/4 V.4.00 Release 01,
 which will be published on July 4, 2008.
 As for M3T-MR308/4, it will be fixed in the next release.

2. Problem with Calculating Stack Usage
2.1 Product and Version Concerned
 Real-time OS--M3T-MR30/4--for the M16C series (See NOTE 3, in 1.1)
 V.4.00 Release 00

2.2 Description
 In the User's manual, the amounts of stack usage of service calls
 using C-language-interfaced routines have been expressed less than
 the actual ones.

2.3 Corrections
2.3.1 Corrections to User's Manual
 Modify descriptions of the values of the amounts of stack usage of
 service calls using C-language in Section 10.2,
 "Necessary Stack Size" as follows:

Service
Call's Name

Read For

get_pri 5 2

wai_flg 5 2

pol_flg 5 2

twai_flg 7 4

tsnd_dtq 5 2

rcv_dtq 5 2

prcv_dtq 5 2

trcv_dtq 5 2

rcv_mbx 5 2

prcv_mbx 5 2

trcv_mbx 5 2

get_mpf 5 2

pget_mpf 5 2

tget_mpf 5 2

pget_mpl 5 2

get_tid 5 2

vtsnd_dtq 5 2

vrcv_dtq 7 4

vprcv_dtq 7 4

vtrcv_dtq 7 4

iget_pri 5 2

ipol_flg 5 2

iprcv_dtq 5 2

iprcv_mbx 5 2

ipget_mpf 5 2

iget_tid 5 2

viprcv_dtq 7 4

2.3.2 Adjustments of the Results Calculated Using the Stack Size
 Calculation Utility
 When stack usage is calculated using the stack size calculation utility,
 add the adjustment value shown below for the service call involved
 to the calculated value. When two or more service calls are used,
 the maximum of their adjustment values shall be added.
 (1) Only vprcv_dtq used:
 Adjustment value 7
 (2) Either pget_mpl or prcv_dtq used:
 Adjustment value 5
 (3) Any of the following used:
 wai_flg, twai_flg, tsnd_dtq, rcv_dtq, trcv_dtq, rcv_mbx, trcv_mbx,

 get_mpf, tget_mpf, vtsnd_dtq, vrcv_dtq, vtrcv_dtq, iget_pri,
 ipol_flg, iprcv_dtq, iprcv_mbx, ipget_mpf, iget_tid, and viprcv_dtq
 Adjustment value 3

 Example 1:
 When the calculated result of the stack usage of a task is 52 bytes,
 and the task has issued vprcv_dtq or vrcv_dtq, an adjustment value
 of 7 is added to 52, resulting in the correct usage being 59 bytes.
 Example 2:
 When the calculated result of the stack usage of an interrupt handler
 is 36 bytes, and the handler has issued iget_tid or iget_pri,
 an adjustment value of 3 is added to 36, resulting in the correct
 usage being 39 bytes.

2.4 Schedule of Fixing the Problems
 This problems have already been fixed in M3T-MR30/4 V.4.00 Release 01,
 which will be published on July 4, 2008.

[Disclaimer]
The past news contents have been based on information at the time of publication. Now changed or invalid information may be
included. The URLs in the Tool News also may be subject to change or become invalid without prior notice.

© 2010-2016 Renesas Electronics Corporation. All rights reserved.

