
(c) 2016. Renesas Electronics Corporation. All rights reserved. Page 1 of 10

Date: Jun. 30, 2016

RENESAS TECHNICAL UPDATE
TOYOSU FORESIA, 3-2-24, Toyosu, Koto-ku, Tokyo 135-0061, Japan
Renesas Electronics Corporation

Product
Category MPU/MCU Document

No. TN-RL*-A035B/E Rev. 2.00

Title RL78/L1C Direction of use Information
Category Technical Notification

Applicable
Product

RL78/L1C
R5F110xx (with USB function)

Lot No.

Reference
Document

RL78/L1C User’s Manual: Hardware
Rev.2.00
R01UH0409JJ0200 (Jan. 2014) All lots

A restriction on directions of transitions of the CPU clock state has been added for products of the RL78/L1C.

Restriction reported in this document

Section Restriction Target Products Page Nos. in
This Document

1.1 Restriction on transitions of the CPU clock state RL78/L1C (with USB function) Pages 2 to 5

List of restrictions which have already been reported

Section Restriction Page Nos. in
This Document

2.1 Restriction of the divide instruction (DIVHU, DIVWU) Pages 6 to 10

Revision history

Revision history of technical updates on restrictions of the RL78/G1C
Document Number Issued Date Description
TN-RL*-A035A/E Oct. 14, 2014 First edition

Section 2.1 shown in the table under “List of restrictions
which have already been reported”

TN-RL*-A035B/E Jun. 30, 2016 Second revision
Section 1.1 added in the table under “Restriction reported in
this document” (this document)

RENESAS TECHNICAL UPDATE TN-RL*-A035B/E Date: Jun. 30, 2016

（ｃ） 2016. Renesas Electronics Corporation. All rights reserved. Page 2 of 10

1．Restriction added in this document

1.1 Restriction on transitions of the CPU clock state

1.1.1 Restriction

[Applicable Usage]

The restriction is applicable when usage satisfies both conditions (1) and (2) below.

(1) The PLL clock signal is selected as the operating clock for the USB 2.0 host/function module (USB).

(2) In resuming from the suspended state, X1 oscillation or EXCLK input is selected as the source of the CPU

clock to return from the STOP or HALT mode (transitions of states between (N) and (O) from (C) shown in

figure 1).

Figure 1 CPU Clock Status Transition Diagram

RENESAS TECHNICAL UPDATE TN-RL*-A035B/E Date: Jun. 30, 2016

（ｃ） 2016. Renesas Electronics Corporation. All rights reserved. Page 3 of 10

[Flowchart for judging whether the problem will affect your own usage of the USB module]

A flowchart for judging whether the problem will affect your own usage of the USB module is given in figure 2.

Figure 2 Flowchart for judging if your software is affected

Start of the flow for judging

Are you using the USB module?

Is the clock being switched on
entering resume mode?

Are you not using the USB
library from Renesas?Note

Is the source of
 the CPU clock being switched
to the X1 oscillator while the

clock is stopped?

The restriction
applies in this case.

The restriction
does not apply in

this case.

Yes

No

Yes

Yes

Yes

No

No

No

Note The restriction is never applicable if you are using the “USB Host and Peripheral Basic Mini Firmware”

USB library without change.

Note that the USB library is for reference. Hence, we do not guarantee its operation.

RENESAS TECHNICAL UPDATE TN-RL*-A035B/E Date: Jun. 30, 2016

（ｃ） 2016. Renesas Electronics Corporation. All rights reserved. Page 4 of 10

1.1.2. Details of the Restriction

In switching from the X1 oscillator to the PLL oscillator in a way that satisfies the conditions on page 2, registers of

the USB module may become inaccessible if the following conditions are also met.

Condition 1: fMX is selected as the CPU clock and the PLL clock is running.

Condition 2: The USB registers are accessed.

Specifically, in release from the STOP of HALT mode, attempted access to the USB registers (see table 14-3 in

the RL78/G1C User’s Manual: Hardware) at times (1) and (2), where the clock is being changed, may lead to

reading or writing not proceeding correctly.

Figure 3 Timing Chart of the Processing that Gives Rise to the Restriction

USB state

PLL oscillation

CPU clock

RUN

Run

PLL/2 fMX STOP Stabilization
time fMX

Stop

Resume RUN

Run

PLL/2

Time range (1) Time range (2)

PLL clock
stabilization time

(40 µs)

1.1.3. Workaround

The workaround is to avoid transitions of the CPU clock state from (N) to (O).

To avoid the problem, switch the clock source by using transitions between (B) and (K) as shown in figure 4, CPU

Clock Status Transition Diagram (New).

When having the USB operate with the PLL clock signal and suspend or resume its operation while the device is

in the suspended state, set the high-speed on-chip oscillator as the source of the CPU clock.

RENESAS TECHNICAL UPDATE TN-RL*-A035B/E Date: Jun. 30, 2016

（ｃ） 2016. Renesas Electronics Corporation. All rights reserved. Page 5 of 10

Figure 4 CPU Clock Status Transition Diagram (New)

1.1.4. Modification schedule

We are handling this countermeasure as a restriction on usage.

This matter is added to “CPU Clock Status Transition Diagram” of CHAPTER 5 CLOCK GENERATOR in the

user’s manual by the next revision.

RENESAS TECHNICAL UPDATE TN-RL*-A035B/E Date: Jun. 30, 2016

（ｃ） 2016. Renesas Electronics Corporation. All rights reserved. Page 6 of 10

2. Direction notified in Rev.1

2.1 Restriction of the divide instruction (DIVHU, DIVWU)

2.1.1 About the restrication

<Usage subject to the restriction>

If the software code applies to ALL of the four conditions below, the code is subject to the restriction.

1) A divide instruction (DIVHU or DIVWU) is executed in an interrupt service routine.

A divide instruction (DIVHU or DIVWU) is defined as Group 1 instruction.

2) Multiple interrupts are enabled in the interrupt service routine in which the divide instruction

(DIVHU or DIVWU) is executed.

3) More than one interrupts with different interrupt priorities occur during the process of the interrupt

service routine mentioned in 2) above.

Please refer to Table 1 for the detail of the priorities of the corresponding interrupts.

4) The divide instruction (DIVHU or DIVWU) is followed by a Group 2 instruction.

Please refer to Item 5. “The List of Group 2 Instruction” for the details of Group 2 instructions. Please note, that

any instruction is classified as “Group 2” if the preceding divide instruction is executed in RAM.

2.1.2 Details of the restriction

There is a possibility of unintended operation when branching from Interrupt A to Interrupt C, or branching from

Interrupt C to Interrupt A.

I. A “Group 1” instruction (DIVHU, DIVWU) and a “Group 2” instruction are consecutive in Interrupt A in

which multiple interrupts are enabled.

II. Interrupt B, whose request occurs during the process of Interrupt A, is suspended.

III. Interrupt C is generated during the two clock cycles just before the MCU completes the execution of the

divide instruction (8th or 9th cycle for DIVHU, 16th or 17th cycle for DIVWU).

Note 1: Please refer to Item 5. “The List of Group 2 Instruction” for the details of Group 2 instruction.

Note 2: Whether the MCU accepts an interrupt or not depends on the combination of the priority levels

(0 to 3) of the interrupts. Table 1 shows the combinations subject to the restriction.

RENESAS TECHNICAL UPDATE TN-RL*-A035B/E Date: Jun. 30, 2016

（ｃ） 2016. Renesas Electronics Corporation. All rights reserved. Page 7 of 10

2.1.3．Software Workaround

Please implement one of the following software workaround.

（A） Disable interrupts during a divide or modulo operation.

Example:

__asm(“push PSW”);

DI();

Divide or modulo operation in C

__asm(“pop PSW”);

（B） Insert a NOP instruction immediately after the divide instruction.

Also, if the divide instruction (DIVHU or DIVWU) is executed in RAM, move it to code flash.

Example:

DIVWU ; Divide instruction

NOP ; Insert a NOP instruction

RET ; Group 2 instruction

In the case of using a High-level language including C, compilers may generate the instructions

subject to this restriction. In this case, take the workaround (A).

Note: In the case of Renesas compiler CA78K0, “#pragma di” should be declared in the code to use DI();

RENESAS TECHNICAL UPDATE TN-RL*-A035B/E Date: Jun. 30, 2016

（ｃ） 2016. Renesas Electronics Corporation. All rights reserved. Page 8 of 10

2.1.4．Permanent Measure

We will implement the software workaround into Renesas compiler CA78K0R V1.7.1.

Detail of the implementation:

CA78K0R V1.7.1 always inserts a NOP instruction immediately after each DIVWU / DIVHU instruction

when building. This Implementation eliminates the need for the software workaround mentioned in

Item 3. Software Workaround”. Note

V1.7.1 Release Schedule: November 18, 2014

Note: If a divide instruction (DIVHU or DIVWU) is executed in RAM, code modification is required.

RENESAS TECHNICAL UPDATE TN-RL*-A035B/E Date: Jun. 30, 2016

（ｃ） 2016. Renesas Electronics Corporation. All rights reserved. Page 9 of 10

2.1.5 List of Group2 instruction

In the case a divide instruction (DIVHU or DIVWU) is followed by an instruction of Group2, it is subject to the restriction

mentioned in this report. Instruction meeting one of the following conditions (Condition 1 to 3) is subject to Group2.

Condition 1: Instruction whose execution cycles are 2 or more.

Condition 2: Instruction reading the code flash memory or the mirror area.

Instruction in the tables below of reading the code flash memory or the mirror area is subject to “Group 2”.

RENESAS TECHNICAL UPDATE TN-RL*-A035B/E Date: Jun. 30, 2016

（ｃ） 2016. Renesas Electronics Corporation. All rights reserved. Page 10 of 10

Condition 3 : Instruction suspending interrupt requests.

Instruction listed in the table below that suspends interrupt requests, is subject to Group2.

Instruction writing to the registers below is subject to Group2 since it suspends interrupt requests.

Writing to the registers below by register addressing is also subject to the condition3.

The table below shows the instruction writing to the registers listed above.

・Interrupt request flag register

IF0L, IF0H, IF1L, IF1H, IF2L, IF2H, IF3L

・Interrupt mask flag register

MK0L, MK0H, MK1L, MK1H, MK2L, MK2H, MK3L

・Priority specification flag register

PR00L, PR00H, PR01L,PR01H, PR02L, PR02H, PR03L,

PR10L, PR10H, PR11L, PR11H, PR12L, PR12H, PR13L

